
A Modeling Domain-Specific Language for
IoT-enabled Operating Systems

T. Gomes∗, P. Lopes∗, J. Alves∗, P. Mestre†, J. Cabral∗, J. L. Monteiro∗, and A. Tavares∗
Corresponding author: mr.gomes@dei.uminho.pt

∗Centro ALGORITMI, University of Minho, Portugal
†Engineering Department, University of Trás-os-Montes e Alto Douro, Portugal

Abstract—With the increased complexity of low-end devices
in the Internet of Things (IoT), mainly due to the connectivity
and interoperability requirements, the development and config-
uration of embedded operating systems (OSes) for such devices
is not straight forward. The complexity of the communication
requirements is usually mitigated by the OS, e.g., the Contiki-
OS, as it already incorporates an IoT-compliant network stack.
Yet, the configuration of such stack requires major knowledge
on the code structure, leading to additional development time,
particularly when the network comprises several wireless nodes
and individual configurations with subsequent firmware that
needs to be generated. Based on a developed software model-
ing domain-specific language, this paper presents the EL4IoT
framework. It aims to reduce and ease the development time
by promoting a design automation tool that can configure, and
automatically generate code (ready to compile) for low-end IoT
devices running the Contiki-OS. Although leveraging the whole
Contiki-OS modeling, this work only refactored and modeled the
network stack while approaching the OS itself as one big building
block or component. The proposed approach can be extended to
other IoT-enabled OSes as well as integrated in other design
automation tools.

Index Terms—Domain-Specific Language (DSL), Internet of
Things (IoT), embedded Operating Systems, model-driven devel-
opment

I. INTRODUCTION

The Internet of Things (IoT) materializes the concept of

a world wide network, enabling devices and sensors to be

wirelessly connected to the Internet [1]. Providing wireless

connectivity to ever-growing number of such smart devices,

which already integrate a plethora of applications and scenar-

ios, such as smart cities [2], structural health monitoring [3]

and smart health care systems [4], while serving a variety of

requirements, can be quite challenging. This is due, mainly,

to the hardware heterogeneity (which can range from small

8-bit microcontrollers to more complex and energy-efficient

32-bit processors) and the scarce available resources (e.g.,

processing capabilities, available memory and constrained en-

ergy sources). These limitations, as well as the increased com-

plexity of connecting smart things to the Internet seamlessly

through standard and well-known protocols, requires a stan-

dardized and adaptive communication stack [5]. Such protocol

stack defines standards for all layers, e.g., the IEEE 802.15.4

standard (layer 2) and IPv6 over Low power Wireless Personal

Area Networks (6LoWPAN) protocol (layer 3), promoting

interoperability and connectivity among all the participating

devices. From the hardware point of view, traditional operating

systems (OSes) cannot fulfill the requirements of providing

a standardized and lightweight, yet complex, network stack

to be deployed on the constrained low-end IoT devices [6].

As an alternative, available embedded OSes (which already

integrate an IoT-compliant and standardized network stack),

such as Contiki-OS [7] and RIOT-OS [8], provide support to a

wide range of hardware platforms and microcontroller (MCU)

architectures. They run in traditional homogeneous wireless

sensor network (WSN) nodes, as well as in heterogeneous

architectures for low-end IoT devices [9], enabling field-

programmable gate array (FPGA) technology to be exploited

for accelerating network and sensing-related tasks [10].

Despite promoting a lightweight implementation, the con-

figuration and deployment of these embedded OSes is still

complex, mainly due to the hardware heterogeneity and the

high variability of the OS and network stacks. The task

of configuring and customizing network parameters, such

as the personal area network (PAN) and device’s addresses

(MAC and IPv6), as well as OS services and protocols, e.g.,

6LoWPAN and Constrained Application Protocol (CoAP),

can be mitigated by enabling design automation through the

development of a tool that allows full system configuration and

code generation according to the user needs and application

requirements. The applicability of such tool can be explored

in a way that generating firmware for several nodes in an IoT

network, while providing mechanisms for code verification

and validation, can be performed by automated systems and/or

embedded systems designers without deep knowledge of the

OS or the IoT communication stack. Several approaches

targeting design automation by providing a domain-specific

language (DSL) to model a desired system have already been

undertaken in the recent years. In [11] it is proposed a low-

level DSL for dynamic code-generation in binary translation

systems, enabling code snippets to be added during compile

time. The code is then generated by the translator on demand

at runtime and integrated into the translated application code.

SensorScript [12] proposes a business-oriented DSL for sensor

networks, that aims to provide a model which avoids to

overwhelm any user with all the data gathered from the sensor

network, regardless if it is actually required by the user. This

allows users to easily search, query and aggregate information

from the sensors. Targeting IoT-based applications and aiming

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 15:39:35 UTC from IEEE Xplore. Restrictions apply.

to relieve designers from the complexity and the heterogeneity

of the WSN nodes, the DSL-4-IoT [13] was also proposed. It

mainly provides a visual model based language, which, using a

high level of abstraction, allows different configurations to be

deployed over a WSN environment. However, at the level of

abstraction provided DSL-4-IoT, the low-level configurations

such as the network settings and protocols are not specified.

In this paper we propose the EL4IoT framework, a modeling

DSL for IoT-enabled OSes, allowing the configuration and

automatic generation of code for low-end devices in IoT

applications that require an IoT network stack to provide

interoperability and seamless connectivity to the Internet. The

main contributions of the EL4IoT are: (1) a DSL for modeling

embedded OSes targeting the Internet of Things (Contiki-OS);

(2) reduced modeling efforts over the Contiki-OS network

stack; and (3) the development of a design automation and

code verification tool for embedded systems designers, pro-

moting its integration with design automation tools.

II. ELABORATION LANGUAGE (EL)

A. Background

A domain-specific language (DSL) is a programming lan-

guage with limited expressiveness which, in contrast with

general purpose languages, targets a specific domain providing

constructs to solve its specific problems [14]. Its usage it

is quite appealing since it promotes a simpler and faster

development, while providing higher gains in expressiveness,

ease of use and productivity [15]. Developing DSLs is quite

hard, as it requires high levels of domain knowledge and

technical expertise, but once well designed and created, it tends

to pay off all the inherent development efforts [16]. There is

a growing interest in DSLs for generative programming (GP)

[17] and model driven development (MDD) [18] programming

styles, as they provide higher levels of abstraction, leveraging

software reuse and fast software development. While GP

targets the automatic system generation according to a defined

specifications, MDD is an approach in which extensive models

are created (before, during or after source code is written)

to describe system’s architecture abstracting implementation

details, easing development and testing purposes. Both MDD

and GP rely on software reuse and complex code generation,

thus, a DSL must provide constructs to enable the mapping

between models and code that will be generated [19].

The Elaboration Language (EL) is a modeling DSL de-

signed to be an efficient GP tool, while approaching MDD.

Based on the Service-Component Architecture (SCA) standard

[20], it mainly targets the code generation automation from the

source files of a designated system. SCA specifies that various

system components may be assembled by the form of service-

oriented architecture (SOA) components following a compos-

ite pattern. The key elements of this standard are: Composite,

Component, Service, Reference, Property and Wire. According

to the standard, it is possible to create reference architectures

identifying the system components and interactions between

them, as well as their configurable properties. Our EL was

developed using the Xtext and Xtend frameworks, widely

Figure 1. Framework workflow

adopted when developing DSLs. Xtext is an Eclipse frame-

work used to create the language grammar, which dictates

how the parser and the Abstract Syntax Tree is created, while

Xtend is a general purpose programming language that is

translated into a comprehensible Java representation [14]. It

is interchangeable with Java code, and it is used to implement

language validators, code generation software, and some other

Eclipse language specific tools (e.g., quick fixes). In this paper,

we do not cover the aspects of developing a DSL, as we mainly

intend to technically present our EL as a solution for software

modeling, validating its usability through a real use case, that

is, the modeling of the Contiki-OS communication stack.

B. System overview

The framework workflow, depicted in Figure 1, encom-

passes four main stages: Modeling, Elaboration, Configuration

and Code Generation. During each stage, the artifacts that

will be used in the next stages are created. During the

Modeling stage, the main goal is to create an architectural

model, according to the SCA standard, that will be later used

as a reference architecture. During the architectural model

creation the system components must be identified, as well

as the dependencies between them, allowing the specification

of well-defined interfaces and properties. After its creation,

it must be compiled. If the compilation process succeeds,

the compiler should generate, for each component, its Java

representation, elaboration stub class, the configuration XML

files, and an architecture-specific Java Elaborator. All these

artifacts are then used in the following stages. The Elaboration

stage encompasses the provision of annotated source files and

the implementation of the elaboration classes’ behavior (using

the elaboration stub classes). Once implemented, elaboration

files dictate how the source code must be generated. For each

component, more than one implementation may be available,

as well as its respective elaboration. Only one elaboration class

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 15:39:35 UTC from IEEE Xplore. Restrictions apply.

per component will be executed in the Elaborator, as specified

by the configuration files. Also, an API is available to ease the

annotation process (find and replace), within the respective

source code files (e.g., function calls, property values), and

also to fetch other properties from the configuration files. Pre-

viously generated XML artifacts (configuration files), contain

the values for all the component properties, which may be

changed during the Configuration stage, to modify the system

configuration and its subsequent code generation. These files

also specify which component elaboration will be loaded into

the Elaborator process. In addition, each elaboration may

have its own implementation-specific properties. Since such

properties are not available in the reference architecture’s

configuration files, another XML file should be provided

by the elaboration developer. Once properly configured, the

generated elaborator must be executed. This process will fetch

each component’s properties and will load elaboration classes

through Java reflexion, according to which rules are specified

in the XML files. As the result, the Code Generation should

be according to corresponding Elaboration Classes.

Three different actors, that interact with the system at

different stages of the code generation process, are identified:

• The Architect: the individual with technical knowledge

and specific domain expertise, that is responsible for

translating system characteristics into a model;

• The Component Designer: the individual with technical

expertise, which provides the annotated source code files

and implements the elaboration classes.

• The End User: the final user that will benefit from the

provided resources to configure and generate application-

specific code. Usually, the end user only focus in setting

up the configuration files (defining properties values and

choosing the elaboration file to be imported) before

invoking the Elaborator.

C. EL’s Constructs and Operations

As previously said, the EL is a DSL that allows the de-

scription of an architectural model according to SCA specified

elements. An EL file (depicted by Listing 1), defined with .el

extension, contains three types of top level constructs: compo-

nents, interfaces and language descriptions. Each component

is described as an aggregation of subcomponents, properties,

and its relations with other components in the form of services

and/or references. It is also described as having one language

type, which should be its own implementation language.

1) Language construct: The Language construct specifies

the implementation language of components (e.g., C, C++ or

Python), imposing restrictions to a given component, which

can only relate with others described in the same language.

2) Interface construct: The Interface construct describes

interfaces for which other components will associate. Com-

ponents connect through bindings of services and references

that follow the same interface type, using the keyword bind.
An interface declaration must always state the services it can

provide.

3) Component construct: The Component construct is the

most important and it consists of four sections:

• Properties: EL enables properties declaration for the basic

programming types (i.e., char, int, string), in which it is

possible to impose restrictions and to perform assignment

operations.

• Subcomponents: Where the aggregated subcomponents

are stated.

• Services and References: Here, interfaces are instantiated

as services or references. The interfaces belonging to the

Services section are those implemented by the compo-

nent, while the ones inherent to the references section are

dependencies from a given component that implements

that interface. Services and references must always be

connected through binding operations.

• Free: In this section, assignments can be made to prop-

erties where subcomponent interfaces are binded and/or

promoted. This is done (either for services or references)

by using the keyword promote. It states that a subcom-

ponent interface is going to be available in the top-level

component, and it must be resolved later with a binding to

the top-level component. Other important keyword is the

compile, which states the top-level component on the

hierarchy, from where the compilation process is started

(in a top-down approach). This also defines the order of

the classes invocation in the Elaborator program.

1 final ("TransportLayer.java") component TransportLayer (C) {
2 properties:
3 bool Enable_UDP : true
4 bool Enable_TCP : true
5 subcomponents:
6 UDP UDP1
7 TCP TCP1
8 services:
9 I_tcp_ip_input S_TCP_IP_Input
10 I_TCPIP_UIP_Call S_TCPIP_UIP_Call
11 I_TCPIP_ICMP6_Call S_TCPIP_ICMP6_Call
12 references:
13 I_Timer_API R_Timer_API
14 /*UDP subcomponent */
15 promote reference UDP1.R_TCPIP_Output as R_TCPIP_Output
16 promote reference UDP1.R_UIPProcess as R_UIPProcess
17 ...
18 }

Listing 1. EL code snippet from the component TransportLayer.

III. MODELING THE IOT STACK

Modeling an IoT network stack is not straight forward,

mainly due to its configuration complexity and inherent vari-

ability. In this paper, the Contiki-OS network stack (called

μIP stack) was selected, however others could have been

studied, e.g., RIOT-OS. Due to its complexity, it requires a

high level of knowledge on IoT-enabled network stacks for

low-end devices as well as the OS itself. The μIP stack

is composed by tightly-coupled components which must be

priorly identified by performing source code analysis aided

by the respective simulation. The identification of component

interfaces and their interactions (through function invocation)

requires a deep understanding of the stack implementation and

its regular behavior. The first steps encompass the creation of

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 15:39:35 UTC from IEEE Xplore. Restrictions apply.

Figure 2. High-level composite model of the Contiki network stack imple-
mentation.

a reference architecture of the network stack, followed by a

comprehensive description of abstraction, lowering from the

model to source code, extending as well the Contiki-OS stack

documentation.

Reference Architecture: Figure 2 depicts the top-level view

of the resulting model, comprising the top-level components

in a composite model, where each block refers to a component

with well-known denomination. Such view is expected since

we are modeling the network stack, prior further development.

The purple and green polygons define references and services,

respectively, in a SOA approach. Semantically, the connec-

tors between references and services denote establishment

of a function call dependency between components, where

green polygons provide the services required by references.

The proposed model follows a layered approach, where top

components are formed by other components as well. This

approach inherently provides a changeable level of abstraction,

depending on the embedded designer needs. For the sack of

simplicity, we will focus on the Transport Layer component,

which internals are depicted in Figure 3. This component is

composed by a UDP and TCP subcomponents, with their

respective interfaces and properties. A promote relationship

is depicted by the dashed lines. In this example, we provide

visibility to the internal services and references from outside

the Transport Layer component. Logically, this component

uses all the modeled OS services available (to applications)

and, therefore, encompasses all its available references. Prop-

erties are application-specific and cannot be represented in the

reference model.

IV. IMPLEMENTATION

A. Model Representation

After being conceived, the model is translated to the EL

DSL. For instance, the model representation depicted by

Figure 3 is translated into EL DSL code present in Listing 1.

Its code representation allows the generation of the supporting

software, which consists on a framework that accesses model

properties and interfaces during the final stage of code gen-

eration. This framework aims to promote design automation

with code generation, leaving only the components selection

Figure 3. Internals of the Transport Layer component from the High-level
composite model.

and properties configuration, e.g., PAN address and TCP/UDP

parameters, to the user’s choices.

B. Elaboration

1) Properties: The EL seamless code generation process al-

lows a transparent system configuration. The modeled system

properties are defined in a configuration XML file, according

to the user and application requirements. While EL avoids the

traditional need for developers to write code, the generation

of the final OS source files according to the model definition

and configuration must be automatic and user-friendly. As

aforementioned, EL uses software annotations, embedded in

the OS source files and defined by the meta-character ’@@’.
This pattern is used to help in finding code where the an-

notation is later replaced by its corresponding value during

the code generation process. Such annotations and associated

complexity are dependent on the OS implementation, thus may

vary according to the code size and system variability.

1 //======================== Transport
========================

2 //----------- TCP
3 #define UIP_CONF_MAX_LISTENPORTS

@@UIP_CONF_MAX_LISTENPORTS@@
4 //----------- TransportLayer
5 #define UIP_CONF_TCP @@UIP_CONF_TCP@@
6 #define UIP_CONF_UDP @@UIP_CONF_UDP@@

Listing 2. UIP_CONF_TCP and UIP_CONF_UDP annotations.

Listing 2 depicts a code snippet with UIP_CONF_TCP and

UIP_CONF_UDP annotations, which are used to enable TCP

and UDP protocols, associated with the Enable TCP and

Enable UDP model properties, respectively. The UIP_-
CONF_MAX_LISTENPORTS is defined by the TCP compo-

nent inside its parent (Transport Layer) component, as depicted

in Figure 3, leveraging the ability of internal components to

define their own properties.

The elaboration of components incorporates the logic of

their respective code generation process (i.e., annotation sub-

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 15:39:35 UTC from IEEE Xplore. Restrictions apply.

stitutions) in the form of JAVA code. The component Transport

Layer only contains the original Contiki-OS implementation,

embedded in an elaboration. Further elaborations for this and

other components of the stack are still under development.

Listing 3 denotes the logic associated with the Transport Layer

component elaboration. Briefly, a header (shared between

several components) is opened and the UIP_CONF_TCP
and UIP_CONF_UDP annotations are replaced by the values

defined in the model, retrieved from the configuration XML

file.

1 openAnnotatedSharedSource("contiki-conf-gen.h");
2
3 if(target.get_Enable_TCP())
4 replaceAnotation("UIP_CONF_TCP", 1);
5 else
6 replaceAnotation("UIP_CONF_TCP", 0);
7
8 if(target.get_Enable_UDP())
9 replaceAnotation("UIP_CONF_UDP", 1);
10 else
11 replaceAnotation("UIP_CONF_UDP", 0);
12
13 openAnnotatedSource("tcpip.c", "./contiki-3.0/core/net/ip");
14 openAnnotatedSource("tcpip.h", "./contiki-3.0/core/net/ip");

Listing 3. Elaboration method of the Transport Layer component in Java.

Next, the source code of the implementation is generated

in the final directory by calling the "openAnnotatedSource"

method. The new generated file will be create after the annota-

tions’ replacement. All these functionalities are provided by an

API which eases the elaborator’s implementation. The generate

method is automatically invoked by the framework, while

a fully configured and ready-to-compile Contiki-OS stack is

being generated.

2) Interfaces: Contrary to the "Properties" of the code

generation (which is entirely a model-based process), in-

terfaces use components’ elaborations to provide services

(as function calls) to connected references. That is to say,

different components’ elaborations (for the same component)

might provide distinct implementations for the same service,

represented by several functions calls. The implementation

of Interfaces, including argument’s meta-data passing, is still

under development.

V. EVALUATION

The Contiki-OS network stack model is used to demonstrate

the flexibility provided by the modeling tool to automatically

generate a full configured system ready to be compiled.

While the reference model provides properties’ abstraction

from implementations by using components, easing the system

configuration to users, it requires the specification of a real

implementation by the system designer. Listing 4 denotes

the XML configuration file for the Transport Layer compo-

nent. Our implementation of this component is provided by

the MySpecificTransportLayerElaborator. Each

Transport Layer sub-component has its own implementation.

For instance, by disabling the TCP protocol, the final generated

Contiki-OS code will not contain TCP related code.

The same procedure is used to specify the implementation

of the Application component to be a UDP Server.

This implementation provides its own configuration XML

file, allowing the designer to specify implementation-related

properties as well. In both XML files, every property requires

a default value to seamlessly generate the final (compilable)

Contiki-OS source code.

1 <component type="TransportLayer">
2 <elaboration

default="SpecificTransportLayerElaboratorTemplate">
3 MySpecificTransportLayerElaborator
4 </elaboration>
5 <properties>
6 <property type="bool" name="Enable_UDP" default="true">
7 <value>
8 <element></element>
9 </value>
10 </property>
11 <property type="bool" name="Enable_TCP" default="true">
12 <value>
13 <element>false</element>
14 </value>
15 </property>
16 </properties>
17 </component>

Listing 4. XML configuration file for the Transport Layer component.

The UDP server application is configured to create a con-

nection with any UDP client, listening on the UDP port 4101

(instead of the default port 3001). The default response given

by the server to any client was not changed by our tool.

While in this example (Listing 5) the server is configured

to be listening on UDP port 4101 (TCP related code was

disabled from compilation), several distinct configurations can

be achieved by using other model properties (not depicted in

this test).

After its generation, the source code for the UDP server

was compiled and the resulting firmware was deployed on

a CC2538EM board from Texas Instruments. This Evaluation

Module (EM) was used in a simple client-server setup in order

to test our developed tools. The server, using the same EM, is

running a UDP client application that periodically exchanges

messages with the automatically generated and configured (by

our tool) UDP server. As it can be seen from Figure 4, which

depicts the UDP server application output, received by the

UDP client application. The client connects the specified UDP

server ports and receives the default message, which is printed

to the EM output.

1 <component type="Application">
2 <properties>
3 <property type="int" name="LocalPort"

default="3001">
4 <restriction type="range">
5 <botValue>1</botValue>
6 <topValue>5000</topValue>
7 </restriction>
8 <value> <element>4101</element> </value>
9 <property type="string" name="Message"

default="Automatically configured server!">
10 <value> <element></element> </value>
11 </property>
12 <property type="string" name="Hostname"

default="contiki-udp-server">
13 <value> <element></element> </value>
14 </property>
15 </properties>
16 </component>

Listing 5. UDP Server application specific XML configuration file.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 15:39:35 UTC from IEEE Xplore. Restrictions apply.

Figure 4. A simple UDP client connecting and exchanging messages with
the automatically generated UDP Server.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the EL4IoT, a modeling DSL for

embedded Operating Systems that targets the low-end devices

in the Internet of Things. We have modeled the Contiki-

OS network stack and developed a DSL that allows the

whole OS description, mainly its companion network stack,

with a variable abstraction level supported by the composite

pattern. Our developed framework aims to promote design

automation, mitigating the configuration task of the Contiki-

OS when deploying an IoT-compliant network through au-

tomatic code generation. For the proof of concept, we have

modeled the Contiki-OS network stack into our DSL and,

using the framework, generated a UDP server application,

easily (re)configured without manually changing the source

code. The obtained results show that, despite being hard to

create a DSL for a specific domain, the modeling efforts

tend to pay off. With the increasing level of complexity

and variability of IoT systems, these tools result in higher

productivity and lower development time.

The benefits from such approaches in developing embedded

software are endless. Hereafter, we plan to improve our

EL4IoT framework, namely the code generation tool, with a

more user friendly interface that allows code generation and

system configuration with reduced number of inputs from the

user. Other features can be added to this tool, such as the

automatic creation of the final firmware from the generated

code. Currently under the development, we are improving

our DSL with the usage of semantic technology to describe

the domain knowledge, leveraging the development towards

a model validation approach and reducing the elaboration

development efforts. This will also contribute in improving

the system scalability, as semantic technology can upgrade

code generation and verification when used to guide the

development environment.

VII. ACKNOWLEDGMENTS

This work has been supported by COMPETE: POCI-

01-0145-FEDER-007043 and FCT - Fundação para
a Ciência e Tecnologia within the Project Scope:

UID/CEC/00319/2013. Tiago Gomes is supported by

FCT PhD grant SFRH/BD/90162/2012.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of Things for Smart Cities,” IEEE Internet of Things Journal, vol. 1,
no. 1, pp. 22–32, Feb 2014.

[3] T. C. Arcadius, B. Gao, G. Tian, and Y. Yan, “Structural Health
Monitoring Framework Based on Internet of Things: A Survey,” IEEE
Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2017.

[4] L. Catarinucci, D. de Donno, L. Mainetti, L. Palano, L. Patrono, M. L.
Stefanizzi, and L. Tarricone, “An IoT-Aware Architecture for Smart
Healthcare Systems,” IEEE Internet of Things Journal, vol. 2, no. 6,
pp. 515–526, Dec 2015.

[5] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A.
Grieco, G. Boggia, and M. Dohler, “Standardized Protocol Stack for
the Internet of (Important) Things,” IEEE Communications Surveys
Tutorials, vol. 15, no. 3, pp. 1389–1406, Third 2013.

[6] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating Systems
for Low-End Devices in the Internet of Things: A Survey,” IEEE Internet
of Things Journal, vol. 3, no. 5, pp. 720–734, Oct 2016.

[7] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on, Nov
2004, pp. 455–462.

[8] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt,
“RIOT OS: Towards an OS for the Internet of Things,” in 2013
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), April 2013, pp. 79–80.

[9] A. de la Piedra, A. Braeken, and A. Touhafi, “Sensor Systems Based on
FPGAs and Their Applications: A Survey,” Sensors, vol. 12, no. 9, pp.
12 235–12 264, 2012.

[10] T. Gomes, S. Pinto, F. Salgado, A. Tavares, and J. Cabral, “Building
IEEE 802.15.4 Accelerators for Heterogeneous Wireless Sensor Nodes,”
IEEE Sensors Letters, vol. 1, no. 1, pp. 1–4, Feb 2017.

[11] M. Payer, B. Bluntschli, and T. R. Gross, “LLDSAL: A Low-level
Domain-specific Aspect Language for Dynamic Code-generation and
Program Modification,” in Proceedings of the Seventh Workshop on
Domain-Specific Aspect Languages, ser. DSAL ’12. New York, NY,
USA: ACM, 2012, pp. 15–20.

[12] A. Garnier, J. M. Menaud, and R. Pottier, “SensorScript: A Business-
Oriented Domain-Specific Language for Sensor Networks,” in 2015 3rd
International Conference on Future Internet of Things and Cloud, Aug
2015, pp. 44–49.

[13] A. Salihbegovic, T. Eterovic, E. Kaljic, and S. Ribic, “Design of a
domain specific language and IDE for Internet of things applications,” in
2015 38th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), May 2015, pp.
996–1001.

[14] L. Bettini, Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing, 2013.

[15] M. Mernik, J. Heering, and A. M. Sloane, “When and How to Develop
Domain-specific Languages,” ACM Comput. Surv., vol. 37, no. 4, pp.
316–344, Dec. 2005.

[16] M. Fowler, Domain Specific Languages, 1st ed. Addison-Wesley
Professional, 2010.

[17] K. Czarnecki, Overview of Generative Software Development, J.-P.
Banâtre, P. Fradet, J.-L. Giavitto, and O. Michel, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005.

[18] U. Zdun, “Concepts for model-driven design and evolution of domain-
specific languages.”

[19] J.-P. Tolvanen and M. Rossi, “MetaEdit+: Defining and Using Domain-
specific Modeling Languages and Code Generators,” in Companion
of the 18th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA ’03.
New York, NY, USA: ACM, 2003, pp. 92–93.

[20] J. Marino and M. Rowley, Understanding SCA (Service Component
Architecture), ser. Independent Technology Guides. Pearson Education,
2009.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 15:39:35 UTC from IEEE Xplore. Restrictions apply.

