
In
ês

 A
ra

új
o

M
ac

ha
do

December 2021UM
in

ho
 |

 2
02

1
Pr

op
os

al
 o

f a
n

Ap
pr

oa
ch

 fo
r t

he
 D

es
ig

n
an

d
Im

pl
em

en
ta

tio
n

of
 a

 D
at

a
M

es
h

Universidade do Minho
Escola de Engenharia

Inês Araújo Machado

Proposal of an Approach for the Design and
Implementation of a Data Mesh

December 2021

Master’s Thesis
Integrated Masters in Engineering and Management of Information
Systems

Work done under the supervision of
Professor Maribel Yasmina Santos (PhD)
Professor Carlos Santos (PhD)

Inês Araújo Machado

Proposal of an Approach for the Design and
Implementation of a Data Mesh

Universidade do Minho
Escola de Engenharia

ii

DIREITOS DE AUTOR E LICENÇA DE USO

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos

conexos. Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo

indicada. Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em

condições não previstas no licenciamento indicado, deverá contactar o autor, através do

Repositório UM da Universidade do Minho.

iii

AGRADECIMENTOS

Fui muito feliz. Ser feliz deve ser o início e o fim de tudo no decorrer da nossa vida. Estes

anos são mesmo uma viagem, e foi sem dúvida uma viagem alucinante. MIEGSI (porque

por muita reformulação que este curso leve, será eternamente MIEGSI para mim), deu-

me mais de que algum dia poderei retribuir e por isso sou eternamente grata. Professor

Carlos, obrigada por acreditar em mim e nas minhas capacidades, mesmo quando nem eu

acreditei. Por estar sempre disponível a ajudar e levar-me mais longe. Nunca teria

chegado até aqui “se não estivesse nos ombros de um gigante”. Professora Maribel,

obrigada por ser uma inspiração como mulher, professora e pessoa. Obrigada por estar

sempre disponível, por puxar por mim e me impulsionar a sonhar e alcançar sempre mais.

Espero um dia ser metade daquilo que a professora é (em todas vertentes). Professor João

Galvão e equipa do projeto P56 Bosch, obrigada por sempre me ajudarem e me fazerem

acreditar que tudo é possível! Obrigada pelos conselhos, ensinamentos e a cima de tudo:

a amizade. Aos meus pais, que são o meu alicerce de todos os dias. Que fizeram e fazem

muitos sacríficos, para me poderem ajudar a crescer, tirar o meu curso e caminhar sozinha

nesta viagem bonita que é a vida. Obrigada, pai, por me puxares as orelhas em pequenita

e me fazeres ver que podemos sempre ser melhores. Obrigada, mãe, por nunca me

deixares desistir de nada e por me ensinares, a cima de tudo, a ser um bom ser humano e

tratar todos com o respeito e bondade que merecem. À minha irmã e cunhado, que me

acolheram na sua casa durante grande parte destes cincos anos, que me ajudaram nas

mudanças para a minha casa, que me fizeram madrinha da sua filha. Obrigada, Beatriz,

por ensinares à madrinha que os problemas do dia a dia não são nada comparados à

vitalidade do teu sorriso e ao teu abraço. Ao meu Rui, que nestes cinco anos passou de

namorado a noivo! Que me deu a mão nos momentos difíceis, que me reergueu quando

eu não consegui, que me ajudou sempre (muitas vezes sem saber). Que me apoiou para

viajar e apresentar o meu trabalho noutro país, que quer que vá sempre mais longe e fica

orgulhoso a cada conquista. Obrigada por ser o “testo do meu tacho”. Sem ti, nunca seria

possível e sem dúvida que estes cincos anos seriam muito mais enfadonhos. Que

continuemos a escrever memórias juntos. Sempre.À minha família e amigos, muito

obrigada. Tudo o que sou se deve a vocês. Em especial, àqueles que durante cinco anos

cantaram de tricórnio ao peito comigo para os quais serei sempre a Bufas. Obrigada ao

staff do Bar de Engenharia e ao eterno Sr. Araújo da EC. É um fechar de um capítulo,

mas o abrir de um novo: e essa é a magia da vida.

iv

DECLARAÇÃO DE INTEGRIDADE

Declaro ter atuado com integridade na elaboração do presente trabalho académico e

confirmo que não recorri à prática de plágio nem a qualquer forma de utilização indevida

ou falsificação de informações ou resultados em nenhuma das etapas conducentes à sua

elaboração.

Mais declaro que conheço e que respeitei o Código de Conduta Ética da Universidade do

Minho.

v

RESUMO

Atualmente existe uma tendência, cada vez mais acentuada, para a utilização de software

por parte da esmagadora maioria da população (aplicações de caráter social, software de

gestão, plataformas e-commerce, entre outros), identificando-se a criação e

armazenamento de dados que, devido às suas características (volume, variedade e

velocidade), fazem emergir o conceito de Big Data. Nesta área, e para suportar o

armazenamento dos dados, Big Data Warehouses e Data Lakes são conceitos cimentados

e implementados por várias organizações, de forma a servirem a sua necessidade de

tomada de decisão. No entanto, apesar de serem conceitos estabelecidos e aceites pela

maioria da comunidade científica e por diversas organizações a nível mundial, tal não

elimina a necessidade de melhoria e inovação. É, este contexto, que origina o surgimento

do conceito de Data Mesh, propondo arquiteturas de dados decentralizadas. Após a

análise das limitações demonstrados pelas arquiteturas monolíticas (e.g., dificuldade em

mudar as tecnologias de armazenamento usadas para implementar o sistema de dados), é

possível concluir sobre a necessidade de uma mudança de paradigma que tornará as

organizações verdadeiramente orientadas aos dados. A Data Mesh consiste, na

implementação de uma arquitetura onde os dados se encontram intencionalmente

distribuídos por vários nós da Data Mesh e onde não existe caos, uma vez que existem

estratégias centralizadas de governança de dados e a garantia de que os princípios

fundamentais dos domínios são partilhados por toda a arquitetura. A presente dissertação

propõe uma abordagem para a implementação de uma Data Mesh, procurando definir o

modelo de domínios do conceito. Após esta definição é proposta de uma arquitetura

concetual e tecnológica, que visam a auxiliar a materialização dos conceitos apresentados

no modelo de domínios e assim auxiliar na conceção e implementação de uma Data Mesh.

Posteriormente é realizada uma prova de conceito, de forma a validar os supracitados

modelos, contribuindo com conhecimento técnico e científico relacionado com este

conceito emergente.

PALAVRAS CHAVE

Big Data, Data Mesh, Arquiteturas de Dados

vi

ABSTRACT

Currently there is an increasingly accentuated trend towards the use of software by most

of the population (social applications, management software, e-commerce platforms,

among others), identifying the creation and storage of data that, due to its characteristics

(volume, variety, and speed), make the concept of Big Data emerge. In this area, and to

support data storage, Big Data Warehouses and Data Lakes are solid concept and

implemented by various organizations to serve their decision-making needs. However,

despite being established and accepted concepts by most of the scientific community and

by several organizations worldwide, this does not eliminate the need for improvement

and innovation in the field. It is this context that gives rise to the emergence of the Data

Mesh concept, proposing decentralized data architectures. After analyzing the limitations

demonstrated by monolithic architectures (e.g., difficulty in changing the storage

technologies used to implement the data system), it is possible to conclude on the need

for a paradigm shift that will make organizations truly data driven. Data Mesh consists,

in the implementation of an architecture where data is intentionally distributed over

several nodes of the Data Mesh, and where there is no chaos, since there are centralized

data governance strategies and the assurance that the fundamental principles of the

domains are shared throughout the architecture. This master thesis proposes an approach

for the implementation of a Data Mesh, seeking to define the domain model of the

concept. After this definition, a conceptual and technological architecture is proposed,

which aim to help materialize the concepts presented in the domain model and thus assist

in the design and implementation of a Data Mesh. Afterwards a proof-of-concept is

carried out, to validate the aforementioned models, contributing with technical and

scientific knowledge related to this emerging concept.

KEY WORDS

Big Data, Data Mesh, Data Architectures

vii

TABLE OF CONTENTS

Resumo ... v

Palavras Chave ... v

Abstract .. vi

Key Words ... vi

Table of Contents ... vii

List of Figures .. ix

List of Tables .. x

List of Abbreviations and Acronyms .. xi

1. Introduction ... 1

1.1. Scope and Motivation .. 1

1.2. Research Goal and Objectives ... 2

1.3. Research Methodology .. 3

1.4. Literature Review Process ... 5

1.5. Document Structure ... 6

2. Background Knowledge and Related Work .. 8

2.1. Main Concepts ... 8

2.1.1. Big Data .. 8

2.1.2. Data Warehouse .. 12

2.1.3. Big Data Warehouse ... 14

2.1.4. Data Lake .. 16

2.1.5. Data Mesh ... 19

2.2. Motivation for the Appearance of the Data Mesh ... 20

2.3. Features of a Data Mesh .. 22

2.4. Examples of Data Mesh Proposals and Implementations 25

2.4.1. Approach Followed by Dehghani ... 25

2.4.2. Approach Followed by Zalando ... 32

2.4.3. Approach Followed by Netflix ... 34

2.4.4. Open Challenges ... 35

3. Proposed Approach for the Design and Implementation of a Data Mesh 37

3.1. Data Mesh Domain Model .. 37

3.2. Data Mesh Architecture ... 44

3.2.1. Conceptual Architecture ... 44

viii

3.2.2. Technological Architecture .. 50

4. Data Mesh Proof-of-Concept .. 54

4.1. Scope and Organization of Mesh Nodes ... 54

4.2. Proof-of-concept Infrastructure ... 56

4.3. HDFS Folders Organization for each Mesh Node... 57

4.4. Organization of Databases and Tables for Domains and Data Products 60

4.5. Mesh and Data Catalog (Apache Atlas) .. 60

4.6. Data Quality Script and Report ... 69

4.7. Code Repository .. 71

4.8. Consumption List .. 72

4.9. Data Mesh Communication Channel ... 74

5. Conclusion ... 75

5.1. Conclusions about the Literature Review .. 75

5.2. Conclusions about the Proposed Approach ... 77

5.3. Scientific Publications ... 78

5.4. Future Work ... 79

References .. 81

Appendix – Data Product’s Dashboards ... 84

ix

LIST OF FIGURES

Figure 1. Design Science Research Methodology for Information Systems. 3

Figure 2. Main Characteristics Identified in the literature.. 11

Figure 3. Core elements of Data Warehouse architecture. ... 13

Figure 4. Data Mesh Architecture. ... 25

Figure 5. Structure and interaction of domains at Data Mesh) 26

Figure 6. Domain: data product and operational system. ... 29

Figure 7. Planes differentiation in self-serve architecture .. 30

Figure 8. Example of distribution a Federated Computational Governance) 31

Figure 9. Zalando Data Mesh Architecture. ... 33

Figure 10. Netflix's implementation typology .. 35

Figure 11. Data Mesh Domain Model .. 38

Figure 12. Data Mesh Conceptual Architecture ... 45

Figure 13. Data Mesh Technology Architecture .. 50

Figure 14. Self-Serve Data Platform in Detail ... 51

Figure 15. Data Products and Domains Organization .. 55

Figure 16. Folder Organization in HDFS ... 58

Figure 17. Hive Structure for Domains and Data Products .. 60

Figure 18. Attributes per entity in Apache Atlas .. 61

Figure 19. Data Product Metadata Structure .. 62

Figure 20. JSON File from Data Procut type creation ... 63

Figure 21. Hive Table Metadata Structure ... 64

Figure 22. JSON File for the extension of Hive Table Type .. 65

Figure 23. Search by Domain Designation ... 65

Figure 24. List of existing Data Products in the Data Mesh .. 66

Figure 25. Data Product Details ... 66

Figure 26. Data Product's Database View .. 67

Figure 27. Data Product's Tables View .. 67

Figure 28. Data Product's Tables Details ... 68

Figure 29. Data Lineage in each Table ... 68

Figure 30. Data Quality Script .. 69

Figure 31. Data Quality Dashboard .. 70

Figure 32. Product Cost's Analytical Dashboard .. 70

Figure 33. Folder Organization in Code Repository .. 71

file:///C:/Users/admin/Documents/Ines%20A%20Machado/Uni/5Ano1Sem+2Sem/Tese/Documento%20Tese/doc%20Final/printing/rui.docx%23_Toc91110885
file:///C:/Users/admin/Documents/Ines%20A%20Machado/Uni/5Ano1Sem+2Sem/Tese/Documento%20Tese/doc%20Final/printing/rui.docx%23_Toc91110886
file:///C:/Users/admin/Documents/Ines%20A%20Machado/Uni/5Ano1Sem+2Sem/Tese/Documento%20Tese/doc%20Final/printing/rui.docx%23_Toc91110888
file:///C:/Users/admin/Documents/Ines%20A%20Machado/Uni/5Ano1Sem+2Sem/Tese/Documento%20Tese/doc%20Final/printing/rui.docx%23_Toc91110904

x

Figure 34. Detailed view of a folder content .. 72

Figure 35. Consumption List Form .. 73

Figure 36. Data Mesh Communication Channel .. 74

Figure 37. Data Quality Online Sales ... 84

Figure 38. Data Quality Product Cost .. 84

Figure 39. Analytical Dashboard Profits (1) .. 85

Figure 40. Analytical Dashboard Profits (2) .. 85

Figure 41. Analytical Dashboard Online Sales .. 85

 LIST OF TABLES

Table 1. Schema of Data Product Online Sales Data ... 55

Table 2. Schema of Product Cost Data Product ... 55

Table 3. Schema of Data Products Profits Data ... 56

file:///C:/Users/admin/Documents/Ines%20A%20Machado/Uni/5Ano1Sem+2Sem/Tese/Documento%20Tese/doc%20Final/printing/rui.docx%23_Toc91110919

xi

LIST OF ABBREVIATIONS AND ACRONYMS

API - Application Programming Interface

BI - Business Intelligence

B2C - Business to Costumer

ETL - Extract, Transform and Load

ELT - Extract, Load and Transform

GB - Giga Bytes

HTTP - Hypertext Transfer Protocol

IOT - Internet of Things

JSON - JavaScript Object Notation

KPI - Key Performance Indicators

OLAP - Online Analytical Processing

REST - Representational State Transfer

SMART - Specific, Measurable, Achievable, Relevant and Time-Bound

UML - Unified Modelling Language

1

1. INTRODUCTION

The purpose of this chapter is to present the scope and motivation for the development of

this master’s thesis. It also presents the main research objectives, the research

methodology and the literature review process used in this work, and the structure of the

document.

1.1. SCOPE AND MOTIVATION

Big Data is an emerging concept and it is related with the ability of providing access to

vast amounts of data that may be converted into significant value for organizations

(Krishnan, 2013). Therefore, Big Data is inevitable for modern organizations (Santos &

Costa, 2020), in order for them to achieve competitive advantages and to improve the

interaction and service level provided to the customers (Manyika et al., 2011). Nowadays,

there are several companies that have Big Data systems to support their daily business

and decision-making processes (Barr, 2020). However, not all organizations treat their

data architecture with the proper scalability and democratization that it needs (Barr,

2020), which leads to problems emerging from the monolithic data architectures currently

implemented (Dehghani, 2019).

The Data Mesh concept emerges as a necessary paradigm shift that will enable companies

to become truly data-oriented, implementing an architecture that brings the opposite of

the current models for efficient data product cooperation (Dehghani, 2019). This

paradigm shift manifests itself at different levels. From a more structural perspective, data

is organized into domains and data teams manage themselves and carry out their own

work in an agile and product-oriented way. However, this paradigm shift does not occur

only on a structural level, but also on an organizational level - as the way data teams

organize and work will become decentralized and mainly focused on a domain (Dehghani,

2020a). The Data Mesh allows for the provision of complex management, access, and

support components through the connectivity layer it implements - data from different

locations will now be connected in the Mesh (Lance Johnson, 2020).

Consequently, an architecture will be instituted where the data is intentionally distributed

through several nodes of the Mesh, also known as domains (e.g., sales, purchases,

customer management). However, this should not imply chaos, because the Data Mesh

concept ensures six core and shared principles (Discoverable, Addressable, Trustworthy,

2

Self-describing, Interoperable, Secure), and centralized governance strategies guarantee

its homeostatic functioning accompanied by a high interoperability character - an

infrastructure of shared self-service data (Dehghani, 2019).

Recently, Zhamak Dehghani began taking the first steps in consolidating what might be

the core principles and logical architecture of a Data Mesh (Dehghani, 2020b). However,

these specifications are significantly high level, and there is still a lack of empiric,

consolidated and validated scientific knowledge on the subject. Although the concept is

being disseminated by the author (Zhamak Dehghani, 2020a) and by some companies

that already have implemented their own Data Mesh (Justin Cunningham, 2020), due to

its emerging characteristic, this concept still lacks constructs, models (e.g., architectures),

methods, and instantiations proposed through a research process, being this the main

motivation of this master’s thesis.

1.2. RESEARCH GOAL AND OBJECTIVES

This work aims to propose an approach that guarantees that organizations can focus on

building systems that promote data democratization, leaving the Data Lake (or other data

systems) and pipelining tools as a secondary concern (Dehghani, 2019). To make this

possible, the research goal for this master’s thesis is to propose an approach to design and

implement a Data Mesh, including a domain model that represents the Data Mesh’s

constructs and their relationships, and an architecture detailed at the conceptual and

technological levels, accompanied by a method for building a Data Mesh, which

encompasses a set of best practices and rigorous steps that practitioners may follow.

Taking this into consideration, the following research objectives are defined:

1. Propose a domain model that fully describes a Data Mesh, including all its

constructs and how they relate to each other through the use of a formal modelling

language (e.g., Unified Modeling Language - UML).

2. Propose a conceptual and technological architecture for a Data Mesh that is

scalable (e.g., can accommodate an infinite set of domains and datasets), user

friendly (e.g., can be easily implemented in any organization or context), and

efficient (e.g., can provide fast implementation of Mesh nodes and fast data

consumption). Moreover, the architecture should be fully compliant with the six

core principles of a Data Mesh (Dehghani, 2019).

3

3. Propose a method that encompasses a set of best practices and rigorous steps that

are fully compatible with the Data Mesh architecture discussed above, aiming to

help practitioners implement, as quickly as possible, their Data Mesh.

4. Implement a proof-of-concept to validate the proposed domain model and both

conceptual and technological architectures.

1.3. RESEARCH METHODOLOGY

To sustain the rigor of the results produced in this research process, the Design Science

Research Methodology for Information Systems is followed. This methodology includes

six activities that aim to solve problems, in an efficient and effective way, in the field of

Information Systems research (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007).

Although it is expected that the process occurs sequentially, from activity one to activity

six, the methodology here depicted does not make this mandatory. Therefore, it is possible

that to initiate the process in an activity other than activity one, and we can also return to

the previous activities whenever necessary (Peffers et al., 2007). Figure 1 shows the

methodology used in the present master thesis.

• Activity 1: identify problem and motivate. Deals with the definition of the

research problem as well as presents a justification for the value of the

Figure 1. Design Science Research Methodology for Information Systems. Adapted from (Peffers et al., 2007)

4

solution. The main purpose of this activity is the construction of an artifact

that holds the definition of the problem. In this master’s thesis, this activity

corresponds to the elaboration of the literature review related to the Data

Mesh concept.

• Activity 2: define objectives of a solution. Once the problem has been

defined, it is relevant to start defining the objectives of the solution. These

objectives should be defined based on what is known to be possible to

achieve and the same should be aligned with the specification of the

problem. In this master’s thesis, this activity corresponds to the

identification or refinement of the research goal and objectives, making

them SMART (Specific, Measurable, Achievable, Relevant and Time-

Bound).

• Activity 3: design and development. In this activity, the artefacts to be

proposed are conceived and created, which may include any models (e.g.,

architecture), methods or instantiations, for example. In this master’s

thesis, this activity will occur in two stages. The first stage concerns the

definition of the artefacts (models and methods) before their

demonstration and evaluation, and a second stage in which the artefacts

will be refined considering the conclusions of those two activities.

• Activity 4: demonstration. In this activity, the demonstration of the

produced artefacts is performed, making it possible to verify their

usefulness, efficacy and efficiency, for example. To accomplish this, it is

necessary to create instances of the problem or to resort to simulations or

case studies. As a demonstration case for the resulting artefacts of this

master’s thesis, will be applied to implement a prototype of a Data Mesh

in a specific organizational or societal context (e.g.: online seller

company).

• Activity 5: evaluation. this this activity, the proposed artefacts are

evaluated. In this sense, it is necessary to understand how the obtained

solution satisfies the research goal and objectives established before. In

this master’s thesis, the prototype implemented in a demonstration case

5

will be evaluated and discussed in terms of usefulness, scalability,

efficiency and user friendliness.

• Activity 6: communication. Lastly, the communication of the problem and

the resulting artefacts, as well as their relevance and usefulness. This

communication is carried out for the scientific and technical community

(e.g., conferences or journal papers). The elaboration of the manuscript

associated with this master’s thesis is included in this communication

activity, as well as the final presentation focusing on the results of this

research process.

1.4. LITERATURE REVIEW PROCESS

For the literature review process to be as efficient as possible, and to obtain a consistent

basis as a starting point for the development of the present master’s thesis, it is necessary

to establish a method for it.

In this sense, at the beginning of the literature review process some guidelines were

defined to be followed to filter relevant content that can sustain the state of the art of the

concept. It should be noted that the literature review is based essentially on posts on the

subject published on valid websites, and on informational videos on the subject published

by companies, web talks, conferences, and other scientific or technical contents (e.g.: Big

Data concept). This fact is justified by the lack of scientific contributions on the topic,

due to its emergence and temporal youth (about one year).

Since this is an emerging theme, and therefore temporally very young, there are scientific

articles, papers, or other similar documents published to date. Therefore, one of the first

points of the methodology followed is related only to the inclusion of reliable sources,

which do not lack a subjective basis, influenced by some company/organization. At the

time level, it was established that priority would be given to documents published from

2015 onwards - the exception to this rule is associated to documents focused on other

existing concepts (Data Warehouse, Big Data Warehouse, Data Lake, among others) - so

that current content is presented in the area.

Some keywords used in the search engine of some reference databases such as "Scopus",

"Research Gate", "Mendeley", "Google Scholar", among others, were therefore defined.

6

Some of these keywords are: "Data Lake", "Data Warehouse", "Big Data Warehouse",

"Big Data", “Data Mesh”, “Microservices”, “Domain Driven Approach”, among others.

YouTube videos and blogs were also used to collect information about the Data Mesh

concept. When facing any scientific contribution or publication on the subject, these were

selected through their abstract or a quick reading/viewing (procedure more adopted under

Data Mesh) to infer the contribution/relevance of it. Finally, the most relevant contents

were selected within each contribution, carefully analyzed to finally formulate the

literature review. Online alerts have also been created about new publications on Data

Mesh, so that they can be included.

1.5. DOCUMENT STRUCTURE

This document is divided into five chapters. The first chapter concerns the introductory

part of the document. It starts by presenting the scope and motivation that originated the

development of this master’s thesis. Then the research goal and objectives are presented,

as well as the followed research methodology (in this case, the Design Science Research

Methodology for Information Systems) and the literature review process.

 In the second chapter, the literature review is presented, focusing on the concepts and

works related with this master’s thesis’s topic. Initially, and to provide the necessary

context on the subject, the main concepts (e.g., Big Data, Data Lake and Data Warehouse)

are presented. In the second section of this chapter, the motivation for the appearance of

the Data Mesh is presented, and in the third section, the main characteristics of this

emerging concept are listed. The fourth section of this chapter aims to describe the

existing approaches for the design and implementation of a Data Mesh.

The third chapter is for the presentation of the domain model and architectures developed

within this master's thesis. First, the domain model is presented, which synthesizes the

main conceptual classes about the Data Mesh concept. Subsequently, and based on the

materialization of the domain model, a conceptual and technological architecture is

formulated.

Chapter four is for the presentation of the proof-of-concept developed around the models

and architectures presented in chapter three. This chapter presents the scope of the proof

of concept, the organization of the Data Mesh nodes, the organization of folders in HDFS,

the organization of tables and databases, and data quality script and report. Further, the

7

code storage, consumption list, and finally, the communication channel of the Data Mesh

is explained. The purpose of this chapter is to detail the implementation of the Data Mesh

that was carried out as part of the proof-of-concept.

Finally in chapter five the conclusions of this master's thesis are presented. First the

conclusions concerning the literature review process, then the conclusions regarding the

proposed approach. Finally, the scientific publications made during this master thesis are

presented and detailed and future work is indicated is the end section of this chapter. This

master thesis also includes an appendix where some complementary material is presented.

8

2. BACKGROUND KNOWLEDGE AND RELATED WORK

As mentioned in section 1.5, the present chapter is divided into four sections that have as

their purpose the exploration of the related work related to the five main concepts of the

present thesis: Big Data, Data Warehouse, Big Data Warehouse, Data Lake, and Data

Mesh (the latter encompassing the issue of appearance motivation, features, and approach

to design). Although the main theme of the master’s thesis is the Data Mesh, it is

important to understand the evolution from the appearance of Big Data to the need for a

paradigm that we currently face (the Data Mesh). The chapter thus begins with an

explanation of the main concepts inherent to the topic in question.

2.1. MAIN CONCEPTS

As already mentioned, this work’s core concept is the Data Mesh. However, several other

concepts existing in the current literature need to be taking into consideration, as some of

them describe concepts and paradigms that originated the need for the concept of Data

Mesh. Consequently, this section aims to present and describe those concepts so that they

are properly interpreted whenever they are mentioned in this document.

2.1.1. Big Data

The production and consumption of data is a constant in today’s world (Santos & Costa,

2020). Clearly, the way data is produced and consumed nowadays is nowhere near the

way this phenomenon occurred a few decades ago. Some state that a decade ago what

was considered "a great dataset", would nowadays be probably considered absurd

(Diebold, 2013).

Explaining the concept of Big Data implies considering this phenomenon of constant data

production and consumption in which society presents itself (whether at a social,

organizational, industrial level) (Santos & Costa, 2020) but also return to the origin of

this concept. It is not clear where the term originates from, with references pointing to the

fact that the term was used for the first time in the paper "Big Data' Dynamic Factor

Models for Macroeconomic Measurement and Forecasting" (presented in 2000 at the

"Eighth World Congress of the Econometric Society in Seattle"), according to (Diebold,

2013). However, it is known that its origin comes from the conjuncture of distinct

9

contexts and areas such as industry, academia, computer science and statistics and that it

will have appeared in the context of an informal conversation in the 90's (Diebold, 2013).

The concept has evolved over time, particularly from 2012 onwards, and in recent years,

there has been a growing interest in the area (Santos & Costa, 2020). The rapid evolution

of the concept has led to some confusion on how to explain it, thus diverging between

"what Big Data is" and "what Big Data does" (Gandomi & Haider, 2015). Some authors

try to define Big Data as the access to a vast set of data that allows organizations to create

value from it (Krishnan, 2013). Other authors recognize that there may still be some

ambiguity in determining at what point we start talking about "Big Data" instead of just

data (Adam Barker & Jonathan Stuart Ward, 2013), and they choose to define Big Data

as everything that is too big, too fast, and too difficult to be processed by the tools

currently in use within a specific context (Costa & Santos, 2017), citing (Sam Madden,

2012). More authors follow a similar line of thought, defining Big Data as data so large

(in the order of terabytes to exabytes) and complex (from Internet of Things (IOT) to

social networks) that it needs innovative technologies for data storage, transformation and

analysis (Chen, H.L.Chiang, & C. Storey, 2018).

With the observation of the different definitions, we can conclude that to define Big Data,

it is necessary to go into detail about its characteristics. Doug Laney formulated the 3Vs

model (Volume, Variety and Velocity) in 2001, and this model served as the basis for

defining Big Data for a decade (Santos & Costa, 2020), because it is believed that these

would be the three main challenges when dealing with Big Data, also forming its main

characteristics.

According to some works, the volume in Big Data cannot be based on the size of the data

(e.g., terabytes or exabytes). Just as 200GB of data were considered "big" a decade ago

(Diebold, 2013), it is possible that the same will happen with the measures that today are

considered "big", due to the continuous increase in data production and storage capacity

(Gandomi & Haider, 2015). Therefore, the volume in Big Data is related to the amount

of data that is continuously generated (Krishnan, 2013), so it is not possible to set a

threshold for Big Data (Gandomi & Haider, 2015), since different types of data require

different technologies capable of processing them (Costa & Santos, 2017). One of the

main causes related to this incremental amount of data being generated, is the fact that

10

we are continuously storing information about our interactions with the services that we

use daily (Santos & Costa, 2020).

The variety in Big Data concerns the structural heterogeneity present in the data

(Gandomi & Haider, 2015). The data can thus be classified into three distinct categories:

structured, semi-structured and unstructured (Santos & Costa, 2020). Examples of

structured data is transactional data and relational databases. Unstructured data follow a

distinct logic, being examples of the same audio, video, or social network posts. The semi-

structured data is in the middle of the other two categories, being web server logs and

JavaScript Object Notation (JSON) files examples of semi-structured data (Santos &

Costa, 2020). Big Data systems allow the processing of this data with different structures,

which was already partly the case in the past by various organizations, now becoming a

more efficient process when it comes to leveraging data in business processes (Gandomi

& Haider, 2015).

The third "V" in Big Data concerns the inherent velocity of data (Gandomi & Haider,

2015). This data velocity can be seen from two different perspectives: either the velocity

in which the data is produced, or the velocity needed to meet the associated decision-

making needs (Santos & Costa, 2020). The increasing usage of data-producing

components (e.g., sensors, applications, and cell phones) leads to more and more data

being produced. This data production leads to the need for subsequent processing and

storage, in order to meet the needs imposed by the stakeholders (Gandomi & Haider,

2015). This phenomenon leads to the installation of a continuous stream of data, which

with the proper transformation, guarantees an added value to the organizations' decision-

making process (Andrade, Costa, Correia, & Santos, 2019).

With the continuous work in Big Data, it was possible to see that the 3V's model was

incomplete, and that two more could be added to it: veracity and value (Santos & Costa,

2020).

The veracity, the fourth “V” of Big Data, is related to the inevitable imprecision present

in the data. Thus, there may be data analyses that present different degrees of accuracy,

reliability, or quality (Santos & Costa, 2020). On the other hand, there is another

dimension of imprecision related to data "subject to strict interpretation" (e.g., people's

feelings). However, these data can be quite useful and can bring value to the analyses

11

when handled and treated with the appropriate techniques and technologies (Gandomi &

Haider, 2015). The value, the last "V" of Big Data, is related to the analysis and processing

of Big Data (Santos & Costa, 2020). Normally this value tends to be lower in raw data,

but in the end, after an adequate data processing and analysis, it becomes much higher

(Gandomi & Haider, 2015).

Although these five main characteristics have been defined, other authors identify even

more characteristics such as variability, complexity, ambiguity, viscosity and virality, for

example (Santos & Costa, 2020), citing (Gandomi & Haider, 2015). Figure 2 summarizes

these characteristics.

The complexity in Big Data arises from the heterogenous ambit that is often associated

to it, since there are different data producing sources that require greater effort in their

integration and treatment of your data (Gandomi & Haider, 2015). On the other hand, this

constant flow of data, nourished with high volume and speed, can cause friction, which

explains the viscosity being pointed out as a characteristic. Variability is already based

on the different velocities that are verified in the various data flows (so there may be

higher rates than others in certain sources). The ambiguity, in Big Data, appears as the

gap associated with the lack of metadata to accompany the data - mainly coming from the

junction of volume and variety in this area. Finally, virality is related to the speed of data

propagation (Krishnan, 2013). Figure 2 represents all the characteristics of Big Data

identified in the reviewed literature, as well as the relationship found between them.

Figure 2. Main Characteristics Identified in the literature. Adapted from (Santos & Costa, 2019)

12

Big Data due to its characteristics remains an abstract concept for which there is no

consolidated definition accepted by all. However, its characteristics are already well

defined among the scientific community. With the explanation of the Big Data concept,

it is possible to infer that one of the challenges felt in the area is the issue related to the

paradigms and technologies for storing Big Data. To understand the path taken by the

scientific and technical community until the appearance of the Data Mesh, it is necessary

to explore what precedent paradigms and technologies exist. In this sense, the concepts

of Data Warehouse, Big Data Warehouse, Data Lake and, finally, Data Mesh will be

presented in the sections below.

2.1.2. Data Warehouse

The technological advances over decades have led to an exponential increase in the

amount of operational data that organizations produce (Golfarelli, M., & Rizzi, 2009).

However, this operational data alone does not allow to support decision-making processes

due to its nature - for this to happen, there must be mechanisms that extract perceptible

analytical value from this operational data, so that it can reach the stakeholders interested

in that value (Kimball & Ross, 2013).

As a solution to that problem, in the seventies, the phenomenon of Data Warehousing

emerged as a response to this imminent need to use the data produced by organizations,

in order to generate value - which goes beyond the routine tasks of an organization

(Golfarelli, M., & Rizzi, 2009). Until then, organizations were only concerned with

keeping the operational data resulting from business processes, leaving aside the ability

to access information needed for the decision-making process (Golfarelli, M., & Rizzi,

2009).

According to Kimball, Data Warehouses can be summarized as systems that ingest

operational data (over which they have no quality control) and hold as output the

analytical value for decision-making (Kimball & Ross, 2013). Golfarelli & Rizzi, on the

other hand, define a Data Warehouse as a collection of techniques, methods and tools that

support managers, directors, and analysts. The purpose of this collection is to conduct

data analysis to support decision-making. They also admit that this definition is

intentionally vague, so that it is inferred on the conceptual aspect but not on its structure

(Golfarelli, M., & Rizzi, 2009).

13

In 1996, Kimball made a survey of the main complaints at the organizational level, which

made it possible to infer some relevant characteristics to be held by the Data Warehouse.

In this regard, the identified characteristics are accessibility, integration, query flexibility,

information consistency, multidimensional representation, correctness and completeness

(Golfarelli, M., & Rizzi, 2009). Later, it also points out that there is a special relevance

to the fact that Data Warehouses need to be accepted by the organization and need to

present themselves as authoritative and trustworthy systems to improve decision-making.

Only then they will be truly successful (Kimball & Ross, 2013).

Inmon makes the definition more concrete, presenting a Data Warehouse as also being a

data repository that supports decision-making. This is characterized by being subject-

oriented, presenting an integrated and consistent, non-volatile character capable of

presenting evolution over time (Inmon, 2005).

Kimball & Ross clearly define the structure of a Data Warehouse as the integration of

four distinct components: source transactions, extract transform load (ETL) System,

presentation area and Business Intelligence (BI) application (Kimball & Ross, 2013). In

Figure 3, it is possible to visualize how these components are organized.

Figure 3. Core elements of Data Warehouse architecture. Adapted from (Kimball & Ross, 2013)

14

The source transactions component concerns the sources that store the operational data

(business transactions), being these data the fuel for the Data Warehouse. The ETL system

is the component responsible for the extraction, transformation and loading of the data

from the source transactions component. Thus, the data undergoes structural and

corrective changes, so that its analytical value is enhanced. The presentation area

component concerns the availability of data for access, through its organization and

storage. Finally, the BI Application concerns dashboards, ad-hoc queries and data mining

components linked to the Data Warehouse, i.e., a combination of analytical capabilities

(Kimball & Ross, 2013).

There are several Data Warehouse modeling strategies, one of the most emblematic being

the dimensional modelling strategy (Nenad Jukic, 2006). According to the dimensional

modelling strategy (Kimball & Ross, 2013), two distinct constructs should be taken into

consideration when modelling Data Warehouses: the fact tables and the dimension tables.

In the fact tables, we store the events that take place in the organization and that affect

the decision-making processes. Dimensions are prisms on which the fact data is analyzed,

bringing different perspectives to the analysis (Golfarelli, M., & Rizzi, 2009).

In short, the Data Warehouse is a repository that stores the organization's information,

and that enhances its analysis by a wide range of users (Santos & Costa, 2020), being the

same structured and modelled according to the constructs and components presented in

this section. It should be highlighted that there are several other ways to build Data

Warehouses, but the works discussed in this section only aim to represent the most

commonly used constructs and strategies so that we understand one of the core paradigms

used for analytical data storage, the Data Warehouse.

2.1.3. Big Data Warehouse

Although the Data Warehouse as described in section 2.1.2, is widely accepted and

implemented, the way we design and implement a Data Warehouse to support Big Data

contexts has been the focus of some research contributions during the last few years.

These changes mainly focused on the evolution that was needed due to the Big Data

characteristics and to the need for advanced analytics, which began to make the existing

Data Warehouse architectures precarious to support these contexts (Santos & Costa,

2020). Therefore, the scientific community began to study the modernization of the Data

Warehouse, in order to accommodate these several changes that were needed (Russom,

15

2016). During the modernization process, some difficulties arose, such as the cost of

implementing new technologies on a use case basis (without adequate models and

methods) and the lack of data governance (Santos & Costa, 2020), which naturally led to

the more research on the Big Data Warehouse concept. Research related to the Big Data

Warehouse concept can be divided into five different topics, being them respectively

(Santos & Costa, 2020): the characteristics and design changes of the Data Warehouse

for Big Data environments, Data Warehouses using NoSQL Databases, benchmarking of

storage technologies for Big Data Warehouses, improvements for query engine and

evolution in OLAP systems, and Big Data Warehouse implementations in specific

contexts.

(Costa, Andrade, & Santos, 2019) define a Big Data Warehouse as a scalable, high-

performance, and highly flexible processing system - capable of handling ever increasing

volumes of data, accompanied by significant variety and speed. They emerge as well as

the way to overcome the difficulties experienced by the Data Warehouse when processing

Big Data (Krishnan, 2013). We can thus define a Big Data Warehouse as a system

presenting flexible storage, accompanied by adequate scalability and performance. These

systems also focus on low latency when it comes to data ingestion and analytical

workloads of complex nature (Costa et al., 2019). Big Data Warehouses also have real-

time capabilities (linked to low latency and streaming processes), significant

interoperability and fault tolerance, making use of commodity hardware to reduce their

inherent costs (Santos & Costa, 2020).

The evolutionary process from a Data Warehouse to a Big Data Warehouse can happen

according to two different strategies: "lift and shift" or "rip and replace". The first strategy

is related to the augmentation of the implemented Data Warehouse capacities (e.g.:

introducing a new technology); the second strategy is based on a more extremist

perspective, in which one adopts a totally new strategy to build a new Big Data

Warehouse. Hadoop and NoSQL databases are present either to increase the capabilities

of a Data Warehouse, or as a new technological layer to be used in a completely different

architecture (Santos & Costa, 2020).

When designing a Big Data Warehouse, the focus must be divided equally by two layers:

the physical layer and the logical layer. However, there is still a significant gap between

what a Big Data Warehouse should be, and how to build one (Santos & Costa, 2020). The

16

authors (Costa et al., 2019), have scientifically contributed in this area, formulating an

approach that aims to ensure the characteristics of a Big Data Warehouse, focusing on

both the logical and physical layers (Santos & Costa, 2020). This approach presents three

logical components of a Big Data Warehouse, being them respectively: i) data collection,

preparation, and enrichment; ii) platforms - data organization and distribution; and iii)

analytics, visualization, and access.

The first logical component, “data CPE”, is related to the arrival of data (from the data

provider) and its collection. The data can be collected either via batch or streaming

mechanisms. After this collection, the data advances to the second logical component

(“platforms: data organization and distribution”). This component is composed of three

different storage areas, divided into two types: file system and indexed storage. These

three storage areas make it possible to deal with different Big Data characteristics and

workloads efficiently. Finally, the logical component of “analytics, visualization, and

access” holds as core component a distributed query engine, which allows the

combination of batch and streaming data in a single query. This component can thus be

used to exploit data from the different storage areas of the Big Data Warehouse, which

can then be used for visualization and other types of data access (Costa et al., 2019).

Therefore, it is possible to conclude that considering the challenging Big Data

characteristics, there has been the need for an evolution from a Data Warehouse to a Big

Data Warehouse. It can also be concluded that, in certain justifiable contexts,

implementing a Big Data Warehouse may only mean augmenting the capabilities of an

existing Data Warehouse to partly (or less efficiently) deal with Big Data.

2.1.4. Data Lake

The concept of Data Lake dates back to a decade ago, through James Dixon, and was

partially devalued at the time because it was believed to be a Hadoop marketing label

(Miloslavskaya & Tolstoy, 2016). However, the concept has remained and has grown

over time (Khine & Wang, 2018).

Laskowski describes Data Lake as a largely scalable repository denoted as a significative

mass, where data is stored in its "As-Is" form, remaining in this state until the need for

the data to be processed arises. This addition of raw data does not interfere with the data

structures already present in the lake, which allows to continuously inject data in the lake

17

Data Lake, without the concern about the above-mentioned data structure (Nicole

Laskowski, 2016). Miloslavskaya & Tolstoy present their definition of the concept as an

immense pool of data, in which it is continuously store new data of three types (structured,

semi-structured and unstructured), being it accumulated with historical data. The authors

also complement with the note that the data schemes and requirements are not defined

upfront, i.e., until the data needs to be processed (Miloslavskaya & Tolstoy, 2016). Terri

McClure (Terri McClure, 2014) translates the conceptual change in the definition itself,

stating that "Yesterday's unified storage is today's enterprise Data Lake", which reinforces

the fact that this concept appears intimately to the entrepreneurial part at the expense of

the academic one (Miloslavskaya & Tolstoy, 2016).

Data Lake and Data Warehouses are both data repositories. However, they differ from

each other in several aspects, and even in structure and implementation (Khine & Wang,

2018). Data Warehouses follow a "Schema-on-Write" approach since they make use of

the traditional ETL logic. The data is thus extracted from the sources, then processed and

finally loaded into the repository (having its schema defined before loading). Therefore,

it is assumed that Data Warehouses are prepared to handle read-heavy workloads.

On the other hand, in the Data Lake there is a different order regarding data processing,

which is justified by its "Schema-on-Read" approach. The preprocessing of the data does

not happen until the data is needed by an application or consumption query.

Consequently, there is a change in the ETL tractional order, being the process now

defined as Extract, Load, Transform (ELT). Note that when the data is extracted from the

source, the necessary metadata is thus added to it. The Data Lake is thus prepared to

handle write-heavy and read-heavy workloads (Khine & Wang, 2018).

Summarizing the comparison between the Data Lake and the Data Warehouse, it is

possible to conclude that the former deals with three types of raw data (unstructured,

semi-structured and unstructured), while the latter mainly deals with processed and

structured data. Storage costs are much higher in Data Warehouse environments, and this

type of repository is less agile compared to the Data Lake. There is also a differentiation

in the level of the users, as the Data Warehouse mainly targets professional business users

(e.g.: managers, directors, among others), while the Data Lake mainly targets data

scientists (Khine & Wang, 2018).

18

The main characteristics of a Data Lake are data storage without processing and

theoretically infinite storage capacity (Khine & Wang, 2018). For a Data Lake to be

successful, it must also ensure scalability of the architecture with great availability, data

governance, centralized cataloging and indexing, shared-access model, and agile

analytics (Miloslavskaya & Tolstoy, 2016).

From a technological point of view, several Data Lake implementations are based on

Apache Hadoop. The various datasets will be extracted and stored in a Hadoop Cluster.

In the case of real-time data involving streaming, Apache frameworks such as Spark and

Flink are commonly used. There is thus the ability to handle data at different velocities

and to store heterogenous data in a structured way. The Data Lake also includes a

semantic database, a model and the addition of a layer that allows the relationships

between data (Khine & Wang, 2018).

It is possible to decompose a Data Lake into three layers. The first one is related to the

raw data (transactional data), the second one is related to the data that increase daily and

finally, external information. This division can also be performed using a timeline. The

first layer corresponds to the data of the last six months, the second layer to the data older

than six months but still used by the organization and the third layer to the stored data

(data that isn’t used frequently) (Miloslavskaya & Tolstoy, 2016).

In recent years, some works have been focused on Data Lakes at the level of services and

optimization (Beheshti et al., 2017) (Hai, Geisler, & Quix, 2016). Constance is an

intelligence data lake system that can discover, extract and summarize structural metadata

from data sources, and it appears as a way to avoid the lack of metadata management in

place - which can turn a Data Lake into a Data Swamp (Hai et al., 2016). CoreDB is also

an example of a work developed in this area, being an open-source service that offers a

Representational State Transfer (REST) Application Programming Interface (API) for

indexing and organizing all the metadata of a Data Lake - thus helping to suppress some

difficulties arising from the heterogeneity of the data sources (Beheshti et al., 2017).

In short, the Data Lake corresponds to a pool that accepts structured, semi-structured and

unstructured data, and theoretically scales to an infinite amount of raw data. The Data

Lake can be considered more effective and efficient to deal with heavy workloads,

compared to the already established Data Warehouses. It should be highlighted that in a

19

Data Lake governance must always exist, so that it does not become a Data Swamp

(Khine & Wang, 2018).

2.1.5. Data Mesh

The Data Mesh emerges as a disruptive and innovative concept, which proposes a

paradigm shift to make organizations truly data-oriented (Dehghani, 2019). Dehghani is

one of the pioneering authors on the subject, which serves as a basis for the other concepts

and definitions formulated so far. The author defines Data Mesh as an intentionally

distributed data architecture. In a Data Mesh, it must exist governance and standardization

efforts that allow for interoperability among the Mesh nodes. For this to be possible there

is a homeostatic self-service data infrastructure (Dehghani, 2019). Moses extends the

previous definition by stating that the Data Mesh is an architecture that embraces

ubiquity, with a design oriented to data organized by domains (Barr, 2020). Johnson

argues that the Data Mesh enables connectivity between the various "silos" of distributed

data, preventing the Mesh from becoming inefficient due to its distributed nature. It also

abolishes the complexities of managing and connecting distributed data (Lance Johnson,

2020).

In a ThoughtWorks post, the basic concepts that support the Data Mesh are presented.

The first concept is related to the orientation by domains, as well as the decentralization

of data ownership. The second concept highlights the concept of data as a product. The

third concept is related to the self-service nature of the platform and, finally, governance

issues are highlighted to allow homeostasis of the Mesh (ThoughtWorks, 2020). In this

same contribution, two core issues are highlighted in the implementation and use of the

Data Mesh, i.e., the technological and organizational adaptation that is needed to make

the Data Mesh possible (Dehghani, 2019; ThoughtWorks, 2020). The explanation of these

concepts can be found in detail in section 2.3 and 2.4 of the document.

Currently, there are some companies around the world that have a Data Mesh

implemented and supporting their data analytics processes. One example is brought by

Justin Cunningham, from Netflix, which currently uses this type of distributed data

architecture. At the technological level, for its implementation, it uses a group of

technologies developed internally at Netflix (part in open source) and others like Apache

Kafka, Apache Flink, among others (Justin Cunningham, 2020). Another company betting

on this data architecture is Zalando (Max Schultze & Arif Wider, 2020). They adopt a

20

more concise position, advocating that the Data Mesh is more related to the ownership of

data, rather than focusing on the technological perspective. In their view, which also

comes from their practical implementation, they argue that Data Mesh is based on three

concepts: product thinking, domain driven distributed architecture and infrastructure as a

platform (Max Schultze & Arif Wider, 2020).

To conclude this section, is highlighted that the Data Mesh arises from the frustrations

felt with the current monolithic data architectures, accompanied by a logical path for the

application of the principles of microservices architectures to the data (Dehghani, 2019).

In the following sections, it is explained the motivation for the appearance of the Data

Mesh, as well as the current body of knowledge that form the state of the art related to

the concept of Data Mesh.

2.2. MOTIVATION FOR THE APPEARANCE OF THE DATA MESH

Thomas Kuhn, a physicist and philosopher wrote "The structure of Scientific Revolutions"

(Kuhn, 1970). In it, the author emphasizes the way science evolves, being divided into

four phases: normal science, detection of anomalies, crisis and change of paradigm. In a

simple way, the change of paradigm occurs when, in the face of scientific progress, it is

realized that there is no way around the anomalies, entering a crisis, which is overcome

through a change of paradigm (Kuhn, 1970). This cycle postulated by Kuhn, justifies the

appearance of the concept of the Data Mesh, considering the current monolithic data

architectures and their respective limitations (such as scalability, for example) (Dehghani,

2020a). Dehghani argues that the data architectures are currently in a state of crisis, and

therefore the word "paradigm" establishes a symbiotic relationship with the concept of

Data Mesh (Dehghani, 2020a).

In the last two years there has been a significant increase of interest and investment by

companies in areas such as Big Data and Artificial Intelligence. Between 2018 and 2019

there was an increase in this interest and a consequent investment of 66% (compared to

the previous year). However, contrary to the expectations, the satisfaction of the

companies has decreased (recognition of the importance and belief in these technologies

to increase competitiveness and value). Only between 2018 and 2019, there was a

decrease of 19%. According to Dehghani, this fact shows how, although there was an

21

evolution since the 80s (from Data Warehouses) to the present day (Data Lakes in the

cloud), there are still serious gaps in the adopted architectures (Dehghani, 2020a).

There is currently an overload in the data teams when they try to respond to the growing

needs of the organization, ranging from ad-hoc exploration to central ETL data pipeline

management. There is an unsatisfactory alignment between the organizational needs and

the architectures instituted in the organizations (Barr, 2020). The two facts above-

mentioned, lead to this overload felt by the data teams and the dissatisfaction of various

investors. Although in software engineering there has been a notable evolution from

monolithic architectures to microservice architectures, the same did not occur in the data

engineering space (Dehghani, 2019).

This stagnation implies the segmentation of the data architecture into three components:

sources, big data platform and consumers. By sources it is defined the data producing

sources (data resulting from the operational nature of organizations, as well the external

sources influencing the organizational performance), and by consumers, this means, those

who use the analytical outputs (Dehghani, 2020a). Therefore, there is a dimension that is

not considered here - the nature of the data itself and the way it is organized in an

organizational environment. Currently, there is no concern about domain organization

(Dehghani, 2020b). More than that, this is an architecture similar to those that were

abandoned in the past: data (ingest), business (serve), user interface (consume). Layer

defined by their technological capabilities (Dehghani, 2020a). The problem of this

decomposition into layers, is the change that happens in systems: the change is not often

restricted to a layer. For example, if a new source is added, there must be a change in the

three components - and this obligation to change the process in the layers, causes

significant friction in the process. (Dehghani, 2020b).

On the other hand, the investment problem arises, since the management of monolithic

architecture (e.g.: Data Lake) requires extremely specialized professionals, which with

the increase in the complexity of the system, requires an increase in the composition of

these teams. Currently the teams dealing with monolithic data architectures (e.g.: data

platform engineers, data scientists, domain's operational systems teams, among others),

are working on the same subject, however there is a “space” between them. As an

example, the domain's operational systems teams have as main concern the execution of

their systems, leaving behind the availability of analytical data in a friendly way at the

22

level of analysis and consumption by the rest of the organization. At the other end of the

spectrum, data scientists are concerned that the data they need exists, in a consumable

way, so that they can train their Machine Learning models and thus fulfill their part in the

system. However, to have this data, data scientists depend on data engineers, who act as

a bridge between the parties, who are not aware of the date itself (has no notion of their

domains). Due to these needs (from other teams), and the lack of knowledge of the nature

of the data they handle, they are under high pressure in the organization (Dehghani,

2020a). Therefore, it is possible to infer that the teams are organized in silos highly

specialized in data tools, which when they look at the system as a whole, explains the

friction that exists in them (Dehghani, 2019).

The Data Mesh arises as a paradigm shift that occurs both at the technological and

organizational levels. This change has the purpose of solving the problems enumerated in

this section, to make organizations completely data-oriented, thus being able to gain

competitive advantages and withdraw organizational profits from this fact.

2.3. FEATURES OF A DATA MESH

The Data Mesh has as main purpose the creation of an architecture that enhances the

extraction of value from historical facts and analytical data at scale. Scale is understood

here as being the adaptation to constant change and proliferation of data production

sources, in order to satisfy consumer needs (Dehghani, 2020b).

For the Data Mesh to achieve its purpose, it must be based on four core concepts. The

first one is related to the way data is organized according to the nature of the organization

- domain-oriented decentralized data ownership and architecture. The second

concept implies changing the way data is viewed within the organization - the concept of

data as a product. The third concept is related to the transformation of the service

infrastructure into a self-serve data infrastructure paradigm. Finally, the concept that

avoids chaos in the Mesh - federated computational governance (Barr, 2020; Dehghani,

2019, 2020b).

When looking at the organizational structure, it is realized that, naturally, divisions are

defined by areas of operation (e.g., logistics, customer support, and sales), also known as

business domains (Dehghani, 2020a). The Data Mesh postulates the existence of a

distributed responsibility, by the teams of the organization, that can better understand and

23

produce the data of their specific business domain (Barr, 2020). In this sense, ownership

should be taken into consideration, and not forgetting the data domains from the moment

the data is ingested. Therefore, serving the analytical data must always be aligned with

the established domains (Dehghani, 2019). To distribute responsibility and to decentralize

the already known monolithic architectures, it is necessary to model the current data

architecture based on the organization of analytical data by domains (Dehghani, 2020b).

Will thus be facing a situation where the domains store their datasets and serve the

respective data in a simple and friction-free way (Dehghani, 2019). The physical storage

of data can be kept centralized. However, the datasets and the ownership/responsibility

are kept close to the respective domains. The domains establish, logically, relationship

among themselves. However, these relationships do not cause friction, and a new logic

of serving and pulling is established, from domain to domain (Dehghani, 2020b).

The cost of discovering quality data, in line with the high friction, is pointed out as one

of the greatest difficulties experienced in current monolithic data architectures (Dehghani,

2020b). Part of the problem comes from the fact that even organizations that consider

themselves data-oriented do not treat the data with the proper democratization (Barr,

2020). In this sense, the second concept of the Data Mesh emerges, i.e., data as a product

(Dehghani, 2019). The above mentioned concept has as objective the resolution of the

problems related to data silos, as well as the problems of the data with poor quality and

freshness (Dehghani, 2020b). The Mesh applies the already known concept of "Product

Thinking" to the data, so that it becomes the organization's top priority, and leaves data

pipelining and storage concerns in the background (Dehghani, 2019). A simple concept

is applied here: analytical data is now seen as a product (and therefore there is an

underlying quality dimension), and consumers of this data are now seen as customers,

and their needs must be met (Dehghani, 2019).

Observing the two concepts highlighted here, it is possible to infer that they imply the

existence of an infrastructure that allows the teams to produce and maintain their data

products. For this, it is necessary that the teams have access to a high-level infrastructure,

capable of encapsulating all the complexity that usually comes with it. Thus, are dealing

here with the third concept - self-serve data infrastructure - that empowers teams with the

autonomy needed to manage their domains (Dehghani, 2019).

24

From domain to domain, one will experience a choice of disparate technologies, which at

the limit, reach the desired goals in each data product (Dehghani, 2019). For the Data

Mesh to work as expected, the notion of interoperability and connectivity must be present

and well-defined (Dehghani, 2020b). Thus, the self-serve platform must be able to

provide the tools and interfaces necessary for the creation and maintenance of data

products, without the need for highly specialized knowledge, such as the one that is

currently see in Data Lakes. In short, this platform must be as multilingual as possible,

from the data storage to the data pipeline declaration (Dehghani, 2020b).

Finally, there must be a mechanism that allows interoperability between different

domains - the governance model (fourth concept). This governance model must be able

to carry out an automated execution of decisions, as well as accompany the

decentralization and independence of each domain in the Mesh. For this, global

normalization is necessary, as previously mentioned, which Dehghani denominates as

“federated computational governance” (Dehghani, 2020b). This model embraces the

globality and complexity of the Mesh as a whole, hence creating global rules for it, but

leaving room for local rules in each domain. This concept aims to apply a set of rules to

all interfaces of the various data products, as well as to the data products themselves, in

order to guarantee the homeostasis of the Mesh. However, and due to the architectural

complexity of the Data Mesh, the definition of this governance model is something

particularly difficult to present. Nevertheless, the global rules defined by this model must

allow interoperability, as well as the adequate functioning of the Mesh. Federated

computational governance is a complex model, which does not reject change and has

several contexts (Dehghani, 2020b).

In general, and taking into account the above-mentioned concepts and key points, the

main features that the Data Mesh provides are (Dehghani, 2020b):

1. Decentralized team constituted by domain representatives, and a clear

ownership and responsibility for each data product.

2. Use of a self-serve platform to support the development of data products

in the Mesh.

3. Definition of how to model the quality, requirements, and security of data.

25

4. Dealing with the various languages/technologies used in the data products,

to ensure interoperability.

Figure 4 illustrates a model of a Data Mesh, with all its implicit components. Through the

analysis of the figure, it is possible to infer about the interconnection of the various

components of the architecture. Analyzing the figure from top to bottom, it is first

illustrated the federated computational governance, where are present the policies that

allow the interoperability in the Mesh. These are applied to the various data products

present in the analytical data plan and operational services data plan. In this part of the

figure, the architecture quantum, and domain-oriented data (example) is also highlighted.

Analyzing the highlight of architecture quantum, it is possible to perceive that it includes

interactions between the two planes (analytical and operational services) at the level of

data product and micro-services. It is also possible to infer that the computational policies

are not only applied to the data products present in the analytical data plan, but also in the

platform itself for this purpose - thus serving the figure as a concretization of the concepts

presented above.

2.4. EXAMPLES OF DATA MESH PROPOSALS AND IMPLEMENTATIONS

2.4.1. Approach Followed by Dehghani

Due to the logic of operation and organization imposed by the Data Mesh and the concepts

defended by this paradigm, several concepts must be taken into account when designing

Figure 4. Data Mesh Architecture. Adapted from (Dehghani, 2020b)

26

the Mesh (Dehghani, 2019). This section provides an overview of the contributions that

focus on proposing an approach for designing and implementing a Data Mesh. Some

contributions focus more on the conceptual layer of the Mesh, lacking technological

details that are relevant for the implementation of a Data Mesh, while others solely

describe real-world implementations that may lack sufficient conceptual or technological

details and diversity to be generalized for the design and implementation of a Data Mesh

in any organizational or societal context.

Regarding the concept of domains, it is important to understand how these domains arise

and are organized. There are two types of domains: source and consumer (shared)

domains (Dehghani, 2020a). Source domains consist of the data in their raw state at the

point of creation, not modeled for any consumer. They represent the reality of the business

(with the data being mapped very close to its origin) and therefore change less frequently

(regarding its structure) - since the business facts do not present a very volatile nature.

These domains are characterized by their functional character and the permanent need for

data collection (Dehghani, 2019). Consumer (shared) domains are data domains that may

or may not be aligned with source domains. They are different in nature from source

domain data, as they undergo significant structural changes. In these domains, the

transformed data is often presented in aggregated views (originating from the source

domains). These domains also include models that allow access to them (Dehghani,

2019). The interaction between the two types of domains can be seen in Figure 5.

Figure 5. Structure and interaction of domains at Data Mesh. Adapted from (Dehghani, 2019)

Considering this division of domains, the data pipelines are made internally within each

domain (Dehghani, 2020a). Therefore, there will be a distribution of the data pipeline

steps within each domain. At this point in the process, one of the Mesh crucial points

27

arises: the quality of the data. It is up to each domain to establish its service quality level,

making available to its consumers the quality that its data holds, as well as its timeliness,

error rate, specification, among others (Dehghani, 2019). In short, the aggregation phases

of a centralized data pipeline are here migrated to the implementation details of each

(shared) domain.

The fulfillment of the second concept of the Data Mesh, "Data as a Product", implies that

there is a set of characteristics that are held by the data (Barr, 2020), since this concept

intends to maximize the quality of the data (and as a consequence of this, increase the

satisfaction of the consumers) (Dehghani, 2020b). Dehghani defends that there are six

principles that must be fulfilled to maintain the data quality and the effectiveness and

efficiency of the Mesh. These principles (can be abbreviated as DATSIS principles) are

the following (Dehghani, 2019):

1. Discoverable - all the data present in Mesh nodes/domains, must be present in

a centralized data catalog. This registry must also contain the respective source, metadata,

lineage, and a small sample. This way, there will be a centralized discovery service,

transversal to all the Data Mesh (Dehghani, 2019).

2. Addressable – each data product must have a unique address that allows the

access to it. The addresses of each data product must be unique and known in the Mesh

(discoverable). To facilitate access to the various data products, common conventions

should be created throughout the Mesh. (Dehghani, 2019).

3. Trustworthy - each owner of a data domain must provide the level of service

quality. Moreover, they must also ensure that this level corresponds to the reality, the data

is clean, and the metadata and lineage have been provided. In this way, there will be an

increase in the consumers’ confidence and an easier understanding of the node/domain

and its assets (Dehghani, 2019).

4. Self-describing - the data must have an intuitive syntax and semantics and it

must be aligned with the provided data sample. One way to achieve this is to use data

schemas (e.g.: parquet) (Dehghani, 2019).

5. Interoperable - the data must be governed by global rules within the Mesh. To

aggregate data from different domains, for example, it is necessary to establish a

28

correlation between the different data domains. In this sense, proper standardization of

the data must be established - that is present in the global governance of the system – in

order to avoid polysemy (Dehghani, 2019).

6. Secure - to avoid chaos and prevent Mesh failures resulting from misuse, it is

necessary to establish rules regarding domain access. In the case of decentralized data

domains, this control although it obeys a set of centralized standards, it can be different

in each data product (presenting specific granularities) (Dehghani, 2019).

This orientation towards data as a product implies that there are new roles and

management strategies in the teams that are responsible for data processing (Dehghani,

2019). Consequently, there are two new roles: domain data product owner and data

product developer. The domain data product owner is responsible for the decision-making

that focuses on the vision around their data product, i.e., its direction and possible

capabilities within the organization. This role is concerned with the satisfaction of the

consumers of their data products and it takes care of the lifecycle of these data products.

The domain data product owner must also make their work measurable, making use of

KPI such as lead time for data availability, data quality, among others (Dehghani, 2019).

Each domain will also include data product developers, being them responsible for

building, maintaining, and serving the data product domains (Dehghani, 2020b). A more

concrete example of their tasks is the construction and maintenance of internal data

pipelines for each domain (Dehghani, 2019). Data product developers within a specific

domain will work together with developers in another domain, and it is possible that the

same domain team works for different data products. When compared to current and past

paradigms, the responsibility model is thus reversed, since the responsibility over the data

is now close to the source (Dehghani, 2020b).

Considering this concept, it is possible to define the Architectural Quantum. This

concept, by definition, consists of the smallest unit of architecture that can be deployed

with high cohesion and includes all the structural components involved (e.g.: Code,

Metadata, Infrastructure) (Dehghani, 2020b). Considering the definition of this concept,

it is possible to define the architectural quantum as a data product in the Mesh – this

architectural quantum can be visualized in Figure 6.

29

Figure 6. Domain: data product and operational system. Adapted from (Dehghani, 2020b)

A Mesh node consists of a data product, which includes three main components: code,

data and metadata, and infrastructure. The code component encompasses three distinct

segments. The first one refers to the data pipeline that transforms data, receiving it either

from source domains or from other data products. The second one refers to applications

that allow access to the data and metadata. Finally, the third one refers to the code used

to reinforce access policies, among other related concerns. The data and metadata

component are linked to the core of the analytical and historical data. The data within a

data product can be of different natures (e.g., batch files, events, and graph), but for it to

be used, there must be an association between the data and the respective metadata. This

way, it is the metadata and semantics of the data that is used to maintain the governance

of the Mesh, since they enable the correct interpretation of data and are also incorporated

into data access policies. The infrastructure component, also encapsulated within a data

product, allows access to the data and metadata, as well as running the code related to the

data product in question (referred to as the "code" component in this paragraph)

(Dehghani, 2020b).

In short, the common data engineering concepts, such as data pipelines and storage

structures, are now combined to the data they handle, being an incorporated part of the

data product.

One of the major concerns with self-serve data infrastructure is the duplication of efforts

in the setup of the data pipeline engine (among others) by the domain teams (Dehghani,

2020a). To avoid this inefficient duplication, it is necessary that, when building the

platform, business domain concepts are not considered, so that there is an abstraction of

complexity. In this sense, the author points out some capabilities that this type of platform

must provide, such as scalable polyglot big data storage, unified data access control and

logging, and data governance and standardization (Dehghani, 2019)

30

This architecture can thus be divided into planes, being them remade into levels , which

serve different user profiles and not architectural layers (Dehghani, 2020b). Analyzing

the data infrastructure provisioning plan, this includes access control management

provisioning, orchestration for the internal code of data products, query engine, among

others. In a data product developer experience plan, there is a naturally different

provisioning, as this plan is characterized by a high level of abstraction, related to the user

function. In a Data Mesh supervision plan, there is naturally a series of capabilities that

make sense to be made available on a global level, such as, for example, the ability to

discover data products for a specific use case (Dehghani, 2020b). This division of planes

can be better understood in Figure 7.

Figure 7. Planes differentiation in self-serve architecture. Adapted from (Dehghani, 2020b)

Dehghani also highlights that, although cloud usage effectively decreases operating costs

and the effort required, there is no removal of the higher abstractions that need to be

placed in business context. Thus, abstractions must be created that fit the context of the

31

business, and these establish the communication with the cloud services. (Dehghani,

2019). One criteria that can be used to measure the success of this type of infrastructure

is the time required to create a new data product (Dehghani, 2019).

The governance model applied in the Data Mesh must balance two relevant dimensions:

achievement of the measures imposed at a global level and respect for the autonomy of

the various data domains that compose the Mesh. Therefore, when defining this

governance model, there is the need to reflect on what must be defined on a global level

(Mesh level) and what each domain should have freedom and responsibility to define.

Figure 8, shows an example of these several elements that compose the federated

computational governance model, highlighting global decisions and domain decisions.

Figure 8. Example of distribution a Federated Computational Governance. Adapted from (Dehghani, 2020b)

Taking this into consideration, a part of the knowledge that is applicable to the current

paradigms lose its meaning in the Data Mesh paradigm. For example, dataset only become

data product, when within the domain itself it is subject to the necessary processes to

obtain their quality and respect the rules of global standardization. This fact highlights

the relevance of bringing, for the definition of the data product model, the domain data

product owners, since they are the ones who know the domains most closely (Dehghani,

2020b).

32

2.4.2. APPROACH FOLLOWED BY ZALANDO

Zalando was founded thirteen years ago as a startup linked to online shoe sales and is now

the leading fashion platform in Europe (Max Schultze & Arif Wider, 2020). Naturally,

and given the nature of the E-Commerce business, there is a need to store, process and

use petabytes of data per day. In this sense, the company first established a Data

Warehouse capable of storing this data - however, limitations in terms of scheduling and

a desire for greater flexibility in terms of infrastructure, led them to begin the migration

to the Cloud (Max Schultze & Arif Wider, 2020). Later, they established a messaging bus

that acted as a bridge to services that were no longer accessed directly (microservices).

Through the analysis of this messaging bus, they realized that the data they needed and

used was present in it, that is, they realized that this information was there centralized.

These conclusions led them to opt for the establishment of a Data Lake (Max Schultze &

Arif Wider, 2020).

Later, with the use of this Data Lake, some challenges began to arise: the lack of

ownership over the data, the poor quality of the data already after its processing and the

problem of organizational escalation (since by constantly increasing the sources of data

production and the final consumers of the same, a bottleneck appears regarding the team

itself) (Max Schultze & Arif Wider, 2020). Faced with these difficulties, and as a way of

trying to overcome them, Zalando decided to build his own Data Mesh. To do so, they

based themselves on Dehghani's work, and equated three concepts: product thinking,

domain driven distributed architecture, infrastructure as a platform. Thus, they instituted

a paradigm shift in their own organizational environment. Therefore, there were some

core changes: i) evolution towards decentralized data ownership, ii) prioritization of Data

Domains, in detriment of data pipelines, iii) vision of data as a product and not by-

product, iv) institution of teams organized by domain-data with a spectrum of diversified

functionalities, v) abandoning a centralized data environment (e.g.: Zalando) to an

ecosystem of data products. As a (desired) consequence of these core changes, it was

possible to overcome the bottleneck situation at the data team level (decentralizing this

infrastructure responsibility, to a data infrastructure as a platform) and migrate from a

monolithic data architecture (e.g.: Data Lakes), to an interoperable services environment

(Max Schultze & Arif Wider, 2020). Following the above concepts, Zalando implemented

the Data Mesh architecture present in the Figure 9.

33

Figure 9. Zalando Data Mesh Architecture. Adapted from (Max Schultze & Arif Wider, 2020).

In a synthesized way, the initial central services (Data Lake Storage) were maintained

and the metadata layer and governance that holds information about them were

implemented, as well as enabling standardized processes about them (e.g.: data access).

Zalando then created a concept of "Bring your own Bucket" (Max Schultze & Arif Wider,

2020). This concept allows users to integrate their S3 buckets with the data from the

datasets working on their domains (teams) into the 'core' part of the infrastructure - the

authors point out that AWS technology is very useful in this process for integration.

Zalando has retained the central processing platform which uses technologies such as

DataBricks and Presto. At this point the authors consider that they have achieved success

in using self-serve infrastructure in an agnostic manner (Max Schultze & Arif Wider,

2020). Clusters (in this case Spark) are made available on this processing platform and

the various users make use of these technologies, without the team responsible for the

infrastructure having to know what the users do and without these users having to

configure the clusters or know how complex they are. It is also possible to add more

technologies to this architecture if there is a need for it at the processing level. The main

goal was to achieve data sharing among the organization, something that was achieved

with the use of this architecture, according to the authors (Max Schultze & Arif Wider,

2020).

Therefore, Zalando has an architecture where there is a decentralized warehouse, which

uses a central infrastructure of data processing accessed by all. There is also a data

ownership that is decentralized but makes use of a central governance, which allows the

homeostasis of the system. All these components make use of the interoperability

concept, which enables the creation of a self-serve platform (Max Schultze & Arif Wider,

34

2020). In this sense there are two key behavioral changes: treating the data as a primary

concern and devoting resources to data quality assurance and understanding of its use

(Max Schultze & Arif Wider, 2020).

2.4.3. APPROACH FOLLOWED BY NETFLIX

Netflix is a company that provides a streaming service (e.g.: films, series), which

currently serves about 150 million global users and is available on several different

devices. Each time one of these users interacts with the application (e.g.: search for

content to view) events are generated - events that need to be treated and stored to generate

useful analytical value for the business and operation of the application. Due to the

number of users worldwide, Netflix generates about trillions of events and with this,

trillions of petabytes of data per day (Justin Cunningham, 2020). For this it has a data

platform that is divided into three components: big data platform, cloud database

engineering and real time data infrastructure. The first of these components deals with

data storage, the second with cloud databases (as in Cassandra) and finally, the third

component deals with real time data infrastructure (as in Apache Flink). Thus, the Data

Mesh, in the case of Netflix, is described as a data processing system based on Apache

Flink (Justin Cunningham, 2020).

The main objective linked to this topic (Data Mesh) is to make all the studios that work

with Netflix (and its productions) into one system, capable of dealing with this large

volume of data in an integrated and sustainable way - this process is currently being

developed by the Netflix team (Justin Cunningham, 2020). Therefore, at the beginning of

the process Netflix made a survey of the problems of data transport that they feel in their

scope. They found five major problems, being: i) duplication of effort regarding the data

pipelines and the teams; ii) unnecessary overload in the maintenance of the data pipelines

(because they are poorly managed); iii) the lack of implementation of good practices

throughout the various processes; iv) the need for lower latency; v) problems in the

correction of errors (due to poor construction and lack of knowledge by users) (Justin

Cunningham, 2020).

Currently, in its Data Mesh (still in a pre-alpha state as described by Cunningham), the

team provides an infrastructure for the various users to develop data pipelines (Justin

Cunningham, 2020). In this infrastructure they abstract the user from the complexities of

the configurations, being the main concern to understand what the users want to do with

35

their data pipelines. In this infrastructure the user can use technologies such as GraphQL

and Apache Iceberg (open-source project developed by Netflix, thought for huge table

datasets that feeds your data warehouse). The user also has access to a metadata catalog,

which he sees as a list of sources, from which he can choose to build his data pipelines.

The user also has access to a list of process standards (which he can use as plugins to his

data pipelines), already defined and established. This leads to the fact that few changes

must be made to use this process, which once again abstracts the user from the complexity

of the technology with which it interacts. Netflix is prioritizing the decrease of operational

complexity over the associated cost and performance (Justin Cunningham, 2020). The

Figure 10, summarizes the architecture currently used by Netflix.

Figure 10. Netflix's implementation typology. Adapted from (Justin Cunningham, 2020)

In a simplified way, in the Netflix implementation typology, changes in the database are

used to trigger the process. Once these changes are detected, the processor is given trigger

(Graphic QL) that writes the entities of this stream in a table in the Iceberg Apache (to do

so, it fetches these same entities from another Graphic QL, as illustrated in the figure).

Note that Netflix implements this topology without the user having this notion, and

implements an audit mechanism with the data source to verify its accuracy, at the

processor's output, as well as in the batches of data stored in the Iceberg Apache (Justin

Cunningham, 2020).

It is possible to conclude that, although Netflix does not present in its work the concepts

implied to Data Mesh (e.g.: Data as Products), these are implanted in its Data Mesh

architecture - a fact evidenced, for example, by the presentation of a metadata catalog,

standard processes, quality assurance of the various data products, availability of a self-

serve infrastructure, among others.

2.4.4. OPEN CHALLENGES

Although during the previous subsections, a literature review is presented on the topic of

Data Mesh, this work lacks materialization and contextualization. Thus, there are no

36

models or methods that provide a practical implementation path to follow, by applying

models that translate the Data Mesh concept. Regarding the implementations presented

(Netflix and Zalando), these are use-case driven, proposing no methodological approach.

Thus, throughout chapter three an approach for the design and implementation of a Data

Mesh is presented.

37

3. PROPOSED APPROACH FOR THE DESIGN AND IMPLEMENTATION OF

A DATA MESH

The third chapter of this master's thesis aims to present an approach for the design and

implementation of a Data Mesh, including several guidelines that can be followed. Thus,

throughout this chapter, three distinct models will be presented, which are respectively

the domain model, conceptual architecture, and technological architecture. The purpose

of these models is to specify the various conceptual and technological components that

compose the Data Mesh, thus establishing relevant knowledge that can assist in its design

and implementation, in the most varied contexts. First, the proposed domain model will

be presented and detailed. It contains all the constructs that compose the Data Mesh and

that should conceptually be present in it. Next, the conceptual architecture that identifies

the generic components that should be included in the Data Mesh is presented, so that it

obeys the four core concepts presented in the section 2.3. Finally, to assist the translation

of the conceptual architecture into a practical implementation in real environments, the

technological architecture is presented, composed of a diverse set of technologies that

meet the needs of each conceptual component. This architecture intends to enable and

facilitate the choice of technologies that may support the implementation of the Data

Mesh.

3.1. DATA MESH DOMAIN MODEL

According to Larman, the domain model is a fundamental part of the investigation of a

problem, representing the conceptual classes that compose the same (Larman, 2004).

Despite being widely used as a source of inspiration when it comes to software

development, this type of model represents real-world conceptual classes and not

software components. Thus, their representation is based on the presentation of domain

objects or conceptual classes and their associations, and may also include attributes of the

conceptual classes (Larman, 2004).

In this sense, the definition of a Data Mesh design and implementation approach begins

with the definition of the Data Mesh domain model. The construction of this model is

based not only on the knowledge acquired through the literature review on the subject,

but also on the vision that the authors shared for the Data Mesh. Briefly, the construction

of the domain model took into consideration the four main concepts of the Data Mesh

38

(domain-oriented decentralized data ownership and architecture, data as a product, self-

serve data infrastructure and federated computational governance) and the fulfillment of

the DATSIS principles. For this set of concepts and principles, conceptual classes were

defined to correspond to the materialization of these concepts and principles. It is intended

that, in this model, all the conceptual classes (or constructs) that should be considered in

the design and implementation of the Data Mesh are present. Figure 11 presents the

domain model built within the scope of this master's thesis, summarizing all the constructs

that compose the Data Mesh.

Figure 11. Data Mesh Domain Model

 When looking at the Data Mesh from a high-level perspective, it is quickly

possible to infer that it heavily relies in the connection and constant communication

between domains in an organization. In this architectural context, the Domains are the

agglomeration of various Data Products - each of these data products being a Node in

the Data Mesh. These data products are in constant communication, being able to access

39

other domains’ data (when necessary), also storing all their metadata and changes in the

corresponding storage component (e.g.: Mesh Catalog and Data Catalog).

Although the domain model represents the conceptual classes that compose the Data

Mesh, the Data Mesh itself is a constituent part of it, since associated with this central

concept come several important related constructs. The same logic was applied to the

principles that form the Data Mesh: discoverable, addressable, trustworthy, secure,

interoperable, and self-describing data. Thus, a numerical notation was used in this model

that correlates these principles with the various Mesh constructs (e.g.: in the data catalog

construct it is possible to verify the number 1 and 2 that represent the "discoverable" and

"addressable" principles respectively, since the use of a data catalog enhances them). In

this sense, analyzing the proposed domain model, it is possible to infer that a Data Mesh

comprises four components: one or more data Domains, a Mesh Catalog (catalog of the

Data Mesh itself), a Mesh Communication Channel, and a Change Keeper component.

The DATSIS principles and the concept of governance are significantly relevant to detail

how a Data Mesh should work. In this sense, there is the need to have a strong policy

regarding the quality, reliability, and interoperability of the Data Mesh. Thus, it is

essential that in a data architecture like this, there are components that guarantee this

policy to its users. For this end, constructs such as the Data Mesh Catalog and Change

Keeper are included. The Data Mesh Catalog is the component that allows to quickly

discover which nodes (data products within a domain) exist in the Data Mesh, and what

their general characteristics are - reducing data discovery time - pointed out as one of the

main problems in current data architectures (Dehghani, 2020a). More than the speed of

discovery, this provides a synchronous view of the Data Mesh at the level of its

constitution, as well as information about the people responsible for each domain or data

product. The Data Mesh Catalog is connected to a Mesh Metadata Management

System, from which it reads the information about the nodes present in it. This repository

not only stores information for the Mesh Catalog, but also combines information related

to the changes that the Mesh is undergoing, from each node's Data and Metadata Catalog,

and from each node's Consumption List.

Another proposed construct for the Data Mesh is a component that registers the various

changes that occur in it (Change Keeper). Naturally, a business has a dynamic nature

which is reflected in the data it daily generates, manipulates, and accesses. In this sense,

40

it is proposed to keep track of these changes, to inform all Data Mesh users about, for

example, the creation of a new domain, or data product, or even the deletion of an existing

one. This component should also register the changes that take place in the metadata of

the various data products. The main idea and function intended is to minimize the impacts

that arise in the data pipelines caused by the phenomenon of change. This construct also

interacts with the Mesh Metadata Management System, storing and reading the various

changes in it (as mentioned above). However, it is not enough that there is only one way

for all the users to be informed about changes that occur in the Data Mesh.

In an organization, there is a large flow of emails and messages exchanged between co-

workers. Naturally, these messages are of the most varied nature (e.g.: human resources

information, corporate campaigns, scheduling meetings, among others) which leads to

the fact that the answer is often delayed, and in the limit, many emails remain unanswered.

Thus, when proposing the Data Mesh Communication Channel, it is intended that there

will be a unique efficient communication channel, in real time, so that the various Data

Mesh users (and experts in each domain) can quickly exchange impressions and doubts

with other experts, potentiating an organized environment in which the response time is

expected to decrease. This communication channel can be created using what is already

a company practice, or if necessary, a new communication tool can be adopted. The main

idea is that the adoption of this channel facilitates the process of communication and

knowledge sharing in an organized and fast way.

In the Data Mesh, there can be several Domains, and it does not make sense that there

isn't at least one. A Domain can be defined as being a distinct area of operation (e.g.:

human resources and sales, when we talk about a business context) or subjects of a distinct

nature (e.g.: fruit trees or deciduous trees, when in a non-business context). To have

control over the operations developed in the various Domains, it is proposed that, for each

Domain, there should be a person who understands it deeply in terms of scope,

operationalization, and data. This Domain expert, who also manages the various data

products that are part of it, is called the Domain Owner.

Within the same Domain, there can be several Data Products or at the limit even none –

if a given Domain in an organization does not produce data, but only consumes it from

other domains (for example). A Data Product can be understood as a set of data with

analytical value, that is generated within a domain. Although in the literature review it is

41

suggested that a data product corresponds to a domain (Dehghani, 2019), in the present

work it is clarified that, according to our perspective, several data products can exist in

one domain. This proposal is made based on the analysis of the disparity in complexity

that arises from organization to organization. For example, probably when facing

relatively small organizations or problematics, a domain may effectively have only one

data product. However, if we consider, for example, the domain sales of a large company

like Amazon, it is possible to quickly infer that there will be several different data

products (e.g.: related to different views/analysis on the sales process). In this sense, it is

proposed that there can be some flexibility when it comes to establishing the number of

data products per domain, and that each context may apply the rule that makes the most

sense given the circumstances. So, considering all these aspects, it is possible to conclude

that a data product is a Data Mesh node and vice-versa.

Just as a Domain Owner is established for each domain, it is necessary to establish an

expert person for a given data product. This person is called Data Product Owner and,

together with the Data Product Team, they build, support, and maintain a given data

product. It is not mandatory that a data product team and a data product owner can only

assume these roles for a specific data product - given the limited resources of an

organization, it is natural that there is the need to allocate the same resources to different

data products.

Each Node of the Data Mesh will contain a set of components from the overall

architecture. That is, a node will gather all the components that are part of the Data Mesh

architecture, and this composition will be replicated by each node throughout the Data

Mesh - note that when the term composition is mentioned it is related to the conceptual

architecture (e.g., processing service component) and not to the technological

architecture, because from node to node there may be disparities in technological choices.

A node in the Data Mesh (data product) will have four base constructs: Input Data, Output

Data, Node Metadata, and Data Consumer (this last one been facultative). Any data

product, even if aligned with the source or aligned with the consumption, will always

have in its composition the Input Data that composes it. This Input Data can be data that

originates from the operational and transactional nature of the business (and therefore

aligned with the source), or data from nodes already created in the Data Mesh that are

consumed by this new node (thus being a node aligned with the consumption). Naturally,

a Data Source is always associated with this input, despite of its nature. Following the

42

same logic, each Data Product will also contain the Output Data that will be associated

with the flow of the Input Data through the data pipelines developed in each case. This

data composes the Data Product itself, that will be available for consumption by other

Nodes of the Mesh.

To be able to develop data pipelines and store data in each Node (Data Product), it is

necessary that each Node has access to a technological layer that allows the development

of these processes. To accomplish this goal, each Mesh Node makes use of Processing

and Storage Components. The processing component consists in the access and use of

batch and stream processing tools, to meet the needs of each Data Product. In the Storage

and Messaging Component, NoSQL databases, publish/subscribe systems and distributed

file systems are used so that it is possible to store and make available data in the most

adequate way according to their nature. Naturally, in both the processing and storage

components, not all the components need to be used in the same Mesh Node. However,

the Data Mesh should have a wide set of available technological options that allow it to

cover the various scenarios relevant for the organization. This vast option of distinct

technologies also makes it possible to adapt to the needs of each Data Product Team,

matching their know-how with the available standard technologies within the

organization, to make the process of building and developing a Data Product faster and

more agile. Processing and Storage Components are supported by the Available Services

in the Data Mesh, which compose the Self-Serve Data Platform. The purpose of this

platform is to aggregate several services of different natures, to enable the construction

and maintenance of the various nodes in the Data Mesh. Briefly, it includes the data

Visualization Technology (so that each team can create the analytical dashboards that

help in the decision-making process), Code Repository (so that all code produced is stored

in a secure environment, prepared for team collaboration), Containers Registry (to be able

to manage the container images required for each data product), and Data Integration

Tools (to include several data sources in the same data pipeline environment). It is

expected that this platform will not have a static character in terms of the set of

technologies and functions that it includes, and teams may, depending on their needs,

suggest for the Data Mesh initiative in the organization to approve and add new

technologies and functions, that can be applied to the several Data Products.

As mentioned earlier, each Data Product may be consumed by other Nodes, so there is an

association between Data Product and Data Consumer. When a Data Consumer node

43

needs to consume data from another node, it needs to have a permission to do so. The

issue of having/granting permission to access data, related to the reading and usage of a

specific Data Product, implies that there is a component that allows the permission request

and its authorization, thus being proposed in this work a Consumption List construct.

This list consists, briefly, of a mechanism that maintains the various accesses that the

Nodes have to each other. It is proposed that a given Data Product Team, when faced with

the need to consume data from another Node, request this permission through the

Consumption List. Once the request is made, it can culminate in the acceptance or

rejection of this request. There is also a Security Mechanism that secures the data

Interface itself, which provides the input and output data for each node. It is intended

with this proposal that there is a security concern regarding the data that is used in each

Node.

In the Data Mesh paradigm, it is relevant to have higher quality assurance in the data

flowing between the nodes of the Data Mesh. To accomplish this, it is important that the

DATSIS principles are guaranteed for each component and flow (as illustrated in the

domain model, Figure 11). Thus, each Node will be associated with the DATSIS

principles, ensuring that, in the Data Mesh as a whole, data is discoverable, addressable,

trustworthy, secure, interoperable, and self-describing.

For data to be mainly self-describing, it is necessary that each Node of the Data Mesh is

associated with its own metadata. The Node Metadata consists of the agglomeration of

several characteristics of the data, such as Data Lineage, Data Schema, and Data Quality

Metrics (that enhance trust in data). In addition to this Metadata, Information about the

teams that create and maintain each Data Product is also relevant to be included, as well

as Links to the Code used in the construction and data pipelining of a node (allowing the

evaluation of the degree of trustworthiness related to a Data Product). All this information

is thus stored in the Mesh Metadata Management System. Naturally, these characteristics

are present in a Data Catalog that reports the specifications of each Node, being fed by

the information in the above-mentioned management system. The Data Catalog is

extended with new information parameters (e.g.: domain to which the data product

belongs), and the same can be used by everyone in the organization to discover data

products (due to the availability of metadata). More than just accessing this information,

with the proposed domain model, distinct teams in disparate domains of an organization

will be able to consult this data, make use of it, and build new Data Products (Mesh

44

Nodes), each choosing the available standard technologies that best suit their case,

without jeopardizing the interoperability of the system itself or harming the quality of the

data that is handled and produced.

In short, no longer there will be a centralized data team, overloaded with requests from

an entire organization, transitioning to a decentralized reality of these teams across

various organizational domains. The data will then be handled closer to its creation point,

by teams that know their organizational domains intimately, including the nature of the

data when it is ingested.

3.2. DATA MESH ARCHITECTURE

More than defining the domain model, synthesizing the Data Mesh constructs/conceptual

classes, it is necessary to build an artifact that makes the concept more tangible at the

implementation level. In this sense, a conceptual architecture and a technological

architecture are proposed for the development and implementation of a Data Mesh.

3.2.1. Conceptual Architecture

The main purpose of the conceptual architecture is to present the standard architectural

components that compose the Data Mesh. In this way, in a more advanced phase of the

Data Mesh implementation, these components will be implemented through specific

technologies that allow the proper functioning of the Mesh.

The conceptual architecture preserves the four core concepts and DATSIS principles on

which the Data Mesh is based, having been at the base of its creation, the domain model

presented in 3.1. In this sense, the conceptual architecture here presented can be divided

into four parts being them respectively: i) the organization between nodes, catalogs, and

repository of the Mesh; ii) self-serve data platform; iii) infrastructure; and iv) security

mechanism. Figure 12 presents the proposed conceptual architecture.

45

Figure 12. Data Mesh Conceptual Architecture

In the proposed architecture the articulation between the various Data Mesh nodes is

presented in a way that is possible to read data from each other (thus highlighting the

interoperability aspect in this architecture). As illustrated in Figure 12, these nodes can

be of different natures (depending on their alignment with source or the consumption),

working in a network to meet the data needs of the organization.

As also illustrated in the figure, the entire Data Mesh is connected to a component called

the Mesh Catalog. This catalog has the purpose of presenting the Data Mesh's metadata,

allowing users to quickly and effectively discover the nodes (data products) that compose

it. Ideally, this catalog component should also contain other information such as, for

example, the identification of those responsible for each node. This catalog stores and

reads all this information from the Mesh Catalog Storage, which works as a central

storage component for the Data Mesh - allowing for its adequate management. At a lower

level, each node that composes the Data Mesh is present in the Data Catalog. This catalog

differs from the one previously presented, because it details the characteristics of the data

itself present in each node (data schema, data product owner and team, data lineage, data

product's code links, and data quality metrics), allowing a new user of the Data Mesh or,

even other data product teams, to discover the data quickly. Like the Mesh Catalog, the

Data Catalog stores and reads its data from the Mesh Catalog Storage component. So, in

this first architectural part, the issues regarding the articulation between nodes and their

46

catalogs are unblocked. However, there is still the need to establish the following: i) how

the Data Mesh articulates itself in terms of security (for example, whenever a data team

needs to consume data from a node already built); ii) what infrastructure supports all the

above-mentioned relationships between nodes (data products); and iii) how to access the

technologies that allow building and maintaining these nodes.

To answer the first question raised in the previous paragraph, an architectural component

concerning the Data Mesh Security Mechanism is proposed in the conceptual

architecture. To avoid chaos, it is necessary to have a governance layer in Data Mesh so

that, for example, when a given data product team needs to consume data from a data

product that already exists, it can consume it efficiently. For this end, as previously seen,

the domain model proposes a consumption list that unfolds, in the conceptual architecture,

into a security mechanism implemented in two phases: authentication and authorization

(this mechanism can be implemented on-premises or in the cloud). Data Mesh users

request access to a Data Mesh node, authenticate themselves and finally they are granted

authorization to access it (if applicable). The way this authorization is deliberated must

be based on the need for a given team to consume/access a specific data product (using,

for example, permission management technologies like Apache Ranger). Once this

authorization is conceived, the user (e.g., a member of a data product team) can access

the output data from a given Mesh node and can consume it in another node (build a

consumption-oriented data product) to satisfy the analytical needs within a given domain.

However, there must be the tools that enable the creation and maintenance of the various

data products (nodes) in the Data Mesh. One of Data Mesh's core concepts is related to

the possibility to adopt different technologies to suit the needs of each team, allowing the

abstraction of the complexity of the infrastructure that provides those technologies. Thus,

a Self-Serve Data Platform is proposed in the conceptual architecture. This platform

aims to provide all Data Mesh users with a set of technological components that allow

them to build and maintain their data products in an interoperable way. At the limit, if

none of the technologies made available on the platform meets the team's needs, more

technologies can be adopted, after an approval process, to allow each team to adjust their

development and implementation expertise to the needs of their data products. This

approval process, according to (Dehghani, 2020b), must be done by the team that

administrates the platform at the infrastructure level. This platform can be functionally

divided into six distinct parts, which are: storage, processing, data integration system and

47

orchestrator, data visualization, software development, and machine learning. In essence,

this represents the aggregation of the functionality needed to create, test, and maintain the

various data products and their visualizations (e.g.: data analytical dashboards).

The group of storage functionalities, divided into four distinct parts, is intended to satisfy

the most diverse needs of data Storage, considering their nature. It is proposed that the

Data Mesh Self-Serve Data Platform includes: i) buckets (or folders) in a distributed file

system; ii) NoSQL databases (for non-relational data); iii) publish/subscribe topics (for

data flows using brokers and likely streaming data); and iv) distributed SQL databases

(for providing distributed storage and processing capabilities for relational data). It should

be noted that it is not implied that a Mesh must mandatorily include in its platform all

these components, as each Data Mesh can and should be designed to cover the features

required for the data needs of the specific organization or context.

The data Processing component should include technologies that respond to the various

types of data to be handled, such as large volumes of historical data or real-time data.

Thus, it is ideal that the processing component provides batch processing, streaming

processing, and distributed SQL processing tools. Again, this diversification of

technologies across functionalities allows one source-oriented data product team, for

example, to process in real-time the events associated with customers on an e-commerce

platform, and another consumption-oriented data product team to consume this data and

merge it with data from other nodes, using batch processing.

The Data Integration System and Orchestrator component is essential for building the

data pipelines, allowing the flow of data from its source to each node's storage. To do

this, the Self-Serve Data Platform must provide this component, allowing it to be

subdivided into two distinct segments: UI based or code based. In this case, the division

of technologies is done according to how the users prefer to develop their data products:

either by code development or through UI elements. In certain teams of the organization,

there may be a more robust level of expertise for code-based data pipelines, but the

opposite can also happen. In this sense, and always with the view of bringing the teams

closer to the solutions that make them more productive and effective in the construction

and maintenance of data products, the UI-based component is also included. This type of

technology abstracts the complexity behind the various components from the end user,

48

avoiding the complete development of the solution through code - which can make the

process easier for the various data product teams.

Of course, transforming the data and making it more reliable is important (so that it

responds positively to a range of data quality metrics), but for decision-making and for

retaining the analytical value of the data, the data needs to be analyzed. Thus, the Data

Visualization capabilities are significantly relevant, reason why the Data Mesh Self-

Serve Data Platform needs to enable such capabilities. Once again, there is a division of

the technological components, based on the experience that best suits each team, and this

visualization can be achieved through a dashboarding tool or a notebook environment.

Ideally, a Data Mesh will contain both development options, allowing teams to use these

tools to meet broader needs when it comes to visualizing the data they produce and

consume. In this way, a business user can use the self-serve data platform to consume

data from a node into a dashboarding technology (present in the platform) and develop

reports to assist the decision-making process, or explore the data in an ad hoc notebook

environment.

Clearly, the development and maintenance of the various nodes of the Data Mesh is

closely related to some Software Development components and therefore, there is a

range of features that must be gathered in the Self-Serve Platform for this process to be

possible. The first component has as its purpose the organized storage and versioning of

all the code produced to create and maintain a node, hence the inclusion of a code

repository is suggested. Next, within an organization, it is necessary that the various

processes are properly documented and that there is knowledge sharing between teams.

In this sense, a documentation space is proposed. Still on the software development

component, it is necessary that the code is properly tested and delivered, before a solution

is made available to the entire organization (in this case, for example, before a node is

published in the Mesh), reason why Continuous Integration and Continuous Deliver

(CICD) Tools component is also included. Finally, a container registry component is

suggested, to store and make available the various images used by the container-based

solutions in the Data Mesh.

Machine Learning is a method that enables the creation of predictive models through

data analysis (Janiesch, Zschech, & Heinrich, 2021). Over the time, machine learning has

evolved and proven to be significantly valuable to complement data analysis and elevate

49

it to the level of predicting future events. In this sense, there is a machine learning

component in the platform, divided into code or UI-based tools.

The combination of the six components explained above (storage, processing, data

integration system and orchestrator, data visualization, software development, and

machine learning) make up what is proposed as the Data Mesh Self-Serve Data Platform:

a platform where the various data product teams can access and use the tools that best suit

their needs to obtain well-designed and implemented data products.

For the Self-Serve Data Platform to exist and function as proposed, an Infrastructure to

support it needs to be in place. The implementation of this infrastructure can follow two

distinct paths considering the organization's resources (both hardware and software, and

the expertise of its teams): on-premises or in the cloud. Today, the cloud provides a wide

range of services that allow organizations to implement the most varied functionalities in

terms of data storage, processing, visualization, among other tasks (AWS, 2021; Google,

2021; Microsoft, 2021). However, tools that are not covered by these services but are

needed can and should be included in the Data Mesh. On the other hand, the Data Mesh

itself does not need these cloud accounts to exist, and its infrastructure can be solely based

on on-premises infrastructure (physical servers, virtual machines, and containers). These

should allow the configuration of clusters capable of containing the technological

components, and thus create the necessary conditions for teams to use the tools required

to build the Data Mesh. The infrastructure implementation option (on-premises or cloud

accounts) should be a singular decision in each organization since both bring advantages

and disadvantages. In this work, we do not aim to detail those advantages and

disadvantages, but, for example, although the cloud attracts users due to its scalability,

the ability to develop complete solutions with cloud accounts requires some level of

expertise from the self-serve data platform team and the data products teams, which may

not exist inside the organization.

Thus, this decision should be well considered in each organization, always seeking to take

advantage of the existing infrastructure and skills, or seeking to adopt a radically different

infrastructure that will raise the potential value that can be brought to the company.

Nevertheless, what’s relevant is for the Self-Serve Data Platform to meet the expectations

of the Data Mesh initiative and the data product teams.

50

 On an on-premises perspective it is important to consider that it is not mandatory that

there is only one cluster that hosts the Data Mesh, quite the contrary. The relevant aspect

to consider is that the interoperability between nodes is always guaranteed, so that the

"micro-architectures" that support each data product’s design do not make it impossible

for other nodes, based on other Data Mesh-compatible technologies, to access their data,

making possible to accomplish the vision of the Data Mesh. The same holds true when

multiple data products are supported by different cloud accounts belonging to the same

organization.

3.2.2. Technological Architecture

Naturally, the conceptual architecture needs to be unfolded into a technological

architecture, aiming to present a wide range of technologies suitable to implement the

components of the conceptual architecture. Figure 14 correspond to the bridge established

between the proposed conceptual architecture and the technologies that are feasible to

implement it.

Figure 13. Data Mesh Technology Architecture

Due to the broad scope of the architecture and the wide set of available technologies, the

technological architecture has been divided into these two figures (which can be seen as

two parts of the same figure). The first part, figure 13, presents the technological

architecture of Data Mesh as a whole, leaving the Self-Serve Data Platform component

unspecified. The second part, Figure 14 presents in more detail all the technologies that

51

make up the Self-Serve Data Platform. It is intended that, with the presentation of the

technological architecture, practitioners have available an starting point for the

implementation of a Data Mesh.

Figure 14. Self-Serve Data Platform in Detail

It should be noted that there are currently several other technologies on the market that

can respond positively to the needs of the Data Mesh implementation, several of them

listed in the figure, but many of them left out. The choice of technologies integrated in

the figure was based on two distinct criteria: 1) being open-source technologies (which

implies a significant impact in reducing costs in the implementation of a Data Mesh) or

52

2) being services available in the Cloud (in AWS, Azure, and Google Cloud). In this

sense, several Data Mesh implementations can be outlined, using combinations of the

technologies presented in Figure 14. Each organization should reflect on the solutions

presented and depending on the balance of their needs and resources, choose, amongst

the various options, the one that will make more sense to use (in terms of cost,

performance, and implementation difficulty). In the next chapter of this master's thesis,

the architecture of the proof-of-concept will be presented, which, similarly to the decision

process mentioned above, will contain the most suitable technologies given the resources

available for this research work. Analyzing Figure 13, we can see that several

technological solutions are proposed to implement the conceptual components shown in

Figure 12. Due to the vast amount of technologies, the description and explanation of the

figures provided throughout the rest of this section will only highlight some of the

technologies in the figure. However, as they are competitors to implement the same

conceptual component, the understanding should remain consistent no matter the

technology serving as example to detail a given technological architecture component.

The security mechanism contains solutions divided between on-premises (Apache

Ranger) and the cloud (e.g., Azure, AWS and Google Cloud IAM). These solutions will

make sure that the various nodes of the Mesh can securely interoperate with each other.

These Mesh Nodes can be developed with the resources from the technological solutions

presented in Figure 14. For example, it is possible to construct a Data Mesh node as being

a folder in Hadoop Distributed File System (HDFS) or a bucket in S3. To feed this node,

there are data pipelines using Apache Spark or AWS EMR. Each node can also use HBase

or AWS DynamoDB to store the output data of a node in a NoSQL database if the Mesh

Node wants to expose data to online applications, for example.

Compared to the conceptual architecture, a difference is highlighted: the merging of the

Mesh Catalog and Data Catalog. This agglutination is due to the fact that the proposed

technologies are the same, so this agglutination is used to facilitate the interpretation of

the figure and not having repeated components. Thus, technologies such as Amundsen,

Apache Atlas and Collibra can be used either as Mesh, or Data Catalog. The Mesh Catalog

Storage can use various technologies such as MySQL, Git Repository, ElasticSearch or

GraphDB, depending on the nature of the data. However, it is also possible to use as a

storage system the databases that are already integrated with the solutions (e.g.: default

Apache Atlas database).

53

At the infrastructure level, technologies are proposed in two distinct ways: on-premises

or through cloud accounts. The choice of implementation path must be carefully weighed

in considering the complexity of handling the infrastructure itself. Although the cloud is

significantly attractive due to its centralization of services, with high usability, scalability,

and interoperability, it is necessary to consider the complexity of handling these systems

securely. However, given the technology offerings in terms of infrastructure, security

engine, and self-serve data platform, it is possible to implement an entirely cloud-based

Data Mesh. Solutions are also available to create an on-premises infrastructure if that is

the path practitioners want to follow. In this case, this implementation involves three

components: physical servers, virtual machines (where VMWare and OpenStack can be

highlighted for their capabilities), and container-based solutions (such as Docker, Cri-o

and Kubernetes). This infrastructure implementation can also be combined with self-

serve data platform technologies that share this on-premises compatibility (e.g., use

Apache Ranger for the security mechanism, with data pipelines in Apache Spark, writing

files in HDFS, feeding a Hive database for each Nesh Node, and being the metadata

readable through Apache Atlas).

The self-serve data platform is, as explained in the conceptual architecture, a set of six

base components, which agglomerates a wide range of technologies. The main purpose

of presenting such a wide range of solutions is to provide a range of technologies capable

of meeting the needs of its users when faced with a certain design and implementation

context. Thus, with data product teams at different levels of specialization, all of them

will be able to design, create and maintain their data products in the Mesh. Moreover, in

case there is no technology on this architecture that meets the specific needs of a given

team, new technological components or technologies can be easily added to it.

Although all the technological components of Data Mesh are essential for its proper

functioning, there are two factors of major relevance in this architecture: data discovery

and data access. These two factors are fundamental for the Data Mesh to work according

to its four core concepts and DATSIS principles (section 2.4.1). Therefore, it is

recommended for special attention to be given to these components. The choice of the

appropriate data catalog is a key part of the Mesh, possibly one that allows its model to

be extended to meet all the constructs of the domain model. Without being able to obtain

a rich data catalog that allows a new user to know the domains, data products and how

they are built, the Data Mesh can be seriously jeopardized.

54

4. DATA MESH PROOF-OF-CONCEPT

Although the domain model and architecture (both conceptual and technological) are the

result of several insights emerged from the literature review and also from technical

experience within the area, it is necessary to have a proof-of-concept of the proposed

models to demonstrate their suitability for the implementation of a Data Mesh. Taking

this into account, the proof-of-concept that was developed, will be detailed in this chapter.

To accomplish this, it will be explained its scope, the used infrastructure, the technologies

that support the creation of data products, the extensions made to the tools to meet the

needs of a Data Mesh, as well as an example of the development of a data product

throughout the entire process. It must be taken into consideration that given the resources

available for the completion of this master's thesis, this proof-of-concept focuses on

aspects considered as fundamental for the Data Mesh (e.g.: the part related to data

catalogs and data products), leaving some components with their fully implementation

planned for future work (e.g.: security mechanism within the Data Mesh).

4.1. SCOPE AND ORGANIZATION OF MESH NODES

Let us start by defining the scope in which this proof-of-concept takes place, namely the

retail area. To illustrate a case that comes close to the requirements of a real market, the

scope of the proof-of-concept will cover three domains of what is assumed to be a

furniture commercialization company, in the business to costumer (B2C) segment.

Thus, three domains will be created and published in the Data Mesh, concerning three

domains of the business in question, being respectively: Sales, Production, and Financial

Management. In the case of these three domains, it is considered that each one has one

data product that originates one mesh node, being them: Online Sales, Product Cost, and

Profits. Considering the above-mentioned domains, there are two source domain (Sales

and Production) and one consumption domain (Financial Management), since the join of

the Online Sales data and Product Cost data, will originate the calculation of the Profits

generated in each sale.

Note that, in this proof of concept, the aspect to emphasize is the flow of data throughout

the architecture, and not the complexity inherent to its transformations - since this can be

as complex as the user wishes (making use of the scalability and response to complexity

55

that the self-serve data platform presents). Figure 15 summarizes the organization of the

domains and data products.

Figure 15. Data Products and Domains Organization

Looking in more detail at the data and metadata level for each data product, they have the

schema illustrated below in table 1, 2 and 3.

Table 1. Schema of Data Product Online Sales Data

Source-Oriented Data Product: Online Sales

id_sale Integer

id_costumer Integer

id_product Integer

amount Integer

sales_price Double

payment_type Integer

date_time Timestamp

Table 2. Schema of Product Cost Data Product

Source-Oriented Data Product: Product Cost

id_product Integer

cost Double

production_factory String

warehouse String

56

Table 3. Schema of Data Products Profits Data

Consumption-Oriented Data Product: Profits

id_sale Integer

Price Double

cost Double

profit Double

date_time Timestamp

The data sources used in this work are in CSV format, stored in a distributed file system

(in this case HDFS), which include the record of sales made online and the listing of

production costs for the various products that were sold. Note that there is no data source

for the profits data product, since it is a data product based in a consumption-oriented

domain and, in this case, it will be built based on the consumption of data from the two

data products mentioned above (which does not mean that a consumption-oriented

domain must be strictly built based on another data product’s data and therefore cannot

include its own data).

4.2. PROOF-OF-CONCEPT INFRASTRUCTURE

In a real context, a Data Mesh may be implemented in more than one cluster (in the case

of this proof of concept, and due to the available resources, it is implemented within only

one Hadoop cluster). In this sense, most of the technologies used in this proof-of-concept

are present in a Hadoop cluster, which does not invalidate the usage of technologies

outside this scope.

An on-premises approach was followed, using the Lynx Lab cluster from the University

of Minho. In this cluster, a Docker container was created, and, inside this container, an

image of the Cloudera sandbox was instantiated, containing the Hadoop technology.

Later, it was necessary to configure the various needed services (e.g.: Apache Atlas).

Each Data Mesh node corresponds to a folder in HDFS, and each one contains tables

stored in an isolated Hive database. To develop the data pipelines, we simulated a context

in each data product team makes use of Zeppelin Notebooks, using the programming

language that better fits the team needs. Once the output data for each data product is

ready, Apache Atlas (extended in this work to accommodate the Data Mesh requirements)

57

is used to allow all the cataloging of the Data Mesh’s data. In this case, the Apache Atlas

repository serves as the Mesh Catalog Storage itself (due to the optimization of resource

usage). For data visualization, besides being possible to use Zeppelin Notebooks, Power

BI Desktop and Server were used to create and publish the visualizations. To meet the

premises of the domain model, regarding the assurance and monitoring of data quality

metrics, a script of automated analysis of data quality was created and indexed to each

notebook, and its information transformed into a dashboard in Power BI (so that its

interpretation is more interactive).

All the code created by each data product team, must be documented, and stored.

Therefore, GitHub was used as a tool for storing and making code available. In order to

have a direct communication channel in this proof-of-concept Data Mesh, Slack was used,

and direct channels were created between users and data teams/owners of the various data

products. Regarding access (consumption list), a form was created, through Google

Forms, so that this access can be requested, and this information is forwarded to those

entitled to it (e.g.: data product owners who can grant authorization to access their data

product’s data). Ideally, this process should go through Apache Ranger, however, given

the available resources for this work, it was not possible to perform this integration, being

however the logical part of the process (the data consumption request) present in this

proof of concept. The following sections will present the implementation details of the

various components of this proof of concept.

4.3. HDFS FOLDERS ORGANIZATION FOR EACH MESH NODE

As illustrated in the domain model (section 3.1), it is possible to infer that a domain can

have more than one data product. Revisiting the concept of domain, it is possible to

understand domains as being the structured division of the organization by different areas

of operation (such as sales, customer service, logistics, etc.). However, depending on the

size and complexity of the organization in question, domains may have more than one

data product (and in the limit, one domain of the organization may not generate any data

product that is relevant to be shared with the entire organization). Thus, the same domain

may have zero or more data products within its scope.

Therefore, with the adoption and implementation of the Data Mesh, there must be an

imminent concern to ensure that the various domains, and the teams that build and

maintain these domains, can communicate with each other efficiently. For this reason,

58

and as explained in previous sections, there is the need to ensure a governance approach

that extends to the entire Data Mesh and respects the DATSIS principles. To keep the

implementation aligned with the previous principles, a standard organization of the Data

Mesh Nodes is proposed, which should be followed by all the teams, to implement these

best practices in their domains and data products.

In the case of this proof of concept, it is defined that the whole company shares a cluster

and therefore the file system is also shared amongst all - in this case HDFS. In this sense,

it is important to build from the beginning a structure that obeys a certain set of parameters

and to establish rules for the creation of folders and for their designation. Figure 16

illustrates the structure proposed for the HDFS folders organization into domains and data

products.

Figure 16. Folder Organization in HDFS

Considering the organization present in Figure 16, there is a brief set of rules to be

followed, to guarantee the homeostatic organization of the Data Mesh. Firstly, it is

necessary that the current data teams perform the exercise of dividing the organization by

domains. Advisably, and given that the main purpose is that the nature of the data is not

lost upon ingestion, it is important that this division into domains is aligned with the

business itself and the people that work daily with this data. There may be as many

domains as necessary, as long as they are always aligned with the operational nature of

the organization.

59

Once the domains have been defined, it is important to identify the data products that

compose each one. An example of this identification might be the sales domain. In an

organization where there are two distinct sales segments (e.g.: physical stores and online

stores), it will make sense for this domain to hold at least two distinct data products (one

related to the operational data of online sales and the other related to the operational data

of physical sales). Naturally, even though both are part of the sales domain, both are

composed of different data, so it will make sense to analyze them differently. The initial

data product definition will not be static, and more data products may be added along the

way as the business develops. Thus, and considering the nature of this proof of concept,

it is proposed that the domains are organized in distinct folders at the root of the file

system, shared by the entire organization. This way, they will be quickly found and will

follow an equitable distribution. This is also recommended to avoid semantic problems

when handling data in the Data Mesh. To avoid these problems, it is proposed that all

domains follow a similar naming pattern as illustrated in the Figure 16 - lower case letters,

with the word "domain" being replaced by the real name of each domain. It is significantly

relevant that this naming pattern is extended to all domains in the Data Mesh, thus

minimizing semantic problems.

Within each domain, there are folders for each of the data products that compose it. The

naming of these folders must also follow a consistent pattern, and it is proposed that they

are identified in lowercase letters as shown in the pattern illustrated in Figure 16

("domain"_"dataproduct"). The folder for each data product will include three distinct

components: input data (corresponding to raw data), output data (corresponding to data

resulting from the pipeline process), and data product info. The presence of the last

component, data product info, is in line with the domain model explained in section 3.1.

This folder should include relevant information such as the data quality report of the

output data (In order to facilitate the reading of this report, it will be also available in

Apache Atlas, with a direct link to the Power BI Server). The remaining information about

the output data (such as Data Schema or Lineage) will also be present in Apache Atlas.

This proposed folder organization is not limited to this proof-of-concept but can be

followed in other Data Mesh implementations. However, if the technology used does not

support this type of structure, this folder organization should be adapted, ensuring that

the intuitive and clear structure of the domains and their data products is maintained.

Otherwise, the proper functioning of the Data Mesh can be jeopardized.

60

4.4. ORGANIZATION OF DATABASES AND TABLES FOR DOMAINS AND DATA

PRODUCTS

In the same way a structure was defined and followed for the HDFS folders that represent

the various nodes of the Data Mesh, it is also necessary to think about how the domains

and data products will be organized in the Hive Metastore. Figure 17. Hive Structure for

Domains and Data Products shows how the organization of domains and data products

was defined in the scope of the proof of concept.

Figure 17. Hive Structure for Domains and Data Products

When considered the usage of a Data Mesh in complex organizational contexts, it is

logically implied that the domains will be of significantly complex dimensions, and

naturally the data products may follow the same pattern. Thus, in this proof of concept, it

was defined that a data product corresponds to a Hive database (corresponding to the

collection of several tables). On the other hand, domains are defined as being a collection

of databases (of the various data products that compose them). It is believed that, although

the dataset of this proof-of-concept is not very complex, this will be the most correct way

to organize the Hive Metastore, anticipating that the data products will evolve over time,

given the dynamic nature of organizations. Note that it is recommended to follow the data

modelling approach (e.g.: flat tables, star schemas, among others) that is more suitable

for each data product (here depicted as a Hive database) to more adequately manage

storage space and querying performance.

4.5. MESH AND DATA CATALOG (APACHE ATLAS)

One of the most important principles of the Data Mesh is the complete discovery of the

data that it holds by all its users. So, it is necessary that there is a component in the proof-

of-concept where information about the data products is centralized, such as, for example,

61

data lineage, data schema, and data quality information. As explained in section 3.3.2,

Apache Atlas was chosen as the Mesh and Data Catalog. By default, Apache Atlas does

not provide all the information to portray Hive tables and databases. Therefore, it is

necessary to extend it. Figure 18 presents an organization of the parameters per data

product (hive database) and the respective tables (hive tables).

Figure 18. Attributes per entity in Apache Atlas

To better understand the extensions made to Apache Atlas, it is important to note how

Atlas organizes metadata. In Apache Atlas, there is a type system to organize metadata,

that is subdivided into three concepts: types, entities, and attributes. Types in the Apache

Atlas can be understood as a collection of properties that characterize a metadata object.

On the other hand, entities correspond to instances of types, and attributes to properties

that characterize the types. Attributes are defined by a set of parameters that define the

characteristics of their properties (e.g.: name, isCompositive, and isUnique) (Atlas, 2018).

As previously explained, the data products correspond to Hive databases and the tables

that compose them to Hive tables. Thus, an implementation of the Atlas extension was

defined, which comprises two steps: i) create a new type in the Atlas type system called

Data Product, which inherits the characteristics of hive databases with the addition of a

set of complementary attributes (illustrated in Figure 18); and ii) extend the hive table to

62

include the attributes explained in Figure 18 (e.g.: Data Quality Report). Each of the

extensions will be explained next.

Regarding the creation of the Data Product’s metadata, it follows the structure shown in

Figure 18 including the following attributes: Data Product Owner, Domain Owner

Information, Data Product Orientation, Dashboards Access Link, Descriptive

Information, and Consumption List. All these attributes are entered manually in Apache

Atlas UI. Ideally, these attributes could be obtained automatically, but given the resources

available, the implementation followed the manual collection of the metadata, and this

automation may be subject of future work. The collection of this metadata requires the

Apache Atlas REST API and the development of a JSON file to create or edit the existing

metadata. In this JSON file, the structure of the Data Product type is indicated, and its

attributes are divided into two groups: string type (when they are manual fields, such as

the Data Product Owner attribute) or hive_db type (when the Data Product is associated

with the hive database to which it corresponds). The following figure shows the structure

of the data product metadata created.

Figure 19. Data Product Metadata Structure

As explained earlier, the Data Product corresponds to type that has a hive database,

extended to accommodate more parameters. For this reason, this type inherits the

supertype DataSet. The attributes are defined using typeName, cardinality, isUnique,

isOptional, and isIndexable (this option is set to true so that the attributes can be

used/search by their value). The only case where this attribute definition changes is in the

database association that corresponds to the Data Product. In this case, the typeName is

63

set as hive_db, to obtain the characteristics of a hive data base already defined in Apache

Atlas. Figure 20 shows a part of the JSON file created for the Data Product definition.

Once the JSON file with the Data Product type creation code was defined in the Apache

Atlas type system, it was necessary to use the HTTP (Hypertext Transfer Protocol) POST

method for the REST service to create the metadata type. To do this, the following

command was executed inside the container that holds Apache Atlas:

Once successful, the Data Product type is created in the type system. However, it is

necessary that the tables stored within the Data Product database also contain additional

information, as shown in Figure 18. To do this, the above process was repeated, and a

JSON file was created, where the attributes Data Product Owner (dataProductOwner),

Data Quality (dataQuality) and Code Access (codeAccess) are added to the existing hive

table type. The added metadata definition for hive tables is presented in Figure 21 .

Figure 20. JSON File from Data Procut type creation

curl -u admin:hortonworks1 -ik -H "Content-Type: application/json" -X POST

http://localhost:21000/api/atlas/v2/types/typedefs -d

64

Figure 21. Hive Table Metadata Structure

In this case, and because it is an edition of an existing type, and not a creation of a new

metadata type (as in the case of Data Product), the attributes must be defined according

to the already existing set of properties. Thus, each new attribute added is defined by:

name, datatypeName, multiplicity, isComposite, isUnique, isIndexable,

reverseAttributeName, defaultValue, description, and options (some of these attributes

like description are set to null, because in terms of implementation and considering the

propose of this extension they are not required to have other definition). There is also a

hierarchical association that must be made explicit (hierarchicalMetaTypeName), since

there is already a hierarchy defined for the hive table type (which, for example, composes

the hive databases) and without this definition, the code would go into error and the

extension for the new attributes wouldn't be successful. Like the creation of the Data

Product type, all the attributes are manually collected and are of string type. Through

them, we can access the Data Quality report of each table, for example. Figure 22 shows

a part of the JSON file created for the extension of the hive table already defined in

Apache Atlas.

65

Figure 22. JSON File for the extension of Hive Table Type

To execute this JSON file, the PUT method was used in order to edit the existing type,

having executed the following command:

In short, once all the extensions are completed, it is possible to use Apache Atlas to create

and catalog the various nodes of the Data Mesh. A Data Product corresponds, in this proof

of concept, to a hive database. In turn, the various tables that make up the Data Product

are of the hive table type, and the domains can be found by clustering the various

databases (you can also find them by searching for their name in Apache Atlas). The next

figures show the extensions made in Apache Atlas. Figure 23. Search by Domain

Designation shows, it is possible to use Apache Atlas, so that by searching for a domain

name, all the data products that compose it are displayed.

Figure 23. Search by Domain Designation

curl -u admin:hortonworks1 -ik -H "Content-Type: application/json" -X PUT

http://localhost:21000/api/atlas/types -d

66

On the other hand, by using the side bar to search by data product, it is also possible to

get a list of the full set of existing data products in the Data Mesh, as shown in Figure 24.

Figure 24. List of existing Data Products in the Data Mesh

By selecting a given data product, and following the logic presented before in this section

on the Apache Atlas extension, we can retrieve information such as Data Product Owner,

Dashboards Access, and Consumption List, as shown in Figure 25.

Figure 25. Data Product Details

 Once inside the universe of a data product, it is possible to navigate and retrieve more

details about the tables that are present in each data product's database. In the case of this

67

proof of concept, only one database was considered. The Figure 26 and Figure 27 show

a possible navigation path from the database of the data product to its tables.

Figure 26. Data Product's Database View

Figure 27. Data Product's Tables View

Already within each table that Is held in each data product, it is possible to access a new

set of information that is considered pertinent and more specific to each table, such as the

data quality report, and the code repository that fuels them. Figure 28 shows the

extensions made to Apache Atlas to provide these features for each table. Furthermore, it

is possible to see the data lienage in each case, as shown in Figure 29.

68

Figure 28. Data Product's Tables Details

Figure 29. Data Lineage in each Table

The navigation flow shown in figure 29 represents an example of the flow that a Data

Analyst undergoes when discovering and investigating a new dataset. Thus, with the

previously presented Apache Atlas extensions, it is possible to have a decentralized

architecture with functional centralization when it comes to cataloging its various nodes

and data.

69

4.6. DATA QUALITY SCRIPT AND REPORT

Data quality analysis is a process that accompanies the flow of data in several phases:

either in the analysis of data quality at the time of ingestion (to understand its context and

characteristics), after the creation of data pipelines (to infer on the consistency of this data

with that already present in the data storage systems), and as reports and indicators that

allow monitoring the data. Data quality is also a conceptual class presented in the domain

model (section 3.1) and it is seen as crucial when dealing with decentralized data

architectures. Thus, an automated Data Quality script was developed and integrated into

this proof of concept. This script allows Data Mesh users to know the data they want to

use, in terms of quality assessment. For example, a Data Analyst who needs to gather data

and report based on it, can access, through Apache Atlas, the output of this script and

quickly infer on the nature of the data that will be used, knowing its schema, maximum

and minimum values, among other characteristics. A part of this script is shown in Figure

30.

Figure 30. Data Quality Script

For this analysis to become more intuitive, the script output is transformed into a

dashboard, using the Microsoft PowerBI tool, as illustrated in Figure 31. Through this

dashboard, the user can analyze the percentage of rows with information (not null), the

number of attributes that contain the hive table in question, the distribution of not nulls,

nulls and blank spaces in each attribute, the distribution of the lengths of the various

columns, and even know the maximum and minimum values for each attribute. This script

was developed in Scala and it was implemented in Jupyter Notebooks that encode the

various data pipelines of each Data Product. As mentioned earlier in this section, users

can access this dashboard through Apache Atlas, clicking on each Data Product and

navigating to the table environment.

70

Figure 31. Data Quality Dashboard

Data products (e.g. product cost) can also have their own visualizations (not a mandatory

condition for all data products) and, therefore, it is also relevant to allow various users of

the Data Mesh to have access to these analytical dashboards. Thus, in the details of each

Data Product in Apache Atlas, it is possible to find the analytical dashboards that

correspond to them, using the Microsoft PowerBI tool. The dashboards developed within

this proof-of-concept are for illustrative purposes only and hold no particular meaning

neither they intend to display a properly defined and planned data visualization. Figure

32 show an example of a dashboard developed in this work.

Figure 32. Product Cost's Analytical Dashboard

71

In this proof of concept, analytical dashboards and data quality dashboards were

developed for each data product, being the remaining dashboard in the appendix.

4.7. CODE REPOSITORY

As illustrated in the domain model (section 3.1), it is important to have a code repository

to store the code from the various notebooks (or other scripts and files) that are being

developed and that maintain the data pipelines. More than the storage component, a Data

Mesh user can find a data product in Apache Atlas, and by requesting access to it, they

can analyze the code that builds and maintains the data pipeline, allowing the users to

analyze the code and frameworks used for building the data product’s pipelines. Thus, a

repository on GitHub was used as a code storage component. It is important to note that

although in this proof-of-concept a centralized type of code repository has been used, it

is possible that a more decentralized perspective is adopted (in this way, each domain or

even data product, may have its own repositories). In the repository of the present proof-

of-concept, the folder structure is very similar to the structure presented previously in

Figure 16, being divided by the various domains and data products. However, there are

folders that contain information that targets all domains and, therefore, these folders are

also located in the root of the data repository (e.g.: Data Quality Script folder). The

explained structure can be seen in Figure 33 Figure 34.

Figure 33. Folder Organization in Code Repository

72

Figure 34. Detailed view of a folder content

However, although in the context of this proof of concept, there is centralization regarding

the code repository, this is not mandatory and therefore must be adjusted to the actual

context of each organization. Moreover, each data product team should choose, among

the options available on the self-serve data platform, the tool that best fits their needs.

Assuming that the eventual disparity of choices between the teams does not compromise

the availability of the data repositories, each team must submit in Apache Atlas the

address where this code can be accessed and analyzed, if necessary.

4.8. CONSUMPTION LIST

The consumption list, as explained before in section 3.1, is the component that allows the

various users to request access to a particular data product. This list is connected to an

authentication and authorization mechanism, which allows processing the validity of the

requests made by the Data Mesh users. It is thus possible to find in this list the set of users

that subscribe to each data product, and through the security mechanism associated with

this list, maintain the homeostasis of the Data Mesh, as far as accesses by users is

concerned. Ideally, this consumption list would be developed using a data security

monitoring and management technology on a cluster, such as Apache Ranger. However,

although the setup of this service was done on the cluster of this proof of concept, it was

not possible to implement this Data Mesh feature, given the time available to complete

this research process. Therefore, to demonstrate the applicability of the conceptual classes

presented in the domain model (section 3.1), a Google Form was created. This form serves

as an example of the consumption list component.

This access form requires the identification of the cluster, data product team, domain and

data products to which the access is requested, as well as the reason for this request, and

the same is later sent to the respective domain owners. The consumption list is available

in Apache Atlas (thanks to the extension made in this work) and it can be accessed directly

73

by each user. However, these rules (e.g.: sending the access requested to the domain

owner) and parameters (e.g.: filling in the data product team) were defined in the scope

of the proof-of-concept and should be extended to the necessary parameters in a real

context. It should be added that this consumption list can be managed by each Domain

Owner, as well as by a team assigned to the management and monitoring of the Data

Mesh data product accesses - each organization should therefore think and build its teams

in a way that meets its needs and does not compromise the proper functioning of the Data

Mesh. Figure 35 shows a possible way of filling in the consumption list form, in order to

request access to a specific data product.

Figure 35. Consumption List Form

74

4.9. DATA MESH COMMUNICATION CHANNEL

One of the conceptual classes proposed in the domain model (section 3.1), which goes

beyond the conceptual classes identified during the literature review process, is the Data

Mesh Communication Channel. This component was created to make the communication

more direct when it comes to topics related to the Data Mesh. In organizations, there is a

significant flow of data between teams that often translates into emails, scheduling

meetings, etc. Thus, the main intention of the communication channel is to reduce the

entropy associated with communications regarding Data Mesh issues, by creating a

specific channel for this purpose.

In the case of this proof of concept, the Slack tool was chosen. In this tool, as many

channels as necessary can be created and directed to the various domains and data

products. The connection to these channels is also available in the Mesh and Data Catalog

(Apache Atlas), so that the various users can directly access these channels and

communicate more directly and quickly to those responsible for each topic (e.g.: data

product team).

Figure 36. Data Mesh Communication Channel

75

5. CONCLUSION

The purpose of this chapter is to present the conclusions drawn during the elaboration of

this master’s thesis, as mentioned in section 1.5. This chapter is divided into three

sections, the conclusions concerning the literature review and state-of-art, the conclusions

of the proof-of-concept, and the future work respectively. The first section summarizes

the conclusions regarding the concepts explained, the analysis of the motivation for the

appearance and the various approaches presented in Data Mesh. The second section is

related to the conclusions retrieved after the realization of the present proof-of-concept

and, in the future work section, the work to which this master’s thesis is proposed is

presented.

5.1. CONCLUSIONS ABOUT THE LITERATURE REVIEW

The main objective of the literature review process is to enable a better understanding of

where the present master’s thesis topic comes from. For this, it was important not only to

understand the whole related work (although scarce) on Data Mesh, but also concepts

such as Big Data, Data Warehouse, Big Data Warehouse and Data Lake. It was quickly

possible to infer that there is a huge "unknown" as far as Data Mesh is concerned, from

its conceptual component to the practical implementation component. When analyzing

the three approaches exposed in section 2.4 , it is possible to see that although they share

some bases among themselves (e.g.: Data as a Product concept, guarantee and use of

DATSIS principles), there is no consistency among them, because as it is an emergent

architecture there are still no well-established guidelines on Data Mesh design and

implementation. This last fact justifies the relevance and potential benefit of this master’s

thesis.

Throughout chapter 2, the evolution of data architectures over time - from Data

Warehouses to Data Lakes - was explored. Naturally, and as explained in this chapter of

the document, each of these data architectures has been demonstrating its limitations (e.g.:

scalability), and it is within these limitations that the various evolutions have emerged

until today. As far as Data Lakes are concerned, being these currently the most common

type of data repository adopted by companies (Dehghani, 2020a), it was possible to infer

that despite all the advantages associated with them (e.g.: the possibility of a large data

76

injection without worrying about rigid data schemas), they have not come to satisfy

efficiently the needs of organizations. And so, there is a problem that must be addressed.

The sections 2.2, 2.3, 2.4 allowed to conclude that Data Mesh is not just about inserting

new technologies in existing architectures, or adding new capabilities, or reorganizing

only their components. Data Mesh brings with it the need to change the current paradigm,

encompassing this change several aspects ranging from the platform's infrastructure itself

to the reorganization of the teams that work with this platform. The fact that organizations

make data "agnostic of its nature", when ingested, raises the problem of lack of

ownership. Now, in an organization where data "belongs to everyone, but in reality, to no

one" there are, as stated in the related work, problems of data quality - which ends up

affecting the potential of their analytical value, and so on. So, Data Mesh tries to solve

this problem making data the true organization’s concern.

Therefore, it is possible to synthesize, that Data Mesh ensures compliance with DATSIS

principles, turns data into a product, organizes the various teams and data products

according to the organizational domains (from which they emerge) and decentralizes the

whole process (relieving current teams of the pressure of requests they feel), providing a

self-serve infrastructure, so that the various teams can create and process their data

products. These are made available in a Mesh's own node, known by all users, who can

access it according to the federated governance policy present in that node (e.g.: can only

read the node and not change its content). This way, it is possible to overcome the

bottleneck felt in the data platform teams and ensure the quality of the data, within the

organization, as demonstrate by Zalando work in Data Mesh (Max Schultze & Arif Wider,

2020). Regarding the evolutionary process of science, and according to Kuhn, there is a

change of the paradigm (Kuhn, 1970).

Analyzing Netflix and Zalando work, it is possible to conclude that the migration process

from a Data Lake architecture to a Data Mesh architecture is possible. Furthermore, it is

possible to realize that the architecture previously instituted (the Data Lake) is reused and

is part of the Mesh (working, for example, as a node of it). However, when analyzed the

practical work of both it is possible to infer that there is no similarity in the way Data

Mesh is implemented and designed - as much as they respect most of its core concepts

(domains driven approach, data as products, self-serve data infrastructure and federated

77

computational governance). The present master’s thesis topic is therefore justified in this

"gap".

There are still many open challenges that need to be studied and developed such as: “What

are the rigorous and concrete steps that can be followed to implement a Data Mesh?”;

"What are the conceptual and technological components for a Data Mesh architecture that

can be easily translated into a real solution?"; or “Will the convergence of data processing

technologies be beneficial in terms of data quality? Even if this convergence is beneficial

for the better management of the self-serve infrastructure?”. In short, there is the need to

stablish the design and implementation of the Data Mesh - this being the main objective

of this master’s thesis.

5.2. CONCLUSIONS ABOUT THE PROPOSED APPROACH

Throughout chapter 3, the produced artifacts are presented: the domain model, the

conceptual architecture, and the technological architecture. The domain model

synthesizes the conceptual classes that must be present when building and using the Data

Mesh. Intentionally, this model mixes more technical components (e.g.: batch

processing), as well as topics related to the structuring and organization of the data teams

themselves (e.g.: establishment of a Data Product Team) - since the Data Mesh is exactly

this paradigm shift at all levels, from those related to infrastructure and technologies, as

well as the organizational level of the companies, of the people that make up the teams.

The domain model serves as the ignition for the whole of chapter three, and for the

artifacts that follow: the conceptual architecture and the technological architecture. The

conceptual architecture intends, at a high level, to define and make explicit the various

components (even at the infrastructure level) that are necessary to support the Data Mesh,

naturally ending up in the technological architecture. This second architecture arises from

the need to provide companies with tangible solutions of what may be the tools to be

adopted to build and maintain Data Mesh - and may even, by reviewing these presented

technologies, infer that they only need to reorganize their mindset, teams, and way of

working, to build their Data Mesh from within and reuse what they already have. These

technologies are, however, only examples and suggestions, leaving it up to each company

to adopt those that best meet its needs.

78

Once these models (artifacts of the master's thesis) were consolidated, the proof-of-

concept was carried out to validate the postulated assumptions. It is concluded, with the

realization of the proof of concept, that the model of established domains is possible to

be implemented, corresponding to a functional decentralized architecture. Despite not

having been implemented in its entirety (which would not be feasible within the scope of

a master’s thesis), its key elements are implemented and there is, above all, a catalog of

data and nodes, which encompasses various aspects - the point that centralizes the

decentralization of the architecture. Phase to the known commonly instituted data systems

(where there is no such concern in treating data as a product and fulfilling a series of

metrics to enhance usability), the implemented architecture allows the various users to

discover in a complete way (and with complete means the team, people, quality, lineage,

etc. behind it) the data they want to handle. Moreover, all data products share the same

"space" (since the existing resources allow only one cluster to be used), but are available

separately, and their access can be granted depending on the authorization given, via the

consumption list. The consumption list also allows the users that consume each data

product, to be known. Let's consider that the available services are the services made

available on the Hadoop cluster, combined with those that go beyond this environment

but are necessary for the Data Mesh architecture (such as GitHub). Thus, each team can

develop its data products using the technologies that are most favorable to it, and consume

the data from each product via the Hive table. It is thus considered that this master's thesis

fulfills its main goal and the defined objectives.

5.3. SCIENTIFIC PUBLICATIONS

The present master's thesis made it possible to publish two scientific papers on the topic

of Data Mesh, both of which were accepted and presented at the respective conferences.

The first paper: "Data-Driven Information Systems: The Data Mesh Paradigm Shift", was

the first Data Mesh scientific paper worldwide (at the time of publication), and it was

published at 29th International Conference of Information System Development 2021, as

a vision paper, in collaboration with Professor Carlos Costa and Professor Maribel

Yasmina Santos. This paper presents the domain model and conceptual architecture.

The second scientific publication, entitled "Data Mesh: Concepts and Principles of a

Paradigm Shift in Data Architectures", is the first scientific article that portrays the state-

of-the-art of the Data Mesh topic, and was published in International Confonference

79

Enterprise Information Systems 2021 (Centeris 2021), as a full paper, also by the same

authors.

Finally, an empirical paper entitled "Advancing Data Architectures with Data Mesh

Implementations" has been submitted for evaluation at the 34th International Conference

on Advanced Information Systems Engineering (CAiSE 2022). This paper was written in

partnership with the same authors of the previously mentioned papers and aims to present

the proof-of-concept that aims to validate the models proposed in this master thesis.

5.4. FUTURE WORK

After analyzing the existing literature about the concept of Data Mesh, it can be quickly

concluded that there is still a long path to explore to establish a clear basis for the

constructs, models, methods, and instantiations of the Data Mesh. Although the concept

is already being embraced by some organizations, when analyzed the work developed by

Netflix or Zalando (Justin Cunningham, 2020; Max Schultze & Arif Wider, 2020), for

example, there are significantly different approaches to accomplish a Data Mesh

architecture (Justin Cunningham, 2020; Max Schultze & Arif Wider, 2020), but at the

same time, there are no general models and methods that can be followed, without the

same being too conceptual to be translated into real-world instantiations. On the other

hand, there is a relevant core aspect related to the success of the Data Mesh

implementation: the organizational reorganization - from the rearrangement and

management of the teams to the company's vision towards data as a product. In this sense,

not only is necessary to take into consideration the conceptual and technological aspects

of the design and implementation of a Data Mesh, but also there is the need to consider

the relationship between this concept and the organizational needs, structure, and

processes. Finally, it is also necessary to find the contexts and scenarios in which the Data

Mesh may fail or show significant disadvantages, highlighting opportunities for refining

and evolving the concept.

Thus, this master’s thesis, tried to tackle some of these challenges related to the Data

Mesh concept, which have been discussed throughout this section. This work focused on,

not only on proposing and demonstrating models and methods at the conceptual level, but

also at the technological level (major gap identified in the literature), while discussing

organizational aspects whenever applicable and relevant.

80

However, there are some key points that can still be pointed out as future work on this

topic: the first and most related to the presented proof-of-concept presented, will be the

full functional development of the consumption list, using technologies suitable for this

purpose, such as the Apache Ranger. Next there are the challenges of mapping the data

within the various data products so that, node to node, there is not too much replication

of data and effort (the development of a framework that enables this mapping and helps

contextualize the topic). Finally, there is also the challenge of “change”: whether in terms

of the impact that this paradigm shift has on the people in the organizations (in terms of

reorganizing teams, for example), or in how the change of data within each data product

will be handled in the Data Mesh as a whole. Data Mesh is progressing every day, as new

contributions come in from all over the world, which does not mean that there is not still

a long way to go when it comes to consolidating the subject.

81

REFERENCES

Adam Barker, & Jonathan Stuart Ward. (2013). Undefined By Data: A Survey of Big

Data Definitions.

Andrade, C., Costa, C., Correia, J., & Santos, M. Y. (2019). Intelligent event broker: A

complex event processing system in big data contexts. 25th Americas Conference

on Information Systems, AMCIS 2019, 1–10.

Atlas, A. (2018). Atlas Technical User Guide. Retrieved 20 October 2021, from

https://atlas.apache.org/#/

AWS. (2021). AWS. Retrieved 26 May 2021, from

https://aws.amazon.com/pt/free/?trk=ps_a134p000003yhdnAAA&trkCampaign=ac

q_paid_search_brand&sc_channel=ps&sc_campaign=acquisition_IBERIA&sc_pu

blisher=google&sc_category=core&sc_country=IBERIA&sc_geo=EMEA&sc_out

come=Acquisition&sc_detail=aws services&sc_co

Barr, M. (2020). What is a Data Mesh — and How Not to Mesh it Up. Retrieved 29

October 2020, from https://towardsdatascience.com/what-is-a-data-mesh-and-how-

not-to-mesh-it-up-210710bb41e0

Beheshti, A., Benatallah, B., Nouri, R., Chhieng, V. M., Xiong, H., & Zhao, X. (2017).

CoreDB, (i), 2451–2454. Retrieved from https://doi.org/10.1145/3132847.3133171

Chen, H., H.L.Chiang, R., & C. Storey, V. (2018). Business Intelligence and Analytics:

From Big Data To Big Impact. MIS Quarterly, 36(4), 1165–1188. Retrieved from

http://www.jstor.org/stable/41703503

Costa, C., Andrade, C., & Santos, M. Y. (2019). Big Data Warehouses for Smart

Industries. Encyclopedia of Big Data Technologies, 341–351. Retrieved from

https://doi.org/10.1007/978-3-319-77525-8_204

Costa, C., & Santos, M. Y. (2017). Big Data: State-of-the-art concepts, techniques,

technologies, modeling approaches and research challenges. IAENG International

Journal of Computer Science, 44(3), 285–301.

Dehghani, Z. (2019). How to Move Beyond a Monolithic Data Lake to a Distributed

Data Mesh, 1–20. Retrieved from https://martinfowler.com/articles/data-monolith-

to-mesh.html

Dehghani, Z. (2020a). Data Mesh Paradigm Shift in Data Platform Architecture. San

Francisco, USA: InfoQ. Retrieved from

https://www.youtube.com/watch?v=52MCFe4v0UU

Dehghani, Z. (2020b). Data Mesh Principles and Logical Architecture. Retrieved 7

December 2020, from https://martinfowler.com/articles/data-mesh-principles.html

Diebold, F. X. (2013). A Personal Perspective on the Origin(s) and Development of

‘Big Data’: The Phenomenon, the Term, and the Discipline, Second Version. SSRN

Electronic Journal. Retrieved from https://doi.org/10.2139/ssrn.2202843

82

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and

analytics. International Journal of Information Management, 35(2), 137–144.

Retrieved from https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Golfarelli, M., & Rizzi, S. (2009). Data Warehouse Design: Modern Principles and

Methodologies. McGraw-Hill, Inc.

Google. (2021). Google Cloud. Retrieved 26 May 2021, from

https://cloud.google.com/products/?utm_source=google&utm_medium=cpc&utm_

campaign=emea-pt-all-pt-dr-bkws-all-all-trial-e-gcp-1010042&utm_content=text-

ad-none-any-DEV_c-CRE_282851264863-ADGP_Hybrid %7C BKWS - EXA

%7C Txt ~ GCP ~ General%23v3-KWID_4370005328

Hai, R., Geisler, S., & Quix, C. (2016). Constance: An intelligent data lake system.

Proceedings of the ACM SIGMOD International Conference on Management of

Data, 26-June-20, 2097–2100. Retrieved from

https://doi.org/10.1145/2882903.2899389

Inmon, W. H. (2005). Building the Data Warehouse. (John wiley & sons,Ed.) (Third

Edit).

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning.

Electronic Markets. Retrieved from https://doi.org/10.1007/s12525-021-00475-2

Justin Cunningham. (2020). Netflix Data Mesh: Composable Data Processing - Justin

Cunningham. Retrieved 25 September 2020, from

https://www.youtube.com/watch?v=TO_IiN06jJ4

Khine, P. P., & Wang, Z. S. (2018). Data lake: a new ideology in big data era. ITM Web

of Conferences, 17, 03025. Retrieved from

https://doi.org/10.1051/itmconf/20181703025

Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit, The Definitive Guide to

Dimensional Modeling. Wiley.

Krishnan, K. (2013). Data Warehousing in the Age of Big Data. Data Warehousing in

the Age of Big Data. Elsevier. Retrieved from https://doi.org/10.1016/C2012-0-

02737-8

Kuhn, T. S. (1970). The Structure of Scientific Revolutions Second Edition, Enlarged.

International Encyclopedia of Unified Science.

Lance Johnson. (2020). What is a Data Mesh? Retrieved 30 September 2020, from

https://trustgrid.io/what-is-a-data-mesh/

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development. Analysis.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H.

(2011). Big data: The next frontier for innovation, competition, and productivity.

McKinsey Global Institute.

83

Max Schultze & Arif Wider. (2020). Data Mesh in Practice: How Europe’s Leading

Online Platform for Fashion Goes Beyond the Data Lake. Retrieved 15 December

2020, from https://www.youtube.com/watch?v=eiUhV56uVUc

Microsoft. (2021). Azure. Retrieved 26 May 2021, from https://azure.microsoft.com/pt-

pt/services/

Miloslavskaya, N., & Tolstoy, A. (2016). Big Data, Fast Data and Data Lake Concepts.

Procedia Computer Science, 88, 300–305. Retrieved from

https://doi.org/10.1016/j.procs.2016.07.439

Nenad Jukic. (2006). Modeling strategies and alternatives for Data Warehousing

projects. Retrieved from https://doi.org/10.1145/1121949.1121952

Nicole Laskowski. (2016). Data lake governance: A big data do or die. Retrieved 15

December 2020, from https://searchcio.techtarget.com/feature/Data-lake-

governance-A-big-data-do-or-die

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design

science research methodology for information systems research. Journal of

Management Information Systems, 24(3), 45–77. Retrieved from

https://doi.org/10.2753/MIS0742-1222240302

Russom, P. (2016). Data Warehouse Modernization. TDWI Best Practices Report.

Sam Madden. (2012). From databases to big data. IEEE Internet Computing, 16(3), 4–6.

Retrieved from https://doi.org/10.1109/MIC.2012.50

Santos, M. Y., & Costa, C. (2020). Big Data concepts, warehousing, and analytics.

River Publishing.

Terri McClure. (2014). Yesterday’s unified storage is today’s enterprise data lake.

Retrieved 15 December 2020, from

https://searchstorage.techtarget.com/opinion/Yesterdays-unified-storage-is-todays-

enterprise-data-lake

ThoughtWorks. (2020). Data Mesh. Retrieved 15 December 2020, from

https://www.thoughtworks.com/radar/techniques/data-mesh

84

APPENDIX – DATA PRODUCT’S DASHBOARDS

This appendix contains all the dashboards developed in this work, both for data quality

and analytics of each data product. To organize the presentation of this information, the

data quality dashboards will be presented first, followed by the analytical dashboards for

each data product.

Figure 37. Data Quality Online Sales

Figure 38. Data Quality Product Cost

12

85

Figure 39. Analytical Dashboard Profits (1)

Figure 40. Analytical Dashboard Profits (2)

Figure 41. Analytical Dashboard Online Sales

	1 Capa_Esc_Engenharia
	mys_cfc_machado_data_mesh

