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A B S T R A C T

The reconstruction of high-quality genome-scale metabolic (GSM) models can have a rele-
vant role in the investigation and study of an organism, since these mathematical models can
be used to phenotypically manipulate an organism and predict its response, in silico, under
different environmental conditions or genetic modifications. Several bioinformatics tools
and software have been developed since then to facilitate and accelerate the reconstruction of
these models by automating some steps that compose the traditional reconstruction process.

“Metabolic Models Reconstruction Using Genome-Scale Information” (merlin) is a free,
user-friendly, JavaTM application that automates the main stages of the reconstruction of
a GSM model for any microorganism. Although it has already been used successfully in
several works, many plugins are still being developed to improve its resources and make it
more accessible to any user. In this work, the new tools integrated in merlin will be described
in detail, as well as the improvement of other features present on the platform. The general
improvements performed and the implementation of the new tools, improve the overall user
experience during the process of reconstructing GSM models in merlin.

The main feature implemented in this work is the incorporation of the BiGG Integration Tool
(BIT) in merlin. This plugin allows the collection of metabolic data that integrates the models
present in the BiGG Models database and its association with the genome of the organism
in study, by homology, creating, if possible, the boolean rule for each BiGG reaction in the
model under construction. All the computation required to execute merlin’s BIT takes place
remotely, to accelerate the process. Within a few minutes, the results are returned by the
server and imported into the user’s workspace. Running the tool outside the user’s machine
also brings advantages in terms of information storage, since the BiGG data structure that
supports the entire tool is available remotely. The implementation of this tool provides an
alternative to obtaining metabolic information from the KEGG database, the only option
available in merlin so far. To test the implemented tool, several draft genome-scale metabolic
networks were generated and analyzed.

Keywords: merlin, GSM models, BiGG Models, BiGG Integration Tool
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R E S U M O

A reconstrução de modelos metabólicos à escala genómica (MEG) de alta qualidade, pode
desempenhar um papel relevante na investigação e estudo de um organismo, uma vez que
estes modelos matemáticos podem ser utilizados para manipular fenotipicamente um organ-
ismo e prever a sua resposta, in silico, sob diferentes condições ambientais ou modificações
genéticas. Várias ferramentas bioinformáticas e software têm sido desenvolvidos desde
então para facilitar e acelerar a reconstrução desses modelos por automatização de algumas
etapas que constituem o processo de reconstrução tradicional.

O “Metabolic Models Reconstruction Using Genome-Scale Information” (merlin) é uma
aplicação JavaTM gratuita, e fácil de utilizar, que automatiza as principais etapas de recon-
strução de um modelo MEG para qualquer microrganismo. Apesar de já ter sido utilizado
com sucesso em vários trabalhos, muitos plugins ainda estão a ser desenvolvidas para
aprimorar os seus recursos e torná-lo mais acessível a qualquer utilizador. Neste trabalho,
serão descritas em detalhe as novas ferramentas integradas no merlin, bem como a melhoria
de outras funcionalidades presentes na plataforma. As melhorias gerais realizadas e a
implementação das novas ferramentas permitem melhorar a experiência global do utilizador
durante o processo de reconstrução de modelos MEG no merlin.

O principal recurso implementado neste trabalho é a integração da BiGG Integration
Tool (BIT) no merlin. Este plugin permite a recolha dos dados metabólicos que integram
os modelos presentes na base de dados BiGG Models e a sua associação ao genoma do
organismo em estudo, por homologia, criando, se possível, a boolean rule para cada reação
BiGG presente no modelo sob construção. Todo o processamento exigido para executar a BIT
do merlin ocorre remotamente, para acelerar o processo. Em poucos minutos, os resultados
são devolvidos pelo servidor e importados para o ambiente de trabalho do utilizador. A
execução da ferramenta fora da máquina do utilizador traz também vantagens ao nível
do armazenamento da informação, já que a estrutura de dados BiGG que sustenta toda a
ferramenta está disponível remotamente. A implementação desta ferramenta fornece uma
alternativa à obtenção de informação metabólica a partir da base de dados KEGG, única
opção disponibilizada pelo merlin até ao momento. Para testar a ferramenta implementada,
várias redes metabólicas à escala genómica rascunho foram geradas e analisadas.

Palavras-chave: merlin, modelos MEG, BiGG Models, BiGG Integration Tool
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1

I N T R O D U C T I O N

1.1 context and motivation

Systems Biology (SB) is an interdisciplinary field that provides a novel approach, aimed at
studying not only of the components that make up the biological system individually, but
also the interactions between them, by using mathematical and computational modelling.
Models provided by SB approaches allow to study complex systems as a whole and have
been used to understand how the interactions between organism’s components give rise
to the function and behaviour of that system (Nielsen and Jewett (2008); Palsson (2006)).
One application of SB is Metabolic Engineering (ME) that allowed the manipulation of the
organisms as a whole in order to obtain desirable phenotypes (Vemuri and Aristidou (2005);
Stephanopoulos et al. (1998)). In the past few years, advances in SB and ME areas have
enabled the reconstructions of genome-scale metabolic (GSM) models. A GSM model is a
mathematical representation that intends to describe the entire metabolism of an organism
using genomic information (Terzer et al. (2009); Zhang and Hua (2016)). The reconstruction
process of a GSM model involves reconstructing a metabolic network - GSM network, which
is obtained from the annotated sequence of the genome and information collected from
various biological databases and literature (Dias et al. (2015)). The functional annotation of
the target-organism genome, the identification of the associated reactions, the identification
of the location of these reactions and the determination of an equation that defines the
biomass composition as well as the associated energy requirements are some of the steps
involved in the reconstruction process of the GSM network. The GSM network can then
be integrated into a mathematical model and used to predict, in silico, the phenotype of
microorganisms under different environmental and genetic conditions (Dias et al. (2015,
2018); Thiele and Palsson (2010)). Thus, the reconstruction of a GSM model is not an easy
task, requiring collecting information of several omics’s fields and several computational
tools and laboratory methods, thus being a slow and time-consuming process (Dias et al.
(2018)). Several software, which support various stages, have been developed to accelerate
the reconstruction process.

1



1.2. Objectives of the thesis 2

The Metabolic Models Reconstruction Using Genome-Scale Information (merlin) is a free
user-friendly JavaTM application that automates the main stages of the reconstruction of
GSM models, including the functional genomic annotation of the genome for any organism
(Dias et al. (2015)). Although this software is currently one of the most user-friendly to
perform the reconstruction process and has been used with success in several works, it is
still being improved as various tools are being developed and several new features included
(Dias et al. (2018)). Hence, in this work, existing tools will be improved and new tools
implemented, to extend its capabilities and to improve its features, making it more accessible
to non-bioinformaticians.

1.2 objectives of the thesis

The objective of this work is to improve merlin‘s performance by implementing new user
requested features to expand its functionalities, making it increasingly more natural to use
by information technologies laymen. One of the primary purposes of this work is to allow
the import of metabolic data from the BiGG Models database during the assembly phase of
the GSM model.

In detail, this work consists in performing the following approaches:

• Miscellaneous improvements on merlin platform, such as:

Creation of a plugin to manage the configuration files;

Implementation of a plugin to allow creating a backup and restore of a workspace.
Configure e-mail setter;

Logger configuration;

...

• Creation of a tool capable of retrieving BiGG metabolic data.

Access BiGG Models to collect all metabolic data;

Association of BiGG data to the query genome by homology;

Development of a web-server to manage user’s submissions;

Integration of the tool as a merlin plugin.
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1.3 structure of the document

This document is organized as follows:

Chapter 2: State of the Art

Chapter 2 contains an overview of the main points of the thesis. Here, a brief description of
Systems Biology and Metabolic Engineering evolution, as well as the tasks and methodologies
associated to the reconstruction of GSM models are presented. At the end of the chapter,
available GSM model reconstruction computational tools and existing biological databases
are introduced. Likewise, application frameworks and a software library used to develop
computational tools are also described.

Chapter 3: Methods and Tools

In the third chapter, all the resources used to implement overall improvements and new
features in merlin platform are presented. Moreover, the methodology applied for the
development of the BiGG Integration Tool is described in this chapter.

Chapter 4: Software Development

This chapter contains a detailed description of all the work performed in merlin, new tools
and improvements implemented. Simultaneously, the outcome from each implemented task
is also presented.

Chapter 5: Results and Discussion

In chapter 5, an analysis of the results obtained from the BiGG Integration Tool validation as
well as some case studies carried out to test the new tool integrated in merlin are presented.

Chapter 6: Conclusion

The last chapter summarizes the conclusions of the developed work, and the limitations
to be overcome in future work.
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S TAT E O F T H E A RT

2.1 systems biology

Since the dawn of the genomic era, in which genome sequences became available, under-
standing and characterizing all the components that compose a living organism has been, for
many years, the focus of biology (Palsson (2006); Kitano (2001)). However, the identification
of the components in the organism’s system only provides an individual characterization of
the components. Most living organisms are very complex systems, comprising a set of several
simple elements that interact between them to attain a particular behaviour (Kitano (2002)).
Thus, understanding how all these components function as a whole system is fundamental
to know the structure and dynamics of a system (Kitano (2001)). Systems Biology (SB), an
emergent science that combines several areas, namely biology, computational modelling
and mathematics was the answer to this challenge. Unlike components biology, that only
provides a catalogue of individual components of an organism, SB uses mathematical models
to examine how biological components interact and form networks, and how the properties
of the network are associated to the cell functions, to understand and predict the biological
system behaviour under specific conditions (Nielsen and Jewett (2008); Palsson (2006)). The
enhancement of high-throughput biological technology contributed to the expansion of SB
as a new field of study, providing a detailed understanding of the biological components of
complex systems on a large scale. In addition to a study focused on the systems’ components,
SB allowed biologists to understand the networks of biochemical reactions that result from
the chemical interactions that link these components and support various cellular functions
(Palsson (2006)). Thus, SB’s main objective is to allow a quantitative description of the main
characteristics of whole biological systems, through mathematical models that can be used
in the simulation of biological behaviour under different conditions from those already
characterized, or for the discovery of knowledge that complements hidden information
of large amounts of experimental data (Nielsen and Jewett (2008); Kitano (2001)). Models
provided by SB approaches have proved to be useful in several fields, such as medical
problems and industrial biotechnology as these approaches allow to identify genetic targets
able to improve the production of metabolites of interest, and to increase the robustness of

4



2.1. Systems biology 5

biological processes, which reduce the amount of resources and time to market (Otero and
Nielsen (2010)).

2.1.1 Omics data

SB is an area focused on both the study of the interactions that occur between the
components that make up the biological system and the components themselves. That
information is integrated into network models to facilitate comprehension, and sophisticated
computational analyses are performed to generate predictive hypotheses of the behavior of
living systems (Pray et al. (2011)). As such, SB uses advanced computational methods to
integrate large amounts of data, with different levels of complexity, the so-called omics, such
as genomics, transcriptomics, proteomics, and metabolomics (Gligorijević and Pržulj (2015)).
Omics techniques measure characteristics of large families of various types of molecules
that make up the cells of an organism to explore relationships, namely genes, proteins, and
metabolites, providing a systems-level understanding of the cell (Gligorijević and Pržulj
(2015); Petranovic and Vemuri (2009)). A brief description of the main omics’ fields is
presented next.

Genomics
The most mature of the different omics fields is genomics, an interdisciplinary field of SB

dedicated to mapping, sequencing, and analyzing organisms’ genomes, to understand its
structure and function. Therefore, it is common to divide genome analysis into structural
genomics, which aims to identify and characterize each gene in the genome, comparative
genomics, that compares genetic traits of different organisms using computational tools, and
functional genomics, in which genome-wide functional modules are identified (Bhatnagar
et al. (2008)).

Transcriptomics
Transcriptomics can be defined as the field dedicated to the study of the transcriptome.

The transcriptome is the complete set of Ribonucleic acid (RNA) transcripts and the template
for protein synthesis in the translation process (Horgan and Kenny (2011)). Determining a
transcriptome involves using technologies, such as Deoxyribonucleic acid (DNA) microarrays
and RNA sequencing (RNA-Seq), that allows, among many other things, the measurement
of messenger RNA (mRNA) molecules expression levels of every Open Reading Frames
(ORF) in the genome under a given condition (Petranovic and Vemuri (2009); Kitano (2001)).
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Proteomics
Proteomics is the scientific area that deals with the study of the proteome, which is the

set of all proteins and variant proteins expressed by the genome present in an organism,
to understand the functional relevance of proteins (Horgan and Kenny (2011)). Proteome
analyses provides a better understanding of the physiological state of an organism, which
may be useful in the development of therapeutic and diagnostic techniques or even in the
identification of potential biomarkers (Cristea et al. (2004); Mischak et al. (2007)). Among
the analysis techniques used in proteomics are two-dimensional gel electrophoresis (2-DE)
and mass spectrometry (MS) (Cristea et al. (2004)).

Metabolomics
Metabolomics focuses on the study of global metabolite profiles, known as the metabolome,

in a cell, tissue, or organism, under a given set of conditions (Horgan and Kenny (2011)).
Metabolite profiling is essential in SB, since the availability of metabolites determines the
connectivity of the networks. The metabolite profile is typically determined by MS and
nuclear magnetic resonance (NMR) (Bhatnagar et al. (2008)).

2.2 metabolic engineering

Metabolic engineering (ME) can be defined as the reconstruction, redirection, and ma-
nipulation of cellular metabolism by the introduction of genetic modifications that leads to
desirable phenotypes (Stephanopoulos et al. (1998); Vemuri and Aristidou (2005)). Before
the genomic era, these modifications were performed by traditional random mutagenesis,
followed by screening to design a phenotype of interest, or later, performing modifications in
genes directly associated with the product of interest. However, both strategies are time and
labor-intensive and often failed the objective (Kim et al. (2008); Dai and Nielsen (2015)). ME
is different from other cellular engineering approaches because it focuses on the complete
networks of biochemical reactions, pathway fluxes and its control. The idea of a metabolic
network is fundamental as it demonstrates that ME considers the whole set instead of iso-
lated reactions (Stephanopoulos (1999); Nielsen and Arnold (2005)). ME aims at optimizing
metabolic processes to improve, for instance, the production of pharmaceuticals, industrial
compounds, or other desirable products. These phenotypes are achieved by manipulating
the biochemical pathways fluxes, that determine the cell physiology (Dai and Nielsen (2015);
Stephanopoulos et al. (1998)). As shown in Maia et al. (2016), ME uses strategies such as:

1. Gene deletions - elimination of genes to suppress a specific metabolic function;

2. Heterologous insertions - addition of genes or pathways to increase the organism’s
metabolic ability;
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3. Gene over/under-expression - which has a considerable importance in the ME com-
munity and can be useful to avoid the deletion of critical genes;

4. Cofactor specificity swaps - modulate the cofactor binding specificities to cope with
the scarcity of some necessary cofactors;

5. Manipulation of environmental conditions.

Traditional ME method involve manipulating the metabolic pathways near the desired
product (Stephanopoulos et al. (1998)).

Besides biotechnology, ME also has relevant applications in other fields, such as medicine,
allowing the analysis of the metabolism of whole organs and tissues, as well as the identifi-
cation of targets for disease control (Stephanopoulos (1999)). ME will be able to expand to
new areas of application, considering the incorporation of new computational and analysis
tools (Nielsen and Arnold (2005)).

2.3 genome-scale metabolic models

The first reconstructions of metabolic models were performed two decades ago, mostly
from available literature, in the absence of genome-scale information (Pfau et al. (2016)).
In 1999, the publication of the first genome-scale metabolic (GSM) reconstruction for
Haemophilus influenza, the first free-living organism to have its entire genome sequenced, initi-
ated a new era for SB (Edwards and Palsson (1999); Fleischmann et al. (1995)). Afterward, the
improvement of sequencing technologies and the development of bioinformatics tools led to
an exponential increase in the amount of information available in biological databases (Pfau
et al. (2016)). The availability of large amounts of data regarding metabolism and the exis-
tence of several online databases as a source of whole-genome sequences and well-studied
biochemical reactions, allows reconstructing GSM networks of several organisms, even for
the less characterized in the literature. GSM networks are mathematical representations of
metabolic networks, in which metabolites are linked by biological reactions associated with
enzymes that are encoded in the genome of the target organism (Terzer et al. (2009); Zhang
and Hua (2016)). These networks allow performing topological analysis of the organisms’
metabolism. Besides metabolic network data, a GSM model includes detailed information
regarding the biomass composition and energetic requirements. Thus, reconstructing a
GSM model is a laborious process, involving collecting data from several omics’ fields and
the use of computational tools and laboratory methods (Dias et al. (2015)). These models
can be used to simulate in silico, using software such as OptFlux (Rocha et al. (2010)), the
microorganisms’ behaviour under different genetics and environmental conditions and has
been used both in industrial biotechnology and in human health research (Zhang and Hua
(2016)).
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The procedure to obtain a high-quality GSM reconstruction has been described in a
detailed protocol, involving more than 100 steps, that can be simplified in four major stages:
genome annotation, assembling the genome-wide metabolic network, conversion of the
network to a mathematical model (stoichiometric model) and metabolic model validation
(Dias et al. (2018); Thiele and Palsson (2010)).

The reconstruction of a GSM model begins with the thorough functional annotation of
the target organism’s genome (Dias et al. (2015)). If the organism’s genome was previously
annotated, it can be obtained by accessing public repositories of genomic data in which
a manual curation may have been performed. Examples of these biological repositories
are the National Center for Biotechnology Information (NCBI) (Sayers et al. (2020)), Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto (2000)) or the SEED
(Overbeek et al. (2005)), which maintains genome annotations provided by the Rapid
Annotation using Subsystems Technology (RAST) (Aziz et al. (2008)), an automated tool
that performs high-quality annotations. Alternatively, the annotation can be performed
with specialized tools. In this phase, it is essential to collect relevant information about
each gene fundamental for the reconstruction, namely the gene and product names, the
Enzyme Commission (EC) numbers (Webb et al. (1992)) and the Transporter Classification
(TC) numbers (Saier (2000)). Subunits of protein complexes should also be identified, as an
enzyme may be encoded by more than one gene (Dias et al. (2015)). Therefore, it is possible
to identify the metabolic genes, i.e., genes encoding enzymes or transport systems. This
stage is decisive for the development of a high-quality GSM model, since it is assumed
that the genome annotation is correct. Nevertheless, notice that these annotations may be
outdated or information about the genes may not be assigned. Thus, it is recommended to
perform an annotation of the previously annotated genome in the first phase, the so-called
re-annotation process (Dias et al. (2015, 2012)).

Once the genome annotation is complete, the next step is to collect metabolic information to
form the GSM model network. At this stage, all the different metabolic reactions that define
the organism are identified and retrieved. Initially, both enzymatic and transport reactions
are obtained by searching biochemical reaction databases, such as KEGG, Braunschweig
Enzyme Database (BRENDA) (Schomburg et al. (2002)), MetaCyc (Caspi et al. (2018)),
MetRxn (Kumar et al. (2012)) and Biochemical Genetic and Genomic knowledgebase (BiGG)
(King et al. (2016)), with the EC number, TC number or other identifier assigned during
the genome annotation stage. Then, the associations between metabolic genes, proteins
and reactions (the gene-protein-reaction (GPR) rules), which are fundamental for a correct
prediction of phenotypes, are established in the initial draft network (Dias et al. (2015);
Thiele and Palsson (2010)). All reactions classified as spontaneous, as well as other reactions
known to exist in a given organism, should be added to complement the metabolic network.
After collecting the set of reactions, the next stage is to identify where the reactions take
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place. Compartmentalization is important for the development of GSM models because
it determines in which organelles enzymes operate. In prokaryotes, compartments are
limited to the cytosol, periplasmic space, and extracellular space. Whereas in eukaryotes,
the reactions can take place in several different compartments (Golgi apparatus, lysosome,
mitochondria, endoplasmic reticulum, among several others) (Dias et al. (2015)). This
information may be found in the Universal Protein Resource (UniProt) (Apweiler et al.
(2004)) or literature; however, since compartmentalization can be hard, several bioinformatics
tools such as the ones from the PSort family (Yu et al. (2010); Horton et al. (2007)) and
LocTree3 (Nair and Rost (2005)) were developed to facilitate the process. Although very
useful, automated processes are still prone to reconstruct incomplete or incorrect models
(Francke et al. (2005)). Therefore, at this stage, the compartmentalized GSM network is
just a draft, with several inaccuracies. Thus, the manual curation and refinement of the
draft GSM network are requirements to improve the reliability of the network. Manual
curation consists of reviewing all reactions that have been added to the GSM network by
checking organism-specific databases, expert researchers, and available literature. At this
stage, problems such as the existence of gaps in a pathway, the proteins and functions
identifiers inconsistencies, and the assignment of ambiguous identifiers to reactions should
be corrected (Dias et al. (2015)). Also, the characteristic reactions of the organism may not
be available in the data sources consulted. It is essential to use the information available
in databases such as BRENDA to check the stoichiometry of each reaction, otherwise the
internal flux distribution of the GSM network can be affected, impairing simulations’ results
(Dias et al. (2018)). Reactions’ directionality and reversibility are other useful features to
validate the network because all the reactions in KEGG are set as reversible by default. The
directionality and reversibility of reactions can be determined by calculating the Gibbs free
energy of formation (∆fG10) and reaction (∆rG10) or by accessing published curated models
of the target-organism or closely related organisms that may be found in databases such as
BiGG and Model SEED (Dias et al. (2015); Jankowski et al. (2008); Fleming et al. (2009)).

Before converting the network into a mathematical model (third step of the GSM model
reconstruction process), it is necessary to add a reaction that defines the composition of the
biomass to the reactions set. This reaction represents the rate of growth of the organism,
as well as the energy requirements associated with the growth (Thiele and Palsson (2010);
Dias et al. (2015)). Applying a steady-state approximation, in which it is assumed that
production and degradation rates of all metabolites are equal, allows obtaining a system of
linear equations represented by the following equation:

S.v = 0 (1)

where S is the stoichiometric matrix and v the fluxes vector. Each column of the matrix
represents the reactions, and the rows represent the metabolites. The stoichiometric matrix
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includes further constraints about the reactions and metabolites. Most constraints are
associated with the reversibility and directionality of the reactions and the concentration of
some metabolites (Dias et al. (2015); Terzer et al. (2009)). This mathematical representation
should be stored in a computational-friendly format, such as the Systems Biology Markup
Language (SBML) (Hucka et al. (2003)), the Biological Pathway Exchange (BioPax) (Demir
et al. (2010)), the Pathway/Genome Database format (Caspi et al. (2007)) or an Excel file.
These formats allow to import the model into different software that use GSM models to
perform simulations or optimization.

Finally, the GSM model should be validated by comparing the simulations of the target
organism behaviour against experimental data to evaluate the accuracy of the model (Dias
et al. (2018)). If these predictions are not in agreement with the experimental data, the
previous steps should be carefully reviewed (Thiele and Palsson (2010)). Otherwise, the
GSM model can be used to simulate the organism phenotype in different conditions. There
are several specialized algorithms in the analysis of metabolic models. One of the most used
is the Flux Balance Analysis (FBA) (Varma and Palsson (1994)), a constraint-based method
which allows to perform a variety of physiological analysis useful to validate the model. FBA
can be used to predict the reactions’ fluxes through the metabolic network, the growth rates,
and to calculate theoretical yields amongst others (Hamilton and Reed (2014)). Another
flux-based analysis technique is the Method of Minimization of Metabolic Adjustment
(MOMA) (Segre et al. (2002)). MOMA is based in the same stoichiometric constraints as FBA,
but the optimal growth flux for mutants is relaxed for gene knockouts (Klanchui et al. (2012);
Edwards et al. (2002)). Moreover, The Regulatory On/Off Minimization (ROOM) (Shlomi
et al. (2005)) can also be used for predicting the steady state of metabolic networks with
gene knockouts. Another algorithm used in model simulations is the Parsimonious Flux
Balance Analysis (pFBA) (Lewis et al. (2010)), an improved approach that arises to overcome
a relevant limitation of the FBA. For a unique optimal value of the objective function, FBA
provides a single flux distribution; however, a large number of flux distributions that lead
to the optimal value may exist, and the pFBA minimizes the sum of the flux values to
select a specific one. Finally, the Flux Variability Analysis (FVA) (Lewis et al. (2010)) aims at
characterizing the space of possible variation of specific fluxes, given a set of constraints and
is used to evaluate the robustness of a flux distribution.

Simulation-specialized tools such as Optflux and Constraint-Based Reconstruction and
Analysis (COBRA) (Schellenberger et al. (2011)) use the analysis’ algorithms presented
before to study the phenotype of microorganisms, under different environmental and
genetic condition (Rocha et al. (2010)).
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2.4 gsm models’ reconstruction tools

The previously described process for reconstructing GSM models can take from weeks
to more than a year (Dias et al. (2018)). Since this is such a time-consuming process, the
development of software that automates most stages of the reconstruction has become a
requirement for new ME approaches. Hence, software like merlin, Model SEED, RAVEN
Toolbox or Pathway tools, explicitly developed to assist in the reconstruction of GSM
model’s, are increasingly available. In this section, the main features of some of these
software packages are presented.

2.4.1 merlin

Metabolic Models Reconstruction Using Genome-Scale Information (merlin) is a user-
friendly software, developed at the University of Minho to automate the main stages of the
reconstruction of GSM models (Dias et al. (2015)). Published in 2015, this application, built
on top of the Artificial Intelligent workbench (AIBench) (Glez-Peña et al. (2010)) framework,
is fully implemented in JavaTM, a popular platform-independent programming language,
and performs the main stages of GSM model’s reconstruction for any organism (Dias et al.
(2015)).

Currently, merlin has two main models: the first module includes tools that help in the
genome functional annotation, curation and the reconstruction of the draft model. The
second module is oriented to the GSM model assembling, providing several operations that
help in the reconstruction of the GSM model (Dias et al. (2018)).

The first module of merlin consists in three main sections: enzymes annotation, transporters
annotation and compartmentalization. In the semi-automatic enzymatic (re-)annotation,
merlin allows users to use Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990)),
or Hidden Markov Models (HMMER) (Eddy (1998), to perform sequence alignments in
the genome by accessing different databases (NCBI and UniProt). merlin annotates each
gene, considering the frequency and taxonomy of the homologous genes’ annotation (Dias
et al. (2015)). For the transporter’s annotation and their reactions, merlin used to offer the
Transport Proteins Annotation and Reactions Generation (TRIAGE) tool, a unique tool,
developed specifically for this purpose, which automatically performs the annotation of
transporters (Dias et al. (2015)). TRIAGE allowed to identify, classify and annotate membrane
transporters, and automatically generates the respective transport reactions, which could
be directly integrated with GSM models (Dias et al. (2016)). Recently, merlin stopped using
this tool. In its latest version (v4.0.2), merlin offers TranSyT (Transport Systems Tracker),
a standalone software for the identification of transport systems, developed to overcome
some limitations of TRIAGE. Regarding the compartmentation of the model, merlin uses the
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LocTree3, PSORTb 3.0 (Yu et al. (2010)) or WoLF-PSORT (Horton et al. (2007) algorithms
to predict, if possible, the compartments for all genes/proteins (Dias et al. (2018)). merlin
also includes several tools for the curation of the genome annotation and the draft model,
essential in the reconstruction of an accurate model (Dias et al. (2015, 2018)).

The second module of merlin offers operations to assemble the metabolic model with all
reactions, by combining the information collected in enzymes annotation stage with KEGG’s
metabolic data (Dias et al. (2018)). The annotation of transport proteins and transport
reactions, automatically generated by TranSyT, can also be integrated into the draft model.
For GPR associations, merlin provides an operation that creates them automatically by
accessing information available in the KEGG BRITE to build the network. The e-biomass
reaction is also included in the model (Dias et al. (2018)).

All information retrieved during the process is stored in an internal database, shared by
the two modules, which can be accessed through merlin’s interface (Dias et al. (2018)). Finally,
the GSM model available in merlin’s internal database can be exported to the SBML format,
with Minimal Information Required In the Annotation of Models (MIRIAM) annotations
(Le Novère et al. (2005)), to be validated and used in other software (Dias et al. (2015)).

2.4.2 RAST

The increasing numbers of prokaryotic genome sequences available in several databases
led to the development of bioinformatics tools to rapidly annotate genomes. To face
this problem, the RAST server (Rapid Annotations using Subsystems Technology), a fully
automated service for annotating microbial genomes emerged in 2008 (Aziz et al. (2008)).
Built upon the framework provided by the SEED technology, where the annotated genomes
are maintained, RAST has become one of the most popular tools to obtain complete,
consistent, and curated annotations in a short time (Brettin et al. (2015)). This tool also
offers the possibility of identifying protein-encoding, ribosomal RNA (rRNA) and transfer
RNA (tRNA) genes, assigning functions to the genes and predicting which subsystems are
represented in the genome, using this information to reconstruct the metabolic network
(Aziz et al. (2008)).

Users must register to access the framework, where a genome can be uploaded as a set
of contigs in FASTA format, and when the annotation is complete users are notified (Aziz
et al. (2008); Overbeek et al. (2014)). RAST includes an interface that allows registered users
to change the annotation and add or delete genes calls, before retrieving them. The RAST
server also includes a genome viewer (SEED viewer) to allow a detailed comparison of
the annotated genome with public genomes or other genomes already submitted in RAST
environment (Overbeek et al. (2014)).
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2.4.3 Model SEED

Model SEED is a freely available web-based interface released in 2010, built upon the
genome annotation provided by the SEED framework (Overbeek et al. (2005)), that includes
several tools to support the reconstruction, exploration, comparison and analysis of genome-
scale metabolic models (Henry et al. (2010)). In a first stage, Model SEED uses the RAST
server to perform the annotation of the assembled genome sequence, allowing obtain a
high-quality genome annotation to generate draft genome-scale metabolic models (Henry
et al. (2010)). Before assembling the GSM model , users should use the available tools to
perform the manual curation, which is fundamental to obtain a final accurate draft model.
Then, a metabolic model is built by combining enzyme and transport reactions, that make
up an organism’s metabolism, the spontaneous reactions based on pathway completeness,
the detailed GPR associations, and the biomass reaction to represent cellular growth, which
is also automatically generated by the Model SEED tools (Henry et al. (2010)). Moreover,
Model SEED supports exporting the GSM model in SBML format (Hamilton and Reed
(2014)).

Contrary to others GSM model’s reconstruction software, that use biochemical reaction
databases to access the metabolic information to develop the GSM model, such as KEGG
and BiGG, Model SEED contains its internal database (Hamilton and Reed (2014)). Another
important aspect is that Model SEED is focused on prokaryotic organisms (especially bacterial
and archaeal reconstructions) and so does not support reaction compartmentalization
(Hamilton and Reed (2014)).

2.4.4 RAVEN Toolbox

Another software that aims at decreasing the time needed for reconstructing high-quality
GSM models is the RAVEN Toolbox (Reconstruction, Analysis and Visualization of Metabolic
Networks), published in 2013 (Agren et al. (2013)). As its name suggests, it is a complete
environment for the reconstruction, analysis, visualization and simulation of GSM models
within Matrix Laboratory (MATLAB) (Agren et al. (2013)). The origin of the metabolic
information used to develop the GSM model is the KEGG database (Agren et al. (2013)).
This approach allows the user to input already published GSM models of closely related
organisms and, through protein homology, identify the KEGG Orthology (KO) identifier
that better matches each gene. Then, reactions associated to that KO are imported to the
reconstruction together with the corresponding gene (Agren et al. (2013); Hamilton and Reed
(2014)). In parallel, RAVEN Toolbox uses the KEGG database for automatic identification
of reactions that may be missing or incorrect in the model template (Caspeta et al. (2012)).
Because RAVEN Toolbox does not validate reaction stoichiometry, users are encouraged
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to balance them manually. However, to facilitate the process, RAVEN Toolbox offers an
operation to identify unbalanced reactions. RAVEN Toolbox supports both prokaryotic and
eukaryotic reconstructions, using WoLF PSORT to predict reaction compartmentalization
(Hamilton and Reed (2014)). Regarding GPR associations, RAVEN Toolbox generate lists of
genes associated with each reaction allowing users to create them themselves. This toolkit
also does not automatically generate the biomass equation, requiring manual user interaction
(Hamilton and Reed (2014)). Users’ intervention is also required to perform the transporters
annotation and to insert the spontaneous reactions, since RAVEN Toolbox does not include
automatic tools for this purpose. Finally, this software allows to import and export models
in both SBML and Excel formats (Agren et al. (2013)).

2.4.5 Pathway Tools

Pathway Tools is a bioinformatic software, published in 2002, that combines several
genome, metabolic and regulatory informatics tools to create and manage a type of model-
organism database called Pathway/Genome Database (PGDB) (Karp et al. (2002)). A PGDB
gathers the evolving knowledge about an organism’s genes, proteins, metabolic network
and regulatory network. Pathway Tools consists of four main modules:

• PathoLogic: oriented to the creation of the PGDB from the annotated genome of an
organism;

• Pathway/Genome Navigator: allows querying, visualization, and analysis of PGDBs;

• Pathway/Genome Editors: let users refine and update the contents of a PGDB;

• Pathway Tools ontology: provides resources for high-quality modelling of biological
data within a PGDB (Karp et al. (2002, 2010, 2016)).

Pathway Tools does not perform enzyme annotation, so the upload of an organism’s
annotated genomic sequence, in the form of a Genbank file, is required, and using data from
the manually curated MetaCyc database it is possible to infer about organism metabolic
pathway complement (Hamilton and Reed (2014)). An advantage of using a manually cu-
rated database is the reliable annotations, so users do not need the time-consuming manual
curation. Resembling Model SEED, this software does not support reactions compartmen-
talization, as it only performs prokaryotic reconstructions and the GPR associations are
automatically generated. The reaction representing biomass equation should be inserted
manually according to the users’ specifications (Hamilton and Reed (2014)). Pathway Tools
also provides visual analyzing to ease the network reconstructions evaluation, automatically
generating organism-specific metabolic diagrams and also presents capabilities for perform-
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ing model evaluation simulations (Karp et al. (2002, 2016)). The model could be exported to
SBML, BioPax or PGBD format.

2.4.6 Other tools

Besides the tools previously presented in more detail, several other software are available
to expedite the reconstruction of GSM models, an emerging area in SB. A general overview
for the software FAME, SuBliMinal Toolbox, MEMOSys, CoReCo and MicrobesFlux is
presented below.

FAME
Flux Analysis and Modeling Environment (FAME) is a browser-based graphical interface

tool that offers a set of tasks to create, edit, run, analyze and visualize stoichiometric models
(Boele et al. (2012)).

SuBliMinal Toolbox
The SuBliMinal Toolbox offers different modules with several independent tools that

facilitate the process of reconstruction of GSM models. This toolbox uses data from KEGG
and MetaCyc and is able to generate draft reconstructions, determine metabolite protonation
state, mass and charge balancing reactions, predict reaction compartmentalization, generate
GPR associations, perform transporters annotation and add the biomass equation (Swainston
et al. (2011)).

MEMOSys
MEtabolic MOdel research and development System (MEMOSys) is a web-based system

that offers an intuitive user interface to assist the management, storage and development of
metabolic models (Pabinger et al. (2011).

CoReCo
Comparative ReConstruction (CoReCo) is a software that allows modelling metabolism of

several related microbial species in parallel (Pitkänen et al. (2014)).

MicrobesFlux
MicrobesFlux is a semi-automatic web-based platform explicitly developed to draft and

reconstruct metabolic models based on microorganism’s genome annotation in KEGG
database. MicrobesFlux is able to provide multiple tools to assist in the development of the
draft model and also offers mathematical approaches such as FBA to perform simulations
(Feng et al. (2012)).
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2.5 biological databases

2.5.1 BiGG Models

Any living organism requires energy to maintain life (grow, reproduce, maintain its
structure). Hence, metabolism is the set of reactions in an organism to transform and use the
energy obtained. Understanding the metabolism of an organism is fundamental, as devia-
tions in metabolism may cause several diseases (Li et al. (2012)). Thus, metabolic models were
developed to simulate, predict and understand cellular behaviour of microorganisms, subject
to different conditions. As shown before, several software tools have been developed over
the last few years, to accelerate the reconstruction of high-quality metabolic models, which
caused an increased number of available models. The first Biochemically, Genetically and
Genomically (BiGG) knowledge base that gathers curated and high-quality reconstructions of
genomic and bibliomic data in a single database was published in 2010 (Schellenberger et al.
(2010)). BiGG provided two main features: the BiGG browser that allowed obtaining useful
information of model contents, such as metabolic reactions, metabolites, genes, proteins and
literature citations, and the BiGG exporter that allowed exporting whole reconstructions in
the SBML standard format (Schellenberger et al. (2010)). BiGG provided curated pathway
maps of several organisms, rendered with Scalable Vector Graphics (SVG) (Ferraiolo et al.
(2000); Schellenberger et al. (2010)).

In 2015, the BiGG knowledge base was extended to the redesigned BiGG Models, a
platform for integrating, standardizing and sharing GSM models, composed of a relational
database, a web application programming interface (API) and a website (King et al. (2016)).
BiGG Models contains more than 75 high-quality curated models with the gene identifiers
linked to 71 NCBI Reference Sequences (RefSeq) genome annotations (Pruitt et al. (2007)),
and metabolites linked to many external databases (KEGG, MetaCyc and more). BiGG
Models uses a set of unique identifiers (BiGG ID’s) from BiGG (2010), though having
consistency failures. To address this problem, BiGG Models provides a single source of
correct BiGG identifiers, with a simple specification, providing standardized identifiers
for metabolites, reactions and genes to be used by other applications (King et al. (2016)).
As mentioned above, BiGG Models is composed of a user-friendly website for browsing
and searching models as well as the models’ content (reactions, metabolites or genes) in
the knowledge base. Besides an overview, BiGG Models allows exporting the model in
SBML, JavaScript Object Notation (JSON) (Bray (2014)) or MATLAB MAT standard format
(King et al. (2016)). Reactions pages provide information such as the stoichiometry of the
reaction, reaction bounds and lists with models in which the reaction is present. Finally,
the metabolites page shows the molecular formula for the metabolite, and the genes page
presents the position of the gene in the chromosome. All pages provide links to external
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databases for additional information (King et al. (2016)). The website also provides an
advanced search to search for metabolites and reactions by entering an identifier from an
external database. Furthermore, interactive pathway maps are included in BiGG Models,
powered by Escher (King et al. (2015)), a web-based tool for building, viewing, and sharing
visualizations of biological pathways to contextualize data about metabolism. BiGG Models
are compatible with the COBRA Toolbox, a MATLAB package containing an ensemble of
computational procedures designed to simulate, analyze and predict metabolic capabilities
of organisms (Schellenberger et al. (2011); King et al. (2016)). Another important feature of
BiGG Models is its web API, which can be accessed from any programming language that
supports Hypertext Transfer Protocol (HTTP) (Fielding et al. (1997)) requests. The BiGG
Models website retrieves data through the same API; thus, the knowledge base content can
be accessed programmatically using the web API. Therefore, BiGG Models can easily be
used to build GSM models by accessing its data through the web API (King et al. (2016)).

2.5.2 eggNOG

Homology refers to the relationship between two distinct species sharing a common
ancestry. Thus, two genes are homologous when their DNA sequence derives from a
common origin (R McCune and C Schimenti (2012)). When two homologous genes originate
from gene copies that diverge to two distinct species, an event known as speciation, the genes
are designated orthologs. Hence, two orthologous genes share a common ancestor and have
similar functions (Kristensen et al. (2011)). Paralogous genes are homologous originated by
a gene duplication event and, unlike orthologous, are genes that hold new functions (Gevers
et al. (2004)). The identification of orthologous and paralogous genes is extremely useful for
the study of species evolution, as these allow the functional annotation of newly sequenced
genes (Kristensen et al. (2011)). As the classification and determination of homologous
genes is analytically hard and a computational challenge, several methods based on different
approaches were developed (Koonin (2005)). Methods for inferring orthology relationships
can be branched in two main groups, namely the graph-based and tree-based methods
(Schreiber and Sonnhammer (2013)). Graph-based algorithms allow the analysis of more
species at once and produce orthologous groups at multiple taxonomic levels. Tree-based
approaches use tree topology to differentiate orthologous from paralogous genes, providing
finer resolution but requiring more demanding computational resources (Huerta-Cepas et al.
(2016)). The Clusters of Orthologous Groups (COGs) database was the first effort to provide
orthologous protein sets from sequenced genomes, but due to requiring manual curation,
it is not regularly updated and does not provide phylogenetic resolution (Tatusov et al.
(2003); Jensen et al. (2007)). The eggNOG (evolutionary genealogy of genes: Non-supervised
Orthologous Groups) database, available as a web interface, was developed in 2007. This
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database uses a graph-based unsupervised clustering algorithm to provide a hierarchy of
orthologous groups, each with a high-quality functional annotation from the three domains
of life: Archaea, Bacteria and Eukaryota (Jensen et al. (2007); Huerta-Cepas et al. (2016)).
The automatic functional annotation of the orthologous groups is one of the most important
features of the eggNOG database. eggNOG collects data from several sources, including
textual annotation available in genome databases, COG functional categories, the annotated
Gene Ontology (GO) terms (Consortium (2015)), KEGG pathways (Kanehisa et al. (2014))
and protein domains from Simple Modular Architecture Research Tool (SMART) (Letunic
et al. (2015)) and Pfam (Finn et al. (2014)) databases, to infer the functional categories for
each orthologous group. A machine learning algorithm, Support Vector Machines (SVM),
performs the individual assignment using the previously mentioned data as features (Jensen
et al. (2007)). A recent publication of Huerta-Cepas et al. (2017) describes the implementation
of the eggNOG-mapper, a novel tool for easily annotating large sets of proteins based on fast
orthology mappings. With five published versions, eggNOG has proven to be one of the best
public resources for orthology prediction and functional annotations of newly sequenced
genes and very useful for ecological, evolutionary or medical-omics analysis (Huerta-Cepas
et al. (2016, 2019)).

2.6 basic local alignment search tool

The Basic Local Alignment Search Tool, commonly known as BLAST, is a research tool
most frequently used to compare a nucleotide or protein sequence (called query sequence)
with a sequence database or library (reference sequence) (Altschul et al. (1990)). Thus,
BLAST is an efficient algorithm to align a query sequence to a large collection database
in order to identify the exact identity of the sequence. Since it is a heuristic algorithm,
it uses faster approaches to calculate the optimal alignment between the reference and
the query sequences, comparing to the conventional approaches such as Smith-Waterman
algorithm and Needleman-Wunsch algorithm, with comparable accuracy. BLAST performs
local alignments. Therefore, BLAST works by breaking the query sequence in individual
small chunks of short sequences. Each individual sequence is then compared against short
sequences found in the database, until an almost identical match is obtained. After all short
sequences from the query sequence are compared and extended maximally, the algorithm
assembles the best alignment for each query.

The BLAST tool is one of the most appreciated tools in the bioinformatics community,
not only because of its good performance, but also because there are many variations of
BLAST searches, each with a specific purpose. Table 1 provides a brief overview of the
commonly used BLAST variations: BLASTN, BLASTP, BLASTX, TBLASTN, and TBLASTX.
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All programs compare protein sequences, except for BLASTN, which compares nucleotide
sequences.

Table 1: Summary of the most commonly used variants of BLAST.

Query Sequence Database Sequence Alignment Level Common use

BLASTN Nucleotide Nucleotide Nucleotide
Find identical nucleotide

sequences

BLASTP Protein Protein Protein Find homologous proteins

BLASTX
Translated

Nucleotide
Protein Protein

Analyze new DNA to find

genes and seek homologous

proteins

TBLASTN Protein
Translated

Nucleotide
Protein

Search for genes in

unannotated genome

TBLASTX
Translated

Nucleotide

Translated

Nucleotide
Protein

Find very distant relationships

between nucleotide sequences.

2.7 java application frameworks

2.7.1 AIBench

The Artificial Intelligent workBench (AIBench), released in 2010, is a JavaTM application
framework that allows to accelerate the production of research applications based on input
processing-output cycles (Glez-Peña et al. (2010)). The development of applications using
this framework brings benefits to both developers and users, and has proven to be suitable
for the development of several scientific software, such as merlin or OptFlux. Following
the Model-View-Controller (MVC) architectural pattern, which divides an application into
three main logical components (model, view and controller), AIBench applications manage
three main concepts (operation, datatype and view) (Glez-Peña et al. (2010)). Thus, AIBench
facilitates the connection, execution and integration of operations with well-defined object
types (López-Fernández et al. (2011)).

This implementation is advantageous because it allows the combination of entirely new
software components with existing ones (Glez-Peña et al. (2010)). AIBench is structured in
several layers (Glez-Peña et al. (2010)). The Core layer contains two main built-in plugins:
Core plugin and Workbench plugin. The Core plugin stores the operations, executes these
when requested and saves the results of the operation. The Workbench plugin is responsible
for implementing the graphical user interface (GUI), using Java Swing (set of basic elements
of a GUI for Java), creates menus with all implemented operations and retrieves user
parameters through input dialogues when an operation is performed (López-Fernández
et al. (2011)). The Services layer includes the additional services and together with the
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Core layer are the basis of all development, constituting the built-in code of the framework
(López-Fernández et al. (2011)). The Plugin and Application layers are dependent on the
application context and contain operations, datatypes, and views developed by AIBench
users. The plugin has a configuration file, called plugin.xml, in which custom operations and
views are declared, allowing the connection and dependency between plugins (Glez-Peña
et al. (2010)).

2.7.2 Hibernate

For several years, the concept of how the access and storage of data in an application’s
relational database is performed, usually known as persistence, has been a debating point in
the Java community (Bauer and King (2005)). With the popularization of Java as a language
for the development of large-scale applications, it was soon realized that the use of JDBC
(Java Database Connectivity) for Java database connectivity requires much effort from the
developer (Bauer and King (2005)).

JDBC is a specific API for the Java language that brings together a set of classes, interfaces
and methods that make it possible to query and update data from a relational database using
SQL statements. Although JDBC fulfils its objective, other options can be more efficient
depending on the type of application to be developed. The use of Hibernate is an alternative
to JDBC.

Hibernate is an open-source framework that facilitates data persistence in Java. For
this purpose, it brings as a difference an ORM (Object/Relational Mapping) solution that
abstracts the programmer from many repetitive tasks, such as the coding of SQL queries
(Bauer and King (2005)). As an ORM framework, the main feature of Hibernate is the
automatic mapping of Java class objects to tables in the relational database, also offering
query and data retrieval capabilities. In addition to its API, Hibernate implements the JPA
(Java Persistence API) specification (Bauer and King (2005)). Thus, an application developed
with Hibernate will free the programmer from almost all everyday tasks related to data
persistence. Another great advantage of using Hibernate is its portability between multiple
databases that use this technology (Bauer and King (2005)).

Recently, merlin has been entirely factored to integrate Hibernate. Therefore, the goal is
for merlin to no longer be dependent on only H2 and MySQL databases (current internal
databases available for data storage) and to be possible to use other databases without
having to update the source code.
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2.8 flask framework

Flask is a lightweight Python web framework widely used to simplify the development
and execution of web applications. It depends only on the external libraries Jinja2 (Ronacher
(2008)), responsible for rendering templates, and the Werkzeug, which performs all the
web control. Its simple model allows to facilitate the most common tasks involved in the
process of developing a web application. Despite being classified as a microframework, Flask
supports extensions that allow access to a wide range of libraries, making the development
environment highly customizable according to the complexity of the application (Aslam
et al. (2015)).

2.9 java software libraries

2.9.1 GC4S

With the increase in the availability of genomic data, the offer of reliable bioinformatics
tools and software packages to support the specific needs of biological research is increasingly
available. Although these tools and software are usually data-oriented and reliable, most
fail an important requirement: not offering a user-friendly graphical interface, making its
use difficult by information technologies non-specialists. Thus, an effective and efficient
interface of a software, to interact with the user, is a key element for its success (Bolchini
et al. (2009)).

Hence, frameworks and libraries for several programming languages were recently created
to provide an easier development of new successful bioinformatics platforms with user-
oriented features (Perez-Riverol et al. (2014)). For this purpose, the GUI Components for
Swing (GC4S), a free, open-source library, which provides GUI components for Java Swing
useful for programmers in the development of views for bioinformatics software was put
forward in 2018. GC4S is a collection of new or improved versions of already existing
components in Java Swing (López-Fernández et al. (2018)). With this library, the user can
reuse a set of generic GUI components, useful for the development of GUI for scientific
applications. GC4S was implemented in Java 8, and includes a main gc4s module containing
the components library and other five dependent modules:

1. the gc4s-genomebrowser providing an interactive genome browser;

2. the gc4s-heatmap providing an interactive heat map visualization component;

3. the gc4s-jsparklines-factory containing classes to ease the creation of JSparkLines render-
ers (Barsnes et al. (2015));
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4. the gc4s-multiple-sequence-alignment-viewer which provides a multiple sequence align-
ments viewer;

5. the gc4s-statistics-tests-table module providing a statistical tests table (López-Fernández
et al. (2018)).

Another important aspect is that GC4S can be used independently or together with
AIBench framework to accelerate the software development process.

2.10 docker

Docker is a containerization software designed to facilitate the creation, deploy and
execution of applications. Docker performs virtualization at the operating system (OS) level,
which allows applications to run in an isolated environment to the host machine (Chung et al.
(2016)). This isolation is achieved because Docker applications are developed in containers,
which function as if they were a physical server (Figure 1a). In this way, containers are
capable of running applications in the same way that they would run on the host machine.

Docker containers are often compared to "lightweight virtual machines". In fact, both
technologies offer an isolation environment in which applications can run independently
of the host OS, though differing in how they achieve that isolation. In the case of Dockers,
the container runs on top of an OS kernel (Turnbull (2014)). The kernel is the part of the
OS that mediates the access to the machine’s physical resources (such as Central Process
Unit (CPU) and Random Access Memory (RAM)). When the container runs, instead of
directly accessing the kernel, it accesses through the Docker Engine, the layer responsible
for building, executing and storing Docker containers, to access system resources (Chung
et al. (2016)). Docker only exposes the kernel and not the host machine’s operating system.
On the other hand, in virtual machines (VMs) it is the hypervisor that creates and runs the
VMs, isolating system resources, as well as entire working environments from the physical
server to the virtual environment (Turnbull (2014); Chung et al. (2016)). Thus, the container
is the “virtualization” of the application and not of the operating system as a whole (VMs).
This lightweight form of encapsulation is what makes Docker special.

Creating a container in Docker involves creating a file called Docker file. It is a .txt file that
contains all the instructions that the Docker Engine needs to build the Docker Image, a file
which is used to start a container. The container is created based on this image and is ready
to run in isolation, alongside other containers that may be inside the Docker (Figure 1b)).
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(a) Docker architecture. (b) Process of building a container.

Figure 1: Virtualization with Docker.

2.10.1 Docker Compose

Docker is an efficient solution to manage single containers. However, when it comes to
complex applications that depend on several tools in a standard workflow, the management
of several different containers can become complicated and quite time-consuming (List
(2017)). In these circumstances, the use of Docker is no longer efficient. Docker Compose
emerged, an extension of Docker designed specifically to handle multiple Docker containers
at the same time. With Docker Compose it is possible to manage all containers from a single
Docker Compose configuration file, a human-readable and machine-optimized YAML file,
which defines how all containers should run. After defining in the .yml file which services
are essential for the application as well as the relationship between them, a single command
(docker-compose up) is enough to create and start the application environment (Turnbull
(2014)).
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M E T H O D S A N D T O O L S

3.1 aibench framework : operations , datatypes and views

As mentioned earlier, any AIBench application is a set of operations, datatypes and views,
following the MVC architectural pattern. AIBench operations (controller) are units of logic
processing data defined through a set of ports (Glez-Peña et al. (2010)). Ports define the
points where data can be established as the input or output of the operation, or both. Thus,
each port of each operation is associated with a method that: receives data by parameters
(if the port is IN), returns data (if the port is OUT) or that receives and returns data (if the
port is IN/OUT) (Glez-Peña et al. (2010)). Equally important are the AIBench datatypes
(model). A datatype is a Java class created with the aim of supporting problem-specific
data structures, without any additional code, used as inputs and outputs of the AIBench
operations (Glez-Peña et al. (2010)). Finally, AIBench views are used to display datatypes
of the executed operations within the workbench. In that regard, its implementation aims
to create a user-friendly interface to present the results of the operation, improving the
interactivity of the application (Glez-Peña et al. (2010)). It is easy to understand that there is
a relationship between the three aforementioned AIBench components. Figure 2 illustrates
this relationship. The AIBench operation (controller) is automatically activated, verifying
that a request is occurring on the part of the user. These operations receive as input and
produce as output instances of AIBench datatypes (model). In its turn, the operation will,
according to its output, render the information in the AIBench view so that the user has
access to the complete information.

As the objective of this work is to implement and improve some features of the merlin
software, which is entirely built on top of the AIBench framework, several operations will
be created and, datatypes continually implemented and adapted for the development of
tasks. Thus, throughout this work, new views will also be implemented and existing ones
improved, always with the purpose of enhancing user experience.

24
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Figure 2: AIBench application main logical components relation.

3.2 blast + applications

There are several ways to perform a BLAST search. The most commonly used is through
NCBI BLAST Website, as it has a simple to use graphical interface, presenting results quickly
and intuitively. However, running BLAST outside the NCBI servers can be very useful for
users who pretend to use their local database, or perform a personalized BLAST (Madden
(2013)). Thus, a way to run BLAST locally is through BLAST + applications, freely available
from NCBI. Although the high computational costs, these applications provide a faster and
customized BLAST search and are very useful as they offer more features than those offered
by NCBI BLAST Website, allowing the user to do a BLAST search that best suits his needs.
BLAST + applications can run on a wide range of different operating systems and can also
be used with the command line. When using the command line, some input parameters
must be specified, namely:

• The BLAST+ variant option that will perform the search;

• The reference database name, which could be a public database or a local FASTA file;

• The query FASTA file name, containing the query sequences that will align against the
reference sequences;

• The output file name.

In addition to the main parameters shown above, the user can customize the search by
adding more parameters to the BLAST search. It may be useful to view BLAST results in
different formats. For this, it is possible, for example, to specify the BLAST output format
among several options, such as XML BLAST file, tabular file or pairwise alignment view
option (default value). For an easy computational parsing, the XML BLAST output will be
used in this work. Thereby, the results of the alignment obtained from BLAST come in an
XML file. The structure of the XML BLAST file is shown in Figure 3.
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Figure 3: XML BLAST output file structure.

Each ’iteration’ stores all the query strings for which matches were found in the database.
Within each ’iteration’, if BLAST finds any match for the query sequence, that data will be
stored as ’hit’ elements. If there are ’hit’ elements represented in the sequence corresponding
to the query in the database, ’hsp’ elements will be found in XML, which correspond to
segments of local alignments that have a high level of similarity. The level of similarity
between the strings depends on the settings defined in the BLAST search. For each ’hsp’
element, several statistics are displayed. In this work, thresholds will be defined for the
expected value (E-value) and the bit score, to filter the BLAST results. The E-value provides
an indication of the statistical significance of an ’hsp’, corresponding to the number of
BLAST hits with a similar score, which is expected to be observed in a random database just
by chance. The lower the score, the higher the similarity between the query sequence and
the reference database. The bit score is another essential statistical indicator calculated from
the raw alignment score, which indicates the quality of an alignment. The higher the bit
score value, the better the alignment.



3.3. HTTP Communication 27

3.3 http communication

Hypertext Transfer Protocol (HTTP) is an application layer protocol responsible for com-
munication and data exchange in a web-based application (Fielding et al. (1997)). It is a
request/response protocol and as such, based on the client-server model. The HTTP client
is the one performing the request, and the HTTP server is the web-server responsible for
returning a response for that request (Figure 4). HTTP is a connectionless and stateless proto-
col (Fielding et al. (1997)). In a request-response cycle, after a request is made, the connection
established between the HTTP client and the web-server is deactivated, re-establishing itself
when the response is ready. The response is returned to the customer, and the connection is
lost at the end of the transaction. Thus, the HTTP client and the HTTP server know each
other only during the request and the current response, without being related to any other
HTTP transaction that has been carried out previously. Another important feature is that
HTTP is able to return responses on any type of data, as long as both the server and the
client are able to read its content.

Figure 4: Representative schema of a client-server communication framework under HTTP.

Whenever the client sends a request to the server, called an HTTP message, it always
specifies a special action or method along with it. Several special actions can be requested
by the client and performed by the server. Among the most used methods are:

• GET: The most common HTTP request method. The client making a GET request
wants to access a specific resource on the web-server.

• POST: It is used by the client to submit data to a specific resource. It is mostly used
when uploading files or submitting forms.

• PUT: It is similar to POST, but it is used by the client to update an already existing
resource with the new sent data.

• DELETE: The client making a DELETE request intends to remove a specific resource.
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HTTP defines response status codes that the servers send back to the client, which is very
useful because from this code it is possible to understand if the HTTP request was completed
successfully, or what may have caused the failure when a transaction is not completed.
The response status codes are grouped in five classes: informational responses, successful
responses, redirects, client errors and server errors (Fielding et al. (1997)).

In this work, the HTTP protocol was used in two different phases of the development
of the BIT. In an initial phase, HTTP requests were used to access the information of the
models available in the BiGG Models database, through a web API. Later, it was also used
in the development of a web-server, to manage user submissions.

3.4 bigg integration tool architecture

The main feature to be implemented in this work is the BiGG Integration Tool (BIT). With
the integration of this tool in merlin, it is expected to retrieve metabolic information from the
BiGG Models database during the reconstruction of GSM models. The BIT development
process was planned as follows:

1. Implement a method to automatically retrieve all information available in BiGG Models
database, using the BiGG API;

2. Construct a data structure that stores the recovered metabolic information and lists all
the information to support the tool;

• Create a text file for each model present in BiGG Models database with the details
of all its components;

• Create BIT’s support files;

• Manipulate BiGG metabolic information.

3. Develop a strategy for the association of BiGG metabolic information with the genome
of the case-study organism;

4. Implement an algorithm to generate the boolean rule for each reaction in the draft
model;

5. Create a web-server to manage the submissions to BIT and return the results to the
user;

6. Create a user-friendly graphical interface to send requests from merlin;

7. Import the results returned by BIT to the user’s workspace.
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Following the aforementioned planning, the BIT should be composed of four different
components: a component responsible for obtaining and processing metabolic data; a web-
server that allows managing submissions and obtaining results; a component responsible for
loading metabolic data into merlin, and a graphical component that allows the user to submit
requests from merlin. The creation and update of the BiGG data structure, as well as all
the processing that occurs during the execution of the BIT must be done on a server, inside
a Docker component, as this allows to improve the performance of the tool. A simplified
schema of BIT is shown in Figure 5.

Figure 5: BIT’s architecture.
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3.5 third-party tools and licenses

Table 2 lists all third-party tools used in the development of this work. For each one, the
license type, the source and a short description indicating its purpose are presented.
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Table 2: Third-party tools used in the development of merlin’s new features.

Tool Task Type of license Source

Eclipse Photon Development of the software Eclipse Public License - v2.0 https://www.eclipse.org/downloads/

AIBench Implement operations
GNU Lesser General Public

License v3.0
https://github.com/sing-group/aibench-project

GC4S v1.2.2 Expedite GUIs implementation
GNU Lesser General Public

License v3.0
http://www.sing-group.org/gc4s/

mysqlDump Dump of a MySQL database
GNU General Public

License v3.0
https://dev.mysql.com/downloads/mysql/

BiGG Models Retrieve BiGG models data Open Source License http://bigg.ucsd.edu/

BLAST + v2.9.0 BiGG Integration Tool homology search Open Source License https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/

Flask v1.0.2
Framework used to facilitate the web-

server assembly
BSD License (BSD-3-Clause) https://www.anaconda.com/distribution/

Postman
Make HTTP calls to perform tests during

web-server developments
A free version was used https://www.getpostman.com/downloads/

Docker v19.03
Run BiGG application isolated from

the host machine
Apache 2.0 license https://docs.docker.com/

Ubuntu Run Docker on the server machine Open Source License https://ubuntu.com/download

WinSCP
File transfer between the local machine

and the remote server

GNU General Public

License v3.0
https://winscp.net/eng/download.php
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S O F T WA R E D E V E L O P M E N T

Throughout this work, new features were developed, and improvements were imple-
mented in merlin, to extend the capabilities of the software and improve the overall user
experience. All improvements and new tools were implemented in the Java programming
language using the Eclipse Luna IDE. However, the Python language and other external
resources were used to facilitate and allow the development of specific tools. All the work
developed will be presented in detail on the following pages.

4.1 overall improvements in merlin

Several improvements were made in merlin during this work. In addition to the integration
of two new plugins, which facilitate the use of the software, other changes were performed.
Although minor, these features requested by the merlin’s user community are quite important.
The overall improvements implemented in merlin will be described below.

4.1.1 Creation of a plugin to manage the configuration files

Many of the implemented tools that are made available by merlin are based on default
values, thresholds or other parameters that define that the algorithm must perform its actions
taking into account these settings. The information of the configurations used by a given
tool is usually saved in .conf files so that the operation can be customized without having
to recompile the program. This way, both the programmer and the user can change the
settings using a simple text editor. However, this way of managing the configuration files
can be impractical for merlin users, especially for computer laypeople. Besides, the manual
modification of a configuration file by the users can cause problems that might compromise
the execution of the tool, in case the users accidentally change the name of a parameter, or
change the default value of a parameter to one that does not make sense in the context of the
tool. Therefore, graphic interfaces that allow the users to manipulate configuration files of
different software components, according to their preferences were implemented. This tool

32
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is implemented as a merlin plugin called merlin-settings. The integration of the functionality
in a plugin allows to facilitate the development of new features for the platform, since, users
will only need to install a new plugin, without having to update the version of merlin in
its entirety. Additionally, the management of features through plugins also allows to offer
the users the possibility to customize merlin, and for that, they are able to install only the
plugins they want, using the repository manager tool, available on the platform.

With the integration of this plugin, the user will be able to configure, within merlin itself,
the database connection settings, the e-biomass equation default contents, the gene-protein-
reaction rules parameters and, finally, the ’find genes’ tool default thresholds.

Database connection settings

Currently, merlin users can choose between two different relational database management
systems (RDBMS), H2 or MySQL, to store data from GSM models. By default, the type of
database used for data storage is H2. However, when users want to use a MySQL database,
they have to edit the database_settings.conf file manually (Figure 6). Hence, the option
’database configuration’ has been added to the ’settings’ tab of the merlin menu bar, which
redirects the users to an easy to use graphical interface, in which the values predefined
for database connection settings can be changed. This required the implementation of the
DatabaseConfigGUI class and the AIBench operation DatabaseConfigSettings. The association
of the GUI with the operation in merlin’s menu bar was carried out within the plugin.xml

file of the merlin-settings plugin.

Figure 6: Database settings configuration file.

The graphic component to manage the database settings configuration file is implemented
in the DatabaseConfigGUI class, based on the InputParametersPanelDialog provided by the
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GC4S library. As this demonstration of GC4S is based mainly on textboxes and drop-down
lists, just like the features intended for the GUI, the extension of this class allowed to
accelerate the development process of this graphical interface. Three classes from the GC4S
library were used:

• InputParameter – This class encapsulates three components of an input parameter:

1. a description label, which allows identifying the parameter;

2. a label containing a small help message for the user to access in case of having
doubts regarding the input that the parameter is waiting to receive

3. a JComponent that allows to store what will be entered as an entry by the user
for the fields database type, username, password, host and port.

In this GUI, three different JComponents were used. The username, host and
port fields are simple JTextFields. The password field is a JPasswordField, similar
to JTextField but the user’s input is hidden, for safety purposes. Finally, for the
database type, an ExtendedJComboBox was used, since there are specific values
the user can choose from (H2 or MySQL). During the implementation of the GUI
database configuration, the class InputParameter was instantiated five times, once
for each parameter present in the database_settings.conf file.

• InputParameterPanel - This class instantiates a panel to display all created InputPa-
rameter objects.

• ExtendedJComboBox – As the name suggests, it is an extension of the Java component
JComboBox. In addition to creating the combo box, this class adapts its size to the
length of the items it contains. This component was used to create a combo box for the
’database type’ parameter, containing the H2 and MySQL items, corresponding to the
only two values that the user can choose for that parameter.

The combination of the three aforementioned GC4S elements, with other elements from
Java Swing allowed to define the graphical interface layout (Figure 7). In addition to the
layout, the GUI database configuration aims to display the information present in the
configuration file automatically. The fill() method is implemented in the DatabaseConfigGUI
class, responsible for loading the interface with the values corresponding to each parameter.
Here, the database_settings.conf is read, and the file data are assigned to the JComponent
of the respective InputParameter object. Thus, when the user opens the interface, the
GUI is automatically filled with the information present in the configuration file. If the
configuration file holds MySQL as the database type, all fields in the GUI are filled in (Figure
7a). Otherwise, only the database type, username and password parameters will be loaded,
since the host and port parameters are not mandatory in H2 type databases (Figure 7b)).
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The fill() method is called when there is a change in the value of the combobox database
type. Here, an ActionListener that triggers an action when this value is changed, filling the
fields accordingly, is used.

(a) MySQL database type parameters. (b) H2 database type parameters.

Figure 7: Graphical interface to change the database settings.

As already mentioned, merlin is based on the AIBench framework, so the use of its
operations is essential to add custom GUIs, such as the ’Database Configuration’ GUI.
Thus, a DatabaseConfigSettings operation was implemented, consisting of five ‘IN’ ports
corresponding to the database type, username, password, host and port fields. This oper-
ation executes the save() method, which is responsible for saving the new settings in the
database_settings.conf file. The operation only performs this action if the user presses
the save button; otherwise, the method is not executed and, therefore, the .conf file will
remain with the same settings. Validations for users input are also implemented in the save()
method, preventing from saving an invalid configuration and alerting the users to the error.
A new panel displaying a warning message will appear when users:

• Do not fill in all mandatory fields - If the selected database type is MySQL, all fields are
mandatory. In the case of H2 databases, only username and password are mandatory
fields, the host and port fields appear as blocked text boxes, preventing the user from
entering any input.

• Fill the port field with non-numeric characters - The port field only accepts numbers.
The regular expression (Regex) “[0-9] +” was used to validate the users input.

When all defined parameters are valid, merlin should be able to establish a connection
with the user’s database server.
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Tools configuration

merlin has tools to read .conf files, applying each configuration during its execution. The
’tools configuration’ option has been added to the ’settings’ tab of the menu bar to allow
users to change the tools’ predefined parameters, within merlin. In this option, users may be
redirected to one of the three implemented interfaces:

• find genes threshold;

• ebiomass contents;

• gpr rules.

The implemented interfaces can be seen in Figure 8.

(a) Find genes thresholds
GUI.

(b) Ebiomass contents
GUI.

(c) GPR rules GUI.

Figure 8: Graphical interface to change merlin tools configurations.

The methodology for implementing these interfaces was similar to the one used for the
implementation of the database configuration interface:

1. Creation of a class to define the GUI layout from the InputParametersPanelDialog
demonstration of the GC4S library;

2. Implementation of a method that allows the GUI to be filled with the current values
present in the .conf file;

3. Creation of an AIBench operation to associate the GUI with merlin;

4. Implementation of a method that validates and saves the new configurations in the
.conf file.
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Hence, when any of the ’tools configuration’ options are selected, the user is redirected to
the respective GUI. The settings in the configuration file are automatically loaded into the
view fields, allowing the user to access the current settings. The user is now able to change
the fields as desired, as long as the input values are valid.

4.1.2 Creation of a plugin that backs up and imports a workspace

In this phase, the BackupDatabase operation was implemented to allow users to save a
workspace. Backups are essential as these preserve information outside the central system.
Therefore, this option offers users a tool that allows backing up a specific workspace,
ensuring that in case of data loss during the reconstruction of a model all results obtained,
up until the time of the backup, will remain stored elsewhere. However, this operation is
only useful if there is a way to recover the stored data to the original location. The process
of recovering data from a backup performed is known as a restore. The RestoreDatabase
operation, which allows importing the information stored in the backup into merlin, was
implemented to complement the BackupDatabase operation.

As already mentioned before, merlin has been entirely refactored to integrate Hibernate.
Now, Hibernate allows merlin to use any SQL database without having to track and change
the source code. At the time of this work, Hibernate’s integration was still ongoing; thus,
the report of the implementation of these operations (backup/restore) is divided into two
distinct phases, namely before and after the integration of Hibernate, describing the updates
required between phases.

This tool was also integrated as a plugin, the merlin-exporter. The ’export workspace’
option was added to the ’workspace’ tab of the merlin menu bar, which redirects to an
interface that allows users to perform the BackupDatabase operation. Likewise, the ’import
workspace’ option was added to the ’workspace’ tab of the merlin menu bar, allowing
users to perform the opposite operation RestoreDatabase, efficiently. The declaration of the
operations and insertion in the merlin menu bar was carried out within the plugin.xml file
of the merlin-exporter plugin.

These operations allow users to backup and restore a workspace, which can be used for
personal backup, importing their project on another machine or simply sharing it with other
merlin users.

BackupDatabase AIBench operation

The BackupDatabase AIBench operation, created to run the tool that allows the user to
back up a workspace, is composed of two ’IN’ ports that receive as input: a ’WorkspaceAIB’
object, corresponding to the workspace and an object of type ’File’ corresponding to the
selected directory. The input dialogue was generated automatically by AIBench, and no
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custom GUI was created at this stage. The GUI generated by AIBench (Figure 9) allows
users to select the workspace to backup, and the directory to store the backup.

Figure 9: Implemented GUI to perform a workspace backup.

• Implementation prior to Hibernate

A simplified schema of the tool’s workflow to export a backup of a workspace, before
Hibernate’s integration into merlin, is shown in Figure 10.

Figure 10: Schema of the ’Backup workspace’ tool before Hibernate.

When users open a new project, they are required to enter a name for the workspace
and the NCBI taxonomy identifier, to identify the organism during the reconstruction
process. When creating a project, a folder with the name assigned to the workspace is
created automatically in the ’ws’ folder. This folder is where all files created during the GSM
model reconstruction process are stored. Thus, in the first stage of the backup, a method
(BackupWorkspaceFolder()) that copies the contents of the selected workspace in the ’ws’ folder,
to a temporary backup folder, was implemented. Also, a dump of the entire database
is necessary to complete the backup. H2 type databases store all the information in the
database in ’.mv.db’ files. Thus, when backing up H2 databases, the backupH2() method is



4.1. Overall improvements in merlin 39

executed, copying such file to the backup folder containing the workspace files. Whereas, for
MySQL databases the backupMySQL() method is executed, dumping the database through
the ’mysqldump’ command. This utility is provided by the MySQL application which has
to be previously installed in the user’s machine. The mysqldump results in a ’.sql’ file,
containing CREATE TABLE and INSERT statements that define the structure and contain all
information present in the database. This file is stored in the backup folder that contains the
workspace files.

The backup folder is saved with the name of the workspace, followed by the complete
date (day, month, year and time) on which the backup is performed, thus ensuring that the
name will always be unique, and therefore, no backups will be overwritten or another user
file replaced. In the end, the backup folder is converted to a ’.mer’ file.

• Implementation after Hibernate

After the integration of Hibernate in merlin, the BackupDatabase operation was updated, as
the tool’s operation has to be guaranteed regardless of the type of database used for data
storage. A simplified schema of the tool’s pipeline for exporting a backup of a workspace,
after integrating Hibernate, is shown in Figure 11.

Figure 11: Schema of the ’Backup workspace’ tool after Hibernate.

The first stage of the process, in which the workspace files are copied to the backup
folder, remained unchanged. The main change is in the way the database is delivered. With
Hibernate, it is no longer necessary to determine which type of database the user wants
to export. The implementation of the operation was simplified, only requiring Hibernate
methods that directly convert the database into XML files, corresponding to each of the
tables that currently make up a merlin database. The XML files are kept in the workspace
files backup folder. The backup folder is converted into a ’.mer file’, automatically labelled
according to the workspace name and the time/date of the export operation. These files can
be imported through the antiparallel operation RestoreDatabase.
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RestoreDatabase AIBench operation

The RestoreDatabase AIBench operation, created to run the entire tool pipeline that allows
the users to import a workspace backup, consists of three ’IN’ ports. The graphical interface
shown in Figure 12, created automatically by AIBench, allows the users to import the ’.mer’
file, corresponding to the backup of the workspace they want to restore, through the file
picker field. Additionally, users can also force import, which will replace all files, when a
workspace with that name already exists, as the imported workspace will inherit its original
name by default. When users import a project not checking the checkbox nor filling the text
field with a new name, a warning message will pop up, forcing the user to enter a name for
the workspace to proceed with the import.

Figure 12: Implemented GUI to perform a workspace restore.

• Implementation prior to Hibernate

A simplified schema of the tool’s pipeline to import a backup from a workspace, prior to
the integration of Hibernate into merlin, is shown in Figure 13.

Figure 13: Schema of the ’Restore workspace’ tool before Hibernate.
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The worskpace restore process begins after the imported file is validated. If the file
selected by the user does not have the expected extension (.mer) or does not contain the
backup files, the user will be warned, and the operation will not be performed. When
all necessary conditions are fullfilled, the restore process starts with the execution of the
importWorkspaceFolder() method. After decompressing the ’.mer’ file, the backup is pasted
into the ’ws’ folder. If an existing workspace is used, the files will be replaced. Then, the
type of backup is determined. For this purpose, a validator which checks the extensions
of the backup files was developed. If a file with the extension .mv.db exists, the backup
type is H2; otherwise, the backup is MySQL. In the case of an H2 backup, the importH2()
method is executed, and the ’.mv.db’ file is pasted in the destination folder. Otherwise, the
importMySQL() method in which the ’.sql’ is restored, is used.

Before starting the restore process, the database connection credentials are validated,
verifying that the user does not attempt to restore a backup of a MySQL database as H2 or
vice-versa, as this implementation is not prepared for converting one type of database to
another.

• Implementation after Hibernate

After the integration of Hibernate in merlin, the RestoreDatabase operation was updated
to complement the changes made to the BackupDatabase operation, as the backup contains
other types of files. A simplified schema of the tool’s pipeline for importing a backup from
a workspace after integrating Hibernate into merlin, is shown in Figure 14.

Figure 14: Schema of the ’Restore workspace’ tool after Hibernate.

The first stage of the restore process remained unchanged, after validating the user input
and decompressing the ’.mer’, all files obtained during the model reconstruction process
are pasted in the ’ws’ folder. Then, since the output of the dump is now a set of XML files,
Hibernate methods read each file and convert them to Java objects, which are then loaded
into the database.
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This change allows overcoming a significant limitation of the first implementation as users
can now backup a type of database and import it as another type.

4.1.3 Email setter

The user’s email is mandatory to access certain tools such as BLAST, remotely. Thus,
several interfaces had email as a mandatory field, requiring the user to enter their email
each time. Hence, this field was included in the main ’open workspace’ interface, which
allows opening an existing workspace or creating a new one, as a mandatory field (Figure
15). When the user creates a workspace, the email is stored on the user’s local machine, in a
configuration file, and is used to load the email field automatically. A regular expression was
used to verify that the email entered follows the format aaa@bbb.ccc, preventing the user
from creating the workspace if the email is invalid. Regarding the interfaces that perform
operations that require the user’s email, the email field was removed, and the value is
obtained directly from the configuration file.

Figure 15: Addition of the email field to the merlin’s open GUI.

4.1.4 Confirm cancel with CustomGUI

All tools provided by merlin have cancel buttons that allow users to cancel operations.
However, users tend to accidentally click on cancel, immediately interrupting the operation,
which can be very annoying, especially when tools take a long time to return results, such
as the enzymes annotation tool. Thus, a CustomGUI which presents a panel with a question
and options, was used to overcome this problem. In this case, the CustomGUI was used
offering the options ’yes’ or ’no’, as shown in Figure 16. This CustomGUI was implemented
in all merlin operations that have a progress bar, so a confirmation GUI should appear
whenever the cancel is triggered and the operation is only interrupted after the user’s
approval. This feature was one of the users’ top requests.
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Figure 16: Cancel confirmation CustomGUI.

4.1.5 Search in notes column

The ’model reactions’ and the ’annotation enzymes’ views from merlin include a ’notes’
column, which allows users to write custom notes. Both views have a search toolbar,
allowing the user to search by the name of the gene/reaction ID, or search in all columns,
if the search toolbar is defined with the ’all’ option. However, searching just by the ’notes’
column can also be very valuable for the user. Hence, the merlin’s ’SearchInTable’ class was
adapted to allow the ‘notes’ option to the search toolbar, thus providing search options to
the user. Figure 17 shows the search for the word ‘atp’ in the notes column of the ’annotation
enzymes’ view, with the blue highlight on the lines in which the word is found.

Figure 17: Addition of the option ’notes’ to the search tool bar.



4.1. Overall improvements in merlin 44

4.1.6 Insert/Edit Reaction interface improvement

Other improvements include the ’Insert’ and ’Edit’ operations of the reactions panel,
which can be found in the ’model reactions’ view. As the name suggests, these operations
allows the users to manually enter a new reaction, or edit an already existing one. When
selecting these operations, the users are taken to a view that allows to insert/edit a reaction.
The improvement implemented in these interfaces is focused on the reagents and products
panel in which the combo box containing the metabolites that form the reaction, had a single
string to indicate the name, formula and identifier of the metabolite (Figure 18a). Now,
the string was split to create three different columns: one column with the combo box that
contains the name of each metabolite; a column to display the formula, as a non-editable
text field and, finally, a third column with a combo box containing the external identifiers.
The user can search for the metabolite either by name or identifier, automatically updating
the value of all other columns. Additionally, the ’Chains number’ column was removed.

The resulting layout from the merlin ’Insert Reaction’ interface is shown in Figure 18b. The
same layout can be viewed in the ’Edit Reaction’ interface.

(a) Reactants and products panel before the implementation.

(b) Reactants and products panel after the implementation.

Figure 18: Reactants and products panel.



4.2. Implementation of BiGG Integration Tool 45

4.1.7 Logger configuration

The activity log of any application over time is critical, as it allows the programmer to
quickly understand what the application code is doing at each moment of the execution,
defining if a particular action was carried out successfully, and more importantly, where and
why a failure occurred. This registry is done through a set of logs that informs the developer.
It is possible to configure the logger through a configuration file to specify how logs will
be displayed. Thus, the logback.xml file was configured with the purpose of writing the
logs in text files and not just on the console of the integrated development environment. For
this, an appender ’FILE’ was added to the logger configuration, allowing the recording of
logs in text files, which can be configured according to the storing option, selected by the
programmer. The logger was configurated to record logs in files with a maximum of 100MB.
These files are stored in a zipped folder, up to a maximum of 30 files per day, for the last 30

days, providing a log history to the developers.

4.2 implementation of bigg integration tool

During this work, the main feature developed and implemented in merlin was the BiGG
Integration Tool (BIT). This tool aims at retrieving metabolic information from BiGG Models,
a knowledge base of high-quality genome-scale metabolic models. As previously mentioned,
obtaining metabolic information is a mandatory step for the reconstruction of a GSM model.
Until now, merlin only offered an operation that allowed obtaining this information from
KEGG. Thus, the models built from merlin exclusively use data from that database. In this
sense, the BIT was integrated as a merlin plugin, allowing the loading of metabolic BiGG
information to be used in the GSM model assembly.

4.2.1 BiGG data structure

As the objective is the creation of a tool that allows the loading of metabolic BiGG data
to merlin’s databases, the first stage of the development process is focused on creating a
robust data structure, capable of supporting the requirements of the following stages. In this
phase, all BiGG metabolic data were collected and processed, and support files were created
to assist in the remaining development phases. Additionally, at this stage, a database was
loaded with all the information collected from BiGG Models. A dump of this database was
created to speed up the next step in the process. Each of these steps is described in detail
below.
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Obtaining and processing metabolic data

The collection of metabolic data was the first step in the process of creating the data
structure. The BiGG Models knowledge base allows to programmatically access the content
of all the models through HTTP requests to the BiGG Models API. Java is a programming
language that supports HTTP requests. Thus, it was possible to use the API to collect
the metabolic data of each BiGG model efficiently, through successive GET requests. It is
possible to download a complete model with a single call to the API. However, the answer
does not return all the information present in BiGG Models. As the objective is to obtain
a data structure that contains all information to support this plugin and, eventually, other
tools that use BiGG’s metabolic data, thorough requests were performed to the API. For each
model, an individual call was made to all reactions, metabolites and genes that compose it,
thus obtaining detailed information on each component. Each time a request is performed
to the API, a JSON object with the results is returned. JSON objects that return data related
to the same model are integrated into a single JSON and stored in text files, for a better
organization of the information. Thus, 108 files, corresponding to the 108 models currently
available at the BiGG Models database, containing information about the model as well as
the details of each reaction, metabolites and genes that constitute it, were created.

To facilitate access and manipulation of data from text files, BiGG containers, Java classes
that mirror the structure of the BiGG Models database, were created. Thus, whenever it is
necessary to access the text files, these classes are loaded, easing the retrieval of any given
parameter. The developed containers, their primary attributes, as well as the relationship
between them, are shown in Figure 19. Each BiGG Model has a list of BiGG Genes, BiGG
Metabolites and BiGG Reactions and additional parameters to represent some details of the
model, such as its BiGG identifier and the name of the organism to which it corresponds.
For the most used BiGG Models, Escher Maps are also available for pathway visualization.
Besides general details, BiGG Reactions exhibit a list of BiGG Metabolites and a list of
Reaction Results that provide details about the reaction, such as the lower bound, upper
bound and gene reaction rule. BiGG Genes and BiGG Reactions that have associated pathway
visualization, also include an interactive pathway map viewer powered by Escher. Links to
external databases such as KEGG, MetaCyc, Reactome and Model SEED are also associated
with BiGG Genes, BiGG Metabolites and BiGG Reactions.
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Figure 19: Collected data structure.

Creating files to support the BiGG Integration Tool

From the metabolic information collected for each of the BiGG models in the previ-
ous phase, support files that list important information to be used in other stages of the
development of the tool were created. Thus, five files were created at this stage, namely:

• SequenceIDsGenesRelation.txt file

In BiGG Models, all genes mapped to a genome annotation are referenced by their
locus tag. Thus, BiGG genes have unique identifiers for a specific genome annotation,
which makes models that integrate the same annotation to share BiGG identifiers with
each other. For this reason, there are many genes that, despite having the same protein
sequences, are assigned to different BiGG identifiers. A unique identifier was generated
for each sequence to guarantee the uniqueness of information. The identifiers follow
the gXXXXXXXXX standard. For instance, the first sequence receives the identifier
g000000001, the second different sequence receives the identifier g000000002 and so
forth. Thus, for all text files created in the previous phase, which contain information
from BiGG models, its list of genes was retrieved, to identify those that have different
identifiers but the same protein sequence. A text file, SequenceIDsGenesRelation.txt,
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which maps each sequence ID to the BiGG IDs genes that contain the protein sequence
represented by that identifier was created, to store this information.

• ModelsGenesProteinSeq.faa file

In the next stage of the BIT development process, BLAST is used to associate query
genes with BiGG metabolic information. In addition to the FASTA containing the
genome, it is also necessary to pass as input a file containing the set of BiGG sequences
against which the alignment will be carried out. Thus, the ModelsGenesProteinSeq.faa
file was created at this stage with all the protein sequences present in BiGG Models.
From the previous file, it was possible to create a FASTA file with unique sequences,
reducing the total number of sequences and, consequently, the time required to perform
all the alignments in the BLAST phase. The file description line contains the sequence
identifier to distinguish each sequence.

• GeneReactionRelation.txt and SeqIDReactionRelation.txt files

From the BLAST results, it will be possible to determine whether there was a significant
level of similarity between query genes and BiGG genes. If the two genes exhibit
sequence similarity, it is legitimate to assume that both are associated with similar
reactions. Therefore, the list genes in each BiGG model was browsed to obtain the
reactions associated with each one. This information was compiled and saved in a
text file, GeneReactionRelation.txt, which maps each gene to a list of BiGG reactions.
In parallel, a second file was created, SeqIDReactionRelation.txt, which establishes
the direct relationship between the generated sequence identifier and the associated
reactions. This information will ease the association between query genes with BiGG
reactions at a later stage in the development of the tool.

• GeneReactionRule.txt file

All reactions that have associated genes, include boolean rules that describe the gene-
protein-reaction (GPR) relationships. The file GeneReactionRule.txt, which maps
each BiGG reaction to the boolean rule, was created to assist BIT on generating the
boolean rules for the reactions in the draft model. Note that reactions shared between
models may exhibit different boolean rules. Thus, the logical operator ’OR’ was used
to separate the boolean rules from the different models.

Creating a database dump filled with BiGG data

A merlin database called biggdata was generated to complete the BiGG data structure. This
database was loaded with the BiGG metabolic data retrieved and was exported to be used in
the next step. Thus, the development of this phase can be divided into three distinct parts:
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1. Creation of a class, BiGGDataLoader, responsible for reading the metabolic data of
each BiGG model and filling the merlin containers, which describe the structure of the
database in an organized way;

2. Creation of a class, BiGGLoadMetabolicData, responsible for reading all the filled
containers and inserting the metabolic data in the database;

3. Creation of a dump of the database loaded with BiGG metabolic data, for storage.

During this development phase, several methods and classes already implemented in
merlin were used, facilitating to load information into the database. Each of the steps
implemented until the exporting of the biggdata database is described in more detail below.

• BiGGDataLoader class

The BiGGDataLoader class was created to manipulate the BiGG metabolic information,
transforming it into information that can be read by the merlin software. As previously
mentioned, all BiGG information collected from the models available in the database was
loaded into BiGG containers, which reflects the way the data is organized in BiGG Models. In
the same way, other containers that represent the merlin structure allow sending information
to the database. Thus, for each BiGG model, this class is used to make all the necessary
procedures before entering the data, organizing the information loaded in BiGG containers
so that it can be used to fill merlin containers.

Of the six main components of a model, only the GeneContainer and PathwaysHierarchy-
Container, which correspond to the merlin containers that store information about genes and
pathways, respectively, were not used. Whereas the GeneContainer was not necessary to
fulfil the purpose of the tool, the information available in BiGG was not enough to deploy the
PathwaysHierarchyContainer. Hence, four methods were implemented in this class, respon-
sible for reading the BiGG containers of each model, processing and converting them into the
merlin container, namely: CompartmentContainer, ProteinContainer, MetaboliteContainer
and ReactionContainer.

The CompartmentContainer did not require significant processing. Each BiGG Metabolite
was scanned to obtain the parameters compartment identifier and compartment name, for
the conversion to CompartmentContainer. Each container is added to a single entry list,
which is used later to fill the ModelCompartment table in the database.

Regarding enzymes, several BiGG reactions are mapped to EC Numbers in the database
external links. Thus, the database links of each BiGG Reaction were reviewed to obtain,
whenever available, the EC identifier for each enzyme. Since only the identifier is provided
in BiGG Models, the KEGG API was used to fetch the name of each enzyme to fill in the
ProteinContainer. When more than one name is used to designate the same EC, the first
name on the list was used to fill the protein name field, and the remainder added to the
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synonyms list. Finally, the entries were processed to obtain the list of BiGG Reactions that
are associated with each EC Number.

Each BiGG Metabolite was scanned to access its external identifier, name, molecular
formula, and list of external database links, to fill the MetaboliteContainer. An algorithm was
implemented to indentify metabolites that, despite labelled with different identifiers, have
the same name and molecular formula, thus representing the same entry. This algorithm is
executed for each BiGG Metabolite and synonymous metabolites are added to a list available
in the MetaboliteContainer.

Finally, for each BiGG Reaction, the BiGG Reaction Result was obtained, which provides
more details for the reaction. The fields external identifier, chemical equation, source and
the list of database links were directly filled in ReactionContainer. For the list of enzymes
associated with each reaction, the list of database links was sought to obtain, when available,
the EC Number. Regarding the metabolites present in the reaction, an algorithm that
parses the chemical equation to obtain the list of the reaction’s reactants and products
was developed. For each metabolite, a MetaboliteContainer is created and added to the
ReactionContainer’s ReactantsStoichiometry and/or ProductsStoichiometry. Besides the
external identifier, the compartment name and stoichiometry are added to such field. As a
result of the metabolites redundancy, similar reactions can also be found in BiGG Models.
Thus, an algorithm that, for each BiGG Reaction, verifies whether other reactions have the
same list of products and reactants, was implemented. Each reaction identified with this
approach is added to the names list of the ReactionContainer.

The algorithm implemented in the BiGGDataLoader Java class is presented in the pseudo-
code displayed in the Algorithm 1. Additionally, the Algorithm 2 presents the method used
to fill the ReactionContainers list.

Algorithm 1 Parse info to fill merlin containers - parseInfo(arg1, arg2)

1: Input: models, database
2: databaseInitialData = retrieveAllData(database) . Get the current data in the database
3: for each model in models do
4: modelInfo = UpdateBiggFiles.get(model) . Get the model information
5:

. Fill merlin containers
6: data.setCompartments(compartmentsParser(modelInfo.getCompartments()))
7: data.setMetabolites(metabolitesParser(modelInfo.getMetabolites()))
8: data.setEnzymes(enzymesParser(modelInfo.getEnzymes()))
9: data.setReactions(reactionsParser(modelInfo.getReactions()))

10: end for
11:

12: BiggLoadMetabolicData.load(database, data, databaseInitialData);
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Algorithm 2 Fill reaction container - reactionsParser(arg1)

1: Input: biggReactionsList . BiGG Models reactions
2:
3: reactionContainers = new List();
4: for each biggReaction in biggReactionsList do
5: reaction = new ReactionContainer(biggReaction.Id());
6:
7: reaction.enzymes = biggReaction.enzymes();
8: reaction.dbLinks = biggReaction.dbLinks();
9: reaction.equation = biggReaction.equation();

10:
11: dir = getDir(reaction.equation()); . Gets the the equation direction
12:

. Split the equation in reactants and products
13: metabolites = reaction.equation.split(dir);
14:

. Split the metabolites by "+" to get a complete list
15: biggReactants = metabolites[0].split("+");
16: biggProducts = metabolites[1].split("+");
17:
18: reactants = new List();
19: products = new List();
20:
21: for each reactant in biggReactants do
22: met = new MetaboliteContainer(reactant);
23: met.compartment = biggReaction.getCompartment(reactant);
24: met.compartmentName = biggReaction.getCompName(reactant);
25: met.stoichiometry = biggReaction.getStoichiometry(reactant);
26: reactants.add(met);
27: end for
28:
29: for each product in biggProducts do
30: met = new MetaboliteContainer(reactant);
31: met.compartment = biggReaction.getCompartment(reactant);
32: met.compartmentName = biggReaction.getCompName(reactant);
33: met.stoichiometry = biggReaction.getStoichiometry(reactant);
34: products.add(met);
35: end for
36:
37: reaction.reactantsStoichiometry = reactants;
38: reaction.productsStoichiometry = products;
39:
40: reactionContainers.add(reaction);
41:
42: end for
43: return reactionContainers;
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• BiGGLoadMetabolicData Class

After filling in the merlin containers, the BiGG metabolic data is organized correctly
to be loaded in the biggdata database. The insertion of the data was performed through
Hibernate methods already implemented in merlin, which allow filling the tables without
SQL statements. The BiGGLoadMetabolicData class was implemented, to load the biggdata,
which reads all the merlin containers from each BiGG model.

The same order for filling the containers was maintained when loading data into the
database. Consequently, the information stored in the CompartmentContainer was inserted
first, followed by the ProteinContainer and MetaboliteContainer.

The insertion of compartments, enzymes and metabolites is performed similarly. After
reading each container, the database is analysed using the external identifier to determine
if it is present in the database. The analysis either returns an integer value relative to that
element’s database identifier or inserts the element and returns the new identifier. This
operation loads merlin’s tables ModelCompartment, ModelProtein and ModelCompound, as
well as the ModelDbLinks and ModelAliases.

Reactions must be inserted in last place, given that they depend on information from the
aforementioned containers. The reactions processing follows the same procedure previously
described for compartments, enzymes and metabolites, determining whether the reaction
has already been inserted. Initially, the lists of reactants and products are validated. Then,
the stoichiometric coefficient of each metabolite is inserted in the ModelStoichiometry ta-
ble, establishing the connection between the ModelReaction and ModelCompound tables.
Enzymes and reactions are connected through the intermediate table ModelReactionHas-
ModelProtein. Finally, the external cross-reference links and synonyms for each reaction are
inserted in the ModelDbLinks and ModelAliases tables, respectively.

The algorithm implemented to load BiGG compartments in the biggdata database is
presented in the pseudo-code displayed in the Algorithm 3.

Algorithm 3 Fill compartments table - loadCompartments(arg1, arg2, arg3)

1: Input: database, data, databaseInitialData
2:

3: metabolicDataLoader = new BiggModelDataLoader(databaseName);
4:

5: for each compartment in data.getCompartments() do
6: if databaseInitialData not contains compartment then
7: metabolicDataLoader.loadCompartment(compartment);
8: end if
9: end for
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• Exporting biggdata database

The last stage of this phase refers to exporting the biggdata database, loaded with all BiGG
metabolic data. The database dump was performed with Hibernate methods that allow
exporting the database in XML files. The database dump was stored in a zipped folder to be
used at a later phase of the development.

Configurations / Server component

This component of the tool controls the collecting of online information, its processing and
the creation of files that combine the necessary data structure throughout the development
process. This structure, and all tasks required to its creation, are available in a Docker
component, allocated in a server. Additionally, all support files and the biggdata database
dump, along with the md5 key, are stored in a FTP server. This location ensures that all
files are accessible by the tool, whichever server it is running on. The use of Docker is an
advantage as besides providing a more efficient use of the host machine’s system resources
during the execution of tasks, the application’s containerization with all its dependencies,
guarantees its operability in any environment. Thus, the JAR (Java ARchive) that compiles
all the instructions to create the BiGG data structure is executed inside a docker. Updating
this data structure regularly over time is crucial to ensure that the database contains the
most recent information. Therefore, a cronjob that automatically runs the docker according
to the timing specified in the crontab configuration file was set up. Taking into account the
frequency with which BiGG Models is updated, the configuration was implemented for the
update of the data structure to occur monthly. Despite this periodic execution, the collection
of information from the BiGG API and subsequent creation of the data structure will only
be performed if new models have been included in the host database, or if metabolic data of
a model already available is updated. Therefore, each time the operation is performed, only
updated or added model data is collected, ensuring that unnecessary requests to the API
will not be made and, consequently, reducing the task execution time. Updating or adding a
text file with information from a BiGG model also requires updating the tool’s support files,
as well as the biggdata database dump. A track record of all generated data is kept with each
update to trace possible errors.

4.2.2 Association of BiGG metabolic data to the query genome

This component of the tool relies on the interaction with the user, as each task’s perfor-
mance depends on the submitted input. Thus far, a merlin database has been created with
the metabolic data collected from all models available in BiGG Models. The next phase
is to find which BiGG metabolic data are present in the GSM model being built for the
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case-study organism, to associate each metabolic gene with BiGG reactions. This association
is performed by homology, through BLAST similarity searches. BLAST requires as input
the genome of the case-study organism, and the genome of each organism in the list of
target models. This list may include all models available at the BiGG Models database, or a
number of models specified by the user, leading to two different outcomes in this phase:

• Using the ModelsGenesProteinSeq.faa file - If the BLAST is to be performed against
all BiGG models, the FASTA already created in the data structure can be directly used
as a subject genome in the BLAST input.

• Creation of the ModelsGenesProteinSeqTemp.faa file - When only a specific set of
models is required by the user, it is necessary to create a temporary FASTA file
that has only the list of gene sequences present in the indicated models. The tem-
porary FASTA follows the same structure as the previous FASTA; each sequence is
associated with an identifier, ensuring that there are no repetitions. Likewise, the
SequenceIDsGenesRelationTemp.txt file is created simultaneously to store the map-
ping between the generated sequence identifiers and the BiGG genes identifiers. In the
case of temporary files, created upon specific requests, these are deleted as soon as the
operation is completed.

When all conditions are fulfilled, the BIT performs BLAST similarity searches between
input genome sequences (query sequences) and BiGG database sequences (subject sequences).
Available Java classes, previously developed for merlin, that allow the execution of BLAST
from the command-line using the BLAST + software (version 2.10.0), were used to perform
this task. This phase is the most time-consuming, as the running time will always depend
on the performance of the host machine, the size of the input genome, and the list of BiGG
models chosen by the user. The following settings are used for run BLAST, by default:

• scoring matrix = BLOSUM62;

• E-value threshold = 1E−10;

• bit score threshold = 50.

The query coverage threshold value has been set to 75%, to ensure that the alignment
covers most of the length of the query string. All configurations can be customized according
to the user’s preferences. A bidirectional BLAST is performed to decrease the probability
of obtaining false positives and, consequently, increase the accuracy of the results. After
aligning the case-study genome sequences against the set of sequences retrieved from BiGG
Models, a reverse BLAST is performed, using the FASTA file of the input genome as the
subject genome and the FASTA file containing the BiGG sequences as a query genome. After
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executing the bidirectional BLAST, the alignment results obtained are processed. If the
match obtained in the direct BLAST is not reciprocal in the reverse BLAST, the alignment
is discarded, and the genes are not recognized as orthologous. A diagram illustrating the
procedure is shown in Figure 20. For instance, the gene A1 is orthologous of genes B1

and B3, because these genes similarity has been verified both in the forward and reverse
BLAST searches. The orthology between the gene A2 and gene B4 is not confirmed, because
there was no match between the sequences in the reverse BLAST. Furthermore, another
post-processing algorithm was implemented to verify the occurrence of perfect matches.
Thus, if a query gene corresponds 100% to a subject gene, all the other BLAST hits for that
query gene are discarded.

Figure 20: Bidirectional BLAST representative schema.

The next step is the assignment of BiGG reactions to the case-study genes, taking into
account the similarities with BiGG sequences. The bidirectional BLAST returns a map
containing the list of BiGG sequences identified as orthologous. The assignment of reactions
to these genes is straight forward using the SeqIDReactionRelation.txt file of the data
structure. Nevertheless, when BLAST searches are performed against gene sequences of
specific models, further processing is required. First, for each sequence identifier asso-
ciated with each query gene, the corresponding list of BiGG genes is retrieved from the
SequenceIDsGenesRelationTemp.txt file. After obtaining the association of the case-study
genes with BiGG genes, the reactions are retrieved using an algorithm similar to the one used
to create the GeneReactionRelation.txt file. This process returns a map of the case-study
genes to BiGG reactions, creating a draft GSM model.

Creating GPR associations

The gene-protein-reaction (GPR) relationships determine the set of metabolic reactions
encoded in the genome. In the most simple cases, a reaction is catalyzed by a single enzyme
encoded by one gene, or one enzyme can catalyze different reactions. The most complex
cases are typically described using boolean rules, involving associations between various
genes and proteins, as shown below, where catalytic activity is modelled by:
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• ‘AND’ logic: The protein that catalyzes the reaction is a complex enzyme, consisting
of subunits encoded by multiple genes;

• ’OR’ logic: A reaction can be catalyzed by equivalent proteins that are encoded by
different genes (isozymes);

• ‘AND’ logic and ‘OR’ logic.

Besides associating the genome of the case-study organism with BiGG reactions, carried
out in the previous step, the BIT also creates, for each reaction, a boolean rule. This task
involved devising an algorithm that, using the GeneReactionRule.txt file, creates the GPRs
from the reactions’ rules of each BiGG model. Due to the complexity observed in several
rules annotated to BiGG reactions, and to facilitate the process of generating the new boolean
rule, an algorithm that simplifies rules was implemented. Thus, the boolean expression was
deconstructed in a set of ’AND’ and ’OR’ operations. For instance, the below rule for the
BiGG reaction PI45P3K_cho:

(100689251 OR 100689252 OR 100769225) AND (100750761 OR 100771181 OR 100774067)

will result in the deconstructed rule:

100689251 AND 100750761 OR 100689251 AND 100771181 OR 100689251 AND 10077

OR 100 100689252 AND 100771181 OR 100689252 AND 100774067 OR 100769225 AND
100750761 OR 100769225 AND 100771181 OR 100769225 AND 100774067

The algorithm for the boolean rules creation is shown in the pseudo-code displayed in the
Algorithm 4. For each reaction ’in model’, the BiGG model rule, in its deconstructed version,
is used to create the reaction rule in the new GSM model. Considering the BLAST results
and the rule that the reaction presents, the algorithm behaves as follows:

1. BiGG rule consists only of ’OR’ operators: a split is performed using the operator,
to obtain a list of BiGG genes that encode the reaction. As it is a catalytic activity
modeled by ‘OR’ logic, the similarity between case-study genes and one of the BiGG
genes is enough to build the boolean rule. Thus, for each BiGG gene in the list, the
corresponding case-study genes are added to the boolean rule, separated by the ’OR’
operator.

2. BiGG rule consists only of ‘AND’ operators: the same logic described above is per-
formed in this situation. However, similarity between case-study genes and all the
genes present in the BiGG rule must exist. If the validation is successful, the case-study
genes are added to the boolean rule, separated by the ‘AND’ operator.

3. BiGG rule formed by a single gene: there is no need to parse the rule, thus progressing
directly to the validation phase. It should be noted that if there is more than one
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orthologous BiGG gene in the case-study, all genes are added to the boolean rule,
separated by the ’OR’ operator.

4. BiGG rule consists of ‘AND’ and ‘OR’ operators: this is the most complex situation.
In these cases, the BiGG rule is splitted by the ‘OR’ operator, obtaining a list of BiGG
genes and ‘AND’ logic subrules. Then, the process follows the logic described in
sections 2. and 3. After all validations are performed, the case-study genes are added
to the final boolean rule, separated by the ‘OR’ operator.

Finally, the mapping of the BiGG reactions to the created boolean rules is stored in the
GPRsResults.txt file. For the reactions whose BiGG rule validation failed, the boolean rule
is discarded. The boolean rules are stored in the text file with the integer identifiers of the
case-study genes, to allow the insertion of the GPRs in the user’s merlin database in the next
phase.
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Algorithm 4 Create GPRs - createGPRs(arg1)

1: Input: biggGPRs
2:
3: finalRules = new Map();
4:

. Get all the GPRs for the reactions in model
5: reactionsRules = booleanRulesParser(biggGPRs);
6:
7: for each reactionRule in reactionsRules do
8: reaction = reactionRule.getKey();
9: rule = reactionRule.getValue();

10:
11: if rule.contains("OR") then
12: splittedByOr = rule.split("OR"));
13: for each subRuleOr in splittedByOr do
14: if rule.contains("AND") then
15: splittedByAnd = rule.split("AND"));
16: queryGenes = validateInBlastResultsAnd(splittedByAnd);
17: if queryGenes.isNotEmpty()) then
18: distributionAnd(queryGenes, reaction, finalRules);
19: end if
20: else
21: queryGenes = validateInBlastResultsOr(subRuleOr);
22: if queryGenes.isNotEmpty()) then
23: distributionOr(queryGenes, reaction, finalRules);
24: end if
25: end if
26: end for
27: else if rule.contains("AND") then
28: splittedByAnd = rule.split("AND"));
29: queryGenes = validateInBlastResultsAnd(splittedByAnd);
30: if queryGenes.isNotEmpty()) then
31: distributionAnd(queryGenes, reaction, finalRules);
32: end if
33: else
34: queryGenes = validateInBlastResultsOr(subRuleOr);
35: if queryGenes.isNotEmpty()) then
36: distributionOr(queryGenes, reaction, finalRules);
37: end if
38: end if
39: end for
40:
41: return finalRules
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Exporting updatedBiggData database

The last processing stage of the tool involves exporting the updatedBiggData database. This
database is created, loaded with the user’s request results and exported for loading into
merlin. Initially, the biggdata database dump, which contains all BiGG metabolic data, is
cloned into the updatadedBiggData database. Before obtaining the BiGG Models database
dump from the FTP server, the md5 key is downloaded, and compared with the key available
at the plugin host server. If the md5 keys values are the same, the database dump has
not been updated since the last operation, and can be used directly. On the other hand, a
mismatch of the md5 keys will involve downloading the new database from the FTP to the
host server, ensuring that the plugin uses the most up-to-date version.

After cloning all metabolic information into the updatedBiggData database, the similarity
searches will determine which data should be present in the draft GSM model. For all BiGG
reactions associated with the case-study genes, the Hibernate method updateModelReaction-
InModelByReactionId() is used to update the ReactionContainer ’inModel’ boolean field to
’true’. This feature allows to automatically identify all reactions, metabolites and enzymes
included in the draft model. The ’boolean rule’ field of all ’inModel’ reactions, present
in the GPRsResults.txt file, is also populated with the corresponding boolean rule, using
the Hibernate method updateBooleanRuleAndNotes(). Thus, besides all metabolic data, the
database stores information on the presence of data in the case study’s model.

Finally, the updatedBiggData database that comprises the draft model, is exported into
XML files. These files store the data according to the merlin structure, and will be used to
load the users’ merlin workspace as a result of their submission.

4.2.3 Creating a web-server to manage the users’ requests

A web-server based on Docker, to manage user submissions, was created. This component
of the BIT is in charge of receiving the request, executing the tool and returning the results
to the user. The web-server engine was developed in Python, using Flask, a framework
that provides resources to facilitate the creation of Web applications. Thus, like other Web
applications, this component relies on HTTP requests at various stages of the process:
submission of a request (POST request); check the status of the application throughout the
process (GET request) and, obtaining the results (GET request). The web-server engine
operation schema is presented in Figure 21.
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Figure 21: Web-server workflow.

The web-server engine is composed of two different docker images, which work inde-
pendently: Docker Manager and Docker BLAST. The first receives and manages users
submissions and the second is in charge of executing BLAST, processing and building the
results. The replication of the Docker BLAST into multiple containers, allows the web-server
to execute multiple submissions simultaneously. Users can make submissions using HTTP
POST requests to the web-server, through the Submissions Manager. The submission is
processed, analyzing whether all necessary inputs of the tool have been correctly sent. The
submission requires:

• a file with the extension .faa (genome of the case-study organism);

• a text file idGenes.txt, necessary for the construction of the boolean rules (mapping
of each gene to the identifier in merlin’s database);

• a text file params.txt, which includes the list of target BiGG models, the parameters
E-value, bit score and query coverage, and other BIT settings.

The submission returns an identifier which is stored together with the input files in the
Submissions pool folder. When the Workers Manager recognizes the submission as the next
submission to be processed, the manager checks the availability of a worker. When available,
a Worker is assigned to the next submission in queue; if not, the submission waits in queue
until a worker becomes free. Then, the Submissions pool files are moved to the Processing
pool, which stores the submissions waiting for results. Right after assigning the submission
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to a worker, the Workers Manager uses an HTTP POST request to transfer the input files
to a folder inside the worker’s container, to start the BLAST process. While the action is
performed in the background, the Workers Manager performs HTTP GET requests, every ten
seconds, to determine the status of the process. As previously mentioned, the BLAST phase
ends with the creation of the file GPRsResults.txt and the export of the updatedBiggData
database. These results are compressed into a .zip file, and a response code, indicating the
completion of the process, is returned by the Workers Manager. After downloading the .zip,
the Workers Manager deletes the submission from the Processing pool, creating the results
folder with the submission identifier in the Results pool. Finally, the results are returned to
the user, and the whole process is complete.

Both docker containers are managed through Docker Compose, allowing to define the
workflow from a single configuration file. Executing BLAST and all associated processes on
a server is much more efficient than running the plugin on a personal computer. Moreover,
users do not need to have BLAST + installed on the machine as it will run remotely on the
server. All support files required to run BLAST and build the results are obtained from the
FTP server.

4.2.4 Incorporate BiGG Integration Tool as a merlin plugin

The merlin-bigg plugin was developed to create a user-friendly graphical interface that
allows sending a request to BIT, using merlin. This interface allows users to interact with the
tool. The merlin-bigg plugin adds a new option to the ’model’ tab of the menu bar, namely
the option ’Load BiGG metabolic data’. This operation loads the GUI that will run the entire
process, taking into account the user’s settings. The main layout of the GUI is shown in
Figure 22a. Users need to select: the workspace; the BiGG models (BLAST option); and the
BLAST parameters. As seen in Figure 22b, four BLAST options can be selected:

(a) Implemented GUI to perform requests. (b) BLAST options available.

Figure 22: ’BiGG metabolic data’ interface.
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1. Use all BiGG information: BLAST will be performed against all the BiGG Models;

2. Use specific BiGG models information: Users will select a set of BiGG models, and
the alignments will be performed against the selected models’ genomes. If this option
is selected, the ’+’ button is enabled, redirecting the users to the customized GUI
’SelectBiggModels’ shown in Figure 23a, which allows the selection of the models.

3. Use specific BiGG organisms information: Option similar to the one presented in 2.
However, instead of selecting models, the users can directly select organisms and,
the alignments will be performed against genome sequences of organisms present in
BiGG Models. Here, the ’+’ button is enabled, redirecting the users to the customized
GUI ’SelectBiggOrganisms’ present in Figure 23b, to proceed with the selection of the
organisms.

4. Use random BiGG models information: When selecting this option, a set of BiGG
models (between 5 and 20 models) will be randomly selected to proceed with the
BLAST, which may be interesting depending on the type of study that the user is
trying to carry out.

Despite the different options, cases 2., 3. and 4. require the same workflow.

(a) Select BiGG models GUI. (b) Select organisms GUI.

Figure 23: GUIs displayed when the ’+’ button is clicked.

Furthermore, users are able to choose if they want to integrate reactions not associated to
genes in the selected BiGG models, and whether or not they want to add the reactions for
which no boolean rule was generated by BIT, in the draft GSM network, by selecting the
plugin options ’Integrate reactions without rules’ or ’Accept incomplete rules’, respectively.
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After clicking in the ’Ok’ button on the main GUI, the AIBench LoadBiggMetabolicData
operation starts. This operation submits the request to BIT and retrieves the results. After
analyzing users’ options, the file params.txt is created, which contains the selected BLAST
option, the values set for the BLAST parameters E-value, bit score and query coverage, and
the selected plugin options. If the BLAST option mentioned above in cases 2., 3. and 4. is
selected, the list of target-models must be present in the file, otherwise, all models available
in BiGG Models database will be used. Additionally, the genome of the case-study organism
is obtained by accessing the users’ workspace folder.

The BIT’s input files are sent in the body of the POST request to the web-server, which
will start the entire process described above. When the returned response code indicates
the completion of the process, a GET request is made, to download the results to the ’bigg’
folder in the users’ workspace. Finally, Hibernate methods are used to perform a partial
load of the updatedBiggData database dump into the users’ database.



5

R E S U LT S A N D D I S C U S S I O N

5.1 bigg integration tool internal data structure

BIT’s internal data structure contains all metabolic data present in the BiGG Models,
operating as a data source and supporting the entire tool. This structure is constantly
updated always to provide BiGG’s most up-to-date metabolic data. The information is
stored in 108 different files, representing each model present in BiGG Models, so far. Each
file provides details about the model and information related to its components. From
this information, all files that support the tool are created. In detail, BiGG’s internal data
structure currently consists of:

• 108 text files (one for each BiGG model)

28547 metabolic reactions with unique BiGG identifiers

20259 reactions with GPR

103115 genes with unique BiGG identifiers

15721 unique metabolites (compartmentalized)

22 compartments

• sequenceIdsGenesRelation.txt file

41118 sequence identifiers generated for each unique protein sequence

• sequenceIdsReactionsRelation.txt file

41118 sequence identifiers mapped to 20259 reactions

• geneReactionRelation.txt file

103115 genes mapped to the 20259 reactions

• geneReactionRule.txt file

boolean rules of 20259 BiGG reactions

64
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• modelsGenesProteinSeq.faa file

41118 protein sequences (1 for each generated sequence identifier)

• biggdatabase.zip file

76 XML files that mirror the merlin’s database structure
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5.2 validating the bigg integration tool

The validation of the results returned by the BIT is essential to test the consistency and
potential of merlin’s most recent plugin. Although the reconstruction and simulation of a
curated model is required to assess the BIT model created, it is a time-consuming process,
involving various steps. Thus, taking into account the objectives of this work, which consists
in developing tools to increase merlin’s usability and improving the user experience, the
BIT’s validation is focused mainly on developing a model for an organism present in BiGG
Models, based on alignments against itself, and then comparing it to the actual BiGG model.
The tool was validated for two different bacterial microorganisms: Escherichia coli (E. coli)
and Bacillus subtilis (B. subtilis).

Escherichia coli

Two new draft genome-scale metabolic networks were built for E. coli, a well-known
gram-negative anaerobic bacterium, using merlin’s BIT plugin to validate the results. The E.
coli genome files were automatically obtained from the taxonomy identifier 511145 - NCBI’s
Assembly record ASM584v2, using merlin. After loading the genome into merlin, which is
crucial for running BIT, both submissions were performed. The BLAST option ’Use specific
BiGG models information’ was used and only the BiGG model iAF1260 from the organism
Escherichia coli str. K-12 substr. MG165 was selected in both submissions. It is a widely used
model for genetic manipulation, highly cited by the scientific community and consists of:

• 1261 genes

• 2382 reactions (including transport reactions and pseudo-reactions)

• Gene-Protein-Reaction associations
1944 reactions (≈ 82% of model reactions)

• 1668 metabolites

• Three compartments
extracellular space
cytosol
periplasm

Different settings were used to build the new GSM networks to validate the effect on the
results. In the first submission, the ‘Integrate reactions without rules’ and ‘Accept incomplete
rules’ plugin options were not enabled. After submission, 2:47 min were required to process
and subsequently load the results into merlin. Using default BLAST configurations, the
similarity search identified 1260 case-study genes, out of the 1261 present in the iAF1260

model, as orthologous. The generated draft metabolic network comprises 1260 genes,
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1919 reactions (1919 GPRs) and 1634 metabolites in 3 compartments. In submission 2,
the ‘Integrate reactions without rules’ and ‘Accept incomplete rules’ options were enabled.
The results, loaded in 3:10 min, describe a draft metabolic network with 1260 genes, 2356

reactions (1919 with GPRs) and 1668 metabolites. Table 3 shows the comparison between
the main components of the BiGG model iAF1260 and the new draft metabolic networks for
E. coli, created by homology, verified with the genes from the iAF1260 model.

Table 3: Main metabolic components of iAF1260 and the new draft genome-scale metabolic net-
works created.

BIT’s draft network 1 BIT’s draft network 2 iAF1260
Genes 1260 1260 1261

Reactions 1919 2356 2382

GPRs 1919 1919 1944

Metabolites 1634 1668 1668

According to table 3, the number of components in the iAF1260 model and the draft
networks obtained using the BIT are quite similar. The most significant discrepancy is in the
number of reactions integrated in the draft network 1. This result is due to the number of
reactions in the iAF1260 model that have no association with BiGG genes (438 reactions). As
BIT performs the assignment of BiGG reactions to case-study genes, taking into account the
identification of sets of orthologous, these reactions cannot be identified by the tool, since the
option ‘Integrate reactions without rules’ was not selected. Thus, focusing only on the 1944

reactions of the iAF1260 model with GPRs associations, it seems that approximately 99% of
the BiGG reactions that comprise the actual pool of potential reactions, were indeed selected.
In the second submission, the number of reactions integrated in the draft network increased
to 2356 reactions (99% of the iAF1260 model’s reactions), as all the reactions that are not
associated with genes in the selected model, except the biomass reaction, were included.
The remaining 25 reactions correspond to reactions associated with the s0001 gene, the only
gene in the iAF1260 model not integrated in the new draft GSM networks. As this gene is
not mapped to a genome annotation, both protein and DNA sequences are not available in
BiGG Models; hence, it is not possible to identify an association with this gene using BLAST.
The table S1 of the Supporting Material shows the 29 reactions associated with this gene.
Note that four of these reactions (highlighted in the table) are also associated with genes
other than s0001, and were integrated into both draft networks generated by BIT.
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Bacillus subtilis

Likewise, B. subtilis, the best-characterised member of gram-positive bacteria, was recon-
structed with BIT. After obtaining the B. subtilis’ genome files (taxonomy identifier: 224308 -
NCBI’s Assembly record ASM904v1), two requests using different settings, were submitted
with the BIT by selecting the model iYO844 from the B. subtilis subsp organism. subtilis str.
168, as the only model whose metabolic data must be used throughout the process. The
BiGG model iYO844 encompasses:

• 844 genes

• 1250 reactions (including transport reactions and pseudo-reactions)

• Gene-Protein-Reaction associations
904 reactions (≈ 72% of model reactions)

• 990 metabolites

• Two compartments
extracellular space
cytosol

In the first submission, the ‘Integrate reactions without rules’ and ‘Accept incomplete rules’
plugin options were not selected. The new draft metabolic network, generated in 2:10 min,
consists of 840 genes, 900 reactions (900 GPRs) and 888 metabolites in 2 compartments, using
the default BLAST configurations. The second draft network comprising 840 genes, 1247

reactions (900 with GPRs) and 989 metabolites, was obtained in 2:43 min. Both ‘Integrate
reactions without rules’ and ‘Accept incomplete rules’ plugin options were selected, and
the default BLAST configurations were used to obtain the latter results. Table 4 shows the
comparison between the iY0844 model and the draft metabolic networks obtained for B.
subtilis, using merlin’s BIT.

Table 4: Main metabolic components of iYO844 and the new draft genome-scale metabolic net-
works created.

BIT’s draft network 1 BIT’s draft network 2 iYO844
Genes 840 840 844

Reactions 900 1247 1250

GPRs 900 900 904

Metabolites 888 989 990

The main differences between BiGG’s iYO844 and BIT’s draft networks are the same as
before. In this case, 346 reactions in the original model do not have GPRs; thus, the number
of reactions available for the draft network 1, where the option ‘Integrate reactions without
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rules’ was not selected, is 904. Hence, only 0.4% (4 reactions) of the reactions with GPRs
present in the iYO844 model were not included in BIT’s draft network 1. On the other
hand, the second draft network included, as expected, the 346 reactions not associated to
genes in iYO844, exception for the biomass reaction. Furthermore, unlike submission 1, the
reactions TECA4S_BS and TEICH45, for which BIT did not generate the Boolean rules were
also included, as the option ‘Accept incomplete rules’ was selected. Note that there are four
genes of the iYO844 model for which no orthologous were identified in BLAST (Table 5).
As previously, gene BG12900 is not mapped to a genome annotation; thus, the LySLG_BS
reaction was not included in any of the draft networks.

Regarding genes BSU22660, BSU35609 and BSU35690, their protein sequences are not
present in the genome FASTA file retrieved from NCBI for B. subtilis; thus, no association
with these genes was found in the BLAST search. Consequently, the IGPS reaction, uniquely
associated with the BSU22660 gene, was not inserted into both new draft GSM networks.
The TEICH45 and TECA4S_BS reactions (related to BSU35609 and BSU35690, respectively),
are included in the second draft GSM network, as other genes for which orthologous were
found are associated with this reaction. However, both reactions present a catalytic activity
modelled by ’AND’ logic and therefore, BIT was not able to generate the Boolean rules and,
consequently, they were not included in the first draft GSM network.

Table 5: Genes not integrated in BIT’s draft network

Gene ID Associated reactions Gene reaction rule
BG12900 LySLG_BS BG12900

BSU22660 IGPS BSU22660

BSU35609 TEICH45

BSU35609 and BSU35600 and BSU35590 and
BSU35570 and BSU35550 and BSU3540

BSU35690 TECA4S_BS BSU35690 and BSU35680
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5.3 case studies

Five case studies were analysed using the E. coli genome (taxonomy identifier: 511145 -
NCBI’s Assembly record ASM584v2) to test BIT for different types of input. In each case, a
distinct BLAST option was used to generate new draft GSM networks for E. coli, based on
the association of metabolic data from different sets of BiGG models. The collection of main
components that comprise the generated metabolic network (genes, reactions, metabolites
and GPRs) will be analysed in each case study.

Case Study 1

In the first case study, the BLAST option ’Use specific BiGG organisms information’ was
used to generate a new draft GSM network for E. coli, using only the BiGG models available
for the organism E. coli str. K-12 substr. MG1655. This common laboratory strain is the
most represented organism in BiGG Models, with six GSM models currently available. Table
6 details the BiGG models for this strain. All models are mapped to the same genome
annotation, sharing multiple reactions and metabolites. In total there are 1566 genes, 3117

reactions and 1954 metabolites with unique identifiers.

Table 6: Main metabolic components of the BiGG models available for Escherichia coli str. K-12
substr. MG1655.

BiGG model ID Genes Reactions GPRs Metabolites
e_coli_core 137 95 69 72

iAF1260 1261 2382 1944 1668

iAF1260b 1261 2388 1944 1668

iJO1366 1367 2583 2123 1805

iJR904 904 1075 873 761

iML1515 1516 2712 2266 1877

The models presented in Table 6, the default BLAST configurations, and enabling the
plugin options ‘Integrate reactions without rules’ and ‘Accept incomplete rules’, allowed
obtaining a draft network for E. coli. This model includes 1553 genes, 3075 reactions (2566

with GPRs) and 1953 metabolites. The execution time was about 2:30 min. As expected,
there was a high level of similarity between the case-study genome and the selected BiGG
models, with homology with 1552 BiGG genes out of the 1566 genes present in the six
selected models (99% of the total number of genes). No similarity was found in the BLAST
search for the 12 genes presented in Table S2. These genes are only available in the iJR904

model and are not mapped to a genome annotation. Despite that, the reactions associated
with these genes were integrated in the draft GSM network obtained, as they are also related
to other genes identified as orthologous.
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Furthermore, no similarity with gene s0001 was found. This gene is present in all selected
models, except for iJR904. From the reactions associated with this gene, 35 are not associated
with other genes and therefore not included in the network. Gene b4104, from the iML1515

model, was also not included in the draft network, since its protein sequence is not present
in the genome FASTA file retrieved from NCBI for E. coli, and so, no association with this
gene was found in the BLAST search. Regarding the reactions integrated into the draft
network (3075 reactions), 507 correspond to reactions not associated with genes in the
selected models, as the option ‘Integrate reactions without rules’ was selected. All reactions
that define the composition of the biomass (7 reactions) were not included. Finally, the only
reactions for which no Boolean rule was generated by BIT were MEPNabcpp (b4104 + b4105

+ b4106), from the iML1515 model and ARBabc (b1900 + b1898 + b1899 + b1901), from the
iJR904 model. The Boolean rules for those reactions were not generated by BIT because both
reactions present a catalytic activity modelled by ’AND’ logic, and no similarity was found
for genes b4104, b1898 and b1899. Despite that, both reactions were inserted due to the
selection of the ‘Accept incomplete rules’ plugin option.

As shown in Figure 24, obtained from the analysis of BIT’s draft model’s reactions set, 85%
of the reactions (2622 reactions) are shared between the models, as expected. The remaining
15% are exclusive to four BiGG models. Thus, besides shared reactions, 264 unique reactions
were provided by the iJR904 model, and 181 by the iML1515 model. Although not shown
in the pie chart, four unique reactions from the iJO1366 and e_coli_core models were also
identified. No single reactions from the iAF1260 and iAF1260b models have been found.

These results show that BIT is working as expected, as the model should include most
reactions from the other models.

Figure 24: Origin of the reactions incorporated in the draft network.
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Case Study 2

A new draft metabolic network was created for E. coli, using the BLAST option ’Use
specific BiGG models information’ from BIT. Here, three BiGG models from different strains
of E. coli and three BiGG models of different species of Shigella were selected. Like E. coli,
Shigella is a gram-negative and anaerobic facultative bacterial organism. The Shigella species
are divided into four distinct serogroups (Shigella dysenteriae, Shigella flexneri, Shigella boydii
and Shigella sonnei). Table 7 details the six BiGG models selected as input of the BIT.

Table 7: Main metabolic components of the six BiGG models selected.

BiGG model ID Organism Genes Reactions GPRs Metabolites
iAPECO1_1312 Escherichia coli APEC O1 1313 2735 2200 1942

iUTI89_1310 Escherichia coli UTI89 1310 2725 2189 1940

iECS88_1305 Escherichia coli S88 1305 2729 2191 1942

iSF_1195 Shigella flexneri 2a str. 301 1195 2630 2082 1917

iSSON_1240 Shigella sonnei Ss046 1240 2693 2151 1936

iSBO_1134 Shigella boydii Sb227 1134 2591 2038 1908

After the submission, performed with the default plugin options (‘Integrate reactions
without rules’ enabled and ‘Accept incomplete rules’ disabled), the results were loaded into
merlin in approximately four minutes. Since models genetically close to E. coli are being
used to generate the new draft GSM network, the query coverage parameter of the BLAST
settings has been increased to 85%, to reduce the chance of an improper association of
genes. With these parameters, the data returned by the BIT characterises a draft metabolic
network formed by 1490 genes, 2708 reactions (2176 with GPRs), and 1949 metabolites. In
the integrated 2708 reactions, 532 are not associated with genes in the selected BiGG models
and were included due to the plugin option ‘Integrate reactions without rules’ being enabled.
Furthermore, 27 reactions were discarded because no Boolean rule was generated by BIT.

The bidirectional BLAST search returned 5983 genes as orthologous of 1490 case-study
genes, 550 of which were associated with the BiGG gene that corresponds to its exact match.
The set of orthologous genes covers approximately 80% of the genes in the selected BiGG
models (7464 BiGG genes in total).

A more detailed analysis reveals that 47% of the total of BiGG genes with similarity to
the query genome belong to Shigella’s models. The distribution of the orthologous genes,
obtained from the BiGG models, is shown in Figure 25. The percentage relative to Shigella
species’ genes is very similar to the values obtained for the E. coli models. Additionally, it
was verified that the genes in the iSSON_1240 model from S. sonnei Ss046 exhibit over 85%
of similarity with E. coli genes. This percentage proved to be higher than that obtained for
all the selected BiGG models from E. coli, which is in line with several studies that determine
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Shigella as genetically closer to E. coli than some of its species (Brenner et al. (1972); Van den
Beld and Reubsaet (2012)).

Figure 25: Percentage of orthologous genes identified from each BiGG model.

Case Study 3

The BLAST option ’Use specific BiGG models information’ was used to build a draft
GSM network from two BiGG models of organisms with different characteristics from E. coli.
BiGG models iYO844, from B. subtilis subsp. subtilis str. 168 and iSB619, from the organism
Staphylococcus aureus subsp. aureus N315. Both B. subtilis and S. aureus are gram-positive,
facultative anaerobic bacterial organisms, and members of the phylum Firmicutes. Table
8 details both BiGG models selected in this case study. In total, there are 1463 genes, 1521

reactions and 1146 metabolites with unique BiGG identifiers.

Table 8: Metabolic models components of BiGG models iYO844 and iSB619.

BiGG model ID Genes Reactions GPRs Metabolites
iYO844 844 1250 904 990

iSB619 619 743 501 655

Considering that two models genetically distant from the organism under study are being
used to generate the new draft network for E. coli, the options ’Integrate reactions without
rules’ and ’Accept incomplete rules’ were both disabled, to ensure that only correct reactions
are included. Using the default BLAST configurations, the E. coli draft network returned by
the BIT comprised 809 genes, 749 reactions (749 with GPRs) and 820 metabolites. Boolean
rules were not generated by BIT to 67 reactions; thus, none of these reactions were integrated
into the draft network since the plugin option ‘Accept incomplete rules’ was disabled.

The bidirectional BLAST search identified similarities between 809 E. coli genes and
979 genes of the selected BiGG models. A more detailed analysis revealed that the case
study’s genome matched 68% and 65% of the iYO844 and iSB619 models’ genes, respectively.
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Moreover, 43% and 16% of the reactions of the draft network were inferred from the iYO844

and iSB619 models, respectively. The remaining 41% are reactions present in both BiGG
models (Figure 26). In the total integrated reactions (749), approximately 60% corresponds
to reactions shared with BiGG models from E. coli str. K-12 substr. MG1655.

This draft GSM network has a lower level of similarity when compared with the previous
case studies, which was expected given the distinct characteristics between E. coli and the
selected bacterias.

Figure 26: Reactions incorporated in the draft network from iYO844 and iSB619.

Case Study 4

The next case study evaluates the influence of using all metabolic data available in BiGG
Models database, to build a draft network from E. coli’s genome. Currently, the BiGG Models
cover more than 85 different species, for a total of 108 models. These include 103115 genes
(39843 single sequence genes), 28547 reactions and 15721 metabolites with unique identifiers.
The number of alignments increased considerably due to the large number of target genes
(39843), which led to an extended execution time of about ten minutes (more than twice the
processing time of the previous submissions).

The submission was performed with both options ‘Integrate reactions without rules’ and
’Accept incomplete rules’ disabled and the query coverage was increased to 85%, to reduce
the chance of an incorrect association of genes.E. coli’s new draft GSM network is comprised
of 1886 genes, 3581 reactions (3581 GPRs) and 3019 compartmentalised metabolites. Boolean
rule were not generated for 283 reactions; hence, these reactions were discarded by BIT, as
the plugin option ’Accept incomplete rules’ was disabled. Table 9 shows the ten models
with the highest percentage of identified orthologous. As expected, all models belong to
the E. coli species (similarities above 94%), with all models currently available in the BiGG
Models for Escherichia coli, strain K-12, taking the top positions of the table. Among models
not belonging to E. coli species, the highest percentage obtained was for the iSSON_1240

model from S. sonnei Ss046, that exhibited a percentage of identified orthologous even higher
than some E. coli species, as shown in Case Study 2. Regarding the models that presented
lower percentages of similarity, all belong to organisms genetically distant from E. coli (Table
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10). Among the ten models with less similarity, models from mammals (iMM1415) and
unicellular eukaryotes (iAM_Pf480, iAM_Pc455, iAM_Pb448, iAM_Pv461, iND750, iMM904,
iLB1027_lipid, iIS312_Trypomastigote, iIS312_Epimastigote) were found.

The similarity search returned 33326 BiGG genes (4275 single sequences) identified as
orthologous of 1886 E.coli genes. In the bidirectional BLAST search a perfect match was
found for 1594 case-study genes.

Of the 108 BiGG models, 58 belong to different strains of E. coli species, which justifies the
high number of reactions added to the draft metabolic network (3581 reactions). Furthermore,
in BiGG Models, there are redundant reactions, i.e., reactions that are associated with
different identifiers but represent the same chemical equation. The set of integrated reactions
encompassed 3100 unique reactions. In the next iteration of BIT, a strategy should be
developed to allow only unique reactions to be integrated into the draft GSM network.

Table 9: BiGG models with the highest similarity percentage obtained.

BiGG model ID Organism Genes Similarity %
iJO1366 Escherichia coli str. K-12 substr. MG1655 1367 99,78%
iAF1260 Escherichia coli str. K-12 substr. MG1655 1261 99,76%

iAF1260b Escherichia coli str. K-12 substr. MG1655 1261 99,76%
iML1515 Escherichia coli str. K-12 substr. MG1655 1516 99,74%

e_coli_core Escherichia coli str. K-12 substr. MG1655 137 99,27%
iJR904 Escherichia coli str. K-12 substr. MG1655 904 98,67%

iEC1372_W3110 Escherichia coli str. K-12 substr. W3110 1372 96,28%
iY75_1357 Escherichia coli str. K-12 substr. W3110 1358 96,24%

iECDH10B_1368 Escherichia coli str. K-12 substr. DH10B 1327 94,88%
iBWG_1329 Escherichia coli BW2952 1329 94,81%

Table 10: BiGG models with the lowest similarity percentage obtained.

BiGG model ID Organism Genes Similarity %
iAM_Pf480 Plasmodium falciparum 3D7 480 0,42%
iAM_Pb448 Plasmodium berghei 448 0,45%
iAM_Pv461 Plasmodium vivax Sal-1 461 0,65%
iAM_Pc455 Plasmodium cynomolgi strain B 455 0,66%
iMM1415 Mus musculus 1375 1,16%
iND750 Saccharomyces cerevisiae S288C 750 1,20%
iMM904 Saccharomyces cerevisiae S288C 905 1,33%

iLB1027_lipid Phaeodactylum tricornutum CCAP 1055/1 1027 1,46%
iIS312_Trypomastigote Trypanosoma cruzi Dm28c 312 1,60%

iIS312_Epimastigote Trypanosoma cruzi Dm28c 312 1,60%
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Case Study 5

In the last case study, a random set of BiGG models was selected (between 5 to 20 different
models). This option can be very interesting for particular studies. Three analysis were
performed with BIT to generate three new draft GSM networks. The results obtained in each
submission are shown in Table 11. The default BLAST configurations and the default plugin
options (‘Integrate reactions without rules’ enabled and ‘Accept incomplete rules’ disabled),
were used to perform all the submissions.

Table 11: BiGG data incorporated in the new E. coli draft networks.

(a) iAT_PLT_636 (Homo sapiens); iAM_Pf480 (Plasmodium falciparum 3D7); iIS312 (Trypanosoma cruzi Dm28c);
iSSON_1240 (Shigella sonnei Ss046); iND750 (Saccharomyces cerevisiae S288C); iIS312_Amastigote (Trypanosoma
cruzi Dm28c)

(b) iEC1349_Crooks (Escherichia coli ATCC 8739); e_coli_core (Escherichia coli str. K-12 substr. MG1655);
iEC1364_W (Escherichia coli W); iJR904 (Escherichia coli str. K-12 substr. MG1655); iIS312 (Trypanosoma
cruzi Dm28c); iECIAI1_1343 (Escherichia coli IAI1); iECUMN_1333(Escherichia coli UMN026); iEC042_1314

(Escherichia coli 042); iECB_1328 (Escherichia coli B str. REL606); iAF1260 (Escherichia coli str. K-12 substr.
MG1655)

(c) iS_1188 (Shigella flexneri 2a str. 2457T); iSF_1195 (Shigella flexneri 2a str. 301); iAM_Pv461 (Plasmodium vivax
Sal-1); iETEC_1333 (Escherichia coli ETEC H10407); iEC1364_W (Escherichia coli W); iECW_1372 (Escherichia coli
W); iEcDH1_1363 (Escherichia coli DH1); iEC1372_W3110 (Escherichia coli str. K-12 substr. W3110)

Selected Models Genes Reactions GPRs Metabolites
Submission 5.1 (a) 1419 3682 2373 2385

Submission 5.2 (b) 1571 3261 2542 2186

Submission 5.3 (c) 1629 3173 2370 2323

Submission 5.1 returned a draft network comprised of 1419 genes, 3682 reactions (2373

GPRs) and 2835 metabolites, created from the random selection of six BiGG models. The
high number of ’in model’ reactions is due to the integration of reactions not associated with
genes in the selected BiGG models (1309 reactions). In the GSM model curation, the user
can decide whether to maintain these reactions. None of the selected models belong to the
E. coli species. However, in Case Study 2, the high level of similarity between S. sonnei Ss046

(iSSON_1240 model) and E. coli had already been determined. All other models belong to
organisms genetically distant from E. coli, and therefore with much lower levels of similarity.

Furthermore, the bidirectional BLAST search identified 350 genes that correspond to its
exact match in the BiGG models, being all of these iSSON_1240 genes. Consequently, over
57% of the draft GSM network reactions originate from the iSSON_1240 model. Likewise,
75% (1199) of the genes identified as orthologous to E. coli’s genes (1605), belong to S. sonnei
Ss046; thus, the remaining genes are shared between the other five models.

Submissions 5.2 and 5.3 are very similar, as most models randomly selected by BIT are
closely related to E. coli. Regarding submission 5.2, all models belong to E. coli and Shigella
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species, except for iIS312. This model belongs to an organism with low similarity to E. coli,
and consequently, only about 9% of the draft network reactions are from the iIS312 model.

Similarly, in submission 5.3, only the iAM_Pv461 model belongs to a distant organism
(Plasmodium vivax Sal-1), which provided only 17% of the draft model’s reactions. Again, the
high number of included reactions for submissions 5.2 and 5.3 is due to the integration of
reactions without GPR in the selected BiGG models (719 and 803 reactions, respectively).

Despite the different number of models selected by the tool in each submission, the three
draft GSM networks have similar size and characteristics. As all submissions registered at
least one model with a high similarity to E. coli, sharing multiple reactions and metabolites
between each other. As illustrated in the Venn diagram shown in Figure 27, 2571 reactions
are simultaneously present in the three generated draft networks.

Figure 27: Shared reactions between the three draft networks obtained.



6

C O N C L U S I O N

6.1 conclusions

The work presented in this thesis aimed to develop new tools, as well as improve existing
ones, in the software for the reconstruction of genome-scale metabolic models merlin. This
work allowed enhancing merlin’s capabilities, providing a more comfortable use of the
software, especially for information technologies non-specialists. The implementation of
general platform improvements, described in this work, as well as the integration of the
merlin-settings plugin, which allows the users to manage the configuration files within merlin,
and the merlin-exporter plugin, which offers the users the possibility of backing up and
restoring a workspace, prove to be very useful. As a whole, these implementations improved
the software user-interface, freed users from repetitive tasks and from losing information
gathered during the reconstruction process.

The main highlight of this work is BIT. This tool allows reconstructing draft networks
from available BiGG GSM models, by accessing the BiGG Models database, and storing this
information in an automatically updatable data structure. The merlin-bigg plugin allows
users to use BIT with different configurations, namely how many and which models to use.
The results are imported, in minutes, to the selected workspace. The integration of the BIT
in merlin allows to reduce the requirement of the software on KEGG, as this was the main
available option to retrieve metabolic data in the model assembly phase. The BIT is available
at the GitLab repository at https://gitlab.bio.di.uminho.pt/bigg-tool.
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6.2 limitations and future work

Although the main objectives of this work have been achieved, there are always improve-
ments that can be made. Regarding the BIT, the presented implementation faces some
limitations that may be overcome in a future work:

• Given the lack of information in BiGG Models regarding the pathways hierarchy, it was
not possible to fill the PathwaysHierarchyContainer merlin container, and therefore,
insertion of pathways in the database.

• Some genes in BiGG Models are not mapped to a genome annotation, with no protein
sequence available, so reactions associated with these genes will not be included in the
draft GSM network.

• A strategy should be developed so that only unique reactions are integrated into the
draft GSM network generated by BIT.

Furthermore, the reconstruction of a GSM model using BIT, and its analysis, seems
mandatory to validate the quality and consistency of models built with BiGG metabolic data.
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A
S U P P O RT M AT E R I A L

Table S1: Reactions associated with BiGG gene s0001.

Reaction ID Gene reaction rule
ACALDtpp s0001

ACONIs s0001

AOBUTDs s0001

ARBTNexs s0001

ATPHs s0001

CO2tpp s0001

CPGNexs s0001

DATPHs s0001

DHPTDCs s0001

FALDtpp s0001

FALGTHLs s0001

FE3HOXexs s0001

FECRMexs s0001

FEENTERexs s0001

FEOXAMexs s0001

G5SADs s0001

GLYCtpp b3927 and s0001

GTPHs s0001

H2Otex b1319 or b0957 or b0929 or s0001 or b2215 or b3875 or b1377 or b0241
H2Otpp b0875 or s0001

H2St1pp s0001

H2tpp s0001

METOX1s s0001

METOX2s s0001

N2Otpp s0001

NH4tpp b0451 or s0001

NOtpp s0001

O2tpp s0001

SO2tpp s0001
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Table S2: iJR904 genes for which no similarity was found.

Gene ID Associated reactions
b3111 SERD_L
b3112 SERD_L
b1416 GAPD
b4229 RIBabc
b4228 RIBabc
b1417 GAPD
b3692 DDPGALA; GALCTND
b3767 ACHBS; ACLS
b1898 ARBabc
b1899 ARBabc
b2978 GLYCTO2; GLYCTO3; GLYCTO4

b3768 ACHBS; ACLS


