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Resumo

Planos de Dados Definidos por Software no Espaco do Utilizador

Os sistemas centrados em dados como bases de dados, sistemas de armazenamento chave-valor,
e motores de aprendizagem automatica, sao hoje componentes fundamentais para as infraestruturas
de computacdo modernas. De forma a atingir bom desempenho, estes sistemas implementam varias
otimizacdes de armazenamento, como escalonamento de E/S, diferenciacdo, e caching. Esta disserta-
cdo argumenta que estas otimizacdes tém vindo a ser implementadas de forma subdtima. Em primeiro
lugar, as otimizacdes estao fortemente acopladas a implementacao do sistema, e requerem um conhe-
cimento extenso do mesmo por parte de quem as implementa, bem como mudancas significativas no
seu codigo, dificultando a sua manutencado e portabilidade. Em segundo lugar, estas otimizacdes sao
maioritariamente implementadas de forma isolada e com visibilidade parcial da infraestrutura, levando-as
a competir por recursos de E/S partilhados, a contencdo no sistema, e variabilidade no desempenho.

Esta dissertacao resolve estes desafios redefinindo a forma como as otimizacdes de E/S sdo imple-
mentadas. Em especifico, as otimizacdes devem (1) ser desacopladas do sistema; (2) tomar decisdes
coordenadas sobre os recursos de E/S de forma a garantir controlo holistico; e (3) serem programaveis
e adaptaveis de acordo com os requisitos do sistema. Para atingir estes objetivos, defendemos que o
paradigma de Armazenamento Definido por Software (ADS) fornece um desenho adequado, embora in-
completo, para implementar estas otimizacbes. Assim, comecamos por sistematizar o trabalho em ADS,
identificando os principios de desenho comuns entre sistemas, discutimos as caracteristicas que impulsi-
onaram a aplicabilidade de cada solucao, e identificamos as causas que impossibilitam a solucdo destes
desafios por parte dos sistemas atuais. Como contribuicdo principal, introduzimos o sistema PAIO, um
novo plano de dados de ADS que permite construir optimizacdes de E/S portaveis e genéricas no espaco
do utilizador. Por fim, demonstramos o desempenho e a eficacia de otimizacdes implementadas com o
PAIO construindo trés planos de dados: o primeiro garante controlo da laténcia nos percentis altos em
sistemas de armazenamento chave-valor, o segundo gere a largura de banda de aplicacées num ambiente
de armazenamento partilhado, e o terceiro garante controlo na qualidade de servico das operacdes de
metadados num sistema de ficheiros paralelo. Com estas contribuicdes, mostramos que é possivel cons-
truir otimizacdes de E/S desacopladas do sistema, que atuam com visibilidade global, e que garantem
resultados equiparaveis ou melhores que otimizacdes implementadas de forma tradicional.

Palavras-chave: Armazenamento definido por software, Armazenamento programavel, Otimizacoes de
armazenamento, Plano de dados.



Abstract

User-level Software-Defined Storage Data Planes

Data-centric systems such as databases, key-value stores (KVS), and machine learning engines have
become an integral part of modern |/0 infrastructures. Good performance for these systems often requires
implementing multiple storage optimizations such as I/0 scheduling, differentiation, and caching. This
dissertation argues that such optimizations are implemented in a sub-optimal manner. First, optimizations
are tightly coupled to the system implementation, and require a deep understanding of the system’s
internal operation model and profound code refactoring, limiting their maintainability and portability across
other systems that would equally benefit from them. Second, optimizations are often implemented in
isolation and with partial visibility of the infrastructure, competing for shared |/ 0 resources, and generating
I/0 contention and performance variation.

This dissertation addresses these challenges by redefining how 1/0 optimizations are implemented.
Specifically, optimizations should (1) be decoupled from the targeted system; (2) perform coordinated
decisions over 1/0 resources to ensure holistic control; and (3) be programmable and adaptable to the
requirements of the targeted system. We advocate that the Software-Defined Storage (SDS) paradigm
provides a compelling but incomplete design for implementing such optimizations. As such, we start by
surveying and systematizing the current body of work on SDS, identifying common design features shared
between existing systems, discussing the characteristics that have driven the design and applicability of
each solution under a given storage scenario, and uncovering why existing systems do not successfully
address these challenges. Then, as our main contribution, we introduce PAIO, a new SDS data plane
framework that enables building user-level, portable, and generally applicable storage optimizations. Fi-
nally, we demonstrate the performance and effectiveness of complex |/0 optimizations implemented with
PAIO by building three data plane stages. Namely, the first stage ensures tail latency control in Log-
Structured Merge tree KVSs, the second achieves per-application bandwidth control in shared storage
settings, and the third ensures QoS control of metadata operations in parallel file systems. With these
contributions, this dissertation demonstrates that it is possible to build complex I/O optimizations that
are decoupled from the targeted system and actuate with global infrastructure visibility, while achieving
similar or better results than traditionally implemented ones.

Keywords: Data Plane, Programmable Storage, Software-Defined Storage, Storage Optimizations.
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Introduction

A massive, ever-growing amount of digital information generated from a number of different sources is
processed and stored every day in both public and private premises [6, 180]. The consequent continual
need for greater storage and processing capacity has significantly increased the complexity of underlying
infrastructures. Indeed, modern |/O infrastructures such as enterprise-grade data centers (e.g., cloud
computing, serverless computing, application-specific storage stacks) and High-Performance Computing
(HPC) supercomputers, feature several layers along the 1/0 path providing compute, network, and storage
functionalities, including operating systems, hypervisors, object stores, databases, /0 libraries, file sys-
tems, and device drivers [101, 205, 211]. To achieve good performance in these layers, either from the
perspective of the end-user or the overall infrastructure (e.g., throughput, resource management, energy
efficiency), these often require implementing multiple important storage optimizations such as schedul-
ing [17, 87, 233], prioritization and differentiation [110, 155, 207], caching [25, 118], replication [121,
202], and more [172, 246]. For instance, Log-Structured Merge tree (LSM) Key-Value Stores (KVS) have
become an integral part of modern infrastructures [48, 80, 178, 183], and to achieve high throughput
and low latency access to large volumes of data, several |/O optimizations have been implemented over
these, including caches [227], checksumming [60], |/0 schedulers [17], and tiering [43, 239].

A key problem that emerges from these optimizations however, stems from how these are imple-
mented in the |/0 stack, being tightly integrated within the core of each system. Specifically, to implement
these optimizations, system designers require a deep understanding of the system’s internal operation
model and perform profound code refactoring. This is problematic given that multiple systems used in
production such as Ceph [224], RocksDB [183], and TensorFlow [1], are made of thousands to millions
of Lines of Code (LoC) and are updated with new functionalities and fixes on a regular basis. As a result,
this not only increases the work needed to maintain and port optimizations to other systems that would
equally benefit from them, but might also jeopardize years of development of the targeted system by in-
troducing bugs in production. For instance, to improve the tail latency performance of RocksDB [183],
an industry-standard LSM-based KVS, SILK proposes an I/0 scheduler to control the interference among
different operations [17]. However, applying this optimization over RocksDB required changing core mod-
ules made of thousands of LoC [15, 72]. Furthermore, porting this optimization to other KVSs, such



CHAPTER 1. INTRODUCTION

as LevelDB [80] or PebblesDB [178], while feasible, is not trivial, as even though they share the same
high-level design, the internal /0 logic differs across implementations (e.g., data structures [48, 178§],

compaction algorithms [140, 178]).

Another important problem that arises from indiscriminately employing optimizations in the 1/0 stack,
is that these are often implemented in isolation and with partial visibility of the infrastructure. Specifically,
optimizations are fine-tuned to attend the requirements of a given system, being oblivious of the remainder
I/0 layers running in the infrastructure. Under this design, ensuring holistic performance is hard, and if
not correctly assessed can lead to high levels of /0 interference and performance degradation [110, 211].
This effect becomes further amplified when 1/0 resources are accessed concurrently, either by different
layers of the /0 stack (e.g., multiple applications sharing a file system and competing for disk bandwidth)
or even from internal background activities of a given layer that are competing for resources with the
corresponding foreground tasks, as is the case of databases [120], file systems [202], and KVSs [183].
For instance, background tasks such as compaction, checkpointing, and replication are predefined I/0-
intensive activities that can rapidly overload shared resources, introducing significant 1/0 interference
and workload burstiness, ultimately impacting overall throughput and latency. To minimize interference
with foreground activities, background tasks are processed in a best-effort manner, being executed either
periodically or whenever a certain threshold is hit. However, the decision of when and how to execute
such operations is taken by the layer itself regardless of the overall load on the infrastructure at the time.

These problems result from how large-scale 1/0 infrastructures (and corresponding layers) have been
traditionally designed, and reflect the absence of a true programmable 1/0 stack and the uncoordinated

control of layers.

To overcome these challenges, the Software-Defined Storage (SDS) paradigm emerged as a compelling
solution that reorganizes traditional 1/0 stacks by decoupling the |/0 mechanisms from the policies that
govern them into two planes of functionality — control and data [211]. The control plane is a logically
centralized entity that comprises system-wide visibility and acts as a global coordinator, enforcing policies
over the 1/0 stack in holistic manner. Policies are built on top of this centralized controller as control
algorithms, and define how I/0 requests should be treated in each point of the infrastructure. Examples
of such control algorithms are used for achieving Quality of Service (QoS) provisioning [211, 248], perfor-
mance control [205, 206], and resource fairness [143, 201]. The data plane is a multi-stage component
distributed over the 1/0 stack. Each data plane stage implements custom 1/0 logic to apply over requests
to meet a given policy (defined by the control plane). In particular, stages can provide simple data trans-
formations as encryption and compression schemes [84, 175], or more complex mechanisms such as
token-buckets, 1/0 schedulers, and load balancers [143, 194, 201, 211].

SDS adopts key concepts from the Software-Defined Networking (SDN) paradigm and applies them
to storage-oriented environments, bringing new insights to storage infrastructures such as (1) improved
system programmability and extensibility, (2) fine-grained resource orchestration, (3) holistic 1/0 control,
and (4) ease in portability and maintainability.
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1.1 Problem Statement and Objectives

In spite of the considerable advantages introduced by SDS, the different requirements in performance,
scalability, resilience, and resource management imposed over modern infrastructures have driven ex-
isting systems to follow a similar path as traditionally implemented /O optimizations. Namely, current
SDS systems are targeted for specific 1/0 layers, as their design is tightly coupled to and driven by the
architecture and specificities of the software stacks that they are applied to. For instance, while several
systems enforce throughput and latency policies under shared storage scenarios, such as IOFlow [211],
Crystal [84], and Retro [143], each of these is tightly integrated and co-designed with the internal modules
of their targeted 1/0 layers (e.g., hypervisor, object store, file system). Under this scenario, existing SDS
systems cannot be used as a drop-in replacement of one another, nor implement /0O optimizations over
layers not targeted by these.

The main objective of this thesis is then to redefine how |/ O optimizations are implemented by enabling
system designers to build optimizations that are simultaneously (1) decoupled from the targeted system,
and do not require significantly changing the 1/0 layers themselves; (2) perform coordinated decisions
over |/0 resources to ensure holistic control throughout the overall infrastructure; (3) impose minimal
performance overhead; and (4) are programmable and adaptable, so these can be fine-tuned to meet the
requirements and storage objectives of the targeted layer. With this, we aim at ensuring that decoupled
|/ O optimizations can achieve similar or greater levels of performance and control as system-specific ones.

Moreover, while SDS has gained significant relevance in the research community, many aspects of
the paradigm are still unclear, undefined, and unexplored (e.g., what constitutes a SDS system, what are
the key design features of the data and control planes, where are SDS systems applied to), leading to an
ambiguous conceptualization and a disparate formalization between current and forthcoming solutions.
Thus, another objective of this thesis is to systematize the current body of work on SDS, identifying common
design features shared between existing systems, and discuss the distinctive characteristics that have
driven the design and applicability of each solution under a given storage context.

1.2 Contributions

To achieve the aforementioned goals, this thesis presents three main contributions.

I: SDS survey. As a first contribution of this thesis, we present a comprehensive survey of current SDS
systems, explaining and clarifying fundamental aspects of the field. We provide a thorough description
of each plane of functionality, and propose a taxonomy and classification of existing systems regarding
storage infrastructure type, namely cloud computing, HPC, and application-specific storage stacks, as well
as their control and enforcement strategies.

I1: PAIO. As the core contribution of this thesis, we present PAIO, a SDS data plane framework that enables
building user-level, portable, and generally applicable storage optimizations. The key idea is to implement
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the optimizations outside the targeted system as data plane stages, by intercepting and handling the I/0
performed by these. These optimizations are then controlled by a logically centralized controller that has
the global context necessary to prevent interference among them. To perform complex |/O optimizations
that are dependent on the internal system logic, PAIO needs to propagate context down the |/0 stack, from
high-level Application Programming Interfaces (APIs) down to the lower layers that perform 1/0 in smaller
granularities. It achieves this by combining ideas from context propagation [144], enabling application-
level information to be propagated to data plane stages with minor code changes and without modifying
existing APIs.

Due to the different I/0 requirements between storage infrastructures, there is no one-size-fits-all
SDS solution. Thus, PAIO aims at filling this gap by providing the necessary building blocks for system
designers to build custom-made data plane stages, fine-tuned for their storage requirements. Using PAIO,
one can decouple complex storage optimizations from current systems, such as 1/0 differentiation and
scheduling, while achieving results similar to or better than tightly coupled optimizations.

I1l: Data plane stages. As a third contribution, we demonstrate how PAIO can be used for implementing
complex I/0 optimizations by building three data plane stages. Each stage targets a specific /0 layer, and
is fine-tuned to cope with the requirements and storage objectives of the targeted system. All scenarios
were driven by real use cases that exist in production clusters.

* First, we built a data plane stage that achieves tail latency control in LSM-based KVSs (i.e., RocksDB)
by orchestrating the interference between foreground and background operations. Results show
that a PAIO-enabled RocksDB improves tail latency by 4x under different workloads, and enables
similar performance and |/0 control as system-specific optimizations (i.e., SILK [17]).

* Second, we built a data plane stage that ensures per-application bandwidth guarantees under a
shared storage environment at the Al Bridging Cloud Infrastructure (ABCI) supercomputer, where
applications that execute on the same compute node compete for local disk bandwidth [4]. Results
show that all PAIO-enabled applications are provisioned with their bandwidth goals.

* Finally, we built PADLL, a storage middleware that ensures QoS over metadata workflows in HPC
storage systems. Results show that PADLL can dynamically control metadata-aggressive work-
loads, prevent 1/0 burstiness, and ensure fairness and prioritization between jobs that compete for

metadata resources over Parallel File Systems (PFSs).

The first data plane stage demonstrates how PAIO can be used to reimplement complex |/ O optimiza-
tions that achieve similar performance as system-specific ones, while the second and third stages provide
new optimizations that address unsolved challenges present in modern 1/0 infrastructures.
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1.3 Results

Core publications. The work discussed in this thesis resulted in a number of publications in international
conferences, journals, and workshops.

Ricardo Macedo, Yusuke Tanimura, Jason Haga, Vijay Chidambaram, José Pereira, Jodo Paulo. PAIO:
General, Portable 1/0 Optimizations With Minor Application Modifications. In 20th USENIX
Conference on File and Storage Technologies, 2022.

This paper describes PAIO, a novel SDS framework that enables system-designers to build custom-
made data plane stages, applicable over different user-level 1/0 layers [150]. Rather than implementing
system-specific |/0 optimizations, tightly coupled within the core of each system, PAIO follows a decou-
pled design that separates the mechanisms required to implement the /0 logic from the policies that
govern them. We demonstrate the performance and applicability of PAIO with two data plane stages, im-
plemented over RocksDB and TensorFlow, to enforce different storage policies. PAIO is publicly available
at https://github.com/dsrhaslab/paio.

Ricardo Macedo, Joao Paulo, José Pereira, Alysson Bessani. A Survey and Classification of Sof-
tware-Defined Storage Systems. In ACM Computing Surveys 53, 3 (48), 2020.

This journal publication provides a comprehensive survey and classification of current SDS systems [149].
It details the main challenges, design principles, and functionalities of the SDS paradigm, and proposes a
taxonomy that identifies key design features common to all systems over distinct storage infrastructures,
namely cloud, HPC, and application-specific.

Ricardo Macedo, Alberto Faria, Jodo Paulo, José Pereira. A Case for Dynamically Programmable
Storage Background Tasks. In 38th International Symposium on Reliable Distributed Systems Work-
shops, 2019.

This workshop publication presents a detailed study of the impact of storage background tasks over local
and distributed storage stacks [147]. It makes an initial case that storage background mechanisms, such
as compactions and checkpointing, should follow a SDS design by being dynamically programmable and
orchestrated by a control module with global visibility. This vision was further explored in [146, 150].
Results are publicly available at https://rgmacedo.github.io/drss19-website/.

Ricardo Macedo, Claudia Correia, Marco Dantas, Claudia Brito, Weijia Xu, Yusuke Tanimura, Jason Haga,
Joao Paulo. The Case for Storage Optimization Decoupling in Deep Learning Frameworks.
In 1st Workshop on Re-envisioning Extreme-Scale /0 for Emerging Hybrid HPC Workloads, co-located
with IEEE International Conference in Cluster Computing, 2021.

This workshop publication makes a case that /0 optimizations implemented over modern Deep Learning
(DL) frameworks are single-purposed, limiting their applicability and portability across other frameworks
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that would equally benefit from them [146]. The paper proposes a new SDS architecture for implementing
|/ O optimizations in DL frameworks, as well as Prisma, a framework-agnostic SDS-enabled middleware
that implements a parallel data prefetching mechanism. We validate the applicability and portability
of our approach by optimizing the training performance of TensorFlow and PyTorch [169]. Prisma is
publicly available at https://github.com/dsrhaslab/prisma.

Ricardo Macedo, Mariana Miranda, Yusuke Tanimura, Jason Haga, Amit Ruhela, Stephen Lien Harrell,
Richard Todd Evans, Joao Paulo. Protecting Metadata Servers From Harm Through Applicati-
on-level 1/0 Control. In 2nd Workshop on Re-envisioning Extreme-Scale /0 for Emerging Hybrid HPC
Workloads, co-located with IEEE International Conference in Cluster Computing, 2022.

This workshop publication discusses existing problems in PFSs that emerge from metadata-aggressive
workloads [148]. It proposes an initial prototype of PADLL, a storage middleware that enables system
administrators to proactively control and ensure QoS over metadata workflows in HPC storage systems.
An experimental evaluation demonstrates that PADLL effectively controls the rate of metadata workflows
and prevents /0 burstiness.

Ricardo Macedo, Mariana Miranda, Yusuke Tanimura, Jason Haga, Amit Ruhela, Stephen Lien Har-
rell, Richard Todd Evans, Jodo Paulo. Taming Metadata-intensive HPC Jobs Through Dynamic,
Application-agnostic QoS Control. In submission.

This paper discusses the full design, implementation, and evaluation of PADLL. It proposes an application
and file system agnostic SDS storage middleware that enables QoS control over metadata workflows in
HPC storage systems. Moreover, the paper provides a comprehensive study that analyzes traces from
a production Lustre file system at ABCI, and reveals new insights about metadata operations at scale.
Further, it presents a new proportional sharing algorithm that improves the performance of metadata-

aggressive jobs while meeting specific storage policies. This paper is currently under submission.

Complementary publications. The following work was published in collaboration with multiple re-
searchers from both academia and industry. While complementary to the core contributions of this thesis,

these works leveraged from the topics discussed in it.

Marco Dantas, Diogo Leitdo, Peter Cui, Ricardo Macedo, Xinlian Liu, Weijia Xu, Jodo Paulo. Accel-
erating Deep Learning Training Through Transparent Storage Tiering. In 2022 22nd IEEE

International Symposium on Cluster, Cloud and Internet Computing, 2022.

This conference publication proposes Monarch, a framework-agnostic storage tiering middleware for ac-
celerating single-node DL training in HPC infrastructures [52]. It enables DL frameworks to transparently
leverage local storage mediums of compute nodes, even for datasets that may not fit entirely on such
resources, for improving DL training performance while also reducing the 1/0 pressure imposed over the
shared PFS. Monarch is publicly available at https://github.com/dsrhaslab/monarch.
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Alberto Faria, Ricardo Macedo, José Pereira, Jodo Paulo. BDUS: Implementing Block Devices in
User Space. In 14th ACM International System and Storage Conference, 2021. Best paper runner-up.

This conference publication studies the feasibility of implementing user-level block devices [74]. The
paper provides an in-depth performance evaluation over existing user-level block device frameworks,
identifies existing problems and limitations, and proposes BDUS, a fully functional framework with low
overhead that enables the development of custom block device drivers in user space. BDUS is publicly
available at https://github.com/albertofaria/bdus.

Marco Dantas, Diogo Leitao, Claudia Correia, Ricardo Macedo, Weijia Xu, Jodo Paulo. Monarch: Hi-
erarchical Storage Management for Deep Learning Frameworks. In 1st Workshop on Re-
envisioning Extreme-Scale /0 for Emerging Hybrid HPC Workloads, co-located with IEEE International
Conference in Cluster Computing, 2021.

This workshop publication proposes an initial version of the Monarch system [51]. The paper experimen-
tally demonstrates the benefits of using local storage devices to improve DL training performance, and

provides an initial prototype and a preliminary experimental evaluation with TensorFlow.

Alberto Faria, Ricardo Macedo, Jodo Paulo. Pods-as-Volumes: Effortlessly Integrating Storage
Systems and Middleware into Kubernetes. In 7th International Workshop on Container Technolo-
gies and Container Clouds, co-located with 22nd ACM/IFIP International Middleware Conference, 2021.

This workshop publication describes Pods-as-Volumes (PaV), a Kubernetes [117] plugin that simplifies
the construction of volume provisioners [73]. It enables the straightforward creation of storage middle-
ware components, improving modularity and unlocking the ability to build advanced storage stacks and
architectures using Kubernetes. PaV is publicly available at https://github.com/albertofaria/pav.

Tania Esteves, Ricardo Macedo, Alberto Faria, Bernardo Portela, Jodo Paulo, José Pereira, Danny Harnik.
TrustFS: An SGX-enabled Stackable File System Framework. In 38th International Symposium
on Reliable Distributed Systems Workshops, 2019.

This workshop publication describes TrustFS, a programmable and modular stackable file system frame-
work for implementing secure content-aware storage functionalities over hardware-assisted trusted ex-
ecution environments [66]. It extends the original design of the SafeFS system [175] to provide the

isolated execution guarantees of Intel Software Guard Extensions [49].

1.4 Outline

The rest of the document is organized as follows:
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e Chapter 2. We present a detailed survey of SDS systems (§2). We introduce background concepts
of the SDS field, and propose a taxonomy and classification of existing systems regarding storage

infrastructure, control strategy, and enforcement strategy.

e Chapter 3. We introduce the design, implementation, and evaluation of PAIO, a novel SDS frame-
work that enables system designers to build custom-made, user-level data plane stages applicable
over different 1/0 layers (§3).

e Chapters 4, 5, and 6. We present the design of three data plane stages built with PAIO. We
show how to achieve tail latency control in LSM-based KVSs (§4), ensure per-application bandwidth

guarantees in shared storage environments (§5), and ensure metadata control in HPC PFSs (§6).

e Chapter 7. We discuss future research work and present the final remarks of this thesis (§7).



2

Software-Defined Storage Background

The ever-growing need for storing massive amounts of digital information with high throughput and low
latency has turned modern storage infrastructures extremely complex [6, 180]. Today's data centers such
as cloud computing and HPC facilities, are vertically designed and feature several layers along the 1/0 path
that provide compute, network, and storage functionalities, including Operating Systems (OS), hypervisors,
caches, schedulers, file systems, and device drivers [211]. Each of these layers includes a predetermined
set of I/0 mechanisms (e.g., caching, rate limiting, data placement, compression) with strict interfaces and
isolated procedures to employ over requests, leading to a complex, limited, and coarse-grained treatment
of 1/0 workflows. To overcome these shortcomings, the Software-Defined Storage paradigm emerged as
a compelling solution to ease data and configuration management, while improving end-to-end control
functionality of conventional storage infrastructures. This chapter presents the fundamentals of the SDS
paradigm and clarifies unclear aspects and misconceptions of the field. First, we identify and discuss the
distinctive design principles and characteristics of an SDS-enabled infrastructure (§2.1—82.4). We then
propose a taxonomy and classification of SDS systems, and survey existing solutions grouped by storage
infrastructure (§2.5.1), control strategy (§2.5.2), and enforcement strategy (§2.5.3). Finally, we discuss
open research challenges of the field (§2.6).

This chapter focuses on programmable and adaptable SDS systems. Namely, we do not address the
design and limitations of either specialized storage systems (e.g., file systems, block devices, object stores)
or other fields of storage research (e.g., deduplication [172], confidentiality [58], device failures [190]).
Autonomic computing systems are also out of the scope of this thesis [98]. Moreover, while other software-
defined approaches share similar design principles, they are out of the scope of this work, including but
not limited to networking [115], OS [22, 174], data centers [7, 184], cloud [104], flash [165, 193],
security [114, 216], and Internet of Things (loT) [23, 103].

2.1 Overview

Software-Defined Storage is an emerging storage paradigm that breaks the vertical alignment of conven-
tional storage infrastructures by reorganizing the 1/0 stack to decouple I/0 workflows into two planes of
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Figure 2.1: Layered view of the SDS planes of functionality, comprehending both control and data tiers.

functionality — control and data.! Figure 2.1 depicts a layered view of such design. The control plane
provides the control building blocks used for designing system-wide control applications [84, 107, 205,
211]. It holds the intelligence of the SDS system and consists of (1) a logically centralized controller
(§2.3), which acts as a global coordinator with system-wide visibility and centralized control, and (2) sev-
eral control applications (§2.4) built on top. The data plane (§2.2) is composed of several stages that
employ specific /O mechanisms over requests (e.g., rate limiters, caches, encryption and compression
schemes) [50, 143, 211]. Communication between components is established through specialized in-
terfaces, namely Northbound, Southbound, and Westbound/Eastbound interfaces. SDS inherits legacy
concepts from SDN [115] and applies them to storage-oriented environments, bringing new insights to
the storage stack, such as improved system programmability and extensibility [175, 194], fine-grained
resource orchestration [143, 158], and end-to-end QoS, maintainability, and flexibility [107, 211].

Unlike traditional storage solutions, which require designing and implementing individual control tasks
at each 1/0 layer such as coordination, metadata management, and monitoring, SDS brings a general
system abstraction where control primitives are implemented at a dedicated component. This separation
of concerns breaks the storage control into tractable pieces, offering the possibility to programme 1/0
resources and provide end-to-end adaptive control over large-scale storage infrastructures.

While the storage industry defines SDS as a storage architecture that simply separates software from
vendor lock-in hardware [92, 100], existing SDS solutions are more comprehensive than that. As such,
we define a SDS-enabled system as a storage architecture with four main principles.

e Storage mechanisms are decoupled from the policies that govern them. Instead of
designing monolithic, custom-made services at each 1/0 layer, SDS decouples the control logic

(policy) from the storage mechanism to be employed over data.?

¢ Storage mechanisms are moved to a programmable data plane. |/0 mechanisms (e.g.,

1We refer to the term workflow (or flow) as the connection between two 1/0 layers through where requests are transmitted.
2We refer to the term services as a set of |/0 mechanisms employed over requests to achieve a given policy, such as
dynamic rate limiting, caching, load balancing, and more.
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Figure 2.2: SDS-enabled architecture materialized on top of a general-purpose multi-tenant storage infras-
tructure. Compute servers are virtualized and host virtual machines interconnected to the hypervisor by
virtual devices, namely virtual Network Interface Controller (NIC) and virtual hard disk. Storage servers
comprehend general network and storage elements.

rate limiters, compression and encryption schemes) to be employed over |/0 workflows are imple-

mented over programmable structures, and fine-tuned to meet user-defined requirements.

¢ Control logic is moved to an external control plane. Control logic is implemented at a
logically or physically decoupled control plane, and properly managed by applications built on top.

* Storage policies are enforced over I/0 flows. Service enforcement is data-centric rather
than system-centric, being employed over distinct layers and storage resources along the |/0 path.

In an SDS-enabled architecture, such as depicted in Figure 2.2, control applications are the entry
point of the control environment (Figure 2.2: CtrlApp; and CtrlApps) and the de facto way of SDS users
(e.g., system designers, system administrators) to express different storage policies to be enforced over
the storage infrastructure. Policies are sets of rules that declare how 1/0 workflows are managed, being
defined at control applications, disseminated by controllers, and installed at data plane stages. For exam-
ple, to ensure sustained |/0 performance, SDS users may define minimum disk bandwidth guarantees for
a particular set of tenants [211], or define request prioritization to ensure X" percentile latency Service
Level Objective (SLO) [128]. Since controllers share a centralized view, applications resort to centralized
algorithms to implement the control logic, which are simpler and less error prone than designing the cor-
responding decentralized versions [211]. The scope of applications (and policies enforced by these) is
broad, ranging from performance-related services [139, 175, 211], to resource and data management
functionalities [143, 194, 200]. These user-defined policies are shared between applications and con-
trollers through a Northbound interface, which defines an instruction set that abstracts the distributed

control environment into a centralized one.
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Controllers continuously monitor the status of the storage infrastructure, including data plane stages,
storage devices, and other storage-related resources, and orchestrate the overall storage services holis-
tically. Having centralized control enables an efficient enforcement of policies and simplifies storage
configuration [211]. Policies are handled by a planning engine that translates centralized policies into
stage-specific rules and operation logic, which are disseminated to the targeted data plane stages and syn-
chronized with other controllers. Communication with the data plane (control flow) is achieved through a
Southbound interface (illustrated in Figure 2.2 with gray-toned arrows), that allows controllers to exercise
direct control over data plane stages through policy dissemination and monitoring. Moreover, a West-
bound/Eastbound interface establishes the communication between controllers to ensure coordination
and agreement [84, 205].

The data plane is a multi-stage component distributed along the 1/0 path (Figure 2.2: Stage; to
Stage,) that holds fine-grained storage services dynamically adaptable to the infrastructure status. Each
stage employs a distinct storage service over intercepted data flows, such as performance management
(e.g., prioritization) [128, 206], data management (e.g., compression, encryption) [175, 177], and data
routing (e.g., flow customization) [101, 205]. For all intercepted requests, any matching policy will employ
the respective service over filtered data, which will then be forwarded to the rest of the execution path (e.g.,
Figure 2.2: data flow between File System <> Stage; <> Block Device).

2.2 Data Plane

Data plane stages are multi-tiered components distributed along the /0 path that perform storage-related
operations over incoming /O requests. Stages are the end-point of SDS systems and abstract complex
storage mechanisms (e.g., rate limiters, encryption and compression schemes, caches) into a seamless
design that allows user-defined policies to be enforced over I/O workflows. Each of these stages estab-
lishes a flexible enforcement point for the control plane to specify fine-grained control instructions. As
presented in Figure 2.2, stages can be transparently placed between two layers of the |/0 stack, acting as
a middleware (Stage;, Stages, and Stage4), or within an individual I/0 layer (Stage;). Moreover, stages
comprehend I/0 interfaces to handle the 1/0 workflows, and a core that encompasses the storage primi-
tives to be enforced over such workflows. To preserve the |/0 stack semantics, inputand output interfaces
marshal and unmarshal data workflows to be both enforced at the core and correctly forwarded to the
next I/0 layer. For instance, SafeFS exposes a Portable Operating System Interface (POSIX) compliant
interface to enable the transparent enforcement of policies over file systems [175]. The stage core com-
prises a (i) policy store to orchestrate enforcement rules installed by the control plane (similar to a SDN
flow table [151]); an (ii) I/O filter, that classifies and differentiates requests based on the installed policies;
and (iii) an enforcement structure that employs the respective storage features over filtered requests. A

thorough description of this component is presented in §2.2.2.

While overlooked in current SDS literature, the Southbound interface is the de facto component that
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defines the separation of concerns in software-defined systems. This interface is the bridge between
control and data planes, and establishes the operators that can be used to directly control each stage
(e.g., policy propagation, share monitoring information, fine-tune storage mechanisms). It exposes to the
control plane an API that defines the instructions a stage understands, so it can be configured to perform
local decisions (e.g., manage storage policies, fine-tune configurations). Such an API can be represented
in a variety of formats. For example, IOFlow [211] and sRoute [205] use tuples comprising human-friendly
identifiers (e.g., operation type, hostname, stage identifier) to control stages, while Crystal [84] resorts to
a system-agnostic domain-specific language to simplify stage administration. Moreover, the Southbound
interface acts as a communication middleware, and defines the communication model between these
two planes of functionality (e.g., publish-subscribe, Remote Procedure Call (RPC), Representational State
Transfer, Remote Direct Memory Access).

Despite the SDN influence, the divergence between storage and networking areas has driven SDS
to comprehend fundamentally different design principles and system properties. First, each field targets
distinct stack components, leading to significantly different policy domains, services, and data plane de-
signs. Second, contrarily to an SDN data plane, whose stages are simple networking devices specialized
in packet forwarding [115], such as switches, routers, and middleboxes, SDS-enabled stages hold a vari-
ety of storage mechanisms, leading to a more comprehensive and complex design. Third, the simplicity
of SDN stages eases the placement strategy when introducing new functionalities to be enforced [115],
while SDS ones demand accurate enforcement points, otherwise it may disrupt the SDS environment and
introduce a significant performance penalty.

2.2.1 Properties

We now define the properties that characterize SDS data planes, namely programmability, extensibility,
stage placement, transparency, and policy scope. These properties are not mutually exclusive (i.e., a data
plane can comprise several of them), and are contemplated as part of the taxonomy for classifying SDS
systems (§2.5).

Programmability. Programmability refers to the ability of a data plane to adapt and programme exist-
ing storage mechanisms provided by the stage’s enforcement structure (e.g., stacks, queues, storlets) to
develop fine-tuned and configurable storage services [194]. Specifically, in SDS data planes, programma-
bility is usually exploited to ensure |/0 classification and differentiation [84, 211], service isolation and
customization [107, 205, 206], and development of new storage abstractions [194]. Conventional stor-
age infrastructures are often tuned with monolithic setups to handle multiple applications with time-varying
requirements, leading them to experience the same service level [8, 55]. SDS programmability prevents
this by adapting data plane stages to provide differentiation of I/0 requests and ensure service isolation
(further description of this process in §2.2.2). Moreover, programmable storage systems can ease service
development by re-purposing existing abstractions of the storage stack, and exporting the configurability
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aspect of specialized storage systems to a more generalized environment, i.e., expose runtime configura-
tions (e.g., replication factor, cache size, queue depth) and existing storage subsystems of specific services
(e.g., load balancing, durability, metadata management) to a more accessible environment [194]. For ex-
ample, Mantle [195] decouples cache management mechanisms of storage systems into independent
policies so they can be dynamically adapted and re-purposed.

Extensibility. Extensibility refers to how easy is for data plane stages to support additional storage mech-
anisms or customize existing ones. An extensible data plane comprises a flexible and general-purpose
design suitable for heterogeneous storage environments, and allows a straightforward implementation of
storage mechanisms. Such a property is key for achieving a comprehensive SDS environment, capable of
attending different requirements of a variety of applications, as well as to broad the policy spectrum (i.e.,
number and type of policies) supported by the SDS system. The extensibility of the data plane strongly
relies on the actual implementation of its architecture. In fact, as presented in the literature, highly exten-
sible data plane implementations are built atop flexible and extensible by design storage systems (e.g.,
File System in User-Space (FUSE) [132], OpenStack Swift [11]). For instance, SafeFS [175] allows devel-
opers to extend its design with new self-contained storage services (e.g., encryption, replication, erasure
coding) without requiring changing its core codebase. However, behind this flexible and generic design,
lies a great deal of storage complexity that if not properly assessed can introduce significant performance
overhead. On another hand, an inextensible data plane typically holds a rigid implementation and hard-
wired storage mechanisms, tailored for a predefined subset of storage policies. Such a design bears a
more straightforward and fine-tuned system implementation, and thus comprehends a more strict policy
domain only applicable to a limited set of scenarios.

Placement. The placement of data plane stages refers to the overall position on the 1/0 path a stage
can be deployed (for instance, as depicted in Figure 2.2, Stage; is placed between a file system and block
device, while Stage, is placed within the hypervisor). It defines the control granularity of SDS systems and
is a key enabler to ensure efficient policy enforcement. Each stage is considered as an enforcement point.
Less enforcement points lead to a coarse-grained treatment of I/O workflows, while more points allow
for a fine-grained management. Since the control plane has system-wide visibility, broadening the en-
forcement domain allows controllers to accurately determine the most suitable place to enforce a specific
storage policy [211]. Improper number and placement of stages may disrupt the control environment,
and therefore, introduce significant performance and scalability penalties to the overall infrastructure.

Depending on the context and size of the storage infrastructure, stages are often deployed individually
i.e., presenting a single enforcement point to the SDS environment. This single-point placement is often
associated to local storage environments, being tightly coupled to a specific |/O layer or storage compo-
nent, as in SafeFS [175] (file system) and Mesnier et al. [155] (block layer). However, this setting narrows
the available enforcement strategies, which may lead to control inefficiencies and conflicting policies (e.g.,
enforcing X' percentile latency under throughput-oriented services).

A similar placement pattern can be applied in distributed settings. Distributed placement of stages
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(i.e., distributed single-points) is associated to distributed storage components of an individual 1/0 layer
(e.g., distributed file systems [143], object stores [84, 158]). In this scenario, each enforcement point
is a data plane stage deployed at the same 1/0 layer as the others. In contrast to the prior placement
strategy, this design displays more enforcement points for the control plane to decide the enforcement
strategies. It is, however, still limited to a particular subset of storage components and may suffer similar

drawbacks as the single-point approach.

Another placement alternative is multi-point data plane stages, which can be placed at several points
of the I/0 path, regardless the /0 layer [205, 206, 211]. This design provides a fine-grained control
over stages and is key to achieve end-to-end policy enforcement. However, it can introduce significant
complexity to the data plane development, and often requires direct implementation over I/0 layers i.e.,

following a more intrusive approach.

Transparency. The transparency of a data plane reflects on how seamless is its integration with 1/0
layers. A transparent stage is often placed between storage components and preserves the original I/0
flow semantics [175]. For instance, Moirai [206] provides direct control over the distributed caching
infrastructure, being applicable across different layers of the I/0 path. Such an integration however may
require substantial marshaling and unmarshaling activities, directly impacting the latency of I/0 requests.
Contrarily, an intrusive stage implementation is tailored for specific storage contexts and can achieve
higher levels of performance since it does not require semantic conversions [84, 211]. However, this
may entail significant changes to the original codebase (e.g., modify internal and external APIs, adapt
internal system components and data structures), imposing major challenges in developing, deploying,
and maintaining such stages, ultimately reducing its flexibility and portability.

Policy scope. The policy scope of a data plane categorizes the different storage mechanisms and ob-
jectives employed over I/0 requests. SDS systems can be applied in different storage infrastructures to
achieve several purposes, namely performance, security, and resource and data management optimiza-
tions. To cope with these objectives, SDS systems comprehend a large array of storage policies cate-
gorized in three main scopes, namely performance management, data management, and data routing.
Noticeably, the support for different scopes relies on the data plane implementation and storage context.
Performance management mechanisms are associated to performance-related policies to ensure isolation
and QoS provisioning [107, 205, 206, 211] (e.g., cache management, bandwidth aggregation, |/0 priori-
tization). Data management assembles mechanisms oriented to the management of data requests, such
data reduction [84, 158], security [175], and redundancy [21, 50]. Data routing primitives encompass
routing mechanisms that redefine the data flow, such as |/O path customization [205], replica placement
strategies [226], and data staging [101]. Even though mainly applied in networking contexts [115], data
routing mechanisms are now contemplated as another storage primitive in order to dynamically define the

path and destination of an |/0 workflow at runtime [205].
As SDS systems are employed over different storage scenarios, data planes can include additional
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Figure 2.3: SDS data plane stage designs, namely (a) Stack-, (b) Queue-, and (c) Storlet-based.

properties (e.g., dependability, simplicity, generality) that portray other aspects of SDS [112, 211]. How-
ever, as they are not covered by the majority of systems, they are not contemplated in the taxonomy
presented in this chapter. One such property is dependability, which refers to the ability of a data plane
to ensure availability and tolerate faults of the storage mechanisms implemented at stages, regardless of
employing performance management, data management, or data routing objectives [84, 211].

2.2.2 Stage Design

We now categorize data plane stages in three main designs. Each design respects to the internal orga-
nization of a stage’s enforcement structure, regardless of being applicable at different points of the 1/0
path. Figure 2.3 illustrates such designs, namely (a) Stack-, (b) Queue-, and (c) Storlet-based data plane
stages. These designs are contemplated as part of the taxonomy for classifying SDS systems (§2.5).

Stack-based stages. Stack-based data plane stages provide an interoperable layer design where lay-
ers correspond to specific storage mechanisms and are stacked according to installed policies [175].
This design enables an independent and straightforward layer development, introducing a modular and
programmable storage environment. The organization of layers is established by the control plane, and
may result in a number of stacking configurations tuned to satisfy the installed policies and attend the
I/0 requirements. Figure 2.3 (a) depicts an abstract design of a stack-based data plane stage. It com-
prehends a four-layer stacking configuration, each with a specific storage service to be applied over 1/0
workflows, namely malware scanning, caching, compression, and encryption. The I/O workflow follows
a passthrough layout, ensuring that all requests traverse all layers orderly, such that each layer only re-
ceives requests from the layer immediately on top, and only issues requests to the layer immediately
below. SafeFS [175], for example, provides a framework for developing stackable storage services by
re-purposing existing FUSE-based file system implementations to employ different policies over I/0 flows,
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such as encryption and erasure coding.

Stacking flexibility is key to efficiently reuse and adapt layers to different environments. However,
this vertical alignment may limit the ability to enforce specific policies (e.g., data routing), limiting the
available policy spectrum exposed to the control plane. Current stack-based solutions are attached to
specialized 1/0 layers and usually deployed at lower levels of the |/0 stack, such as file systems and block
devices [158, 175].

Queue-based stages. Queue-based data plane stages provide a multi-queue storage environment,
where queues are organized to employ distinct storage functionalities over /0 requests [211]. Each queue
is a programmable storage element that comprehends a set of rules to regulate traffic differentiation and
define its storage properties. Such properties govern how fast queues are serviced, employ specific actions
over data, and forward 1/0 requests to other points of the I/O path. Examples of such properties include
the use of token-buckets [33], priority queues [33, 65], and scheduling mechanisms [81, 199] (these
properties are further detailed in §2.5.3). Figure 2.3 (b) depicts the design of a queue-based data plane
stage. Incoming requests are inspected, filtered, and assigned to the corresponding queue. For instance,
IOFlow [211] provides programmable queues to employ performance and routing mechanisms over virtual
instances and storage servers, enabling end-to-end differentiation and prioritization of I/0 workflows.

Such a design makes stages more flexible and modular, and simplifies their overall orchestration [211].
However, as demonstrated by complementary research fields [88, 89], queue structures are primarily
used to apply performance-oriented policies. As such, trading customization over a more tailored design
turns the integration and extension of alternative storage services a challenging endeavor.

Storlet-based stages. Storlet-based data plane stages abstract storage functionalities into programmable
storage objects (storlets) [84, 194]. Leveraging from the principles of active storage [182] and OpenStack
Swift Storlets [164], a storlet is a piece of programming logic that can be injected into the data plane
stage to perform custom storage mechanisms over incoming I/0 requests. This design promotes a flex-
ible and straightforward storage development, and improves the modularity and programmability of data
plane stages, fostering reutilization of existing programmable objects. Figure 2.3 (c) depicts the abstract
architecture of a storlet-based data plane stage. Stages comprehend a set of pre-installed storlets that
comply with initial storage policies. Policies and storlets are kept up-to-date to ensure consistent actions
over requests. Moreover, the stage provides several storlet-made pipelines to efficiently enforce storage
mechanisms over |/0 workflows. At runtime, 1/0 flows are intercepted, filtered, classified, and redirected
to the respective pipeline. Crystal [84], for example, provides a storlet-enabled data plane that allows
system designers run customized performance and data management services over /0 requests.

The seamless development of storlets ensures a programmable, extensible, and reusable SDS envi-
ronment. However, as the policy scope increases, it becomes harder to efficiently manage the storlets at
stages. Such an increase may introduce significant complexity in data plane organization and lead to per-
formance penalties on pipeline construction, pipeline forwarding, and metadata and storlet management.
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2.2.3 Summary

The SDS data plane is a multi-stage component distributed along the 1/0 path, where each stage mediates
the 1/0 workflows between two layers. Stages intercept I/0 requests and enforce specific storage mech-
anisms (e.g., rate limiters, encryption and compression schemes, caches) to comply with the specified
policies. Moreover, stages communicate with the control plane through a southbound interface. Inter-
nally, stages can be organized with different designs, including stack, queue, and storletbased. Further,
depending on the infrastructure requirements and policies to be enforced, stages can expose different
properties, such as programmability, extensibility, placement, transparency and policy scope.

2.3 Control Plane — Controllers

Similarly to SDN, SDS control planes provide a logically centralized controller with system-wide visibility
that orchestrates a number of data plane stages. However, even though identical in principle, the diver-
gence between SDN and SDS research objectives may impact the entailed complexity on designing and
implementing production-quality SDS systems. First, the introduction of a new (storage) functionality to
employ over |/0 workflows cannot be arbitrarily assigned to stages, since it may introduce significant per-
formance penalties and compromise the enforcement of other policies. For instance, SDN data planes are
mainly composed with simple forwarding services, while SDS data planes may comprehend performance
functionalities, which are sensitive to |/0 processing along the 1/0 path, but also data management ones,
which entail additional computation directly impacting the processing and propagation time of |/0 work-
flows. Thus, controllers are required to perform extra computations to ensure the efficient placement of
storage features, preventing policies to conflict with each other, and ensuring a correct execution of the
SDS environment. Second, since the domain of both 1/0 mechanisms and policies is broader than in
SDN, ensuring transparent control and policy specification introduces increased complexity to the design
of controllers (e.g., decision making, service placement).

As depicted in Figure 2.1, controllers are the mid-tier of a SDS system and provide the building
blocks for orchestrating data plane stages according to the actions of control applications built on top.
Despite distributed, the control plane shares its control logic through a logically centralized controller that
comprehends system-wide visibility. This eases the design and development of general-purpose control
applications, provides a simpler and less error prone development of control algorithms, ensures an
efficient distribution and enforcement of policies, and enables data plane stages to be adjusted holistically
(i.e., encompassing the global storage environment) [84, 101, 205, 211, 226]. Unless stated otherwise,
we define a controller as a logically centralized component, even though physically distributed. A controller
can be partitioned in three functional modules, namely a metadata store, a system monitor, and a planning
engine, as illustrated in Figure 2.4 (a). Each of these modules comprises a particular set of control
features shared between controllers, or designed for a specific control device. Moreover, these modules
are programmable and allow SDS users (e.g., system designers, system administrators) to install, at

18



2.3. CONTROL PLANE — CONTROLLERS

] Northbound Interface :
[lemeeemrerrscee NI Inferece S = stage

:'- ': share storage view handle storage policies - -: g g
B ' : | Emel | e
i 1 &,] Metadata Store | £,/ Planning Engine Do H E
N £ . O o [[caw)e—g £
Lol S & |8 ->|:||:| 2im | (camjol| % [eg8
' [ - ~ [ ! H .
|8 e 8 & = |l | ooo L858
E “ | Topology  Policies  Metrics | & Policy Translation % 18 _ _ -
=1 1 I < 15 (b) Controllers organized in a flat distribution.
:'g [ store and get metrics S !
131 8 ' . g 5!
181§ . g 13!
1% £,  System Monitor = core controller
=!8 i Enforcement Plan AN (3 [M— A — L E——— N E—
HEE ) HE
" S| memo |

S — yo

: % Metrics Automation Control Algorithms oA oo S A L =
N x T K T b ! ' * ' !
. colllsct data plane metr*ics eLnforce pal/‘c/ets Lol | stage | | stage | | stage| | stage | | stage |

Lo Southbound Interface ]

________________________________________________________________________

(a) Internal organization of a SDS controller. (¢) Controllers organized in a hierarchical

distribution.

Figure 2.4: SDS controllers architecture: (a) presents the organization of the internal components of a
SDS controller; (b) and (c) depict the design of SDS control plane controllers, namely Flatand Hierarchical.

runtime, custom control actions to employ over the system (e.g., control algorithms for accurate policy
enforcement, collection of monitoring metrics).

The metadata store holds the essential metadata of the storage environment and ensures a synchro-
nized view of the infrastructure. As depicted in Figure 2.4 (a), different types of metadata are stored in
separate instances, namely topology, policies, or metrics. The topology instance maintains a topology
graph that comprehends the distribution of data plane stages, along the assigned storage mechanisms
and information about the resources of each node a stage is deployed (e.g., available storage space, Cen-
tral Processing Unit (CPU) usage, Process |dentifier (PID), hostname). For instance, sRoute’s controller
maintains an up-to-date topology graph with the capacity of physical resources, and shares it with control
applications to define accurate storage policies [205]. The policies instance holds the storage policies
submitted by applications, as well as those installed at data plane stages. The metrics instance persists
digested monitoring metrics and statistics of both control and data flows, which are used to adapt data
plane stages to meet applications’ requirements. Further, to ensure a dependable SDS environment, this
metadata is usually synchronized among controllers [205, 211].

The system monitor collects, aggregates, and transforms unstructured storage metrics and statistics
into general and valuable monitoring data [84, 94, 226]. It captures relevant metrics of the physical
storage environment (e.g., device and network performance, available storage space, Input/Ouput Oper-
ations per Second (IOPS), bandwidth usage) from controllers, data plane stages, and existing monitoring
tools (e.g., dstat [167], /proc file system [166]), ensuring that it comprises a clear understanding on
the performance of the storage stack. Such metrics are then analyzed and correlated, bringing significant
insights about the system status that allow the controller to optimize the infrastructure by (re)configuring
data plane stages, and assist other modules in policy enforcement and feature placement activities. For
example, Mirador [226] collects device and network load and traces workload profiles to build an accurate
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model of the infrastructure to assist in workflow customization and data placement enforcement.

The planning engine implements the control logic responsible for policy translation, policy enforce-
ment, and data plane configuration. Policies submitted by control applications are parsed, validated, and
translated into stage-specific rules, which will be installed at the respective data plane stage. Policy en-
forcement is achieved through different control algorithms and strategies that specify how the data plane
handles |/0 workflows and define the most suitable place for policies to be enforced [211]. Examples
of such control algorithms and control strategies include proportional sharing, I/0 isolation and priority,
feedback control, and performance modeling (further detail in §2.5.2). Both translation and enforcement
operations may lead the controller to interact with a single data plane stage (e.g., to install a particular rule)
or a number of stages to perform distributed enforcement, such as cluster-wide bandwidth aggregation and
|/O prioritization [206, 211]. Furthermore, the planning engine can also exercise automation operations
without additional application input, ranging from simple management activities such as increasing or de-
creasing the number of controllers, to more complex tasks (e.g., fine-tuning storage policies, reconfiguring
data plane stages) [84].

To provide a seamless integration with the remainder SDS layers, the controller connects to a north-
bound and a southbound interfaces to interact with control applications and data plane stages, respec-
tively. Similar to other software-defined approaches, the control plane comprehends a network of con-
trollers connected through a westbound/eastbound interface, as illustrated in Figures 2.1 and 2.4 (a).
This interface defines the instruction set and communication protocols between controllers, being used
for synchronization, exchange data, fault tolerance, monitoring, and depending on the control plane archi-
tecture, assign control tasks to other controllers (further description is presented in §2.3.2). Further, this
interface aims at achieving interoperability between different controllers [115]; however, despite its clear
position in the SDS environment, current literature does not explore nor details about such an interface.

2.3.1 Properties

Similarly to other software-defined approaches, designing and implementing production-quality SDS sys-
tems requires solving important challenges at the control plane [112]. We now define the properties that
characterize SDS controllers, namely scalability, dependability, and adaptability, which are also contem-
plated as part of the taxonomy for classifying SDS systems (§2.5).

Scalability. Scalability refers to the ability of a control plane to efficiently orchestrate and monitor a
number of data plane stages. Similarly to SDN, the control plane can either be physically centralized or
distributed [19]. A physically centralized control plane consists of a single SDS controller that orchestrates
the overall storage infrastructure, which is an attractive design choice in terms of simplicity [162, 201,
215]. However, physical control centralization imposes severe scalability, performance, and dependability
requirements that are likely to exhaust and saturate underlying system resources, largely dictating the end
performance of the storage environment. As the amount of stages increases so does the control traffic
destined towards the centralized controller, bounding the system performance to the processing, memory,
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and network power of this single control unit. Hence, despite the obvious limitations in scale and reliability,
such a design may be only suitable to orchestrate small-to-medium storage infrastructures [115].

Production-grade SDS controllers must be designed to attend the scalability, performance, and de-
pendability requirements of today’s production storage systems, meaning that any limitations should be
inherent to the overall infrastructure and not from the actual SDS implementation. Thus, physically dis-
tributed controllers can be scaled up to attend such requirements. While sharing a logically centralized
service, multiple connected controllers orchestrate the storage infrastructure by sharing control respon-
sibility, and thus alleviating overall control load. Leveraging from existing classifications in the SDN lit-
erature [19], distributed SDS controllers can follow a flat or a hierarchical distribution (§2.3.2). Flat
designs (Figure 2.4 (b)) imply horizontal control partitioning to provide a replicated control service, form-
ing a reliable, fault tolerant, highly available cluster of controllers [84, 211, 226]. On the other hand,
hierarchical-based designs (Figure 2.4 (c)) imply the vertical control partitioning to provide a scalable SDS
control plane [107, 205].

Dependability. Dependability refers to the ability of a control plane to ensure sustained availability,
resiliency, and fault tolerance of the control service [13]. Physically centralized controllers represent a
single point of failure, leading to the unavailability of the control service upon a failure. As a result, the
overall system becomes unsupervised, incapable of regulating incoming storage policies and orchestrate
the data plane tier. The system should handle failures gracefully, avoiding single points of failure and
enabling fault tolerance mechanisms. Similarly to SDN [24, 32, 112], physically distributed SDS solu-
tions provide coordination facilities for detecting and recovering from control instance failures [84, 205,
226]. In this model, controllers are added to the system to form a replicated, fault tolerant, and highly
available SDS environment. Moreover, existing distributed controllers consider the different trade-offs of
performance, scalability, and state consistency, and provide distinct mechanisms to meet fault tolerance
and reliability requirements. For instance, controllers may assume a clustered format to achieve fault
tolerance through active or passive replication strategies by resorting to state machine replication [122,
163] or implementing a primary-backup approach where one main controller orchestrates all data plane
elements while remainder control instances are used for replication of the control service [31].

While some solutions comprehend a strong consistency model to ensure correctness and robustness
of the control service, others resort to more relaxed models where each controller is assigned to a subset
of the storage domain and holds a different view of the infrastructure. Regarding control distribution,
flat controllers are designed to ensure sustained resilience and availability [84, 211], while hierarchical
controllers focus on the scalability challenges of the SDS environment [101, 205].

Depending on the storage context, the dependability offered by the control plane can be coupled to
a specific I/0 layer. Specifically, as some SDS systems are directly implemented over existing storage
systems, such as Ceph (e.g., Mantle [195], SuperCell [215]) and OpenStack (e.g., Crystal [84]), the
control plane’s dependability can be bounded by the dependability of the respective storage system.
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Adaptability. Adaptability refers to the ability of a control plane to respond, adapt, and fine-tune en-
forcement decisions under requirements that change over time. The high demand for virtualized services
has driven data centers to become extremely heterogeneous, leading storage components and data plane
stages to experience volatile workloads [8, 55, 211]. Moreover, designing heterogeneity-oblivious SDS
systems with monolithic and homogeneous configurations can severely impact the storage infrastructure,
hindering the ability to accurately enforce policies [84].

Therefore, SDS controllers must comprehend a self-adaptive design, capable of being dynamically
adjusted and tuned (e.g., policy values, data plane stage configurations) to provide responsive and ac-
curate enforcement decisions [84]. As enforcement strategies directly impact /0 workflows, employing
self-adaptive and autonomous mechanisms over SDS controllers brings a more accurate and dynamic
enforcement service. Moreover, due to the fast changing requirements of the storage environment, data
plane configurations rapidly become subpar, and thus, automated optimizations of data plane resources
is key to ensure efficient policy enforcement and resource usage. Current strategies to provide adaptable
SDS control include control-theoretic mechanisms, such as feedback controllers that orchestrate system
state based on continuous monitoring and data plane tuning [108, 139, 211], and performance modeling,
such as heuristics [225], linear programming [158, 248], and machine learning [107] techniques (further
detail on these strategies is presented in §2.5.2).

2.3.2 Controller Distribution

SDS literature classifies the distribution of controllers as logically centralized, despite being physically dis-
tributed for the obvious reasons of scale and resilience [205, 211]. We now categorize distributed control
planes regarding their controller distribution (topology). Figure 2.4 illustrates such designs, namely (b)
flat and (c) hierarchical controllers. Both designs are contemplated as part of the taxonomy for classifying
SDS control elements (§2.5).

Flat. Flat control planes provide a horizontally partitioned control environment, where a set of intercon-
nected controllers act as a coordinated group to ensure a reliable and highly available control service while
preserving logical control centralization. Depending on the infrastructure requirements (e.g., performance,
resiliency), controllers may be organized differently. For instance, some implementations may provide a
cluster-like distribution, where a single controller orchestrates the overall storage domain, while others
are used as backups that can take over in case the primary fails. Under this scenario, the centralized
controller handles all stage-related events (e.g., collect reports and metrics), disseminates policies, gener-
ates comprehensive enforcement plans, and enforces policies. Moreover, the control plane provides the
coordination facilities to ensure fault tolerance and strong consistency by relying on state machine repli-
cation [205, 226] or simple primary-backup strategies [31]. Mirador [226], follows such an approach,
by resorting to a coordination service to ensure a highly available control environment [99]. This design
allows distributed controllers to comprise strong consistency properties, ensure high availability of the
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control service, and ease control responsibility. However, since control remains centralized, this cluster-
based distribution falls short when it comes to scalability, limiting its applicability to small-to-medium sized
storage infrastructures [211].

Other solutions, as depicted in Figure 2.4 (b), may provide a network-like flat control plane, where each
controller is responsible for a subset of the data plane [84, 112]. Namely, each controller orchestrates a
different part of the infrastructure, synchronizing its state with remainder controllers with strong or eventual
consistency mechanisms. Upon the failure of a controller, another may assume its responsibilities until
it becomes available. For instance, Crystal [84] holds a set of autonomous controllers, each running a
separate control algorithm to enforce different points of the storage stack. This network-like design ensures
an efficient control service and provides a flexible consistency model that allows the SDS system to scale
to larger environments than cluster-based approaches. However, this control model hardens the control
plane’s ability to share a logical centralized setup and synchronized view to control applications, hindering
its applicability to large-scale production storage infrastructures. Further, with the emergence of novel
computing paradigms composed of thousands of nodes, such a serverless cloud computing [188] and

Exascale supercomputers [61], this design may hold severe scalability and performance constraints.

Hierarchical. The continuous communication between controllers and data plane stages, through en-
forcement of policies and statistic collection, hinders the scalability of the control plane [107, 205]. To
alleviate the load on the centralized controller, both control and management workflows must be handled
closer to data plane resources, and minimized as possible without compromising system correctness.
Thus, similarly to distributed SDN controllers [102, 235, 236], hierarchical distributions address such
a problem by organizing SDS controllers in a hierarchical disposition [101, 107, 205]. Controllers are
hierarchically ranked and grouped by control levels, each of them respecting to a cumulative set of control
services. This approach distributes the control responsibility to alleviate the load imposed over centralized

services, enabling a more scalable SDS control environment.

As depicted in Figure 2.4 (c), the control plane is vertically partitioned into core controllers and sub-
controllers. Core controllers are placed at the top of the hierarchy, and comprehend overall control power
and system-wide visibility. While maintaining a synchronized state of the SDS environment, core controllers
manage control applications, and orchestrate both data plane and sub-controller elements. Moreover,
core controllers share part of their responsibilities with underlying tiers, propagating the control logic
hierarchically. Sub-controllers are placed closer to data plane stages and comprehend a subset of control
services. Each of these controllers manages a part of the data plane, as well as the control activities that
do not require global knowledge nor impact the overall state of the control environment. For example,
Clarisse [101] implements a hierarchical control plane over HPC infrastructures that groups control activity
through global, application, and node controllers. Since core controllers hold global visibility, they perform
accurate and holistic decisions over the SDS environment. However, maintaining a consistent view is
costly, causing significant performance overhead even when performing simple and local decisions [101,
205]. On the other hand, sub-controllers are tailored for specific control operations, providing faster and
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Table 2.1: Classification of SDS control applications regarding storage objectives.

\ Cloud | HPC | Application-specific
Perf. guarantees [128, 201, 205, 206, 211, 241, 248] [40, 107] [84, 108, 143, 155, 222]
Performance Prioritization [128, 206, 208, 211, 225, 241, 247, 248] | [101, 107] [143, 155, 222]
Perf. control [139, 158, 200, 206, 208, 211, 247] [107] [84, 143, 194, 215, 222]
Fairness [201] [143, 155]
Resource Cache management [205, 206] [84, 195]
Management Device management [158] [50, 215]
Flow customization [139, 205, 225] [101] [21, 226]
Data Data redundancy [177] [21, 50, 175]
M Data reduction [158, 177] [50, 84]
anagement ¢, piacement [158, 162, 177, 205] [101] [21, 194, 195, 215, 226]
(Meta)Data org. [162, 177] [21, 194, 195]
. Encryption [177] [175]
Security Malware scanning [211]
Other Storage Objectives | [158, 162, 177] | [101] | [21, 175, 194]

fine-grained local decisions over stages. In case a sub-controller cannot perform certain control actions
over its elements, it passes such responsibility to higher ranking controllers.

Communication between control instances is achieved through the westbound/eastbound interface,
and is used for establishing the control power and policy dissemination, periodic state propagation for
synchronization, and health monitoring events.

2.3.3 Summary

The SDS control plane provides a logically centralized controller with system-wide visibility that holisti-
cally orchestrates all data plane stages. Controllers can be physically distributed, and follow a flat or
hierarchical-based distribution. Control applications are built on top of controllers and interact through
a northbound interface. Controllers continuously communicate with data plane stages, through a south-
bound interface, for collecting |/O statistics and enforcing stage-specific rules to ensure storage policies
are met at all times. Communication between controllers is established through a westbound/eastbound
interface. Further, depending on the infrastructure requirements, controllers can have different properties,
such as scalability, dependability, and adaptability.

2.4 Control Plane — Control Applications

Control applications are the entry point of the SDS environment and the de facto way of expressing how /0
workflows should operate. Applications exercise direct control over controllers by defining the control logic
through policies and control algorithms, which are further translated into fine-grained stage-specific rules
to be employed over |/0 requests. Examples of control algorithms include proportional sharing, prioriti-
zation and isolation, and shares and reservations, which are further detailed in §2.5.2. Similar to other
software-defined approaches [104, 115], control applications introduce a specification abstraction into

24



2.5. SURVEY OF SOFTWARE-DEFINED STORAGE SYSTEMS

the SDS environment to express the desired storage behavior without being responsible for implementing
the behavior itself. Moreover, the logical centralization of control services allows control applications to
leverage from the same control base, leading to an accurate, consistent, and efficient policy creation.

Existing control applications are designed for a variety of storage contexts and cover a wide array of
functionalities, including performance, resource and data management, security, and other storage ob-
jectives. Performance objectives aim at enforcing performance guarantees (e.g., throughput and latency
SLOs [128]), prioritization (e.g., bandwidth allocation according to applications’ priority [211]), and perfor-
mance control (e.g., I/0 isolation). On the management side, resource-centric objectives enforce fairness
between applications accessing shared storage systems, as well as caching and device management poli-
cies (e.g., caching schemes [206], storage quotas [50]), and 1/0 flow customization (e.g., modify the 1/0
endpoints of a layer [205]). Data-centric objectives, on the other hand, enforce objectives directly appli-
cable over data and metadata such as data redundancy, data reduction, data placement, and data and
metadata organization [196]. Security-based objectives enforce encryption and malware scanning rules
to ensure privacy and confidentiality of sensitive data. Other storage objectives such as energy efficiency
and elasticity control seek to provide additional properties to storage systems. Table 2.1 classifies existing
SDS control applications regarding storage objectives, while organized by storage infrastructure.

Finally, a Northbound interface connects control applications and controllers by abstracting the dis-
tributed control environment into a language-specific communication interface, hiding unnecessary infras-
tructure details, while allowing straightforward application-building and policy specification. Such a design
fosters the integration and reutilization of different control applications between SDS technologies, enabling
an interoperable control design. However, current work on SDS lacks a standard Northbound interface,
which limits the ability to combine different control applications throughout distinct storage contexts and
SDS technologies.

2.5 Survey of Software-Defined Storage Systems

This section presents an overview of existing SDS systems regarding storage infrastructure (§2.5.1), control
strategy (§2.5.2), and enforcement strategy (§2.5.3). §2.5.4 discusses key differences between SDS
systems. Systems are classified according to the taxonomies described in §2.2 and §2.3.

2.5.1 Survey by Infrastructure

Storage infrastructures comprise different requirements and restrictions, and thus, the design and combi-
nation of SDS properties may vary significantly with the targeted infrastructure. To provide a comprehen-
sive survey of SDS systems, we describe them in a twofold. Table 2.2 classifies SDS systems according to
the taxonomies described in §2.2 and §2.3, while grouping them by storage infrastructure, namely cloud,
HPC, and application-specific storage stacks. This table highlights the design space of each infrastruc-
ture and depicts current trends and unexplored aspects of the paradigm that require further investigation.
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Then, the textual description presented at each section (§2.5.1.1— §2.5.1.3) draws focus on the envi-
ronment and context where each system is applied, as well as the enforced storage objectives and other
aspects that differentiate these solutions. The classification considers systems from both academia and
industry.3 Commercial solutions whose specification is not publicly disclosed are not considered. Systems
that follow the SDS design principles and storage functionalities described in §2.1, targeting at least one

of the planes of functionality, are contemplated in this classification.*

2.5.1.1 Cloud Infrastructures

Cloud computing infrastructures offer enterprise-grade computing and storage resources as public utilities
so customers can deploy and execute general-purpose services in a flexible pay-as-you-go model. Cloud
premises consist of hundreds to thousands of compute and storage servers. Compute servers are vir-
tualized and abstract multiple physical servers into a pool of resources exposed through Virtual Machine
(VM) or containers. Resources are shared between tenants and mediated by hypervisors. Storage servers
accommodate heterogeneous storage systems and devices with distinct levels of granularity and perfor-
mance. These servers persist all data and are exposed to VMs as virtual devices. Compute and storage
servers are connected through high-speed network links that carry all infrastructure traffic. However, be-
hind this virtualized environment lie complex and preconfigured 1/0 stacks, making the enforcement of
storage requirements and end-to-end control over storage resources harder [87, 211]. While several sys-
tems have been proposed to partially address this problem (e.g., QoS provisioning and scheduling [27,
87-89, 233]), these have not considered end-to-end enforcement nor holistic orchestration of resources.
To address such shortcomings, SDS-enabled systems have moved towards cloud infrastructures.

The term Software-Defined Storage was first introduced by IOFlow [211]. Specifically, IOFlow enables
end-to-end policy enforcement under multi-tenant architectures. Queue-based stages employ performance
and routing primitives from VMs to shared storage, allowing efficient performance isolation, differentiated
I/0 treatment, and end-to-end performance control. A reactive flat-based control plane discovers stages
and dynamically configures their I/0 mechanisms to attend the manifold objectives of applications built
on top (e.g., bandwidth aggregation, prioritization, throughput and latency objectives). While originally
designed to enforce policies over storage-related layers, it was later extended to support caching and net-
working [205, 206]. Moirai [206] extends |OFlow’s design to exercise direct and coordinated control over
the distributed caching infrastructure to improve resource utilization and achieve performance isolation
and QoS guarantees. Stages are deployed as stackable and programmable caching instances to employ
performance mechanisms over incoming I/0 requests, such as workload aggregation and maximization
of cache hit ratios. At the control plane, a logically centralized controller, built on top IOFlow’s traffic clas-
sification mechanism, orchestrates stages holistically, and maintains (cache) consistency and coherence
across the 1/0 stack. Further, it continuously monitors the infrastructure and maintains key performance

3Industrial SDS systems are marked with an i in the classification table.
“Systems not originally defined as SDS but follow the same design principles are marked with * in the classification table.
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Table 2.2: Classification of Software-Defined Storage systems regarding storage infrastructure.
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metrics of each workload running on the system (e.g., throughput, read-write proportion, hit ratio curves).

To override the rigid and predefined I/0 path of cloud infrastructures, sRoute [205] goes towards
combining storage and networking primitives. It extends |IOFlow’s design to employ routing mechanisms
throughout the 1/0 path, turning the storage stack more programmable and dynamic. The data plane
comprises programmable switches (sSwitch stages), that provide flow regulation and customization, and
queue-based stages that implement performance management and 1/0 differentiation at hypervisors.
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Such a design allows /0 workflows to be redirected to any point of the I/0 stack (e.g., controller, sSwitch-
enabled stages). The control plane holds a hierarchical distribution made of a centralized controller and
several control delegates, which are restricted control daemons that contain a part of the control logic and
installed at sSwitches for control plane efficiency. Each of these delegates performs decisions locally, alle-
viating the load of the centralized component, and thus providing a more scalable environment. Similarly,
JoiNS [225] orchestrates storage and network layers over networked storage premises to achieve strict la-
tency SLOs. While sharing similar control principles, JoiNS leverages from existing SDN data planes [151]
and programmable switches to enforce routing primitives over the storage infrastructure, while storage
data plane stages implement predetermined performance features over block device drivers (via Internet
Small Computer Systems Interface).

While I0Flow-enabled systems are designed to achieve end-to-end optimization in cloud storage, sev-
eral works address specific problems and layers of the |/0 stack in a SDS fashion. Facade [139] and
AVATAR [241] propose a virtualization layer that sits between clients (hosts) and the storage devices of
shared storage systems, and enforces throughput and latency objectives in the presence of bursty and
volatile workloads. Even though not physically decoupled, Facade provides a centralized controller that
employs a non-linear feedback loop to allocate bandwidth shares for each workload and adjust stages
according targeted workload latencies, and a queue-based data plane that governs the queue depth of
a storage device. On the other hand, AVATAR proposes a two-level scheduling framework that enforces
95" percentile latency objectives. At a high level, a centralized controller orchestrates per-workload First
In, First Out (FIFO) queues and regulates workflows to achieve isolation, while at a lower level, a queue-
based data plane rate limits requests before dispatching them to the storage device. At multi-tenant cloud
environments, Pisces [201] and Libra [200] provide system-wide performance isolation and fair resource
allocation. In both systems, control and data are not physically decoupled. In Pisces, a centralized con-
troller provides per-tenant weighted fair-shares to enforce throughput objectives, while queue-based stages
schedule per-tenant rules over network resources of storage servers. On the other hand, while sharing
the same design primitives as Pisces, Libra's stages enforce per-tenant application request reservations
over Serial Advanced Technology Attachment (SATA) Solid State Drive (SSD) devices.

Despite providing isolation and fairness over network and storage resources, previous systems focus
on sharing storage bandwidth, which is simpler to control than tail latency, as bandwidth is an average
over time not affected by 1/0 path’s cumulative interactions. Moreover, single resource enforcement
either over storage [139, 200, 241] or network [201], limits the ability to enforce end-to-end storage
policies. This led to the design of multi-resource SDS systems [247, 248]. PriorityMeister (PM) [248]
combines prioritization and rate limiting over network and storage resources to meet tail latency at the
99.9t" and 99.99'" percentiles. A proactive flat-based controller automatically orchestrates the data
plane under varying degrees of workload burstiness, while queue-based stages deployed over storage and
network devices provide per-workload latency differentiation. Each stage comprises multiple rate limiting
queues, that even though improving burstiness, introduce increased computation time and number of
required computing servers. To address this, WorkloadCompactor (WC) [247] extends the design of PM
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to consolidate multiple workloads onto a storage server. WC’s controller automatically selects rate limiting
and priority profiles, enforcing them over storage and network to minimize the number of instances that
cloud providers use to serve all workloads. While enforcing high latency percentile objectives, PM and
WC cannot simultaneously serve throughput-based services. As such, PSLO [128] provides an efficient
storage environment that simultaneously enforces tail latency and throughput objectives over consolidated
VMs under shared storage infrastructures. Deployed at the hypervisor-level, PSLO holds a centralized
controller and queue-based stages, that employ an integral feedback control loop combined with Linear
Programming (LP) models to govern the arrival rate of 1/0 requests in a per-VM basis.

Multi-tenant systems composed of hundreds of small partitioned services (e.g., Service-Oriented Archi-
tecture (SOA)) are often used on cloud premises to build large-scale web applications [208]. These systems
comprise fine-grained and loosely coupled services, each running on a physical or virtual machine. How-
ever, its limited visibility hinders the ability to provide efficient storage enforcement. Wisp [208] proposes
a distributed framework for building efficient and programmable SOAs that adapt storage resources under
multi-tenancy. It provides a fully decentralized design, where each SOA holds a controller and data plane
stages. Each controller gathers local information and propagates it to other peers to execute distributed
control algorithms, while queue stages enforce local performance services over SOA resources.

Cloud providers offer a wide-array of storage services with trade-offs in performance, cost, and dura-
bility, leading applications to opt for simplicity instead of resorting to different services with conflicting
properties. The Wiera-Tiera SDS system provides a geo-distributed cloud environment that facilitates the
use and specification of multi-tiered storage across data centers. At the data plane, Tiera [177] provides a
programmable storlet-based middleware that encapsulates and re-purposes existing services into an opti-
mized interface that can be glued to comply with data management and routing policies (e.g., encryption,
compression, data placement). At the control plane, Wiera [162] provides a centralized controller that
enforces storage policies across multi-tiered data centers. It allows the combination of storage features
available at different tiers of the cloud, enabling the creation of new services via composition.

Storage features besides QoS provisioning and performance isolation can be also explored in SDS
fashion. For instance, flexStore [158] provides a framework for dynamically adapting a data center to
cope with QoS and energy consumption objectives. At the data plane, stack-based stages are employed
over storage systems (e.g., object stores) and hypervisors. Stages placed at the object store adjust the data
layout of storage devices and collect performance metrics to enforce energy-related policies (e.g., reduce
number of storage devices), while hypervisor-level stages employ performance and data management
services, such as deduplication and caching management. On the control side, a flat-based controller that
leverages from LP models enforces QoS and energy-related policies under multi-tenancy by managing the
life cycle of dedicated storage volumes and allocating them to VMs.

Cloud-based SDS has become an active research topic for improving the performance and resource
efficiency of cloud storage infrastructures. Enterprise-grade systems such as Red Hat Gluster Storage [92]
and Microsoft Windows Server [156], have been paving the way of the paradigm in industry, fostering its
adoption at a global scale. Moreover, while several storage optimizations have been proposed to improve
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the performance of cloud premises, such as proportional sharing and 1/0 scheduling, these can now be
re-purposed as control algorithms to be used in existing SDS systems [27, 87-89, 109, 133, 223].

2.5.1.2 High-Performance Computing Infrastructures

HPC infrastructures are composed of thousands of nodes capable of generating hundreds of 10*° floating
point operations per second (PFLOPS) at peak performance [213]. Supercomputers are the cornerstone
of scientific computing and the de facto premises for running compute-intensive applications. Modern
infrastructures are composed of compute and storage nodes. Compute nodes perform computational-
related tasks through manycore processors that deliver massive parallelism and vectorization. Storage
nodes persist applications’ data in a shared Petabyte-scale Parallel File System (PFS) (e.g., Lustre [34,
192], GPFS [189], BeeGFS [47], PVFS [39]) that offers high-performance storage on top of hundreds
of storage drives. Communication across nodes is made through specialized high-performance intercon-
nects. Further, many of current Top500 supercomputers comprehend a third group of nodes, namely
|/0O forwarding nodes (or I/0 nodes), that act as a middleware between compute and storage nodes, and
are responsible for receiving compute nodes’ requests and forward them to storage ones [30, 213]. 1/0
nodes hold the intermediate results of applications, either in memory or high-speed SSDs, and enable
several optimizations over |/0 workflows (e.g., request ordering, aggregation, data staging).

The long and complex |/0 path of HPC infrastructures make performance isolation, end-to-end con-
trol of I/0 workflows, and 1/0 optimizations increasingly challenging [231]. The variety of access patterns
exhibited by applications has led HPC clusters to observe high levels of I/0 interference and performance
degradation, inhibiting their ability to achieve predictable and controlled 1/O performance [136, 237].
While several efforts were made to prevent I/0 contention and performance degradation (e.g., QoS provi-
sioning [230, 245], job scheduling optimization [105, 203]), neither have considered the path of end-to-
end enforcement of storage policies nor system-wide flow optimizations. To this end, SDS systems have
been recently introduced to HPC environments.

Clarisse [101] provides the building blocks for designing coordinated system-wide cross-layer mech-
anisms, such as parallel I/0 scheduling, load balancing, and elastic collective I/0. A queue-based data
plane stages data between applications and storage nodes, and implements performance and routing
mechanisms for transferring data between compute and storage nodes at the middleware layer (e.g.,
MPI-I0). A hierarchically distributed control plane offers the mechanisms for coordinating and control-
ling routing-related activities. Controllers are hierarchically deployed over compute premises and perform
different levels of control and enforcement. Similarly, SIREN [107] enforces end-to-end performance ob-
jectives by dynamically allocating resources according to applications’ demands. It introduces the concept
of SDS resource enclaves for resource management of HPC storage systems, allowing users to specify
I/0 requirements via reservation and sharing of compute and storage resources between applications.
A hierarchy-based controller efficiently enforces performance objectives over managed resources, while
data plane stages deployed throughout the 1/0 stack (e.g., request schedulers, PFS) dispatch |/0 requests
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through a queue-based structure that enforces the reservations and shares specified by control instances.

The recent efforts on designing and implementing SDS-enabled HPC infrastructures have proven its
utility and feasibility on high-performance technologies. As we move to the Exascale era [61, 76], the
adoption of the paradigm by the scientific community is key to ensure end-to-end |/0O performance over
large-scale supercomputers. When compared to other infrastructures, HPC premises comprise different
requirements in terms of architecture and hardware, turning unfeasible the applicability of non HPC-
based SDS systems over such environments. First, HPC storage backends are generally composed of
a shared file system [192], that becomes a major performance bottleneck when concurrently used by
hundreds to thousands of jobs competing for shared resources, leading to high-levels of 1/0 interference
and performance degradation [176, 231]. Second, HPC applications generate complex workflows (e.g.,
scientific simulations, real-time visualizations), that are translated into different storage objectives and
services to be employed over I/0 flows [101]. Third, since HPC infrastructures are not virtualized (i.e.,
jobs are executed over bare-metal resources), solutions that actuate over virtualized environments such
as IOFlow [211], PSLO [128], or sRoute [205] cannot be directly applied.

2.5.1.3 Application-specific Infrastructures

Application-specific infrastructures are storage stacks built from the ground up, designed for specialized
storage and processing purposes to achieve application-specific 1/0 optimizations [194]. Production-
grade clusters include multi-tenant distributed storage systems such as Hadoop [202], Ceph [224], and
OpenStack Swift [11], being mainly composed of proxy and storage servers. Proxy servers map appli-
cation requests to the respective data location, and provide global infrastructure visibility, system-wide
management services (e.g., load balancing, lease management), and high availability. Storage servers
are user-space daemons that persist application’s data. While these systems are built to run on com-
modity hardware, enterprise-grade infrastructures may hold hundreds to thousands of storage servers
interconnected with dedicated network links. Each server accommodates several multicore processors
and storage drives hierarchically organized. Such a specialized environment leads to hard-coded designs
and predefined 1/0 stacks, making the programmability of such systems challenging [194]. Further,
the absence of performance guarantees and isolation leads to greedy tenants and background tasks (e.g.,
garbage collection, replication) to consume a large quota of resources, impacting the overall system perfor-
mance [143, 147]. While several mechanisms have been proposed to address different system intricacies
(e.g., workload-awareness, availability), neither have considered end-to-end enforcement of storage poli-
cies or improve programmability of specialized stacks. As such, several SDS-enabled systems have been
proposed to address such challenges. Even though these infrastructures can be seen as a subfield of
cloud computing (or even HPC), for the purpose of this work and to provide a more granular classification,
we classify these in a separate category.

The requirements of isolation and fairness in distributed storage systems have led researchers to shift
from hard-coded single-purpose implementations to software-defined approaches. Retro [143] enforces
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performance guarantees and fairness over multi-tenant Hadoop stacks (e.g. HDFS [202], HBase [79],
YARN [218]), by identifying and rate limiting workflows bottlenecking shared resources. A reactive flat-
based controller enforces fine-tuned policies in the presence of bursty and volatile workloads, while queue-
based stages abstract arbitrary system resources (e.g., storage devices, CPU, thread pools) and employ
performance management features over priority queues, fair schedulers, and token-buckets implemented
along the 1/0 path. Further, Cake [222] introduces end-to-end enforcement of 99 percentile latency
objectives over Hadoop storage stacks. Similarly to AVATAR [241], Cake proposes a two-level scheduling
framework, where a centralized controller continuously monitors latency performance and orchestrates
queue-based stages to perform per-tenant prioritization through proportional sharing and reservations.
Stages are deployed at RPC layers, providing differentiated scheduling of I/0 requests and enabling multi-
resource control throughout the storage stack.

While these systems focus on the performance and resource management of Hadoop stacks, others fo-
cus on multi-tenant object stores. Crystal [84] provides a SDS-enabled object store that supports resource
sharing and isolation in the presence of heterogeneous workloads. Implemented over the OpenStack Swift
object store [11], a storlet-based data plane injects user-defined mechanisms over /0 workflows, such
as compression, caching, encryption, and bandwidth control. At the control plane, flat-based controllers
dynamically adapt stages according to tenants’ requirements. Controllers are twofold, divided in global
controllers with system-wide visibility that continuously control, monitor, and disseminate storage policies
to data plane stages and other controllers, and automation controllers with limited visibility that enforce
dedicated control actions over selected points of the I/0 path. Further, Mass [45] extends the design of
Crystal to enable the enforcement of workload-aware policies, improving the performance of OpenStack
Swift under highly volatile workloads.

Commercial storage systems have also experienced a thrust towards the software-defined domain.
For instance, Coho Data [50, 226] proposes a SDS enterprise storage architecture that provides efficient,
scalable, and highly-available control over high-performance storage devices (e.g., Peripheral Component
Interconnect Express (PCle) storage drives). At the control plane, Mirador [226] provides a flat-based dy-
namic storage placement service that orchestrates heterogeneous scale-out storage systems. To enforce
routing and data management activities, the control plane continuously collects resource metrics and work-
load profiles of the cluster, and uses solvers to calculate enforcement plans. At the data plane, Strata [50]
implements a stack-based network-attached object store that manages high-performance storage devices
under multi-tenancy. Stages are both deployed over SDN-enabled switches, for flow customization and
data placement, and PCle flash devices, to employ striping, replication, and deduplication over requests.

As several systems provide a rich spectrum of storage functionalities (e.g., resource sharing, durabil-
ity, load balancing), some SDS systems rely on these to improve the control functionality of the storage
environment [194, 196, 215]. For instance, Mantle [195, 196] decouples management-based policies
from the storage implementation, allowing users to fine-tune and adapt the storage environment under
volatile requirements. At the control plane, a heuristic-based policy engine injects management policies
into distributed storage systems, such as Ceph [224], while a storlet-based data plane abstracts the
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underlying storage system through a data management language, allowing users to build flexible and
fine-grained policies, such as programmable caching and metadata management. On the other hand, Su-
perCell [215] relies on the flexibility and availability of Ceph, and proposes a SDS-based recommendation
engine that measures and provides cluster configurations under varied workload settings. A centralized
controller measures workload characteristics (e.g., I/0 size, read/write proportion) and generates enforce-
ment strategies tailored to meet the user’s requirements in a cost-effective manner. At the data plane,
SuperCell fine-tunes storage settings and configurations of Ceph deployments, at runtime, to cope with
different performance and data objectives.

Differently, other systems propose novel abstractions and storage features over application-specific
stacks [175, 194]. Malacology [194] is a controllerless SDS system that provides novel storage abstrac-
tions by exposing and re-purposing code-hardened storage services into a more programmable environ-
ment. Rather than creating storage systems from the ground up, Malacology encapsulates existing system
functionalities into reusable building blocks that enable general-purpose systems to be programmed and
adapted into tailored storage applications via composition. Implemented over Ceph, Malacology decou-
ples policies from storage mechanisms through a storlet-based data plane, which exposes commonly used
services as programmable interfaces that hold the main primitives for developing comprehensive storage
applications, namely service metadata, data, resource sharing, load balancing, and durability. Following
these same principles, SafeFS [175] aims at re-purposing existing FUSE-based file system implementa-
tions into stackable storage mechanisms to employ over 1/0 requests. Specifically, SafeFS provides a
flexible and extensible stack-based data plane that abstracts the file system layer to enable the develop-
ment of POSIX-compliant file systems atop FUSE. Its stackable organization enables layer interoperability
and allows system designers to simply stack independent layers to enforce different storage objectives,
such as encryption, replication, erasure coding, and caching.

Previous works on application-specific storage have already crossed the path of software-defined prin-
ciples [21, 108, 155]. Specifically, as a first attempt towards SDS, Triage [108] introduced an adaptive
control architecture to enforce throughput and latency objectives over the Lustre PFS [192], in the pres-
ence of bursty and volatile workloads. Adaptive flat-based controllers orchestrate per-client I/0 workflows,
and regulate request queues according to user-defined performance objectives. At the data plane, queue-
based stages rate limit requests before dispatching them to Lustre storage servers. Differently, PADS [21]
provides a policy-based architecture to ease the development of custom distributed storage systems. Con-
trol and data planes are not physically decoupled, and part of the control logic is shared with a storlet-based
data plane. Control applications hold routing and blocking policies to define the logic of the correspondent
storage system. Routing policies define data flows, while blocking policies specify consistency and durabil-
ity objectives. At the data plane, stages accommodate a set of common storage services (e.g., replication,
consistency, storage interface) that allow system designers to develop tailored systems via composition,
by simply defining a set of policies rather than implementing them from the ground up. Further, Mesnier
et al. [155] proposes a classification architecture to achieve 1/0 differentiation at kernel-level. As the per-
formance of compute servers is often determined by the I/0 interference and performance degradation of
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storage servers, it proposes a classification framework that is able to classify /0 requests at compute in-
stances (through tagging), and differentiate them at storage servers (block layer) according to user-defined
policies, thus ensuring performance isolation and resource fairness.

The introduction of software-defined principles into application-specific storage infrastructures has led
to significant improvements in terms of programmability and resource efficiency. Its design allows users
to experience sustained QoS provisioning and performance isolation in multi-tenant settings, instead of the
formerly predefined and single-purposed approaches. However, as these infrastructures typically provide
a homogeneous |/0 stack, employing application-specific SDS systems over cloud or HPC can be a chal-
lenging endeavor, due to their wide-array of storage subsystems, which do not operate holistically [101],
and heterogeneous workloads [107, 201].

2.5.2 Survey by Control Strategy

As SDS systems are employed over different storage contexts, controllers may assume different control
strategies to adapt existing services to the specified objectives. We now survey SDS systems regarding
their control strategy employed at the control plane, namely feedback control and performance modeling.
Table 2.3 highlights the control strategies and algorithms used by SDS controllers, and depicts the current

trends and unexplored aspects of the paradigm.

2.5.2.1 Feedback Control

Control-theoretic approaches have been widely used to provide sustained storage performance [93]. A
feedback-based controller avoids the need of accurate performance modeling by dynamically adjusting
I/0 workflows to meet different storage objectives. It does so through a control loop, that depends on
input metrics, control actions, and control intervals. The controller continuously monitors system metrics
(e.g., throughput, latency), and validates them with installed storage policies. In case of policy violation,
the controller adjusts the data plane stages through control actions, which rely on the enforcement strat-
egy employed at the stage (e.g., adjust arrival rate of 1/0, increase queue depth). Monitoring is made
periodically in a predefined control interval. Large intervals result in longer unsupervised control periods,
leading to policy violations and performance degradation in case of burstiness or volatile workloads. Small
intervals lead the controller to react to performance outliers, resulting in fine-grained adjustments that
inhibit sustained storage efficiency.

Reactive SDS controllers employed by IOFlow and sRoute continuously collect throughput and latency
metrics of different points of the I/0 path. For each stage, the controller enforces control actions over a
token-bucket that rate limits queues according to max-min fairness algorithms [26, 33], efficiently providing
distributed and dynamic I/0 enforcement. Differently, controllers of Wisp and Crystal rely on throughput-
only observations. Wisp rate limits request queues of micro-services according to different scheduling
policies, while Crystal observes per-tenant throughput at OpenStack Swift nodes and allocates proportional
bandwidth shares to ensure performance guarantees. In proportional sharing, processes are assigned
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Table 2.3: Classification of SDS systems regarding control and enforcement strategies.

Control Strategy Enforcement Strategy
Feedback  Modeling ‘ Algorithms | T. Bucket  Scheduling  P. Queues Injection
IOFlow [211] | Reactive PS ] L
Moirai [206] | Reactive S
SsRoute [205] | Reactive PS ®
JoiNS [225] H ()
Facade [139], AVATAR [241] | Non-linear Pl EDF
Pisces [201] PS DRF, DWRR
Libra [200] S DDRR
PM [248], WC [247] | Proactive LP | o ()
PSLO [128] Integral LP ()
Tiera [177], Malacology [194] (]
) ) DRF, BRF,
Wisp [208] | Reactive EDF. LSTF
flexStore [158], Mirador [226] LP S
SIREN [107] ML S o
Retro [143] | Reactive P ® DRF, BRF ()
Cake [222] | Reactive PS ()
Crystal [84],Mass [45] | Reactive P )
Mantle [195], SuperCell [215] H [
Triage [108] | Adaptive LP | ()

Modeling. (H)euristic, (L)inear (P)rogramming, (M)achine (L)earning. Algorithms. (P)roportional sharing, (I)solation and priority,
(S)hares and reservations.

with a notion of weight, and resources are proportionally allocated based on it [221]. Mass periodically
collects information over system (e.g., CPU and memory usage) and workload-specific metrics (e.g., bytes
read/written to OpenStack Swift), and based on these, it allocates per-tenant bandwidth shares. Further,

Moirai uses average latency and hit ratio curves to adjust the configurations of stack-based caching stages.

Reactive approaches are also used to enforce tail latency objectives over complex storage settings. For
instance, Cake provides a two-level scheduling framework that continuously collects latency and resource
utilization metrics over distributed storage stacks, and dynamically adjusts per-client queues according
to proportional shares and reservations. In these algorithms, shares define the resource allocation that
a given process receives, while reservations express the lower bound of |/0 performance reserved to a
process [107]. Similarly, Retro observes per-workflow latency and resource usage, and employs control
actions over token-buckets, schedulers, and priority queues, according to max-min fair shares. The collec-
tion of heterogeneous metrics, along the multiple enforcement points deployed over the 1/0 path, allow
Cake and Retro to differentiate workflows and enforce 99" percentile latency objectives over Hadoop
stacks.

Nonetheless, while able to enforce different performance objectives over varied storage stacks, reac-
tive controllers cannot sustain efficient performance at high latency percentiles under bursty workloads,
as they experience several policy violations before beginning a new control loop and adjusting stages ac-
cordingly [248]. As such, several systems follow a proactive control strategy to enforce 99t 99.9t" and
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99.99" percentile latencies. For example, PM and WC provide a proactive feedback controller that mod-
els per-workload worst-case latency, and enforces different control actions over multiple rate limiters and
priority queues, according to isolation and priority rules. Each stage comprises per-workload token-buckets
and priority queues, and efficiently enforces services over network and storage resources.

While these systems are designed to either provide throughput or tail latency objectives, PSLO achieves
both by providing an integral feedback controller backed by a forecast model. Integral control ensures that
the output of a given system sets a value that is resilient to noise or variation in system parameters [93];
in the case of PSLO, the system throughput converges to the SLO target. It does so by continuously
monitoring perVM X" percentile latency and throughput, and adaptively configuring the level of 1/0
concurrency and arrival rates, providing isolated and differentiated service levels.

Other approaches follow a non-linear feedback control to enforce proportional sharing and isolation
in the presence of bursty and volatile workloads [139, 241]. For instance, Facade collects the average
latency of requests accessing the storage device of a shared storage system, and dynamically adjusts
the depth of the device queue. AVATAR follows a similar approach but enforces 95" percentile latency.
Differently, adaptive feedback controllers backed by self-tuning estimators, such as the one proposed
by Triage, provide predictive and differentiated storage performance under varying workloads. Triage
periodically observes latency perceived by Lustre-deployed applications and throttles per-client request
queues to provide sustained throughput and latency.

2.5.2.2 Performance Modeling

Other strategies often used by SDS systems to efficiently control the storage environment are heuristics,
which control and adjust selected enforcement points to meet a specific storage objective [196, 215, 225],
and performance models, that characterize the behavior of the system and its workloads [107, 108, 128,
158, 226, 247, 248].

Heuristics. SDS controllers resort to heuristic-based mechanisms to estimate throughput or latency
performance of selected points of the I/0 stack. For instance, JoiNS continuously monitors latency and
bandwidth utilization at network and storage stages, and provides a simple heuristic that estimates network
latency of networked storage systems. From this estimation, the controller adjusts priority queues installed
at programmable switches to meet average and tail latency requirements. Similarly, SuperCell observes
read and write latencies of Ceph storage nodes, and implements a bandwidth-centered heuristic that
calculates per-workload maximum bandwidth to provide adaptive configuration under read- and write-
intensive workloads. Mantle, on the other hand, supports user-defined heuristics to provide programmable

metadata management and load balancing over Ceph deployments.

Linear Programming. Linear Programming (LP) mechanisms are also frequently used to support SDS
control actions. For instance, flexStore resorts to an integer linear program to enforce adaptive replica
consistency under varied energy constraints, and network and disk bandwidth; while Triage continuously
collects latency measurements to serve a recursive least-squares estimator that supports the feedback
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controller actions [135]. Differently, general-purpose solvers used by Mirador estimate the performance
of network-attached storage systems according to user-defined objectives. These solvers leverage from
the continuous observations of network and storage resources, as well as periodic workload profiles, to
optimize network traffic and data placement.

Latency analysis models are also used to enforce tail latency objectives under bursty scenarios. Lever-
aging from network calculus principles, PM and WC propose a model that estimates per-workload worst-
case latencies. It models multiple system endpoints and induces time, workflow, rate limit, and work
conservation constraints to maximize the available time to serve a workload. Similarly, PSLO provides
a forecast model that predicts per-VM high percentile latency violations to simultaneously enforce X*"
percentile latencies and throughput objectives.

Machine Learning. The use of Machine Learning (ML) to implement control strategies has just been re-
cently adopted by SDS controllers. Specifically, SIREN uses a ML-based algorithm (i.e., classification and
regression trees [35]) to assign proportional shares and reservations of compute and storage resources to
HPC applications. While SIREN proposes resource enclaves for the efficient management of HPC infras-
tructures, the algorithm identifies opportunities for enclave migrations, due to workload and |/0 demand
variance. The introduction of such storage automation mechanisms allows more accurate enforcement

strategies and fine-grained control over storage infrastructures.

2.5.3 Survey by Enforcement Strategy

The need to enforce varied storage policies throughout the I/0 path leads SDS systems to assume different
enforcement strategies. We now survey SDS systems regarding enforcement strategy employed at data
plane stages, namely token-buckets, schedulers, priority queues, and logic injection. Table 2.3 highlights
the enforcement strategies used by SDS data planes, and depicts the current trends of the paradigm.®

2.5.3.1 Token-Bucket

A token-bucket is an abstract structure used by queues to control the rate and burstiness of I/ 0 workflows.
A bucket is configured with a bucket size, that delimits the maximum token capacity, and a bucket rate, that
defines the rate at which new tokens are added. When an /0 request arrives at the queue, it consumes
tokens to proceed. If the bucket is empty, the request waits until sufficient tokens are in the bucket.
Each bucket executes locally but is configured by SDS controllers according to existing storage policies
and the current system state. Several SDS systems resort to token-buckets mechanisms for enforcing
performance-oriented policies [143, 205, 211, 247, 248].

Per-queue token-buckets, such as those in IOFlow and sRoute, enforce max-min fair shares over 1/0
workflows. As stages are deployed throughout the 1/0 path, queues are adjusted with different rates

5Systems that enforce scheduling mechanisms but do not detail about their policies are marked with @.
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and sizes, providing differentiated /0 treatment and dynamic end-to-end control. Similarly, Retro pro-
poses multi-point per-workflow token-buckets, employed over thread pools and RPC queues to achieve
performance guarantees and resource fairness objectives in Hadoop stacks.

Per-workload token-buckets enforce tail latency objectives under bursty environments [247, 248]. To
better bound the workload burstiness, PM implements multiple token-buckets per-workload at each data
plane stage, which in turn are continuously controlled and modeled by a proactive feedback controller.
On the other hand, WC optimizes the choice of bucket parameters through a rate-bucket size curve that
characterizes workload burstiness, while consolidating workloads into a storage server, in order to both

meet tail latency objectives and minimize overall resource usage.

2.5.3.2 Scheduling

Scheduling has been a long-term strategy of storage systems to govern how 1/0 requests are serviced.
In SDS-enabled architectures, scheduling is generally made with queues (at data plane stages) to employ
proportional sharing algorithms, prioritization and isolation of requests, and enforce performance objec-
tives over storage and network resources. For instance, single queue scheduling systems, such as Facade
and AVATAR, manage per-workload requests to meet average and tail latencies objectives. Requests are
dispatched to a queue and served to a storage device following an Earliest Deadline First (EDF) policy. As
latency objectives are enforced at per-workload granularity, the deadline of a workload is the deadline of
its older pending request [139].

Other solutions implement multi-point resource scheduling mechanisms to achieve fairness and sus-
tained latency performance. Retro, for example, orchestrates per-workflow requests, employing a Domi-
nant Resource Fairness (DRF) policy [81] to ensure resource fairness, and a Bottleneck Resource Fairness
(BRF) policy [143] to throttle aggressive /0 workflows and ensure proportional use of resources. Similarly,
Pisces employs a per-node scheduler that implements DRF and Deficit Weighted Round Robin (DWRR)
policies [199, 201] to achieve system-wide fairness in multi-tenant cloud environments. Under a DRF pol-
icy, per-node schedulers track the resource usage of each tenant, and recompute its resource allocation to
continuously ensure max-min fair shares, while in DWRR, Pisces ensures per-tenant weighted fair shares
of throughput. Libra, on the other hand, follows a similar approach but provides throughput reservations
over disk resources through a Distributed Deficit Round Robin (DDRR) scheduling policy [129]. Further,
Wisp rate limits micro-service workflows through BRF and DRF policies to achieve throughput objectives,
and simultaneously prioritizes individual requests through EDF and Least Slack Time First (LSTF) [208] to
enforce latency-related objectives.

2.5.3.3 Priority Queues

A number of SDS systems ensure prioritization and performance control through priority queues [143,
211, 225, 247, 248]. Controllers define and adjust the priority of queue-based data planes to provide
different levels of latency among workloads according to installed storage policies. For instance, IOFlow,
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PM, and WC define the priority of token-bucket enabled queues. Specifically, token-buckets serve first
the highest priority queues until no token is left, serving next lower priority queues upon the replenish of
the bucket. Moreover, PM and WC specify per-workload priority queues over both storage and network
resources. Retro, on its turn, enforces per-workflows priority queues over multi-point data plane stages,
while JoiNS provides per-workload priority queues over programmable network switches.

2.5.3.4 Logic Injection

Storlet-based stages implement programmable enforcement structures to allow system designers to inject
custom control logic over /0 workflows [84, 194, 196, 215]. For instance, Mantle and Malacology lever-
age from existing storage subsystems of Ceph, such as durability, load balancing, and resource sharing,
and inject control logic to enforce performance and data management storage policies. Mantle decou-
ples policies from storage services by letting administrators inject metadata migration code to dynamically
adjust metadata distribution of Ceph deployments. On the other hand, Malacology encapsulates exist-
ing system functionalities into reusable building blocks and injects Lua scripts to enable general-purpose
systems to be programmed and adapted into tailored storage applications via composition. Further, Super-
Cell continuously monitors read and write requests of Ceph storage nodes and provides different storage
reconfigurations to adapt storage settings under volatile workloads.

Differently, Crystal provides a programmable framework that allows the injection of programming logic
to perform custom computations over object requests. This design allows administrators to implement a
wide-array of storage services to cope with different performance and data management policies, such as
compression, cache optimization, and bandwidth differentiation.

2.5.4 Discussion

The SDS paradigm has drawn major focus on providing controlled /0 performance and fairness over cloud
and application-specific infrastructures. While generally providing centralized and flat distributions, the next
step towards scalable environments is to foster the development of hierarchical and decentralized control
planes in such infrastructures. SDS-enabled HPC infrastructures, which are still at an early research stage,

comprise hierarchical control designs due to the scale and performance requirements of supercomputers.

The centralized control distribution assumed by several SDS systems presents obvious limitations
in scale and resilience. However, systems experience these limitations at different magnitudes, as they
may provide different number of stages and enforce policies with different levels of complexity. Specifi-
cally, Facade and AVATAR enforce performance-oriented objectives over a single enforcement point, while
Pisces, Libra, PSLO, and Cake need to orchestrate multiple points. Further, Wiera, SuperCell, and Mantle
enforce data-oriented policies by injecting control logic at stages, which are less demanding than contin-
uously adjusting stages for performance policies.
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Differently, other systems follow a flat control distribution, with a prevalence on performance-based
policies. While providing a more dependable design, the control centralization leads to clear scalability lim-
itations. Interestingly, as systems enforce different policies over infrastructures, they implement different
control strategies to adapt data plane stages to the specified objectives. For instance, some systems like
IOFlow resort to feedback control to continuously adjust the storage environment, while others, such as
flexStore and Mirador, employ performance modeling strategies. As both provide a single control strategy,
they are unable to provide a fully adaptable SDS environment. On the other hand, PM, WC, Triage, and
PSLO combine feedback control and performance modeling strategies, thus providing a more adaptable
storage environment, capable of enforcing complex storage policies under volatile environments.

Regarding hierarchical controllers, while providing a scalable design, some solutions present depend-
ability limitations. For instance, the failure of a controller in Clarisse and SIREN leads to unsupervised
control points in the infrastructure. Contrarily, sRoute and JoiNS issue control delegates to enforce policies
in specific points of the 1/0 path, which in case of failure, can be replaced by another.

On the data plane side, stack-based approaches focus on data management services, since data
workflows follow a passthrough layout and do not employ enforcement strategies. Existing stack-based
systems may provide dedicated stacks designed for a specific objective such as flexStore and Moirai, or
multiple stacking layers as done in SafeFS and Strata to provide a variety of storage services.

Queue-based data planes, on the other hand, are mainly designed for performance objectives. Nonethe-
less, even though operating over similar storage structures, existing approaches may differ from each other
in several aspects. For instance, single queue systems, such as Facade and AVATAR, enforce average
performance policies and are unable to meet SLOs at high latency percentiles. Differently, Pisces and
Libra provide system-wide performance isolation and fairness over multi-tenant cloud environments by
enforcing per-tenant max-min fair shares. Other systems, such as PM and WC, provide multi-resource
scheduling to enable complex storage policies to be enforced over network and storage resources. Fur-
ther, IOFlow and PSLO provide multiple enforcement queues, each serving at different rates in a per-VM
basis, providing distributed and dynamic policy enforcement.

Finally, storlet-based systems introduce novel storage abstractions and programmability to existing
storage systems. For instance, Crystal, Tiera, and SuperCell, re-purpose existing storage subsystems and
configurations to enforce data and routing activities. Malacology, Mantle, and PADS, on the other hand,
abstract underlying storage systems to ease the development of custom storage systems. As opposed
to stack-based designs, which are transparent as stacks sit between two /0 layers, storlet-based stages
introduce increased complexity to the design of storage solutions.

2.6 Lessons Learned and Open Research Challenges

We now discuss the key insights provided by this chapter, grouped by storage infrastructure (Slx), planes
of functionality, namely data (Dx) and control planes (€x), SDS interfaces (Ix), and other aspects of the
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field (0x). We focus on the design space and characteristics of current SDS systems and in possible
future research directions of the paradigm.

SI1: SDS research is widely explored over cloud and application-specific infrastructures.
SDS research has drawn major focus on cloud and application-specific designs. However, the former are
generally composed of centralized and flat controllers and queue-based data plane stages, while the latter
focus on storlet-based designs. With the continuous increase of data centers complexity, further research
on hierarchical and decentralized control distributions will be needed to attend the ever-growing scalability
and dependability requirements.

SI12: HPC-based SDS systems are at an early research stage. The increasing requirements of
scale and performance of supercomputers have led to the first advances towards SDS-enabled HPC sys-
tems, being composed of hierarchical control distributions. Given the requirements of Exascale infrastruc-
tures [6, 61, 76], as well as the approximation of the computer continuum [20, 159], novel contributions
are expected to foster research in the SDS-HPC field.

SI3: SDS systems for emerging computing paradigms are unexplored. SDS-enabled systems
have been employed over modern storage infrastructures to achieve different objectives. However, with
the emergence of novel computing paradigms such as serverless cloud computing [188] and loT [12], a
number of challenges (e.g., scalability, performance, resiliency) need to be addressed to ensure sustained
storage efficiency. As such, the research and development of novel decentralized SDS architectures (e.g.,
wide-area SDS systems, gossip-based control protocols), as well as the convergence of different software-
defined technologies (e.g., storage, networking, security) will be essential to provide a fully programmable
storage environment and attend the requirements of emerging computing paradigms.

D1: Stage design impacts programmability and extensibility. Several SDS data planes rely
on queue-based designs, trading customization and transparency for performance. This performance-
focused development has led queue-based solutions to experience limited programmability and extensi-
bility. Storlet-based solutions however, comprehend a more programmable and extensible design, being
able to serve general-purpose storage requirements.

D2: End-to-end enforcement is hard to ensure. Most SDS systems provide distributed enforcement
points bounded to a specific layer of the 1/0 stack (e.g., hypervisor, file system). Systems that ensure
efficient end-to-end policy enforcement comprehend specialized queue-based stages fine-tuned for specific
storage services, and require significant code changes to the original codebase. As such, the ability to
enforce end-to-end policies in storage infrastructures is tightly coupled to the placement property, and
directly influences the transparency of data plane stages.

D3: Performance management services dominate SDS systems. Performance-oriented services
have dominated the spectrum of storage policies and mechanisms supported by SDS systems. This
design has led to a large research gap for the remainder policy scopes. Nevertheless, the advent of
modern storage technologies, such as kernel-bypass [232, 240], storage disaggregation [90, 111, 198],

41



CHAPTER 2. SOFTWARE-DEFINED STORAGE BACKGROUND

and new storage hardware [14, 28, 185], along with the emergence of novel computing paradigms require
significant attention and further investigation in order to adapt, extend, and implement novel storage
features over SDS data planes [6]. As such, there is a great research opportunity to explore these new
technologies in SDS architectures.

D4: End-to-end storlet data planes are unexplored. Despite the acknowledged programmability
and extensibility benefits of storlet-based data planes, end-to-end enforcement has not yet been explored
with such design. In fact, there are few proposals on storlet data planes, and several contributions and

combinations of storage mechanisms are possible.

D5: Re-purposing of existing storage subsystems is overlooked. Existing services installed at data
plane stages are mainly designed from the ground up and fine-tuned for a specific data plane solution.
While some solutions already encapsulate existing storage systems as reusable building blocks [175,
194], there is no SDS system that leverages from existing storage subsystems (e.g., QoS provisioning, |/0
scheduling) to be re-purposed as programmable storage objects and reused in different storage contexts
throughout the 1/0 path (e.g., key-value stores, distributed file systems, machine learning engines). Such
a design would open research opportunities towards programmable storage stacks and foster reutilization
of complementary works [109, 176, 233] and existing storage subsystems [62].

D6: Heterogeneous data planes are unexplored. Despite the number of possible configurations and
design flavors of SDS data planes, the combination of different stage designs has not yet been explored.
This turns the data plane domain mostly monolithic, tailored for specific storage objectives and suboptimal
enforcement efficiency. As such, following the steps of the SDN paradigm [115], novel contributions
towards heterogeneous data plane environments that explore the different trade-offs of combining stack-,
queue-, and storlet-based designs should be pursued.

C1: Current systems are unsuitable for larger environments. A large quota of SDS controllers
follow a flat distribution to serve small-to-medium sized storage infrastructures [211]. However, the emer-
gence of novel computing paradigms made of complex and highly heterogeneous storage stacks (e.g.,
serverless computing, loT), make current control centralization assumptions unsuitable. As such, leverag-
ing from the initial efforts of decentralized controllers [208], it is essential to further investigate this topic

and provide novel contributions towards control decentralization.

C2: Controllers lack programmability. Current hierarchical controllers resort to delegate functions
or micro-services to improve control scalability, providing limited control functionality to sub-controllers.
Instead, it would be interesting to follow similar design principles as SDS data planes and make control
functionality more programmable. Researching different paths of scalability and programmability in SDS
would bring major benefits for incoming storage infrastructures [6].

C3: Scalability and dependability are overlooked. SDS systems use a “logically centralized” con-
troller to orchestrate the storage environment [211]. However, behind this simple but ambiguous assump-
tion lies a great deal of practical complexity of dependability, leaving no clear definitions on its practical
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challenges and actual impact in performance and scalability at the overall storage infrastructure. Similarly
to other software-defined approaches [125], these assumptions leave several open questions regarding
controllers dependability that require further investigation such as fault tolerance and consistency [24, 31,
32, 112], load balancing and control dissemination [59], controller synchronization [187], and concur-
rency [91].

C4: Controllers are self-adaptable. Several controllers resort to feedback control mechanisms to
dynamically adjust data plane stage mechanisms, while few proposals rely on performance modeling
techniques to provide a more accurate and comprehensive automation model. However, the storage
landscape is changing at a fast pace, with new computing paradigms and emerging hardware technologies
vested with novel workload profiles. As such, it is essential to advance the research of autonomous
mechanisms for supporting control decisions of SDS controllers, by combining and providing novel control
strategies. For instance, exploring distributed ML techniques [127] would be of great utility to attend the
needs of both modern and emerging infrastructures, not only for the obvious reasons of scale but also for

ensuring new levels of accuracy in heterogeneous and volatile environments.

11: Communication protocols are tightly coupled to planes of functionality. SDS interfaces are
used as simple communication APIs, making communication protocols to be tightly coupled to either the
control or data plane implementation. This design prevents the reutilization of alternative technologies and
inhibits SDS systems to be adaptable to other storage contexts without significant code changes at the
communication codebase. As such, decoupling the communication from control and/or data plane im-
plementations would improve the transparency between the two planes of functionality, foster reutilization
of communication protocols, and open research opportunities to attain the communication challenges of
novel storage paradigms [12, 188] and network fabrics [6].

12: Interfaces lack standardization and interoperability. Contrarily to SDN [115], SDS literature
does not provide any standard interface to achieve interoperability between SDS technologies. Indeed,
this lack of standardization leads researchers and practitioners to implement custom interfaces and com-
munication protocols for each novel SDS proposal, tailored for specific software components and storage
purposes. Such a design inhibits interoperability between control and data plane technologies, and hin-
ders the independent development of each plane of functionality. As such, novel contributions towards
standard and interoperable SDS interfaces should be expected.

01: Non-intrusive and end-to-end monitoring are unexplored. Current monitoring mechanisms
of SDS controllers are predefined and static. Integrating non-intrusive [67, 160] and end-to-end monitoring
systems [145, 231] in these would bring novel insights to the field and would allow assisting controllers
to define accurate enforcement strategies over 1/0 workflows. Further, non-intrusive approaches do not
require a priori knowledge of the /0O stack and comprehend near-zero changes to the original codebase.

02: SDS paradigm lacks proper methodologies and benchmarking platforms. Current evalu-
ation methodology of SDS systems is mostly made through trace replaying and benchmarking of selected
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points of the 1/0 path, either with specialized or custom-made benchmarks. Thus, there is no comprehen-
sive SDS benchmarking methodology that systematically characterizes the end-to-end performance and
design trade-offs of general SDS systems. As such, these considerations motivate for novel contributions
in SDS evaluation.
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PAIO: A Software-Defined Storage Data Plane
Framework

As previously mentioned, there are several open challenges to be addressed in the SDS field. In this
thesis, we focus on advancing the research on the SDS data plane by designing general applicable, pro-
grammable, and adaptable data plane stages, mitigating the challenges S12, D3, D5, and D6 (§2.6). Due
to the different requirements of performance, scalability, resilience, and resource management between
storage infrastructures, there is no one-size-fits-all solution that can meet all of these requirements. This
thesis aims at filling this gap through a novel SDS system that enables system designers to build custom-
made data plane stages fine-tuned for data-centric systems such as databases [38, 191, 209], KVSs [80,
178, 183, 214], streaming processing systems [42, 161], and ML engines [1, 131, 169]. In particular,
data-centric systems have become an integral part of modern I/O infrastructures, and to achieve good
performance, these systems often implement multiple storage optimizations such as 1/0 scheduling, dif-
ferentiation, caching, storage tiering, and replication. However, we argue that these optimizations are
implemented in a suboptimal manner, as these are tightly coupled to the system implementation and can
interfere with each other due to lack of global context.

Problem 1: tightly coupled optimizations. Most |/O optimizations are single-purposed as they are
tightly integrated within the core of each system [17, 43, 118, 200]. Implementing these optimizations
requires deep understanding of the system’s internal operation model and profound code refactoring,
limiting their maintainability and portability across other systems that would equally benefit from them.
For instance, to reduce tail latency spikes at RocksDB [183], an industry-standard Log-Structured Merge
tree KVS, SILK proposes an I/0 scheduler to control the interference between foreground and background
tasks [17]. However, applying this optimization over RocksDB required changing several core modules
made of thousands of Lines of Code, including background operation handlers, internal queuing logic,
and thread pools [15, 72]. Furthermore, porting this optimization to other KVSs, such as LevelDB [80],
PebblesDB [178], or SplinterDB [48] is not trivial, as even though they share the same high-level de-
sign, the internal 1/0 logic differs across implementations (e.g., data structures [48, 178], compaction
algorithms [140, 178]).
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Figure 3.1: Example of the operation workflow of a multi-layered 1/0 stack made of an Application, KVS,
and File System. Left side depicts the regular information that can be extracted from operations between
the KVS and File System, while the right side propagates additional request information throughout layers.

Solution: decouple optimizations. A possible solution for this challenge is to disaggregate /0 opti-
mizations from the system’s internal logic and move them to a dedicated |/0 layer. This way, optimizations
become generally applicable and portable across different scenarios (e.g., other systems and 1/0 layers).

Resulting challenge: rigid interfaces. Decoupling |/0 optimizations comes with a cost, since we lose
the granularity and internal application knowledge present in system-specific optimizations. Specifically,
the operation model of conventional /0 stacks requires layers to communicate through rigid interfaces
that cannot be easily extended, discarding information that could be used to classify and differentiate
requests at different levels of granularity [5]. For instance, consider the |/0 stack depicted in Figure 3.1
made of an Application, a KVS, and a POSIX-compliant File System. POSIX operations submitted from
the KVS can be originated from different 1/0 workflows, including foreground (@) and background flows
i.e., flushes (@) and compactions (®). The File System however, can only observe the size and type (i.e.,
read and write) of the request, making it impossible to infer its origin. Implementing SILK’s /0 scheduler
at a lower layer — for example at the File System or as a new layer between the KVS and the File System
— would make the optimization portable to other KVS solutions. However, it would be ineffective since it
could not differentiate operations submitted from foreground and background workflows (e.g., foreground-
based read (@) vs. background-based read (®)), or between different background operations (e.g.,
flush-based write vs. compaction-based write).

Solution: information propagation. To address this, application-level information (i.e., information
that is only known to the application itself) must be propagated throughout 1/0 layers to ensure that
decoupled optimizations can ensure the same level of control and performance as system-specific ones.
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Resulting challenge: kernel-level layers. While implementing SILK’s 1/0 scheduler at the kernel
(e.g., file system, block layer) would promote its applicability across other KVS solutions, it poses several
disadvantages. First, for application-level information to be propagated to these layers, it requires breaking
user-to-kernel (i.e., POSIX) and kernel-internal interfaces (e.g., Virtual File System (VFS), block layer, page
cache), decreasing portability and compatibility [5]. Further, kernel-level development is more restricted
and bug prone than in user-level [157, 217]. Finally, these optimizations would be ineffective under kernel-
bypass storage stacks (e.g., Storage Performance Development Kit (SPDK) [36, 234], Persistent Memory
Development Kit (PMDK) [173, 232]), since 1/0 requests are submitted directly from the application

(user-space) to the storage device.

Solution: actuate at user-level. To address this, /0 optimizations should be implemented at a dedi-
cated user-level layer, promoting portability across different systems and scenarios, and easing information
propagation throughout 1/0 layers.

Problem 2: partial visibility. Optimizations implemented in isolation are oblivious of other systems
that compete for the same storage resources. Under shared infrastructures (e.g., cloud, HPC), this lack of
coordination can lead to conflicting optimizations [110, 233], I/0 contention, and performance variation
for both applications and storage backends [201, 229].

Solution: global control. Optimizations should be aware of the surrounding environment and operate
in coordination to ensure holistic control of |/0 workflows and shared resources.

We address these challenges with PAIO, a SDS data plane framework that enables building user-level,
portable, and generally applicable storage optimizations.! The key idea is to implement the optimizations
outside the applications as data plane stages, by intercepting and handling the 1/0 performed by these.
These optimizations are then controlled by a logically centralized controller that has the global context nec-
essary to prevent interference among them. PAIO does not require any modifications to the kernel. Using
PAIO, one can decouple complex storage optimizations from current systems, such as |/0 differentiation
and scheduling, while achieving results similar to or better than tightly coupled optimizations.

Building PAIO is not trivial, as it requires addressing multiple challenges that are not supported by
current solutions. To perform complex |/O optimizations outside the application, PAIO needs to propagate
context down the /0 stack, from high-level APIs down to the lower layers that perform 1/0 in smaller
granularities. It achieves this by combining ideas from context propagation [144], enabling application-
level information to be propagated to data plane stages with minor code changes and without modifying
existing APIs (§3.2). PAIO requires the design of new abstractions that allow differentiating and mediating
I/0 requests between user-space /0 layers. These abstractions must promote the implementation and
portability of a variety of storage optimizations. PAIO achieves this with four main abstractions (§3.1.1).
The enforcement object is a programmable component that applies a single user-defined policy, such as
rate limiting or scheduling, to incoming |/0O requests. PAIO characterizes and differentiates requests using
context objects, and connects 1/0 requests, enforcement objects and context objects through channels.

IPAIO stands for Programmable and Adaptable 1/0 workflows.
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To ensure coordination (e.g., fairness, 1/0 prioritization) across independent storage optimizations, the

control plane, with global visibility, fine-tunes the enforcement objects by using rules.

3.1 PAIO in a Nutshell

PAIO is a framework that enables system designers to build custom-made SDS data plane stages. A data
plane stage built with PAIO targets the workflows of a given user-level /0 layer, enabling the classification
and differentiation of requests and the enforcement of different storage mechanisms according to user-
defined storage policies. Examples of such policies can be as simple as rate limiting greedy tenants to
achieve resource fairness, to more complex ones as coordinating workflows with different priorities to
ensure sustained tail latency. PAIO’s design is built over five core principles.

General applicability. To ensure applicability across different |/0 layers, PAIO stages are disaggregated
from the internal system logic, contrary to tightly coupled solutions.

Programmable building blocks. PAIO follows a decoupled design that separates the I/0 mechanisms
from the policies that govern them, and provides the necessary abstractions for building new storage

optimizations to employ over requests.

Fine-grained I/0 control. PAIO classifies, differentiates, and enforces 1/0 requests with different levels
of granularity, enabling a broad set of policies to be applied over the 1/0 stack.

Stage coordination. To ensure stages have coordinated access to resources, PAIO exposes a control
interface that enables the control plane to dynamically adapt each stage to new policies and workload

variations.

Low intrusiveness. Porting I/0 layers to use PAIO requires none to minor code changes.

3.1.1 Abstractions in PAIO

PAIO uses four main abstractions, namely enforcement objects, channels, context, and rules.

Enforcement object. An enforcement object is a self-contained, single-purposed mechanism that ap-
plies custom 1/0 logic over incoming 1/0 requests. Examples of such mechanisms can range from per-
formance control and resource management such as token-buckets and caches, data transformations as
compression and encryption, to data management (e.g., data prefetching, storage tiering). This abstrac-
tion provides to system designers the flexibility and extensibility for developing new mechanisms tailored

for enforcing specific storage policies.

Channel. A channel is a stream-like abstraction through which requests flow. Each channel contains
one or more enforcement objects (e.g., to apply different mechanisms over the same set of requests) and
a differentiation rule that maps requests to the respective enforcement object to be enforced.
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Figure 3.2: High-level design of a PAIO data plane stage.

Context object. A context object contains metadata that characterizes a request. It includes a set
of elements (or classifiers), such as the workflow id (e.g., thread-ID), request type (e.g., read, open,
put, get), request size, and the request context, which is used to express additional information of a
given request, such as determining its origin, context, and more. For each request, PAIO generates the
corresponding Context object that is used for classifying, differentiating, and enforcing the request over
the respective 1/0 mechanisms.

Rule. In PAIO, a rule represents an action that controls the state of a data plane stage. Rules are
submitted by the control plane and are organized in three types: housekeeping rules manage the internal
stage organization, differentiation rules classify and differentiate |/O requests, enforcement rules adjust
enforcement objects upon workload variations.

3.1.2 High-level Architecture

Figure 3.2 outlines PAIO’s high-level architecture. It follows a decoupled design that separates policies,
implemented at an external control plane, from the mechanisms that enforce them, implemented at
the data plane stage. PAIO targets 1/0 layers at the user-level. Stages are embedded within layers,
intercepting all 1/0 requests and enforcing user-defined policies. To achieve this, PAIO is organized in
four main components.

Stage interface. Applications access stages through a stage interface (§3.4) that routes all requests
to PAIO before being submitted to the next I/0 layer (i.e., Apps —PAIO Stage — File System). For each
request, it generates a Context object with the corresponding I/0 classifiers.

Differentiation module. The differentiation module (§3.2) classifies and differentiates requests based
on their Context object. To ensure requests are differentiated with fine-granularity, we combine ideas from
context propagation [144] to enable application-level information, only accessible to the layer itself, to be
propagated to PAIO, broadening the set of policies that can be enforced.

Enforcement module. The enforcement module (§3.3) is responsible for applying the actual I/0 mech-
anisms over requests. It is organized with channels and enforcement objects. For each request, the

49



CHAPTER 3. PAIO: A SOFTWARE-DEFINED STORAGE DATA PLANE FRAMEWORK

| Application | PAIO Stage I oRs

A L2 - 4° objenf o

RocksDB 3
foreground flows ) 1/0 differentiation (_@_ = (3) :I:I:IH_’ m d g
% % % % _ select_channel(ctx) T m <
S |[8Q 4 )

ﬂush%ﬂows /{ select_object(ctx) =
>| hash; | channel; N = “es g
A ' hash, | channel, E SQ m (@ o

| - o

QF--..--"T

Figure 3.3: Operation flow in a PAIO-enabled |/ O stack. Black circles depict the execution flow of a request
in the PAIO stage; white circles depict the control flow between the SDS control plane and the stage.

module selects the channel and enforcement object that should handle it. After being enforced, requests
are returned to the original data path and submitted to the next |/0 layer (File System).

Control interface. PAIO exposes a control interface (§3.4) that enables the control plane to (1) or-
chestrate the stage lifecycle by creating channels, enforcement objects, and differentiation rules, and (2)
ensure all policies are met by continuously monitoring and fine-tuning the stage. The control plane pro-
vides global visibility, ensuring that stages are controlled holistically. Exposing this interface allows stages
to be managed by existing control planes [84, 143, 211].

3.1.3 A Day in the Life of a Request

Before delving into PAIQ’s internal modules, we first illustrate how it orchestrates the workflows of a given
layer. We consider the 1/0 stack depicted on Figure 3.3, which is made of an Application, RocksDB
(@ LSM-based KVS [183]), a PAIO stage, and a POSIX-compliant File System; and the enforcement of
the following policy: “limit the rate of RocksDB’s flush operations to X MiB/s”. RocksDB's background
workflows generate flush and compaction jobs, which are translated into multiple POSIX operations that
are submitted to the File System. Flushes are translated into write system calls, while compactions into
reads and writes.

At startup time, RocksDB initializes the PAIO stage, which connects to an already deployed control
plane. The control plane submits housekeeping rules to create a channel and an enforcement object
that rate limits requests at X MiB/s (D). It also submits differentiation rules (@) to determine which
requests should be handled by the stage, namely flush-based writes. Details on how the differentiation
and enforcement processes work are given in §3.2 and §3.3, respectively.

At execution time, RocksDB propagates the context at which a given operation is created (@) (i.e., if it
is a flush or a compaction) and redirects all write operations to PAIO (@). Through @, we ensure that
only write operations are enforced at PAIO, while with @, we differentiate flush-marked writes from
others that can be triggered by compactions jobs. Upon a flush-based write, a Context object is created
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Table 3.1: Examples of the type of requests a channel receives.

Channel Workflow ID Request context Request type

channel flow; — —
channel, - background tasks read
channels flows compaction write

with its request type (write), context (f lush), and size, and submitted, along the request, to the stage
(@) . Then, the stage selects the channel (@) to be used, enqueues the request (@), and selects the
enforcement object to service the request (@), which in turn rate limits the request at X MiB/s (@). After
enforcing the request (@), the original write operation is submitted to the File System .

The control plane continuously monitors and fine-tunes the data plane stage. Periodically, it collects
from the stage the throughput at which requests are being serviced (®). Based on this metric, the
control plane may adjust the enforcement object to ensure flush operations flow at X MiB/s, generating
enforcement rules with new configurations (@).

3.2 1/0 Differentiation

PAIO’s differentiation module provides the means to classify and differentiate requests at different levels
of granularity, namely per-workflow, request type, and request context. The process for differentiating
requests is achieved in three phases.

Startup time. At startup time, the user defines how requests are differentiated and who should handle
each request. First, it defines the granularity of the differentiation, by specifying which 1/0 classifiers
should be used to differentiate requests. For example, to provide per-workflow differentiation PAIO only
considers the Context’s workflow id classifier, while to differentiate requests based on their context and
type, it uses both request context and request type classifiers. Second, the user attributes specific 1/0
classifiers to each channel to determine the set of requests that a given channel receives. Specifically, it
defines the exact request’s workflow id, context, and/or type that a channel receives. Table 3.1 provides
examples of this specification: channel; only receives requests from flow;, while channel; only handles
read requests originated from background tasks; channels receives compaction-based writes from
flows. To generate a unique identifier that maps requests to channels, the classifiers can be concatenated
into a string or hashed into a fixed-size token (§3.5). Further, this process can be set by the control plane
(i.e., differentiation rules) or configured at stage creation.

Execution time. The second phase differentiates the |/0 requests submitted to the stage and routes
them to the respective channel to be enforced. This is achieved in two steps.

Channel selection. For each incoming request, which is accompanied by its Context object, PAIO selects
the channel that must service it (depicted in Figure 3.3, step @). PAIO verifies the Context’s 1/0 classifiers
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and maps the request to the respective channel to be enforced. This mapping is done as described in the

first phase of the differentiation process.

Enforcement object selection. As each channel can contain multiple enforcement objects (e.g., apply
different 1/0 mechanisms for requests of the same channel), analogously to channel selection, PAIO
selects the correct object to service the request (depicted in Figure 3.3, step @). For each request, the
channel verifies the Context's classifiers and maps the request to the respective enforcement object, which
will then employ its I/0 mechanism (§3.3).

Context propagation. Several |/0 classifiers, such as workflow id, request type, and size, are accessible
just from observing raw 1/0 requests. However, application-level information, that is only accessible to
the layer that submits the 1/0 requests, could be used to expand the policies to be enforced over the I/0
stack. An example of such information, as depicted in Figure 3.1, is the operation context, which allows
to determine the origin or context that a given request was created, i.e., if it comes from a foreground or
background task, flush or compaction, or other.

As such, PAIO enables the propagation of additional information from the targeted 1/0 layer to the
data plane stage. It combines ideas from context propagation, a commonly used technique that enables
a system to forward context along its execution path [144, 145, 155, 233], and applies them to ensure
fine-grained control over requests. To achieve this, systems designers instrument the data path of the
targeted layer where the information can be accessed, and make it available to the stage through the
process’s address space, shared memory, or thread-local variables [63]. The information is included at
the creation of the Context object as the request context classifier. Propagating the context without this
method would require changing all core modules and function signatures between where the information
can be found and its submission to the stage.

As an example, consider the 1/0 stack of Figure 3.3. To determine the origin of POSIX operations
submitted by RocksDB's background workflows, system designers instrument the RocksDB's critical path
responsible for managing flush or compaction jobs (@) to capture their context. This information is then
propagated to the stage interface, where the Context object is created with all I/0 classifiers, including
the request context, and submitted to the stage (@).

Note that this step (i.e., context propagation) is optional, as it can be skipped for policies that do not
require additional information from the application to be enforced.

3.3 1/0 Enforcement

The enforcement module provides the building blocks for developing the actual I/0O mechanisms that will
be employed over requests. It is composed of several channels, each of which contains one or more
enforcement objects. The enforcement process begins after the channel selection.

As depicted in Figure 3.3, requests are moved to the selected channel and placed in a submission
queue (@). For each dequeued request, PAIO selects the correct enforcement object (@) and applies its
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Table 3.2: Interface definitions of PAIO.

1Tpaio_init O Initialization of PAIO stage
enforce(ctx,r) Enforce context ctx and request r

obj_init(s) Initialize enforcement object with state s
2”obj_enf (ctx,r) Enforce I/O mechanism over ctx and r
obj_config(s)  Configure enforcement object with state s

stage_info() Get data plane stage information
hsk_rule(t) Housekeeping rule with tuple t
3*dif_rule(t) Differentiation rule with tuple t
enf_rule(id,s) Enf. rule over enf. object id with state s
collect() Collect statistics from data plane stage

TStage API; *Enforcement object API; *Control API.

|/0 mechanism (@). Examples of these mechanisms include token-buckets, caches, encryption schemes,
and more; we discuss how to build enforcement objects in §3.4.3. Since several mechanisms can change
the original request’s state, such as data transformations (e.g., encryption, compression), during this
phase, the enforcement object generates a Result that encapsulates the updated version of the request,
including its content and size. The Result object is then returned to the stage interface, that unmarshalls
it, inspects it, and routes it to the original data path (@). After this process, PAIO ensured that the request
has met the objectives of the specified policy.

Optimizations. Depending on the policies and mechanisms to be employed, PAIO can enforce requests
using only their 1/0 classifiers. While data transformations are directly applicable over the request’s
content, performance-driven mechanisms such as token-buckets and schedulers, only require specific
request metadata to be enforced (e.g., type, size, priority, storage path). As such, to avoid adding overhead
to the system execution, PAIO allows for the request’s content to be copied to the stage’s execution path
only when necessary.

3.4 Interfaces and Usage

We now detail how PAIO interacts with |/0O layers and control planes, how to integrate PAIO in user-level
layers, and how to build enforcement objects. Table 3.2 depicts the interface definitions for (1) 1/0 layers
to interact with the data plane stage; (2) creating and using enforcement objects; and (3) SDS controllers

orchestrate the data plane stage.

3.4.1 Interfaces

Stage interface. PAIO provides an API to establish the connection between an I/0 layer and PAIO’s
internal mechanisms. As depicted in Table 3.2, it presents two functions: paio_init initializes a PAIO
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data plane stage, which connects to the control plane for internal stage management and defining how
workflows should be handled; enforce intercepts requests from the layer and routes them, along the
associated Context object, to the stage (§3.4.2 details how requests should be intercepted and submitted
to PAIO). After enforcing the request, the stage outputs the enforcement result and the layer resumes the
original execution path.

Control interface. Communication between data plane stages and the control plane is achieved through
five calls, as depicted in Table 3.2. A stage_info call lists information about the stage, including the
stage identifier, PID, job identifier, hostname, and username. Rule-based calls are used for managing
and tuning the data plane stage. Housekeeping rules (hsk_rule) manage the stage lifecycle (e.g.,
create channels and enforcement objects), differentiation rules (dif rule) map requests to channels
and enforcement objects, and enforcement rules (enf _rule) dynamically adjust the internal state (s) of a
given enforcement object (id) upon workload and policy variations. The control plane also monitors stages
though a collect call that gathers key performance metrics of all workflows (e.g., IOPS, bandwidth) and
can be used to tune the data plane stage.

This interface enables the control plane to define how PAIO stages handle I/0 requests. Nonetheless,
concerns related to the dependability of data plane stages, as well as the resolution of conflicting policies
are responsibility of the control plane, and are thus orthogonal to this work.

3.4.2 Integrating PAIO in User-level Layers

Although the stage API is simple, porting I/O layers can require a few extra steps.

Using PAIO with context propagation. To integrate a stage within a layer, the system designer
typically needs to:
1. Create the stage in the targeted layer, using paio_init.

2. Instrument the critical data path, where the layer-level information is accessible, and propagate it
to the stage upon the Context object creation. This might entail creating additional data structures.

3. Create the Context object that will be submitted, alongside the request, to the stage. It can include

the workflow id, request type and size, and the propagated information.

4. Add an enforce call to the 1/0 operations that need to be enforced at the stage before being
submitted to the next layer. For example, to enforce the POSIX read operations of a given layer,
all read calls need to be first routed to PAIO before being submitted to the file system.

5. Verify if the request was successfully enforced by inspecting the Result object, returned from

enforce, and resume the execution path.

Using PAIO transparently. When context propagation is not required, PAIO stages can be used trans-
parently between 1/0 layers, such as applications and file systems, without requiring any code changes.
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As such, PAIO exposes layer-oriented interfaces (e.g., POSIX) and uses LD_PRELOAD to replace the orig-
inal interface calls at the top layer (e.g., read and write calls invoked by applications) for ones that
are first submitted to PAIO before being submitted to the bottom layer (e.g., file system) [123]. Each
supported call defines the logic to create the Context object, submits the request to the stage, verifies
the Result, and invokes the original 1/0 call. This enables layers to use PAIO without changing any line
of code. Moreover, this method is not exclusive to the POSIX interface, and can be used with other I/0
layers and interfaces (e.g., KVS interface, RPC interface) as long as the targeted libraries are dynamically
loaded in the OS [64].

3.4.3 Building Enforcement Objects

PAIO exposes to system designers a simple API to build enforcement objects, as depicted in Table 3.2.

* obj_init. Create an enforcement object with initial state s, which includes its type and initial
configuration.

* obj_config. Provides the tuning knobs to update the enforcement object’s internal settings
with a new state s. This enables the control plane to dynamically adapt the enforcement object to
workload and variations (ensure that the current policy is met at all times) and to new policies.

* obj_enf. Defines the actual I/0 logic to be applied over requests. It returns a Resultthat contains
the updated version of the request (r), after applying its logic. It also receives a Context object (ctx)
that is used to employ different actions over the 1/0 request.

By default, PAIO preserves the operation logic of the targeted system (e.g., ordering, error handling),
as both enforcement objects and operations submitted to PAIO follow a synchronous model. While devel-
oping asynchronous enforcement objects is feasible, one needs to ensure that both correctness and fault
tolerance guarantees are preserved.

3.4.4 Combining PAIO Stages With a Control Plane

While addressing the research challenges of the SDS control plane (e.g., scalability, dependability, distri-
bution and partitioning control responsibilities) is out of the scope of this thesis, we now discuss how data
plane stages built with PAIO can be combined with different control plane settings, in terms of controller
distribution and usage. As depicted in Figure 3.4, stages can be orchestrated by SDS controllers in dif-
ferent settings, including local (a), remote (b), and hierarchical (c) controllers. For all scenarios, stages
communicate with controllers through PAIO’s control interface (§3.4.1).

Local controller. Local SDS controllers run in the same compute node (or server) as the data plane
stage. This is appropriate when the defined policies are specific to the data plane stage (or stages) of
a single compute node (i.e., do not interfere with shared remote resources). For instance, this local
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(a) Local controller setting. (b) Remote controller setting. (c) Hierarchical controller setting.

Figure 3.4: Combination of different type of SDS controllers orchestrating PAIO stages, namely (a) local,
(b) remote, and (c) hierarchical controllers.

controller can be used for ensuring per-application local disk bandwidth guarantees (§5). Under this
scenario, communication between data plane stages and the controller can be established through inter-
process communication mechanisms such as named pipes, UNIX Domain Sockets, and shared memory.

Remote controller. Remote SDS controllers run in a dedicated compute node, and data plane stages
connect to it through TCP sockets, RPC, or other remote communication mechanism. This setting is
particularly useful when multiple stages, distributed throughout the infrastructure, enforce policies over
shared resources, and thus require global visibility and control. For example, this remote controller can
be used for ensuring QoS control of multiple applications, each running in a different compute node,
accessing a shared file system.

Hierarchical controller. In a hierarchical setting, as discussed in §2.3, there are multiple SDS con-
trollers: local controllers (i.e., sub-controllers) are co-located with data plane stages, and a global controller
(i.e., core controllers) runs at a dedicated compute node. Stages communicate directly with local con-
trollers, which in turn communicate with the global controller. This setting is useful when there are many
data plane stages (deployed throughout the 1/0 infrastructure) operating concurrently over shared re-
sources, and need to be continuously managed by the control plane. Creating a hierarchy of controllers
minimizes the number of connections to the global controller (i.e., given that there can be multiple data
plane stages in the same compute node) and reduces the number of exchanged messages, thus reducing
the load imposed over the global controller.

3.5 Implementation

We have implemented PAIO prototype with 9K lines of C++ code, being provided as an 1/0 library that tar-
gets layers at the user-level. It enables the construction of new stage implementations and straightforward
integration with existing layers, requiring none or minor code changes.

Enforcement objects. We implemented two enforcement objects. Noop implements a passthrough
mechanism that copies the request’s content to the Result object, without additional data processing.
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Dynamic Rate Limiter (DRL) implements a token-bucket to control the rate and burstiness of 1/0 work-
flows [33]. The bucket is configured with a maximum token capacity (size) and period to replenish the
bucket (refill period). The rate at which the bucket serves requests is given in tokens/s. On obj_init the
bucket is created with an initial size and refill period. On obj_config, a rate(r) routine changes the
size according to a function between r and refill period. For each request, obj _enf verifies the context’s
size classifier and computes the number of tokens to be consumed. If not enough tokens are available,
the request waits for the bucket to be refilled. To demonstrate the portability and maintainability of PAIO’s
I/0 mechanisms, we apply the DRL object over multiple scenarios composed of different 1/0 layers and
storage objectives.

1/0 cost. We consider a constant cost for requests e.g., each byte of a read or write request re-
presents a token. Although the cost depends on several factors (e.g., workload, operation type, cache
hits, storage devices), we continuously calibrate the token-bucket so its rate converges to the policies’
goal. Our experiments show that this approach works well in our scenarios (§4 and §b), as the bucket's
rate converges within few interactions with the control plane. Nevertheless, determining the 1/0 cost is
complementary to our work [87, 200]. Combining PAIO with these could be useful under scenarios where
policies are sensitive to the 1/0 cost.

Statistics and 1/0 differentiation. PAIO implements per-workflow statistic counters at channels to
record the bandwidth of intercepted requests, number of operations, and mean throughput between col-
lection periods. To create unique identifiers that map requests to channels and enforcement objects,
we used a computationally cheap hashing scheme [9] (i.e., MurmurHash3) that hashes classifiers into a
fixed-size token.

Context propagation. To propagate information from layers, we implemented a shared map, indexed
by the workflow identifier (e.g., thread-id), that stores the context of the requests being submitted, which
is similar to those used in [144, 145].

Transparently intercepting 1/0 calls. PAIO uses LD_PRELOAD to intercept POSIX calls and route
them either to the stage or to the kernel. LD_PRELQOAD is a dynamic linking primitive that allows defining
the order of linkage of shared libraries (e.g., 1ibc. so) at runtime. To enforce the policies demonstrated
in §5, PAIO supports read and write calls, as well as their different variations such pread, pwrite64,
and more. Further, §6 discusses the support of other POSIX calls by a data plane stage built with PAIO.
We defer the support of other calls and interfaces (e.g., KVS, object store) to future work.

Control plane. We built a simple but fully-functional control plane with 3.6K lines of C++ code that
enforces policies as a local controller for two of the use cases presented in this thesis, namely §4 and §5.
This controller has also served as basis for the development of an hierarchical controller, which is further
discussed in §6. Communication between the local controller and stages is established through UNIX
Domain Sockets. Policies were implemented as control algorithms. To calibrate enforcement objects
it collects I/0 metrics generated by the targeted layer from the /proc file system [166]. Specifically,
it inspects the read_bytes and write_bytes |/O counters, which represent the number of bytes
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read/written from/to the block layer, and compares them with the stage statistics to converge to the

targeted performance goal. This tuning was used for the use case presented in §5.

3.6 Evaluation

Our evaluation seeks to demonstrate the performance of the PAIO framework. The ability and feasibility of
building data plane stages with PAIO, as well as their applicability and performance over different policies
and storage scenarios, are evaluated in dedicated chapters of this thesis, namely §4, §5, and §6.

Experimental setting. Experiments were conducted under two hardware configurations. Configura-
tion A respects to a compute node of the ABCI supercomputer with two 20-core Intel Xeon processors
(80 cores), 4 NVidia Tesla V100 GPUs, 384 GiB of RAM, and a 1.6 TiB Intel SSD DC P4600, running
CentOS 7.5 with Linux kernel 3.10 and xfs file system [4]. Configuration B respects to a server with
two 18-core Intel Xeon processors (72 cores), 192 GiB of RAM, a 1.6 TiB Dell Express Flash PM1725b
SSD (Non-Volatile Memory Express (NVMe)) and a 480 GiB Intel D3-S4610 SATA SSD, running Ubuntu
Server 20.04 LTS with kernel 5.8.9 and ext4 file system.

Methodology. We developed a benchmark that simulates an application that submits requests to a
PAIO data plane stage. This benchmark aims to demonstrate the maximum performance achievable with
PAIO by stress-testing it in a loop-back manner. It generates and submits multi-threaded requests in a
closed loop through Stage interface’s enforce call, under a varying number of clients (e.g., workflows)
and request sizes. Request size and number of client threads range between 0 — 128 KiB and 1 - 128,
respectively. Each client thread submits 100 million requests. A PAIO stage is configured with varying
number of channels, which match the number of client threads, each containing a Noop enforcement
object that copies the request’s buffer to the result object. All reported results are the mean of at least
ten runs and standard deviation is kept below 5%.

I0OPS and bandwidth. Figure 3.5 depicts the cumulative IOPS ratio with respect to a single channel. OB
represents a context-only request, as described in §3.3. Results marked with * and + were conducted
under configurations A and B, respectively.

For configuration A, under a OB* request size, a single PAIO channel achieves a mean throughput of
3.05 MOps/s and a 327 ns latency. Since the workload is CPU-bound, the performance does not scale
linearly, as client threads compete for processing time. Under 128 channels, it achieves a cumulative
throughput of 97.4 MOps/s, corresponding to a 31x performance increase. As the request size increases
so does the total bytes processed by PAIO. When configured with 128 channels, it processes 128 KiB*
requests at 384 GiB/s. For a single channel, PAIO processes requests at 2.1 GiB/s and 11.7 GiB/s for
1 KiB* and 128 KiB* request sizes.

For configuration B, PAIO achieves higher throughput results as it operates under a later kernel version.
Since the machine is configured with 72 cores, PAIO’s performance peaks at 64 client threads. Under a
OB* request size, PAIO achieves 3.43 MOps/s (1 channel) and 102.7 MOps/s (64 channels), representing
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Figure 3.5: Cumulative IOPS of PAIO under varying number of channels (1 — 128) and request sizes (0 -
128 KiB). Absolute IOPS value is shown above the 1 channel bar.

a 30x performance increase. When configured with 64 channels, it is able to process 128 KiB*-sized
requests at 489 GiB/s. For a single channel, PAIO processes requests at 2.5 GiB/s and 14.7 GiB/s for
1 KiB* and 128 KiB* request sizes, respectively.

Profiling. We measured the execution time of each PAIO operation that appears in the main execution
path. Depending on the hardware configuration, Context object creation takes between 17 — 19 ns,
while the channel and enforcement object selection take 85 — 89 ns to complete (each). The duration of
obj_enf ranges between 20 ns and 8.45 us when configured with OB and 128 KiB request sizes.

Summary. Results show that PAIO has low overhead, as it is provided as a user-space library, which does
not require costly context-switching operations. In fact, PAIO can be used to implement data plane stages
over |/0 stacks that use more legacy kernel versions, such as kernel 3.10 from configuration A, and even
leverage from the optimizations implemented in recent versions, such as kernel 5.8.9 from configuration
B. We expect that the main source of overhead will always be dependent on the type of enforcement object
(and policy) applied over 1/0 requests. For the enforcement objects used in this work (§4 - §6), we have
not observed significant performance overhead.

3.7 Related Work

SDS systems. PAIO builds on a large body of work on SDS systems. I0Flow [211], sRoute [205], and
PSLO [128] target the virtualization layer (i.e., hypervisor, storage and network drivers) to enforce QoS
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policies. PM [248] enforces rate limiting services at the Network File System. Mesnier et al. [155] employ
caching optimizations at the block layer. Pisces [201] and Libra [200] enforce bandwidth guarantees in
multi-tenant KVS. Malacology [194] improves the programmability of Ceph to build custom applications
on top of it. Retro [143] and Cake [222] implement resource management services at the Hadoop stack.
SafeFS [175] stacks FUSE-based file systems on top of each other, each providing a different service.

Crystal [84] extends OpenStack Swift to implement custom services to be enforced over object requests.

All systems are targeted for specific I/0 layers, as their design is tightly coupled to and driven by the
architecture and specificities of the software stacks they are applied to. In contrast, PAIO is disaggregated
from a specific software stack, enabling developers to build custom-made data plane stages applicable
over different user-level layers, while requiring none to minor code changes — we demonstrate this by
integrating PAIO over different I/0 layers (§4-86). Previous works are also unable to enforce the policies
demonstrated in §4, as they do not provide context propagation [200, 201], inhibiting request differentia-
tion at a finer granularity (i.e., foreground vs high-priority vs low-priority background tasks). Other solutions
actuate at the kernel-level [155, 211], where the context is unreachable without significantly changing
legacy APIs. Further, these are also unfit to achieve the policies demonstrated in §5 and §6, as solutions
like [128, 205, 211] cannot be used under scenarios that require bare-metal access to resources, such
as HPC infrastructures and bare-metal cloud servers.

Context propagation. Some works use context propagation techniques to tag data across kernel lay-
ers. Mesnier et al. [155] classifies and tags requests with classes to be differentiated at the block layer.
IOFlow [211] tags requests to differentiate tenants that share the same hypervisor. Split-level schedul-
ing [233] identifies the processes that caused a given |/ O operation throughout the VFS, page cache, and
block layer. PAIO acts at the user-level and enables the propagation of additional information from the
targeted I/0 layer to the stage (e.g., propagate the context at which a given request was created, as in
§4), allowing more fine-grained differentiation and control over requests. Enabling the intended granular-
ity by PAIO at kernel-level approaches would require breaking standard user-to-kernel and kernel-internal
interfaces, reducing portability and compatibility [5].

Our contributions are also applicable under kernel-bypass storage stacks (e.g., SPDK, PMDK), which
is not the case for previous work. In more detail, under a kernel-bypass storage stack where |/0O operations
are submitted directly to the device from user-space, in-kernel systems like IOFlow, Mesnier et al., Split-
level scheduling, PM, and mechanisms such dm-crypt [57], dm-cache, blkio [29], cannot be used. On the
other hand, PAIO can be used and integrated with kernel-bypass stacks under two settings: (1) it can be
used in use cases where applications consider the storage backend as black-box; (2) we could integrate
PAIO as a new abstraction on top of SPDK — through SPDK's logical block device abstraction [36] — or
PMDK — as done by existing libraries, namely libpmemobj, libpmemblk, and libpmemkv [173].

Storage Qo0S. Many works ensure QoS SLOs at specific storage layers, including the block layer [29, 88,
139, 154, 220, 242], hypervisor [86, 87, 89, 128, 211], and distributed storage [176, 222, 223, 228].
These works are targeted for a specific I/0 layer and storage objective. In contrast, PAIO is more general,
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providing a framework for building custom data plane stages applicable over different layers. Also, most of
these solutions only differentiate requests based on their type. PAIO provides differentiation at workflow,
request type, and request context. Approaches like [89, 139, 154, 242] follow a decoupled design that
separates the QoS algorithm from the mechanism that applies it. While complementary to our work, these

could be incorporated into our framework as new enforcement objects.

3.8 Summary and Discussion

In this chapter, we show the design, implementation, and evaluation of PAIO, a framework that enables
system designers to build custom-made SDS data plane stages applicable over different 1/0 layers. PAIO
provides fine-grained differentiated treatment of requests and allows implementing storage mechanisms
adaptable to different policies. By combining ideas from SDS and context propagation, we demonstrated
that PAIO decouples system-specific optimizations to a more maintainable and programmable environ-
ment, while enabling similar /0 control and performance, and requiring minor to none code changes. Our
evaluation shows that PAIO’s performance scales with the number of channels, achieving high throughput
and low latency. The next chapters show the feasibility of using PAIO by describing the data plane stages
built with it to address the requirements of different storage stacks.

Tail latency control in KVSs (§4). We built a data plane stage that achieves tail latency control at
the 99" percentile in RocksDB, a LSM-based KVS. Results show that a PAIO-enabled RocksDB improves
tail latency by 4x under different workloads, and enables similar performance and 1/0 control as system-
specific optimizations (i.e., SILK [17]).

Per-application bandwidth control (§5). We built a data plane stage that ensures dynamic per-
application bandwidth guarantees under a shared storage scenario; specifically, where multiple Tensor-
Flow [1] instances (which execute on the same compute node) compete for local disk bandwidth. Results
show that all PAIO-enabled TensorFlow instances are provisioned with their bandwidth goals. This scenario
was driven by the requirements of the ABCI supercomputer.

Metadata QoS control in PFSs (§6). We built PADLL, a SDS storage middleware that proactively
controls and ensures QoS over metadata workflows in HPC storage systems. Results show that PADLL
can dynamically control metadata-aggressive workloads, prevent I/0O burstiness, and ensure 1/0 fairness
and prioritization of jobs that compete for metadata resources over Lustre-like PFSs.
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Tail Latency Control in Log-Structured Merge
Key-Value Stores

Log-Structured Merge tree Key-Value Stores such as LevelDB [80], RocksDB [183], and PebblesDB [178],
have become a crucial component of modern storage infrastructures, being used in distributed databases
[191, 209, 214], file systems [224], stream processing and machine learning engines [2, 42, 161], and
more. While great progress has been made to improve the throughput of KVSs, by mainly reducing the cost
of internal operations [106, 138, 168, 178], recent studies have demonstrated that these systems suffer
from tail latency spikes when foreground and background tasks compete for shared storage resources [17].
SILK addresses this problem by proposing an 1/0 scheduler that controls the interference between these
tasks [17]. However, it follows an intrusive approach and applying its I/O scheduler over RocksDB required
changing several core modules made of thousands of LoC [15]. This chapter describes a new data plane
stage built with PAIO, that enables similar performance and control as SILK but without requiring profound
refactoring to the original codebase. Results show that a PAIO-enabled RocksDB improves 99" percentile

latency up to 4x under different workloads and testing scenarios.

4.1 Log-Structured Merge tree Key-Value Stores

We now discuss how LSM KVSs are organized and how their internal components fit together. For this
purpose, we consider the design of RocksDB, a widely-used production-ready KVS from Facebook [183].

KVSs built on top of a LSM data structure are generally organized in three main components. A
memory component, know as memtable, is a sorted data structure that resides in memory and is used
to receive all write operations from KVS clients. Every client write is also written to a Write-Ahead Logging
(WAL) component that is persisted on disk. Its purpose is to make every update (on a key-value pair)
persistent, so that in the event of a failure, it can be used to completely recover the memtable data and
restore the KVS to its original state. For crash consistency purposes, the WAL is flushed after every client
write. The disk component is organized in multiple levels (Lg, Ly, ..., L), each containing multiple files,
called Sorted Strings Table (SST), that hold sorted key-value pairs. Levels have a predetermined size and
grow in hierarchical manner. Specifically, level L;;; is Nx larger than L; where N is a configurable factor
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(usually 10). As such, lower levels of the LSM (e.g., Lo, L;) are usually sized between MiB and few GiB,
while higher levels can hold several GiB, or even reach TiB in size as seen in production [17, 214].

Foreground operations. The main operations submitted from KVS clients are writes (put (key, va-
lue)), reads (get (key)), and scans (seek (key;,key,)). The put (key,value) operation stores
the mapping from key to value in the KVS; if key exists, its value is updated. Directly submitting each
put operation to the file system would generate a workload made of random writes; to prevent this, all
put operations are absorbed by the memtable, transforming a random write workload into a sequential
one. If enabled, these are also appended to the WAL. The get (key) operation returns the latest value
associated with key, while the seek (key; ,key,) operation retrieves all key-value pairs comprehended
within key; and key, range. Read-based operations are first submitted to the memtable; if key is not
found, it traverses the LSM in hierarchical order. While traversing the tree, only a single SST file on each
level is accessed since key-value pairs are sorted (except for Ly, due to the opposite reason).

Background operations. LSM KVSs perform two types of background operations for internal sys-
tem management. When the memtable fills, a flush operation occurs, which writes the contents of the
memtable directly to the first level of the LSM (L) as an SST file. Flushes are sequentially written and only
proceed when there is enough space in Ly. Moreover, because flushes need to have high throughput to
avoid blocking client’s writes, the memtable is written to disk without additional processing (i.e., sorting),
which leads L, to have overlapping key ranges. When levels of the LSM fill (i.e., exceed their maximum
size), compactions are triggered, where SST files from level L; are picked and merged with SST files from
level L;4+1. As such, compactions induce high 1/0 overhead, as these generate several POSIX read and
write calls. In fact, depending on the size of the KVS system, compactions may read/write many GiB
of data and take several minutes to complete [17, 243].

All background operations are held in an internal FIFO queue. High level compactions (L; — Lj41,
where i > 0) can be executed in parallel. Flushes and low level compactions (L, — L;) are sequential.

Compactions and flushes are handled by separate thread pools.

4.2 The Tail Latency Problem

A common problem of LSM KVS systems is the interference between foreground and background work-
flows, generating high latency spikes for clients. Fundamentally, latency spikes occur when flushes cannot
proceed because Ly—L; compactions and flushes are slow or on hold, which can happen for two main
reasons [17].

* Flushes are slow. When flushes are slow due to insufficient disk 1/0 bandwidth, the memtable
fills up and cannot absorb any more client writes. Under this scenario, client writes are stalled until
there is enough space on the memory component to handle them, causing latency spikes.
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* Low level compactions are slow. A second cause for flushes to be halted occurs when Ly—L;
compactions are slow, either (1) due to insufficient disk bandwidth because compactions from
higher levels are executing and using a significant portion of the disk /0 bandwidth, or (2) because
all workers from the dedicated compaction thread pool are in use (executing compactions from
higher levels), which results in low level compactions to wait in the compaction queue. This leads
to the accumulation of several SST files on Ly, which can block flushes when there is no more
storage quota left at this level.

This means that not all background operations have an equal impact on the KVS performance. Internal
operations that are closer to clients’ requests (namely, flushes and low level compactions) are critical, as
their slowdown negatively affects the overall tail latency perceived by clients.

Rate limiting internal operations. To address this problem, RocksDB can reserve more |/ 0 bandwidth
to foreground workflows by rate limiting the 1/0 of internal KVS operations. To do so, RocksDB implements
a rate limiter that can either be statically fixed at a given bandwidth rate or be dynamically changed
through a multiplicative-increase, multiplicative-decrease algorithm, which is termed as auto-tuned rate
limiter [116]. Such an approach however suffers from two main limitations [17]. First, as foreground and
background operations are intrinsically dependent, if background writes are rate limited indiscriminately,
it can lead to low level compactions or flushes to be slow down. Second, the auto-tuned rate limiter
allocates more bandwidth to background workflows when there is more backlog, regardless of the 1/0
rate of foreground workflows, leading to an immediate latency spike of clients’ requests.

SILK. By following a distinct approach, SILK [17], a RocksDB-based KVS, prevents this problem through
an 1/0 scheduler that:

1. Allocates bandwidth for internal operations when client load is low. Given that, in pro-
duction environments, the load of KVS clients varies over time [17, 37], SILK reserves less I/0
bandwidth to internal operations when client load is high (limiting the interference between both
operation types), and increases this limit when client load is low, which prevents accumulating a
large backlog of background operations.

2. Prioritizes flushes and low level compactions. Leveraging from the fact that flushes and low
level compactions have higher impact on clients’ tail latency, SILK enforces different priorities for
each type of background tasks. Specifically, flushes have higher priority, since they need to ensure
the memtable has enough space to absorb clients’ writes; then, it gives second priority to low level
compactions, to ensure that flushes do not get blocked; finally, high level compactions have the
lowest priority, since even though they to eventually execute, their immediate completion does not
impact clients’ tail latency on the short term.

3. Preempts high level compactions with low level ones. Because high level compactions can
take several minutes to execute, SILK implements a new compaction algorithm that allows to pause
them, while giving priority for low level ones to execute.
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Figure 4.1: Organization of the PAIO data plane stage for achieving tail latency control in LSM-based KVS.

SILK employs these techniques through the following control algorithm. As these KVSs are typically
embedded and co-located with other services running in the /0 stack, the KVS |/0 bandwidth is bounded
to a given rate (KVSg). It continuosly monitors clients’ bandwidth (Fg), and allocates leftover bandwidth
(leftg) to internal operations (Ig), given by Iz = KVSg—Fg. To enforce rate Ig, SILK uses RocksDB’s 1/0
rate limiters [71]. Flushes and Ly—L; compactions have high priority and are provisioned with minimum
|/0 bandwidth (ming). High level compactions have low priority and can be paused at any time. Because
all compactions share the same thread pool, it is possible that, at some point, all threads are handling
high level compactions. As such, SILK preempts one of them to execute low level compactions.

Applying these optimizations however, required reorganizing RocksDB's internal operation flow, chang-
ing core modules made of thousands of LoC including background operation handlers, internal queuing
logic, and thread pools allocated for internal work [15]. Further, porting these optimizations to other KVS
that would equally benefit from them, such as LevelDB [80] and PebblesDB [178], requires deep system
knowledge and substantial re-implementation efforts.

4.3 Tail Latency Control with PAIO

Rather than modifying the RocksDB engine (core modules), we found that several of these optimizations
could be achieved by orchestrating its 1/0 workflows. Thus, we applied SILK's design principles as follows:
a PAIO data plane stage provides the |/0 mechanisms for prioritizing and rate limiting background flows,
while the control plane re-implements SILK’s |/0 scheduling algorithm to orchestrate the stage. Figure 4.1
depicts the organization of this data plane stage.

Data plane stage. The stage intercepts the POSIX operations submitted from all RocksDB workflows,
including foreground, flush, and compaction flows. We consider each RocksDB thread that interacts with
the file system as a workflow, and each of these is handled by a different PAIO channel, namely Channelsg,
(foreground), Channelg; (flush), and Channelsc (compaction). Channel differentiation is made using the
workflow id. Since at POSIX level only the request type, size, and workflow id (thread-id) are known,
we instrumented RocksDB to propagate the context at which a given operation is created. Specifically,
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Table 4.1: Lines of code added to RocksDB to integrate the PAIO stage.

Lines added to RocksDB

Targeted codebase size ~335K [72]
Initialize PAIO stage 10
Context propagation 47

Create Context object 7
Instrument 1/0 calls 17
Verify Result object 4
Total 85

RocksDB’s FlushJob class was instrumented to propagate f1ush contexts [70], and the CompactionJob
class to propagate compaction contexts [69], including the involved LSM levels at which the compaction
occurs (e.g.,, compaction_L,_L;, compaction_L, Lj).

Foreground flows are handled with Noop enforcement objects (which act as a passthrough), and are
continuously monitored for collecting clients’ bandwidth (Fg). Background flows are handled by channels
made of DRL objects (used for rate limiting). Flushes flow through a dedicated channel (Channelg;).
As compactions with different priorities can flow through the same channel (Channelc), each of these
channels contains two DRL objects configured at different rates, one for high priority compactions (DRLy)
and another for low priority compactions (DRL; ). Enforcement object differentiation is made through
the request context classifier, and requests are enforced with the optimization described in §3.3. PAIO
also collects the bandwidth rate of flushes (FI), and low (Ly) and high level compactions (Ly). As listed
in Table 4.1, integrating PAIO in RocksDB only required adding 85 LoC of which 47 LoC respect to the
context propagation, while the remainder are used for initializing the stage (10), create the Context object
(7), instrument read and write calls (17), and verify the Result object (4).

Control algorithm. The control plane implements the control portion of SILK’s scheduling algorithm
(Algorithm 4.1). It uses a feedback control loop that performs the following steps. First, it collects statistics
from the stage (1) and computes leftover disk bandwidth (leftg) to assign to internal operations (2). To
ensure that background operations keep flowing, it defines a minimum bandwidth threshold (3), and
distributes leftg according to workflow priorities (4-11). If high priority tasks, from both types (FI and
L), are executing it assigns them an equal share of leftg, while ensuring that high level compactions keep
flowing (ming), preventing low level ones from being blocked in the queue (5). If a single high priority task
is being executed, leftg is allocated to it and ming to others (6-9). If no high priority task is executing,
it reserves leftg to low priority ones (11). It then generates and submits enforcement rules (enf rule)
to adjust the rate of each enforcement object (12). For low priority compactions, it splits B, between
all DRL objects that handle these. Since high priority compactions are executed sequentially [17, 183], it
assigns By, to the respective objects. Rate Bp; is assigned to those responsible for flushes. For this use
case, we used a local SDS controller (as described in §3.4.4).
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Algorithm 4.1: Tail Latency Control Algorithm
Initialize: KVSg = 200; ming = 10
{Fg,Fl, Ly, Ly} < collect ()
IeftB <« KVSB - Fg
lefts < max {leftg | ming}
if Fl >0A Ly > 0then

{BFI: BLO, BLN} <~ {IeftB/Z, IeftB/Z, minB}
else if Fl > 0 A Ly = 0 then

{BFl, BLO, BLN} <« {IeftB, ming, minB}
else if FI =0 A Ly > 0 then

{BFls BLO, BLN} <~ { ming, IeftB, minB}
else

{BFl> BLO, BLN} <~ { ming, ming, IeftB}
enf_rule ({Br, Br,, Bryl)
sleep (loop_interval)
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4.4 Evaluation

We now demonstrate how the PAIO data plane stage achieves tail latency control under several workloads.
We compare the performance of four KVS systems: (1) RocksDB; (2) Auto-tuned, a version of RocksDB
with the auto-tuned rate limiter of background operations enabled [116]; (3) SILK; and (4) PAIO, i.e., a
PAIO-enabled RocksDB.

Testbed configuration. Experiments were conducted using a server with two 18-core Intel Xeon pro-
cessors (72 cores), 192 GiB of RAM, a 1.6 TiB Dell Express Flash PM1725b SSD (NVMe) and a 480 GiB
Intel D3-S4610 SATA SSD, running Ubuntu Server 20.04 LTS with kernel 5.8.9 and ext4 file system.
Unless stated otherwise, experiments were made using the available NVMe device. Moreover, as used in
the SILK testbed, we limit memory usage to 1 GiB and 1/0 bandwidth to 200 MiB/s using cgroups [29,
153] (unless stated otherwise). Both memory and disk bandwidth limits are based on Nutanix production

environments [17].

KVS configuration. All KVS systems are tuned as follows. The memtable-size is set to 128 MiB.
We use 8 threads for client operations and 8 background threads for flush (1) and compactions (7). The
minimum bandwidth threshold for internal operations is set to 10 MiB/s. To simplify results, compression
and WAL are turned off; while enabling them impact the absolute performance of the system, they do not
change the observations made in this evaluation. All experiments are conducted using the db_bench
benchmark [68].

Workloads. We focus on workloads made of bursty clients to better simulate existing services in produc-
tion [17, 37]. Client requests are issued in a closed loop through a combination of peaks and valleys. An
initial valley of 300 seconds submits operations at 5 kops/s, and is used for executing the KVS internal
backlog. Peaks are issued at a rate of 20 kops/s for 100 seconds, followed by 10 seconds valleys at
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5 kops/s. All datastores were (pre)loaded with 100 million key-value pairs, using a uniform key distribu-
tion, with 8B-sized keys and 1024B-sized values.

We use three workloads with different read:write ratios: mixture (50:50), read-heavy (90:10), and write-
heavy (10:90). Mixture represents a commonly used Yahoo! Cloud Serving Benchmark (YCSB) workload
(workload A) and provides a similar ratio as Nutanix production workloads [17]. Read-heavy provides an
operation ratio similar to those reported at Facebook [37]. Further, to present a comprehensive testbed,
we include a write-heavy workload. For each system, workloads were executed three times over 1-hour
with uniform key distribution. For figure clarity, we present the first 20 minutes of a single run. Similar
performance curves were observed for the rest of the execution. Figure 4.2-4.11 depict throughput and
99th percentile latency of all systems and workloads. Theoretical client load is presented as a red dashed

line. Mean throughput is shown as an horizontal dashed line.

Mixture workload. Figures 4.2 and 4.3 depict the throughput and 99" percentile latency results (re-
spectively) of each system under the mixture workload. Due to accumulated backlog of the loading phase,
the throughput achieved in all systems does not match the theoretical client load. RocksDB presents high
tail latency spikes due to constant flushes and low level compactions. Auto-tuned presents less latency
spikes but degrades overall throughput. This is due to the rate limiter being agnostic of background tasks’
priority, and because it increases its rate when there is more backlog, contending for disk bandwidth. SILK
achieves low tail latency but suffers periodic drops in throughput due to accumulated backlog. Compared
to RocksDB (11.9 kops/s), PAIO provides similar mean throughput (12.4 kops/s). As for tail latency,
while RocksDB experiences peaks that range between 3-20 ms, PAIO and SILK observe a 4x decrease
in absolute tail latency, with values ranging between 2-6 ms.

Read-heavy workload. Figures 4.4 and 4.5 depict the throughput and 99" percentile latency results
(respectively) of each system under the read-heavy workload. Throughput-wise all systems perform iden-
tically. At different periods, all systems demonstrate a temporary throughput degradation due to accumu-
lated backlog. As for tail latency, the analysis is twofold. RocksDB and Auto-tuned present high tail latency
up to the 400 seconds mark. After that mark, RocksDB does not have more pending backlog and achieves
sustained tail latency (1-3 ms), while on Auto-tuned, some compactions are still being performed due to
rate limiting, increasing latency by 1-2 ms. SILK and PAIO have similar latency curves. During the initial
valley both systems significantly improve tail latency when compared to RocksDB. After the 400 seconds
mark, SILK pauses high level compactions and achieves a tail latency between 1-2 ms. By preempting
high level compactions and serving low level ones through the same thread pool as flushes, it ensures that
high priority tasks are rarely stalled. SILK achieves this by modifying the RocksDB's queuing mechanism.
In PAIO, while sustained, its tail latency is 1 ms higher than SILK’s in the same observation period. Since
PAIO does not modify the RocksDB engine, it cannot preempt compactions (§4.2), resulting in a small
increase on client’s (tail) latency.

Write-heavy workload. Figures 4.6 and 4.7 depict the throughput and 99! percentile latency results
(respectively) of each system under the write-heavy workload. Write-intensive workloads generate a large
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Figure 4.2: Throughput of RocksDB, Auto-tuned, SILK, and PAIO under mixture workload.
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Figure 4.3: 99th percentile latency of RocksDB, Auto-tuned, SILK, and PAIO under mixture workload.

backlog of (latency-critical) background tasks, leading RocksDB to experience high latency spikes. Auto-
tuned limits all background writes, reducing tail latency but still exceeding the 5 ms mark over several
periods. SILK pauses high level compactions and only serves high priority tasks, improving mean through-
put and keeping latency spikes below 5 ms. In PAIO, since flushes occur more frequently, the control plane
slows down high level compactions more aggressively, which leads to low level ones to be temporary halted
at the compaction queue, waiting to be executed. Even though mean throughput is decreased, PAIO sig-
nificantly reduces tail latency, never exceeding 6 ms. The throughput difference between PAIO and SILK
is justified by the latter preempting high level compactions, as described in the read-heavy workload.
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Mixture workload without rate limiting. We conducted an additional set of experiments to assess
the impact of the tail latency control algorithm under a scenario where the KVS has access to the full
bandwidth of the storage device. We compared the performance of RocksDB, SILK, and PAIO under both
SSD (480 GiB Intel D3-S4610) and NVMe (1.6 TiB Dell Express Flash PM1725b) devices, without rate
limiting, using the mixture workload. The KVSg parameter was set with a value closer to the device’s limit
(reported by the manufacturer). Remainder system configurations were kept unchanged.

Figures 4.8 and 4.9 depict the throughput and 99" percentile latency (respectively) under the SSD
device. Due to accumulated backlog all systems experience poor throughput performance, averaging at
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Figure 4.6: Throughput of RocksDB, Auto-tuned, SILK, and PAIO under write-heavy workload.
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Figure 4.7: 99" percentile latency of RocksDB, Auto-tuned, SILK, and PAIO under write-heavy workload.

7.46 kops/s (RocksDB), 4.93 kops/s (Auto-tuned), 7.52 kops/s (SILK), and 8.88 kops/s (PAIO). During
the loading phase, and until finishing the accumulated backlog (0-400 seconds), RocksDB experiences
long periods of high tail latency, peaking at 111 ms. After that, it observes latency spikes due to con-
stant flushes and low level compactions, with values ranging between 15-60 ms. Auto-tuned experiences
low performance throughout the overall execution due to its auto-tuner algorihtm combined with the poor
performance of the storage device. Specifically, because the device has low throughput and parallelism,
the system cannot perform background tasks in a timely manner, which end up being enqueued in the
internal queues, generating more backlog to perform. As a response, the auto-tuner algorithm reserves
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Figure 4.9: 99" percentile latency of RocksDB, Auto-tuned, SILK, and PAIO under mixture workload
without rate limiting (SATA SSD).

more bandwidth to background tasks, which consequently decreases the rate of foreground flows, and
thus, causing high 99" percentile latency and low throughput. SILK and PAIO present a more sustained
latency performance, never exceeding the 25 ms mark throughout the overall observation period. Specif-
ically, while RocksDB and Auto-tuned experienced a variability of 21.1 ms and 12.2 ms, SILK and PAIO
achieved 4.7 ms and 5.8 ms, respectively. The variability results correspond to the average of the absolute
deviations of data points (i.e., each tail latency measurement) from their mean. Throughput-wise, both
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Figure 4.11: 99" percentile latency of RocksDB, Auto-tuned, SILK, and PAIO under mixture workload
without rate limiting (NVMe).

systems observe periodic drops due to accumulated backlog. However, PAIO is able to recover faster than
SILK. Because it cannot preempt compactions, PAIO reserves more bandwidth (than SILK) to low priority
compactions, ensuring that high priority tasks do not wait to be executed. As such, PAIO follows a more
proactive approach for assigning bandwidth to compactions, while SILK follows a more reactive approach.

Figures 4.10 and 4.11 depict the throughput and 99" percentile latency (respectively) under the NVMe
device. All systems experienced higher throughput performance, averaging at 14.39 kops/s (RocksDB),
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10.53 kops/s (Auto-tuned), 10.27 kops/s (SILK), and 13.11 kops/s (PAIO). RocksDB follows a similar
performance curve as the theoretical client load. The reason behind this is twofold. First, it completes all
accumulated backlog during the initial valley (at the cost of higher tail latency), which positively reflects in
the remainder execution (i.e, no significant performance loss is observed). Second, since NVMe devices
have higher throughput performance and parallelism than SSD devices (Figure 4.8), RocksDB achieves a
more sustained performance. After the initial valley, RocksDB observes latency spikes that range between
7-15 ms due to frequent flushes and low level compactions. SILK and PAIO follow similar tail latency
curves, never exceeding the 6 ms mark. In detail, throughout the overall observation period, RocksDB and
Auto-tuned observed a variability of 2.5 ms and 1.5 ms (respectively), while SILK and PAIO only observed
a variability of 0.8 ms. Similarly to previous results, both system experience periodic throughput drops.

4.5 Related Work

This section discusses and compares existing work with the PAIO data plane stage developed to achieve
tail latency control in LSM-based KVS. For brevity, we refer to this data plane stage as PAIO-RocksDB.

System-specific optimizations. There is extensive prior work in building and optimizing KVS to improve
client throughput and tail latency. Specifically, several systems achieve this by (1) reducing the overhead of
background operations [16, 17, 130, 138, 181, 243], (2) implementing new compaction algorithms [3,
17, 168, 178], and (3) proposing new data structures [18, 82, 106, 178]. These systems however,
have the same shortcoming as SILK, as they are tightly coupled with the targeted system, being directly
implemented within the KVS. PAIO-RocksDB on the other hand, only required adding 85 LoC (of which
47 were used to perform context propagation), and does not entail any changes to RocksDB’s internal
mechanisms such as internal work queues, thread pools, or background operation handlers. As such,
this approach demonstrates that by propagating application-level information to the data plane stage,
PAIO-RocksDB can achieve similar performance and control as system-specific optimizations.

SDS systems. Current SDS systems are unable to enforce the storage policies demonstrated in this
chapter (§4.3). Most systems are targeted for /0 layers that are not within this scope, being co-designed
with hypervisors (IOFlow [211], sRoute [205], PSLO [128]), distributed file systems (Retro [143]), object
stores (Malacology [194], Crystal[84]), and the block layer (Mesnier et al. [155]). PAIO-RocksDB however,
is a data plane stage fined-tuned to handle the 1/0 workflows of RocksDB, being able to control tail latency
performance under several workloads and testing scenarios.

Moreover, several SDS systems do not provide context propagation, inhibiting request differentiation
at a finer granularity (i.e., foreground vs high-priority vs low-priority background tasks) [175, 200, 201].
Some works use context propagation techniques to tag data across kernel-level layers, including the block
layer and device drivers [155, 211]. However, because these actuate at the kernel, the context needed to
enforce these policies requires breaking legacy APIs (user-to-kernel and kernel-internal interfaces), reduc-
ing portability and cross-compatibility. On the other hand, PAIO-RocksDB actuates at the user-level and

74



4.6. SUMMARY AND DISCUSSION

enables propagating application-level information with minimal code changes and without modifying any

interface of the involved layers of the I/0 stack.

4.6 Summary and Discussion

In this chapter, we show that production-based LSM KVS experience high tail latency spikes when fore-
ground and background /O workflows compete for shared resources. To address this problem, we pro-
pose a new data plane stage built with PAIO that orchestrates the 1/0 rate at which foreground and
background operations (including flushes, and low level and high level compactions) flow. By propagating
application-level information (context at which a given POSIX operation is created, such as flushes and
compactions), our PAIO stage outperforms RocksDB by at most 4x in 99" percentile latency, under dif-
ferent workloads and testing scenarios. Moreover, we demonstrate that through minor code changes this
data plane stage enables similar control and performance as SILK, which required profound refactoring
to the original RocksDB codebase. These results allow us to conclude that it is possible to implement
complex /0 optimizations as user-level, general applicable storage data plane stages.

Futhermore, considering a scenario where changing RocksDB would be prohibited, the proposed data
plane stage would still be able to orchestrate its 1/0 workflows, but would not have the same degree of
performance and effectiveness as demonstrated in this chapter. Under this scenario, the PAIO stage would
intercept POSIX operations with LD_PRELOAD (i.e., open, read, write, and close) and would be able
to infer the type of each workflow. Specifically, flushes only submit write operations to SST files (whose
file extension is given by .sst); foreground flows read from SST files and write to the WAL (whose
file extension is given by .1log); and compactions read and write from/to SSTs. However, because
application-level information is not propagated, the data plane stage would not be able to differentiate
between low level and high level compactions, which means that all compaction operations would be

treated equally, ultimately leading to tail latency spikes.
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Per-Application Bandwidth Control in Shared
Storage Environments

HPC infrastructures are increasingly popular to support computational demanding workloads, including
scientific simulations (e.g., quantum chemistry [126], computational fluid dynamics [219]), neural net-
work training [1, 169], and large scale visualizations [179]. Traditionally, to run these applications in a
supercomputer, users allocate one or more compute nodes, having exclusive access to compute, mem-
ory, and storage resources. However, several research centers reported that many jobs that run on their
infrastructures are not computational demanding and only require a subset of the available resources,
leading to over-provisioning and waste of system resources.

The Al Bridging Cloud Infrastructure (ABCI) supercomputer [4], hosted by the National Institute of
Advanced Industrial Science and Technology (AIST) research center, differs from traditional systems by
enabling a cloud-like allocation model, where users can reserve a full compute node (or several) or a
fraction of it, by having exclusive access to compute (CPU cores and GPU) resources, memory, and
storage quota. However, the same is not ensured for local disk bandwidth, which leads to jobs competing
for shared resources (creating I/0 interference) or not being able to reserve different bandwidth priorities.

This chapter addresses this problem by proposing a data plane stage built with PAIO that ensures
per-application bandwidth control under shared storage. The stage transparently intercepts /0 workflows
of each job and dynamically rate limits them in holistic manner, according to a local controller that has
system-wide visibility. Results demonstrate that all PAIO-enabled jobs that ran co-located in the same
compute node were provisioned with their bandwidth goals, and their execution time improved when

compared to a static rate limited setup.

5.1 Al Bridging Cloud Infrastructure Overview

ABCl is a TOP500 supercomputer that is designed upon the convergence between Al and HPC workloads.
The current setup consists of over 1,088 compute nodes, each with 4 NVidia V100 GPU accelerators, 120
compute nodes set with 8 NVidia A100 GPUs each, and other computing resources. Jobs executed at ABCI
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are predominately Al and DL-oriented, being conducted with several Al frameworks such as TensorFlow [1],
PyTorch [169], MXNet [44], and Chainer [212].

To execute these jobs users can reserve full compute nodes, following the traditional manner and
having exclusive access to all system resources; or only fraction of the compute node, where jobs execute
concurrently, similar to other shared infrastructures such as cloud ones. In the latter setting, compute
nodes are partitioned into resource-isolated instances through Linux control groups (cgroups) [153].
Each instance has exclusive access to CPU cores, memory space, a GPU, and local storage quota. De-
pending on the selected configuration, instances can have more or less resources, being applied with the
respective charging rate. However, the local disk bandwidth is still shared, and because each instance
is unaware of the others (i.e., jobs are executed in isolation), jobs compete for disk bandwidth leading to
I/0 interference and performance variation. Even if the block 1/0 scheduler is fair, all instances are provi-
sioned with the same service level, preventing the assignment of different priorities and the enforcement
of per-application bandwidth policies.

Static rate limiting. Using cgroups’ Block I/0 Controller (BLKIO) allows rate limitingread and write
operations of each instance [29]. Specifically, BLKIO is an I/0 subsystem that actuates at the OS block
layer, and is responsible for controlling and monitoring the access on block devices. Currently, it supports
two main policies:

* |/0 throttling: this policy specifies the upper limit (e.g., bytes per second, operations per second)
of read and/or write operations that a given job (group) can submit to the block device. With
this policy, I/0 workflows are statically rate limited.

* Proportional weight division: this policy is implemented in the Completely Fair Queuing (CFQ)
scheduler [41] and enables setting bandwidth weights to specific jobs (groups) in the system. This
ensures that a given group has access to a reserved proportion of the overall disk bandwidth.

However, ABCI adopts the /0 throttling policy, which means that once the rate is set it cannot be
dynamically changed at execution time, as it requires stopping the jobs, adjust the rate of all groups, and
restart the jobs, being prohibitively expensive in terms of overall execution time. This creates a second
problem where if no other job is executing in the node, the instance cannot use leftover disk bandwidth,
leading to longer execution periods. Moreover, even if ABCI used the proportional weight division policy, it
requires manual intervention from system administrators to adjust the bandwidth proportion assigned to
each instance, to comply with the job’s I/0 requirements (e.g., read-write proportion, weight of each job).

5.2 Per-Application Bandwidth Control with PAIO

To address this problem, we built a PAIO data plane stage that implements the necessary mechanisms to
dynamically rate limit |/0 workflows at each instance, while the control plane, implements a proportional
sharing algorithm to ensure all instances meet their policies. Figure 5.1 depicts the organization of this
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Figure 5.1: Organization of PAIO data plane stages that orchestrate TensorFlow instances for achieving
per-application bandwidth control.

data plane stage. Our use case focuses on the DL model training phase. Each instance runs a TensorFlow
job that uses a single I/0 workflow to read dataset files from the local file system. Periodically, TensorFlow
checkpoints the current state of the training model generating POSIX write operations. Depending on the
complexity of the model, the resulting checkpoint state is typically within a few MiB to few GiB in size, and
thus, it does not impose the main source of I/0 contention and interference in this setting.

Data plane stage. The stage targets all POSIX read and write operations generated from Tensor-
Flow's I/0 workflows. We consider each TensorFlow thread that interacts with the file system, either
for reading the dataset or persisting the checkpoint state, as a workflow. Each of these is handled by a
PAIO channel, namely Channelg (read) and Channely (write). Channel differentiation is made using the
operation type. TensorFlow’s read requests are handled with a DRL enforcement object, while write
requests are submitted to a Noop enforcement object. Requests are enforced with the optimization de-
scribed in §3.3. A PAIO stage is applied over each active instance in the system, as depicted in Figure 5.1.

Contrary to the use case presented in §4, this PAIO stage does not require context propagation, as
policies can be met using the request type and size /0 classifiers. As such, instead of embedding this
optimization within TensorFlow’s codebase (which has approximately 2.3M LoC [83]), we integrated the
stage without any code changes. To achieve this, we used LD_PRELOAD to reimplement the logic of the
read and write routines of 1ibc library, by intercepting and forwarding each operation to the PAIO
stage (before being submitted to the local file system). All supported calls implement the logic necessary
for the request to be enforced, including the creation of the Context object using the request type and size
classifiers; stage enforcement; verification of the enforcement Result; and its submission to the original
execution path (file system). Such an approach allows to transparently enforce 1/0 requests, regardless
of the application that is submitting them, enabling general applicability, transparency, and portability.

Control algorithm. The control plane has global visibility of resources and implements a max-min
fair share algorithm (in holistic manner) to ensure per-application bandwidth guarantees (Algorithm 5.1),
which is typically used to achieve resource fairness policies [143, 211]. The overall disk bandwidth
available (given by Maxg) and bandwidth demand of each instance (given by demand) are defined a
priori by the system administrator or the mechanism responsible for managing resources of different job
instances (e.g., SLURM [238]). The algorithm uses a feedback control loop that performs the following
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Algorithm 5.1: Max-min Fair Share Control Algorithm
Initialize: Maxg = N GiB; Active > 0; demand; > 0
1 {I, ..., Iactive—1} < collect ()
2 IeftB <—M3XB
3 fori=0in]0, Active—1] do
leftp

4 if demand; < - then
5 rate; < demand;
6 else
leftB
7 ratei < Active—i
8 leftg < leftg - rate;
9 fori =0 in [0, Active—1] do
leftB
10 rate; < rate; + Aotive

11 enf_rule ({rateg, Iy}, ..., {rateactive—1, Lactive-1})
12 sleep (loop_interval)

steps. First, it collects statistics from each active instance’s stage, given by I; (1), as well as the bandwidth
generated by each TensorFlow job (collected at /proc). Then, it computes the rate of each active instance
(3-10). If an instance’s demand is less than its fair share, the control plane assigns its demand (4-5),
assigning the fair share otherwise (7). It then distributes leftover bandwidth (leftg) across instances (9-10).
Having computed all rates, because some operations may be absorbed by the OS page cache, the control
plane calibrates the rate of each instance in a function of I;, rate;, and the bandwidth generated by each
TensorFlow job, generating the enforcement rules (enf rule) to be submitted to each stage (11). Finally,
the control plane sleeps for loop_interval before beginning a new control cycle (12). For this use case,
we used a local SDS controller (as described in §3.4.4), that ensures global visibility between all stages
competing for shared local disk bandwidth.

5.3 Evaluation

We now demonstrate how the PAIO data plane stage achieves per-application bandwidth guarantees under

a shared storage scenario. Our setup was driven by the requirements of the ABCI supercomputer.

Testbed configuration. Experiments were conducted in a compute node of the ABCI supercomputer
with two 20-core Intel Xeon processors (80 cores), 4 NVidia Tesla V100 GPUs, 384 GiB of RAM, and a
1.6 TiB Intel SSD DC P4600, running CentOS 7.5 with Linux kernel 3.10 and xfs file system.

We used TensorFlow 2.1.0 [83] with the LeNet training model (I/0-bound) [124], configured with a
batch size of 64 TFRecords [210]. We used the ImageNet dataset [186], that includes 1.28 million images
(~138 GiB) for training and 50,000 images (~6 GiB) for validation. Each instance runs with a dedicated
GPU and dataset, and its memory is limited to 32 GiB. Overall disk bandwidth is limited to 1 GiB/s
(Maxg). All resources are isolated using Linux cgroups. At all times, the compute node executes at
most four instances with equal resource shares in terms of CPU, GPU, and RAM. Each instance executes
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Figure 5.2: Per-application bandwidth under shared storage for Baseline, Blkio, and PAIO setups.

a TensorFlow job, is assigned with a bandwidth policy, and executes a given number of training epochs.
Specifically, instances 1 to 4 are assigned with minimum bandwidth guarantees of 150, 200, 300, and
350 MiB/s, and execute 6, 5, 5, and 4 training epochs, respectively.

Setups. Experiments were conducted under three setups: Baseline, Blkio, and PAIO. Baseline represents
the current setup supported at the ABCI supercomputer, where all instances execute without bandwidth
guarantees (compete for local disk bandwidth). The Blkio setup represents a scenario where all instances
are enforced with (static) disk bandwidth limits, using BLKIO. In the PAIO setup, each instance executes
with a PAIO data plane stage that enforces the specified bandwidth goals dynamically. Across all setups,
all instances have exclusive access to a share of compute and memory resources of the compute node.
Figure 5.2 depicts, for each setup, the 1/0 bandwidth of all instances at 1-second intervals. Experiments
include seven phases, each marking when an instance starts or completes its execution.

Baseline. Experiments were executed over 52 minutes. At @, I; reads at an average rate of 421 MiB/s.
Whenever a new instance is added, the /0 bandwidth is shared evenly (2). At ®), the aggregated instance
throughput matches the disk limit. At @, instance performance converges to %256 MiB/s, leading to all
instances experiencing the same service level. However, since instances have different priorities, I5 and
I, miss their policies, as instances I; and I, have access to more 1/0 bandwidth than their fair share.
After 46 minutes of execution (®), I3 completes its executions, and leftover bandwidth is shared with
the remainder instances. Again, I, cannot achieve its targeted goal. At ® and (), active instances have
access to leftover bandwidth and finish their execution.

Blkio. Experiments were executed over 95 minutes. From @ to @, whenever a new instance is added,
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it is provisioned with its exact bandwidth limit (ensuring that their bandwidth guarantees are met at all
times). However, because the 1/0 rate of each instance is set using BLKIO, instances cannot use leftover
bandwidth to speed up their execution. For example, while on Baseline I; executes under the 50-minutes
mark, it takes 95 minutes to complete its execution on Blkio. To overcome this, a possible solution would
require to stop and checkpoint the instance’s execution, reconfigure BLKIO with a new rate, and resume
from the latest checkpoint. However, doing this process every time a new instance joins or leaves the

system is prohibitively expensive, as it would significantly delay the execution time of all running instances.

PAIO. Experiments were executed over 56 minutes. At @ and @, instances are assigned with their
proportional share, as the control plane first meets each instance demands and then distributes leftover
bandwidth proportionally. At 3, contrary to Baseline, the control algorithm bounds the bandwidth of I;
and I, to a mean throughput of 245 MiB/s and 296 MiB/s, respectively. As depicted in Algorithm 5.1,
these bandwidth values respect to the fair share of each instance (4-5) combined with existing leftover
bandwidth (9-10). At @, all instances are set with their bandwidth limit. During this phase, PAIO provides
the same properties as Blkio. From ® to (@, as instances end their execution, active ones are provisioned
as in @ to ®. Contrary to Baseline, PAIO ensures policies are met at all times, and shares leftover
bandwidth across active instances whenever it is available. Compared to Blkio, PAIO finishes 39, 15, and

3 minutes faster for I, I, and I3, and performs identically for I4.

5.4 Related Work

This section discusses and compares existing work with the PAIO data plane stage developed to achieve
per-application bandwidth guarantees under shared storage environments. For brevity, we refer to this
data plane stage as PAIO-ABCI.

Storage optimizations. Many works ensure QoS SLOs at the hypervisor [27, 86, 87, 89] and block
layer [29, 88, 154, 220, 233]. Virtualized environments, such as the case of hypervisor-level optimiza-
tions, are not supported over HPC infrastructures as jobs are executed with bare-metal access to resources.
PAIO-ABCI intercepts the POSIX operations submitted from a given instance to the file system, thus being
suitable for applications that are executed over either virtualized or bare-metal environments. Optimiza-
tions at the file system or block layer require changes to the kernel, decreasing portability and compatibility
while increasing the risk of introducing bugs in production. PAIO-ABCI actuates at the user-level, inter-
cepting POSIX system calls using LD_PRELOAD, thus not requiring changes to any layers of the 1/0 stack,
including the application, file system, or block device.

Nevertheless, even though the aforementioned solutions are not directly applicable over this storage
setting, the QoS algorithms proposed by these, such as mClock [87], pClock [88], SRP [89], could be
incorporated with PAIO-ABCI as new control algorithms.

SDS systems. Existing systems that target the virtualization layer (e.g., hypervisor, device drivers) such
as I0Flow [211], sRoute [205], and PSLO [128], could be used for enforcing the policies presented in
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this chapter under traditional cloud-based infrastructures. However, given that this use case targets HPC
infrastructures (ABCI), where jobs are executed with bare-metal access to resources, these solutions are
unfit for ensuring such objectives. Other systems like Crystal [84], Cake [222], and Retro [143] enforce
bandwidth SLOs over distributed file systems and object stores, making these approaches unsuitable for
the storage setting demonstrated in this chapter. SafeFS [175] could be used to implement a FUSE-based
file system that would provide the necessary mechanisms for rate limiting read and write system calls.
However, due to the (costly) context switching between user-level and kernelevel attached to FUSE file
systems, it would introduce significant performance overhead as demonstrated in existing literature [217].
On the other hand, the PAIO-ABCI data plane stage, alongside the described proportional sharing algo-
rithm, are specifically designed for enforcing per-application bandwidth guarantees under shared local
storage devices. Further, data plane stages built with PAIO incur low performance overhead, and can
service thousands to millions of 1/0 requests per second, as demonstrated in in §3.6.

5.5 Summary and Discussion

In this chapter, we show the design, implementation, and evaluation of a data plane stage built with PAIO
that enables per-application bandwidth control under shared storage environments at the ABCI supercom-
puter. We achieve this by (1) combining the PAIO data plane stage with LD_PRELOAD, which enables
intercepting and handling POSIX operations (i.e., read and write routines from the 1ibc shared li-
brary) transparently, and enforcing the necessary |/O mechanisms (dynamic rate limiting) before being
submitted to the shared storage device; and (2) connecting each PAIO stage to a local SDS controller that
has global visibility over (local) shared resources and orchestrates the 1/0 rate of each stage holistically.
Experiments demonstrate that contrarily to the current setup used on ABCI (Baseline), all PAIO-enabled
instances are provisioned with their bandwidth goals. Moreover, whenever leftover bandwidth is available,
PAIO distributes it across all active instances, decreasing the execution of TensorFlow instances by at
most 39 minutes (41%), when compared to the Blkio setup. These results allow us to conclude that it
is possible to create generally applicable and transparent storage data plane stages that achieve storage
objectives that require global visibility and control of resources. We expect that the developed data plane
stage is effective and applicable over multiple POSIX-compliant applications and storage scenarios that
experience the same limitations as those described in this chapter.
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Metadata Control in Parallel File Systems

Modern supercomputers are establishing a new era in HPC, providing unprecedented compute power
that enables large-scale parallel applications to run at massive scale [61, 76]. However, contrary to long-
lived assumptions about HPC workloads, where applications were predominately compute-bound and
write-dominated, modern applications (e.g., DL training) are data-intensive, read-dominated, and generate
massive bursts of metadata operations [46, 56]. Indeed, several centers have already observed a surge of
metadata operations in their clusters, and they expect this to become more severe over time [134, 170].

While these workloads demand scalable, high throughput, and low latency storage, most TOP500
supercomputers [213] rely on Lustre-like PFSs, which provide a centralized metadata management ser-
vice [39, 47, 192]. In these data centers, having multiple concurrent jobs competing for shared 1/0
resources can lead to severe |/0 contention and performance degradation [134, 171, 176]. For example,
existing studies report that even a single user’s /0 operations can saturate Lustre metadata resources,
leading to unresponsiveness of the file system, reduced speed of computations for all running jobs, and
even failures of metadata servers [97, 134, 176]. While there are numerous solutions to assess the bottle-
necks generated from data workflows in HPC clusters [62, 107, 171, 176, 203, 244, 245], the metadata
counterpart has not received the same level of attention, and existing approaches are suboptimal.

This chapter discusses the design and implementation of PADLL, a storage middleware built with PAIO
that enables QoS control of metadata workflows in HPC storage systems. It allows system administrators to
proactively and holistically control the rate at which POSIX requests are submitted to the PFS. It introduces
a new proportional sharing algorithm that continuously readjusts reservations of metadata operations to
prevent over-provisioning/under-provisioning across active jobs. Results demonstrate the performance

and applicability of PADLL under different scenarios using both synthetic and realistic 1/0 workloads.

6.1 Parallel File Systems Overview

Parallel File Systems are the storage backbone of HPC infrastructures, being used to store and retrieve, on
a daily basis, petabytes of data from hundreds to thousands of concurrent jobs. In this chapter, we focus
on Lustre-like file systems (e.g., Lustre [34, 192], BeeGFS [47], PVFS [39]), which are present in most
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TOP500 supercomputers. A typical Lustre-like file system consists of several building blocks. Metadata
Server (MDS) nodes maintain the file system namespace (e.g., file names and layouts, permissions,
extended attributes) and handle all metadata operations. The namespace is persisted in Metadata Target
(MDT) nodes. Data operations are serviced by Object Storage Server (OSS) nodes, which are connected to
compute nodes via high-speed interconnects, and store files on Object Storage Target (OST) servers. Files
are typically distributed across multiple OSTs for parallelism and availability. File system clients reside at
compute nodes and access the file system using standard POSIX system calls (e.g., open, read, close).

Depending on the scale of the file system, metadata nodes assume different configurations [142].
In some deployments, the namespace is persisted across multiple MDTs and a single MDS handles all
metadata operations, having additional MDS nodes as standby replicas; in others, different MDSs/MDTs
manage/ persist different parts of the namespace, balancing the metadata load between them.

Metadata workflow and limitations. Regardless of the application, workload, or job, whenever a
file needs to be accessed (e.g., create/open/remove file, access control, extended attributes) the main
|/0 path always flows through the metadata service. When creating files, the file system client issues a
RPC routine to the MDS, which will create a new entry in the namespace and assign OSTs in a capacity-
balanced manner to persist the data; for existing files, the MDS retrieves information about the file stripe
and OST mappings.

When used at scale, this centralized design comprises several limitations that can severely bottleneck
the file system and impact the performance of all running jobs. First, different metadata operations
carry different costs to the PFS. Depending on the file system implementation, read-only operations such
as getattr only require acquiring read-locks, while operations like open, close, and unlink require
more expensive locking, as they need to update the namespace state [34, 141]. Other operations, such as
mkdir or rename, require even stronger guarantees (e.g., atomicity). Second, modern workloads, such
as DL training, comprise large-scale datasets that can reach TiB in size and are made of multiple small-
sized files (e.g., FMA [54], Openlmages [119]), which generate high and continuous bursts of metadata
operations. Third, the number of file system clients is several times higher than available MDSs, which
can easily become saturated when several concurrent jobs have aggressive |/0 metadata behavior. For
instance, the current configuration of the Frontier supercomputer holds 40 MDS nodes that serve more
than 9,400 file system clients (one client per compute node), representing an approximate ratio of MDS
nodes to file system clients of 1:235 [76].

6.1.1 Analyzing Metadata Operations in Production Clusters

To understand the impact of metadata operations in production, we analyze the logs of a Lustre file system
from the ABCI supercomputer. The storage at ABCI is made of multiple PFSs. Of these, the /group area
is managed by a DataDirect Networks ExaScaler Lustre file system that is composed of 2 MDSs in a hot-
standby configuration, backed by 6 MDTs, and 36 OSTs that provide 9.5 PiB of storage capacity. For
simplicity, we refer to this file system as PFS4.
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Figure 6.1: Throughput of metadata operations in PFS4 throughout a 30-day period.

We monitored the | /O activity of the most frequent metadata operations at MDSs/MDTs, using DataDi-
rect Networks Storage’s LustrePerfMon [53]. We collected per-MDT performance statistics for open,
close, getattr, setattr, rename, mkdir, mknod, rmdir, statfs, sync, and unlink opera-
tions. The logs report per-operation performance statistics captured with 1-minute samples over a 30-day
observation period. Further, we also monitored the 1/0 bandwidth (read and write) observed by OSSs
over the same observation period.

Overall metadata load. We first examine the throughput of metadata operations throughout the overall
observation period. Figure 6.1 depicts the rate of all collected metadata operations at PFS4. Metadata
operations are submitted at a massive rate, with an average of ~200 kops/s. Over different periods, PFS4
continuously serves requests over 400 kops/s, which last several hours to days, and experiences bursts
that peak at 1 MOps/s. Indeed, the workload is extremely volatile, frequently experiencing periods of low
throughput (50 kops/s or lower) to immediately spike up to 450 kops/s (or higher).

Interestingly, we observe that this load is much higher than those reported in other clusters [170]. For
example, a study from the National Energy Research Scientific Computing Center (NERSC) reports that
the PFS shared by the Edison and Cori supercomputers had an average rate of 9.7 kops/s and 7 kops/s
for open and close operations, respectively; while PFS4 experiences 29 kops/s and 43.5 kops/s. While
the metadata load may depend on different factors, we suspect that these values mainly stem from the
type of jobs conducted at ABCI, which are mostly Al-oriented (e.g., DL training).

Moreover, existing reports indicate that the current limit for creating files in Lustre file systems is
50 kops/s and the known production usage is 15 kops/s [10, 78]. While we do not have exact values of
creat operations, PFS 4 experienced several periods that lasted from few minutes to several days serving
open operations with rates comprehended between 50 kops/s and 125 kops/s.

Observation #1. Modern |/0 workloads are generating massive amounts of metadata operations,
with high throughput rates and bursts that reach 1 MOps/s. Based on previous studies [170] and
the results observed from PFSy, it is expected that these values will continue to increase over time.

Metadata throughput vs. 1/0 bandwidth. Figure 6.2 depicts the read (top) and write (middle)
bandwidth of PFS4's OSSs. Given that most jobs conducted at ABCI are Al-oriented, write throughput is
low, averaging at 0.6 GiB/s, while reads are served at an average rate of 48 GiB/s. However, as depicted
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Figure 6.2: Throughput of read (top) and write (middle) operations from PFS4's OSS nodes, and ratio
between metadata operations (kops/s) and I/0 bandwidth (GiB/s) of PFS,4 (bottom).

in Figure 6.2 (bottom), we observe that in certain periods metadata operations have a significantly higher
throughput than GiBs read/written from/to the PFS. For example, between days 13 and 20, in several time
periods, metadata operations were submitted at a rate over 120 kops for each GiB (or 120 ops for each
MiB) read/written from/to the PFS. This behavior occurs when there is a subset of metadata-intensive
jobs running in the cluster.

Observation #2. There are several time periods where the amount of submitted metadata opera-
tions far exceeds the GiBs of data read/written from/to the PFS. This means that only ensuring QoS
for data workflows is insufficient for controlling the overall PFS performance, and metadata operations
should be handled as well.

Type and frequency of metadata operations. Figure 6.3 shows the type and amount of metadata
operations in PFS4. The most predominant operations are open, close, getattr, and rename, which
account for 98% of the total load. Notoriously, several of these are particularly costly to the PFS and more
prone to cause I/0 contention. Specifically, open and close system calls may require acquiring several
locks in the namespace to update internal state of the namespace; rename needs to ensure atomicity,
which is particularly expensive, for example, when moving files between MDT servers [34, 141]. As for
getattr operations, while less costly than the others, PFS4 received almost 250,000 million requests

during the observation period, representing an average and continuous rate of 95.8 kops/s.

Observation #3. The most predominant metadata operations (i.e., open, close, rename) entail
higher costs to the PFS due to namespace housekeeping and locking, being very likely to saturate
metadata resources. As such, operations should be controlled with fine-granularity, ensuring that

operations with different costs have different QoS levels.
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Figure 6.3: Cumulative metadata operations in PFS4.

6.1.2 Current Approaches

Existing approaches for controlling metadata workflows in HPC storage systems experience the following

shortcomings.

Manual intervention. In several HPC research facilities, system administrators stop jobs with aggres-
sive metadata I/0 behavior (e.g., datasets made of small-sized files, unnecessary file system requests) and
temporally suspend job submission access for users that do not comply with the cluster’s guidelines [97,
134]. While this helps protecting the file system from metadata-aggressive users, this is a reactive ap-
proach that is only triggered when the job has already slowed the storage system and the other jobs in

execution.

Intrusive to 1/0 layers. While solutions like CALCioM [62], GIFT [171], and TBF [176] propose opti-
mizations to mitigate I/O contention and performance variability, these are tightly coupled to the system
implementation and require high intrusiveness to several /0 layers of the HPC software stack, including
the shared PFS, job scheduler (e.g., SLURM), and I/0O libraries (e.g., MPI-I0). Such an approach requires
deep understanding of the system’s internal operation model and profound code refactoring, increasing

the work needed to maintain and port it to new platforms.

In particular, solutions that actuate at the PFS level are especially challenging due to three main
reasons. First, tightly coupled optimizations may be difficult to port between different PFSs (e.g., Lustre vs.
BeeGFS vs. PVFS) as even though they share a similar high-level design, the internal logic differs across
implementations. Second, several clusters use storage appliances from DataDirect Networks, Fujitsu,
IBM, or other storage vendors, being unable to implement optimizations over such systems. Finally, given
that several HPC centers use and maintain in-house versions of open-source PFS implementations, fine-
tuned for their 1/0 requirements and workloads, indiscriminately implementing these optimizations can

introduce bugs or cause performance issues.

Partial visibility and 1/0 control. Some solutions overcome the previous challenge by actuating at the
compute node level, enabling QoS control from the application-side, thus not requiring changes to core
layers of the 1/0 stack [96]. However, these act in isolation (i.e., agnostic of other jobs), being unable to
holistically coordinate the 1/0 generated from multiple jobs that compete for shared storage, thus leading
to /0 contention and waste of system resources [201].
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Figure 6.4: High-level architecture of the PADLL storage middleware and organization of data plane stages
for achieving QoS control of metadata operations in PFSs.

6.2 PADLL Storage Middleware

We address these challenges with PADLL, an application and file system agnostic storage middleware that
enables QoS control of metadata workflows in HPC storage systems.! Fundamentally, it allows system
administrators to proactively and holistically control the rate at which POSIX requests are submitted to
the PFS from all running jobs in the HPC system. As depicted in Figure 6.4, PADLL follows a decoupled
design. The data plane (§6.2.1), partially built with PAIO, is made of multiple stages that are distributed
over compute nodes, each mediating the 1/0 requests between a given application and the shared file
system. The control plane follows a hierarchical design where local controllers are placed in each compute
node, while a global controller ensures cluster-wide visibility.

PADLL does not require code changes to any core layers of the HPC |/0 stack, being agnostic of the
applications it is controlling as well the file system to which the requests are submitted to. Being separated
from the PFS enables applying PADLL over multiple applications under different POSIX-compliant storage
backends. This is important since (1) different HPC centers may use different file systems (e.g., Lustre,
BeeGFS, GPFS, PVFS) or storage appliances; (2) it is compliant with in-house file system implementations
that have code hardened optimizations made through several years of practice; and (3) does not require
users to change their applications.

6.2.1 Data Plane

The PADLL data plane was partially built using PAIO. Stages actuate at the compute node level, each of
which sits between the application and the file system layer. PADLL transparently intercepts and reim-
plements multiple POSIX system calls from different operation classes before being submitted to the
PFS, including data (e.g., read, fwrite), metadata (e.g., open, rename), extended attributes (e.g.,
getattr, setattr), and directory management (e.g., mkdir, mknod).

IPADLL stands for Programmable and Adaptable 1/0 workflows for Dynamically Loaded Libraries.
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To control the rate of 1/0 workflows of a given job, multiple PADLL stages may be used. Under single
node jobs, a single stage may handle all I/0 workflows. As depicted in Figure 6.4, this is the case of
jobs where Apps only executes at compute node 3. For distributed jobs, where application instances run
on separate compute nodes, multiple stages need to be set (i.e., one per instance). For example, as
depicted in Figure 6.4 joby, two stages are needed to effectively rate limit the /0 workflows of Appy, since

it executes in compute nodes 1 and 2.

Mountpoint differentiation. Compute nodes can have access to multiple file systems, both local (e.g.,
xfs or ext4 for managing local storage devices, tmpfs for non-persistent file storage) and remote (e.g.,
NFS client which submits requests to a remote NFS server; Lustre client which submits requests to a
Lustre file system). Given that PADLL intercepts POSIX requests regardless of the destined file system, it
needs to identify which requests are destined towards the PFS to be treated accordingly. PADLL performs

this differentiation in three phases:

* Registering mountpoints: the system administrator defines which mountpoints should be managed
with PADLL by registering their full path on a mountpoint registry. For example, as depicted in
Figure 6.4, PADLL can handled all requests that are destined towards the file systems whose

mountpoints are /scratch and /local/usr.

* Handling path-based operations: all system calls that define the pathname of the targeted file,
such as open, fopen, rename, and mkdir, are intercepted and analyzed. Requests that are
destined towards any of the registered mountpoints will follow the regular operation flow of a PAIO
stage, namely 1/0 differentiation and enforcement; otherwise, requests are directly submitted to
the corresponding file system without any changes.

* Handling file descriptor and file pointer based operations: to determine if a system call that accesses
files through file descriptors (e.g., read, fgetattr) or file pointers (e.g., fwrite, fclose) is
destined towards a mountpoint listed in the mountpoint registry, for each valid open-based call
PADLL stores the resulting file descriptor (or file pointer) in an internal file mapping module. Then,
whenever these file descriptor (or file pointer) based system calls are intercepted, PADLL verifies
if the corresponding identifier is registered in the file mapping. If so, requests follow the regular
operation flow of a PAIO stage; otherwise, these are directly submitted to the corresponding file
system without additional processing. On close-based operations, the file descriptor is removed

from the file mapping.

Context object creation. After differentiating which requests should be enforced (i.e., rate limited),
PADLL creates the Context object to be submitted to the PAIO data plane stage. For each request, the
Context object is built with the following |/ O classifiers: workflow id, set with the thread-ID; operation type
(e.g., open, read, close, getattr); operation context, which defines the operation class that a given
operation respects to — read and write-based operations are defined as data, while the remainder
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such as open, rename, mkdir, and getattr, are defined as metadata; and operation size, which
defines the cost in tokens of each operation, being set to 1 for metadata operations and the corresponding
buffer size for data operations.

1/0 differentiation and enforcement. The stage targets all POSIX operations studied in §6.1.1, given
their prevalence in the 1/0 workloads observed in HPC storage systems. As depicted in Figure 6.4, oper-
ations may be handled by two PAIO channels, namely Channelp for data and Channely for metadata
operations. Unless stated otherwise, channel differentiation is made using the operation context. Due to
the different evaluation scenarios presented in this chapter, further discussion on the exact POSIX oper-
ations handled by PADLL is made in §6.3. All channels are configured with DRL enforcement objects to

ensure requests are rate limited before being submitted to the PFS.

Implementation. We implemented the PADLL's data plane with 16K lines of C++ code. The data plane
exposes a POSIX interface that reimplements 42 calls from different operation classes. Moreover, it imple-
ments the necessary building block for differentiating requests based on their mountpoint, including the
mountpoint differentiation and file mapping modules The logic for rate limiting requests, namely channel
differentiation and enforcement, was built using PAIO.

6.2.2 Control Plane

The control plane follows a hierarchical design (as described in §3.4.4). The global controller has global
system visibility and enforces cluster-wide policies over the overall SDS system, and is deployed in a
dedicated compute node. Local controllers have local visibility and only orchestrate the data plane stages of
a given compute node. Communication flows in a hierarchical manner; specifically, to enforce policies and
collect |/ 0O statistics, the global controller communicates with local controllers, which in turn communicate
with their corresponding data plane stages.

Given that each compute node can have multiple data plane stages, either due to multiple concurrent
jobs (as discussed in §5) or from multi-process applications, which create one data plane stage per
process, having a local controller allows reducing the number of connections to the global controller.
Currently, local controllers act as proxies that aggregate statistics from stages before being dispatched to
the global controller, and forward enforcement rules to the respective stages. The actual control decisions
are made by the global controller. We leave scalability and dependability improvements, as well as the
delegation of control responsibility to local controllers as future work.

Orchestrating stages from the same job. Every time a job starts, its corresponding stages are
initialized and connected to the local controller. Stages send to the controller information that characterizes
the job and the compute node where it is running (e.g., job-ID, PID, hostname, username). The local
controller then aggregates this information and shares it with the global controller. Based on this, the
control plane knows which job each stage respects to, orchestrating the stages that belong to the same
job-1ID as a single one.
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Algorithm 6.1: Max-min Fair Share Without False Resource Allocation Control Algorithm
Initialize: Maxg = N IOPS; Active > 0; demand; > 0; usage; > 0; 0 < e < 1
1 {usagey, ..., USageactive—1} < collect ()
2 IeftR <—M8XR
3 fori=0in]0, Active—1] do
fair_share < Ai‘;{; tf_l.
if usage; < demand; then
threshold; < (demand; — usage;) * ¢
rate; < min (usage; + threshold;, fair_share)
else
rate; < min (demand;, fair_share)
10 lefty < lefty — rate;
11 total_usage < Z‘Jf‘:cf)i“e_l usage;

12 fori = 0in [0, Active—1] do

© 00 N O a b

13 usage_proportion; <« %
14 rate; < rate; + (usage_proportion; * leftg)
15 enf_rule ({ratey, ..., rateactive—1})

16 sleep (loop_interval)

Control algorithm. Algorithm 5.1 is a common proportional sharing algorithm used to enforce 1/0
fairness policies when a given resource is bottlenecked (i.e., if a resource is overloaded, the policy reduces
its load by orchestrating the workflows that access it while ensuring max-min fairness), as demonstrated
in §5 and in previous work [143, 211]. However, while this algorithm is well suited for workloads that have
a sustained 1/0 behavior, it is suboptimal under volatile and bursty workloads. Specifically, the algorithm
assigns to active instances either their demand or their fair share, while also proportionally distributing any
leftover resources in the system; however, if a given instance exhibits a volatile workload, the algorithm
may assign a resource share larger than that the instance needs, which results in over-provisioning. We
refer to this behavior as false resource allocation.

Since metadata workloads in HPC storage systems are volatile and bursty (§6.1.1), we propose a new
max-min fair share algorithm that prevents false resource allocation to ensure QoS control over metadata
workflows, which is depicted in Algorithm 6.1. Briefly, rather than assigning the instance’s demand or fair
share exclusively based on the number of active instances in the system, we consider the actual usage of
each instance and redistribute resources in a max-min fair share manner based on those observations.

Given the context and problem discussed in this chapter, from this point forward, we consider the
metadata throughput that a given file system can service as the main resource to be distributed among
instances. The overall metadata rate available (given by Maxg) and metadata rate demand of each in-
stance/job (given by demand) are defined a priori by the system administrator or the mechanism respon-
sible for managing resources of different job instances (e.g., SLURM). The algorithm is computed on the
global controller and uses a feedback control loop that performs the following steps. First, it collects
statistics from each active instance’s stage to determine its actual metadata rate usage, given by usage;
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(1). For each active instance, the algorithm computes its fair_share (4) and verifies if the current rate
(usage;) is lower than its demand (5). Under this scenario, instance; can be serviced at a rate lower than
its demand. As such, it assigns the minimum between fair_share and usage;+threshold; (7). Threshold;
is computed based on the product of a configurable ¢ value and the different between demand; and us-
age;, and is used to absorb the rate of highly volatile workloads (6). If usage; is higher than demand;, the
controller assigns the minimum between demand; and the fair_share (8-9).

The algorithm then distributes leftover rate (leftg) across actives instances (11-14). Specifically, it
computes the overall rate used by all instances (11), and assigns leftg based on their usage propor-
tion, given by usage_proportion; (13-14). Finally, the global controller generates the enforcement rules
(enf_rule) to be submitted to each local controller (15), and sleeps for loop_interval before beginning
a new control cycle (16).

Implementation. We have implemented PADLL's control plane with 6K lines of C++ code. The imple-
mentation of the control plane discussed in §3.5 served as basis for the development of this one. The
global controller implements the necessary building blocks for specifying policies and control algorithms,
and managing local controllers (e.g., collect statistics, submit rules). Local controllers implement the logic
for communicating with data plane stages, and preprocessing the statistics that will be shared with the
global controller. Communication between local controllers and data plane stages is established using
UNIX Domain Sockets, while communication between controllers is established through RPC, using the
gRPC framework [85].

6.3 Evaluation

We now demonstrate how PADLL can enforce metadata QoS policies in PFSs. Specifically, our evaluation
demonstrate that PADLL (1) can enforce policies at different granularities, (2) can control 1/0 burstiness,
(3) enforces |/0 prioritization and proportional sharing objectives over concurrent jobs in the system, and
(4) has negligible overhead.

Testbed configuration. Experiments were conducted in compute nodes of the Frontera supercom-
puter [204]. Each compute node is equipped with two 28-core Intel Xeon processors (112 cores), 192 GiB
of RAM, and a single 240 GiB SSD. Software-wise, it uses CentOS 7.9 with the Linux kernel v3.10 and the
xfs file system. The production PFS is a Lustre file system.

Benchmarks and workloads. We conducted experiments using both data and metadata workloads.
For data workloads, namely read and write, we used the JOR benchmark [197]. IORis a synthetic I/0
benchmark used to evaluate HPC storage systems. The write/read workload sequentially writes/reads
a single file with 875 GiB using POSIX-compliant system calls.

To generate realistic metadata workloads, we implemented a trace replayer that submits (“replays”)
metadata operations (namely, open, close, rename, getattr, setattr, mkdir, mknod, rmdir,
statfs, and unlink) with an identical request distribution as the one observed from the logs collected

92



6.3. EVALUATION

at PFS4. The replayer is multi-threaded, and each thread submits a specific metadata operation at a rate
that follows the same performance curve as the original logs. The rate at which operations are submitted
depends on how many compute nodes are used for a given experiment; this is further discussed in
the following sections. The execution period was also accelerated, where each second of the replayer
corresponds to a minute’s worth of operations in the original log.

Methodology. For all experiments, the global controller runs at a dedicated compute node, and each
job respects to the execution of IOR or the trace replayer under a specific workload. IOR experiments were
conducted using the PFS. Experiments involving metadata operations were conducted over the local file
system to prevent the Baseline setup to cause harm to the production-based PFS and negatively impact the
performance of concurrent jobs in the cluster. Nevertheless, because PADLL actuates at the system call
level, at user-space, it can intercept and handle POSIX operations submitted to any in-kernel file system
registered in the VFS, including local and remote file systems (i.e., Lustre kernel client). We expect PADLL
to achieve the same level of effectiveness when used over PFSs.

6.3.1 Functional Evaluation

This section demonstrates PADLL's capability of rate limiting I/O workflows at different levels of granu-
larity, namely per-operation type and per-operation class. All experiments presented in this section were
conducted under a single compute node.

Setups. Experiments were conducted under three setups:

* Baseline: represents the benchmark — IOR or trace replayer — without using PADLL.

e Passthrough: respects to a scenario where POSIX operations submitted by the benchmark are
intercepted by PADLL but are not rate limited. This setup was used to measure the overhead
introduced by PADLL.

e PADLL: represents a scenario where POSIX operations submitted by the benchmark are intercepted
by PADLL and throttled at a given rate.

Workload configuration. Experiments using the trace replayer were configured as follows. The rate
of each operation type was scaled-down to half to ensure that the file system could serve them without
overloading. The trace used in the experiments corresponds to the metadata operations of a single MDT
server of the PFS,4 file system.

Per-operation type rate limiting. First, we demonstrate how PADLL enables system administrators to
control the rate of specific operations. Under this scenario, both IOR and trace replayer were configured
to submit a single operation type. For all experiments, PADLL was configured to throttle operations with
a static rate, whose value changes every N minutes upon instruction of the system administrator, namely
6 minutes for metadata and 1 minute for data operations.

93



CHAPTER 6. METADATA CONTROL IN PARALLEL FILE SYSTEMS

48
36
24k
12

0

80
60
40
20
OO
240
180 F
120

Throughput

Time (minutes) Baseline =~ —— PADLL

Figure 6.5: Per-operation type rate limiting. Experiments show that PADLL can enforce different rate limits
over different POSIX operations, including open, close, getattr, rename, read and write.

Figure 6.5 depicts the throughput results of Baseline and PADLL setups under different operation
types. Grey lines depict the Baseline setup, while black lines depict the PADLL setup.

At all times, PADLL is able to control the rate of all operations, never exceeding the configured limits.
Over several periods, PADLL follows the same performance curve as Baseline, as observed in the open
experiment between 12 and 18 minutes (i.e., periods where the black line is not flat). This is because,
the limit set by the system administrator, for that interval, is higher than the operations submitted by
the replayer. Analogously, we observe periods where the PADLL setup achieves higher throughput than
Baseline, as observed in the getattr experiment between the 6 and 12 minutes interval. This occurs
when operations are being aggressively rate limited (i.e., the original rate is significantly higher than the
defined limit), creating a backlog of operations to be executed.
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Figure 6.6: Metadata rate limiting with PADLL.

We observe similar results for data-oriented operations. However, since the targeted file system of the

IOR experiments is the shared storage backend (i.e., Lustre), we notice more variability.

Per-operation class rate limiting. We now demonstrate how PADLL controls the 1/0 workflows of
a given operation class, namely metadata. We followed a similar testing methodology as the previous
setup. The trace replayer spawns ten threads, one for each operation type. Figure 6.6 depicts the obtained
results. The throughput corresponds to the accumulated rate of all replayer threads.

At all times, PADLL effectively controls the rate of all metadata operations throughout the overall
experiment. In several periods, PADLL matches or achieves higher throughput performance than Baseline;

we draw similar observations as in the previous setup.

Overhead. To further evaluate the overhead imposed by PADLL, we conducted a set of experiments with
the Passthrough setup. When comparing Passthrough with Baseline, the overhead is negligible, never
degrading performance more than 0.9% across all experiments. For figure clarity, Passthrough is not

depicted in Figures 6.5 and 6.6, as its performance line practically overlaps with the Baseline one.

6.3.2 Per-Job QoS Control

We now demonstrate how PADLL achieves metadata QoS control in HPC storage systems by orchestrating
the I/0 workflows of active jobs in the supercomputer. Under this scenario, metadata operations are seen
as a finite and shared 1/0 resource, and for the PFS to provide sustained 1/0 performance, jobs need to

meet specific metadata SLOs.

Testbhed configuration. At all times, there are at most four jobs in the system, each running in a
dedicated compute node and executing the trace replayer, which submits metadata operations at different
rates. Jobs are incrementally added to the system every 3 minutes. Under this scenario, we consider that
the system administrator defines a maximum rate of metadata operations (Maxg) that can be submitted
to the targeted storage system, being set at 220 kops/s. Again, to prevent harming the production PFS,
metadata operations are submitted to each compute node’s local file system. As such, Maxz corresponds
the maximum metadata rate available to all of these file systems.

Workload configuration. The trace used in the experiments corresponds to the metadata operations
of all MDT servers of PFSy; i.e., the combined rate of all jobs follows the overall metadata load observed

95



CHAPTER 6. METADATA CONTROL IN PARALLEL FILE SYSTEMS

Table 6.1: Per-Job QoS Control Testing Scenarios.

Testing scenario #1 Testing scenario #2 Testing scenario #3

Job;  {25% - 30 kops/s } {15% - 30 kops/s } {15% - 80 kops/s }
Job, {25% - 50 kops/s} {20% - 50 kops/s } {20% - 50 kops/s }
Job;  {25% - 60 kops/s } {20% - 60 kops/s } {20% - 60 kops/s }
Job, {25% - 80 kops/s} {45% - 80 kops/s } {45% - 30 kops/s }

at the PFS,4 file system. Each job is assigned with a given load that varies across testing scenarios, as
depicted in Table 6.1. For instance, in testing scenario #1, all jobs submit the same load (i.e., 25%). The
trace replayer was configured with 10 threads, each of which replayed a given operation type with the
same rate as the original log.

Setups. Experiments were conducted under five setups: Baseline represents the current setup supported
at most supercomputers, where all jobs execute without any throttling. The remainder setups are rate lim-
ited with PADLL, with a maximum combined rate of Maxg. Uniform represents a scenario where jobs
are throttled with a fixed limit throughout their entire execution. Across all testing scenarios, each job is
rate limited to 55 kops/s. Priority represents a setup where jobs are statically rate limited, similarly to
Uniform, but are assigned with different rates. This enables defining different |/O priorities to all jobs in
the system. The Proportional sharing setup represents a scenario where metadata workflows are con-
trolled with Algorithm 5.1. Specifically, the control algorithm enforces per-job metadata rate reservations
and proportionally distributes leftover metadata rate whenever it is available. Finally, Proportional sharing
without false allocation (PSFA) represents a scenario where metadata workflows are controlled with Algo-
rithm 6.1, which prevents false resource allocation when workloads are bursty and volatile. For Priority,
Proportional sharing and PSFA setups, the rate limits of each job are depicted in Table 6.1, which vary
across testing scenarios. For Proportional sharing these limits represent the per-job maximum rate when
all jobs are active. For PSFA these limits represent the per-job maximum rate when (1) all jobs are active
and (2) each job’s usage is higher than its demand.

Testing scenarios. To provide a comprehensive evaluation testbed, we consider three testing scenarios
with varying load proportions and rate limits. Table 6.1 depicts the load proportion and the metadata rate
limit for each combination of testing scenario and job. The load proportion varies across all setups, while
the metadata rate limit is only enforced under Priority, Proportional sharing, and PSFA. The sum of the
load proportion of all jobs corresponds to the metadata operations of all MDT servers of PFS 4, while the
sum of the metadata rate limits corresponds to Maxg.

e Testing scenario #1 (§6.3.2.1): all jobs follow the same workload but are assigned with different
I/0 priorities.

e Testing scenario #2 (§6.3.2.2): jobs have different load proportions - for instance, Job; submits
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15% of the overall metadata load, while Jobs submits 45% - and rate limits are assigned propor-

tionally to each job’s load (i.e., jobs with lower metadata load are assigned with lower priority).

e Testing scenario #3 (§6.3.2.3): jobs follow the same load proportions as testing scenario #2, but
the rate limits of Job; and Job, are switched (i.e., the job with lower metadata load is assigned
with higher priority, and vice-versa).

6.3.2.1 Testing Scenario #1

Figure 6.7 depicts, for each setup, the metadata rate of all jobs at 1-second intervals under testing scenario

#1. Experiments include seven phases (D-®), each marking when a given job enters or leaves the system.

Baseline. Experiments were executed over 45 minutes. Each job executes over 36 minutes and leaves
the system in the same order as it entered. Throughout the entire execution, we observe that the workload
is extremely volatile and bursty, with peaks that reach 600 kops/s. When all jobs are executing, there are
several periods where the file system continuously serves requests between 225 kops/s and 300 kops/s.
Moreover, note that the performance curve (and maximum rate) observed in this workload does not match
that in Figure 6.1, even though the logs used for replaying the metadata operations are the same. This is
because jobs start their execution at different times, being separated by a 3-minutes gap.

Uniform. Experiments were executed over 45 minutes. Throughout the entire execution, whenever a
new job is added, it is provisioned with its assigned rate, namely 55 kops/s. PADLL ensures that the
throughput of all jobs is sustained and eliminates existing /0 burstiness. While rate limited, we observe
that all jobs finish in the same time as their corresponding version in the Baseline setup. While this setup
is useful to equally distribute metadata rate across jobs, it has three main limitations: first, it does not
allow jobs to execute with different priorities; second, given that there are several periods where there is
leftover metadata rate, jobs may be rate limited more aggressively than needed (for instance, in intervals
@ to @ and ® to @); finally, jobs can experience over-provisioning if they submit metadata operations at
a rate lower that the defined limit, leading to waste of system resources.

Priority. Experiments were executed over 56 minutes. Similarly to the Uniform setup, PADLL ensures
that all jobs are provisioned with their rate throughout the entire execution. However, when a job is set
with low priority, its execution may take longer than its corresponding unthrottled version since metadata
operations are rate limited more aggressively. We observe this phenomenon in Job;, where its execution
takes 20 minutes longer than in the previous setups. Moreover, while this setup enables defining metadata

rate priorities, it still suffers from the other two limitations discussed in the Uniform setup.

Proportional sharing. Experiments were executed over 45 minutes. Whenever a new job enters (D-®)
or leaves the system (®-@), it is assigned with its proportional metadata share. When all jobs are running
(@), they are assigned with their demanded rate. During this phase, jobs are served with the same limits as
in Priority. Compared to Baseline, this setup eliminates /0 burstiness and provides sustained metadata
performance. Compared to Uniform and Priority, it ensures different priority rates while sharing leftover
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Figure 6.7: Per-job metadata control over Baseline, Uniform, Priority, Proportional Sharing, and PSFA
setups under testing scenario #1.

metadata rate whenever it is available. However, given that Job; is aggressively rate limited during @, its
execution takes 8 minutes longer than the corresponding unthrottled version. Furthermore, because the
workload is volatile and bursty, we observe several periods that demonstrate the false resource allocation
problem (discussed in §6.2.2), being particularly noticeable in the 12-20 minutes and 24-38 minutes
intervals. In these periods, one or more jobs are over-provisioned, and the exceeding resources could be
used to improve the performance of the remainder jobs.

PSFA. Experiments were executed over 45 minutes. All jobs complete their execution in the same time
as their corresponding unthrottled versions (Baseline). As observed throughout the overall execution, the
PSFA algorithm continuously adjusts the limit of each job based on the actual rate it is using, removing
the false resource allocation experienced in the Proportional sharing setup. Specifically, in the 12-20
minutes period, PSFA assigns unused metadata rate to Job;, Job,, and Jobs, temporarily having access
to more rate than their demand. The same is observed for Job; and Job, in the 24-38 minutes period.
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Figure 6.8: Per-job metadata control over Baseline, Uniform, Priority, Proportional Sharing, and PSFA
setups under testing scenario #2.

As such, PSFA enables maximizing the use of available resources to accelerate the performance of more
resource-hungry jobs, without degrading the performance of over-provisioned ones.

6.3.2.2 Testing Scenario #2

Figure 6.8 demonstrates, for each setup, the metadata rate of all jobs at 1-second intervals under testing
scenario #2.

Baseline. Experiments executed over 45 minutes. Given that the overall metadata load is the same
across all testing scenarios, we observe similar volatility and burstiness as in testing scenario #1 Baseline
setup. The key difference is that now Job, generates a major part of the metadata load being noticeable
throughout its entire execution, while Job; demonstrates significantly lower load.

Uniform. Experiments executed over 64 minutes. Similarly to testing scenario #1, throughout the entire
execution, whenever new job is added, it is provisioned with its static rate, namely 55 kops/s. However, as
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Job, now generates 45% of the overall metadata load, PADLL aggressively rate limits it, resultingin a longer
execution period (namely, it takes 19 minutes longer to complete). On the other hand, Job; experiences
over-provisioning for most of its execution, given that it only generates 15% of the overall metadata load.
This demonstrates that a static rate limit policy is unsuited when jobs have different workload proportions.

Priority. Experiments executed over 47 minutes. Contrarily to testing scenario #1, due to the decreased
metadata load, Job; is now able to finish in the same time as in Baseline setup. On the other hand, Job,
takes 2 minutes longer to complete its execution. Specifically, due to its large metadata load, PADLL ag-
gressively rate limits Job, throughout the overall execution period, resulting in a large backlog of metadata
operations to be performed, as observed in @. In addition, this also occurs because the specified policy
does not enable jobs to leverage from leftover metadata rate available in the system.

Proportional sharing. Experiments executed over 45 minutes. Contrarily to Uniform and Priority, each
job ius able to complete its execution in 36 minutes, since Algorithm 5.1 distributes leftover metadata rate
whenever it is available. However, similarly to the observations made in testing scenario #1, Proportion
sharing experiences periods under false resource allocation, being especially noticeable in the 12-18
minutes, 23-35 minutes, and 36-42 minutes intervals.

PSFA. Experiments executed over 45 minutes. Again, PSFA maximizes the use of metadata resources by
reallocating unused rate from over-provisioned jobs. For instance, during the 23-30 minutes period, Job,
improves its performance by leveraging from unused rate of the other jobs. Interestingly, during the 31-36
minutes interval, PSFA demonstrates lower usage of resources compared to Priority and Proportional
sharing. This occurs because up to the 31-minutes mark the algorithm allocated enough rate to active
jobs that allowed them to conduct any accumulated backlog of metadata operations. Thus, after that mark
(and up to 36 minutes), all jobs flow with a rate closer to that observed in Baseline.

6.3.2.3 Testing Scenario #3

Figure 6.9 depicts, for each setup, the metadata rate of all jobs at 1-second intervals under testing scenario
#3. Experiments conducted for Baseline and Uniform setups are the same as in testing scenario #2, as
both metadata load and rate limits remain unchanged. We draw identical observations.

Priority. Experiments executed over 77 minutes. In this scenario, Job, submits 45% of the overall meta-
data load while being assigned with the lowest priority. As a result, the job takes 32 minutes longer to
complete its execution. Of particular interest, during @, PADLL aggressively rate limits metadata opera-
tions, being submitted at a constant rate of 30 kops/s, not leveraging from the remainder 190 kops/s
available in the system.

Proportional sharing. Experiments executed over 49 minutes. Since Joby is the last to enter the system
(@), it only leverages from leftover metadata rate when the other jobs complete their execution (®-@).
During @, due to accumulated backlog, the job submits metadata operations at a constant rate of Maxg
(over 7 minutes), achieving better performance than Priority (being 28 minutes faster), but still requiring
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Figure 6.9: Per-job metadata control over Baseline, Uniform, Priority, Proportional Sharing, and PSFA
setups under testing scenario #3.

an additional 4 minutes to complete when compared to Baseline. Furthermore, given that Job; only
performs 15% of the overall metadata load but is assigned with the highest priority, it is over-provisioned
for most of its execution.

PSFA. Experiments executed over 45 minutes. Since PSFA prevents false resource sharing, during the
12-42 minutes interval a large share of unused metadata rate is assigned to Job,. As a result, in @,
Job, executes all accumulated backlog under 1.5 minutes. Note that PSFA is able to reassign unused
resources without compromising other policies; for instance, Job; demonstrates the same performance
curve as in setups with more strict policies, namely Priority and Proportional sharing. Finally, PSFA is
able to execute jobs faster than Uniform, Priority, and Proportion sharing, while also eliminating existing
burstiness in the system, bounding the overall metadata rate to Maxg.
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6.4 Related Work

This section discusses and compares existing work on metadata QoS control with PADLL.

HPC storage Qo0S. Many works are designed to mitigate I/O contention in HPC storage stacks, including
GIFT [171], CALCioM [62], IOrchestrator [244], UShape [245], and Gainaru et al. [77]. These however,
ignore the impact that metadata workflows have over the overall system performance. PADLL is able to
control the rate of both data and metadata workflows. Other systems are directly implemented within
core layers of the HPC |/0 stack, including the PFS [95, 107, 176, 244, 245], scheduler [77], and I/0
libraries [40, 62]. These solutions are intrusive and offer limited maintainability and portability. PADLL
actuates at the compute node level and does not require any changes to core layers of the 1/0 stack.

Similarly to PADLL, OOOPS transparently intercepts (through LD_PRELQAD) and rate limits POSIX
requests at compute nodes, being transparent and portable to both POSIX-compliant file systems and
applications [96]. However, because it does not provide global visibility over the system, OOOPS can only
enforce static policies such as Static and Priority, discussed in §6.3.2. On the other hand, PADLL can
enforce dynamic and cluster-wide policies that require system-wide visibility.

SDS systems. PADLL builds on a large body of work on SDS systems. Systems like IOFlow, sRoute, and
PSLO, actuate at the virtualization and block device layers, only controlling the rate of read and write
requests [128, 155, 205, 211]. Others, such as Retro and Crystal, implement resource management
policies over distributed storage systems [84, 143, 222], but are directly implemented within the storage
system itself, offering limited maintainability and portability. In particular, SIREN also enforces QoS policies
over HPC storage systems, but is directly implemented within |/O forwarding and OSS nodes of the
OrangeFS file system [39, 107]. PADLL is a bare-metal solution that actuates at the compute node
level, and transparently intercepts and enforces POSIX requests, both data and metadata, before being
submitted to the PFS. This makes it applicable over different applications and compatible with POSIX-
compliant storage systems.

I/0 optimizations. Many works propose I/0 optimizations to reduce the amount of operations submitted
to the PFS by resorting to storage tiering [52, 113], data reduction techniques [152, 172], and optimized
data formats [75, 137]. While these can help protect the PFS to some extent, they still expose it to I/0
burstiness and metadata-aggressive jobs, since metadata workflows are not rate limited. Nevertheless,
these can be combined with PADLL to further enhance metadata workflows in HPC clusters.

6.5 Summary and Discussion

In this chapter, we study the impact in performance that metadata operations impose over large-scale
HPC storage systems. We analyze traces from a production Lustre file system of the ABCI supercomputer,
hosted by AIST, and reveal new insights about metadata operations at scale. First, we observe that modern
|/0 workloads are volatile and bursty, and generate massive amounts of metadata operations. Then, we
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notice that the amount of metadata operations far exceed the read and write bandwidth of the PFS.
Finally, we observe that the most predominant metadata operations entail high costs to the PFS due to
namespace housekeeping and locking.

Based on these insights, we show the design, implementation, and evaluation of PADLL, an application
and file system agnostic storage middleware that enables enforcing QoS policies over metadata workflows
in HPC clusters. The data plane, built with PAIO, is a multi-stage component distributed over compute
nodes, where each stage mediates the I/0 requests between a given application and the shared file
system. The control plane follows a hierarchical distribution, made of global and local controllers, and acts
as a global coordinator that continuously monitors and manages all running jobs by adjusting the 1/0 rate
of each data plane stage. Further, we introduce a new max-min fair share algorithm (PSFA) that prevents
false resource allocation under bursty workloads. With PADLL, system administrators can proactively and
holistically control the rate of I/O workflows of all running jobs, and thus, prevent metadata-aggressive
ones from harming the PFS, as well as other jobs in execution.

Our experiments demonstrate that PADLL can (1) effectively control the rate of I/0 workflows at differ-
ent granularities; (2) prevent I/0 burstiness and control metadata-aggressive workloads through static and
dynamic policies; (3) coordinate the rate of multiple concurrent jobs holistically; and (4) when configured
with PSFA, it maximizes the use of metadata resource to accelerate the performance of resource-hungry
jobs, without degrading the performance of over-provisioned ones. These results allow us to conclude that
it is possible to build transparent storage data plane stages, distributed over the |/O infrastructure, that
provide coordinated control of shared and performance-critical |/0 resources.

Furthermore, while we demonstrate how PADLL can be used to ensure per-job QoS control, it can be
used in other scenarios. For example, AIST reported that PFS4's MDTs experience high load imbalance
due to the scheduling policy for assigning MDT servers upon file creation. This not only causes clients to
experience different levels of performance, but can also lead to overall performance degradation of the

metadata service. Thus, PADLL could be used to prevent MDT servers from overloading.

103



7

Conclusion

Modern infrastructures feature long and complex data storage paths made of several /0 layers, including
operating systems, hypervisors, file systems, databases, and device drivers. For each of these layers, good
performance often means implementing multiple |/0O optimizations, such as |/0 scheduling, caching, and
replication. These optimizations however, are implemented in a sub-optimal manner, as these are tightly
coupled to the system implementation, and can interfere with each other due to lack of global context.
This thesis addresses these challenges through a novel SDS system that enables system designers to
implement complex /0O optimizations that are simultaneously (1) decoupled from the targeted system,
(2) perform coordinated control decisions over 1/0 resources, and (3) are programmable and adaptable,
to ensure the 1/0 requirements and storage objectives imposed by the targeted layer are met.

In recent years, the research on SDS increased at an accelerated pace, leading to a broad spectrum of
proposals to address the shortcomings of conventional storage infrastructures. Despite this momentum,
many aspects of the paradigm are still unclear, undefined, and unexplored. This challenge motivated the
work described in §2, where we surveyed current SDS systems, explaining and clarifying fundamental
aspects of the field. Specifically, we provided background concepts on SDS and outlined the distinctive
characteristics of an SDS-enabled infrastructure. Then, we distilled a number of key design features for
each plane of functionality, regarding their internal organization and distribution. Further, we proposed
a taxonomy and classification of existing systems to organize the manifold approaches according to their
storage infrastructure (i.e., cloud, HPC, and application-specific), control strategy (e.g., feedback control,
performance modeling), and enforcement strategy (e.g., scheduling, priority queues, logic injection).

Leveraging on the insights of our survey, as regards to the SDS data plane, we noticed that existing
systems experience the same limitations as traditionally implemented 1/0 optimizations. Specifically,
current SDS systems are targeted for specific 1/0 layers, and their designs are tightly coupled and driven
by the architecture and specificities of the software stacks that they are applied to. As the core contribution
of this thesis, we addressed these limitations in §3 with PAIO, a SDS data plane framework that enables
building user-level, portable, and generally applicable storage optimizations. Contrary to existing solutions,
PAIO implements optimizations outside the targeted systems as data plane stages, by intercepting and
handling the 1/0 performed by these. These optimizations are then managed by a logically centralized
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controller that has the global context necessary to ensure holistic 1/0 control and performance. Building
PAIO required addressing multiple challenges that are not supported by current solutions. To perform
complex 1/0 optimizations outside applications, PAIO combines ideas from context propagation, enabling
application-level information to be propagated to stages with minor code changes. Further, PAIO required
designing new abstractions that allow differentiating and mediating 1/0 requests between user-space 1/0
layers, including context objects, channels, enforcement objects, and rules. These abstractions promote
the implementation and portability of a variety of storage optimizations.

To demonstrate the performance and effectiveness of /0 optimizations built with PAIO, we developed
three data plane stages, all driven by real use cases that exist in today’s production clusters. First,
we showed how to achieve tail latency control in LSM-based KVSs. Despite the advantages and wide
adoption of LSM KVSs, such as RocksDB [183], LevelDB [80], and PebblesDB [178], a common problem
of these systems is the interference between foreground and background workflows, generating high tail
latency spikes for clients. SILK addresses this problem by proposing an I/0 scheduler that controls the
interference between these tasks [17]. However, it follows an intrusive approach, and applying its 1/0
scheduler over RocksDB required changing several core modules. As such, we addressed these problems
in §4, with a data plane stage built with PAIO that implements SILK's design principles while following
an SDS approach — the data plane stage provides the /0 mechanisms for prioritizing and rate limiting
background flows, while the control plane re-implements SILK’s /0 scheduling algorithm to orchestrate
the stage. By propagating application-level information (specifically, the context at which a given POSIX
operation is created such as flushes and compactions), our PAIO stage outperformed RocksDB up to 4x in
99! percentile latency, under different workloads and testing scenarios, and enabled similar control and
performance as system-specific optimization that required profound refactoring to the original codebase.

We then demonstrate how to ensure per-application bandwidth guarantees under a shared storage
environment. The ABCI supercomputer enables a cloud-like resource allocation model, where users can
reserve a full compute node or a fraction of it to execute their jobs, by having exclusive access to compute
(namely, CPU cores and GPU) resources, memory, and storage quota [4]. While these resources are
effectively isolated using Linux cgroups, the same is not ensured for local disk bandwidth. Under this
scenario, jobs end up either being executed without bandwidth restrictions, which compete for shared
resources and create 1/0 interference, or with static bandwidth limits, being unable to reserve different
|/ O priorities. We addressed these problems in §5 with a data plane stage built with PAIO that dynamically
rate limits 1/0 workflows at each job, while the control plane implements a proportional sharing algorithm
to ensure that all jobs meet their policies. Our approach presents two key differences when compared
with other solutions: first, the data plane stage transparently intercepts POSIX calls using LD_PRELOAD,
thus not requiring any changes to the original codebase of the targeted job’s application; second, due
to the global visibility of the control plane, we implemented a max-min fair share control algorithm that
distributes leftover bandwidth that is not in use among active jobs in the system. Experiments conducted
with TensorFlow jobs demonstrated that contrarily to the current setup used on ABCI, all PAIO-enabled
TensorFlow instances were provisioned with their bandwidth goals. Further, whenever leftover bandwidth
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was available, PAIO distributed it across all active instances, decreasing their overall execution when
compared to a setup that enforced static bandwidth limits.

Finally, we showed how to ensure QoS control of metadata workflows in HPC storage systems. In
recent years, HPC workloads have become data-intensive, read-dominated, and generate massive bursts of
metadata operations. While these workloads demand scalable, high throughput, and low latency storage,
most supercomputers rely on Lustre-like PFSs, which provide a centralized metadata management service.
Under this scenario, having multiple concurrent jobs competing for shared storage resources can lead to
severe /0 contention and performance degradation. We addressed this problem in §6 with PADLL, an
application and file system agnostic storage middleware built with PAIO. It allows system administrators
to proactively and holistically control the rate at which POSIX requests are submitted to the PFS from all
running jobs in the HPC system. PADLL differs from existing solutions in two main axis. First, the data
plane actuates at the compute node level and uses LD_PRELOAD to mediate the |/0 requests between a
given application and the shared file system. This way, PADLL does not require changing any core layers
of the HPC 1/0 stack, being agnostic of the applications it is controlling as well the file system to which the
requests are submitted to. Second, besides following a hierarchical distribution and having global visibility
over resources, the control plane introduces a new proportional sharing algorithm (PSFA) that continuously
readjusts reservations of metadata operations to prevent over-provisioning/under-provisioning across all
active jobs. Experiments demonstrated that PADLL can effectively control metadata-aggressive workloads
and prevent |/0 burstiness, can holistically coordinate the metadata rate of multiple jobs in the system, and
when configured with PSFA, it can maximize the use of metadata resource to accelerate the performance
of resource-hungry jobs.

With the contributions presented in this thesis, we demonstrated that it is possible to build complex
|/0O optimizations as user-level, general applicable storage data plane stages, that are decoupled from the
targeted system and have global system visibility to perform holistic control decisions over 1/0 resources.

7.1 Future Work

Building on the contributions presented in this thesis, our work opens immediate research paths that can
be pursued. There is a large scope of |/ O optimizations that would benefit from being (re)implemented with
PAIO, including multi-layer caches with global visibility, workload-aware storage tiering, load balancing of
metadata operations in PFSs, and data reduction and privacy for user-level storage stacks. To achieve this,
it would be interesting to expand the enforcement objects supported by PAIO, including caches, encryption
and compression schemes, data placement mechanisms, and more. With these building blocks, system
designers would only require to specify their policies to programme and adapt the data plane stage to
meet the requirements of the targeted storage scenario (i.e., workload, |/0O layer, infrastructure).

Modern 1/0 stacks already include several frameworks that enable users to build storage layers fine-
tuned for their application’s requirements, using either more traditional frameworks like FUSE and Network
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Block Device, or more recent ones such as SPDK and PMDK, which enable building kernel-bypass storage
stacks. As such, to achieve wider applicability and provide finer control over 1/0 requests, it would be
interesting to integrate PAIO as a new abstraction on top of these frameworks. For example, PAIO could be
integrated as a new logical block device for the SPDK framework or be provided as a new PMDK-enabled
library (similar to 1ibpmemobj, 1ibpmemblk, and 1ibpmemkv [173]).

Large-scale I/Q infrastructures, such as those demonstrated in §6, are made of hundreds to thousands
of compute nodes. To ensure global control of these resources, it may require employing data plane stages
at a similar or even larger scale. While we have presented a preliminary version of a hierarchical control
plane, it is important to further explore its scalability and dependability. Given the amount of control points
(stages) that will emerge when applied at a large scale, it will be fundamental to ensure scalable control.
For instance, an immediate bottleneck that appears is the synchronization between controllers to ensure
a global and correct state of the infrastructure, as well as the execution of centralized control algorithms.
As such, it would be interesting to explore not only how to physically scale the control plane, but also how
to delegate control power between different types of controllers. Furthermore, to ensure that the control
plane has high-availability and provides a sustained service, it is important to explore techniques that
improve the dependability of the control plane, such as primary-backup and state machine replication,
while accounting with the performance penalty that it may impose in the overall system.

Finally, regarding to other research challenges of the SDS paradigm, in §2.6 we discuss in detail
possible future directions of the field, grouped by storage infrastructure, planes of functionality, and more.
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