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Abstract: Several chemicals, such as pesticides and heavy metals, are frequently encountered together
in environment matrices, becoming a priority concerning the prevention of their emissions, as well as
their removal from the environment. In this sense, this work aimed to evaluate the effectiveness of
a permeable biosorbent bio-barrier reactor (PBR) on the removal of atrazine and heavy metals (copper
and zinc) from aqueous solutions. The permeable bio-barrier was built with a bacterial biofilm of
R. viscosum supported on 13X zeolite. One of the aims of this work is the investigation of the toxic
effects of atrazine, copper and zinc on the bacterial growth, as well as the assessment of their ability
to adapt to repeated exposure to contaminants and to degrade atrazine. The growth of R. viscosum
was not affected by concentrations of atrazine bellow 7 mg/L. However, copper and zinc in binary
solutions were able to inhibit the growth of bacteria for all the concentrations tested (5 to 40 mg/L).
The pre-acclimation of the bacteria to the contaminants allowed for an increase of 50% of the bacterial
growth. Biodegradation tests showed that 35% of atrazine was removed/degraded, revealing that
this herbicide is a recalcitrant compound that is hard to degrade by pure cultures. The development
of a PBR with R. viscosum supported on zeolite was successfully performed and the removal rates
were 85% for copper, 95% for zinc and 25% for atrazine, showing the potential of the sustainable and
low-cost technology herein proposed.

Keywords: permeable bio-barrier reactor; atrazine; heavy metals; zeolite; R. viscosum

1. Introduction

The contamination of environmental matrices has increased exponentially in the past
decades due to intense and growing industrial activity [1]. The contamination of aquatic
matrices is of particular concern, not only for human health but also for all living beings,
since a wide variety of pollutants may not only provoke acute or chronic effects, depending
on the exposure duration, but also can be bioaccumulated, thus entering the food chain [2].

Considering characteristics such as toxicity, carcinogenicity and persistence, some
chemicals have been considered as priorities, being thus subjected to monitoring and more
restrictive legislation. As part of the Water Framework Directive, an European priority list
of substances posing a threat to or via the aquatic environment was established [3]. The
Directive 2013/39/EU includes a list of 45 chemicals, 14 of them are pesticides, namely
triazine herbicides (atrazine and simazine), diuron herbicide and DDT insecticide.

Atrazine (2–chloro–4–ethylamine–6–isopropylamine–s-triazine) is an herbicide of
the class of triazines, presented as a white crystalline solid, with a chemical structure
represented by a triazine ring replaced with chlorine, ethylamine and isopropyl amine,
which makes it recalcitrant for biological degradation in the environment. Atrazine is used
worldwide for pre- and post-emergent control of invasive broadleaf and grassy plants
in agriculture, especially for the cultivation of corn, sorghum and sugar cane, being the
second most widely consumed pesticide in the world, with an annual consumption of
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about 70,000–90,000 tons [4]. Atrazine has been included in the list of priority substances by
the European Union and its use amongst EU countries was banned since 2004 [5]. However,
many countries, including Brazil, U.S.A and China, continue to use it as one of the main
agents to combat the growth of weeds in monocultures [6]. Even after two decades of
prohibition within the European Union, the concentration of atrazine in groundwater
remained close to 0.1 µg/L, which confirms its persistent character [7].

Heavy metals constitute another group of important contaminants due to their well-
known toxicity, persistence in the environment and bioaccumulative nature. Different
industries, such as leather tanning, electroplating, steel production, chemical and textile
manufacturing, mining, etc., are the major sources of heavy metals in the environment [8].

Several treatment methodologies and processes have already been applied to rehabili-
tate environmental matrices polluted with several classes of pollutants including heavy
metals, pharmaceuticals, pesticides, organic compounds, dyes, among others. The develop-
ment of alternative treatment technologies has been rising, with particularly emphasis on
biological and eco-friendly strategies [9]. The use of adsorbents such as clays and zeolites
has been reported as a low-cost and effective alternative for the removal of several types
of contaminants [10–14]. Zeolites are crystalline aluminosilicates with three-dimensional
framework structures with high adsorption capacities and high internal and external sur-
face areas. Permeable barriers constructed with both natural and synthetic zeolites have
been used to remove heavy metals and other pollutants from water [15–19]. In parallel with
sorption processes, biological treatments offer a cost effective and eco-friendly alternative to
conventional rehabilitation methods. Several experiments conducted with microorganisms
such as bacteria and/or fungi revealed their great potential for the bioremoval of toxic
compounds [20–24]. Biofilms are bacterial communities in which cells are surrounded in
a matrix that provides a beneficial structure with a higher biological activity and sorption
area. This physical matrix allows a better protection against the harmful compounds and
stressful conditions of the extracellular environment [25]. Due to their ability to entrap
a wide range of inorganic and organic contaminants [26,27], biofilm communities per-
form an important and decisive role in the fate and transport of contaminants though
environmental matrices [28,29].

The use of a combined system (microorganisms coupled with adsorbent materials) to
rehabilitate aquatic matrices has proven its efficiency and eco-friendly character [26,30–33].
In this context, the concept of permeable bio-barrier is a promising and widely accepted
rehabilitation technology for contaminated aquatic matrices [34]. This concept has been
rising from lab to full-scale. The targeted contaminants are either immobilized, sorbed
and/or degraded into less hazardous forms due to the wide range of biological and
physico-chemical reactions that occur in the solid support [35]. This work aims to enable
the development of a permeable biosorbent barrier using a Rhizobium viscosum biofilm
supported on 13X zeolite, as well as the evaluation of its efficiency on the treatment of
aquatic matrices contaminated with the herbicide atrazine and heavy metals (Cu and Zn).

2. Materials and Methods
2.1. Materials

The strain Rhizobium viscosum CECT 908, previously classified as Arthrobacter viscosus [36]
was purchased from the Spanish Type Culture Collection, University of Valencia. All the
growth medium nutrients were of analytical grade: peptone (Riedel), yeast extract (Fluka),
malt extract (Fluka) and glucose (Riedel). The aqueous solutions of atrazine (Pestanal), CuCl2
and ZnCl2 (Panreac) were prepared by dilution in deionized water. Synthetic 13X zeolite was
used as adsorbent material and support for bacterial growth. The zeolite 13X was supplied in
the form of pellets (5–8 mm) by Xiamen Zhongzhao Imp. & Exp. Co. (Xiamen, China). Prior
to use, the zeolite was autoclaved at 121 ◦C for 20 min.



Processes 2023, 11, 246 3 of 17

2.2. Microorganism Growth

The culture medium used for the growth of bacteria was composed by glucose 10 g/L;
malt extract 3 g/L, peptone 5 g/L and yeast extract 3 g/L. The optimal growth pH was
adjusted to 7.0 [11]. Erlenmeyer flasks containing 250 mL of culture medium were inocu-
lated with a pre-culture of R. viscosum CECT 908 and incubated at 26 ◦C under moderate
agitation (150 rpm).

2.3. Analytical Procedures

An UHPLC Shimadzu Nexera X2 (Kyoto, Japan) equipped with a diode array detector
was used for the quantification of atrazine. Separation was performed on a kinetex C18
column using a mobile phase consisting of a mixture of water/acetonitrile (55:45) (v/v) with
a flow rate of 0.2 mL/min at 25 ◦C. The detection wavelength was adjusted at 225 nm, the
injection volume was 5 µL and the autosampler was operated at 4 ◦C. A calibration curve
was constructed over the concentration range 0.15–10.0 mg/L and was used to establish the
linearity of the method. A 20 mg/L stock solution of atrazine was used for the preparation
of the standard solutions. Each standard was analyzed in replicate, being the average peak
areas used for quantification. The method detection limit and quantification limit were,
respectively, 0.05 mg/L and 0.16 mg/L.

During batch and PBR assays, the concentration values of Cu and Zn were determined
by inductively coupled plasma optical emission spectrometry (ICP-OES). The operating
conditions were the following: 8 L/min of argon plasma flow, 1300 W of radio frequency
power, 0.2 L/min of auxiliary gas flow and 0.5 L/min of nebulizer gas flow. A multi-element
ICP standard solution with a concentration of 1 g/L was used to prepare the calibration
solutions. Prior to analysis, the samples were filtered and acidified with concentrated nitric
acid (HNO3 69%, Fisher). Periodically, the multi-element ICP QC standard solution (CHEM
LAB) and a blank (HNO3 2%) were used to test the instrument response.

2.4. Characterization Procedures

Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy
(FT-IR) were used to characterize the starting 13X zeolite and the samples obtained after
biosorption experiments and PBR assays.

Approximately 1 mg of each sample was ground with 100 mg KBr in an agate mortar,
and then, the pellet was obtained from the mixture by applying pressure. All spectra were
obtained in the range 4000–500 cm−1 with a minimum of 30 scans and a spectral resolution
of 4 cm−1. Background correction for atmospheric air was performed during analysis.

2.5. Toxicity Assessment

Several toxicity experiments were performed, aiming to infer, in a first stage, about the
capacity of R. viscosum to remove, actively or passively, several pollutants such as atrazine,
copper (Cu) or zinc (Zn) when present as single pollutants or in mixture. In a second stage,
similar experiments were performed using a pre-acclimated R. viscosum culture previously
grown in a medium containing 2 mg/L of atrazine, 2 mg/L of Cu and 5 mg/L of Zn.

For all toxicity experiments, the first step consisted in adding 20 mL of a pre-inoculum
of R. viscosum, previously cultivated in proper culture medium (see Section 2.2) and left for
24 h at 150 rpm and 26 ◦C to achieve the exponential growth phase. For the atrazine toxicity
experiments, 20 mL of R. viscosum pre-inoculum was used and added to 250 mL Erlenmey-
ers flasks containing sterilized culture medium and different initial concentrations of that
pollutant (1 mg/L, 3 mg/L, 5 mg/L and 7 mg/L) and left for 30 h, at 150 rpm and 26 ◦C.
For Cu and Zn toxicity assessments, the R. viscosum pre-inoculum was added to 250 mL
Erlenmeyers flasks containing sterilized culture medium and different concentrations of
Cu and Zn (5 mg/L Cu and 10 mg/L Zn; 10 mg/L Cu and 20 mg/L Zn; 20 mg/L Cu and
40 mg/L Zn) and left for the same period of time and experimental conditions.

For both experiments, several samples (1 mL) were collected through time. These
samples were centrifuged at 13400 rpm for 10 min and resuspended in 3 mL of H2O.
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The optical density (OD) of the suspension was read at 620 nm in a spectrophotometer
(T60 UV—Visible Spectrophotometer, PG instruments). The biomass concentration was
assessed through a calibration curve previously built.

For the tertiary assays (atrazine mixed with Cu and Zn) the first inoculum was added
to solutions containing 2 mg/L of atrazine and different metal concentrations (5 mg/L Cu
and 10 mg/L Zn; 10 mg/L Cu and 20 mg/L Zn; 20 mg/L Cu and 40 mg/L Zn; 30 mg/L
Cu and 60 mg/L Zn). After 24 h, 1 mL sample was collected, and the OD was read in order
to determine the biomass concentration obtained.

For the toxicity experiments with previous pre-acclimation, the same operational
conditions were employed. The acclimation process consisted of inoculating R. viscosum
in sterilized culture medium containing 2 mg/L of atrazine, 2 mg/L of Cu and 5 mg/L
of Zn, which was kept in an incubator for 24 h at 150 rpm and 26 ◦C. A sample of 1 mL
was collected and the OD was measured in order to determine the biomass concentration
achieved and posteriorly used in the different sets of these toxicity experiments.

A control experiment was performed to compare the bacterial growth in the presence
and in the absence of the contaminants. All tests were performed in duplicate and the
results presented are an average of duplicates.

2.6. Biodegradation of Atrazine

R. viscosum was inoculated and grown for 24 h at 26 ◦C and 150 rpm in 500 mL of
culture medium (see Section 2.2). After 24 h, 150 mL of this pre-inoculum was transferred
to new culture media (100 mL) and left in an incubator for 48 h in the same operational
conditions. After this period, the biomass was centrifuged for 11 min. The biomass pellets
were re-suspended in distilled and sterilized H2O to obtain a final biomass concentration
of 4.0 g biomass/L.

The re-suspended pellets were then added to Erlenmeyers flasks containing different
concentrations of atrazine (1 mg/L, 3 mg/L e 5 mg/L) and left at 150 rpm, 26 ◦C for 9 days.
At different time intervals, 1 mL samples were collected, centrifuged at 13,400 rpm for
10 min. The supernatant was used for the estimation of atrazine concentration by UHPLC,
whereas the pellet, after being re-suspended in 3 mL of distilled H2O was used to determine
the biomass concentration along time. A control was performed without biomass. The
assays were conducted in duplicate and the presented results are an average of duplicates.

2.7. Biosorption of Atrazine and Heavy Metals

As in the biodegradation assays, in the biosorption experiments R. viscosum was
inoculated and allowed to grow for 24 h at 26 ◦C and 150 rpm in 500 mL of proper culture
medium (see Section 2.2). 15 mL of this pre-inoculum was transferred to new Erlenmeyer
flasks containing 5 g of zeolite 13X, 150 mL of atrazine 1 mg/L, 40 mg/L of Cu and 60 mg/L
of Zn. The Erlenmeyer flasks were kept under moderate stirring at 26 ◦C until equilibrium
was reached. Several samples (1 mL) were collected over time and centrifuged at 13,400 rpm
for 10 min. The supernatant was used to determined atrazine, Cu and Zn concentration in
solution over time, whereas the pellet was used to measure the concentration of bacteria.
The stock solutions of the contaminants were diluted in 100 mM acetic acid buffer at pH 4.7
in order to avoid the formation of metal hydroxides in solution. Control tests using only
zeolite were also performed.

2.8. Permeable Bio-Barrier Reactor

A compact polycarbonate acrylic lab-scale permeable bio-barrier reactor (PBR) was
used, consisting of a horizontal Plexiglas column (40 cm length, 15 cm Ø) with a bio-barrier
made of bacterial biofilm supported on zeolite previously prepared (Figure 1). For the
biofilm preparation an Erlenmeyer flask containing 400 mL of sterilized culture medium
was inoculated with R. viscosum and left in an orbital incubator (150 rpm, 26 ◦C) for 24 h in
order to achieve the exponential growth phase. Posteriorly, 100 mL of the pre-inoculum was
transferred to Erlenmeyer flasks containing 1000 mL of sterilized culture medium along
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with 500 g of 13X zeolite, which remained under moderate agitation (80 rpm, 26 ◦C) for
120 h to promote the adherence of the biomass to the support. After biofilm development,
the zeolite was transferred and putted in the bio-barrier section of the reactor. The passage
of the aqueous solution of atrazine (1 mg/L), Cu (26 mg/L) and Zn (40 mg/L) with
a flow rate of 15 mL/min was promoted, passing thus through the column in recirculation.
Samples were collected at the exit of the system over time and subsequently analyzed by
ICP and UHPLC, to determine the concentration of metals and atrazine, respectively. The
pH values of the flux before and after the bio-barrier were monitored over time.

Processes 2022, 10, x FOR PEER REVIEW 5 of 18 
 

 

A compact polycarbonate acrylic lab-scale permeable bio-barrier reactor (PBR) was 
used, consisting of a horizontal Plexiglas column (40 cm length, 15 cm Ø) with a bio-bar-
rier made of bacterial biofilm supported on zeolite previously prepared (Figure 1). For the 
biofilm preparation an Erlenmeyer flask containing 400 mL of sterilized culture medium 
was inoculated with R. viscosum and left in an orbital incubator (150 rpm, 26 °C) for 24 h 
in order to achieve the exponential growth phase. Posteriorly, 100 mL of the pre-inoculum 
was transferred to Erlenmeyer flasks containing 1000 mL of sterilized culture medium 
along with 500 g of 13X zeolite, which remained under moderate agitation (80 rpm, 26 °C) 
for 120 h to promote the adherence of the biomass to the support. After biofilm develop-
ment, the zeolite was transferred and putted in the bio-barrier section of the reactor. The 
passage of the aqueous solution of atrazine (1 mg/L), Cu (26 mg/L) and Zn (40 mg/L) with 
a flow rate of 15 mL/min was promoted, passing thus through the column in recirculation. 
Samples were collected at the exit of the system over time and subsequently analyzed by 
ICP and UHPLC, to determine the concentration of metals and atrazine, respectively. The 
pH values of the flux before and after the bio-barrier were monitored over time. 

 
Figure 1. Permeable bio-barrier reactor design. 

3. Results and Discussion 
3.1. Toxicity of Atrazine 

In order to evaluate the growth of R. viscosum in the presence of atrazine, toxicity 
tests were carried out according to the methodology described in Section 2.5. From these 
experiments, it was possible to construct the growth curves (Figure 2) at different initial 
concentrations of atrazine. 

Figure 1. Permeable bio-barrier reactor design.

3. Results and Discussion
3.1. Toxicity of Atrazine

In order to evaluate the growth of R. viscosum in the presence of atrazine, toxicity
tests were carried out according to the methodology described in Section 2.5. From these
experiments, it was possible to construct the growth curves (Figure 2) at different initial
concentrations of atrazine.
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The results revealed that R. viscosum presented a typical growth behavior in the
presence of atrazine, with initial concentrations up to 5 mg/L, while for the highest con-
centration (7 mg/L), a reduction in the length of the exponential phase was observed.
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This finding can be attributed to the inhibitory effect of the herbicide, as demonstrated by
Fang et al. [37] and Godoi et al. [38] who found a reduction in the microbial diversity of
the soil after the application of different concentrations of atrazine, with the toxic effect
becoming more significant as the amount of the herbicide applied increased. Despite the
decrease in the growth of the culture exposed to the highest concentration of atrazine,
the cultures with concentrations of herbicide up to 5 mg/L showed the same behavior
as the control without atrazine. These results can be explained by the ability of this mi-
croorganism to use atrazine as a source of carbon, nitrogen and energy via enzymatic
processes, where specific genes catalyze the hydrolysis process of the molecule [37,39,40],
or simply because the herbicide does not interfere in its metabolic processes, as presented
by Omotayo et al. [41]. These authors isolated two strains of the bacteria (Nocardioides
EAA—3 and Nocardioides EAA—4) from agricultural soils contaminated with atrazine
and reported that their metabolic capacity did not change during the different treatments
carried out with different concentrations of herbicide. Thus, it is demonstrated that the bac-
teria studied in the present work has the ability to survive in environments contaminated
with atrazine, a very important factor for the development of a biosorption technology.

3.2. Toxicity of Heavy Metals

The growth curve of R. viscosum was evaluated in the presence of Cu and Zn in binary
mixtures with different initial concentrations. The results are shown in Figure 3. The range
of concentrations used in these experiments was selected taking into account real values
found in contaminated aquatic environments and agro-industrial sewers. The solution pH
was not adjusted and varied between 6 (beginning of the assays) and 5 (after 24 h).
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The results obtained show that Cu and Zn have a xenobiotic effect over R. viscosum,
even in low concentrations (5 mg/L Cu and 10 mg/L Zn), with the growth being completely
inhibited for the highest concentrations (20 mg/L Cu and 40 mg/L Zn). For the intermediate
concentrations, a change in the “lag” phase was observed; the microbial culture undergoes
intracellular adaptations and synthesizes new enzymes necessary for cell growth in the
new environmental conditions. This had an impact on the other stages of microbial growth,
since, as it was observed, the bacterium was not able to grow like the culture in the
absence of heavy metals (control). For the lowest concentrations, the “lag” phase did not
show any difference in comparison with the control, but a reduction of the exponential
phase length was observed, possibly due to the toxic effect of the metals. Sengor and
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Gikas [42] performed toxicity studies with copper and zinc at low concentrations (up to
0.65 mg/L) with Arthrobacter sp. and concluded that the metals stimulated the microbial
growth separately, but when present in mixture, an inhibition of the bacterial growth was
observed. It is important to note that at low concentrations, the studied metals are used
as micronutrients for cellular metabolism [43,44], which corroborates the results found by
Sengor and Gikas [42]. However, at high concentrations, they become toxic, even separately,
as pointed out by Moberly et al. [45]. These researchers performed toxicity studies using
Arthrobacter sp. and found that when Zn was present at concentrations above 10 mg/L, the
bacterial growth was totally inhibited. The toxic effects of heavy metals on microorganisms
may result, according to Nies [46], from the displacement and/or replacement of essential
cell ions and the blocking of functional groups of enzymes, poly nucleotides and essential
nutrient transport systems. Despite the toxic effect of heavy metals on bacterial growth,
several species of Arthrobacter are commonly isolated from contaminated areas [45,47,48],
which demonstrates a long-term adaptability of these organisms to metals.

The ability of R. viscosum to adapt to contaminants was evaluated in the presence
of atrazine, Zn and Cu. The concentration of biomass obtained after 24 h of exposure to
a ternary mixture of atrazine/Zn/Cu with different initial concentrations was measured
and compared to that obtained for a culture previously adapted to these contaminants
(according to methodology described in Section 2.3). A control assay without any con-
taminants in the culture medium was performed for comparison purposes, which was
established to be 100% of growth (Figure 4).
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According to the results presented in Figure 4, it is clear that the hypothesis of bacte-
ria adaptation is acceptable, since the difference between the concentration values of the
biomass obtained without adaptation and those of the biomass previously acclimated with
atrazine, Cu and Zn for the different tested cocktails of these xenobiotics is evident. These
results can be attributed to the ability of bacteria to develop detoxification strategies when
successively exposed to environments contaminated with heavy metals [47]. The detoxifi-
cation mechanisms developed by bacteria can be classified into: enzymatic detoxification,
exclusion by permeability barrier, active transport efflux pumps, intra and extracellular
sequestration [49]. Extracellular sequestration is possible due to the production of extracel-
lular polymeric substances (EPS), compounds capable of binding metal ions as a result of
electrostatic interactions and, consequently, capable of keeping them out of the cell [50].

Thus, the study of the adaptation of bacteria indicated another pathway for the
biosorption assays, justifying the study of the capacity of metals and atrazine sequestration
by comparing non-adapted and previously acclimated bacteria.
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3.3. Biodegradation of Atrazine

Biodegradation experiments were performed to assess the ability of R. viscosum to
biodegrade atrazine, during which, atrazine was the sole source of nitrogen and carbon
available for bacterial growth. Figure 5 shows the concentration of biomass over time for
the biodegradation experiments performed at different initial concentrations of atrazine.
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It can be observed that during the first hours of the assays, the initial biomass concen-
tration undergoes a significant decrease. This can be explained by the initial toxic effect
of atrazine, since the culture was initially grown in an uncontaminated medium, being
exposed to the chemical compound already in its mature phase when all the enzymes
necessary for cell growth are already formed. However, after 48 h, biomass growth was
observed for all atrazine concentrations, which demonstrates the adaptation of the bacteria
to the contaminated environment. These results are in agreement with the results presented
by other authors who evaluated the behavior and quantified the microbial growth in suc-
cessive exposures to atrazine, in soil and in liquid media. Fang et al. [37] measured the
average well color development (AWCD) of the soil and used this value as an indicator
of the overall microbial activity. These authors found that the soil microbial functional
diversity presented a trend of “suppression–recovery–stimulation,” which was related to
the increased degradation rate of atrazine.

Regarding the removal of atrazine, it can be found that the complete removal was not
attained for all concentrations tested. For the lowest concentration of atrazine, 1 mg/L,
there was a reduction of 38% of the herbicide in solution, while for the higher concentration,
5 mg/L, a removal of 32% was attained. The removal rates observed may be attributed
to two distinct processes: adsorption performed by the functional groups present on the
biomass surface and/or biodegradation through metabolic processes capable to degrade
atrazine. In the present study, it was not possible to detect or identify any metabolite
resulting from the degradation of atrazine. Therefore, the removal rates attained in this
work can be attributed to either passive uptake and/or biodegradation. A schematic
representation of the possible metabolic and nonmetabolic pathways for the biosorption
or biodegradation of organic contaminants was previously published by Costa et al. [51],
which is reprinted with permission in Figure 6.

Several studies found in the literature cite different strains of the genus Arthrobacter as
capable of degrading atrazine at very high rates [39–41]. However, these studies are usually
performed with strains that have been isolated from historically herbicide-contaminated
soils, i.e., with microorganisms that have already developed specific metabolic mechanisms
for contaminated environments. Udiković-Kolić et al. [52] reported the development of a
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hydrolase gene in some soil bacteria after a long period of exposure to atrazine, which was
capable of catalyzing the degradation process. In addition, some studies reveal that with
successive exposures to higher concentrations of contaminants, microorganisms become
increasingly capable of using these compounds as a source of nitrogen, carbon and energy,
with the rate of degradation being increased over time. Similarly, Zablotowicz et al. [53]
reported that the degree of atrazine mineralization performed by indigenous soil microor-
ganisms increased from 10% to 60%, between the 30th day of the first application and the
7th day of the second application. These authors concluded that repeated exposure to the
herbicide led to higher rates of degradation.
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3.4. Biosorption of Atrazine and Heavy Metals

Table 1 presents the removal percentages of atrazine, Cu and Zn obtained in the
experiments conducted under different types of sorption systems: zeolite, R. viscosum
supported on zeolite and adapted R. viscosum supported zeolite.

Table 1. Removal percentages of atrazine (1 mg/L), Cu and Zn (40 mg/L) for the different
experiments performed.

Removal (%)

Zeolite + Bacteria Zeolite + Adapted Bacteria Zeolite

Atrazine 53.3 ± 5.3 47.3 ± 1.8 35.3 ± 1.9

Cu 59.3 ± 2.4 61.5 ± 3.4 73.2 ± 2.9

Zn 74.6 ± 3.7 81.4 ± 3.2 76.7 ± 2.3

These results show higher removal percentages for the sorption systems with sup-
ported bacterial biofilm in comparison to the ones only with zeolite. Such results suggest
that the improvement in atrazine removal is attributed to the role of bacteria, which can
perform passive uptake (biosorption) and/or biodegradation. The results obtained for the
systems with or without previous adaptation of the bacterium to the contaminants were
very similar, although a slightly better performance was noticed for the system without
previous adaptation, which attained a maximum removal rate of 53.3%. None of the studied
sorption systems were able to completely remove atrazine, which can be due to the low
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extension of the adsorption process. The adsorption of atrazine depends on its degree
of protonation, which is itself a function of its pKa value and of the pH of the solution.
With a pKa value of only 1.68, atrazine is considered a weak basic herbicide. Therefore, at
the pH value used in the biosorption experiments (starting pH 4.7), the non-protonated
molecules dominate over the protonated species. Thus, the electrostatic interaction be-
tween the molecules and the negatively charged surface of the zeolite is not favored and
the retention of the molecules on the surface only takes place through weak forces such as
hydrogen bonds or Van der Waals forces [54,55]. Accordingly, Lemić et al. [56] reported
a lower adsorption capacity for atrazine in comparison to other pesticides, when organo-
zeolites were used as adsorbent material. The maximum uptake of atrazine was found
to be 2.01 µmol/kg, while higher adsorption capacities were reported for lindane and
diazinone, 3.40 and 4.42 µmol/kg, respectively. The adsorption of atrazine was reported
to be enhanced after acid activation of the zeolite surface. Salvestrini et al. [57] performed
adsorption experiments with atrazine (1–25 mg/L), comparing the adsorption capacity of
zeolite-rich tuffs before and after acid activation. These authors reported that the maximum
uptake increased from 0.55 mg/g to 1.1 mg/g after the acid activation of the zeolites, for
an initial concentration of atrazine of 25 mg/L. In this work, the uptake of atrazine obtained
for the experiment with zeolite (without bacteria) was 0.019 mg/g, which is a lower uptake
in comparison to the uptake values obtained in the work of Salvestrini et al. [57]. However,
it is important to note that these authors used a ratio of 2.5 mg of atrazine per gram of zeo-
lite (80 mg of zeolite with 8 mL an atrazine solution of 25 mg/g), while in the present study,
a significantly lower ratio, 0.03 mg of atrazine per gram of zeolite, was used. Since these
mass ratios correspond to the maximum uptake values that theoretically can be achieved,
in the present work, about 63% of the maximum adsorption capacity of the zeolite was
attined, while the zeolite-rich tuffs studied by Salvestrini et al. [57] reached only 44% of the
maximum uptake value, even after the acid activation pre-treatment. Furthermore, in the
present work, the uptake value attained for atrazine may be influenced by the concomitant
presence of metal ions in solution.

As can be observed in Table 1, the removal percentages of Cu and Zn were not
significantly different when comparing the zeolite and the zeolite with bacterial biofilm.
Thus, the role of the bacterium on the overall removal of Cu and Zn was not evident in
the performed studies, probably because the adsorption performed by the zeolite was
the dominant process for metals removal. In fact, the biomass used in the biosorption
experiments were in much lower concentration in comparison to the zeolite concentration.
The biosorption experiments were performed using 5 g of zeolite and 15 mL of R. viscosum
culture with an initial biomass concentration of about 1.5 g/L (which gives approximately
0.23 g of biomass). Thus, a mass ratio of almost 22 g of zeolite per gram of bacteria was used,
which can be an explanation for the residual role of the bacteria on the overall removal on
the biosorption of Cu and Zn.

Comparing the removal of Cu and Zn for all the sorption systems under study, higher
removal percentages were obtained for Zn in comparison to Cu. These findings are not
in agreement with several works found in the literature, which report that zeolites have
higher selectivity to Cu in comparison to Zn [58–60]. Erdem et al. [61] studied the removal
of heavy metals by natural zeolites and concluded that the adsorption process relies on
bulk density and size of hydrated ion, with the following selectivity order being observed:
Co2+ > Cu2+ > Zn2+ > Mn2+. Since pesticides have different coordination ability with
metal ions, the presence of atrazine possibly interfered with the adsorption of Cu and Zn,
shifting the theoretical selectivity order for the adsorption on zeolites. Theoretical studies
performed by Meng and Carper [62] show that atrazine can form complexes consisting of
one or two atrazine molecules with one metal ion including variable water and chloride
ions. Meng and Carper [62] reported that Cu forms 1:2 complexes while Zn forms 1:1
complexes. The results obtained in the present work suggest that Zn-atrazine complexes
have higher affinity for the adsorption on the zeolite surface than Cu-atrazine complexes,
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which can be related with steric factors and the higher stability of Zn-atrazine complexes
over Cu-atrazine complexes.

3.5. Mathematical Modeling of Biosorption Data

The pseudo-first and pseudo-second order models were used to fit the kinetic data. The
results of mathematical modeling for the biosorption of atrazine and heavy metals obtained
by the application of the pseudo-first and pseudo-second order models are presented in
Tables 2 and 3, respectively, with the calculated parameters, correlation coefficient (R2),
kinetic constants (k1 and k2) and maximum amount adsorbed (qe).

Table 2. Pseudo-first order model fittings for the biosorption/adsorption of atrazine, Cu and Zn for
the different sorption systems in study.

Zeolite + Bacteria Zeolite + Adapted Bacteria Zeolite

k1 (h−1) qe (mg/g) R2 k1 (h−1) qe (mg/g) R2 k1 (h−1) qe (mg/g) R2

Atrazine 0.068 ± 0.015 0.033 ± 0.001 0.984 0.226 ± 0.020 0.030 ± 0.004 0.999 0.132 ± 0.014 0.020 ± 0.004 0.998

Cu 0.057 ± 0.014 1.00 ± 0.053 0.975 0.077 ± 0.014 1.07 ± 0.031 0.992 0.125 ± 0.018 1.23 ± 0.013 0.999

Zn 0.221 ± 0.030 1.55 ± 0.036 0.993 0.160 ± 0.030 1.63 ± 0.012 0.999 0.112 ± 0.047 1.61 ± 0.006 0.999

Table 3. Pseudo-second order model fittings for the biosorption/adsorption of atrazine, Cu and Zn
for the different sorption systems in study.

Zeolite + Bacteria Zeolite + Bacteria Adapted Zeolite

k2 (g/mg.h) qe (mg/g) R2 k2 (g/mg.h) qe (mg/g) R2 k2 (g/mg.h) qe (mg/g) R2

Atrazine 4.52 ± 2.62 0.034 ± 0.002 0.980 26.53 ± 5.98 0.030 ± 0.004 0.999 18.13 ± 6.26 0.020 ± 0.006 0.997

Cu 0.091 ± 0.037 1.09 ± 0.061 0.987 0.161 ± 0.065 1.13 ± 0.043 0.993 0.447 ± 0.138 1.26 ± 0.015 0.999

Zn 0.318 ± 0.116 1.58 ± 0.052 0.992 0.663 ± 0.226 1.65 ± 0.011 0.999 0.318 ± 0.115 1.64 ± 0.024 0.999

For all of the sorption systems under consideration, both pseudo-first order and
pseudo-second order kinetic models fit experimental data with correlation coefficients
(R2) higher than 0.97. Statistical analysis indicates that both fittings are very similar with
a good prediction of the experimental qe values. It is not possible to conclude about the
mechanisms involved in the biosorption/adsorption of atrazine and of heavy metals since
these mechanisms are hardly assigned based on observed kinetic experiments or by fitting
kinetic models [63,64].

3.6. Permeable Bio-Barrier Reactor

The removal of contaminants over time during the experiment performed on the perme-
able bio-barrier reactor is shown in Figure 7. A total of 30 L of solution were passed through
the bio-barrier and kept in recirculation, without the addition of more contaminants.

After 120 h of operation in recirculation mode, the bio-barrier was able to remove
80% of copper and more than 95% of zinc. Similar to the results obtained during the
biosorption experiments, the bio-barrier consisting of R. viscosum supported on zeolite was
selective to Zn over Cu. Regarding the removal of the herbicide, after 3 h of the beginning
of the assay, the bio-barrier was able to remove 54% of atrazine. However, the retention
of atrazine decreased over time, and at the end of the experiment, only 25% of atrazine
was removed from the liquid medium. The fact that the atrazine molecule is generally in
its non-ionized form in solutions with pH values close to neutrality makes it difficult to
be adsorbed by an inorganic adsorbent such as zeolite or to be biosorbed by the bacterial
biofilm. Another explanation for the desorption of atrazine is that the retention of these
molecules to the zeolite surface only takes place through weaker forces such as hydrogen
bonds or Van der Waals forces [54,55], allowing their leaching.
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The preliminary results shown in this work present a new perspective that can and
should be improved for the treatment of recalcitrant contaminants, such as herbicides, as
well as inorganic pollutants, being a low cost and sustainable alternative to conventional
treatment systems.

3.7. Characterization Procedures

FTIR spectra of the starting 13X zeolite and of atrazine are presented in Figure 8 (left).
The spectrum of the starting zeolite presents the typical broad absorption band centered
at 3400 cm−1, which corresponds to OH vibrations due to the presence of the hydroxyl-
groups from the water molecules that are physically adsorbed. The band centered at
1640 cm−1 could be attributed to the presence of water molecules because of the ν (H-OH-)
vibration band [65]. The bands observed in the range of 1250−900 cm−1 and 720−650 cm−1

correspond to internal vibrations of the framework TO4 tetrahedron [66].
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Figure 8 (right) shows the FTIR spectra of different zeolite samples taken after the ex-
periments: permeable barrier reactor (A), biosorption with bacteria/zeolite (B), biosorption
with adapted bacteria/zeolite (C) and adsorption with zeolite (D).

For all samples (A, B, C and D), the band centered around 1300 cm−1, assigned to
the C-H angular deformation, suffered changes in intensity and shape, which may be
associated with the interaction with metals in solution, as described by Quintelas et al. [67].
In addition, an intense peak at 1550 cm−1 can be observed in spectrum D (experiment
performed only with zeolite), while for spectra B and C (samples of bacteria supported on
zeolite), only a weak signal is observed in this region. This peak can be attributed to the
N-H bending of primary amine present in atrazine molecules [68]. These observations may
be an indication that atrazine can be degraded by the bacterial biofilm, which explains that
the peak at 1550 cm−1 has a lower signal in comparison to that observed for the zeolite
without bacterial biofilm. Thus, it is believed that the removal of atrazine occurs not only
by biosorption (passive uptake) but also by metabolic degradation, i.e., biodegradation
(active uptake).

The morphology of the starting 13X zeolite was evaluated by SEM (Figure 9). SEM
images reveal a crystal-like surface morphology although with a non-uniform crystal size.
The porous nature of the zeolite, along with the depressions and grooves on its surface,
suggests the presence of a large number of binding sites for the fixation of inorganic and
organic pollutants. The growth and development of the bacterial biofilm on the zeolite
surface was also evaluated by SEM (Figure 10), whose images revealed an uniform growth
of the biofilm that adhered to the grooves and cavities of the zeolites and, thus, a well-
established biofilm.
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4. Conclusions

This work focused on the development of a permeable bio-barrier consisting of a bac-
terial biofilm supported on zeolite to be applied for the removal of atrazine associated with
copper and zinc from liquid media.

The toxicity experiments reveal that Cu and Zn have a xenobiotic effect over R. viscosum,
even at low concentrations (5 mg/L). However, the growth of R. viscosum was not affected by
high concentrations of atrazine, up to 7 mg/L. The results obtained demonstrate the ability of
R. viscosum to interact and to adapt to the contaminated environment, since the pre-acclimation
of the bacteria to the contaminants allowed for an increase of 50% of the bacterial growth. This
feature favors its application in remediation technologies. The role of R. viscosum on the overall
removal of Cu and Zn was not significant, since the adsorption performed by the zeolite was
the dominant process for metals removal. Regarding the herbicide, two distinct processes,
adsorption and biodegradation through metabolic processes, were proposed to be involved
in the removal of atrazine. The development of a permeable bio-barrier with immobilized
biofilm was successfully performed, with removal rates of 85% for copper, 95% for zinc and
25% for atrazine, showing the potential of this system for its application in sustainable and
low-cost bioremediation systems.

The development of permeable bio-barrier treatment systems is a challenging issue,
and deeper studies that simulate more realistic scenarios are needed, aiming for the suc-
cessful implementation of the technology.
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4. Sun, C.; Xu, Y.; Hu, N.; Ma, J.; Sun, S.; Cao, W.; Klobučar, G.; Hu, C.; Zhao, Y. To evaluate the toxicity of atrazine on
the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. Chemosphere 2020,
244, 125514. [CrossRef] [PubMed]

5. European Commission. 2004/248/EC: Commission Decision of concerning the non-inclusion of atrazine in Annex I to Council
Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance Text
with EEA releva. OJEU 2004, 78, 53–55.

6. Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y.; Wan, J.; Gong, X.; Zhu, Y. Degradation of atrazine by a novel
Fenton-like process and assessment the influence on the treated soil. J. Hazard. Mater. 2016, 312, 184–191. [CrossRef]

7. Vonberg, D.; Vanderborght, J.; Cremer, N.; Pütz, T.; Herbst, M.; Vereecken, H. 20 years of long-term atrazine monitoring in
a shallow aquifer in western Germany. Water Res. 2013, 50, 294–306. [CrossRef]

http://doi.org/10.1080/09593330.2017.1411979
http://www.ncbi.nlm.nih.gov/pubmed/29187066
http://doi.org/10.1016/j.scitotenv.2013.09.096
http://www.ncbi.nlm.nih.gov/pubmed/24148321
http://doi.org/10.1016/j.chemosphere.2019.125514
http://www.ncbi.nlm.nih.gov/pubmed/31812061
http://doi.org/10.1016/j.jhazmat.2016.03.033
http://doi.org/10.1016/j.watres.2013.10.032


Processes 2023, 11, 246 15 of 17

8. Castro-Riquelme, C.L.; López-Maldonado, E.A.; Ochoa-Terán, A.; Alcántar-Zavala, E.; Trujillo-Navarrete, B.; Pérez-Sicairos, S.;
Miranda-Soto, V.; Zizumbo-López, A. Chitosan-carbamoylcarboxylic acid grafted polymers for removal of metal ions in wastewater.
Chem. Eng. J. 2023, 456, 141034. [CrossRef]

9. Singh, S.; Kumar, V.; Datta, S.; Dhanjal, D.S.; Sharma, K.; Samuel, J.; Singh, J. Current advancement and future prospect of
biosorbents for bioremediation. Sci. Total. Environ. 2019, 709, 135895. [CrossRef]

10. Silva, B.; Neves, I.C.; Tavares, T. A sustained approach to environmental catalysis: Reutilization of chromium from wastewater.
Crit. Rev. Environ. Sci. Technol. 2016, 46, 1622–1657. [CrossRef]

11. Quintelas, C.; da Silva, V.B.; Silva, B.; Figueiredo, H.; Tavares, T. Optimization of production of extracellular polymeric substances
by Arthrobacter viscosus and their interaction with a 13X zeolite for the biosorption of Cr(VI). Environ. Technol. 2011, 32, 1541–1549.
[CrossRef]

12. Silva, B.; Martins, M.; Rosca, M.; Rocha, V.; Lago, A.; Neves, I.C.; Tavares, T. Waste-based biosorbents as cost-effective alternatives
to commercial adsorbents for the retention of fluoxetine from water. Sep. Purif. Technol. 2020, 235, 116139. [CrossRef]

13. Barros, Ó.; Costa, L.; Costa, F.; Lago, A.; Rocha, V.; Vipotnik, Z.; Silva, B.; Tavares, T. Recovery of Rare Earth Elements from
Wastewater Towards a Circular Economy. Molecules 2019, 24, 1005. [CrossRef]

14. Lago, A.; Silva, B.; Tavares, T. Cleaner Approach for Atrazine Removal Using Recycling Biowaste/Waste in Permeable Barriers.
Recycling 2021, 6, 41. [CrossRef]

15. Mittal, A.; Thakur, V.; Gajbe, V. Evaluation of adsorption characteristics of an anionic azo dye Brilliant Yellow onto hen feathers in
aqueous solutions. Environ. Sci. Pollut. Res. 2012, 19, 2438–2447. [CrossRef] [PubMed]

16. Decision, E.U. 495/2015, Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of
substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament
and of the Council. Off. J. Eur. Union L 2015, 78, 40–42.

17. Silva, C.P.; Jaria, G.; Otero, M.; Esteves, V.I.; Calisto, V. Waste-based alternative adsorbents for the remediation of pharmaceutical
contaminated waters: Has a step forward already been taken? Bioresour. Technol. 2017, 250, 888–901. [CrossRef] [PubMed]

18. Maamoun, I.; Eljamal, O.; Falyouna, O.; Eljamal, R.; Sugihara, Y. Multi-objective optimization of permeable reactive barrier design
for Cr(VI) removal from groundwater. Ecotoxicol. Environ. Saf. 2020, 200, 110773. [CrossRef]

19. Freidman, B.L.; Terry, D.; Wilkins, D.; Spedding, T.; Gras, S.L.; Snape, I.; Stevens, G.W.; Mumford, K.A. Permeable bio-reactive
barriers to address petroleum hydrocarbon contamination at subantarctic Macquarie Island. Chemosphere 2017, 174, 408–420.
[CrossRef]

20. Gagné, F.; Blaise, C.; André, C. Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout
(Oncorhynchus mykiss) hepatocytes. Ecotoxicol. Environ. Saf. 2006, 64, 329–336. [CrossRef]
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56. Lemić, J.; Kovačević, D.; Tomašević-Čanović, M.; Kovačević, D.; Stanić, T.; Pfend, R. Removal of atrazine, lindane and diazinone
from water by organo-zeolites. Water Res. 2006, 40, 1079–1085. [CrossRef]

57. Salvestrini, S.; Sagliano, P.; Iovino, P.; Capasso, S.; Colella, C. Atrazine adsorption by acid-activated zeolite-rich tuffs. Appl. Clay
Sci. 2010, 49, 330–335. [CrossRef]

58. Joseph, I.V.; Tosheva, L.; Doyle, A.M. Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions
via adsorption on FAU-type zeolites prepared from coal fly ash. J. Environ. Chem. Eng. 2020, 8, 103895. [CrossRef]

59. Yao, G.; Zhang, X.; Sun, Z.; Zheng, S. High adsorption selectivity of zeolite X in the binary ionic system of Cu(II) and Zn(II).
J. Porous Mater. 2019, 26, 1197–1207. [CrossRef]

60. Taamneh, Y.; Sharadqah, S. The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Appl. Water Sci.
2016, 7, 2021–2028. [CrossRef]

61. Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280,
309–314. [CrossRef]

62. Meng, Z.; Carper, W.R. Effects of hydration on the molecular structure of metal ion–atrazine dimer complexes: A MOPAC (PM3)
study. J. Mol. Struct. THEOCHEM 2000, 531, 89–98. [CrossRef]

http://doi.org/10.1016/j.psep.2018.09.003
http://doi.org/10.1099/ijsem.0.001864
http://doi.org/10.1016/j.jhazmat.2015.01.006
http://doi.org/10.1007/s13213-013-0665-2
http://doi.org/10.1007/s11368-014-0921-5
http://doi.org/10.1016/j.scitotenv.2007.01.036
http://doi.org/10.1080/15320383.2013.733444
http://doi.org/10.2174/0929867054637617
http://doi.org/10.1016/j.jhazmat.2013.03.024
http://doi.org/10.1021/es100117f
http://doi.org/10.1007/s002530051457
http://doi.org/10.1371/journal.pone.0078533
http://doi.org/10.1007/s11270-012-1263-9
http://doi.org/10.1006/eesa.1999.1860
http://doi.org/10.1039/c1mt00107h
http://doi.org/10.1021/acs.est.8b06977
http://www.ncbi.nlm.nih.gov/pubmed/31244068
http://doi.org/10.1007/s00253-012-4495-0
http://www.ncbi.nlm.nih.gov/pubmed/23076592
http://doi.org/10.1021/jf0620923
http://doi.org/10.3389/fchem.2018.00307
http://www.ncbi.nlm.nih.gov/pubmed/30105224
http://doi.org/10.1016/j.chemosphere.2015.05.011
http://doi.org/10.1016/j.watres.2006.01.001
http://doi.org/10.1016/j.clay.2010.04.008
http://doi.org/10.1016/j.jece.2020.103895
http://doi.org/10.1007/s10934-019-00721-1
http://doi.org/10.1007/s13201-016-0382-7
http://doi.org/10.1016/j.jcis.2004.08.028
http://doi.org/10.1016/S0166-1280(00)00428-0


Processes 2023, 11, 246 17 of 17

63. Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants
from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [CrossRef]

64. Lima, C.; Adebayo, M.A.; Machado, F.M. Machado, Kinetic and equilibrium models of adsorption. Carbon Nanostructures 2015,
33–69. [CrossRef]

65. Zhou, C.; Alshameri, A.; Yan, C.; Qiu, X.; Wang, H.; Ma, Y. Characteristics and evaluation of synthetic 13X zeolite from Yunnan’s
natural halloysite. J. Porous Mater. 2013, 20, 587–594. [CrossRef]
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