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Abstract 

Microalgae are an eco-friendly and alternative source of several compounds that can be 

applied in numerous biotechnological branches such as cosmetics, food, or 

pharmaceutical industries. However, the commercialization of products from 

microalgae has still some drawbacks, among which it is possible to highlight the low 

biomass and compounds’ productivities at industrial level. The common strategies to 

improve the process cost-effectiveness of microalgae cultivation are essentially based 

on optimising nutrient needs and several environmental factors (e.g., temperature, light 

intensity, salinity) that impact both their growth and biochemical composition. In this 

regard, genome-scale metabolic (GSM) models allow understanding the metabolic 

processes that lead to a final phenotype since they contain all known pathways, 

reactions, and metabolites of the organism, based on genomic information, available 

literature, and experimental data. This review provides an overview of the most 

important factors that need to be considered in microalgae cultivation, providing 

strategies to improve process cost-effectiveness. Particular emphasis will be given to the 

in silico-guided optimization as a real alternative, using GSM models to enhance the 

production of defined compounds and biomass. 
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Graphical Abstract:  

 

 

Keywords: Microalgae, Upstream processing, Environmental factors, Systems Biology, 

Genome-scale Metabolic Model. 

 

 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



3 
 

1 Introduction 

1.1 Impact of different parameters on microalgae growth and biochemical 

composition 

Recently, the interest in microalgae has grown due to their high biotechnological 

potential as a result of being a novel source of a wide range of compounds, such as 

pigments, proteins, fatty acids, or carbohydrates, with several commercial applications 

in different industrial fields [1]. Besides not requiring arable land for their production, 

microalgae can also grow using non-potable water sources (e.g., saline, hypersaline, and 

wastewater), thus reducing the pressure placed on fresh water consumption [2]. 

Although the ancient existence of microalgae, these microorganisms are still rather 

unexplored. The total number of species is estimated to range between hundreds of 

thousands and several million; however, only approximately 73000 are currently 

identified and a very small part of them is cultivated at industrial scale for commercial 

purposes [1, 3, 4]. Dunaliella salina and Haematococcus pluvialis, as sources of β-

carotene and astaxanthin, respectively, are some of the (few) microalgae already 

established commercially [5].  

According to their nutritional requirements, microalgae can adopt different strategies 

(Figure 1). These microorganisms can grow either in autotrophic, mixotrophic or 

heterotrophic conditions. Regardless of the adopted nutritional mode, most microalgae 

require a variety of elements, such as carbon, oxygen, hydrogen, nitrogen, potassium, 

calcium, magnesium, iron, sulphur, phosphorus, and trace elements, such as copper, 

manganese, selenium, or zinc. Within this group of nutrients, carbon, nitrogen, and 

phosphorus are usually regarded as the most important for the cultivation of this group 

of photosynthetic microorganisms, being the key players for shifting cells' metabolic 

pathways [3, 6, 7]. The carbon fixed by the microalgae can be used in three different 

physiological functions: i) for cell respiration (e.g., CO2); ii) as an energy source (e.g., 

glucose); and iii) as raw material for the formation of new cells [6]. Nitrogen is an 

essential constituent of all functional and structural proteins of microalgae, being 

considered the second most important nutrient in their cultivation [3]. Nitrogen 

concentration has an important role in cell composition since it influences the 

metabolites profile in terms of polyunsaturated fatty acids (PUFAs), polysaccharides, 

carotenoids, and chlorophylls. The phosphorus content on the culture medium, on the 
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other hand, has an important role in microalgal growth and different cellular processes 

due to its participation in DNA biosynthesis. In line with the case of nitrogen, 

phosphorus content has also impact on the accumulation of some biocompounds, 

especially lipids and carbohydrates [3]. 

Some abiotic factors play also an important role over microalgal growth and 

biochemical composition. Illumination is the most important factor influencing biomass 

composition [8]. Indeed, the effects of different light intensities and cycles (light and 

dark) have a predominant impact on the metabolite profile obtained during microalgae 

cultivation [9]. The light used in this process should be within the photosynthetically 

active radiation (PAR) range so that microalgae can obtain energy through the 

photosynthesis process. The range of this parameter varies from 400 nm to 700 nm, 

which corresponds to the visible light spectrum [8]. Under different light availabilities, 

microalgae can adapt using diverse mechanisms to maintain normal biochemical 

functions. Changes in the quantity and type of pigments produced, growth rate, dark 

respiration rate, and/or the accumulation of some compounds, such as fatty acids are 

frequently observed. Morphological changes, such as the variation of cell volume or the 

number and density of thylakoid membranes [6] are also common. Temperature impacts 

directly the microalgae’s metabolism, having a significant role in growth rate, cell size, 

metabolites profile, and nutritional needs [6, 10]. Based on these facts, temperature 

influences microalgae productivity at different levels: i) high temperature contributes to 

protein degradation, which leads to cell mortality; ii) temperature affects culture 

medium solubility, contributing to changes in the CO2 and O2 mass transfer rates; and 

iii) temperature has a central role on the photoinhibition, as some mechanisms are 

temperature-dependent; for example, under low temperatures, there are fewer electron 

transporters, resulting in less CO2 fixation and decreased CO2 availability for 

photosynthesis [6, 11]. However, low temperatures also protect Photosystem II (PSII), 

inhibiting the active oxygen species responsible for photoinhibition [6, 11]. The pH 

value of the culture medium is an important factor to consider in microalgae cultivation 

as it affects the solubility and availability of nutrients, cell’s influx and efflux of cations 

and anions, liquid-gas transfer phenomena (affecting, for example, CO2 availability), 

and metabolic processes – due to its impact on the performance of enzymes involved in 

metabolic pathways [6]. Particularly, in the carbonaceous species – that have a primary 

need for carbon, namely inorganic carbon such as the CO2 –, pH has an important role 
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in microalgae growth [6]. Salinity is another environmental factor that has an important 

impact on microalgae growth and composition. Each microalga has its own optimal 

range of salinity, under which cells have the highest biomass productivity [2]. Salt stress 

induces three different types of stress on microalgae: ionic, osmotic, and oxidative. The 

ionic stress is caused by the influence of salinity over the influx and efflux of ions, 

where Na
+
 competes with K

+
 and the deficiency of K

+
 inside the cell is frequently the 

outcome [2, 12]. Osmotic stress, on the other hand, is caused by the presence of high 

amounts of salt in the extracellular environment that reduces the water uptake by 

microalgae due to the lower osmotic potential [12]. Finally, oxidative stress is generated 

by the increase of reactive oxygen species (ROS), which contributes to a lower 

photosynthetic efficiency [12, 13]. 

 

Figure 1- Microalgae classification according to their nutritional requirements. 

1.2 Current cultivation strategies to enhance biomass and metabolites 

productivity 

Different approaches are currently adopted to improve microalgae cultivation process 

cost-effectiveness. One of the traditional strategies employed leverages stress 

conditions. Under nutrient-stress conditions, microalgae cells might use different 

strategies. Based on this fact, it is possible to control cell metabolism to obtain a higher 

content of the desired compounds. The application of nutritional stress strategies shows 

some advantages, such as reducing the production costs of microalgae cultivation and 

increasing the cellular content of lipids (mainly triacylglycerol (TAG)), carbohydrates 

(mostly starch), and carotenoids. However, this strategy has drawbacks associated with 

a lower growth rate, which might lead to a lower final biomass concentration. 
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Microalgae exposed to an extended period of nutrient depletion are frequently reported 

to consume storage products (e.g., lipids), reducing their accumulation and yield, and 

contributing to microalgal biomass devaluation [85]. However, adopting a correct 

nutrients stress strategy, that allows an increase of (certain) high-value compounds 

content, can be an economically interesting alternative for microalgae valorisation. 

Nitrogen stress conditions induce an increase of storage compounds on microalgae 

biomass. Guihéneuf and Stengel (2017) demonstrated that nitrogen starvation leads to 

increased synthesis and accumulation of lipids in Pavlova lutheri, namely TAGs and 

PUFAs, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The 

authors suggest that starvation conditions are the most important prerequisite for TAG 

accumulation, which occurs due to a potential lipid remodelling where the membrane’s 

lipids are broken down and rearranged into storage lipids. This is the case of P. lutheri, 

in which the lipid remodelling observed during nitrogen starvation results in the 

accumulation of storage lipids (TAG) and PUFAs, containing 12-13 % and 5-6 % of 

EPA and DHA, respectively. Although the regulation of pigments was also studied 

under nitrogen starvation, no significant differences were found between the assays 

[14]. With the lack of nitrogen in the medium, it was expected that secondary pigments 

(e.g., astaxanthin, β-carotene) accumulation would increase, which was not the case. On 

the contrary, in a study carried out by Wu et al. (2016), the authors assessed the impact 

of different nitrogen concentrations on the accumulation of β-carotene in Dunaliella 

salina and concluded that greater contents of the pigment are obtained using lower 

nitrogen concentrations. This can be explained by the necessity of the microalgae to 

maintain the normal metabolic performance in the absence of nitrogen; under these 

conditions, D. salina uses the available carbon and hydrogen for the synthesis of non-

nitrogen-induced pigments, as the case of β-carotene [15].  

As observed in nitrogen stress conditions, the accumulation of storage compounds by 

microalgae cells was also enhanced under phosphorus stress conditions. Xin et al. 

(2010), for instance, demonstrated that phosphorus limitation results in increasing lipid 

content of Scenedesmus sp. The authors demonstrated that using initial total phosphorus 

between 0.2 and 2.0 mg∙L
-1

 leads to a lipid content of 23-28 %, whereas under 

phosphorus limitation (0.1 mg∙L
-1

), the amount of lipids reaches 53 %. However, under 

the same growth conditions, a negative impact was reported over biomass 
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concentration, with an algal biomass productivity of 0.15 g∙L
-1

 under phosphorus 

limitation and 0.35 g∙L
-1

 under non-stress conditions [16].  

The application of light stress conditions – as high radiation – leads to greater 

production of certain compounds, such as lipids, carbohydrates or carotenoids [17, 18]. 

Lipid content under this stress increases due to the excess of energy supplied to 

microalgae, which promotes the photoinhibition phenomenon (blocking the microalgae 

growth), being that excessive energy used to synthesize lipids [17, 18]. Kim et al. 

(2019), for instance, achieved the highest lipid productivity – 0.25 g∙L
-1

∙d
-1

 – under 900 

μmolphotons∙m
−2

∙s
-1

 and the lowest, less than 0.05 g∙L
-1

∙
-1

, using 50 μmolphotons∙m
−2

∙
-1

 [17]. 

Besides the changes in lipid content, pigment production is also affected when 

microalgae are exposed to greater light irradiation. In this case, a decrease of the content 

of chlorophylls is observed, whereas the carotenoid content increases [9, 19]. He et al. 

(2015) suggested that quantum yield (Fv/Fm) – ratio between variable (emitted photons) 

and maximum (absorbed photons) fluorescence – declines when microalgae are subject 

to high light intensities due to the inactivation of photosystem II (PS II), which 

contributes to increased oxidative stress of cells and, consequently, greater carotenoids 

and lipid contents. This increase is explained by the important antioxidant role of 

carotenoids, while lipid accumulation results from the fact of being a receptor to 

dissipate the excess of electrons, mitigating the oxidative stress inside the cells [19]. 

Kim et al. (2019) refer to the combination of two different stress conditions – high light 

intensity and nutrient limitation – as a promising strategy to improve lipid content. 

Considering these findings, the design of multiple combinations of stress conditions can 

contribute to an increase of lipid productivity, arising as a more economical approach 

[17]. The adoption of a strategy combining light intensity with the right photoperiod can 

also contribute to high growth rates of microalgae and, at the same time, enhance the 

productivity of some compounds that are produced under light-stress conditions. Xi et 

al. (2020) demonstrated that, depending on the light regime adopted during microalgae 

cultivation, different stress levels are observed. The authors evaluated the Fv/Fm 

fluctuating patterns under different light regimes and determined that, in continuous 

mode, this parameter decreases and remains low. On the other hand, when light/dark 

cycles are applied, quantum yield decreases during the light phase, and increases under 

dark conditions. Periodical exposure to light promotes a better accumulation of β-

carotene than continuous exposure, as demonstrated by Xi et al. (2020). In their study, 
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the authors reported 0.53 % (in dry weight) of carotenoids in Dunaliella salina grown 

under light:dark cycles of 14:10, while, under a continuous light regime, the content of 

this group of pigments was just 0.35 % (in dry weight), evidencing the benefits of 

cyclical irradiation on the accumulation of products that are synthesized in response to 

light stress conditions [9]. 

Under cold stress, microalgae cells usually have a nearly round shape and present their 

maximum size [20]. Ferro et al. (2018) suggested the accumulation of storage products, 

such as lipids or starch, in the form of granules, is responsible for increasing cell’s size 

[20]. The stress induced by temperature also impacts the accumulation of other 

compounds. For instance, microalgae growing at low temperatures increase the content 

of unsaturated fatty acids within the membrane, consequently increasing its fluidity. In a 

study conducted by Camacho-Rodríguez et al. (2014), it was found that higher PUFAs 

contents were obtained under low temperatures, whereas saturated fatty acids 

production was favoured using high temperatures. As happens in the case of lipids, 

pigments’ contents are also affected by temperature. Under high temperatures, 

chlorophylls’ content decreases [11] and the amount of carotenoids increases [10]. 

These changes in pigments’ contents were essentially related to the increase of oxidative 

stress caused by higher temperatures, which increases photosynthetic rate. Oxidative 

stress damages PSII, which contributes to the decrease of chlorophylls and an increase 

in carotenoid content, as a consequence of their important antioxidant role [6, 20]. 

Recent findings suggest that microalgae present low concentration of lipids under 

extreme pH, having a total amount per cell 3-fold higher when grown under the optimal 

pH [21]. Considering this, the adoption of a two-stage strategy where microalgae grow 

under the optimal pH in the first stage and then, for a short period of time, the pH of the 

culture medium decreases to enhance lipids production, seems to be an interesting 

approach to obtain higher lipid productivities. On the other hand, certain studies point 

out the impact of extreme pH on the enhancement of carotenoid content [21–23]. 

Indeed, Minyuk et al. (2016) suggested that acidic conditions promote an increase in 

carotenoids/chlorophyll (Car/Chl) mass ratio in Coelastrella rubescens cultures [21]. 

Conversely, Guedes et al. (2011) demonstrated that using Scenedesmus obliquus 

cultures, higher pH improves the accumulation of lutein and carotene, presenting 203.57 

and 18.20 mg∙mL
-1

, respectively [22]. These findings suggest that, under extreme pH 
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conditions, a secondary metabolism contributing to limited chlorophyll production and 

an increase in carotenoid content is triggered. 

Moreover, several studies have determined that pigment content decreases drastically 

under salinity stress conditions. Srivastava et al (2017) reported that chlorophyll content 

declined from 2.54 mg.ml
-1

, using control conditions, to 2.35 mg.ml
-1

, under the 

presence of 5 mmol∙L
-1

 of NaCl. On the other hand, the Car/Chl ratio increases with the 

increase of salinity, being an indication that salty conditions contribute to oxidative 

stress, which is, in turn, responsible to reduce the activity of PSII [12, 13]. The same 

authors have also concluded that the reduction of chlorophylls content occurs due to a 

reduction in the utilization of CO2 and nutrients, which results in a deceleration of 

NADPH formation, leading to metabolic modifications that affect the production of this 

pigment [24]. In contrast to pigments, lipid contents are positively influenced by salinity 

stress [13, 24, 25]. As reported by Pal et al (2011), for a growth medium containing 13 

g∙L
-1

 of NaCl, the total fatty acids fraction represented 13.5 % of the biomass (in dry 

weight), while this percentage increased to 16.6 % using a high-salinity environment 

(40 g∙L
-1

 of NaCl) [25]. Under salt stress conditions, microalgae increase their lipidic 

content as storage energy material to overcome unfavourable conditions [24]. This type 

of condition also contributes to changes in the lipid profile. As an example, Pal et al. 

(2011) demonstrated that the increase in salinity contributes to a higher accumulation of 

saturated and monounsaturated fatty acids but also to a decrease of polyunsaturated fatty 

acids, such as EPA [25]. 

Finally, although traditional cultivation strategies have been demonstrated to enable 

greater microalgal biomass concentration and overproduction of high-value compounds, 

these approaches present some problems related to the consumption of resources during 

the optimization process, consequent high energy consumption, and equipment wear out 

(Figure 2). This optimization process requires a certain period of time and, contrary to 

traditional approaches, Systems Biology allows reconstructing a model from genome 

information that enables the optimization of the overall metabolic mechanisms, instead 

of focusing on a single compound. Incidentally, Systems Biology presents itself as a 

promising strategy that can contribute to establishing a landmark in decreasing 

production process costs of microalgae biomass. 
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1.3 Systems Biology 

Unlike traditional components biology, which is directed to individual components 

involved in biological processes, systems biology aims to depict biological systems, 

such as a cell, tissue, or organism, quantifying and analysing each component and the 

interactions between them [26]. This approach involves mathematical models that 

simulate cell metabolism and predict such behaviour in different environmental and 

genetic conditions. The development of metabolic models usually follows two different 

methodologies: stoichiometric modelling and dynamic (kinetic) modelling. 

Stoichiometric models require less information, representing only the system’s 

structure: compounds and reactions, as well as their respective stoichiometry and 

reversibility. A pseudo-steady state is assumed: for all metabolites, the fluxes leading to 

the production of a given metabolite are balanced with the fluxes leading to its 

consumption, meaning that there is no net accumulation of metabolites. Stoichiometric 

models are virtually applicable to any species with a sequenced genome and are usually 

developed at the genome scale. On the other hand, dynamic models account not only for 

structural details and the kinetic parameters of the process under study but also the 

concentration of metabolites over time. Such information is usually not available at the 

genome scale; thus, these models are often targeted to a lower number of metabolic 

pathways [27]. 

The development of next-generation sequencing methods and biological databases 

allows an increasing availability of genome sequences, which are used to study 

biological networks at the systems level. The reconstruction of genome-scale metabolic 

(GSM) models is one of the most relevant biological networks’ modelling approaches. 

Such models comprise genes, reactions, and metabolites identified in the target 

organism, combining data retrieved from the genome sequence, biological databases, 

and literature. Due to the complexity and laborious work of reconstructing a metabolic 

model, several tools, like merlin [26, 28], were developed in the last decade to assist this 

process. GSM models have a wide range of applications depending on the study 

objectives, including drug targeting, metabolic engineering, media optimization, and 

analysis of cellular phenotypes under different environmental and genetic conditions.  

The reconstruction of GSM models has been applied to organisms belonging to all 

kingdoms of life, including microalgae. The first genome-scale metabolic models for 
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these organisms were reconstructed for Chlamydomonas reinhardtii [29] and 

Arthrospira platensis [30], in 2008 and 2003, respectively. From then, metabolic models 

for other species, such as Chlorella vulgaris or Synechocystis sp., were developed and 

repeatedly updated with new information. However, the reconstruction of GSM models 

for microalgae is still limited to model organisms, being their main focus on the 

production of desirable compounds, such as hydrogen and lipids. In addition, biomass 

growth under different light conditions, network analysis, and metabolic engineering 

methods have also been studied using these models.  

This review focuses on the recent developments in the reconstruction and application of 

GSM models for microalgae and how the retrieved information can be applied to 

leverage the cost-effectiveness of the experimental procedure. In addition to the 

Systems Biology approach, a review of the common strategies utilized to improve 

biomass cultivation and metabolites’ production is also performed. 

 

Figure 2 Strategies to improve process cost-effectiveness. 

2 In silico-guided optimization as an accurate alternative  

2.1 Systems Biology tools 

In the last decade, systems biology has been providing frameworks to improve the cost-

effectiveness of microalgae cultivation. Together with omics data, these methods result 

in the generation and management of large amounts of biological data. Genome-scale 

metabolic models, for example, usually contain hundreds or thousands of reactions and 
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metabolites based on genomes that can have more than 20,000 genes. Hence, managing 

this data with bioinformatics tools is highly advisable. These tools can often 

automatically fetch and simplify information available in biological databases or other 

online resources, accelerating the reconstruction process and reducing the associated 

costs (Table 1). 

Table 1: Tools available for assisting the reconstruction of GSM models and generic biological databases 

and microalgae-specific databases with relevant information for this task 

Tool Name Description Reference/URL 

GSM model reconstruction tools 

 CarveMe 

Command-line python-based tool designed to create 

GSM models from a BiGG-based manually curated 

universal template with a gap-filling algorithm. 

[31] 

 merlin 

Java application with a graphical interface that supports 

the reconstruction of both prokaryotic and eukaryotic 

organisms. It provides frameworks for genome re-

annotation, manual curation, generation of transport 

reactions, gap identification, and network visualization. 

[26, 28] 

 ModelSEED 

Web-resource that allows the reconstruction and analysis 

of GSM models for microorganisms and plants. It uses 

RAST to annotate the genome and performs gap-filling 

based on the growth medium selected by the user. 

ModelSeed also provides biochemical data, including 

reaction’s reversibility and the pKa of metabolites. 

[32, 33] 

 Pathway Tools 

Pathway Tools is a comprehensive bioinformatics 

software package that spans enterprise genome data 

management, systems biology, and omics data analysis. 

The software has been licensed by more than 12,000 

groups and powers BioCyc.org and several other 

Pathway/Genome Database websites. 

[34] 

 RAVEN 

RAVEN (Reconstruction, Analysis and Visualization of 

Metabolic Networks) is a command-line tool compliant 

with COBRA Toolbox v3, thus running in proprietary 

software MATLAB. It provides functionalities to 

reconstruct models from scratch or use template models, 

merge networks from different databases and curate from 

the command line. 

[35] 

Simulation & Optimization Tools 

 COBRA The COBRA Toolbox is a MATLAB software suitable [36] 
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Toolbox for predicting cellular and multicellular biochemical 

networks with constraint-based modelling. It implements 

a comprehensive collection of basic and advanced 

modelling methods, including reconstruction and model 

generation and biased and unbiased model-driven 

analysis methods. 

 OptFlux 

OptFlux is an open-source and modular software with a 

graphical interface to support in silico metabolic 

engineering tasks. 

[37] 

 MEWpy 

Python workbench for metabolic engineering, which 

covers a wide range of metabolic and regulatory 

modelling approaches, as well as phenotype simulation 

and computational strain optimization algorithms. 

[38] 

Generic Online Databases 

 NCBI 

Repository of biological databases, presenting resources 

for analysis and visualization of biomedical, genomic, 

taxonomic, proteomic, and other biological data. 

[39] 

 JGI 

The Joint Genome Institute is a resource providing 

genomic sequences, as well as data management systems 

and specialized analytical capabilities to manage and 

interpret complex genomic data sets. 

[40] 

 KEGG 

Collection of databases comprising information on the 

biological system, including the cell, the organism, and 

the ecosystem. It provides genomic and metabolic 

information, including genome sequences, reactions, 

pathways, and chemical compounds relevant to cellular 

processes. 

[41] 

 BioCyc 

BioCyc is a collection of 20,025 Pathway/Genome 

Databases (PGDBs) for model eukaryotes and for 

thousands of microbes, plus software tools for exploring 

them. The EcoCyc and MetaCyc databases are freely 

available, but access to the remaining BioCyc databases 

requires a paid subscription. 

[42] 

 BRENDA 

Repository of manually curated enzyme functional data 

providing functional and molecular information of 

enzymes, such as kinetics, substrates/products, 

inhibitors/activators, and cofactors, using the Enzyme 

Commission (EC) system. 

[43] 

 BiGG Models 
Biochemical, genetic, and genomic knowledge database 

containing more than 85 high-quality manually curated 
[44] 
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GSM models. This resource allows users to browse, 

search, and visualize models connected to genome 

annotations and external databases. 

 MetaNetX 

MetaNetX/MNXref is a reconciliation of metabolites and 

biochemical reactions providing cross-links between 

major public biochemistry and metabolic models 

databases. It also allows uploading and analysing GSM 

models. 

[45] 

 TCDB 

The Transporter Classification Database (TCDB) 

incorporates both functional and phylogenetic 

information on membrane transport proteins to provide 

the Transporter Classification (TC), an extensive 

approved classification method for transporter proteins. 

[46] 

Microalgae-specific Databases 

 AlgaeBase 
Database of information on algae that includes terrestrial, 

marine, and freshwater organisms. 

[47] 

www.algaebase.org 

 AlgaTerra 

An information system for microalgal biodiversity, 

containing taxonomic, molecular, and ecological 

information. 

[48] 

www.algaterra.org 

 Chlamydomon

as Resource 

Center 

Central repository to receive, catalogue, preserve, and 

distribute high-quality and reliable wild type and mutant 

cultures of the green alga Chlamydomonas reinhardtii, as 

well as useful molecular reagents and kits for education 

and research. 

[49] 

www.chlamycollectio

n.org 

 

 CyanoDB 

The primary goal of CyanoDB 2.0 is to be a reference 

tool for taxonomists and other persons interested in the 

taxonomy and diversity of Cyanobacteria. It provides 

information on primary descriptions of taxa and 

references molecular data available on descriptions and 

revisions. 

[50, 51] 

www.cyanodb.cz 

 NanDeSyn 

Nannochloropsis Design & Synthesis Initiative focuses 

on creating a "Scalable Photosynthetic Yeast" chassis by 

combining community effort. It currently centralizes 

databases of genetic and genomic data for 

Nannochloropsis spp. 

[52] 

nandesyn.single-

cell.cn/ 

Other tools 

 BRAKER2 

BRAKER2 is an extension of BRAKER1, which allows 

for fully automated training of the gene prediction tools 

GeneMark-EX and AUGUSTUS from RNA-Seq and/or 

protein homology information, and that integrates the 

[53] 
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extrinsic evidence from RNA-Seq and protein homology 

information into the prediction. 

 MAKER 

MAKER is a configurable genome annotation pipeline 

that identifies repeats, aligns ESTs and proteins to a 

genome, produces ab-initio gene predictions and 

automatically synthesizes these data into gene 

annotations with evidence-based quality values. MAKER 

can be used cyclically: outputs of preliminary runs can 

be used to automatically retrain its gene prediction 

algorithm, producing higher quality gene-models on 

subsequent runs. 

[54] 

 BUSCA 

BUSCA (Bologna Unified Subcellular Component 

Annotator) is a web-server for predicting protein 

subcellular localization. BUSCA integrates different 

tools to predict localization-related protein features 

(DeepSig, TPpred3, PredGPI, BetAware and 

ENSEMBLE3.0) as well as tools for discriminating 

subcellular localization of both globular and membrane 

proteins (BaCelLo, MemLoci and SChloro). It presents 

specific predictors for animal, plant, fungi, and bacterial 

proteins, allowing also using proteins from other 

taxonomic groups. 

[55] 

 DeepLoc 
Protein location prediction tool that uses deep learning 

algorithms to predict the subcellular location of proteins. 
[56] 

 LocTree3 

Protein location prediction tool for prokaryotes, 

eukaryotes, and archaea based on support vector machine 

and annotation by sequence homology searches. 

[57] 

 PredAlgo 

Sequence analysis tool dedicated to the prediction of 

protein subcellular localization in green algae. It uses a 

neural network trained with carefully curated sets of C. 

reinhardtii proteins. PredAlgo predicts the localization in 

one of three compartments: the mitochondrion, the 

chloroplast, and the secretory pathway within the cell. 

[58] 

 PSORTb 

Prokaryotic protein subcellular localization prediction 

tool. PSORTb v3.0 handles archaeal sequences as well as 

Gram-positive and Gram-negative bacterial sequences, 

allowing using whole genomes as input (suite for 

cyanobacteria). 

[59] 

 WoLF 

PSORT 

Protein location prediction tool for fungi, animals, and 

plants. It is an extension of the PSORTb family, making 
[60] 
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predictions based on both known sorting signal motifs 

and some correlative sequence features, such as amino 

acid content. 

 eQuilibrator 

A resource offering a database with thermodynamic 

information and a tool for standard Gibbs energy 

prediction. It offers a web service and a python API. 

[61] 

 ChemAxon 

pKa plug-in 

ChemAxon offers several non-open-source calculators 

and predictors for chemoinformatics. The pKa plug-in 

has a Java API and allows determining the pKa of a 

metabolite in a given pH. 

www.chemaxon.com 

 

The reconstruction of GSM models can follow very different approaches. Tools like 

CarveMe can develop a functional model in a few minutes, using manually curated 

models as a template. However, this approach has some limitations as it does not 

account for the metabolic specificities of the target organism and can only be used for 

prokaryotic organisms. Other tools, such as merlin, offer more freedom to the user to 

adapt the metabolic model to the target organism and the purpose of the work. The 

COBRA toolbox has been widely used for the reconstruction, analysis, simulation, and 

optimization of microalgae’s metabolic models [62, 63, 72–78, 64–71]. This MATLAB 

package offers basic and advanced modelling methods that can be used for the 

reconstruction, analysis, and simulation of metabolic models. The RAVEN toolbox [79–

81], Pathway Tools [82–85], and ModelSEED [86, 87], were also used for the 

reconstruction of such models. The selection of an adequate reconstruction tool must 

consider different aspects, namely, the target organism (e.g., some tools are only suite 

for prokaryotes), the user programming skills (some tools, such as the COBRA toolbox, 

require programming in MATLAB, while others, like merlin, offer a graphical 

interface), the time required for the reconstruction, and the level of curation desired 

(automatic tools allow accelerating the process, often introducing errors in the model, 

while other tools allow the user to introduce their expertise in the target organism’s 

metabolism). 

As mentioned above, the COBRA toolbox, and its corresponding python package 

COBRApy [88], allows applying advanced simulation and optimization methods. 

However, most other reconstruction tools offer none or only simple simulation methods. 

Thus, a specific software can be used to use advanced approaches. For example, strain 
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optimization methods and integration of gene expression data can be supported by 

OptFlux or MEWpy. 

Regardless of the reconstruction approach, biological databases are required to retrieve 

genomic, proteomic, metabolic, and enzymatic information. Organism-specific 

databases present information often curated and focused on the target organism, 

presenting its known metabolic and physiological specificities. Nevertheless, such 

information is not always available, thus more generic databases need to be used. 

Most reconstruction tools allow retrieving metabolic data (namely, pathways, reactions, 

metabolites, and proteins) from a few biological databases (usually one or two). This 

decreases the complexity of the software development and allows standardizing 

reactions and metabolites’ identifiers, which is helpful to compare and update metabolic 

models. For example, Pathway Tools uses BioCyc information, ModelSEED has its 

own internal database, CarveMe uses BiGG Models models as template, and merlin 

retrieves data from KEGG, allowing also reconstructing models from BiGG Models. 

Hence, the reaction and metabolites’ identifiers are dependent on the reconstruction tool 

used. Mapping such identifiers is not always straightforward due to different types of 

data organisation and redundancy. MetaNetX is suite to get cross-links between 

metabolic modelling and biochemistry databases, including KEGG, BioCyc, BiGG 

Models, and ModelSEED. 

KEGG, BioCyc, and BiGG Models are often used as the major source of metabolic 

information for the reconstruction of microalgal GSM models [62, 63, 74–79, 81–84, 

64, 85, 89–97, 65, 98–105, 67–71, 73]. The information available at KEGG and BioCyc 

is organised by pathway, which is helpful to analyse small portions of metabolic 

networks. These databases provide information at the reaction, enzyme, gene, and 

metabolite level, making them suite to be used as template for reconstruction tools. 

KEGG and BioCyc also contain organism-specific information, usually obtained from 

automatic genome annotations. However, BioCyc databases require a paid subscription, 

except for EcoCyc (Escherichia coli database) and MetaCyc (non-organism specific 

database). BiGG Models is a repository of highly curated GSM models, being the 

information available oriented to the development, analysis, and application of 

metabolic models. However, the information available here is often limited to model 

organisms. For example, Chlamydomonas reinhardtii, Synechococcus elongatus PCC 
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7942, and Synechocystis sp. PCC 6803 are the only microalgae represented in the 

database at the moment. 

Although one database can be used as template, other resources are used to get 

additional information, allowing filling gaps in the network and generating a more 

complete metabolic model. Besides the above-mentioned databases, BRENDA and 

TCDB are usually used to retrieve information regarding enzymes and transporters, 

respectively. The PlantCyc repository shows an organisation similar to BioCyc, 

containing several organism-specific genome-scale metabolic pathway databases of 126 

algae and plants. The green algae available here include C. reinhardtii (ChlamyCyc), 

Volvox carteri (VcarteriCyc), Ostreococcus lucimarinus (OlucimarinusCyc), 

Chromochloris zofingiensis (CzofingiensisCyc), Coccomyxa subellipsoidea 

(MpusillaCyc), Micromonas commode (McommodaCyc), Micromonas pusilla 

(MpusillaCyc), and Chlorella variabilis (CvariabilisCyc). The C. reinhardtii database 

(ChlamyCyc) has been used as a source of information to develop GSM models for this 

organism [64, 65, 93, 94]. These databases can be useful as they include a few 

organism-specific pathways, such as “carbon concentration mechanism 

(Chlamydomonas)” and “ergosterol biosynthesis II (Chlamydomonas)”. 

As shown in Table 1, other resources can be used throughout the reconstruction process. 

Several tools allow the prediction of protein subcellular locations, often based on 

machine learning algorithms. Some tools, like LocTree3, combine these algorithms with 

homology and annotation-based inference [106]. These tools show different 

performances depending on the organism taxa of the target sequence and on the 

organelle. For example, LocTree3 and BUSCA show better performance predicting 

chloroplastic proteins, while DeepLoc has better results on animals/fungi extracellular 

proteins [55]. On the other hand, PredAlgo allows predicting protein subcellular 

location specifically for green algae. However, it only predicts three compartments: the 

mitochondrion, the chloroplast, and the secretory pathway, making this tool 

incompatible with a genome-scale reconstruction. Selecting a protein location prediction 

tool for GSM reconstruction purposes must also account for its compatibility with 

reconstruction tools. For example, RAVEN allows predicting compartments with WoLF 

PSORT, while merlin integrates results from WoLF PSORT, LocTree3, and PSORTb. 
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Bioinformatics tools like eQuilibrator and ChemAxon, which retrieve thermodynamic 

and chemical properties of reactions and metabolites, respectively, are also useful to 

develop high-quality metabolic models. 

 

2.2 GSM models for microalgae 

The reconstruction of GSM models has been extensively described [27, 107] and often 

comprises four main steps: genome annotation, assembly of a draft network, conversion 

into a stoichiometric model, and model validation. Nevertheless, each one of these 

stages comprises several minor steps in an iterative process (Figure 3). 

 

Figure 3: Representation of the four major stages of reconstructing a GSM metabolic model. This iterative process 

requires utilising several data sources and tools for genome annotation, draft network assembly and curation, 

conversion into a stoichiometric model, and model validation. 

2.2.1 Genome annotation 

The first step of reconstructing a GSM model is obtaining the genome structural and 

functional annotation, which can be found in organism-specific databases or databases 

comprising collections of genome annotations, such as NCBI or KEGG [107]. 

Nevertheless, only well-studied microalgae, such as Chlamydomonas reinhardtii, have 
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available genome annotations in the most-known public databases. Organism-specific 

databases, such as the ones listed in Table 1, can be used to search annotated genomes. 

However, it might be necessary for less-studied organisms to perform gene prediction 

tasks before the functional annotation step. 

Structural annotation involves searching and identifying all features present in the 

genome, including coding sequences, promoters, and different types of RNA. Gene 

prediction can follow different methodologies: ab initio prediction, transcript-based 

approaches, and homology-based approaches [108]. 

Gene finders, like Augustus [109], SNAP [110], and GeneMark-ES [111], use statistical 

models to predict protein-coding genes in genomic sequences. This approach, often 

called ab initio prediction, is required for genes not represented – or weakly represented 

– in RNA-seq libraries and, consequently, do not have enough similarity to known 

genes or proteins. 

Transcript-based approaches are based on the spliced alignment of transcript sequences 

(usually from RNAseq) of the organism or a phylogenetically close organism. Tools 

like TopHat [112] or RNA STAR [113] align these sequences against the organism's 

genome, allowing to retrieve information about the location and structure of transcripts: 

introns, exons, and alternative splicing possibilities. On the other hand, transcriptome 

assemblers like Cufflinks [114] and StringTie [115] build a set of transcripts from the 

alignments used by gene finders as hints to identify gene structures. 

Homology-based approaches have the assumption that protein sequence and gene 

structures are conserved across different organisms. These methods use a set of protein 

sequences or a representation of a protein family obtained from multiple sequence 

alignments to identify gene structures from alignments against the genome. 

Multiple approaches are often applied to increase the number and accuracy of the 

identified genomic features. MAKER v3 and BRAKER2 tools, for instance, can accept 

and process transcriptomics data, Expression Sequence Tags, protein sequences, and 

trained ab initio predictors. Moreover, MAKER v3 can also identify alternative 

splicing, use Evidence Modeler to refine gene predictions, and add tRNAs using 

tRNAscan [116]. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



21 
 

Genome functional annotation comprises the assignment of functions to all genes 

identified in the genome. Homology search methods, such as the Basic Local Alignment 

Search Tool (BLAST) [117], HMMER [118], and DIAMOND [119], are usually used to 

perform functional annotation. For the reconstruction of GSM models, enzyme and 

transporter-encoding genes have particular relevance since the metabolic network will 

be based on reactions catalysed by proteins encoded by such genes. Enzymes encoding 

genes are usually annotated with Enzyme Commission (EC) numbers, while transporter-

encoding genes can also be associated with different identifiers, namely Transport 

Classification (TC) numbers or TranSyt identifiers (https://identifiers.org/transyt) 

proposed by the authors of this review [120]. 

Nevertheless, similarity approaches have limitations. For example, BLAST-based 

methods often assume the one-to-one recognition principle, meaning that the annotation 

of a query gene is based on the annotation of a single known gene. 

C. reinhardtii is often used as a reference organism for microalgae genome functional 

annotation. The most recent genome assembly (GenBank assembly accession 

GCA_000002595.3) presents a genome size of approximately 110 Mbp and 19,500 

proteins. Though only 365 reviewed protein records are available at UniProt, and only 

261 of them have experimental evidence. The Plantae model organism A. thaliana 

presents almost 11,500 proteins with experimental evidence, being this number higher 

than the case of Saccharomyces cerevisiae – 5,500 proteins. Consequently, a 

considerable number of C. reinhardtii genes were annotated using homology 

approaches. Hence, annotating the genome of non-model microalgae based on the 

annotation of C. reinhardtii can cause the propagation of annotation errors. Moreover, 

microalgae are a wide diverse phylogenetic group with representation in the Plantae and 

Protista kingdoms. 

A more recent approach with a one-to-many strategy is Argot2 [121], which combines 

results of BLAST, HMMER, and an assessment of semantic similarities of Gene 

Ontology (GO) terms. FFPred3 [122] is another approach not merely based on sequence 

similarity, accounting for factors such as peptide signals and compartmentalization and 

applying machine learning methods. 

The assignment of subcellular protein locations is one of the main differences between 

prokaryotic and eukaryotic GSM models. While in prokaryotes, subcellular locations 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

https://identifiers.org/transyt:TR0000001


22 
 

are usually limited to the cytoplasm and extracellular space, eukaryotic organisms can 

account for several compartments. In microalgae, compartmentalized metabolic models 

usually account for the cytosol, mitochondria, chloroplast, peroxisome, extracellular 

environment, nucleus, Golgi apparatus, endoplasmic reticulum, vacuole, and cell wall. 

This step is central for obtaining an accurate metabolic model, allowing to create pools 

of cofactors like NADH and NADPH in different compartments, mimicking metabolic 

shunts, and differentiating the protonation state of the same metabolite at compartments 

with different pH values. Tools like BUSCA, DeepLoc, LocTree3, WoLF PSORT, and 

PSORTb (for prokaryotic organisms) can predict protein location. Nevertheless, 

primary literature and compartment-specific tools, such as TargetP [123] and DeepMito 

[124], can provide additional information. 

2.2.2 Manual Curation 

The identifiers used for genome annotation, namely EC numbers, can help assemble a 

draft network with a set of reactions catalysed by enzymes encoded in the genome. 

Non-enzymatic and spontaneous reactions can also be added to the network when 

necessary. The automatically generated network usually contains wrong information, 

such as missing reactions and reactions that should not be included. Hence, manual 

refinement of the network is necessary to obtain a high-quality GSM model. 

One of the critical requirements of a metabolic network is that reactions must be mass-

balanced. However, reactions retrieved from databases like KEGG can be unbalanced, 

often due to metabolites without or incorrect chemical formulae and missing protons or 

water molecules. 

The assignment or correction of the metabolites formulae can be performed by 

consulting biological databases. Nevertheless, metabolites with variable formulae can 

represent a challenge performing this task. These compounds include tRNAs, acyl-

carrier protein, ferredoxin, quinones, lipids, and polysaccharides. An approach to 

balance reactions containing tRNA, acyl-carrier protein (ACP), and ferredoxin is to 

assign generic formulas like “R” or “T” to such metabolites. This approach is only 

viable for metabolites that are recycled inside the network. For example, ACP is 

“consumed” at the beginning of fatty acid biosynthesis and “produced” at the end of this 

pathway. On the other hand, polysaccharides are usually consumed from a culture 

medium or secreted to it. Hence, the quantity of each monomer comprised in such 
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polymers must be determined using available experimental data and biological 

databases. 

Thermodynamic constraints can be included in the model by restraining the reversibility 

and direction of each reaction. This kind of information is usually available in databases 

such as MetaCyc, BRENDA, or BiGG Models. Otherwise, the standard Gibbs free 

energy of the reaction can be determined and used to infer the direction and reversibility 

of the reaction. Tools like eQuilibrator can also be useful to determine such 

thermodynamic parameters. These constraints must be carefully analysed as these can 

completely change posterior simulations. Having too many reversible reactions can 

create energy-generating cycles. On the other hand, excessively restricting reactions' 

reversibility can overfit the model and render it unable to predict metabolic behaviour 

under different environmental or genetic conditions. 

Transport reactions are essential to keep network connectivity by allowing the exchange 

of metabolites across different compartments. Such reactions enforce different 

mechanisms, such as simple diffusion, proton symport, ABC cassettes, or the 

phosphotransferase system. The generation and inclusion of transport reactions can be 

based on the genome annotation performed in the previous stage. Nevertheless, this 

process includes searching for transporter-encoding genes, determining the transport 

mechanism and reversibility, and the substrates that the transporter can accept. Tools 

like TranSyT can be used to identify transporter-coding genes based on similarity 

searches against TCDB, automatically creating the respective transport reactions. 

Simple diffusion reactions need to be included manually, depending on the specificity 

of the metabolic model. 

Photosynthesis plays a major role in GSM models of photosynthetic organisms, 

providing energy and carbon sources in photo- and mixotrophic conditions. Light is 

usually included in the metabolic models as an ordinary metabolite, named as “photon”. 

Nevertheless, the light wavelength and intensity can induce changes in the metabolic 

behaviour of microalgae. Chang et al. [91] developed a GSM model for C. reinhardtii 

where a modelling approach was devised enabling quantitative growth prediction for a 

given light source accounting for the wavelength and photon flux. In this approach, the 

total light spectrum was divided into effective bandwidths with associated coefficients, 

allowing to calculate flux distribution for these reactions. Hence, this approach enables 

models to account for reactions simulating different light sources, such as solar, 
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incandescent, fluorescent, and light-emitting diodes. However, it has been shown that 

the bandwidth coefficients can vary for different organisms, as well as with culture size 

and growth vessels used [125]. Thus, this approach must be refined for the target 

organism to obtain GSM models with improved capabilities. 

2.2.3 Conversion into a stoichiometric model 

Converting the network into a stoichiometric model requires formulating a reaction 

representing the biomass composition of the organism. This reaction accounts for the 

most abundant macromolecules (DNA, RNA, protein, etc.) and their respective 

precursors (e.g., ATP, dATP, L-Alanine). The biomass composition can be retrieved 

from literature, experimental data, or using bioinformatics tools. If no data is available 

for the organism under study, information from closely related species can be used. 

Finkel et al. [126] analysed the median macromolecular composition of microalgae 

from eight different taxonomic groups, showing that proteins, lipids, and carbohydrates 

are the most representative macromolecules in these organisms. Nevertheless, biomass 

composition can show significant differences depending on the species, strain, and 

environmental conditions. 

DNA, RNA, and protein composition can be inferred from genomic and transcriptomics 

data using bioinformatics tools [127], which is very useful for less-studied organisms. 

Carbohydrates comprise both monomers, such as glucose, and polymers, like cellulose. 

The inclusion of monomers is straightforward as their chemical formulae are well-

defined. Polymers, however, require additional consideration because of their variable 

qualitative and quantitative compositions, which can be overcome by defining a fixed 

chemical composition to the polymer, according to experimental data. 

As mentioned before, microalgae are generally able to accumulate lipids, especially 

under nitrogen deficiency conditions. These macromolecules create an additional 

challenge to metabolic modelling because of their high diversity. For example, 

phospholipids can have different head groups combined with fatty acyl chains with 

multiple lengths. The most straightforward approach is to determine the average fatty 

acid composition of the cell and create a metabolite representing that average. This 

method is simple and adequate when the model is not used to study lipid metabolism. 

However, modelling lipid composition and production yields is often a target for 

microalgae modelling. Recent tools, such as BOIMMG 
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(https://boimmg.bio.di.uminho.pt/), create structurally defined lipids and the respective 

biosynthetic reactions, while SLIMEr [128] generates lipids biosynthetic reactions but 

requires the lipids to be already structurally defined. 

Although cofactors and vitamins do not represent a significant content in the overall 

biomass composition, their inclusion in the biomass reaction guarantees that the model 

can produce them. Common cofactors and vitamins in GSM models include NADH, 

NADPH, S-adenosyl-methionine, pyridoxal 5-phosphate, coenzyme A, thiamine, 

folates, and quinones. Nevertheless, organism-specific data must be used to include 

additional compounds. 

2.2.4 Model validation 

The final stage of the reconstruction of a GSM model consists of verifying, evaluating, 

and validating the model. A variable number of quantitative and qualitative tests can be 

applied to validate the model: spontaneous growth, autotrophies, growth rate 

assessment, secreted products, alternative element sources, or gene essentiality. These 

tests are based on in silico simulations that employ linear, mixed-integer, and quadratic 

programming optimization problems. 

If fluxes of external exchange reactions are available, the total flux distribution can be 

determined using Metabolic Flux Analysis (MFA). This approach is straightforward and 

useful to study the central metabolic pathways by using 13C labelled substrates (
13

C-

MFA). Such experimental measurements can be used by tools, such as OptFlux or 

WUFlux [129], to quantify fluxes in a complex metabolic network. Nevertheless, this 

type of data is not always available for less studied organisms and is often restricted to 

the central carbon metabolic pathways, limiting the potential for the application of MFA 

to metabolic models. 

Flux Balance Analysis (FBA) [130] is the most frequently used approach for analysing 

biochemical networks. This method, based on linear programming, can be formulated 

as: 

Maximize Z 

subject to S · v = 0 

αj ≤ vj ≤ βj, j = 1, ..., N 
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where S is the stoichiometric matrix and v is the flux vector. The objective function Z 

can be chosen according to the purpose of the optimization: maximize cell growth 

(biomass formulation), maximize/minimize ATP production, maximize production of 

target metabolites, or minimize substrate uptake. Despite this, FBA provides a single 

solution that is not necessarily unique since other optimal flux distributions can exist. 

Therefore, parsimonious flux balance analysis (pFBA) can be used instead. This method 

optimizes the objective function Z, and then, minimizes the total sum of flux through 

the model, providing a unique optimal solution. 

2.2.5 Additional approaches 

A generic GSM model includes all the reactions catalysed by enzymes encoded by 

metabolic genes identified in the organism’s genome. Nevertheless, these models do not 

account for the regulatory network and gene expression present in the organism under 

different environmental conditions. 

The development of omics technologies (genomic, transcriptomic, proteomic, 

lipidomic, and metabolomics) allows monitoring molecular components at the cellular 

and the genome-scale level. This type of biological data has been increasingly available 

in the last decade, especially for well-studied organisms. Hence, efforts have been made 

to develop methods to integrate omics data into GSM models. Such integration can be 

based on a “switch” approach, where a reaction is kept On or turned Off depending on 

the expression of the associated gene. On the other hand, a “valve” approach determines 

flux constraints of reactions based on the quantitative gene expression data. 

Omics data from microalgae have been used to improve GSM models. Imam et al. 

(2015) [93] integrated transcriptomics data in a C. reinhardtii GSM model to identify 

changes in the central pathways in response to nitrogen starvation and light availability. 

This type of data was also combined with GSM model data to study the circadian 

rhythm in Synechocystis [131]. 

Some compounds with commercial interest, such as lipids and pigments, can be 

accumulated by microalgae in intracellular structures. Since stoichiometric models 

assume that there is no net accumulation of intracellular metabolites, the utilization of 

traditional simulation methods, like FBA, is not straightforward. Dynamic flux balance 

analysis (dFBA) [132] methods allow the prediction of metabolite consumption and 

production over time. Two approaches can be followed: the dynamic optimization 
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approach (DOA) and the static optimization approach (SOA). DOA involves optimising 

the entire time-period of interest to obtain time profiles of fluxes and metabolite levels. 

The dynamic optimization problem is transformed into a nonlinear programming (NLP) 

problem, which is solved once. Conversely, SOA involves dividing the batch time into 

several time intervals and solving the instantaneous optimization problem with LP, 

similar to FBA [132]. In recent years, dFBA approaches have been applied to 

microalgae GSM models to analyse the production of lipids and pigments between dark 

and light phases [133, 134]. Dynamic modelling can provide important insights for 

microalgae cultivation, including multi-stage cultivation (e.g., starting with a nitrogen 

source and then removing it to induce stress conditions) and photoperiod modulation. 

The industrial utilization of an organism imposes requirements regarding efficient 

biomass yields and compound production. Extensive genetic engineering tasks, which 

can be a time-consuming and high-cost process, are required to improve the feasibility 

of using microalgae for industrial purposes. 

GSM models can be used to predict the phenotypic behaviour of an organism under 

different environmental and genetic conditions. There are three major types of 

approaches for strain design: de novo pathway assembly, enzyme modulation, and 

enzyme deletion. OptStrain [135] can be used for pathway design, identifying 

heterologous reactions to improve the production of a target compound. On the other 

hand, OptGene [136] can identify gene and reaction targets for a knockout. Finally, 

algorithms like OptReg [137] and OptForce [138] can identify over/under-expression 

targets. Such algorithms are usually available in metabolic modelling optimization tools 

such as OptFlux and MEWpy. 

Metabolic engineering using GSM models is already well-established for simple 

prokaryotic organisms. Nevertheless, metabolic engineering approaches with 

phototrophs is still limited to models of the cyanobacteria Synechocystis PCC6803 [139, 

140] and Synechococcus PCC7002 [141]. 

Elementary flux mode (EFM) analysis is a useful constraint-based approach for 

metabolic engineering to identify all the genetically independent pathways inherent to a 

metabolic network. In simple words, an EFM analysis represents the minimal set of 

reactions between input and output metabolites at steady-state [90]. Thus, this approach 

is often used in metabolic engineering tasks to improve the production of desired 
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compounds. However, this strategy is more suitable for small networks due to the 

computational complexity of the process. For example, Rügen et al. (2012) [92] applied 

EFM analysis to a core model of C. reinhardtii to analyse this species' photoautotrophic 

metabolism. On the other hand, Baroukh et al. (2014) [142] used EFM to study the 

accumulation of lipids and carbohydrates in the microalgae Tisochrysis lutea under 

light/dark cycles. 

In recent years, machine learning (ML) has started to be applied to reconstruct and 

analyse GSM models, improving their predictive performance and data coverage. ML 

algorithms can be applied in different stages of the reconstruction: genome annotation, 

identification of errors and gap-filling, gene essentiality, integration of regulatory data, 

and kinetic parameterization of enzymes [143, 144]. Only a few examples of this type of 

approach could be identified in cyanobacteria published GSM models. Vijayakumar et 

al (2020) [145] combined a GSM model of Synechococcus sp. PCC 7002 with ML to 

retrieve information from omics data regarding the metabolic responses to light 

intensity and salinity. Saini et al. [146], in turn, used a GSM model together with ML to 

formulate a multi-objective optimization problem to enhance biomass and 

phycobiliproteins production by the cyanobacteria Nostoc sp. CCC-403. The 

combination of metabolic models and ML is expected to increase in the next years, 

providing models with improved prediction capabilities and allowing overcome some 

restrictions of the traditional constraint-based modelling [143]. 

Alike ML applications, new formulations of metabolic models have been developed 

recently, such as Genome-scale metabolic models with Enzymatic Constraints using 

Kinetics and Omics (GECKO) models [147] or Metabolic and gene Expression (ME) 

models [148]. GECKO models are an extension of the traditional GSM models by 

incorporating detailed descriptions of enzymatic demands for metabolic reactions. Here, 

enzymes are considered as metabolites in reactions, whose stoichiometry is the inverse 

of the enzyme turnover number (kcat). Integrating proteomics data, the abundancy of 

each enzyme can be used as an additional constraint. This approach has only been 

applied to model organisms, such as S. cerevisiae [147] and E coli [149], and no 

GECKO models have been found for microalgae. Obtaining kcat values for all enzymes 

in an organism is clearly a limiting factor to develop these models. Nevertheless, ML 

methods have been developed recently to predict such parameters based on the protein 

sequence and substrate chemical structures [150]. Additionally, ME-models can also be 
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viewed as an extension of GSM models by including the biosynthesis of the gene 

expression mechanisms, enabling the computation of the entire proteome in a growing 

cell. 

2.3 Successful examples 

In the last decade, the number of GSM models for microalgae has increased 

exponentially. Before 2010, only eight published metabolic models were identified, and 

most of them were core models or draft networks. From 2010 until 2021, this number 

increased to 45 models, with a quite diverse set of methodologies being applied to these 

models, although limited to the better-studied species (Table 2). 

Table 2: Published metabolic reconstructions of microalgae, as well as their general properties and 

examples of applications. Rxns: reactions; Mets: metabolites; Cmps: compartments 

Organism Reference Genes Rxns Mets Cmps Application/Focus 

Anabaena sp. 

[78] 862 897 777 6 

Evaluation of exchanges 

between heterocyst and 

vegetative cells 

[151] 1004 2035 1635 7 
Analysis of amino acids and 

secondary metabolism 

Anabaena 

variabilis 
[105] 957 983 926 4 

Integration of 

transcriptomics data to 

heterocyst and vegetative 

cells; Hydrogen production 

Arthrospira  

platensis [30] - 121 134 2 

Study of a shunt of 

phosphoenolpyruvate to 

pyruvate 

[82] 692 875 837 2 Gene essentiality 

[98] 620 746 673 3 
Network design for 

glycogen and ethanol 

[72] 888 1096 994 - Glycogen production 

Chlamydomonas 

reinhardtii 

[62] 1069 - - - 

Combination of 

metabolomics and 

proteomics methods to 

obtain a draft metabolic 

network 

[63] - 259 467 6 

Integrated transcripts for 

verification of enzyme 

encoding open reading 

frames 

[89] - 484 458 3 
Application of FBA for 

estimation of intracellular 
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fluxes and biomass yield in 

mixo-, hetero-, and 

photoautotrophic conditions 

[64] - 280 278 - 

Utilization of mixed-integer 

linear programming 

methods to determine flux 

distributions, with focus on 

light-driven respiration and 

photon flux density 

[91] 1080 2190 1068 10 

Developed a new approach 

to account for light 

conditions in GSM models 

[65] 2249 1725 1862 4 Hydrogen Production 

[92] - 280 278 - 

Application of EFM 

analysis to analyse 

phototrophic metabolism 

[152] - 160 164 2 
Determination of energy 

requirements 

[66] 1106 2445 1959 10 

Refinement of the 

iRC10810 model by 

integrating phenotype 

microarray data 

[93] 1355 2394 1133 10 

Integration of 

transcriptomics data to 

improve growth rate 

predictions and to study the 

accumulation of 

triacylglycerols 

[67] - 139  3 

13C-MFA to study central 

carbon metabolism 

[94] - 3,726 2,436 10 

Application of dynamic 

approaches to evaluate 

phenotypes at different CO2 

levels 

Chlorella sp. 

FC2IITG [95] - 114 161 - 

Utilization of FBA and 

dFBA to study lipid 

accumulation 

Chlorella 

protothecoides 
[68] 627 1963 2115 14* 

Hydrogen production 

Chlorella 

pyrenoidosa 
[97] - 67 - 0 

Energy demands and 

light/dark cycle metabolism 

Chlorella variabilis 
[86] 526 1455 1236 5 

Analysis of different light 

conditions 

Chlorella vulgaris [79] 843 2294 1770 6 Pathway and flux 
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distribution analysis during 

nitrogen starvation 

[80] 946 2294 1770 6 

Dynamic metabolic 

demands during 

photosynthesis 

Cyanothece sp. 

[153] 773 946 811 5 

Comparison between 

Synechocystis sp. and 

Cyanothece sp.; gene 

essentiality 

Cyanothece sp. 
[102] 806 719 587 1 

System analysis of light-

driven metabolism 

Nannochloropsis 

sp. 
[96] 383 987 1024 6 

TAG production 

Nannochloropsis 

gaditana [69] 1321 1918 1862 4 

Flux distribution under 

different light conditions 

and CO2 uptakes 

Nannochloropsis 

salina 
[70] 934 2345 - 10 

Optimization of TAG 

production 

Ostreococcus 

lucimarinus 
[71] - 964 1100 2 

Analysis of gap-filling 

strategies 

Ostreococcus tauri 
[71]  871 1014 2 

Analysis of gap-filling 

strategies 

Phaeodactylum 

tricornutum [154] 151 88  5 

Identification of genes 

involved in C4-like 

photosynthesis 

[155] 680 318 355 5 EFM analysis 

[156] - - - 2 

Analysed metabolic 

responses to light intensity 

variation using the model 

developed by Hunt et al. 

[155] 

[81] 1027 4456 2172 6 
Indication of a glutamine-

ornithine shunt 

Synechocystis sp. 
[157] - 29 - - 

13C-MFA to study the C4 

pathway in cyanobacteria 

[125] - 70 46 1 

Analysis of the glyoxylate 

shunt and other important 

metabolic reactions; gene 

deletion analysis 

[99] - 43 - - 
MFA for hydrogen 

production 

[83] 669 882 790 2 

Analysis of gene regulation 

during light-shifting growth 

regimes 
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[73] 337 380 291 1 
Impact of photon uptake in 

photorespiration 

[100] 376 493 465 2 

MFA to study the central 

carbon metabolism and 

ethanol production 

[84] 811 956 911 2 

Flux coupling analysis and 

integration of 

transcriptomics data; 

ethanol production 

[74] 678 863 795 3 

Analysis of different light 

and inorganic carbon 

availabilities and genetic 

perturbations 

[153] 731 1156 996 5 

Comparison between 

Synechocystis sp. and 

Cyanothece sp.; gene 

essentiality 

[75] 677 759 601 6 

Analysis of light/dark 

cycles in cyanobacterial 

metabolism 

[101] 816 1045 925 7 

Flux distribution analysis 

and implementation of 

dFBA for diurnal cycles 

[158] 778 1163 1005 5 

Periodic dynamic model 

spaning the metabolism 

over 12 time point models 

[159] 678 864 795 4 

FBA analysis for 

overproduction of organic 

acids under dark anoxic 

condition 

Synechococcus sp. 

[103] 611 552 542 2 

Analysis of metabolic 

differences in 

cyanobacteria 

[141] 708 602 581 2 
Biofuel production using 

gene knock-out strategies 

[104] 728 742 696 7 
Gene essentiality and 

synthetic lethality analysis 

[87] 821 744 777 2 

Increased glycogen and 

lipid synthesis under 

nitrogen depletion 

[76] 706 908 900 4 
Production of glycogen and 

polyglucans 

Synechococcus 

elongatus 
[85] 715 851 838 - 

Growth in autotrophic 

conditions 
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[77] 785 850 768 7 
Phototrophic growth and 

gene essentiality 

Tisochrysis lutea 

[142] - 157 162 2 

New dynamic metabolic 

modelling framework that 

handles non-balanced 

growth conditions 

Trichodesmium 

erythraeum [160] 647 973 988 2 

Prediction of optimal 

cellular composition with 

different nitrogen sources 

 

The first metabolic reconstructions were focused on the central carbon metabolism and 

photosynthetic pathways. Such networks were developed through 
13

C-MFA and EFM 

analysis to study the metabolism of microalgae. 

The increasing availability of genome sequences allowed the reconstruction of 

metabolic models at the genome-scale. The most common objectives are related to i) 

improving the production of desirable compounds, such as lipids, hydrogen, and 

bioethanol; ii) analysing the growth and metabolism under mixo-, hetero-, and 

photoautotrophic conditions; and iii) studying the response to different light conditions 

and light/dark cycles. 

Microalgae can produce and accumulate high amounts of lipids, especially TAGs. Imam 

et al. [93] integrated high-resolution time series transcriptomics data to identify 

dynamic changes in central and TAGs’ production pathways in response to nitrogen 

starvation and light availability. This study allowed verifying how carbon flux was 

redirected to TAG biosynthesis instead of biomass. Since lipids are usually accumulated 

intracellularly, dFBA approaches have been applied in microalgae GSM models to 

study lipid metabolism and production. Loira et al. [70] applied dFBA to study TAG 

production over time, designing knock-out strategies for strain optimization as a source 

of TAG. Muthuraj et al. [95] captured the light-dark metabolism of Chlorella sp. FC2 

IITG using dFBA. Some of the most significant findings of this study include the 

following: the oxidative pentose phosphate pathway and Krebs cycle are relatively 

inactive under photoautotrophic conditions; redirecting the carbon flux from 

polysaccharide and neutral lipid resulted in an up-regulation of Krebs cycle in the dark 

phase; significantly active phosphorylation in the light phase was able to satisfy cellular 

energy requirement without the need of oxidative pentose phosphate pathway. 
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Hydrogen and ethanol are other compounds with particular interest. Dal'Molin et al. 

[65] developed a model for C. reinhardtii comprising the pathway for hydrogen 

production, identifying new targets to improve the production yield. Mekanik et al. [68], 

on the other hand, proposed changes in the NADH metabolism aiming at enhancing the 

hydrogen production in A. protothecoides. In another study [105], transcriptomics data 

was also integrated into a GSM model of A. variabilis to improve the hydrogen 

production by this species. Yoshikawa et al. [100] have evaluated ethanol production in 

Synechocystis sp. PCC6803 at different photon and nitrate uptake rates. The ethanol 

production by this species has also been studied by integrating transcriptomics data in a 

metabolic model [84]. Using A. platensis NIES-39, Yoshikawa et al. [98] performed in 

silico knockout simulations indicating that the deletion of genes related to the 

respiratory chain, such as NADH dehydrogenase and cytochrome c oxidase, could 

enhance ethanol production. Vu et al. [141] applied gene knockout algorithms to get 

insights into the potential for production of a series of compounds, such as acetate, 

alanine, succinate, fatty acids, and hydrogen, by Synechococcus 7002. 

3 Future challenges 

The cultivation of microalgae for industrial purposes has received more attention in the 

last years. Nevertheless, challenges must be overcome to increase the economic and 

environmental feasibility of processes using these organisms at the industrial scale. Due 

to the estimated population growth over the forthcoming years, microalgae arise as an 

excellent alternative to animal-based proteins, with all the advantages associated with 

microalgae cultivation. The increased demand for microalgae metabolites requires 

decreasing production costs and optimising the production of desired compounds, such 

as proteins, some lipids (e.g., PUFAs), or carotenoids (e.g., β-carotene). A common 

strategy to promote the overproduction of high-value compounds is to cultivate 

microalgae under stress conditions, which impairs growth and limits biomass formation. 

It is, therefore, necessary to find a balance between the production of target compounds 

and biomass formation. In addition, the implementation of other strategies within the 

circular bioeconomy concept, such as the bioremediation of wastewater or the 

biorefinery approach, to improve process cost-effectiveness has been providing 

promising indications in microalgae’s cultivation process cost-effectiveness. 
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Emerging fields, such as Systems Biology, offer tools to optimise these processes at the 

systems level. GSM models have been used to study metabolic traits of microalgae and 

predict the respective phenotypes, providing insights to increase biomass yields and 

production of desired compounds. However, these approaches have some challenges 

and limitations. First, reconstructing a high-quality GSM model demands a considerable 

amount of time, and requires intensive literature research and extensive expertise 

regarding the metabolism of the target organism. The continuous development and 

improvement of bioinformatics tools and databases allow directing such efforts from the 

reconstruction process to the application and analysis of metabolic models, leading to 

more expedited knowledge extraction. Secondly, these metabolic models do not include 

physical properties like temperature and pressure, or gene regulation and expression 

information, which has been overcome by integrating omics and regulatory data, 

originating condition-specific GSM models. However, genomic, proteomic, 

metabolomic, and physiological data are not always available, especially for less-

studied organisms. Although using information from close-related organisms is a very 

common approach in metabolic modelling, this can decrease the accuracy and 

specificity of the model. Thus, generating more experimental data, as well as finding 

new approaches to adapt and infer data from other organisms, is mandatory to obtain 

high-quality models for less-studied organisms. Finally, traditional approaches in 

systems biology are based on a pseudo-steady state, not allowing the net accumulation 

of intracellular metabolites that can occur in vivo, for instance, with compounds like 

lipids, carbohydrates, and pigments. The implementation of dynamic approaches has 

been useful to evaluate microalgae’s potential for producing such compounds over time, 

including at the industrial level. In recent years, new modelling approaches have been 

developed, including GECKO and ME models. Applying these new-generation 

modelling methods individually or in combination can provide new information and 

predicting capabilities unattainable through traditional systems biology approaches. The 

availability of experimental data is still a challenge, although it can be overcome, in 

part, through ML approaches. 

4 Conclusions 

Microalgae biomass is a noble source of high-value products. The commercialization of 

these compounds is dependent on improving microalgae cultivation's cost-effectiveness. 

Traditional approaches based on understanding the interactions between environmental 
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conditions and nutritional factors rely on trial-and-error methodologies and are lengthy. 

Systems biology has shifted this paradigm through tools like GSM, an excellent 

surrogate that allows devising strategies to optimize the production of biomass and 

high-value products. Implementing these tools reduces the time and costs of microalgae 

cultivation process optimization, potentially facilitating the implementation of a wider 

range of products derived from microalgae at the industrial level. 
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Highlights 

-Microalgae are eco-friendly and alternative sources of several high-value 
compounds 

-Microalgae biomass and compounds’ productivity are low at the industrial level 

-Metabolic models provide valuable insights into the metabolism of an organism 

-Metabolic models can be used to optimise the growth conditions of microalgae 

-Optimising the culture conditions will allow improving the cost-effectiveness 
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