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b Civil Eng., Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
FRP confined concrete 
Full confinement 
Partial confinement 
Square section 
Unified model 

A B S T R A C T   

Even though the usage of Fiber-reinforced polymer (FRP) full confinement arrangement is a more reliable and 
efficient strengthening technique than a partially confining strategy, it might not be cost-effective in real cases of 
strengthening. Experimental researches have demonstrated that confinement strengthening strategy is more 
effective for the case of circular columns compared to its application on square columns. This paper is dedicated 
to introducing a new unified model for determining the concrete confinement characteristics of FRP fully/ 
partially confined circular/square concrete columns subjected to axial compressive loading. Through unification, 
the variations of the key parameters can be evaluated more-widely based on a unified mathematical framework. 
Consequently, it leads to the continuity in the predictions of FRP confinement-induced improvements for the 
different types of columns, contrary to those obtained from models only applicable to a specified cross-section or 
confining system. The substantial influence of non-homogenous concrete expansion distribution at the horizontal 
and vertical directions is taken into account in the determination of confinement pressure, besides arching ac-
tion, by following the concept of confinement efficiency factor. Since the confinement-induced improvement is a 
function of its confining stress path, a new methodology is proposed to predict global axial stress–strain relation 
of FRP confined concrete columns considering confinement path effect, based on an extensive set of experimental 
results including 418 test specimens. The predictive performance of the developed model is assessed by simu-
lating experimental tests reported in the literature.   

1. Introduction 

The strengthening of reinforced concrete (RC) columns by applying 
externally bonded fiber-reinforced polymer (FRP) is a well-established 
concept, that experimental research has demonstrated to be capable of 
increasing remarkably the axial compressive strength of these structural 
members, as well as their deformability without significant loss of load- 
carrying capacity. Campione et al. [1] examined experimentally the ef-
ficiency of a confinement strategy for improving the axial behavior of 
FRP fully confined circular concrete elements (FFCC as shown in Fig. 1). 
It was demonstrated that the effectiveness of this technique noticeably 
depends on FRP reinforcement ratio and, subsequently, FRP thickness 
and number of layers. Eid et al. [2] highlighted that the improvement in 
the axial strength and strain capacity is more pronounced in the case of 
FFCC with normal-strength concrete, compared to high-strength 
concrete. 

Zeng et al. [3] conducted an experimental study to examine axial and 

dilation behavior of FRP partially confined circular concrete elements 
(FPCC as shown in Fig. 1) with various confinement configurations. It 
was verified that the clear distance between FRP strips (sf ) plays a key 
role in the establishment of axial and dilation responses, which was also 
experimentally confirmed by Barros and Ferreira [4] and Guo et al. [5]. 

It is well-established that in case of non-circular columns, the effi-
ciency of confinement strategy is much smaller compared to circular 
columns, being this loss of effectiveness dependent on the corner radius, 
r ([6–8]). Wang and Wu [9] and Shan et al. [10] experimentally inves-
tigated the impact of the corner radius ratio, Rb = 2r/b (where b is the 
side of the section), on the axial response of FRP fully confined square 
cross-section concrete columns (FFSC as shown in Fig. 1). It was evi-
denced that decreasing Rb from one (circular section) to zero (square 
section with sharp edge), the confinement-induced improvements ten-
ded to be negligible. Likewise, Tao et al. [11] and Saleem et al. [12] 
experimentally verified that FRP thickness-induced improvements is a 
main function of Rb so that it would be marginal for low value Rb. Tri-
antafyllou et al. [13] and Zeng et al. [14] experimentally demonstrated 
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that the effectiveness of FRP partially confined square concrete columns 
(FPSC as shown in Fig. 1) is directly dependent on the spacing of the 
strips of FRP sheets, sf , being their axial and dilation behavior 

detrimentally affected with the increase of sf due to concrete damage 
concentration in the zones between strips. 

Even though the usage of FRP full confinement arrangement (FFCC 

Nomenclature 

Aeff Area of effective confinement zone 
Ag Total area of square cross-section columns 
Atot Area of square cross-section 
b Section dimension 
D Diameter of circular column 
Deq Equivalent circular cross-section 
Deq,c Equivalent circular core 
Ec Concrete modulus elasticity 
Ef FRP modulus elasticity 
fc Axial stress corresponding to εc 
fc0 Peak compressive stress of unconfined concrete 
fcc Peak axial stress of FFSC/FPSC 
ff (z) FRP confining stress 
ff* Uniform FRP confining stress 
fl,eff Effective confinement pressure 
fl,f I Highest FRP confinement pressure 
fl,f II Moderate FRP confinement pressure 
fl,f III Lowest FRP confinement pressure 
fl,f FFSC FRP confinement pressure for FFSC 
fl,f FPSC Uniform FRP confinement pressure for FPSC 
fl,f* FFSC Uniform FRP confinement pressure for FFSC 
fl,f* FPSC Uniform FRP confinement pressure for FPSC 
fl,i Confinement pressure at strip mid-plane 
fl,j Confinement pressure at the critical section 
h Longer side of section 
If Confinement stiffness index 
If* Confinement stiffness index leading to vs,max = 0.5 
Ke Confinement efficiency factor 
kff 

FFSC Reduction factor kff for FFSC 
kff 

FPSC Reduction factor kff for FPSC 
kh,f Reduction factor 
kh,eff Reduction factor 
kv,f Reduction factor 
kε 

FFSC Reduction factor for FFSC 
kε 

FPSC Reduction factor for FPSC 
kεh Reduction factor 

kε,min Minimum value of kε 
FFSC 

N Total number of the fitted points 
n Concrete brittleness 
nf FRP layer number 
ptot Perimeter of square cross-section 
R1 Non-dimensional calibration coefficient 
R2 Non-dimensional calibration coefficient 
Rb Non-dimensional parameter as 2 r / b 
Rf Non-dimensional parameter as sf / Deq 
r Corner radius 
sf Distance between FRP strips 
tf FRP thickness 
L Column height 
Ld Damage zone length of FRP confined concrete 
Ld0 Damage zone length of unconfined concrete 
VFRP Volume of FRP jacket 
Vcon Volume of concrete 
wf FRP width 
αεc Ratio of vs and vs,max 
εc Axial strain corresponding to fc 
εc0 Axial strain corresponding to fc0 
εc,m Axial strain corresponding to vs,max 
εcc Axial strain corresponding to fcc 
εh (z) Hoop strain 
εh,c Hoop strain at the corners 
εh,m hoop strain at the middle of the flat side 
εh,max Maximum FRP hoop strain 
εh,min Minimum FRP hoop strain 
εl (z) Concrete lateral strain 
εl,i Concrete expansion at the mid-plane of FRP strips 
εl,j Lateral concrete expansion at the critical section 
εV Volumetric strain 
ρf FRP volumetric ratio 
ρf,eq Equivalent FRP volumetric ratio 
ρK,f FRP confinement stiffness index 
vs Secant Poisson’s ratio 
vs,0 Initial Poisson’s ratio of unconfined concrete 
vs,max Maximum Poisson’s ratio at the critical section  

D

H
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wf

FRP jacket

nf tf

A A

A A

Partial confinement

εc0

fc0

Axial compressive strain

FFCC

FPCC

UC

Full confinement
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nf tf
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Circular section

Square section

FPSC

FFSC

Fig. 1. Various confinement configurations. Note: UC: unconfined concrete column; FFCC: FRP fully confined circular concrete column; FPCC: FRP partially 
confined circular concrete column; FFSC: FRP fully confined square concrete column; FPSC: FRP partially confined square concrete column; 
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and FFSC) is a more reliable and efficient strengthening technique than 
partially confining strategy (FPCC and FPSC), it might not be cost- 
effective in the real cases of strengthening, considering the relatively 
high cost of FRP materials. The studies [4,13,14] experimentally 
revealed that the application of discontinuous FRP wrapping strips in 
non-seismically designed RC columns would be able to offer a reliable 
compromise between confinement-induced improvements and cost 
competitiveness, under proper design circumstances. In order to predict 
FRP confinement-induced improvements, numerous models have been 
recommended in the literature (i.e. [15–24]). Conventionally, for the 
establishment of the axial response of FFCC, at a certain axial strain 
leading to a specific confinement pressure, FRP confinement-induced 
improvements are assumed to be identical to that of actively-confined 
concrete (AFCC) where concrete is subjected to a constant lateral pres-
sure during the entire axial loading (Lam and Teng [15]). According to 
this assumption, at a certain level of axial strain generating a specific 
confinement pressure, the corresponding axial stress of FFCC can be 
derived using the axial stress–strain base framework suggested for AFCC 
(i.e. Popovics [25]) by considering identical confinement-induced im-
provements for FFCC and the corresponding AFCC subjected to the same 
lateral confinement pressure. However, Lim and Ozbakkaloglu 
[20,26,27] evidenced an imperative difference in terms of axial and 
dilation behavior, generally known as confinement path effect, in en-
hancements offered by FRP jacketing (FFCC) and active confinement. It 
was evidenced that axial stress–strain relationship, conventionally 
determined, would result in misleading prediction in terms of axial ca-
pacity of FFCC, as also confirmed by Yang and Feng [22] and Lin et al. 
[23]. Lim and Ozbakkaloglu [20] refined this assumption by suggesting 
a reduction factor in actual FRP confinement pressure to reduce 
confinement-induced improvements imposed by active confinement for 
taking into account confinement path effect in the case of FFCC. For the 
same purpose, Yang and Feng [22] presented a refined version of the 
original assumption by considering the confinement path effect in the 
prediction of FRP confinement-induced improvements during axial 
loading based on the actual FRP confinement pressure. 

For the establishment of axial stress–strain response of FFSC, in 
general, the concept of confinement efficiency factor, originally devel-
oped by Mander et al. [28] for the case of steel confined concrete with 
stirrups is adopted (i.e. Guo et al. [29]), which formulates the detri-
mental influence of horizontal arching action as a reduction factor in 
confinement pressure. In this approach, based on the effectiveness of 
confinement pressure acting on the non-circular concrete section col-
umns, the concrete regions are classified in two distinct zones as, so- 
called, effective confinement area and ineffective confinement area. 
The former is assumed to be homogenously/effectively mobilized by 
confinement pressure, while the latter is assumed to be as unconfined 
concrete. However, the finite element simulations performed by 
[30–33] demonstrated that the effective confinement area is subjected 
to a non-uniform distribution of confinement pressure, which strongly 
depends on the length of corner radius. Furthermore, the studies 
[6,7,32,33] experimentally evidenced that FRP hoop strain at the hori-
zontal direction is non-homogenously distributed in the perimeter, in 
contrary to what happens in circular sections. On the other hand, for the 
establishment of axial stress–strain response of FPCC, the concept of 
confinement efficiency factor is also adopted by addressing the effect of 
vertical arching action (and horizontal arching action effect in case of 
FPSC) in the determination of confinement pressure imposed by FRP 
strips. Zeng et al. [34] experimentally evidenced the distribution of 
concrete expansion would be predominantly non-homogenous, partic-
ularly in the case of large sf, as also confirmed by Guo et al. [29]. Like-
wise, Zeng et al. [14] and Guo et al. [5,29] evidenced the non-uniform 
distribution of concrete expansion of FPCC and FPSC, so that by 
decreasing sf the dilation behavior changed from being localized to be 
more homogenous. Accordingly, Shayanfar et al. [35] suggested a 
refined version of the concept of confinement efficiency factor for FPCC 
by formulating not only the influence of vertical arching action but also 

the non-homogenous concrete lateral expansibility in generating 
confining stress. 

Nonetheless, the development of a confinement model applicable to 
FFCC, FFSC, FPCC and FPSC, by addressing the influences of confine-
ment path, vertical and horizontal arching action, and the non- 
homogenous confining stress/strain distributions at the longitudinal 
and transverse directions in the prediction of confinement-induced 
improvement, is still lacking. It should be noted that unification of the 
models for concrete columns fully and partially confined with FRP sys-
tems (FF and FP) as well as for the case of circular and square cross- 
sections (CC and SC) can be achieved through the concept of confine-
ment efficiency factor. Such unification does not lead to discontinuity 
between the estimations of FRP confinement-induced improvements for 
the cases of FF and FP when sf approaches to nearly zero (i.e. closely 
spaced FRP partial strips) and the cases of CC and SC when Rb (2r/b) 
approaches to almost 1. Next, the range and variations of the key pa-
rameters as well as their interactions can be simulated more-widely 
based on a unified mathematical framework. This provision in the 
establishment of the confinement model, which is unavoidably based on 
regression analysis technique, would lead to a more-reliable predictive 
performance, compared to the case where a limited variation for the key 
parameters is assumed. 

In the present study, a new unified model is proposed for estimating 
the behavior of concrete columns of circular and square cross-sections 
(CC and SC) full and partially confined with FRP systems (FF and FP). 
By following a unified approach with FFCC and FPCC, the concept of the 
equivalent circular section is presented for the cases of FFSC and FPSC. 
For simulating the effect of concrete expansion distribution at the hor-
izontal and vertical directions, an extended version of the model rec-
ommended by Shayanfar et al. [35] is developed. Based on an extensive 
set of experimental results including 418 test specimens, a new unified 
analysis-oriented model in compliance with the concept of the 
confinement efficiency factor is introduced to predict the axial response 
of FRP confined concrete columns. Lastly, the predictive performance of 
the developed confinement model is assessed through analytically 
simulating experimental results of FFCC, FPCC, FFSC and FPSC. 

2. Concept of equivalent circular Cross-section 

Numerous analysis-oriented models have been developed to predict 
the confinement-induced improvements of FRP confined circular cross- 
section columns during axial concentric loading. For simulating the FRP 
confinement effects on concrete columns of square cross-section, the 
possibility of considering this type of column as an equivalent circular 
column is very attractive due to the consequent simplification obtained 
for the corresponding formulation. In this regard, equivalent diameter 
concept has been proposed by several researchers ([15,18,36–38]. In 
these models, the diameter of the equivalent circular cross-section (Deq) 
has been suggested based on (i) Diagonal length of the cross-section, and 
(ii) FRP volumetric ratio, as the ratio of the volume of FRP and concrete. 
In the former group, Lam and Teng [15] recommended Deq equal to the 
diagonal length of the section (Deq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + b2

√
), where h and b are the 

length of the longer and shorter sides of the section, respectively. In this 
group, for the case of square section, it would be as Deq =

̅̅̅
2

√
b, 

regardless of the dimension of corner radius. By improving this model in 
order to consider the effect of rounded corners, Lee et al. [18] suggested 
Deq as the diagonal distance from the centers of two corner arcs as Deq =
̅̅̅
2

√
(b − 2r) + 2r. In the latter group, Deq is determined so that the 

equivalent FRP volumetric ratio (ρf ,eq) of non-circular column could be 
the same of ρf in square columns. Triantafillou et al. [38] adopted this 
approach for the case of rectangular columns as Deq = 2bh/(b + h). For 
the case of the square section, this model can be expressed as Deq = b, 
regardless of the length of corner radius. 

In the present study, for transforming a square cross-section in an 
equivalent circular section, the approach suggested by Triantafillou et al. 
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[38] is adopted with a slight modification in terms of the consideration 
of corner radius in determining Deq. This approach defines the equiva-
lent circular section for square section based on its ρf , which is one of the 
key parameters in the establishment of the confinement pressure. 
Accordingly, ρf ,eq for the equivalent circular column would be the same 
of ρf in square columns as: 

ρf = ρf ,eq→
VFRP

Vcon

)

orginal
=

VFRP

Vcon

)

equivalent
(1) 

where VFRP and Vcon are the volume of FRP jacket and concrete, 
respectively. Rearranging Eq. (1) leads to 

ptot

Atot
× nf tf =

4nf tf

Deq
(2) 

where nf and tf are the FRP layer number and thickness; ptot and Atot 

are the perimeter and area of the square cross-section wrapped by FRP, 
respectively. Therefore, considering the impact of rounded corners, Deq 

can be expressed using Eq. (2): 

Deq = 4 ×
Atot

ptot
= 4 ×

b2 − 4
(

r2 − πr2

4

)

4(b − 2r) + 4 πr
2

=
b2 − 4r2 + πr2

b − 2r + πr
2

(3) 

Rearranging the above equation gives: 

Deq =
1 − 0.215R2

b

1 − 0.215Rb
b (4) 

in which 

Rb =
2r
b

(5) 

Through employing Eq. (4), FRP volumetric ratio of the equivalent 
circular section would be the same as that of square section. Despite FRP 
volumetric ratio be a key parameter in the development of confinement 
pressure, the confinement-induced improvement also depends on the 
detrimental influence of the horizontal arching action, leading to a 
reduction in the confinement efficiency of non-circular columns, 
compared to circular columns. In order to formulate this effect, in 
general, the concept of ‘confinement efficiency factor’ is employed, 
which will be addressed in the following section. 

3. Original concept of confinement efficiency factor 

According to the original concept of ‘confinement efficiency factor’ 

(OCCEF), during axial compressive loading, concrete regions in the case 
of FFSC would be subjected to two different confinement levels, due to 
the arching action phenomena at the cross-sectional level. Based on the 
effectiveness of confinement pressure, for the sake of simplicity in the 
design context, the concrete regions are classified in two distinct areas 
due to arching action (Fig. 2a):  

i). Effective confinement area  
ii). Ineffective confinement area 

In OCCEF, the former is assumed as homogenously and effectively 
under the highest confinement pressure (fl,eff ), while the latter is 
considered to be under the lowest confinement pressure, conservatively 
assumed as unconfined concrete. Through a reduction factor (kh,f ), the 
effective confinement pressure (fl,eff ) acting on the effective confined 
area is transformed in a homogenously confining pressure on the entire 
cross-section (f*FFSC

l,f ) as shown in Fig. 2b (the “*” in the superscript aims 
to represent that the generated confinement pressure is distributed 
uniformly not only at the cross-sectional level, but also at the cross- 
sectional level). It can be expressed as: 

f *FFSC
l,f = kh,f fl,eff (6) 

Mander et al. [28] defined kh,f as Aeff/Ag, where Aeff and Ag are the 
area of effective confinement zone and the area of the entire square 
cross-section, respectively. Consequently, by using the concept of the 
equivalent circular cross-section (Deq), based on the equilibrium of 
confinement forces, f *FFSC

l,f corresponding to the FRP confining stress f *
f 

(the “*” in the superscript aims to represent that the distribution of 
confining stress in the cross-sectional perimeter of the equivalent cir-
cular cross-section is homogenous) can be determined by (Fig. 2c): 

f *FFSC
l,f = 2kh,f

nf tf

Deq
f *
f (7) 

where nf is the number of FRP layers; tf is the thickness of a FRP 
layer; Ef is the FRP modulus of elasticity. Nevertheless, contrary to 
OCCEF, the finite element simulations performed by [30–33] well evi-
denced that the effective confined area is subjected to a non-uniform 
distribution of confinement pressure, which strongly depends on the 
dimension of the corner radius (Rb). Fig. 3 demonstrates the distribution 
of confinement pressure in a quarter of the square cross-section column 
(FFSC) obtained from the finite element analyses performed by Jiang 
et al. [32] on FFSC specimens tested by [9]. As can be seen, due to the 
restriction imposed by the confining system, near the center of the cross- 

Fig. 2. Distribution of confinement pressure in FRP confined square column based on OCCEF.  
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section and the corner areas are under the highest level of confinement 
pressure (black color). However, as a consequence of horizontal arching 
action, the concrete closer to the flat sides of the section is subjected to 
the lowest confinement pressure (white color). The zone between the 
well and less confined concrete regions can be regarded to be subjected 
to a moderate level of confinement pressure (gray color). By increasing 
the corner radius, the area of highly confined zone would be enlarged 
and the stress concentration at the corners is reduced. Likewise, for 
higher Rb, the confined concrete regions under low and moderate levels 
of confinement pressure are merged, and the section tends to be 
confined homogenously. As a result, based on the demonstrated 

confinement pressure distribution observed in the numerical simula-
tions, three distinct concrete areas can be distinguished representing 
those subjected to lowest, moderate and highest confinement levels. 
Accordingly, a modified concept of the confinement efficiency factor 
(MCCEF) is, herein, proposed which is presented in the following 
section. 

4. Modified concept of confinement efficiency factor 

It is noteworthy that the arching action theory demonstrated in Fig. 3 
seems to be sufficient in separating the concrete with the lowest 

Arching action theory

b / 2

b / 2

r

Arching action theory

b / 2

b / 2

r

Arching action theory

b / 2

b / 2

r

Arching action theory

b / 2

b / 2

r

a) Rb = 0.2 b) Rb = 0.4 c) Rb = 0.6 d) Rb = 0.8

Fig. 3. Typical distribution of confinement pressure obtained from finite element simulations performed by [32] Note: White zone: associated with low confinement 
level; Gray zone: moderate confinement level; Black zone: high confinement level [32]. 

Fig. 4. Distribution of confinement pressure based on MCCEF.  
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confinement level (white color) from those under moderate and highest 
confinement levels, particularly for higher Rb. In MCCEF through 
adopting the arching action theory, the three concrete regions repre-
sented in Fig. 4a are distinguished according to the level of the 
confinement pressure level acting on these zones:  

i). Area I, subjected to the highest level of confinement pressure, f I
l,f  

ii). Area II, confined, with a moderate level of confinement pressure 
f II
l,f  

iii). Area III, with negligible confinement (the lowest confinement 
level), therefore f III

l,f = 0 for the sake of simplicity. 

To take into account the non-homogenous confinement pressure 
distribution in the effective confinement area contained by the parab-
olas, Area I and Area II under different confinement pressures were 
defined based on finite element simulations [32]. As shown in Fig. 4a, 
Area II subjected to f II

l,f is located between Area I and Area III under f I
l,f 

and f III
l,f , respectively. Accordingly, as the concrete is a non-homogenous 

continuous material, in Area II, for the concrete next to Area III, f II
l,f ≃ f III

l,f , 
while for the concrete next to Area I, f II

l,f ≃ f I
l,f . Therefore, f II

l,f can be 
considered between these extremities as f III

l,f ⩽f II
l,f ⩽f I

l,f . Considering f III
l,f = 0 

(OCCEF), it can be rearranged as 0⩽f II
l,f ⩽f I

l,f . In the present study, in order 
to determine a weighted average level of confinement pressure acting on 
Area II, for the sake of simplicity and lack of adequate experimental/ 
numerical investigations in the literature, a linear variation for the 
confinement pressure between these extremities was assumed, leading 
to f II

l,f = 0.5f I
l,f . 

In MCCEF, fl,eff is defined as the weighted average level of confine-
ment pressure acting homogenously on Area I and Area II, in the 
compliance with the effective confinement area in OCCEF. It can be 

considered on the interval 
[
f II
l,f , f

I
l,f

]
depending on Rb. Likewise, fl,eff as a 

function of the highest confinement level (f I
l,f ) can be expressed as: 

fl,eff = kh,eff f I
l,f (8) 

where kh,eff (fl,eff and f I
l,f ratio) is on the interval [0.5, 1]. As shown in 

Fig. 4b, by using kh,eff , the non-homogenous confinement distribution 
can be converted into a reduced confinement pressure uniformly/ 
effectively acting on the effective confinement area. This reduced 
confinement can be distributed on the entire cross-section through 
implementing the reduction factor kh,f in the compliance with OCCEF 
(Fig. 4c). By putting Eq. (8) in Eq. (6), the equivalent confinement 
pressure of f *FFSC

l,f as a function of kh,f and kh,eff can be obtained as: 

f *FFSC
l,f = kh,f fl,eff = kh,f kh,eff f I

l,f (9) 

Therefore, based on the equilibrium of confinement forces, f *FFSC
l,f 

corresponding to the FRP confining stress f *
f can be derived as (Fig. 4d): 

f *FFSC
l,f = 2kh,f kh,eff

nf tf

Deq
f *
f (10) 

Compared with OCCEF presented in Eq. (7), MCCEF contains the 
reduction factor of kh,eff reflecting the effect of non-homogenous 
confinement pressure in the determination of f *FFSC

l,f . On the other 
hand, based on Eqs. (7,10), f *FFSC

l,f is in a direct proportion with FRP 
confining stress f *

f generated in the perimeter of the equivalent circular 
cross-section. Nonetheless, as experimentally confirmed by Ozbakkalo-
glu [6], Chen and Ozbakkaloglu [7], Shan et al. [19] and Oliveira and 
Carrazedo [33], for a square section, at a certain axial strain (εc), the 
middle of the flat side would experience the maximum hoop strain in the 
perimeter (εh,max = εh,m), but the minimum occurs at the corners (εh,min =

εh,c) as demonstrated in Fig. 4e. The extra strain at the middle of the flat 

side can be attributed to i) the frictional effect where the frictional 
components in the corner zones induces a reduction in the strain of the 
FRP applied on this zone; ii) the transversal deformability of the con-
crete of the unconfined region (as ineffective confinement area shown in 
Fig. 3), iii) the bending effects in the FRP at flat sides considering its 
relatively low flexural stiffness, as experimentally confirmed (Wang and 
Wu [9] and Shan et al. [10]). Therefore, since the hoop strain distribu-
tion of the equivalent circular cross-section is homogenous, the effect of 
non-uniform distribution of hoop strain along the perimeter of a square 
section needs to be addressed in the establishment of FRP confining 
stress f *

f . In the confinement models developed by Lee et al. [18] and Lin 
and Teng [24], the hoop confining strain at the corner centers (εh,c) was 
taken into account as the effective hoop strain (εh,eff ), homogenously 
distributed in the perimeter of FFSC, leading to FRP confining stress (f*

f ) 
as Ef εh,eff (Fig. 4e). Consequently, by defining kεh as the ratio of εh,c and 
εh,m, f *

f can be expressed as: 

f *
f = Ef εh,eff = Ef εh,c = kεhEf εh,m (11) 

Therefore, replacing Eq. (11) in Eq. (10) gives: 

f *FFSC
l,f = 2kh,f kh,eff kεh

nf tf

Deq
Ef εh,m = 2KH

nf tf

Deq
Ef εh,m (12) 

in which 

KH = kεhkh,f kh,eff (13) 

where KH represents the efficiency confinement factor addressing the 
influence of horizontal arching action. Therefore, Eq. (12) provides the 
uniform confinement pressure f *FFSC

l,f , which is assumed to homoge-
neously act on the entire equivalent circular cross-section with Deq 

through adopting the reduction factor KH. For this purpose, the deter-
mination of kh,f , kh,eff and kεh as input parameters in Eq. (13) is essential, 
which will be addressed in the following sections. 

4.1. Determination of kh,f 

This section provides the formulation for determining kh,f presenting 
the ratio of fl,eff and f*FFSC

l,f , based on Eq. (6). Through applying this 
reduction factor, fl,eff on the effective confinement area is spread 
homogenously onto the entire equivalent circular cross-section with Deq 

as shown in Fig. 5a. In the figure, it was assumed that Deq,c defines the 
diameter of equivalent circular core representing the effective confine-
ment area (Area I and Area II). Consequently, the equilibrium of the 
generated confinement forces on the equivalent circular core (Deq,c) and 
the entire section (Deq) can be expressed as (Fig. 5a): 

f *FFSC
l,f Deq = fl,eff Deq,c (14) 

Thus, using Eq. (14), kh,f is obtained as 

kh,f =
fl,eff

f *FFSC
l,f

=
Deq,c

Deq
(15) 

in which Deq is calculated by Eq. (4). Hence, to calculate kh,f , Deq,c 

needs to be addressed. For this purpose, based on the concept of the 
equivalent circular section used to derive Eq. (4), Deq,c can be determined 
as: 

Deq,c = 4 ×
Aeff

peff
= 4 ×

Atot −
∑

Aine

2πr +
∑

pine
(16) 

where peff and Aeff are the perimeter and area of the effective 
confinement area, respectively; 

∑
pine and 

∑
Aine are the perimeter and 

area of the ineffective confinement zones, respectively; In the present 
study, as demonstrated in Fig. 5a, by considering the unconfined con-
crete due to arching action as defined by a second-degree parabola be-
tween the adjacent corners, the corresponding perimeter and area are 
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calculated as pine = 2.3xi and Aine = 2x2
i /3. The relative complexity of 

Eq. (16) was, in the present study, overcome by adopting a simplified 
equation. Accordingly, the best-fit kh,f was derived using a regression 
analysis of the results obtained from Eq. (16) as: 

kh,f = 1.17Rb − 0.46R2
b + 0.29 (17) 

Fig. 5b shows that Eq. (17) fits with high accuracy the discrete results 
in terms of kh,f versus Rb in the interval 0 to 1 for the Rb (note that for Rb 

= 1, circular cross-section, kh,f = 1). 

4.2. Determination of kh,eff 

This section provides the formulation for determining kh,eff present-
ing the ratio of fl,eff and f I

l,f , based on Eq. (8). Using this factor, the non- 
uniform confinement distribution within Areas I and II is converted into 
fl,eff as demonstrated in Fig. 4a-b. By transforming the confinement re-
gions of Area I and II into two equivalent circular shapes with DI

eq and 
DII

eq respectively, the confinement force generated in each region can be 
determined as f I

l,f D
I
eq and f II

l,f D
II
eq. On the other hand, as demonstrated in 

the previous Section, the confinement force generated by fl,eff acting on 
the effective confinement area is as fl,eff Deq,c. On the basis of the super-
position principle, fl,eff Deq,c can be written through equality in f I

l,f D
I
eq and 

f II
l,f D

II
eq : 

fl,eff Deq,c = f I
l,f D

I
eq + f II

l,f D
II
eq (18) 

By considering the assumption of f II
l,f = 0.5f I

l,f , rearranging Eq. (18) 
gives 

fl,eff =
DI

eq + 0.5DII
eq

Deq,c
f I
l,f (19) 

Accordingly, by using Eq. (19), kh,eff can be determined as 

kh,eff =
fl,eff

f I
l,f

=
DI

eq + 0.5DII
eq

Deq,c
(20) 

As obtained in Eq. (20), kh,eff is a function of DI
eq and DII

eq, strongly 
depending on Rb. For the case of FFSC with relatively sharp corner 
(Rb ≃ 0), Area I would become virtually marginal as numerically 
confirmed by [30–33]. Consequently, for Rb ≃ 0, by ignoring the 
contribution of (f I

l,f ) acting on Area I in terms of fl,eff (DI
eq ≃ 0), the entire 

effective confinement area (with Deq,c) can be assumed to be only under 
f II
l,f , leading to DII

eq ≃ Deq,c. Thus, kh,eff ≃ 0.5 by using Eq. (20). Contrarily, 
for the case of Rb = 1, the entire cross-section (Deq) can be assumed to be 
only subjected to uniform confinement pressure f I

l,f = fl,eff = f *FFSC
l,f . 

Considering DI
eq = Deq,c = Deq and DII

eq = 0, kh,eff = 1. Accordingly, the 
following conditions should be considered to develop kh,eff versus Rb 

relation:  

)a. kh,eff increases with Rb.  
)b. kh,eff approaches the value of 0.5 when Rb = 0.  
)c. kh,eff approaches 1 when Rb = 1. 

According to the aforementioned conditions, this relation can be 
estimated from the following second order parabolas: 

kh,eff ≃ 0.5
(
1 + 2Rb − R2

b

)
(21) 

Ultimately, kh,eff as an input parameter in Eq. (13) for the calculation 
of KH, can be obtained using Eq. (21). 

4.3. Determination of kεh 

The reduction factor kεh, which represents the ratio between εh,eff and 
εh,m, is determined in this section. Fig. 6a schematically illustrates the 
distribution of hoop strain on a quarter of a square cross-section and in 

a) 

b) 

Deq

xi

b fl,eff

Deq

Deq,c

xi /4
,l efff

*
,

FFSC
l ff

Deq,c

*
,

FFSC
l ff

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

k h
,f

Rb

Exact results 
Approximate curve

Fig. 5. (a) Arching action in FFSC; (b) Variation of kh,f with respect to Rb.  

J. Shayanfar et al.                                                                                                                                                                                                                              

User
Realce
In the thesis this should be better explained.

User
Realce

User
Realce

User
Realce



Engineering Structures 251 (2022) 113355

8

the quarter of the corresponding equivalent circular cross-section during 
axial compressive loading. Hoop strain at each corner zone (εh,c) was 
assumed to be less than εh,m at the middle of the flat sides. Considering 
the effective hoop strain (εh,eff ) equal to εh,c based on Lee et al. [18] and 
Lin and Teng [24] for the case of FFSC, a homogeneous strain field in the 
perimeter of the equivalent circular column can be assured, in the 
compliance with hoop strain distribution in the circular section. Mos-
tofinejad et al. [30] and Oliveira and Carrazedo [33] evidenced that the 
hoop strain distribution is strongly dependent on Rb. Table 1 presents a 
set of large test database of kExp

εh = εExp
h,c /εExp

h,m obtained from FFSC speci-

mens, where εExp
h,c is assumed to represent εh,eff in the column section 

perimeter (εh,eff is an entity related to an equivalent column’s cross- 
section, so it is not measurable experimentally). Accordingly, based on 
the best fit of experimental results, the following expression was derived 
as a linear function of Rb based on regression analysis: 

kεh = 0.5(1 + Rb) (22) 

In Eq. (22), for the cases of FFSC with sharp edges (Rb = 0) and FFCC 
(Rb = 1), kεh would be equal to 0.5 and 1, respectively. Fig. 6b presents 
the predictive performance of Eq. (22). As can be seen, based on the 
mean value, standard deviation (SD) and mean absolute percentage 
error (MAPE, defined as MAPE = 1

/N
∑N

1

⃒
⃒1 − kAna

εh /kExp
εh

⃒
⃒ where N denotes 

the total test data number), the developed model is able to estimate the 
experimental counterparts with acceptable accuracy in the design 

context. As a result, by taking into account the effect of non-uniform 
distribution of hoop strain along the perimeter of the section through 
the reduction factor kεh, f *FFSC

l,f can be obtained from Eq. (12) at a known 
value of εh,m. Since the reduction factors of kh,f , kh,eff and kεh, as input 
parameters for KH (Eq. (13)), were determined only as a function of Rb, a 
simplified KH was developed by using regression analysis. Accordingly, 
the best-fit KH was derived as a linear function of Rb with R2 ≃ 1 (Fig. 7): 

KH = Rb⩾0.07 (23) 

Accordingly, the horizontal confinement efficiency factor can be 
considered equal to the corner radius ratio (Rb) with a lower bound of 
0.07 for Rb⩽0.07. In Fig. 7, the comparative evaluation of KH obtained 
from Eq. (13) and that suggested by Mander et al. [28] (Aeff/Ag) dem-
onstrates that Eq. (13) leads to lower values of KH. It is due to the 
consideration of kh,eff and kεh in the determination of the proposed KH, 
besides the term kh,f . Accordingly, taking into consideration that KH 

suggested by Mander et al. [28] is based on OCCEF, which only for-
mulates the term kh,f , therefore a similar trend with kh,f calculated by Eq. 
(17) is reasonably expected as highlighted in Fig. 7. 

5. FRP confinement pressure of FFSC 

5.1. Influence of Non-homogenous concrete expansibility 

By taking into consideration that radial strain (εl(z)) and hoop strain 

Table 1 
Test database of kExp

εh for the case of FFSC.  

Reference ID b (mm) Rb fc0 (MPa) kExp
εh  

Reference ID b (mm) Rb fc0 (MPa) kExp
εh  

Ozbakkaloglu [6] A10R15L3-1 150  0.20 77  0.77 Wang et al. [42] S2H0L2C 204  0.20 26  0.46 
A10R15L3-2 150  0.20 77  0.86 S2H2L2C 204  0.20 33  0.60 
A10R30L3-1 150  0.40 77  1.00 S2H2L2C 204  0.20 33  0.52 
A10R30L3-2 150  0.40 77  0.61 S1H1L3M 305  0.20 32  0.42 
A10R15L5-1 150  0.20 77  0.27 S1H1L3M 305  0.20 32  0.55 
A10R15L5-2 150  0.20 77  0.56 Jing et al. [43] VII-D2-M− M− 1 250  0.20 47  0.78 
A10R30L5-1 150  0.40 77  0.61 VII-D2-M− M− 1 250  0.20 47  0.80 
A10R30L5-2 150  0.40 77  0.89 VI-D4-M− M− 1 250  0.20 39  0.71 

Saleem et al. [12] SR13L1 150  0.17 24  0.66 VI-D4-M− M− 1 250  0.20 39  0.80 
SR13L2 150  0.17 24  0.34 VII-D3-M− M− 2 250  0.20 47  0.61 
SR26L1 150  0.35 24  0.89 VII-D3-M− M− 2 250  0.20 47  0.55 
SR26L2 150  0.35 24  0.74 VII-D3-M− M− 2 250  0.20 47  0.63 
SR26L3 150  0.35 24  0.39 Wang et al. [44] R150L1 150  0.25 25  0.57 

Suon et al. [8] S13-3L 150  0.17 16  0.62 P175L2 175  0.29 25  0.82 
S13-6L 150  0.17 16  0.61 P350L4 350  0.23 22  0.64 
S13-9L 150  0.17 16  0.54 R300L2 300  0.30 23  0.66 
S26-3L 150  0.35 16  0.72 Chen and Ozbakkaloglu [7] S-CR10-CL0 150  0.13 39  0.86 
S26-6L 150  0.35 16  0.65 S-CR20-CL0 150  0.27 39  1.09 
S26-9L 150  0.35 16  0.69 Wang and Wu [9] C30N1r15 150  0.20 32  0.83 

Zhu et al. [39] 2sq1 150  0.33 32  0.63 C30N1r30 150  0.40 32  0.83 
2sq1 150  0.33 32  0.59 C30N1r45 150  0.60 31  0.91 
3sq1 150  0.33 32  0.60 C30N1r60 150  0.80 32  0.83 
3sq2 150  0.33 32  0.52 C30N2r15 150  0.20 32  0.95 
4sq1 300  0.33 23  0.73 C30N2r30 150  0.40 32  0.64 
4sq2 300  0.33 23  0.71 C30N2r45 150  0.60 31  0.80 

Mostofinejad et al. [30] S15 150  0.20 40  0.71 C30N2r60 150  0.80 32  0.94 
S30 150  0.40 40  0.88 C50N1r15 150  0.20 54  0.67 
S45 150  0.60 40  0.91 C50N1r30 150  0.40 52  0.82 
S60 150  0.80 40  0.95 C50N1r45 150  0.60 53  0.89 

Shan et al. [10] S30 300  0.20 42  0.73 C50N1r60 150  0.80 53  1.05 
S60 300  0.40 45  0.64 C50N2r15 150  0.20 54  0.42 
S90 300  0.60 45  0.88 C50N2r30 150  0.40 52  0.85 
S120 300  0.80 45  0.93 C50N2r45 150  0.60 53  0.77 

Wang and Wu [40] 1S-1 150  0.40 34  0.95 C50N2r60 150  0.80 53  0.91 
2S-1 150  0.40 34  0.67 Oliveira and Carrazedo [33] S10r1 150  0.13 36  1.04 
2S-1 150  0.40 34  0.73 S10r1-F 150  0.13 36  0.56 

Pantelides et al. [41] S-C2-0 279  0.14 17  0.78 S20r1 150  0.13 36  0.82 
S-CS-0 279  0.14 17  0.62 S20r1-F 150  0.13 36  0.63 
S-G6-0 279  0.14 17  0.38 S10r3 150  0.40 36  0.92 
S-GS-0 279  0.14 17  0.49 S10r3-F 150  0.40 36  0.85 

Wang et al. [42] S2H0L2C 204  0.20 26  0.65 S20r3 150  0.40 36  0.67 
S2H0L2C 204  0.20 26  0.28 S20r3-F 150  0.40 36  0.75  
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(εh(z)) of a circular cross-section column are identical, f*FFSC
l,f presented 

in Eq. (12) can be only valid for the case of FFSC with a uniform concrete 
transverse expansibility along the column height (εl(z) = εl,j) as illus-
trated in Fig. 8a. Here, εl,j is the maximum radial strain due to concrete 
expansion, assumed to be located at the mid-height of the damage zone 
length (Ld); f*

f is the corresponding generated FRP confining stress equal 

to Ef εl,j (Eq. (11) where εh,m = εl,j). As can be seen in Fig. 8b and c, this 
laterally uniform concrete behavior leads to a uniform distribution of 
confining stress (ff (z)) and confinement pressure (fl,f (z)). However, the 
experimental evidence (Wei and Wu [45] and Fallahpour et al. [46]) 
demonstrated that during axial compressive loading, the concrete would 
non-homogenously expand along the column height, since this trans-
versal deformability profile strongly depends on the confinement stiff-
ness. Accordingly, as presented in Fig. 8d, the ratio of εl(z) and 
maximum concrete expansion (εl,j), denoted by kε(z), can be considered 

on the interval 
[
kFFSC

ε ,1
]

where kFFSC
ε is the ratio of the minimum con-

crete expansion (εl,i) at the damage zone extremities and εl,j, hencefor-
ward designated as ‘concrete expansion gradient. Therefore, since ff (z)
is directly related with εl(z), non-uniform distributions for ff (z) and, 
subsequently fl,f (z), are reasonably expected (Fig. 8e and f). Accordingly, 
in the present study, by assuming a second order parabola function for 
kε(z) by supposing kε(0) = kε(Ld) = kFFSC

ε , kε(Ld/2) = 1 and dkε(Ld/2)/
dz = 0, the ratio of average concrete expansion within Ld and εl,j (kFFSC

ff ) 
can be determined by taking the integration of kε(z) function with 
respect to z–axis on the interval [0, Ld] (kFFSC

ff =
∫ z=Ld

z=0 kε(z)dz/Ld). Hence, 
by solving this integration, kFFSC

ff is derived as a function of concrete 
expansion gradient kFFSC

ε , regardless of Ld as: 

kFFSC
ff =

1
3
+

2
3
kFFSC

ε (24) 

By considering εh(z) = εl(z), which is as εh,m = εl,j at z = Ld/2, ff (z)
can be expressed by Ef εl(z), as revealed in Fig. 8e. By taking into 

h,c

h,m

h,m

h,eff = k h h,m
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Fig. 6. (a) Typical distribution of hoop strain field on the perimeter of a quarter of cross-section; (b) Predictive performance of kεh model.  
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consideration that the equivalent homogenous concrete expansibility 
can be represented by kFFSC

ff εl,j, the generated average FRP confining 
stress, where the concrete is assumed to be evenly subjected to confining 
stress, would be kFFSC

ff Ef εl,j. Supposing f *
f = Ef εl,j based on Eq. (18), ff (z) is 

obtained with a constant function as: 

ff (z) = kFFSC
ff Ef εl,j = kFFSC

ff f *
f (25) 

Since fl,f (z) is directly related with ff (z), the ratio of equivalent ho-
mogenous confinement pressure (f FFSC

l,f ) and f *FFSC
l,f can be expressed as 

(Fig. 8f): 

f FFSC
l,f

f *FFSC
l,f

=
kFFSC

ff f *
f

f *
f

→f FFSC
l,f = kFFSC

ff f *FFSC
l,f (26) 

Putting Eq. (12) into Eq. (26) gives: 

f FFSC
l,f = kFFSC

ff × 2KH
nf tf

Deq
f *
f = 2kFFSC

ff KH
nf tf

Deq
Ef εl,j (27) 

Thus, to calculate fFFSC
l,f , the reduction factor kFFSC

ff , which is dependent 
on the concrete expansion gradient (kFFSC

ε ) based on Eq. (24), needs to be 
addressed as an input parameter. 

5.2. Determination of concrete expansion gradient (kFFSC
ε ) 

According to Wei and Wu [45] and Fallahpour et al. [46], kFFSC
ε 

representing the ratio of εl,i at the damage zone extremities and εl,j is 

strongly dependent on confinement stiffness. Fallahpour et al. [46] 
revealed that homogenous axial and dilation behavior of the concrete 
along the column height can be only expected for the case of FFCC with 
high confinement stiffness. In fact, above a certain FRP confinement 
stiffness, the gradient of concrete transversal expansibility along the 
column height is almost null, due to the strong restrictions imposed by 
confining system to the concrete. On the other hand, for FFCC with low 
confinement stiffness, since the confinement system is not stiff enough to 
efficiently homogenize the evolution of damage due to cracking prop-
agation, which subsequently induces to local strain gradients, non- 
homogenous concrete expansion in the vertical direction is highly ex-
pected ([45–47]). In the present study, the confinement stiffness index 
(If ) proposed by Teng et al. [17], originally developed for FFCC, was 
adopted. For the case of FFSC, by reflecting the influence of horizontal 
arching action on the confinement stiffness through KH, If is introduced 
as: 

If =
f FFSC
l,f /

(
kFFSC

ff εl,j

)

fc0/εc0
= 2KH

nf tf Ef εc0

Deqfc0
(28) 

in which 

εc0 = 0.0015+
fc0

70000
( in MPa) (29) 

where fc0 is the axial compressive strength of unconfined concrete; 
εc0 is the axial strain corresponding to fc0. Fig. 9 schematically demon-
strates the distribution of concrete expansion gradient kε(z) as a function 

Fig. 8. Schematic distributions of concrete expansion gradient (kε(z)), normalized confining stress (ff (z)/f *
f ) and normalized confinement pressure (fl,f (z)/f *FFSC

l,f ).  
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of If . As can be seen, from Case A (high level of If ) to Case D (If ≃ 0), kFFSC
ε 

decreases from 1 to 0.08, on the interval [0.08,1], being this last case 
representative of a dilation behavior of unconfined concrete. In this 
study, it was assumed that for If ⩾I*

f , the level of confinement stiffness is 
proficiently high to assure an almost homogenous concrete dilation 
response along the damage zone, leading to kFFSC

ε = 1. Under the same 
kε(z = Ld/2) = 1, for If < I*

f , confinement stiffness can be considered 
unable to fully homogenize the evolution of damage, leading to 0.08⩽ 
kFFSC

ε < 1 as demonstrated in Fig. 9. Owing to the lack of adequate 
experimental evidence for obtaining I*

f , in this study, this confinement 
stiffness limit was determined based on the influence of confinement 
stiffness in terms of concrete volumetric strain response. Note that 
volumetric strain (εv) at a location along the column height is defined as 
εv = εc − 2εl(z), whose positive and negative values (εv > 0 and εv < 0), 
in the adopted convention of signals for strains, represent volumetric 
contraction and expansion, respectively. For the case of high level of If 

(If ⩾I*
f leading to kFFSC

ε = 1, εl(z) = εl,j and εv = εc − 2εl,j), the concrete can 
be assumed to experience contraction with reduction of its volume 
during entire axial loading history (Mirmiran and Shahawy [48] and 
Xiao and Wu [49]). Accordingly, whereas a significant compaction 
(compressive strain) would occur vertically, the gradient of concrete 
transversal expansibility along the column height is almost null due to 
the strong re,strictions imposed by FRP confinement. Therefore, 
considering the secant Poisson’s ratio (vs = εl,j/εc) is equal to 0.5 when 
εv = 0, in the present study, I*

f is introduced as a confinement stiffness 
index by which the maximum secant Poisson’s ratio (vs,max) experienced 
by the concrete during axial loading does not exceed vs,max = 0.5. Some 

equations have been proposed by the analytical studies [35,48–53] to 
calculate vs,max as a main function of confinement stiffness. By following 
Shayanfar et al. [35]’s recommendation, If can be expressed as a func-
tion of vs,max : 

If =

(
0.155

(1.23 − 0.003fc0)vs,max

)2

(30) 

Accordingly, when vs,max = 0.5 as the input value, the corresponding 
If actually represents I*

f . For the sake of simplicity, based on Eq. (30) 
with vs,max = 0.5, I*

f was developed as (R2 ≃ 0.98): 

I*
f = 0.06+ 0.0005fc0( in MPa) (31) 

Hence, as shown in Fig. 9e, for If < I*
f , a non-uniform concrete lateral 

expansion with vs,max > 0.5 would be expected, while for If > I*
f , the 

gradient of concrete expansibility along the column height is assumed as 
almost null with vs,max < 0.5 . By considering kFFSC

ε is on the interval 
[0.08,1], and assuming kFFSC

ε exclusively dependent on If according to a 
second order parabola function in which dkFFSC

ε /dIf = 0 at If = I*
f , it 

results: 

kFFSC
ε = 0.08+ 0.92

[

2
If

I*
f
−

(
If

I*
f

)2 ]

⩽1for If ⩽I*
f (32a)  

kFFSC
ε = 1for If ⩾I*

f (32b) 

After obtaining kFFSC
ε through Eq. (32), kFFSC

ff is determined by using 
Eq. (24). Thus, fFFSC

l,f (the equivalent homogenous confinement pressure) 

Fig. 9. (a-d) Schematic distribution of concrete expansion gradient kε(z) as a function of If ; e) Relation of concrete expansion gradient kFFSC
ε and If ; 

Note: IA
f ≃ I*

f < IB
f < IC

f < ID
f ≃ 0. 
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can be calculated by Eq. (27), reflecting the effect of non– homogenous 
distribution of concrete expansion along the column height through 
kFFSC

ff . 

6. FRP confinement pressure of FPSC 

The confinement characteristics of a concrete column of square 
cross-section with a FRP partial confinement configuration, FPSC, under 
axial compressive loading will be determined by extending the previous 
formulation of the FFSC in order to have a unified approach. Fig. 10a 
demonstrates the confinement configuration in the case of FPSC, where 
wf and sf are the width and the distance between two consecutive FRP 
strips. In Fig. 10b represents the typical distribution of concrete trans-
verse expansibility of FPSC within the damage zone (Ld). As expected, 
for the case of FPSC, the concrete expansibility distribution would be 
more predominantly non-homogenous compared to FFSC, with kε(z =

0) = kε(z = Ld) = kFPSC
ε and kε(z = Ld/2) = 1. Considering kFFSC

ff is the 
ratio of average concrete expansion within the wrapped zone and at z =

Ld/2, εl,j, the corresponding generated confining stress would be as 
ff (z) = Ef kFPSC

ff εl,j, which can be expressed as ff (z) = kFPSC
ff f*

f based on Eq. 
(25), as shown in Fig. 10c. It should be noted that for the case of full 
confinement system (supposing as a special case of FPSC with Rf =

sf/Deq = 0), to establish a unified framework for FFSC and FPSC, kFPSC
ff 

should be equal to kFFSC
ff when Rf = 0. Due to vertical arching action, 

confinement pressure function fl(z) generated by ff (z) decreases from fl,i 
(the maximum confinement pressure at the Point i) to fl,j (the minimum 

confinement pressure at the Point j where the effective confinement area 
has the lowest diameter, leading to the weakest confinement restric-
tion), Fig. 10a. Accordingly, as shown in Fig. 10d, to obtain an equiva-
lent confinement pressure (fFPSC

l,f ) homogenously acting on the entire 
column height, a reduction factor kv,f is introduced, which can be 
determined by integrating fl(z) function with respect to z–axis on the 
interval [0, Ld] (kv,f =

∫ z=Ld
z=0 fl(z)dz/Ld)., leading to fFPSC

l,f = kv,f fl,i. 
On the other hand, by assuming a constant concrete expansibility 

(kFFSC
ff = 1) and neglecting the vertical arching action mechanism (kv,f =

1), the confinement pressure of FPSC, f*FPSC
l,f , can be determined based 

on the equilibrium of confinement forces: 

f *FPSC
l,f = 2KH

nf tf wf
(
sf + wf

)
Deq

f *
f (33) 

In order to address the influence of concrete expansibility, based on 
Eq. (26), considering ff (z) = kFPSC

ff f *
f , the ratio of fFPSC

l,f and f*FPSC
l,f can be 

written as (Fig. 10e): 

fl,i

f *FPSC
l,f

=
kFPSC

ff f *
f

f *
f

→fl,i = kFPSC
ff f *FPSC

l,f (34) 

Considering fFPSC
l,f = kv,f fl,i, and replacing Eq. (33) into Eq. (34) yields: 

f FPSC
l,f = kv,f fl,i = 2kv,f kFPSC

ff KH
nf tf wf

(
sf + wf

)
Deq

Ef εl,j (35) 

Assuming that kFPSC
ff is on the interval 

[
0.08, kFFSC

ff

]
where kFPSC

ff ≃ 0.08 

Fig. 10. (a) Partial confinement configuration; b) Concrete lateral expansion distribution; c) FRP confining stress distribution; d-e) Confinement pressure 
distribution. 
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for sf ⩾Ld0 (representing that confinement pressure imposed by FRP 
strips mainly acts on the concrete out of the damage zone based on the 
experimental observations by Barros and Ferreira [4], Zeng et al. [3] and 
Wang et al. [54]), and kFPSC

ff = kFFSC
ff at sf = 0 (supposing as a special case 

of FPSC with Rf = sf/Deq = 0, to establish a unified framework for FFSC 
and FPSC). Accordingly, kFPSC

ff as a linear function of sf/Ld0 can be 
determined by: 

kFPSC
ff = kFFSC

ff −
(

kFFSC
ff − 0.08

) sf

Ld0
⩾0.08 (36) 

where Ld0 can be calculated as recommended by Wu and Wei [47], 
which is based on the approach of localized compressive fracture length 
developed by Lertsrisakulrat et al. [55], as follows: 

0.57⩽
Ld0

DLerψf
= 1.71 − 3.53 × 10− 5D2

Ler⩽1.36 (37)  

DLer =
̅̅̅̅̅
Ag

√
= b

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 0.215R2
b

√

(38)  

ψf =
6.3
̅̅̅̅̅
fc0

√ ⩽1 (39) 

where Ag is the total area of the section. To address the influence of 
vertical arching action, in this study, the Shayanfar et al. [35]’ recom-
mendation to calculate kv,f originally developed for FPCC, was adopted 
for the equivalent circular section column of FPSC, as follows: 

kv,f =
wf + sf

(
1 − Rf + 0.43R2

f − 0.07R3
f

)

wf + sf
⩽1 (40) 

in which 

Rf =
sf

Deq
(41) 

As a result, based on Eq. (35), the equivalent confinement pressure 
(f FPSC

l,f ) can be rearranged as follows: 

f FPSC
l,f = 2Ke

nf tf wf(
sf + wf

)
Deq

Ef εl,j (42) 

in which 

KV = kv,f kFPSC
ff (43)  

Ke = KHKV (44) 

where Ke (Eq. (44)) can be regarded as the ‘confinement efficiency 
factor’ consisting of two components as KH (Eq. (23)) and KV (Eq. (43)), 
reflecting the influence of non-uniform concrete expansion and arching 
action in the equivalent confinement pressure fFPSC

l,f . 

7. Proposed axial Stress–strain model 

In this section, the determination of the axial stress versus axial strain 
curve (fc vs εc curve) of FRP confined concrete subjected to axial 
compressive loading will be addressed based on active confinement 
approach (i.e. [15–24]). In this approach, at a certain concrete axial 
strain εc, the corresponding confinement pressure (fl) is derived based on 
a dilation model, which can be expressed as a function of εc leading to 
fl = g1(εc) (Fig. 11a). Moreover, the axial response of FRP confined 
concrete is derived based on an axial stress–strain base relation model 
(Fig. 11c), developed for AFCC, whose characteristics are strongly 
dependent of its peak axial stress point (fcc). Furthermore, since fcc is 
essentially dependent on the level of confinement pressure (fl), an axial 
strength model (fcc = g2

(
fl
)
) requires to be established (Fig. 11b). 

Therefore, the corresponding axial stress (fc) can be obtained by 
following the axial stress–strain base relation model as a function of fcc 
which is presented as fc = g3

(
fcc
)
. In this study, for the case of FPSC, the 

axial stress–strain base framework (function g3) recommended by 
Popovics [25] (originally suggested for AFCC) was adopted as (Fig. 11c): 

fc = g3(fcc) = fcc
(εc/εcc)n

n − 1 + (εc/εcc)
n (45) 

in which 

εcc

εc0
= 1+ 5

(
fcc

fc0
− 1
)

(46)  

n =
Ec

Ec − fcc/εcc
(47) 

where εcc is the axial strain corresponding to fccv which was deter-
mined by Mander et al. [28]’s recommendation; n is the concrete brit-
tleness suggested by Carreira and Chu [56]; Ec is the modulus elasticity 
of concrete, which can be calculated as Ec = 4730

̅̅̅̅̅
fc0

√
(ACI-318–08 

[57]). 
Several axial strength models (i.e. [15–17,20,22]) have been pro-

posed to calculate fcc and fl relation (fcc = g2
(
fl
)
). Conventionally, for the 

sake of simplicity, at a certain εc leading to a specific fl (fl = g1(εc)), the 
corresponding fcc is assumed to be identical to that of actively-confined 
concrete (AFCC) where concrete is subjected to constant fl during the 
entire axial loading. Therefore, for the establishment of function g2, 
those models suggested/calibrated for AFCC can be also followed for the 
case of FRP confined concrete. However, based on studies conducted by 
Lim and Ozbakkaloglu [20], Yang and Feng [22] and Lin et al. [23], this 
assumption would lead to overestimations in terms of confinement- 
induced improvements offered by FRP confined concrete. It is due to 
their different confinement pressure paths-based axial strain (fl versus εc 
relation), where FRP confined concrete experiences a non-constant 
confinement pressure during the entire axial loading (Fig. 11a) con-
trary to AFCC with a constant function. In the present study, by taking 

Axial response 
of FPSC

Stress-strain
base relation

Fig. 11. Determination of axial response of FRP confined concrete: a) Confinement pressure versus axial strain; b) Peak axial stress versus confinement pressure; c) 
Axial stress versus axial strain. 
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into account the confinement path effect, a new axial strength model 
was proposed by introducing the function g2, whose parameters were 
derived from global axial stress–strain curve of test specimens of FFCC, 
FFSC, FPCC and FPSC (with the confinement path effect) rather than 
AFCC, was proposed based on regression analysis technique, as 

fcc

fc0
= 1+

R1

R2

(
f FPSC
l,f

fc0

)R2

= 1+
R1

R2

(

ρK,f
vsεc

εc0

)R2

(48) 

where R1 and R2 are the calibration terms, which need to be 
addressed based on the global axial stress–strain of the experimental 
results. In Eq. (48), vs is the secant Poisson ratio corresponding to εc 

(vs = εl,j/εc); ρK,f is the confinement stiffness index, which can be 
expressed as: 

ρK,f =
f FPSC
l,f /εl,j

fc0/εc0
= 2Ke

nf tf wf Ef εc0
(
sf + wf

)
Deqfc0

(49) 

Due to the unified character of the developed confinement model, 
Eq. (49) can be assumed valid for all cases of FFCC, FPCC, FFSC and 
FPSC. In the present study, to calculate vs corresponding to εc, Shayanfar 
et al. [35] dilation model, which has a unified character for both full and 
partial confinement systems as its unique advantage, was followed with 
a slight rearrangement: 

vs = αεcvs,max (50) 

where αεc represents the ratio of vs corresponding to εc and vs,max, 
being this relationship dependent on ρK,f , as shown in Fig. 12. Here, vs,0 is 
the initial Poisson’s ratio of unconfined concrete that can be calculated 
by (Candappa et al. [58]): 

vs,0 = 8 × 10− 6f 2
c0 + 2 × 10− 4fc0 + 0.138 (51) 

Furthermore, vs,max is the maximum secant Poisson ratio corre-
sponding to the axial strain of εc,m, which was empirically suggested by 
Shayanfar et al. [35] as (with a slight modification by introducing the 
concept of equivalent diameter): 

vs,max =
0.256

(

1 + Ld0
Deq

)
̅̅̅̅̅̅̅̅ρK,f

√
(52)  

εc,m = 0.0085 − 0.05ρK,f (53) 

It is noteworthy that according to the adopted dilation model, as 
demonstrated in Fig. 12, by increasing εc up to εc0, initial concrete 
expansion is considered equal to that of unconfined concrete (vs = vs,0). 
Afterward, for εc0⩽εc⩽2εc0, owing to the Poisson’s ratio effect, vs would 
increase with a faster rate, leading to the formation of splitting cracks 
and a considerable lateral stiffness degradation. Since the significant 
activation of FRP confining pressure is also expected in this stage, the 
magnitude of change of vs is a function of confinement stiffness (ρK,f ) so 

that by increasing ρK,f , the width and development of splitting cracks are 
restricted. Beyond this stage, by the degeneration of micro- into meso- 
and macro-cracks, vs experiences its maximum value (vs,max) at εc,m, 
which is then followed by a reduction in concrete tendency to dilate as a 
function of ρK,f , even though the concrete lateral strain becomes 
increasingly larger. More information regarding the dilation mechanism 
of FRP confined concrete can be found in [35,53,59]. Therefore, by 
using this dilation model coupled with the proposed axial strength 
model, at every level of εc, the corresponding vs as an input parameter in 
Eq. (48) can be calculated. 

In order to determine the calibration terms of R1 and R2 in Eq. (48), 
the following equations were proposed using a back analysis, based on 
the best fitting with the experimental results of FRP confined concrete 
specimens collected in the test database (Appendix A): 

R1 =
23.9ρ0.67

K,f

λfcλRbλRf
⩽4.25 (54)  

R2 = 1.85ρ0.26
K,f ⩾0.3 (55) 

in which 

λfc = 0.75+ 0.008fc0 (56)  

λRb = 1.5(1 − 1.1Rb)⩾1 (57)  

λRf = 1+ 0.5Rf (58) 

where λfc, λRb and λRf are the calibration factors of R1, reflecting the 
influence of fc0, Rb and Rf , respectively. It is well-established that 
compared to normal-strength concrete, high-strength concrete would 
experience a longer lag between the development of axial strain and the 
generation of confining strain and stress due to the higher stiffness and 
smaller transversal deformation [60,61]. Accordingly, during axial 
compressive loading, at a certain level of fFPSC

l,f /fc0, FRP confinement- 
induced improvements (as stress-path dependent) in high-strength 
concrete would be not so pronounced than those in normal-strength 
concrete. In this study, this phenomenon was addressed by using the 
calibration factors of λfc in the evaluation of fcc. 

In the works of Ho et al. [60] and Lai et al. [61], a confinement path 
effect (Δ) is introduced as the difference between the peak axial strength 
(fcc) of passively FRP confined concrete and that obtained from an axial 
strength model suggested for the case of actively-confined concrete 
(fccActive), i.e., Δ = fcc − fActive

cc . Accordingly, to evaluate the confinement 
path effect during axial loading, an axial strength model of actively- 
confined concrete can be adopted to calculate fccActive(i.e. as suggested 
by Lim and Ozbakkaloglu [20]. Then, at every level of fFPSC

l,f /fc0, Δ can be 
determined quantitatively based on the corresponding fcc(Eq. (48)). A 
comprehensive review of confinement path effect (Δ) can be found in 
Lim and Ozbakkaloglu [20], Ho et al. [60] and Lai et al. [61]. 

It should be also noted that since the experimental values of R1 and 
R2 (as input parameter for fcc) cannot be directly derived from experi-
mental axial responses (fc vs εc), in this study, an iterative solution 
procedure based on regression analysis technique was adopted to derive 
the experimental counterparts of these calibration terms. Accordingly, 
first, the developed confinement model was applied to 418 test speci-
mens of FFCC, FPCC, FFSC and FFPC (Appendix A), then the values of 
R1/R2 and R2 were determined based on the best-fit of the model with 
the experimental global axial stress–strain curves. Subsequently, the 
best-fit of relation of R1 and R2 with ρK,f was obtained by using 
regression analyses. At the second stage, this procedure was repeated by 
implementing the confinement model on the test specimens but by using 
the R2 achieved from the previous stage, as presented in Eq. (55). Then, 
the experimental values of R1 was re-derived based on the best-fit of the 
model with the experimental counterparts in terms of global axial 
stress–strain curves. Finally, based on regression analysis, the relation of 

A 

B 

C 

D 

E 

F 

c

vs / vs,max

c1

c0

c3

c4

c2

2 c0 c,m 0.015 0.025 0.05 

vs,0 / vs,max

c1 = 0.75 + 3.85 K,f 1.00 

c2 = 0.85 + 1.54 K,f 0.95

c3 = 0.65 + 3.08 K,f 0.85

c4 = 0.20 + 9.23 K,f 0.80

1 

c4 0.5

Fig 12. Relation between αεc = vs/vs,max and εc (redrawn from Shayanfar 
et al. [35]). 
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R1 with ρK,f was developed by taking into account the influence of fc0, Rb 

and Rf , as presented in Eq. (54). Note that due to the framework of Eq. 
(48) in the representation of fcc/fc0 and fFPSC

l,f /fc0 relationship, the first 
stage of the procedure was repeated several times until the best-fit re-
lations of the derived R1/R2 and R2 with ρK,f were nearly converged. In 
the case of the typical axial strength model framework as fcc/fc0 =

1+R1

(
fFPSC
l,f /fc0

)
with R2 = 1, no iterative solution procedure is needed. 

Nonetheless, the preliminary comparative assessment of the proposed 
framework of Eq. (48) with the framework where R2 = 1 is considered, 
revealed a better predictive performance of Eq. (48) in terms of FRP 
confinement-induced improvements, which was derived based on the 
described iterative solution procedure. To assess the correlation of Eq. 
(54), the results provided by the developed equation determining R1 are 
compared in Fig. 13a with the ones extracted from experimental results. 
As shown, based on the mean value, coefficient of variation (COV) and 

MAPE (defined as MAPE = 1
/N
∑N

1

⃒
⃒
⃒1 − RAna

1 /RExp
1

⃒
⃒
⃒ where N denotes the 

total test data number), the proposed expression has an acceptable 
predictive performance for estimating the RExp

1 obtained from experi-
mental studies of FFCC, FPCC, FFSC and FFPC. 

Fig. 13b demonstrates the variation of FRP confinement-induced 
improvements in terms of fcc/fc0 versus fFPSC

l,f /fc0 relation of FRP 
confined concrete with Rb = 0.3 and Rf = 0.3, obtained from Eq. (48) by 
assuming λfc = 1, λRb = 1.005 and λRf = 1.15, based on the various 
ranges of ρK,f as 0.005 (2.15), 0.025, 0.05 and 0.1. As can be seen, the 
confinement-induced improvements are mainly dependent on ρK,f , 
reflecting the confinement path effect. By increasing ρK,f , at the certain 
fFPSC
l,f /fc0, fcc/fc0 representing the effectiveness of confinement pressure 

in axial strength improvement is considerably enhanced, particularly for 
higher ρK,f . 

The test database (Appendix A) consists of a total of 418 FRP 
confined concrete columns tested under axial compression collected 
from the literature, in which 155 specimens are as FRP fully confined 
circular columns (FFCC), 136 specimens are as FRP partially confined 
circular columns (FPCC), 105 specimens are as FRP fully confined 
square columns (FFSC), and 22 specimens are as FRP partially confined 
square columns (FPSC). The assumed selection criteria for choosing the 
experimental data available in the assembled database are as follows: 1) 
Test specimens under axial concentric loading were included; 2) Test 
specimens with circular and square cross-section were included; 3) Test 
specimens confined by unidirectional fibers oriented 90◦ with respect to 

longitudinal direction were included; 4) Test specimens with internal 
steel reinforcements were excluded; 5) Test specimens failed prema-
turely due to FRP deboning were excluded; 6) Data from experiments 
with insufficient documented details i.e. material and geometry prop-
erties were excluded; 7) Data from experiments that did not report the 
axial stress versus axial strain curves (only include the results regarding 
the ultimate condition) were excluded; 8) Test specimens confined based 
on a hybrid confinement strategy (simultaneous application of two or 
more different types of FRP material) were excluded. 

In the assembled database, concrete compressive strength (fc0) varies 
from 12.4 to 171 MPa with the mean and CoV values of 37.7 MPa and 
0.55, respectively. The diameter of the equivalent circular cross-section 
(Deq) is in the range of 70–318 mm with mean and CoV of 166 mm and 
0.26, respectively. The database includes specimens confined with glass 
(GFRP), basalt (BFRP), aramid (AFRP) and carbon (CFRP). FRP modulus 
elasticity (Ef ) varies from 13.6 to 276 GPa with the mean and CoV values 
of 184.3 MPa and 0.435, respectively, with ultimate tensile strain (εfu) 
ranging 0.013 – 0.035 with mean and CoV of 0.018 and 0.226, respec-
tively. Confinement stiffness index (ρK,f ) varies from 0.01 to 0.262 % 
with the mean and CoV values as 0.026 % and 1.12, respectively. 

‘It is well-known that the limitation of the conducted model would be 
dependent on the range of key parameters supported by the assembled 
database. Consequently, a more reliable regression-based model might 
be conducted when a larger database covering various ranges of the 
model parameters is available. Accordingly, by providing a larger 
database than that used in the present study (Appendix A), the key pa-
rameters i.e. R1 and R2 in Eqs. (54, 55) can be recalibrated, leading to an 
improvement in the accuracy of the model. The applicability of the 
developed model is limited to fully/partially FRP confined circular/ 
square concrete columns and it is not applicable to the case of FRP 
confined rectangular reinforced concrete (RC) columns where the sub-
stantial effects of sectional aspect ratio and internal steel reinforcements 
in confinement-induced improvements need to be addressed. Nonethe-
less, the methodology demonstrated in the present study can be 
extended potentially to FRP confined rectangular RC columns, which 
will be the focus of a future publication.’ 

8. Calculation methodology 

In this section, the calculation procedure of the proposed analysis- 
oriented model to determine global axial stress versus axial strain of 
FFCC, FPCC, FFSC and FPSC is presented. Considering a FRP confined 
concrete with a square cross-section (Rb) and partial confining config-
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uration (Rf ), the incremental calculation procedure is as follows: 

1. Calculate the confinement efficiency factor at horizontal direc-
tion KH using Eq. (23)  

2. Calculate the confinement efficiency factor at vertical direction 
KV using Eq. (43)  

3. Calculate the confinement efficiency factor Ke using Eq. (44)  
4. Calculate the confinement stiffness index ρK,f using Eq. (49)  
5. Assume a value of εc  
6. Calculate the secant Poisson’s ratio vs using Eq. (50) and the data 

in Fig. 12  
7. Calculate the peak axial stress fcc using Eq. (48)  
8. Calculate the peak axial strain εcc using Eq. (46)  
9. Calculate the corresponding axial stress fc using Eq. (45)  

10. Continue the steps 5–9 up to ultimate axial strain 

It should be noted in the present study, since the focus of the current 
study was given on the simulation of global axial stress–strain curves, 
the experimental ultimate axial strain was adopted to terminate the 
calculation process. 

9. Comparison of model predictions with experimental results 

This section examines the reliability of the proposed confinement 
model in the calculation of the axial stress versus axial strain relation-
ship. For this purpose, the axial responses obtained from the experi-
mental axial compressive tests of FFCC, FPCC, FFSC and FPSC were 
compared with those simulated by the model. The predictive perfor-
mance was also compared to that of the analysis-oriented model 
developed by Teng et al. [16], with a wide reputation in the relative 
literature, (originally suggested for FFCC), with implementing some 
modifications to generalize this model for the case of circular/square 
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Fig. 14. Analytical simulations versus experimental results reported by Zeng et al. [3,14] and Suon et al. [8] for FFCC.  
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cross-section column with full/partial confinement arrangements. This 
model was briefly presented in Appendix B. 

For the case of FFCC, in Fig. 14, the axial capacity curves resulted 
from the proposed confinement model and Teng et al. [16]’s model are 
compared with the experimental counterparts conducted by Zeng et al. 
[3,14] and Suon et al. [8]. As can be seen in Fig. 14a-c, the proposed 
model and Teng et al. [16]’s model presented almost the same predictive 
performance up to transition zone, which slightly underestimate the 
experimental counterparts. However, beyond this stage, the proposed 
model provided closer predictions with sufficient accuracy. In Fig. 14d-f, 
the proposed model was capable of closely simulating the full range of 
the experimental axial stress–strain curves, except for a slight underes-
timation associated with the ultimate loading stage of the test specimen 
SP-1 (Fig. 14d). Nonetheless, conservative predictions were given by 
Teng et al. [16]’s model. For the cases of the test results reported by Suon 
et al. [8], there is a better predictive performance for the proposed model 
compared to Teng et al. [16]’s model as demonstrated in Fig. 14g-i. For 

the case of the test specimen C-3 (Fig. 14g), even though the proposed 
model overestimated the experimental axial response between transi-
tion and ultimate stages, it has a good accuracy in the estimation of 
maximum axial compressive strength corresponding to ultimate strain. 
From Fig. 14, it can be concluded that the proposed model is able to 
predict with high accuracy the global axial stress–strain curves of the 
tested circular cross-section specimens with FRP full confinement ar-
rangements. Furthermore, slight conservative results were achieved 
from Teng et al. [16]’s model in simulating the axial response of the 
tested specimens. 

For the case of FPCC, the test results conducted by Barros and Fer-
reira [4], Zeng et al. [3] and Guo et al. [5] were simulated by the 
generalized Teng et al. model [16] (Appendix B) and the proposed 
confinement model, as illustrated in Fig. 15. As can be seen in Fig. 15a-c, 
in general, the proposed model could sufficiently estimate the full range 
of the experimental axial stress–strain curves, even though the initial 
axial stiffness was higher than that of the experimental counterparts. 
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Fig. 15. Analytical simulations versus experimental results reported by Barros and Ferreira [4], Zeng et al. [3] and Guo et al. [5] for FPCC.  
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However, the generalized Teng et al. [16]’s model could not predict 
sufficiently the experimental axial response. For the cases of the test 
results reported by Zeng et al. [3], the proposed model presented an 
excellent prediction accuracy of the test specimens with a relatively 
large distance between FRP strips (large sf ). Even though the generalized 
Teng et al. [16]’s model could estimate accurately the experimental 
ultimate axial strength, it was not able to simulate the global axial 
response as well as maximum axial strength. In Fig. 15a-c, in general, the 
proposed model has a better predictive performance compared to Teng 
et al. [16]’s model. The results demonstrated in Fig. 15 can reasonably 
confirm the assumptions conducted by proposed model for formulating 
the substantial effect of key parameter of sf in terms of the confinement 
mechanism and confinement -induced improvements of FPCC can be 
confirmed. 

Fig. 16 compares the axial response of the square cross-section col-
umns with full confinement arrangements (FFSC) obtained from the 
proposed analytical model and the generalized Teng et al. [16]’s model 

with the experimental results reported by Guo et al. [29], Suon et al. [8] 
and Shan et al. [10]. For the case of the test specimen F1 (Fig. 16a), the 
generalized Teng et al. [16]’s model presented a better predictive per-
formance compared to the proposed model, even though the both 
models led to an identical maximum compressive strength. However, for 
the cases of the test specimens F2 and F3, the axial behavior estimated 
by the proposed model is in an acceptable agreement with the experi-
mental counterparts. As can be seen in Fig. 16d-f, in general, the pro-
posed model demonstrated sufficient capability in estimating the 
experimental axial response. Although the global axial behavior of the 
test specimen S-CR26-6 (Fig. 16f) was overestimated by the proposed 
model, a good estimation was achieved in terms of maximum 
compressive strength. Nonetheless, the generalized Teng et al. [16]’s 
model provided significant underestimations of the experimental 
counterparts. As can be seen in Fig. 16g-i, a slight better predictive 
performance with sufficient accuracy was demonstrated by the proposed 
model compared to the generalized Teng et al. [16]’s model. As a result, 
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Fig. 16. Analytical simulations versus experimental results reported by Guo et al. [29], Suon et al. [8] and Shan et al. [10] for FFSC.  
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Fig. 16 confirms the reliability of the proposed model in the establish-
ment of the shape effect of square cross-section, with a unified character 
with FFCC and FPCC, on FRP confinement mechanism, strongly 
dependent on the dimension of the corner radius r, in terms of the axial 
stress versus axial strain relationship. 

For the case of FPSC, Fig. 17 compares the axial capacity curves 
resulted from the proposed model and the generalized Teng et al. [16]’s 
model with the experimental results reported by Triantafillou et al. [13], 
Zeng et al. [14] and Guo et al. [29]. As can be seen in Fig. 17a-c, both 
confinement models generally over-predicted the initial axial stiffness. 
However, the proposed model could well simulate the full range of the 
axial stress versus axial strain obtained from Triantafillou et al. [13]. The 
evaluation of the generalized Teng et al. [16]’s model revealed 

consistent over-predictions in terms of axial strength capacity. For the 
case of the test results reported by Zeng et al. [14], there is a better 
predictive performance for the proposed model compared to the 
generalized Teng et al. [16]’s model, which consistently underestimated 
the experimental counterparts (Fig. 17g-i). As can be seen in Fig. 16g-i, 
despite a slight overestimation corresponding to the transition zone for 
the case of P-2–120-40, the proposed model could correctly predict the 
experimental axial response of FPSC, with a better estimation compared 
to the generalized Teng et al. [16]’s model. 

Ultimately, the results provided in Figs. 14-17 reasonably validate 
the wide applicability of the proposed model for accurately predicting 
the axial response of FRP confined concrete column with a broad range 
of material properties and main model parameters associated with 
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Fig. 17. Analytical simulations versus experimental results reported by Triantafillou et al. [13], Zeng et al. [14] and Guo et al. [29] for FPSC.  
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different confining strategies (full and partial system) and the cross- 
section shapes as square and circular columns. 

10. Summary and conclusion 

In the present study, a new unified confinement model for predicting 
the global axial strain versus stress response of concrete columns of 
circular and square cross-sections (SC and CC, respectively) confined 
with full and partial FRP-based arrangements (FF and FP, respectively) 
was proposed. An equivalent circular cross-section was proposed for the 
cases of columns of rectangular cross-section (FFSC and FPSC), for the 
intended purpose of using a unified approach, as an extension of the one 
applicable to circular cross-section concrete columns (FFCC and FPCC). 
For formulating the influence of concrete expansion distribution at the 
horizontal and vertical directions, an extended version of the model 
recommended by Shayanfar et al. [35] was developed. Accordingly, a 
generalized confinement pressure was introduced to determine the 
confinement characteristics of FRP confined concrete. Based on an 
extensive set of experimental results including 418 test specimens, a new 
unified analysis-oriented model in compliance with the concept of the 
confinement efficiency factor was proposed to predict axial stress versus 
axial strain of FFCC, FPCC, FFSC and FPSC. The predictive performance 
of the developed confinement model was then assessed through 
analytically simulating experimental results. The comparison between 
the analytical model and experimental counterparts highlighted that it is 
capable of estimating the axial response of FRP confined concrete with 
good accuracy. 
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Appendix A 

The assembled database for the case of fully and partially FRP confined circular/square concrete can be found in Table A1. 

Table A1 
Assembled database for FFCC, FPCC, FFSC and FPSC.  

ID Confinement arrangement Deq (mm) fc0 (MPa) ρK,f (%) R1 

Total FFCC FPCC FFSC FPSC 

Rochette and Labossie‘re [62] 15 2  13  100–159 40.3–45.1 0.2–4.2 0.28–2.35 
Shehata et al. [63] 4 2  2  150–154 23.7–29.8 0.3–6.6 0.75–3.72 
Teng and Lam [36] 3 3    152 30.7–32.7 1.8–4.7 3.15–3.82 
Lam and Teng [15] 8   8  155–158 22.6–39.1 0.3–4.1 0.37–4.18 
Xiao and Wu [49] 39 39    152 33.7–57.0 1.4–9.3 0.62–3.81 
Masia et al. [64] 6   6  106–158 23.0–25.8 1.3–3.6 1.55–2.98 
Berthet et al. [50] 15 15    70–160 23.6–171 3.2–15.1 1.10–5.21 
Harajli et al. [51] 3   3  137 18.6 0.5–2.3 1.12–2.95 
Rousakis et al. [65] 12   12  210 33.0 0.2–1.7 0.37–1.68 
Tao et al. [11] 6   6  154–159 21.4–48.1 0.3–3.5 0.37–3.03 
Barros and Ferreira [4] 39 8 31   150 18.1–40.0 0.1–26.2 0.18–4.86 
Wang and Wu [9] 24 4  20  150–159 30.7–54.1 0.1–5.9 0.08–2.98 
Eid et al. [2] 18 18    152 32.1–67.7 0.7–6.9 0.71–3.47 
Wu and Wei [40] 2   2  158 35.3 0.6–1.5 0.57–1.72 
Benzaid and Mesbah [66] 6 6    160 25.9–61.8 1.0–9.2 0.72–4.10 
Lim and Ozbakkaloglu [26] 36 36    152 29.6–98.0 1.0–5.3 1.02–3.46 
Triantafyllou et al. [13] 4   1 3 158 12.4 0.1–0.3 0.21–0.63 
Vincent and Ozbakkaloglu [67] 6 6    152 110.3 2.7–4.8 1.16–1.73 
Zeng et al. [14] 20 3 9 2 6 176–238 22.7–22.9 0.1–8.9 0.27–4.16 
Zeng et al. [3] 60 6 54   150 23.4 3.9–13.0 3.18–4.25 
Zeng et al. [34] 15  15   150 23.5 0.1–3.8 0.19–2.07 
Wang et al. [54] 7 1 6   100 35.9 0.1–5.7 0.17–4.35 
Guo et al. [29] 16   3 13 210 34.7 0.1–1.2 0.17–1.42 
Guo et al. [5] 21  21   100–300 33.6–41.7 0.2–3.6 0.28–2.61 
Suon et al. [8] 12 3  9  150–158 15.6–16.0 0.04–3.8 0.18–3.25 
Shan et al. [10] 21 3  18  300–318 35.8–37.2 0.1–3.8 0.1–3.25 
ALL 418 155 136 105 22 166 a-0.26b 37.7–0.55 2.6–1.12 1.66–0.69 

Note: a: Mean; b: CoV. 
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Appendix B 

To determine axial stress versus axial strain curves, Teng et al. [16] proposed an analysis-oriented model based on active confinement approach, 
originally suggested for FFCC. By adopting OCCEF (Mander et al. [28]) presented in this study, at a known value of concrete lateral strain (εl,j), the 
corresponding confinement pressure (fl,f ) imposed on FPSC with the equivalent circular cross-section (Deq) can be calculated as: 

fl,f = 2Ke
nf tf wf

Deq
(
sf + wf

)Ef εl,j (B1) 

in which 

Ke = KHKV (B2)  

KH = 1 −
2(b − 2r)2

3Ag
(B3)  

KV =
(

1 −
sf

2b

)2
(B4)  

Deq =
̅̅̅
2

√
(b − 2r)+ 2r (B5)  

Ag = b2 − 4
(

r2 −
πr2

4

)

(B6) 

Subsequently, the corresponding axial strain (εc) can be obtained through a lateral to-axial strain relation as: 

εc

εc0
= 0.85

[(

1 + 0.75
(
− εl,j

εc0

))0.7

− exp
(

− 7
(
− εl,j

εc0

))]

×

[

1 + 8
(

fl,f

fc0

)]

(B7) 

The corresponding axial stress can be predicted as: 

fc = fcc
(εc/εcc)n

n − 1 + (εc/εcc)
n (B8) 

in which 

fcc

fc0
= 1+ 3.5

fl,f

fc0
(B9)  

εcc

εc0
= 1+ 17.5

fl,f

fc0
(B10)  

n =
Ec

Ec − fcc/εcc
(B11)  

εc0 = 0.000937f 0.25
c0 (B12) 

where εcc is the axial strain corresponding to peak axial stress point fcc ; n is the concrete brittleness; Ec is the modulus elasticity of concrete. By 
repeating the described procedure for a range of εl,j, fc versus εc curve can be obtained. 
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