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RESUMO 

Atualmente existe uma tendência, cada vez mais acentuada, para a utilização de software 

por parte da esmagadora maioria da população (aplicações de caráter social, software de 

gestão, plataformas e-commerce, entre outros), identificando-se a criação e 

armazenamento de dados que, devido às suas características (volume, variedade e 

velocidade), fazem emergir o conceito de Big Data. Nesta área, e para suportar o 

armazenamento dos dados, Big Data Warehouses e Data Lakes são conceitos cimentados 

e implementados por várias organizações, de forma a servirem a sua necessidade de 

tomada de decisão. No entanto, apesar de serem conceitos estabelecidos e aceites pela 

maioria da comunidade científica e por diversas organizações a nível mundial, tal não 

elimina a necessidade de melhoria e inovação. É, este contexto, que origina o surgimento 

do conceito de Data Mesh, propondo arquiteturas de dados decentralizadas. Após a 

análise das limitações demonstrados pelas arquiteturas monolíticas (e.g., dificuldade em 

mudar as tecnologias de armazenamento usadas para implementar o sistema de dados), é 

possível concluir sobre a necessidade de uma mudança de paradigma que tornará as 

organizações verdadeiramente orientadas aos dados. A Data Mesh consiste, na 

implementação de uma arquitetura onde os dados se encontram intencionalmente 

distribuídos por vários nós da Data Mesh e onde não existe caos, uma vez que existem 

estratégias centralizadas de governança de dados e a garantia de que os princípios 

fundamentais dos domínios são partilhados por toda a arquitetura. A presente dissertação 

propõe uma abordagem para a implementação de uma Data Mesh, procurando definir o 

modelo de domínios do conceito. Após esta definição é proposta de uma arquitetura 

concetual e tecnológica, que visam a auxiliar a materialização dos conceitos apresentados 

no modelo de domínios e assim auxiliar na conceção e implementação de uma Data Mesh. 

Posteriormente é realizada uma prova de conceito, de forma a validar os supracitados 

modelos, contribuindo com conhecimento técnico e científico relacionado com este 

conceito emergente.  

PALAVRAS CHAVE 

Big Data, Data Mesh, Arquiteturas de Dados 
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ABSTRACT 

Currently there is an increasingly accentuated trend towards the use of software by most 

of the population (social applications, management software, e-commerce platforms, 

among others), identifying the creation and storage of data that, due to its characteristics 

(volume, variety, and speed), make the concept of Big Data emerge. In this area, and to 

support data storage, Big Data Warehouses and Data Lakes are solid concept and 

implemented by various organizations to serve their decision-making needs. However, 

despite being established and accepted concepts by most of the scientific community and 

by several organizations worldwide, this does not eliminate the need for improvement 

and innovation in the field. It is this context that gives rise to the emergence of the Data 

Mesh concept, proposing decentralized data architectures. After analyzing the limitations 

demonstrated by monolithic architectures (e.g., difficulty in changing the storage 

technologies used to implement the data system), it is possible to conclude on the need 

for a paradigm shift that will make organizations truly data driven. Data Mesh consists, 

in the implementation of an architecture where data is intentionally distributed over 

several nodes of the Data Mesh, and where there is no chaos, since there are centralized 

data governance strategies and the assurance that the fundamental principles of the 

domains are shared throughout the architecture. This master thesis proposes an approach 

for the implementation of a Data Mesh, seeking to define the domain model of the 

concept. After this definition, a conceptual and technological architecture is proposed, 

which aim to help materialize the concepts presented in the domain model and thus assist 

in the design and implementation of a Data Mesh. Afterwards a proof-of-concept is 

carried out, to validate the aforementioned models, contributing with technical and 

scientific knowledge related to this emerging concept.  

KEY WORDS 

Big Data, Data Mesh, Data Architectures 
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1. INTRODUCTION 

The purpose of this chapter is to present the scope and motivation for the development of 

this master’s thesis. It also presents the main research objectives, the research 

methodology and the literature review process used in this work, and the structure of the 

document. 

1.1. SCOPE AND MOTIVATION 

Big Data is an emerging concept and it is related with the ability of providing access to 

vast amounts of data that may be converted into significant value for organizations 

(Krishnan, 2013). Therefore, Big Data is inevitable for modern organizations (Santos & 

Costa, 2020), in order for them to achieve competitive advantages and to improve the 

interaction and service level provided to the customers (Manyika et al., 2011). Nowadays, 

there are several companies that have Big Data systems to support their daily business 

and decision-making processes (Barr, 2020). However, not all organizations treat their 

data architecture with the proper scalability and democratization that it needs (Barr, 

2020), which leads to problems emerging from the monolithic data architectures currently 

implemented (Dehghani, 2019).  

The Data Mesh concept emerges as a necessary paradigm shift that will enable companies 

to become truly data-oriented, implementing an architecture that brings the opposite of 

the current models for efficient data product cooperation (Dehghani, 2019). This 

paradigm shift manifests itself at different levels. From a more structural perspective, data 

is organized into domains and data teams manage themselves and carry out their own 

work in an agile and product-oriented way. However, this paradigm shift does not occur 

only on a structural level, but also on an organizational level - as the way data teams 

organize and work will become decentralized and mainly focused on a domain (Dehghani, 

2020a). The Data Mesh allows for the provision of complex management, access, and 

support components through the connectivity layer it implements - data from different 

locations will now be connected in the Mesh (Lance Johnson, 2020).  

Consequently, an architecture will be instituted where the data is intentionally distributed 

through several nodes of the Mesh, also known as domains (e.g., sales, purchases, 

customer management). However, this should not imply chaos, because the Data Mesh 

concept ensures six core and shared principles (Discoverable, Addressable, Trustworthy, 
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Self-describing, Interoperable, Secure), and centralized governance strategies guarantee 

its homeostatic functioning accompanied by a high interoperability character - an 

infrastructure of shared self-service data (Dehghani, 2019). 

Recently, Zhamak Dehghani began taking the first steps in consolidating what might be 

the core principles and logical architecture of a Data Mesh (Dehghani, 2020b). However, 

these specifications are significantly high level, and there is still a lack of empiric, 

consolidated and validated scientific knowledge on the subject. Although the concept is 

being disseminated by the author (Zhamak Dehghani, 2020a) and by some companies 

that already have implemented their own Data Mesh (Justin Cunningham, 2020), due to 

its emerging characteristic, this concept still lacks constructs, models (e.g., architectures), 

methods, and instantiations proposed through a research process, being this the main 

motivation of this master’s thesis. 

1.2. RESEARCH GOAL AND OBJECTIVES 

This work aims to propose an approach that guarantees that organizations can focus on 

building systems that promote data democratization, leaving the Data Lake (or other data 

systems) and pipelining tools as a secondary concern (Dehghani, 2019). To make this 

possible, the research goal for this master’s thesis is to propose an approach to design and 

implement a Data Mesh, including a domain model that represents the Data Mesh’s 

constructs and their relationships, and an architecture detailed at the conceptual and 

technological levels, accompanied by a method for building a Data Mesh, which 

encompasses a set of best practices and rigorous steps that practitioners may follow. 

Taking this into consideration, the following research objectives are defined:  

1. Propose a domain model that fully describes a Data Mesh, including all its 

constructs and how they relate to each other through the use of a formal modelling 

language (e.g., Unified Modeling Language - UML). 

2. Propose a conceptual and technological architecture for a Data Mesh that is 

scalable (e.g., can accommodate an infinite set of domains and datasets), user 

friendly (e.g., can be easily implemented in any organization or context), and 

efficient (e.g., can provide fast implementation of Mesh nodes and fast data 

consumption). Moreover, the architecture should be fully compliant with the six 

core principles of a Data Mesh (Dehghani, 2019). 
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3. Propose a method that encompasses a set of best practices and rigorous steps that 

are fully compatible with the Data Mesh architecture discussed above, aiming to 

help practitioners implement, as quickly as possible, their Data Mesh. 

4. Implement a proof-of-concept to validate the proposed domain model and both 

conceptual and technological architectures. 

1.3. RESEARCH METHODOLOGY 

To sustain the rigor of the results produced in this research process, the Design Science 

Research Methodology for Information Systems is followed. This methodology includes 

six activities that aim to solve problems, in an efficient and effective way, in the field of 

Information Systems research (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007). 

Although it is expected that the process occurs sequentially, from activity one to activity 

six, the methodology here depicted does not make this mandatory. Therefore, it is possible 

that to initiate the process in an activity other than activity one, and we can also return to 

the previous activities whenever necessary (Peffers et al., 2007). Figure 1 shows the 

methodology used in the present master thesis.  

 

• Activity 1: identify problem and motivate. Deals with the definition of the 

research problem as well as presents a justification for the value of the 

Figure 1. Design Science Research Methodology for Information Systems. Adapted from (Peffers et al., 2007) 
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solution. The main purpose of this activity is the construction of an artifact 

that holds the definition of the problem. In this master’s thesis, this activity 

corresponds to the elaboration of the literature review related to the Data 

Mesh concept.  

• Activity 2: define objectives of a solution. Once the problem has been 

defined, it is relevant to start defining the objectives of the solution. These 

objectives should be defined based on what is known to be possible to 

achieve and the same should be aligned with the specification of the 

problem. In this master’s thesis, this activity corresponds to the 

identification or refinement of the research goal and objectives, making 

them SMART (Specific, Measurable, Achievable, Relevant and Time-

Bound). 

• Activity 3: design and development. In this activity, the artefacts to be 

proposed are conceived and created, which may include any models (e.g., 

architecture), methods or instantiations, for example. In this master’s 

thesis, this activity will occur in two stages. The first stage concerns the 

definition of the artefacts (models and methods) before their 

demonstration and evaluation, and a second stage in which the artefacts 

will be refined considering the conclusions of those two activities. 

• Activity 4: demonstration. In this activity, the demonstration of the 

produced artefacts is performed, making it possible to verify their 

usefulness, efficacy and efficiency, for example. To accomplish this, it is 

necessary to create instances of the problem or to resort to simulations or 

case studies. As a demonstration case for the resulting artefacts of this 

master’s thesis, will be applied to implement a prototype of a Data Mesh 

in a specific organizational or societal context (e.g.: online seller 

company). 

• Activity 5: evaluation. this this activity, the proposed artefacts are 

evaluated. In this sense, it is necessary to understand how the obtained 

solution satisfies the research goal and objectives established before. In 

this master’s thesis, the prototype implemented in a demonstration case 
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will be evaluated and discussed in terms of usefulness, scalability, 

efficiency and user friendliness.  

• Activity 6: communication. Lastly, the communication of the problem and 

the resulting artefacts, as well as their relevance and usefulness. This 

communication is carried out for the scientific and technical community 

(e.g., conferences or journal papers). The elaboration of the manuscript 

associated with this master’s thesis is included in this communication 

activity, as well as the final presentation focusing on the results of this 

research process. 

1.4. LITERATURE REVIEW PROCESS 

For the literature review process to be as efficient as possible, and to obtain a consistent 

basis as a starting point for the development of the present master’s thesis, it is necessary 

to establish a method for it.  

In this sense, at the beginning of the literature review process some guidelines were 

defined to be followed to filter relevant content that can sustain the state of the art of the 

concept. It should be noted that the literature review is based essentially on posts on the 

subject published on valid websites, and on informational videos on the subject published 

by companies, web talks, conferences, and other scientific or technical contents (e.g.: Big 

Data concept). This fact is justified by the lack of scientific contributions on the topic, 

due to its emergence and temporal youth (about one year). 

Since this is an emerging theme, and therefore temporally very young, there are scientific 

articles, papers, or other similar documents published to date. Therefore, one of the first 

points of the methodology followed is related only to the inclusion of reliable sources, 

which do not lack a subjective basis, influenced by some company/organization. At the 

time level, it was established that priority would be given to documents published from 

2015 onwards - the exception to this rule is associated to documents focused on other 

existing concepts (Data Warehouse, Big Data Warehouse, Data Lake, among others) - so 

that current content is presented in the area.  

Some keywords used in the search engine of some reference databases such as "Scopus", 

"Research Gate", "Mendeley", "Google Scholar", among others, were therefore defined. 
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Some of these keywords are: "Data Lake", "Data Warehouse", "Big Data Warehouse", 

"Big Data", “Data Mesh”, “Microservices”, “Domain Driven Approach”, among others. 

YouTube videos and blogs were also used to collect information about the Data Mesh 

concept. When facing any scientific contribution or publication on the subject, these were 

selected through their abstract or a quick reading/viewing (procedure more adopted under 

Data Mesh) to infer the contribution/relevance of it. Finally, the most relevant contents 

were selected within each contribution, carefully analyzed to finally formulate the 

literature review. Online alerts have also been created about new publications on Data 

Mesh, so that they can be included. 

1.5. DOCUMENT STRUCTURE 

This document is divided into five chapters. The first chapter concerns the introductory 

part of the document. It starts by presenting the scope and motivation that originated the 

development of this master’s thesis. Then the research goal and objectives are presented, 

as well as the followed research methodology (in this case, the Design Science Research 

Methodology for Information Systems) and the literature review process. 

 In the second chapter, the literature review is presented, focusing on the concepts and 

works related with this master’s thesis’s topic. Initially, and to provide the necessary 

context on the subject, the main concepts (e.g., Big Data, Data Lake and Data Warehouse) 

are presented. In the second section of this chapter, the motivation for the appearance of 

the Data Mesh is presented, and in the third section, the main characteristics of this 

emerging concept are listed. The fourth section of this chapter aims to describe the 

existing approaches for the design and implementation of a Data Mesh.  

The third chapter is for the presentation of the domain model and architectures developed 

within this master's thesis. First, the domain model is presented, which synthesizes the 

main conceptual classes about the Data Mesh concept. Subsequently, and based on the 

materialization of the domain model, a conceptual and technological architecture is 

formulated. 

Chapter four is for the presentation of the proof-of-concept developed around the models 

and architectures presented in chapter three. This chapter presents the scope of the proof 

of concept, the organization of the Data Mesh nodes, the organization of folders in HDFS, 

the organization of tables and databases, and data quality script and report. Further, the 
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code storage, consumption list, and finally, the communication channel of the Data Mesh 

is explained. The purpose of this chapter is to detail the implementation of the Data Mesh 

that was carried out as part of the proof-of-concept. 

Finally in chapter five the conclusions of this master's thesis are presented. First the 

conclusions concerning the literature review process, then the conclusions regarding the 

proposed approach. Finally, the scientific publications made during this master thesis are 

presented and detailed and future work is indicated is the end section of this chapter. This 

master thesis also includes an appendix where some complementary material is presented. 
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2. BACKGROUND KNOWLEDGE AND RELATED WORK 

As mentioned in section 1.5, the present chapter is divided into four sections that have as 

their purpose the exploration of the related work related to the five main concepts of the 

present thesis: Big Data, Data Warehouse, Big Data Warehouse, Data Lake, and Data 

Mesh (the latter encompassing the issue of appearance motivation, features, and approach 

to design). Although the main theme of the master’s thesis is the Data Mesh, it is 

important to understand the evolution from the appearance of Big Data to the need for a 

paradigm that we currently face (the Data Mesh). The chapter thus begins with an 

explanation of the main concepts inherent to the topic in question.  

2.1. MAIN CONCEPTS 

As already mentioned, this work’s core concept is the Data Mesh. However, several other 

concepts existing in the current literature need to be taking into consideration, as some of 

them describe concepts and paradigms that originated the need for the concept of Data 

Mesh. Consequently, this section aims to present and describe those concepts so that they 

are properly interpreted whenever they are mentioned in this document. 

2.1.1. Big Data 

The production and consumption of data is a constant in today’s world (Santos & Costa, 

2020). Clearly, the way data is produced and consumed nowadays is nowhere near the 

way this phenomenon occurred a few decades ago. Some state that a decade ago what 

was considered "a great dataset", would nowadays be probably considered absurd 

(Diebold, 2013). 

Explaining the concept of Big Data implies considering this phenomenon of constant data 

production and consumption in which society presents itself (whether at a social, 

organizational, industrial level) (Santos & Costa, 2020) but also return to the origin of 

this concept. It is not clear where the term originates from, with references pointing to the 

fact that the term was used for the first time in the paper "Big Data' Dynamic Factor 

Models for Macroeconomic Measurement and Forecasting" (presented in 2000 at the 

"Eighth World Congress of the Econometric Society in Seattle"), according to (Diebold, 

2013). However, it is known that its origin comes from the conjuncture of distinct 
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contexts and areas such as industry, academia, computer science and statistics and that it 

will have appeared in the context of an informal conversation in the 90's (Diebold, 2013).  

The concept has evolved over time, particularly from 2012 onwards, and in recent years, 

there has been a growing interest in the area (Santos & Costa, 2020). The rapid evolution 

of the concept has led to some confusion on how to explain it, thus diverging between 

"what Big Data is" and "what Big Data does" (Gandomi & Haider, 2015). Some authors 

try to define Big Data as the access to a vast set of data that allows organizations to create 

value from it (Krishnan, 2013). Other authors recognize that there may still be some 

ambiguity in determining at what point we start talking about "Big Data" instead of just 

data (Adam Barker & Jonathan Stuart Ward, 2013), and they choose to define Big Data 

as everything that is too big, too fast, and too difficult to be processed by the tools 

currently in use within a specific context (Costa & Santos, 2017), citing (Sam Madden, 

2012). More authors follow a similar line of thought, defining Big Data as data so large 

(in the order of terabytes to exabytes) and complex (from Internet of Things (IOT) to 

social networks) that it needs innovative technologies for data storage, transformation and 

analysis (Chen, H.L.Chiang, & C. Storey, 2018). 

With the observation of the different definitions, we can conclude that to define Big Data, 

it is necessary to go into detail about its characteristics. Doug Laney formulated the 3Vs 

model (Volume, Variety and Velocity) in 2001, and this model served as the basis for 

defining Big Data for a decade (Santos & Costa, 2020), because it is believed that these 

would be the three main challenges when dealing with Big Data, also forming its main 

characteristics. 

According to some works, the volume in Big Data cannot be based on the size of the data 

(e.g., terabytes or exabytes). Just as 200GB of data were considered "big" a decade ago 

(Diebold, 2013), it is possible that the same will happen with the measures that today are 

considered "big", due to the continuous increase in data production and storage capacity 

(Gandomi & Haider, 2015). Therefore, the volume in Big Data is related to the amount 

of data that is continuously generated (Krishnan, 2013), so it is not possible to set a 

threshold for Big Data (Gandomi & Haider, 2015), since different types of data require 

different technologies capable of processing them (Costa & Santos, 2017). One of the 

main causes related to this incremental amount of data being generated, is the fact that 
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we are continuously storing information about our interactions with the services that we 

use daily (Santos & Costa, 2020). 

The variety in Big Data concerns the structural heterogeneity present in the data 

(Gandomi & Haider, 2015). The data can thus be classified into three distinct categories: 

structured, semi-structured and unstructured (Santos & Costa, 2020). Examples of 

structured data is transactional data and relational databases. Unstructured data follow a 

distinct logic, being examples of the same audio, video, or social network posts. The semi-

structured data is in the middle of the other two categories, being web server logs and 

JavaScript Object Notation (JSON) files examples of semi-structured data (Santos & 

Costa, 2020). Big Data systems allow the processing of this data with different structures, 

which was already partly the case in the past by various organizations, now becoming a 

more efficient process when it comes to leveraging data in business processes (Gandomi 

& Haider, 2015). 

The third "V" in Big Data concerns the inherent velocity of data (Gandomi & Haider, 

2015). This data velocity can be seen from two different perspectives: either the velocity 

in which the data is produced, or the velocity needed to meet the associated decision-

making needs (Santos & Costa, 2020). The increasing usage of data-producing 

components (e.g., sensors, applications, and cell phones) leads to more and more data 

being produced. This data production leads to the need for subsequent processing and 

storage, in order to meet the needs imposed by the stakeholders (Gandomi & Haider, 

2015). This phenomenon leads to the installation of a continuous stream of data, which 

with the proper transformation, guarantees an added value to the organizations' decision-

making process (Andrade, Costa, Correia, & Santos, 2019). 

With the continuous work in Big Data, it was possible to see that the 3V's model was 

incomplete, and that two more could be added to it: veracity and value (Santos & Costa, 

2020).  

The veracity, the fourth “V” of Big Data, is related to the inevitable imprecision present 

in the data. Thus, there may be data analyses that present different degrees of accuracy, 

reliability, or quality (Santos & Costa, 2020). On the other hand, there is another 

dimension of imprecision related to data "subject to strict interpretation" (e.g., people's 

feelings). However, these data can be quite useful and can bring value to the analyses 
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when handled and treated with the appropriate techniques and technologies (Gandomi & 

Haider, 2015). The value, the last "V" of Big Data, is related to the analysis and processing 

of Big Data (Santos & Costa, 2020). Normally this value tends to be lower in raw data, 

but in the end, after an adequate data processing and analysis, it becomes much higher 

(Gandomi & Haider, 2015).  

Although these five main characteristics have been defined, other authors identify even 

more characteristics such as variability, complexity, ambiguity, viscosity and virality, for 

example (Santos & Costa, 2020), citing (Gandomi & Haider, 2015). Figure 2 summarizes 

these characteristics. 

 

 

The complexity in Big Data arises from the heterogenous ambit that is often associated 

to it, since there are different data producing sources that require greater effort in their 

integration and treatment of your data (Gandomi & Haider, 2015). On the other hand, this 

constant flow of data, nourished with high volume and speed, can cause friction, which 

explains the viscosity being pointed out as a characteristic. Variability is already based 

on the different velocities that are verified in the various data flows (so there may be 

higher rates than others in certain sources). The ambiguity, in Big Data, appears as the 

gap associated with the lack of metadata to accompany the data - mainly coming from the 

junction of volume and variety in this area. Finally, virality is related to the speed of data 

propagation (Krishnan, 2013). Figure 2 represents all the characteristics of Big Data 

identified in the reviewed literature, as well as the relationship found between them. 

Figure 2. Main Characteristics Identified in the literature. Adapted from (Santos & Costa, 2019) 
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Big Data due to its characteristics remains an abstract concept for which there is no 

consolidated definition accepted by all. However, its characteristics are already well 

defined among the scientific community. With the explanation of the Big Data concept, 

it is possible to infer that one of the challenges felt in the area is the issue related to the 

paradigms and technologies for storing Big Data. To understand the path taken by the 

scientific and technical community until the appearance of the Data Mesh, it is necessary 

to explore what precedent paradigms and technologies exist. In this sense, the concepts 

of Data Warehouse, Big Data Warehouse, Data Lake and, finally, Data Mesh will be 

presented in the sections below. 

2.1.2. Data Warehouse 

The technological advances over decades have led to an exponential increase in the 

amount of operational data that organizations produce (Golfarelli, M., & Rizzi, 2009). 

However, this operational data alone does not allow to support decision-making processes 

due to its nature - for this to happen, there must be mechanisms that extract perceptible 

analytical value from this operational data, so that it can reach the stakeholders interested 

in that value (Kimball & Ross, 2013).  

As a solution to that problem, in the seventies, the phenomenon of Data Warehousing 

emerged as a response to this imminent need to use the data produced by organizations, 

in order to generate value - which goes beyond the routine tasks of an organization 

(Golfarelli, M., & Rizzi, 2009). Until then, organizations were only concerned with 

keeping the operational data resulting from business processes, leaving aside the ability 

to access information needed for the decision-making process (Golfarelli, M., & Rizzi, 

2009). 

According to Kimball, Data Warehouses can be summarized as systems that ingest 

operational data (over which they have no quality control) and hold as output the 

analytical value for decision-making (Kimball & Ross, 2013). Golfarelli & Rizzi, on the 

other hand, define a Data Warehouse as a collection of techniques, methods and tools that 

support managers, directors, and analysts. The purpose of this collection is to conduct 

data analysis to support decision-making. They also admit that this definition is 

intentionally vague, so that it is inferred on the conceptual aspect but not on its structure 

(Golfarelli, M., & Rizzi, 2009).  
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In 1996, Kimball made a survey of the main complaints at the organizational level, which 

made it possible to infer some relevant characteristics to be held by the Data Warehouse. 

In this regard, the identified characteristics are accessibility, integration, query flexibility, 

information consistency, multidimensional representation, correctness and completeness 

(Golfarelli, M., & Rizzi, 2009). Later, it also points out that there is a special relevance 

to the fact that Data Warehouses need to be accepted by the organization and need to 

present themselves as authoritative and trustworthy systems to improve decision-making. 

Only then they will be truly successful (Kimball & Ross, 2013). 

Inmon makes the definition more concrete, presenting a Data Warehouse as also being a 

data repository that supports decision-making. This is characterized by being subject-

oriented, presenting an integrated and consistent, non-volatile character capable of 

presenting evolution over time (Inmon, 2005).  

Kimball & Ross clearly define the structure of a Data Warehouse as the integration of 

four distinct components: source transactions, extract transform load (ETL) System, 

presentation area and Business Intelligence (BI) application (Kimball & Ross, 2013). In 

Figure 3, it is possible to visualize how these components are organized. 

 

Figure 3. Core elements of Data Warehouse architecture. Adapted from (Kimball & Ross, 2013) 
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The source transactions component concerns the sources that store the operational data 

(business transactions), being these data the fuel for the Data Warehouse. The ETL system 

is the component responsible for the extraction, transformation and loading of the data 

from the source transactions component. Thus, the data undergoes structural and 

corrective changes, so that its analytical value is enhanced. The presentation area 

component concerns the availability of data for access, through its organization and 

storage. Finally, the BI Application concerns dashboards, ad-hoc queries and data mining 

components linked to the Data Warehouse, i.e., a combination of analytical capabilities 

(Kimball & Ross, 2013). 

There are several Data Warehouse modeling strategies, one of the most emblematic being 

the dimensional modelling strategy (Nenad Jukic, 2006). According to the dimensional 

modelling strategy (Kimball & Ross, 2013), two distinct constructs should be taken into 

consideration when modelling Data Warehouses: the fact tables and the dimension tables. 

In the fact tables, we store the events that take place in the organization and that affect 

the decision-making processes. Dimensions are prisms on which the fact data is analyzed, 

bringing different perspectives to the analysis (Golfarelli, M., & Rizzi, 2009). 

In short, the Data Warehouse is a repository that stores the organization's information, 

and that enhances its analysis by a wide range of users (Santos & Costa, 2020), being the 

same structured and modelled according to the constructs and components presented in 

this section. It should be highlighted that there are several other ways to build Data 

Warehouses, but the works discussed in this section only aim to represent the most 

commonly used constructs and strategies so that we understand one of the core paradigms 

used for analytical data storage, the Data Warehouse. 

2.1.3. Big Data Warehouse 

Although the Data Warehouse as described in section 2.1.2, is widely accepted and 

implemented, the way we design and implement a Data Warehouse to support Big Data 

contexts has been the focus of some research contributions during the last few years. 

These changes mainly focused on the evolution that was needed due to the Big Data 

characteristics and to the need for advanced analytics, which began to make the existing 

Data Warehouse architectures precarious to support these contexts (Santos & Costa, 

2020). Therefore, the scientific community began to study the modernization of the Data 

Warehouse, in order to accommodate these several changes that were needed (Russom, 
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2016). During the modernization process, some difficulties arose, such as the cost of 

implementing new technologies on a use case basis (without adequate models and 

methods) and the lack of data governance (Santos & Costa, 2020), which naturally led to 

the more research on the Big Data Warehouse concept. Research related to the Big Data 

Warehouse concept can be divided into five different topics, being them respectively 

(Santos & Costa, 2020): the characteristics and design changes of the Data Warehouse 

for Big Data environments, Data Warehouses using NoSQL Databases, benchmarking of 

storage technologies for Big Data Warehouses, improvements for query engine and 

evolution in OLAP systems, and Big Data Warehouse implementations in specific 

contexts. 

(Costa, Andrade, & Santos, 2019) define a Big Data Warehouse as a scalable, high-

performance, and highly flexible processing system - capable of handling ever increasing 

volumes of data, accompanied by significant variety and speed. They emerge as well as 

the way to overcome the difficulties experienced by the Data Warehouse when processing 

Big Data (Krishnan, 2013). We can thus define a Big Data Warehouse as a system 

presenting flexible storage, accompanied by adequate scalability and performance. These 

systems also focus on low latency when it comes to data ingestion and analytical 

workloads of complex nature (Costa et al., 2019). Big Data Warehouses also have real-

time capabilities (linked to low latency and streaming processes), significant 

interoperability and fault tolerance, making use of commodity hardware to reduce their 

inherent costs (Santos & Costa, 2020). 

The evolutionary process from a Data Warehouse to a Big Data Warehouse can happen 

according to two different strategies: "lift and shift" or "rip and replace". The first strategy 

is related to the augmentation of the implemented Data Warehouse capacities (e.g.: 

introducing a new technology); the second strategy is based on a more extremist 

perspective, in which one adopts a totally new strategy to build a new Big Data 

Warehouse. Hadoop and NoSQL databases are present either to increase the capabilities 

of a Data Warehouse, or as a new technological layer to be used in a completely different 

architecture (Santos & Costa, 2020).  

When designing a Big Data Warehouse, the focus must be divided equally by two layers: 

the physical layer and the logical layer. However, there is still a significant gap between 

what a Big Data Warehouse should be, and how to build one (Santos & Costa, 2020). The 
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authors (Costa et al., 2019), have scientifically contributed in this area, formulating an 

approach that aims to ensure the characteristics of a Big Data Warehouse, focusing on 

both the logical and physical layers (Santos & Costa, 2020). This approach presents three 

logical components of a Big Data Warehouse, being them respectively: i) data collection, 

preparation, and enrichment; ii) platforms - data organization and distribution; and iii) 

analytics, visualization, and access.  

The first logical component, “data CPE”, is related to the arrival of data (from the data 

provider) and its collection. The data can be collected either via batch or streaming 

mechanisms. After this collection, the data advances to the second logical component 

(“platforms: data organization and distribution”). This component is composed of three 

different storage areas, divided into two types: file system and indexed storage. These 

three storage areas make it possible to deal with different Big Data characteristics and 

workloads efficiently. Finally, the logical component of “analytics, visualization, and 

access” holds as core component a distributed query engine, which allows the 

combination of batch and streaming data in a single query. This component can thus be 

used to exploit data from the different storage areas of the Big Data Warehouse, which 

can then be used for visualization and other types of data access (Costa et al., 2019). 

Therefore, it is possible to conclude that considering the challenging Big Data 

characteristics, there has been the need for an evolution from a Data Warehouse to a Big 

Data Warehouse. It can also be concluded that, in certain justifiable contexts, 

implementing a Big Data Warehouse may only mean augmenting the capabilities of an 

existing Data Warehouse to partly (or less efficiently) deal with Big Data.  

2.1.4. Data Lake 

The concept of Data Lake dates back to a decade ago, through James Dixon, and was 

partially devalued at the time because it was believed to be a Hadoop marketing label 

(Miloslavskaya & Tolstoy, 2016). However, the concept has remained and has grown 

over time (Khine & Wang, 2018). 

Laskowski describes Data Lake as a largely scalable repository denoted as a significative 

mass, where data is stored in its "As-Is" form, remaining in this state until the need for 

the data to be processed arises. This addition of raw data does not interfere with the data 

structures already present in the lake, which allows to continuously inject data in the lake 
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Data Lake, without the concern about the above-mentioned data structure (Nicole 

Laskowski, 2016). Miloslavskaya & Tolstoy present their definition of the concept as an 

immense pool of data, in which it is continuously store new data of three types (structured, 

semi-structured and unstructured), being it accumulated with historical data. The authors 

also complement with the note that the data schemes and requirements are not defined 

upfront, i.e., until the data needs to be processed (Miloslavskaya & Tolstoy, 2016). Terri 

McClure (Terri McClure, 2014) translates the conceptual change in the definition itself, 

stating that "Yesterday's unified storage is today's enterprise Data Lake", which reinforces 

the fact that this concept appears intimately to the entrepreneurial part at the expense of 

the academic one (Miloslavskaya & Tolstoy, 2016).  

Data Lake and Data Warehouses are both data repositories. However, they differ from 

each other in several aspects, and even in structure and implementation (Khine & Wang, 

2018). Data Warehouses follow a "Schema-on-Write" approach since they make use of 

the traditional ETL logic. The data is thus extracted from the sources, then processed and 

finally loaded into the repository (having its schema defined before loading). Therefore, 

it is assumed that Data Warehouses are prepared to handle read-heavy workloads.  

On the other hand, in the Data Lake there is a different order regarding data processing, 

which is justified by its "Schema-on-Read" approach. The preprocessing of the data does 

not happen until the data is needed by an application or consumption query. 

Consequently, there is a change in the ETL tractional order, being the process now 

defined as Extract, Load, Transform (ELT). Note that when the data is extracted from the 

source, the necessary metadata is thus added to it. The Data Lake is thus prepared to 

handle write-heavy and read-heavy workloads (Khine & Wang, 2018). 

Summarizing the comparison between the Data Lake and the Data Warehouse, it is 

possible to conclude that the former deals with three types of raw data (unstructured, 

semi-structured and unstructured), while the latter mainly deals with processed and 

structured data. Storage costs are much higher in Data Warehouse environments, and this 

type of repository is less agile compared to the Data Lake. There is also a differentiation 

in the level of the users, as the Data Warehouse mainly targets professional business users 

(e.g.: managers, directors, among others), while the Data Lake mainly targets data 

scientists (Khine & Wang, 2018). 
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The main characteristics of a Data Lake are data storage without processing and 

theoretically infinite storage capacity (Khine & Wang, 2018). For a Data Lake to be 

successful, it must also ensure scalability of the architecture with great availability, data 

governance, centralized cataloging and indexing, shared-access model, and agile 

analytics (Miloslavskaya & Tolstoy, 2016).  

From a technological point of view, several Data Lake implementations are based on 

Apache Hadoop. The various datasets will be extracted and stored in a Hadoop Cluster. 

In the case of real-time data involving streaming, Apache frameworks such as Spark and 

Flink are commonly used. There is thus the ability to handle data at different velocities 

and to store heterogenous data in a structured way. The Data Lake also includes a 

semantic database, a model and the addition of a layer that allows the relationships 

between data (Khine & Wang, 2018). 

It is possible to decompose a Data Lake into three layers. The first one is related to the 

raw data (transactional data), the second one is related to the data that increase daily and 

finally, external information. This division can also be performed using a timeline. The 

first layer corresponds to the data of the last six months, the second layer to the data older 

than six months but still used by the organization and the third layer to the stored data 

(data that isn’t used frequently) (Miloslavskaya & Tolstoy, 2016).  

In recent years, some works have been focused on Data Lakes at the level of services and 

optimization (Beheshti et al., 2017) (Hai, Geisler, & Quix, 2016). Constance is an 

intelligence data lake system that can discover, extract and summarize structural metadata 

from data sources, and it appears as a way to avoid the lack of metadata management in 

place - which can turn a Data Lake into a Data Swamp (Hai et al., 2016). CoreDB is also 

an example of a work developed in this area, being an open-source service that offers a 

Representational State Transfer (REST) Application Programming Interface (API) for 

indexing and organizing all the metadata of a Data Lake - thus helping to suppress some 

difficulties arising from the heterogeneity of the data sources (Beheshti et al., 2017). 

In short, the Data Lake corresponds to a pool that accepts structured, semi-structured and 

unstructured data, and theoretically scales to an infinite amount of raw data. The Data 

Lake can be considered more effective and efficient to deal with heavy workloads, 

compared to the already established Data Warehouses. It should be highlighted that in a 
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Data Lake governance must always exist, so that it does not become a Data Swamp 

(Khine & Wang, 2018). 

2.1.5. Data Mesh 

The Data Mesh emerges as a disruptive and innovative concept, which proposes a 

paradigm shift to make organizations truly data-oriented (Dehghani, 2019). Dehghani is 

one of the pioneering authors on the subject, which serves as a basis for the other concepts 

and definitions formulated so far. The author defines Data Mesh as an intentionally 

distributed data architecture. In a Data Mesh, it must exist governance and standardization 

efforts that allow for interoperability among the Mesh nodes. For this to be possible there 

is a homeostatic self-service data infrastructure (Dehghani, 2019). Moses extends the 

previous definition by stating that the Data Mesh is an architecture that embraces 

ubiquity, with a design oriented to data organized by domains (Barr, 2020). Johnson 

argues that the Data Mesh enables connectivity between the various "silos" of distributed 

data, preventing the Mesh from becoming inefficient due to its distributed nature. It also 

abolishes the complexities of managing and connecting distributed data (Lance Johnson, 

2020). 

In a ThoughtWorks post, the basic concepts that support the Data Mesh are presented. 

The first concept is related to the orientation by domains, as well as the decentralization 

of data ownership. The second concept highlights the concept of data as a product. The 

third concept is related to the self-service nature of the platform and, finally, governance 

issues are highlighted to allow homeostasis of the Mesh (ThoughtWorks, 2020). In this 

same contribution, two core issues are highlighted in the implementation and use of the 

Data Mesh, i.e., the technological and organizational adaptation that is needed to make 

the Data Mesh possible (Dehghani, 2019; ThoughtWorks, 2020). The explanation of these 

concepts can be found in detail in section 2.3 and 2.4 of the document. 

Currently, there are some companies around the world that have a Data Mesh 

implemented and supporting their data analytics processes. One example is brought by 

Justin Cunningham, from Netflix, which currently uses this type of distributed data 

architecture. At the technological level, for its implementation, it uses a group of 

technologies developed internally at Netflix (part in open source) and others like Apache 

Kafka, Apache Flink, among others (Justin Cunningham, 2020). Another company betting 

on this data architecture is Zalando (Max Schultze & Arif Wider, 2020). They adopt a 
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more concise position, advocating that the Data Mesh is more related to the ownership of 

data, rather than focusing on the technological perspective. In their view, which also 

comes from their practical implementation, they argue that Data Mesh is based on three 

concepts: product thinking, domain driven distributed architecture and infrastructure as a 

platform (Max Schultze & Arif Wider, 2020).  

To conclude this section, is highlighted that the Data Mesh arises from the frustrations 

felt with the current monolithic data architectures, accompanied by a logical path for the 

application of the principles of microservices architectures to the data (Dehghani, 2019). 

In the following sections, it is explained the motivation for the appearance of the Data 

Mesh, as well as the current body of knowledge that form the state of the art related to 

the concept of Data Mesh.  

2.2. MOTIVATION FOR THE APPEARANCE OF THE DATA MESH 

Thomas Kuhn, a physicist and philosopher wrote "The structure of Scientific Revolutions" 

(Kuhn, 1970). In it, the author emphasizes the way science evolves, being divided into 

four phases: normal science, detection of anomalies, crisis and change of paradigm. In a 

simple way, the change of paradigm occurs when, in the face of scientific progress, it is 

realized that there is no way around the anomalies, entering a crisis, which is overcome 

through a change of paradigm (Kuhn, 1970). This cycle postulated by Kuhn, justifies the 

appearance of the concept of the Data Mesh, considering the current monolithic data 

architectures and their respective limitations (such as scalability, for example) (Dehghani, 

2020a). Dehghani argues that the data architectures are currently in a state of crisis, and 

therefore the word "paradigm" establishes a symbiotic relationship with the concept of 

Data Mesh (Dehghani, 2020a).  

In the last two years there has been a significant increase of interest and investment by 

companies in areas such as Big Data and Artificial Intelligence. Between 2018 and 2019 

there was an increase in this interest and a consequent investment of 66% (compared to 

the previous year). However, contrary to the expectations, the satisfaction of the 

companies has decreased (recognition of the importance and belief in these technologies 

to increase competitiveness and value). Only between 2018 and 2019, there was a 

decrease of 19%. According to Dehghani, this fact shows how, although there was an 
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evolution since the 80s (from Data Warehouses) to the present day (Data Lakes in the 

cloud), there are still serious gaps in the adopted architectures (Dehghani, 2020a). 

There is currently an overload in the data teams when they try to respond to the growing 

needs of the organization, ranging from ad-hoc exploration to central ETL data pipeline 

management. There is an unsatisfactory alignment between the organizational needs and 

the architectures instituted in the organizations (Barr, 2020). The two facts above-

mentioned, lead to this overload felt by the data teams and the dissatisfaction of various 

investors. Although in software engineering there has been a notable evolution from 

monolithic architectures to microservice architectures, the same did not occur in the data 

engineering space (Dehghani, 2019). 

This stagnation implies the segmentation of the data architecture into three components: 

sources, big data platform and consumers. By sources it is defined the data producing 

sources (data resulting from the operational nature of organizations, as well the external 

sources influencing the organizational performance), and by consumers, this means, those 

who use the analytical outputs (Dehghani, 2020a). Therefore, there is a dimension that is 

not considered here - the nature of the data itself and the way it is organized in an 

organizational environment. Currently, there is no concern about domain organization 

(Dehghani, 2020b). More than that, this is an architecture similar to those that were 

abandoned in the past: data (ingest), business (serve), user interface (consume). Layer 

defined by their technological capabilities (Dehghani, 2020a). The problem of this 

decomposition into layers, is the change that happens in systems: the change is not often 

restricted to a layer. For example, if a new source is added, there must be a change in the 

three components - and this obligation to change the process in the layers, causes 

significant friction in the process. (Dehghani, 2020b). 

On the other hand, the investment problem arises, since the management of monolithic 

architecture (e.g.: Data Lake) requires extremely specialized professionals, which with 

the increase in the complexity of the system, requires an increase in the composition of 

these teams. Currently the teams dealing with monolithic data architectures (e.g.: data 

platform engineers, data scientists, domain's operational systems teams, among others), 

are working on the same subject, however there is a “space” between them. As an 

example, the domain's operational systems teams have as main concern the execution of 

their systems, leaving behind the availability of analytical data in a friendly way at the 
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level of analysis and consumption by the rest of the organization. At the other end of the 

spectrum, data scientists are concerned that the data they need exists, in a consumable 

way, so that they can train their Machine Learning models and thus fulfill their part in the 

system. However, to have this data, data scientists depend on data engineers, who act as 

a bridge between the parties, who are not aware of the date itself (has no notion of their 

domains). Due to these needs (from other teams), and the lack of knowledge of the nature 

of the data they handle, they are under high pressure in the organization (Dehghani, 

2020a). Therefore, it is possible to infer that the teams are organized in silos highly 

specialized in data tools, which when they look at the system as a whole, explains the 

friction that exists in them (Dehghani, 2019).  

The Data Mesh arises as a paradigm shift that occurs both at the technological and 

organizational levels. This change has the purpose of solving the problems enumerated in 

this section, to make organizations completely data-oriented, thus being able to gain 

competitive advantages and withdraw organizational profits from this fact. 

2.3. FEATURES OF A DATA MESH 

The Data Mesh has as main purpose the creation of an architecture that enhances the 

extraction of value from historical facts and analytical data at scale. Scale is understood 

here as being the adaptation to constant change and proliferation of data production 

sources, in order to satisfy consumer needs (Dehghani, 2020b). 

For the Data Mesh to achieve its purpose, it must be based on four core concepts. The 

first one is related to the way data is organized according to the nature of the organization 

- domain-oriented decentralized data ownership and architecture. The second 

concept implies changing the way data is viewed within the organization - the concept of 

data as a product. The third concept is related to the transformation of the service 

infrastructure into a self-serve data infrastructure paradigm. Finally, the concept that 

avoids chaos in the Mesh - federated computational governance (Barr, 2020; Dehghani, 

2019, 2020b). 

When looking at the organizational structure, it is realized that, naturally, divisions are 

defined by areas of operation (e.g., logistics, customer support, and sales), also known as 

business domains (Dehghani, 2020a). The Data Mesh postulates the existence of a 

distributed responsibility, by the teams of the organization, that can better understand and 
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produce the data of their specific business domain (Barr, 2020). In this sense, ownership 

should be taken into consideration, and not forgetting the data domains from the moment 

the data is ingested. Therefore, serving the analytical data must always be aligned with 

the established domains (Dehghani, 2019). To distribute responsibility and to decentralize 

the already known monolithic architectures, it is necessary to model the current data 

architecture based on the organization of analytical data by domains (Dehghani, 2020b). 

Will thus be facing a situation where the domains store their datasets and serve the 

respective data in a simple and friction-free way (Dehghani, 2019). The physical storage 

of data can be kept centralized. However, the datasets and the ownership/responsibility 

are kept close to the respective domains. The domains establish, logically, relationship 

among themselves. However, these relationships do not cause friction, and a new logic 

of serving and pulling is established, from domain to domain (Dehghani, 2020b). 

The cost of discovering quality data, in line with the high friction, is pointed out as one 

of the greatest difficulties experienced in current monolithic data architectures (Dehghani, 

2020b). Part of the problem comes from the fact that even organizations that consider 

themselves data-oriented do not treat the data with the proper democratization (Barr, 

2020). In this sense, the second concept of the Data Mesh emerges, i.e., data as a product 

(Dehghani, 2019). The above mentioned concept has as objective the resolution of the 

problems related to data silos, as well as the problems of the data with poor quality and 

freshness (Dehghani, 2020b). The Mesh applies the already known concept of "Product 

Thinking" to the data, so that it becomes the organization's top priority, and leaves data 

pipelining and storage concerns in the background (Dehghani, 2019). A simple concept 

is applied here: analytical data is now seen as a product (and therefore there is an 

underlying quality dimension), and consumers of this data are now seen as customers, 

and their needs must be met (Dehghani, 2019).  

Observing the two concepts highlighted here, it is possible to infer that they imply the 

existence of an infrastructure that allows the teams to produce and maintain their data 

products. For this, it is necessary that the teams have access to a high-level infrastructure, 

capable of encapsulating all the complexity that usually comes with it. Thus, are dealing 

here with the third concept - self-serve data infrastructure - that empowers teams with the 

autonomy needed to manage their domains (Dehghani, 2019).  
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From domain to domain, one will experience a choice of disparate technologies, which at 

the limit, reach the desired goals in each data product (Dehghani, 2019). For the Data 

Mesh to work as expected, the notion of interoperability and connectivity must be present 

and well-defined (Dehghani, 2020b). Thus, the self-serve platform must be able to 

provide the tools and interfaces necessary for the creation and maintenance of data 

products, without the need for highly specialized knowledge, such as the one that is 

currently see in Data Lakes. In short, this platform must be as multilingual as possible, 

from the data storage to the data pipeline declaration (Dehghani, 2020b). 

Finally, there must be a mechanism that allows interoperability between different 

domains - the governance model (fourth concept). This governance model must be able 

to carry out an automated execution of decisions, as well as accompany the 

decentralization and independence of each domain in the Mesh. For this, global 

normalization is necessary, as previously mentioned, which Dehghani denominates as 

“federated computational governance” (Dehghani, 2020b). This model embraces the 

globality and complexity of the Mesh as a whole, hence creating global rules for it, but 

leaving room for local rules in each domain. This concept aims to apply a set of rules to 

all interfaces of the various data products, as well as to the data products themselves, in 

order to guarantee the homeostasis of the Mesh. However, and due to the architectural 

complexity of the Data Mesh, the definition of this governance model is something 

particularly difficult to present. Nevertheless, the global rules defined by this model must 

allow interoperability, as well as the adequate functioning of the Mesh. Federated 

computational governance is a complex model, which does not reject change and has 

several contexts (Dehghani, 2020b). 

In general, and taking into account the above-mentioned concepts and key points, the 

main features that the Data Mesh provides are (Dehghani, 2020b): 

1. Decentralized team constituted by domain representatives, and a clear 

ownership and responsibility for each data product. 

2. Use of a self-serve platform to support the development of data products 

in the Mesh. 

3. Definition of how to model the quality, requirements, and security of data. 
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4. Dealing with the various languages/technologies used in the data products, 

to ensure interoperability. 

Figure 4 illustrates a model of a Data Mesh, with all its implicit components. Through the 

analysis of the figure, it is possible to infer about the interconnection of the various 

components of the architecture. Analyzing the figure from top to bottom, it is first 

illustrated the federated computational governance, where are present the policies that 

allow the interoperability in the Mesh. These are applied to the various data products 

present in the analytical data plan and operational services data plan. In this part of the 

figure, the architecture quantum, and domain-oriented data (example) is also highlighted. 

Analyzing the highlight of architecture quantum, it is possible to perceive that it includes 

interactions between the two planes (analytical and operational services) at the level of 

data product and micro-services. It is also possible to infer that the computational policies 

are not only applied to the data products present in the analytical data plan, but also in the 

platform itself for this purpose - thus serving the figure as a concretization of the concepts 

presented above. 

 

 

2.4. EXAMPLES OF DATA MESH PROPOSALS AND IMPLEMENTATIONS 

2.4.1. Approach Followed by Dehghani 

Due to the logic of operation and organization imposed by the Data Mesh and the concepts 

defended by this paradigm, several concepts must be taken into account when designing 

Figure 4. Data Mesh Architecture. Adapted from (Dehghani, 2020b) 
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the Mesh (Dehghani, 2019). This section provides an overview of the contributions that 

focus on proposing an approach for designing and implementing a Data Mesh. Some 

contributions focus more on the conceptual layer of the Mesh, lacking technological 

details that are relevant for the implementation of a Data Mesh, while others solely 

describe real-world implementations that may lack sufficient conceptual or technological 

details and diversity to be generalized for the design and implementation of a Data Mesh 

in any organizational or societal context.   

Regarding the concept of domains, it is important to understand how these domains arise 

and are organized. There are two types of domains: source and consumer (shared) 

domains (Dehghani, 2020a). Source domains consist of the data in their raw state at the 

point of creation, not modeled for any consumer. They represent the reality of the business 

(with the data being mapped very close to its origin) and therefore change less frequently 

(regarding its structure) - since the business facts do not present a very volatile nature. 

These domains are characterized by their functional character and the permanent need for 

data collection (Dehghani, 2019). Consumer (shared) domains are data domains that may 

or may not be aligned with source domains. They are different in nature from source 

domain data, as they undergo significant structural changes. In these domains, the 

transformed data is often presented in aggregated views (originating from the source 

domains). These domains also include models that allow access to them (Dehghani, 

2019). The interaction between the two types of domains can be seen in Figure 5. 

 

Figure 5. Structure and interaction of domains at Data Mesh. Adapted from (Dehghani, 2019)  

Considering this division of domains, the data pipelines are made internally within each 

domain (Dehghani, 2020a). Therefore, there will be a distribution of the data pipeline 

steps within each domain. At this point in the process, one of the Mesh crucial points 
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arises: the quality of the data. It is up to each domain to establish its service quality level, 

making available to its consumers the quality that its data holds, as well as its timeliness, 

error rate, specification, among others (Dehghani, 2019). In short, the aggregation phases 

of a centralized data pipeline are here migrated to the implementation details of each 

(shared) domain. 

The fulfillment of the second concept of the Data Mesh, "Data as a Product", implies that 

there is a set of characteristics that are held by the data (Barr, 2020), since this concept 

intends to maximize the quality of the data (and as a consequence of this, increase the 

satisfaction of the consumers) (Dehghani, 2020b). Dehghani defends that there are six 

principles that must be fulfilled to maintain the data quality and the effectiveness and 

efficiency of the Mesh. These principles (can be abbreviated as DATSIS principles) are 

the following (Dehghani, 2019): 

1. Discoverable - all the data present in Mesh nodes/domains, must be present in 

a centralized data catalog. This registry must also contain the respective source, metadata, 

lineage, and a small sample. This way, there will be a centralized discovery service, 

transversal to all the Data Mesh (Dehghani, 2019). 

2. Addressable – each data product must have a unique address that allows the 

access to it. The addresses of each data product must be unique and known in the Mesh 

(discoverable). To facilitate access to the various data products, common conventions 

should be created throughout the Mesh. (Dehghani, 2019). 

3. Trustworthy - each owner of a data domain must provide the level of service 

quality. Moreover, they must also ensure that this level corresponds to the reality, the data 

is clean, and the metadata and lineage have been provided. In this way, there will be an 

increase in the consumers’ confidence and an easier understanding of the node/domain 

and its assets (Dehghani, 2019).  

4. Self-describing - the data must have an intuitive syntax and semantics and it 

must be aligned with the provided data sample. One way to achieve this is to use data 

schemas (e.g.: parquet) (Dehghani, 2019). 

5. Interoperable - the data must be governed by global rules within the Mesh. To 

aggregate data from different domains, for example, it is necessary to establish a 
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correlation between the different data domains. In this sense, proper standardization of 

the data must be established - that is present in the global governance of the system – in 

order to avoid polysemy (Dehghani, 2019).  

6. Secure - to avoid chaos and prevent Mesh failures resulting from misuse, it is 

necessary to establish rules regarding domain access. In the case of decentralized data 

domains, this control although it obeys a set of centralized standards, it can be different 

in each data product (presenting specific granularities) (Dehghani, 2019). 

This orientation towards data as a product implies that there are new roles and 

management strategies in the teams that are responsible for data processing (Dehghani, 

2019). Consequently, there are two new roles: domain data product owner and data 

product developer. The domain data product owner is responsible for the decision-making 

that focuses on the vision around their data product, i.e., its direction and possible 

capabilities within the organization. This role is concerned with the satisfaction of the 

consumers of their data products and it takes care of the lifecycle of these data products. 

The domain data product owner must also make their work measurable, making use of 

KPI such as lead time for data availability, data quality, among others (Dehghani, 2019).  

Each domain will also include data product developers, being them responsible for 

building, maintaining, and serving the data product domains (Dehghani, 2020b). A more 

concrete example of their tasks is the construction and maintenance of internal data 

pipelines for each domain (Dehghani, 2019). Data product developers within a specific 

domain will work together with developers in another domain, and it is possible that the 

same domain team works for different data products. When compared to current and past 

paradigms, the responsibility model is thus reversed, since the responsibility over the data 

is now close to the source (Dehghani, 2020b). 

Considering this concept, it is possible to define the Architectural Quantum. This 

concept, by definition, consists of the smallest unit of architecture that can be deployed 

with high cohesion and includes all the structural components involved (e.g.: Code, 

Metadata, Infrastructure) (Dehghani, 2020b). Considering the definition of this concept, 

it is possible to define the architectural quantum as a data product in the Mesh – this 

architectural quantum can be visualized in Figure 6.  
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Figure 6. Domain: data product and operational system. Adapted from (Dehghani, 2020b) 

A Mesh node consists of a data product, which includes three main components: code, 

data and metadata, and infrastructure. The code component encompasses three distinct 

segments. The first one refers to the data pipeline that transforms data, receiving it either 

from source domains or from other data products. The second one refers to applications 

that allow access to the data and metadata. Finally, the third one refers to the code used 

to reinforce access policies, among other related concerns. The data and metadata 

component are linked to the core of the analytical and historical data. The data within a 

data product can be of different natures (e.g., batch files, events, and graph), but for it to 

be used, there must be an association between the data and the respective metadata. This 

way, it is the metadata and semantics of the data that is used to maintain the governance 

of the Mesh, since they enable the correct interpretation of data and are also incorporated 

into data access policies. The infrastructure component, also encapsulated within a data 

product, allows access to the data and metadata, as well as running the code related to the 

data product in question (referred to as the "code" component in this paragraph) 

(Dehghani, 2020b).  

In short, the common data engineering concepts, such as data pipelines and storage 

structures, are now combined to the data they handle, being an incorporated part of the 

data product. 

One of the major concerns with self-serve data infrastructure is the duplication of efforts 

in the setup of the data pipeline engine (among others) by the domain teams (Dehghani, 

2020a). To avoid this inefficient duplication, it is necessary that, when building the 

platform, business domain concepts are not considered, so that there is an abstraction of 

complexity. In this sense, the author points out some capabilities that this type of platform 

must provide, such as scalable polyglot big data storage, unified data access control and 

logging, and data governance and standardization (Dehghani, 2019) 
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This architecture can thus be divided into planes, being them remade into levels , which 

serve different user profiles and not architectural layers (Dehghani, 2020b). Analyzing 

the data infrastructure provisioning plan, this includes access control management 

provisioning, orchestration for the internal code of data products, query engine, among 

others. In a data product developer experience plan, there is a naturally different 

provisioning, as this plan is characterized by a high level of abstraction, related to the user 

function. In a Data Mesh supervision plan, there is naturally a series of capabilities that 

make sense to be made available on a global level, such as, for example, the ability to 

discover data products for a specific use case (Dehghani, 2020b). This division of planes 

can be better understood in Figure 7. 

 

Figure 7. Planes differentiation in self-serve architecture. Adapted from (Dehghani, 2020b) 

Dehghani also highlights that, although cloud usage effectively decreases operating costs 

and the effort required, there is no removal of the higher abstractions that need to be 

placed in business context. Thus, abstractions must be created that fit the context of the 
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business, and these establish the communication with the cloud services. (Dehghani, 

2019). One criteria that can be used to measure the success of this type of infrastructure 

is the time required to create a new data product (Dehghani, 2019).  

The governance model applied in the Data Mesh must balance two relevant dimensions: 

achievement of the measures imposed at a global level and respect for the autonomy of 

the various data domains that compose the Mesh. Therefore, when defining this 

governance model, there is the need to reflect on what must be defined on a global level 

(Mesh level) and what each domain should have freedom and responsibility to define. 

Figure 8, shows an example of these several elements that compose the federated 

computational governance model, highlighting global decisions and domain decisions. 

 

Figure 8. Example of distribution a Federated Computational Governance. Adapted from (Dehghani, 2020b)  

Taking this into consideration, a part of the knowledge that is applicable to the current 

paradigms lose its meaning in the Data Mesh paradigm. For example, dataset only become 

data product, when within the domain itself it is subject to the necessary processes to 

obtain their quality and respect the rules of global standardization. This fact highlights 

the relevance of bringing, for the definition of the data product model, the domain data 

product owners, since they are the ones who know the domains most closely (Dehghani, 

2020b). 
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2.4.2. APPROACH FOLLOWED BY ZALANDO 

Zalando was founded thirteen years ago as a startup linked to online shoe sales and is now 

the leading fashion platform in Europe (Max Schultze & Arif Wider, 2020). Naturally, 

and given the nature of the E-Commerce business, there is a need to store, process and 

use petabytes of data per day. In this sense, the company first established a Data 

Warehouse capable of storing this data - however, limitations in terms of scheduling and 

a desire for greater flexibility in terms of infrastructure, led them to begin the migration 

to the Cloud (Max Schultze & Arif Wider, 2020). Later, they established a messaging bus 

that acted as a bridge to services that were no longer accessed directly (microservices). 

Through the analysis of this messaging bus, they realized that the data they needed and 

used was present in it, that is, they realized that this information was there centralized. 

These conclusions led them to opt for the establishment of a Data Lake (Max Schultze & 

Arif Wider, 2020). 

Later, with the use of this Data Lake, some challenges began to arise: the lack of 

ownership over the data, the poor quality of the data already after its processing and the 

problem of organizational escalation (since by constantly increasing the sources of data 

production and the final consumers of the same, a bottleneck appears regarding the team 

itself) (Max Schultze & Arif Wider, 2020). Faced with these difficulties, and as a way of 

trying to overcome them, Zalando decided to build his own Data Mesh. To do so, they 

based themselves on Dehghani's work, and equated three concepts: product thinking, 

domain driven distributed architecture, infrastructure as a platform. Thus, they instituted 

a paradigm shift in their own organizational environment. Therefore, there were some 

core changes: i) evolution towards decentralized data ownership, ii) prioritization of Data 

Domains, in detriment of data pipelines, iii) vision of data as a product and not by-

product, iv) institution of teams organized by domain-data with a spectrum of diversified 

functionalities, v) abandoning a centralized data environment (e.g.: Zalando) to an 

ecosystem of data products. As a (desired) consequence of these core changes, it was 

possible to overcome the bottleneck situation at the data team level (decentralizing this 

infrastructure responsibility, to a data infrastructure as a platform) and migrate from a 

monolithic data architecture (e.g.: Data Lakes), to an interoperable services environment 

(Max Schultze & Arif Wider, 2020). Following the above concepts, Zalando implemented 

the Data Mesh architecture present in the Figure 9. 
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Figure 9. Zalando Data Mesh Architecture. Adapted from (Max Schultze & Arif Wider, 2020). 

In a synthesized way, the initial central services (Data Lake Storage) were maintained 

and the metadata layer and governance that holds information about them were 

implemented, as well as enabling standardized processes about them (e.g.: data access). 

Zalando then created a concept of "Bring your own Bucket" (Max Schultze & Arif Wider, 

2020). This concept allows users to integrate their S3 buckets with the data from the 

datasets working on their domains (teams) into the 'core' part of the infrastructure - the 

authors point out that AWS technology is very useful in this process for integration. 

Zalando has retained the central processing platform which uses technologies such as 

DataBricks and Presto. At this point the authors consider that they have achieved success 

in using self-serve infrastructure in an agnostic manner (Max Schultze & Arif Wider, 

2020). Clusters (in this case Spark) are made available on this processing platform and 

the various users make use of these technologies, without the team responsible for the 

infrastructure having to know what the users do and without these users having to 

configure the clusters or know how complex they are. It is also possible to add more 

technologies to this architecture if there is a need for it at the processing level. The main 

goal was to achieve data sharing among the organization, something that was achieved 

with the use of this architecture, according to the authors (Max Schultze & Arif Wider, 

2020). 

Therefore, Zalando has an architecture where there is a decentralized warehouse, which 

uses a central infrastructure of data processing accessed by all. There is also a data 

ownership that is decentralized but makes use of a central governance, which allows the 

homeostasis of the system. All these components make use of the interoperability 

concept, which enables the creation of a self-serve platform (Max Schultze & Arif Wider, 
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2020). In this sense there are two key behavioral changes: treating the data as a primary 

concern and devoting resources to data quality assurance and understanding of its use 

(Max Schultze & Arif Wider, 2020). 

2.4.3. APPROACH FOLLOWED BY NETFLIX 

Netflix is a company that provides a streaming service (e.g.: films, series), which 

currently serves about 150 million global users and is available on several different 

devices. Each time one of these users interacts with the application (e.g.: search for 

content to view) events are generated - events that need to be treated and stored to generate 

useful analytical value for the business and operation of the application. Due to the 

number of users worldwide, Netflix generates about trillions of events and with this, 

trillions of petabytes of data per day (Justin Cunningham, 2020). For this it has a data 

platform that is divided into three components: big data platform, cloud database 

engineering and real time data infrastructure. The first of these components deals with 

data storage, the second with cloud databases (as in Cassandra) and finally, the third 

component deals with real time data infrastructure (as in Apache Flink). Thus, the Data 

Mesh, in the case of Netflix, is described as a data processing system based on Apache 

Flink (Justin Cunningham, 2020).  

The main objective linked to this topic (Data Mesh) is to make all the studios that work 

with Netflix (and its productions) into one system, capable of dealing with this large 

volume of data in an integrated and sustainable way - this process is currently being 

developed by the Netflix team (Justin Cunningham, 2020). Therefore, at the beginning of 

the process Netflix made a survey of the problems of data transport that they feel in their 

scope. They found five major problems, being: i) duplication of effort regarding the data 

pipelines and the teams; ii) unnecessary overload in the maintenance of the data pipelines 

(because they are poorly managed); iii) the lack of implementation of good practices 

throughout the various processes; iv) the need for lower latency; v) problems in the 

correction of errors (due to poor construction and lack of knowledge by users) (Justin 

Cunningham, 2020).  

Currently, in its Data Mesh (still in a pre-alpha state as described by Cunningham), the 

team provides an infrastructure for the various users to develop data pipelines (Justin 

Cunningham, 2020). In this infrastructure they abstract the user from the complexities of 

the configurations, being the main concern to understand what the users want to do with 



35 
 

their data pipelines. In this infrastructure the user can use technologies such as GraphQL 

and Apache Iceberg (open-source project developed by Netflix, thought for huge table 

datasets that feeds your data warehouse). The user also has access to a metadata catalog, 

which he sees as a list of sources, from which he can choose to build his data pipelines. 

The user also has access to a list of process standards (which he can use as plugins to his 

data pipelines), already defined and established. This leads to the fact that few changes 

must be made to use this process, which once again abstracts the user from the complexity 

of the technology with which it interacts. Netflix is prioritizing the decrease of operational 

complexity over the associated cost and performance (Justin Cunningham, 2020). The 

Figure 10, summarizes the architecture currently used by Netflix. 

 

Figure 10. Netflix's implementation typology. Adapted from (Justin Cunningham, 2020) 

In a simplified way, in the Netflix implementation typology, changes in the database are 

used to trigger the process. Once these changes are detected, the processor is given trigger 

(Graphic QL) that writes the entities of this stream in a table in the Iceberg Apache (to do 

so, it fetches these same entities from another Graphic QL, as illustrated in the figure). 

Note that Netflix implements this topology without the user having this notion, and 

implements an audit mechanism with the data source to verify its accuracy, at the 

processor's output, as well as in the batches of data stored in the Iceberg Apache (Justin 

Cunningham, 2020). 

It is possible to conclude that, although Netflix does not present in its work the concepts 

implied to Data Mesh (e.g.: Data as Products), these are implanted in its Data Mesh 

architecture - a fact evidenced, for example, by the presentation of a metadata catalog, 

standard processes, quality assurance of the various data products, availability of a self-

serve infrastructure, among others. 

2.4.4. OPEN CHALLENGES 

Although during the previous subsections, a literature review is presented on the topic of 

Data Mesh, this work lacks materialization and contextualization. Thus, there are no 
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models or methods that provide a practical implementation path to follow, by applying 

models that translate the Data Mesh concept. Regarding the implementations presented 

(Netflix and Zalando), these are use-case driven, proposing no methodological approach. 

Thus, throughout chapter three an approach for the design and implementation of a Data 

Mesh is presented. 
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3. PROPOSED APPROACH FOR THE DESIGN AND IMPLEMENTATION OF 

A DATA MESH 

The third chapter of this master's thesis aims to present an approach for the design and 

implementation of a Data Mesh, including several guidelines that can be followed. Thus, 

throughout this chapter, three distinct models will be presented, which are respectively 

the domain model, conceptual architecture, and technological architecture. The purpose 

of these models is to specify the various conceptual and technological components that 

compose the Data Mesh, thus establishing relevant knowledge that can assist in its design 

and implementation, in the most varied contexts. First, the proposed domain model will 

be presented and detailed. It contains all the constructs that compose the Data Mesh and 

that should conceptually be present in it. Next, the conceptual architecture that identifies 

the generic components that should be included in the Data Mesh is presented, so that it 

obeys the four core concepts presented in the section 2.3. Finally, to assist the translation 

of the conceptual architecture into a practical implementation in real environments, the 

technological architecture is presented, composed of a diverse set of technologies that 

meet the needs of each conceptual component. This architecture intends to enable and 

facilitate the choice of technologies that may support the implementation of the Data 

Mesh.  

3.1. DATA MESH DOMAIN MODEL 

According to Larman, the domain model is a fundamental part of the investigation of a 

problem, representing the conceptual classes that compose the same (Larman, 2004). 

Despite being widely used as a source of inspiration when it comes to software 

development, this type of model represents real-world conceptual classes and not 

software components. Thus, their representation is based on the presentation of domain 

objects or conceptual classes and their associations, and may also include attributes of the 

conceptual classes (Larman, 2004).  

In this sense, the definition of a Data Mesh design and implementation approach begins 

with the definition of the Data Mesh domain model. The construction of this model is 

based not only on the knowledge acquired through the literature review on the subject, 

but also on the vision that the authors shared for the Data Mesh. Briefly, the construction 

of the domain model took into consideration the four main concepts of the Data Mesh 
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(domain-oriented decentralized data ownership and architecture, data as a product, self-

serve data infrastructure and federated computational governance) and the fulfillment of 

the DATSIS principles. For this set of concepts and principles, conceptual classes were 

defined to correspond to the materialization of these concepts and principles. It is intended 

that, in this model, all the conceptual classes (or constructs) that should be considered in 

the design and implementation of the Data Mesh are present. Figure 11 presents the 

domain model built within the scope of this master's thesis, summarizing all the constructs 

that compose the Data Mesh. 

 

Figure 11. Data Mesh Domain Model 

 When looking at the Data Mesh from a high-level perspective, it is quickly 

possible to infer that it heavily relies in the connection and constant communication 

between domains in an organization. In this architectural context, the Domains are the 

agglomeration of various Data Products - each of these data products being a Node in 

the Data Mesh. These data products are in constant communication, being able to access 
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other domains’ data (when necessary), also storing all their metadata and changes in the 

corresponding storage component (e.g.: Mesh Catalog and Data Catalog).  

Although the domain model represents the conceptual classes that compose the Data 

Mesh, the Data Mesh itself is a constituent part of it, since associated with this central 

concept come several important related constructs. The same logic was applied to the 

principles that form the Data Mesh: discoverable, addressable, trustworthy, secure, 

interoperable, and self-describing data. Thus, a numerical notation was used in this model 

that correlates these principles with the various Mesh constructs (e.g.: in the data catalog 

construct it is possible to verify the number 1 and 2 that represent the "discoverable" and 

"addressable" principles respectively, since the use of a data catalog enhances them). In 

this sense, analyzing the proposed domain model, it is possible to infer that a Data Mesh 

comprises four components: one or more data Domains, a Mesh Catalog (catalog of the 

Data Mesh itself), a Mesh Communication Channel, and a Change Keeper component.  

The DATSIS principles and the concept of governance are significantly relevant to detail 

how a Data Mesh should work. In this sense, there is the need to have a strong policy 

regarding the quality, reliability, and interoperability of the Data Mesh. Thus, it is 

essential that in a data architecture like this, there are components that guarantee this 

policy to its users. For this end, constructs such as the Data Mesh Catalog and Change 

Keeper are included. The Data Mesh Catalog is the component that allows to quickly 

discover which nodes (data products within a domain) exist in the Data Mesh, and what 

their general characteristics are - reducing data discovery time - pointed out as one of the 

main problems in current data architectures (Dehghani, 2020a). More than the speed of 

discovery, this provides a synchronous view of the Data Mesh at the level of its 

constitution, as well as information about the people responsible for each domain or data 

product. The Data Mesh Catalog is connected to a Mesh Metadata Management 

System, from which it reads the information about the nodes present in it. This repository 

not only stores information for the Mesh Catalog, but also combines information related 

to the changes that the Mesh is undergoing, from each node's Data and Metadata Catalog, 

and from each node's Consumption List.  

Another proposed construct for the Data Mesh is a component that registers the various 

changes that occur in it (Change Keeper). Naturally, a business has a dynamic nature 

which is reflected in the data it daily generates, manipulates, and accesses. In this sense, 
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it is proposed to keep track of these changes, to inform all Data Mesh users about, for 

example, the creation of a new domain, or data product, or even the deletion of an existing 

one. This component should also register the changes that take place in the metadata of 

the various data products. The main idea and function intended is to minimize the impacts 

that arise in the data pipelines caused by the phenomenon of change. This construct also 

interacts with the Mesh Metadata Management System, storing and reading the various 

changes in it (as mentioned above). However, it is not enough that there is only one way 

for all the users to be informed about changes that occur in the Data Mesh.  

In an organization, there is a large flow of emails and messages exchanged between co-

workers. Naturally, these messages are of the most varied nature (e.g.: human resources 

information, corporate campaigns, scheduling meetings, among others) which leads to 

the fact that the answer is often delayed, and in the limit, many emails remain unanswered. 

Thus, when proposing the Data Mesh Communication Channel, it is intended that there 

will be a unique efficient communication channel, in real time, so that the various Data 

Mesh users (and experts in each domain) can quickly exchange impressions and doubts 

with other experts, potentiating an organized environment in which the response time is 

expected to decrease. This communication channel can be created using what is already 

a company practice, or if necessary, a new communication tool can be adopted. The main 

idea is that the adoption of this channel facilitates the process of communication and 

knowledge sharing in an organized and fast way.  

In the Data Mesh, there can be several Domains, and it does not make sense that there 

isn't at least one. A Domain can be defined as being a distinct area of operation (e.g.: 

human resources and sales, when we talk about a business context) or subjects of a distinct 

nature (e.g.: fruit trees or deciduous trees, when in a non-business context). To have 

control over the operations developed in the various Domains, it is proposed that, for each 

Domain, there should be a person who understands it deeply in terms of scope, 

operationalization, and data. This Domain expert, who also manages the various data 

products that are part of it, is called the Domain Owner. 

Within the same Domain, there can be several Data Products or at the limit even none – 

if a given Domain in an organization does not produce data, but only consumes it from 

other domains (for example). A Data Product can be understood as a set of data with 

analytical value, that is generated within a domain. Although in the literature review it is 
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suggested that a data product corresponds to a domain (Dehghani, 2019), in the present 

work it is clarified that, according to our perspective, several data products can exist in 

one domain. This proposal is made based on the analysis of the disparity in complexity 

that arises from organization to organization. For example, probably when facing 

relatively small organizations or problematics, a domain may effectively have only one 

data product. However, if we consider, for example, the domain sales of a large company 

like Amazon, it is possible to quickly infer that there will be several different data 

products (e.g.: related to different views/analysis on the sales process). In this sense, it is 

proposed that there can be some flexibility when it comes to establishing the number of 

data products per domain, and that each context may apply the rule that makes the most 

sense given the circumstances. So, considering all these aspects, it is possible to conclude 

that a data product is a Data Mesh node and vice-versa. 

Just as a Domain Owner is established for each domain, it is necessary to establish an 

expert person for a given data product. This person is called Data Product Owner and, 

together with the Data Product Team, they build, support, and maintain a given data 

product. It is not mandatory that a data product team and a data product owner can only 

assume these roles for a specific data product - given the limited resources of an 

organization, it is natural that there is the need to allocate the same resources to different 

data products.  

Each Node of the Data Mesh will contain a set of components from the overall 

architecture. That is, a node will gather all the components that are part of the Data Mesh 

architecture, and this composition will be replicated by each node throughout the Data 

Mesh - note that when the term composition is mentioned it is related to the conceptual 

architecture (e.g., processing service component) and not to the technological 

architecture, because from node to node there may be disparities in technological choices. 

A node in the Data Mesh (data product) will have four base constructs: Input Data, Output 

Data, Node Metadata, and Data Consumer (this last one been facultative). Any data 

product, even if aligned with the source or aligned with the consumption, will always 

have in its composition the Input Data that composes it. This Input Data can be data that 

originates from the operational and transactional nature of the business (and therefore 

aligned with the source), or data from nodes already created in the Data Mesh that are 

consumed by this new node (thus being a node aligned with the consumption). Naturally, 

a Data Source is always associated with this input, despite of its nature. Following the 
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same logic, each Data Product will also contain the Output Data that will be associated 

with the flow of the Input Data through the data pipelines developed in each case. This 

data composes the Data Product itself, that will be available for consumption by other 

Nodes of the Mesh. 

To be able to develop data pipelines and store data in each Node (Data Product), it is 

necessary that each Node has access to a technological layer that allows the development 

of these processes. To accomplish this goal, each Mesh Node makes use of Processing 

and Storage Components. The processing component consists in the access and use of 

batch and stream processing tools, to meet the needs of each Data Product. In the Storage 

and Messaging Component, NoSQL databases, publish/subscribe systems and distributed 

file systems are used so that it is possible to store and make available data in the most 

adequate way according to their nature. Naturally, in both the processing and storage 

components, not all the components need to be used in the same Mesh Node. However, 

the Data Mesh should have a wide set of available technological options that allow it to 

cover the various scenarios relevant for the organization. This vast option of distinct 

technologies also makes it possible to adapt to the needs of each Data Product Team, 

matching their know-how with the available standard technologies within the 

organization, to make the process of building and developing a Data Product faster and 

more agile. Processing and Storage Components are supported by the Available Services 

in the Data Mesh, which compose the Self-Serve Data Platform. The purpose of this 

platform is to aggregate several services of different natures, to enable the construction 

and maintenance of the various nodes in the Data Mesh. Briefly, it includes the data 

Visualization Technology (so that each team can create the analytical dashboards that 

help in the decision-making process), Code Repository (so that all code produced is stored 

in a secure environment, prepared for team collaboration), Containers Registry (to be able 

to manage the container images required for each data product), and Data Integration 

Tools (to include several data sources in the same data pipeline environment). It is 

expected that this platform will not have a static character in terms of the set of 

technologies and functions that it includes, and teams may, depending on their needs, 

suggest for the Data Mesh initiative in the organization to approve and add new 

technologies and functions, that can be applied to the several Data Products. 

As mentioned earlier, each Data Product may be consumed by other Nodes, so there is an 

association between Data Product and Data Consumer. When a Data Consumer node 
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needs to consume data from another node, it needs to have a permission to do so. The 

issue of having/granting permission to access data, related to the reading and usage of a 

specific Data Product, implies that there is a component that allows the permission request 

and its authorization, thus being proposed in this work a Consumption List construct. 

This list consists, briefly, of a mechanism that maintains the various accesses that the 

Nodes have to each other. It is proposed that a given Data Product Team, when faced with 

the need to consume data from another Node, request this permission through the 

Consumption List. Once the request is made, it can culminate in the acceptance or 

rejection of this request. There is also a Security Mechanism that secures the data 

Interface itself, which provides the input and output data for each node. It is intended 

with this proposal that there is a security concern regarding the data that is used in each 

Node. 

In the Data Mesh paradigm, it is relevant to have higher quality assurance in the data 

flowing between the nodes of the Data Mesh. To accomplish this, it is important that the 

DATSIS principles are guaranteed for each component and flow (as illustrated in the 

domain model, Figure 11). Thus, each Node will be associated with the DATSIS 

principles, ensuring that, in the Data Mesh as a whole, data is discoverable, addressable, 

trustworthy, secure, interoperable, and self-describing.  

For data to be mainly self-describing, it is necessary that each Node of the Data Mesh is 

associated with its own metadata. The Node Metadata consists of the agglomeration of 

several characteristics of the data, such as Data Lineage, Data Schema, and Data Quality 

Metrics (that enhance trust in data). In addition to this Metadata, Information about the 

teams that create and maintain each Data Product is also relevant to be included, as well 

as Links to the Code used in the construction and data pipelining of a node (allowing the 

evaluation of the degree of trustworthiness related to a Data Product). All this information 

is thus stored in the Mesh Metadata Management System. Naturally, these characteristics 

are present in a Data Catalog that reports the specifications of each Node, being fed by 

the information in the above-mentioned management system. The Data Catalog is 

extended with new information parameters (e.g.: domain to which the data product 

belongs), and the same can be used by everyone in the organization to discover data 

products (due to the availability of metadata). More than just accessing this information, 

with the proposed domain model, distinct teams in disparate domains of an organization 

will be able to consult this data, make use of it, and build new Data Products (Mesh 
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Nodes), each choosing the available standard technologies that best suit their case, 

without jeopardizing the interoperability of the system itself or harming the quality of the 

data that is handled and produced.  

In short, no longer there will be a centralized data team, overloaded with requests from 

an entire organization, transitioning to a decentralized reality of these teams across 

various organizational domains. The data will then be handled closer to its creation point, 

by teams that know their organizational domains intimately, including the nature of the 

data when it is ingested. 

3.2. DATA MESH ARCHITECTURE  

More than defining the domain model, synthesizing the Data Mesh constructs/conceptual 

classes, it is necessary to build an artifact that makes the concept more tangible at the 

implementation level. In this sense, a conceptual architecture and a technological 

architecture are proposed for the development and implementation of a Data Mesh. 

3.2.1. Conceptual Architecture 

The main purpose of the conceptual architecture is to present the standard architectural 

components that compose the Data Mesh. In this way, in a more advanced phase of the 

Data Mesh implementation, these components will be implemented through specific 

technologies that allow the proper functioning of the Mesh.  

The conceptual architecture preserves the four core concepts and DATSIS principles on 

which the Data Mesh is based, having been at the base of its creation, the domain model 

presented in 3.1. In this sense, the conceptual architecture here presented can be divided 

into four parts being them respectively: i) the organization between nodes, catalogs, and 

repository of the Mesh; ii) self-serve data platform; iii) infrastructure; and iv) security 

mechanism. Figure 12 presents the proposed conceptual architecture.  
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Figure 12. Data Mesh Conceptual Architecture 

In the proposed architecture the articulation between the various Data Mesh nodes is 

presented in a way that is possible to read data from each other (thus highlighting the 

interoperability aspect in this architecture). As illustrated in Figure 12, these nodes can 

be of different natures (depending on their alignment with source or the consumption), 

working in a network to meet the data needs of the organization.  

As also illustrated in the figure, the entire Data Mesh is connected to a component called 

the Mesh Catalog. This catalog has the purpose of presenting the Data Mesh's metadata, 

allowing users to quickly and effectively discover the nodes (data products) that compose 

it. Ideally, this catalog component should also contain other information such as, for 

example, the identification of those responsible for each node. This catalog stores and 

reads all this information from the Mesh Catalog Storage, which works as a central 

storage component for the Data Mesh - allowing for its adequate management. At a lower 

level, each node that composes the Data Mesh is present in the Data Catalog. This catalog 

differs from the one previously presented, because it details the characteristics of the data 

itself present in each node (data schema, data product owner and team, data lineage, data 

product's code links, and data quality metrics), allowing a new user of the Data Mesh or, 

even other data product teams, to discover the data quickly. Like the Mesh Catalog, the 

Data Catalog stores and reads its data from the Mesh Catalog Storage component. So, in 

this first architectural part, the issues regarding the articulation between nodes and their 
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catalogs are unblocked. However, there is still the need to establish the following: i) how 

the Data Mesh articulates itself in terms of security (for example, whenever a data team 

needs to consume data from a node already built); ii) what infrastructure supports all the 

above-mentioned relationships between nodes (data products); and iii) how to access the 

technologies that allow building and maintaining these nodes. 

To answer the first question raised in the previous paragraph, an architectural component 

concerning the Data Mesh Security Mechanism is proposed in the conceptual 

architecture. To avoid chaos, it is necessary to have a governance layer in Data Mesh so 

that, for example, when a given data product team needs to consume data from a data 

product that already exists, it can consume it efficiently. For this end, as previously seen, 

the domain model proposes a consumption list that unfolds, in the conceptual architecture, 

into a security mechanism implemented in two phases: authentication and authorization 

(this mechanism can be implemented on-premises or in the cloud). Data Mesh users 

request access to a Data Mesh node, authenticate themselves and finally they are granted 

authorization to access it (if applicable). The way this authorization is deliberated must 

be based on the need for a given team to consume/access a specific data product (using, 

for example, permission management technologies like Apache Ranger). Once this 

authorization is conceived, the user (e.g., a member of a data product team) can access 

the output data from a given Mesh node and can consume it in another node (build a 

consumption-oriented data product) to satisfy the analytical needs within a given domain. 

However, there must be the tools that enable the creation and maintenance of the various 

data products (nodes) in the Data Mesh. One of Data Mesh's core concepts is related to 

the possibility to adopt different technologies to suit the needs of each team, allowing the 

abstraction of the complexity of the infrastructure that provides those technologies. Thus, 

a Self-Serve Data Platform is proposed in the conceptual architecture. This platform 

aims to provide all Data Mesh users with a set of technological components that allow 

them to build and maintain their data products in an interoperable way. At the limit, if 

none of the technologies made available on the platform meets the team's needs, more 

technologies can be adopted, after an approval process, to allow each team to adjust their 

development and implementation expertise to the needs of their data products. This 

approval process, according to (Dehghani, 2020b), must be done by the team that 

administrates the platform at the infrastructure level. This platform can be functionally 

divided into six distinct parts, which are: storage, processing, data integration system and 
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orchestrator, data visualization, software development, and machine learning. In essence, 

this represents the aggregation of the functionality needed to create, test, and maintain the 

various data products and their visualizations (e.g.: data analytical dashboards).  

The group of storage functionalities, divided into four distinct parts, is intended to satisfy 

the most diverse needs of data Storage, considering their nature. It is proposed that the 

Data Mesh Self-Serve Data Platform includes: i) buckets (or folders) in a distributed file 

system; ii) NoSQL databases (for non-relational data); iii) publish/subscribe topics (for 

data flows using brokers and likely streaming data); and iv) distributed SQL databases 

(for providing distributed storage and processing capabilities for relational data). It should 

be noted that it is not implied that a Mesh must mandatorily include in its platform all 

these components, as each Data Mesh can and should be designed to cover the features 

required for the data needs of the specific organization or context. 

The data Processing component should include technologies that respond to the various 

types of data to be handled, such as large volumes of historical data or real-time data. 

Thus, it is ideal that the processing component provides batch processing, streaming 

processing, and distributed SQL processing tools. Again, this diversification of 

technologies across functionalities allows one source-oriented data product team, for 

example, to process in real-time the events associated with customers on an e-commerce 

platform, and another consumption-oriented data product team to consume this data and 

merge it with data from other nodes, using batch processing. 

The Data Integration System and Orchestrator component is essential for building the 

data pipelines, allowing the flow of data from its source to each node's storage. To do 

this, the Self-Serve Data Platform must provide this component, allowing it to be 

subdivided into two distinct segments: UI based or code based. In this case, the division 

of technologies is done according to how the users prefer to develop their data products: 

either by code development or through UI elements. In certain teams of the organization, 

there may be a more robust level of expertise for code-based data pipelines, but the 

opposite can also happen. In this sense, and always with the view of bringing the teams 

closer to the solutions that make them more productive and effective in the construction 

and maintenance of data products, the UI-based component is also included. This type of 

technology abstracts the complexity behind the various components from the end user, 
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avoiding the complete development of the solution through code - which can make the 

process easier for the various data product teams. 

Of course, transforming the data and making it more reliable is important (so that it 

responds positively to a range of data quality metrics), but for decision-making and for 

retaining the analytical value of the data, the data needs to be analyzed. Thus, the Data 

Visualization capabilities are significantly relevant, reason why the Data Mesh Self-

Serve Data Platform needs to enable such capabilities. Once again, there is a division of 

the technological components, based on the experience that best suits each team, and this 

visualization can be achieved through a dashboarding tool or a notebook environment. 

Ideally, a Data Mesh will contain both development options, allowing teams to use these 

tools to meet broader needs when it comes to visualizing the data they produce and 

consume. In this way, a business user can use the self-serve data platform to consume 

data from a node into a dashboarding technology (present in the platform) and develop 

reports to assist the decision-making process, or explore the data in an ad hoc notebook 

environment.  

Clearly, the development and maintenance of the various nodes of the Data Mesh is 

closely related to some Software Development components and therefore, there is a 

range of features that must be gathered in the Self-Serve Platform for this process to be 

possible. The first component has as its purpose the organized storage and versioning of 

all the code produced to create and maintain a node, hence the inclusion of a code 

repository is suggested. Next, within an organization, it is necessary that the various 

processes are properly documented and that there is knowledge sharing between teams. 

In this sense, a documentation space is proposed. Still on the software development 

component, it is necessary that the code is properly tested and delivered, before a solution 

is made available to the entire organization (in this case, for example, before a node is 

published in the Mesh), reason why Continuous Integration and Continuous Deliver 

(CICD) Tools component is also included. Finally, a container registry component is 

suggested, to store and make available the various images used by the container-based 

solutions in the Data Mesh.  

Machine Learning is a method that enables the creation of predictive models through 

data analysis (Janiesch, Zschech, & Heinrich, 2021). Over the time, machine learning has 

evolved and proven to be significantly valuable to complement data analysis and elevate 
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it to the level of predicting future events. In this sense, there is a machine learning 

component in the platform, divided into code or UI-based tools.  

The combination of the six components explained above (storage, processing, data 

integration system and orchestrator, data visualization, software development, and 

machine learning) make up what is proposed as the Data Mesh Self-Serve Data Platform: 

a platform where the various data product teams can access and use the tools that best suit 

their needs to obtain well-designed and implemented data products. 

For the Self-Serve Data Platform to exist and function as proposed, an Infrastructure to 

support it needs to be in place. The implementation of this infrastructure can follow two 

distinct paths considering the organization's resources (both hardware and software, and 

the expertise of its teams): on-premises or in the cloud. Today, the cloud provides a wide 

range of services that allow organizations to implement the most varied functionalities in 

terms of data storage, processing, visualization, among other tasks (AWS, 2021; Google, 

2021; Microsoft, 2021). However, tools that are not covered by these services but are 

needed can and should be included in the Data Mesh. On the other hand, the Data Mesh 

itself does not need these cloud accounts to exist, and its infrastructure can be solely based 

on on-premises infrastructure (physical servers, virtual machines, and containers). These 

should allow the configuration of clusters capable of containing the technological 

components, and thus create the necessary conditions for teams to use the tools required 

to build the Data Mesh. The infrastructure implementation option (on-premises or cloud 

accounts) should be a singular decision in each organization since both bring advantages 

and disadvantages. In this work, we do not aim to detail those advantages and 

disadvantages, but, for example, although the cloud attracts users due to its scalability, 

the ability to develop complete solutions with cloud accounts requires some level of 

expertise from the self-serve data platform team and the data products teams, which may 

not exist inside the organization.  

Thus, this decision should be well considered in each organization, always seeking to take 

advantage of the existing infrastructure and skills, or seeking to adopt a radically different 

infrastructure that will raise the potential value that can be brought to the company. 

Nevertheless, what’s relevant is for the Self-Serve Data Platform to meet the expectations 

of the Data Mesh initiative and the data product teams. 
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 On an on-premises perspective it is important to consider that it is not mandatory that 

there is only one cluster that hosts the Data Mesh, quite the contrary. The relevant aspect 

to consider is that the interoperability between nodes is always guaranteed, so that the 

"micro-architectures" that support each data product’s design do not make it impossible 

for other nodes, based on other Data Mesh-compatible technologies, to access their data, 

making possible to accomplish the vision of the Data Mesh. The same holds true when 

multiple data products are supported by different cloud accounts belonging to the same 

organization. 

3.2.2. Technological Architecture 

Naturally, the conceptual architecture needs to be unfolded into a technological 

architecture, aiming to present a wide range of technologies suitable to implement the 

components of the conceptual architecture. Figure 14 correspond to the bridge established 

between the proposed conceptual architecture and the technologies that are feasible to 

implement it.  

 

Figure 13. Data Mesh Technology Architecture 

Due to the broad scope of the architecture and the wide set of available technologies, the 

technological architecture has been divided into these two figures (which can be seen as 

two parts of the same figure). The first part, figure 13, presents the technological 

architecture of Data Mesh as a whole, leaving the Self-Serve Data Platform component 

unspecified. The second part, Figure 14 presents in more detail all the technologies that 



51 
 

make up the Self-Serve Data Platform. It is intended that, with the presentation of the 

technological architecture, practitioners have available an starting point for the 

implementation of a Data Mesh.  

 

Figure 14. Self-Serve Data Platform in Detail 

It should be noted that there are currently several other technologies on the market that 

can respond positively to the needs of the Data Mesh implementation, several of them 

listed in the figure, but many of them left out. The choice of technologies integrated in 

the figure was based on two distinct criteria: 1) being open-source technologies (which 

implies a significant impact in reducing costs in the implementation of a Data Mesh) or 
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2) being services available in the Cloud (in AWS, Azure, and Google Cloud). In this 

sense, several Data Mesh implementations can be outlined, using combinations of the 

technologies presented in Figure 14. Each organization should reflect on the solutions 

presented and depending on the balance of their needs and resources, choose, amongst 

the various options, the one that will make more sense to use (in terms of cost, 

performance, and implementation difficulty). In the next chapter of this master's thesis, 

the architecture of the proof-of-concept will be presented, which, similarly to the decision 

process mentioned above, will contain the most suitable technologies given the resources 

available for this research work. Analyzing Figure 13, we can see that several 

technological solutions are proposed to implement the conceptual components shown in 

Figure 12. Due to the vast amount of technologies, the description and explanation of the 

figures provided throughout the rest of this section will only highlight some of the 

technologies in the figure. However, as they are competitors to implement the same 

conceptual component, the understanding should remain consistent no matter the 

technology serving as example to detail a given technological architecture component. 

The security mechanism contains solutions divided between on-premises (Apache 

Ranger) and the cloud (e.g., Azure, AWS and Google Cloud IAM). These solutions will 

make sure that the various nodes of the Mesh can securely interoperate with each other. 

These Mesh Nodes can be developed with the resources from the technological solutions 

presented in Figure 14. For example, it is possible to construct a Data Mesh node as being 

a folder in Hadoop Distributed File System (HDFS) or a bucket in S3. To feed this node, 

there are data pipelines using Apache Spark or AWS EMR. Each node can also use HBase 

or AWS DynamoDB to store the output data of a node in a NoSQL database if the Mesh 

Node wants to expose data to online applications, for example. 

Compared to the conceptual architecture, a difference is highlighted: the merging of the 

Mesh Catalog and Data Catalog. This agglutination is due to the fact that the proposed 

technologies are the same, so this agglutination is used to facilitate the interpretation of 

the figure and not having repeated components. Thus, technologies such as Amundsen, 

Apache Atlas and Collibra can be used either as Mesh, or Data Catalog. The Mesh Catalog 

Storage can use various technologies such as MySQL, Git Repository, ElasticSearch or 

GraphDB, depending on the nature of the data. However, it is also possible to use as a 

storage system the databases that are already integrated with the solutions (e.g.: default 

Apache Atlas database). 
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At the infrastructure level, technologies are proposed in two distinct ways: on-premises 

or through cloud accounts. The choice of implementation path must be carefully weighed 

in considering the complexity of handling the infrastructure itself. Although the cloud is 

significantly attractive due to its centralization of services, with high usability, scalability, 

and interoperability, it is necessary to consider the complexity of handling these systems 

securely. However, given the technology offerings in terms of infrastructure, security 

engine, and self-serve data platform, it is possible to implement an entirely cloud-based 

Data Mesh. Solutions are also available to create an on-premises infrastructure if that is 

the path practitioners want to follow. In this case, this implementation involves three 

components: physical servers, virtual machines (where VMWare and OpenStack can be 

highlighted for their capabilities), and container-based solutions (such as Docker, Cri-o 

and Kubernetes). This infrastructure implementation can also be combined with self-

serve data platform technologies that share this on-premises compatibility (e.g., use 

Apache Ranger for the security mechanism, with data pipelines in Apache Spark, writing 

files in HDFS, feeding a Hive database for each Nesh Node, and being the metadata 

readable through Apache Atlas). 

The self-serve data platform is, as explained in the conceptual architecture, a set of six 

base components, which agglomerates a wide range of technologies. The main purpose 

of presenting such a wide range of solutions is to provide a range of technologies capable 

of meeting the needs of its users when faced with a certain design and implementation 

context. Thus, with data product teams at different levels of specialization, all of them 

will be able to design, create and maintain their data products in the Mesh. Moreover, in 

case there is no technology on this architecture that meets the specific needs of a given 

team, new technological components or technologies can be easily added to it. 

Although all the technological components of Data Mesh are essential for its proper 

functioning, there are two factors of major relevance in this architecture: data discovery 

and data access. These two factors are fundamental for the Data Mesh to work according 

to its four core concepts and DATSIS principles (section 2.4.1). Therefore, it is 

recommended for special attention to be given to these components. The choice of the 

appropriate data catalog is a key part of the Mesh, possibly one that allows its model to 

be extended to meet all the constructs of the domain model. Without being able to obtain 

a rich data catalog that allows a new user to know the domains, data products and how 

they are built, the Data Mesh can be seriously jeopardized.  
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4.  DATA MESH PROOF-OF-CONCEPT 

Although the domain model and architecture (both conceptual and technological) are the 

result of several insights emerged from the literature review and also from technical 

experience within the area, it is necessary to have a proof-of-concept of the proposed 

models to demonstrate their suitability for the implementation of a Data Mesh. Taking 

this into account, the proof-of-concept that was developed, will be detailed in this chapter. 

To accomplish this, it will be explained its scope, the used infrastructure, the technologies 

that support the creation of data products, the extensions made to the tools to meet the 

needs of a Data Mesh, as well as an example of the development of a data product 

throughout the entire process. It must be taken into consideration that given the resources 

available for the completion of this master's thesis, this proof-of-concept focuses on 

aspects considered as fundamental for the Data Mesh (e.g.: the part related to data 

catalogs and data products), leaving some components with their fully implementation 

planned for future work (e.g.: security mechanism within the Data Mesh). 

4.1. SCOPE AND ORGANIZATION OF MESH NODES 

Let us start by defining the scope in which this proof-of-concept takes place, namely the 

retail area. To illustrate a case that comes close to the requirements of a real market, the 

scope of the proof-of-concept will cover three domains of what is assumed to be a 

furniture commercialization company, in the business to costumer (B2C) segment.  

Thus, three domains will be created and published in the Data Mesh, concerning three 

domains of the business in question, being respectively: Sales, Production, and Financial 

Management. In the case of these three domains, it is considered that each one has one 

data product that originates one mesh node, being them: Online Sales, Product Cost, and 

Profits. Considering the above-mentioned domains, there are two source domain (Sales 

and Production) and one consumption domain (Financial Management), since the join of 

the Online Sales data and Product Cost data, will originate the calculation of the Profits 

generated in each sale.  

Note that, in this proof of concept, the aspect to emphasize is the flow of data throughout 

the architecture, and not the complexity inherent to its transformations - since this can be 

as complex as the user wishes (making use of the scalability and response to complexity 
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that the self-serve data platform presents). Figure 15 summarizes the organization of the 

domains and data products. 

 

Figure 15. Data Products and Domains Organization 

Looking in more detail at the data and metadata level for each data product, they have the 

schema illustrated below in table 1, 2 and 3. 

Table 1. Schema of Data Product Online Sales Data  

Source-Oriented Data Product: Online Sales 

id_sale Integer 

id_costumer Integer 

id_product Integer 

amount Integer 

sales_price Double 

payment_type Integer 

date_time Timestamp 

Table 2. Schema of Product Cost Data Product 

Source-Oriented Data Product: Product Cost 

id_product Integer 

cost Double 

production_factory String 

warehouse String 
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Table 3. Schema of Data Products Profits Data  

Consumption-Oriented Data Product: Profits 

id_sale Integer 

Price Double 

cost Double 

profit Double 

date_time Timestamp 

 

The data sources used in this work are in CSV format, stored in a distributed file system 

(in this case HDFS), which include the record of sales made online and the listing of 

production costs for the various products that were sold. Note that there is no data source 

for the profits data product, since it is a data product based in a consumption-oriented 

domain and, in this case, it will be built based on the consumption of data from the two 

data products mentioned above (which does not mean that a consumption-oriented 

domain must be strictly built based on another data product’s data and therefore cannot 

include its own data). 

4.2. PROOF-OF-CONCEPT INFRASTRUCTURE  

In a real context, a Data Mesh may be implemented in more than one cluster (in the case 

of this proof of concept, and due to the available resources, it is implemented within only 

one Hadoop cluster). In this sense, most of the technologies used in this proof-of-concept 

are present in a Hadoop cluster, which does not invalidate the usage of technologies 

outside this scope.  

An on-premises approach was followed, using the Lynx Lab cluster from the University 

of Minho. In this cluster, a Docker container was created, and, inside this container, an 

image of the Cloudera sandbox was instantiated, containing the Hadoop technology. 

Later, it was necessary to configure the various needed services (e.g.: Apache Atlas). 

Each Data Mesh node corresponds to a folder in HDFS, and each one contains tables 

stored in an isolated Hive database. To develop the data pipelines, we simulated a context 

in each data product team makes use of Zeppelin Notebooks, using the programming 

language that better fits the team needs. Once the output data for each data product is 

ready, Apache Atlas (extended in this work to accommodate the Data Mesh requirements) 
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is used to allow all the cataloging of the Data Mesh’s data. In this case, the Apache Atlas 

repository serves as the Mesh Catalog Storage itself (due to the optimization of resource 

usage). For data visualization, besides being possible to use Zeppelin Notebooks, Power 

BI Desktop and Server were used to create and publish the visualizations. To meet the 

premises of the domain model, regarding the assurance and monitoring of data quality 

metrics, a script of automated analysis of data quality was created and indexed to each 

notebook, and its information transformed into a dashboard in Power BI (so that its 

interpretation is more interactive).  

All the code created by each data product team, must be documented, and stored. 

Therefore, GitHub was used as a tool for storing and making code available. In order to 

have a direct communication channel in this proof-of-concept Data Mesh, Slack was used, 

and direct channels were created between users and data teams/owners of the various data 

products. Regarding access (consumption list), a form was created, through Google 

Forms, so that this access can be requested, and this information is forwarded to those 

entitled to it (e.g.: data product owners who can grant authorization to access their data 

product’s data). Ideally, this process should go through Apache Ranger, however, given 

the available resources for this work, it was not possible to perform this integration, being 

however the logical part of the process (the data consumption request) present in this 

proof of concept. The following sections will present the implementation details of the 

various components of this proof of concept. 

4.3. HDFS FOLDERS ORGANIZATION FOR EACH MESH NODE 

As illustrated in the domain model (section 3.1), it is possible to infer that a domain can 

have more than one data product. Revisiting the concept of domain, it is possible to 

understand domains as being the structured division of the organization by different areas 

of operation (such as sales, customer service, logistics, etc.). However, depending on the 

size and complexity of the organization in question, domains may have more than one 

data product (and in the limit, one domain of the organization may not generate any data 

product that is relevant to be shared with the entire organization). Thus, the same domain 

may have zero or more data products within its scope. 

Therefore, with the adoption and implementation of the Data Mesh, there must be an 

imminent concern to ensure that the various domains, and the teams that build and 

maintain these domains, can communicate with each other efficiently. For this reason, 
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and as explained in previous sections, there is the need to ensure a governance approach 

that extends to the entire Data Mesh and respects the DATSIS principles. To keep the 

implementation aligned with the previous principles, a standard organization of the Data 

Mesh Nodes is proposed, which should be followed by all the teams, to implement these 

best practices in their domains and data products.  

In the case of this proof of concept, it is defined that the whole company shares a cluster 

and therefore the file system is also shared amongst all - in this case HDFS. In this sense, 

it is important to build from the beginning a structure that obeys a certain set of parameters 

and to establish rules for the creation of folders and for their designation. Figure 16 

illustrates the structure proposed for the HDFS folders organization into domains and data 

products.  

 

Figure 16. Folder Organization in HDFS 

Considering the organization present in Figure 16, there is a brief set of rules to be 

followed, to guarantee the homeostatic organization of the Data Mesh. Firstly, it is 

necessary that the current data teams perform the exercise of dividing the organization by 

domains. Advisably, and given that the main purpose is that the nature of the data is not 

lost upon ingestion, it is important that this division into domains is aligned with the 

business itself and the people that work daily with this data. There may be as many 

domains as necessary, as long as they are always aligned with the operational nature of 

the organization.  



59 
 

Once the domains have been defined, it is important to identify the data products that 

compose each one. An example of this identification might be the sales domain. In an 

organization where there are two distinct sales segments (e.g.: physical stores and online 

stores), it will make sense for this domain to hold at least two distinct data products (one 

related to the operational data of online sales and the other related to the operational data 

of physical sales). Naturally, even though both are part of the sales domain, both are 

composed of different data, so it will make sense to analyze them differently. The initial 

data product definition will not be static, and more data products may be added along the 

way as the business develops. Thus, and considering the nature of this proof of concept, 

it is proposed that the domains are organized in distinct folders at the root of the file 

system, shared by the entire organization. This way, they will be quickly found and will 

follow an equitable distribution. This is also recommended to avoid semantic problems 

when handling data in the Data Mesh. To avoid these problems, it is proposed that all 

domains follow a similar naming pattern as illustrated in the Figure 16 - lower case letters, 

with the word "domain" being replaced by the real name of each domain. It is significantly 

relevant that this naming pattern is extended to all domains in the Data Mesh, thus 

minimizing semantic problems.  

Within each domain, there are folders for each of the data products that compose it. The 

naming of these folders must also follow a consistent pattern, and it is proposed that they 

are identified in lowercase letters as shown in the pattern illustrated in Figure 16 

("domain"_"dataproduct"). The folder for each data product will include three distinct 

components: input data (corresponding to raw data), output data (corresponding to data 

resulting from the pipeline process), and data product info. The presence of the last 

component, data product info, is in line with the domain model explained in section 3.1. 

This folder should include relevant information such as the data quality report of the 

output data (In order to facilitate the reading of this report, it will be also available in 

Apache Atlas, with a direct link to the Power BI Server). The remaining information about 

the output data (such as Data Schema or Lineage) will also be present in Apache Atlas. 

This proposed folder organization is not limited to this proof-of-concept but can be 

followed in other Data Mesh implementations. However, if the technology used does not 

support this type of structure, this folder organization should be adapted, ensuring that 

the intuitive and clear structure of the domains and their data products is maintained. 

Otherwise, the proper functioning of the Data Mesh can be jeopardized. 
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4.4. ORGANIZATION OF DATABASES AND TABLES FOR DOMAINS AND DATA 

PRODUCTS 

In the same way a structure was defined and followed for the HDFS folders that represent 

the various nodes of the Data Mesh, it is also necessary to think about how the domains 

and data products will be organized in the Hive Metastore. Figure 17. Hive Structure for 

Domains and Data Products shows how the organization of domains and data products 

was defined in the scope of the proof of concept. 

 

Figure 17. Hive Structure for Domains and Data Products 

When considered the usage of a Data Mesh in complex organizational contexts, it is 

logically implied that the domains will be of significantly complex dimensions, and 

naturally the data products may follow the same pattern. Thus, in this proof of concept, it 

was defined that a data product corresponds to a Hive database (corresponding to the 

collection of several tables). On the other hand, domains are defined as being a collection 

of databases (of the various data products that compose them). It is believed that, although 

the dataset of this proof-of-concept is not very complex, this will be the most correct way 

to organize the Hive Metastore, anticipating that the data products will evolve over time, 

given the dynamic nature of organizations. Note that it is recommended to follow the data 

modelling approach (e.g.: flat tables, star schemas, among others) that is more suitable 

for each data product (here depicted as a Hive database) to more adequately manage 

storage space and querying performance. 

4.5. MESH AND DATA CATALOG (APACHE ATLAS) 

One of the most important principles of the Data Mesh is the complete discovery of the 

data that it holds by all its users. So, it is necessary that there is a component in the proof-

of-concept where information about the data products is centralized, such as, for example, 
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data lineage, data schema, and data quality information. As explained in section 3.3.2, 

Apache Atlas was chosen as the Mesh and Data Catalog. By default, Apache Atlas does 

not provide all the information to portray Hive tables and databases. Therefore, it is 

necessary to extend it. Figure 18 presents an organization of the parameters per data 

product (hive database) and the respective tables (hive tables).  

 

Figure 18. Attributes per entity in Apache Atlas 

To better understand the extensions made to Apache Atlas, it is important to note how 

Atlas organizes metadata. In Apache Atlas, there is a type system to organize metadata, 

that is subdivided into three concepts: types, entities, and attributes. Types in the Apache 

Atlas can be understood as a collection of properties that characterize a metadata object. 

On the other hand, entities correspond to instances of types, and attributes to properties 

that characterize the types. Attributes are defined by a set of parameters that define the 

characteristics of their properties (e.g.: name, isCompositive, and isUnique) (Atlas, 2018). 

As previously explained, the data products correspond to Hive databases and the tables 

that compose them to Hive tables. Thus, an implementation of the Atlas extension was 

defined, which comprises two steps: i) create a new type in the Atlas type system called 

Data Product, which inherits the characteristics of hive databases with the addition of a 

set of complementary attributes (illustrated in Figure 18); and ii) extend the hive table to 
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include the attributes explained in Figure 18 (e.g.: Data Quality Report). Each of the 

extensions will be explained next. 

Regarding the creation of the Data Product’s metadata, it follows the structure shown in 

Figure 18 including the following attributes: Data Product Owner, Domain Owner 

Information, Data Product Orientation, Dashboards Access Link, Descriptive 

Information, and Consumption List. All these attributes are entered manually in Apache 

Atlas UI. Ideally, these attributes could be obtained automatically, but given the resources 

available, the implementation followed the manual collection of the metadata, and this 

automation may be subject of future work. The collection of this metadata requires the 

Apache Atlas REST API and the development of a JSON file to create or edit the existing 

metadata. In this JSON file, the structure of the Data Product type is indicated, and its 

attributes are divided into two groups: string type (when they are manual fields, such as 

the Data Product Owner attribute) or hive_db type (when the Data Product is associated 

with the hive database to which it corresponds). The following figure shows the structure 

of the data product metadata created. 

 

Figure 19. Data Product Metadata Structure 

As explained earlier, the Data Product corresponds to type that has a hive database, 

extended to accommodate more parameters. For this reason, this type inherits the 

supertype DataSet. The attributes are defined using typeName, cardinality, isUnique, 

isOptional, and isIndexable (this option is set to true so that the attributes can be 

used/search by their value). The only case where this attribute definition changes is in the 

database association that corresponds to the Data Product. In this case, the typeName is 
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set as hive_db, to obtain the characteristics of a hive data base already defined in Apache 

Atlas. Figure 20 shows a part of the JSON file created for the Data Product definition. 

  

 

 

 

 

 

 

 

 

 

 

Once the JSON file with the Data Product type creation code was defined in the Apache 

Atlas type system, it was necessary to use the HTTP (Hypertext Transfer Protocol) POST 

method for the REST service to create the metadata type. To do this, the following 

command was executed inside the container that holds Apache Atlas: 

 

Once successful, the Data Product type is created in the type system. However, it is 

necessary that the tables stored within the Data Product database also contain additional 

information, as shown in Figure 18. To do this, the above process was repeated, and a 

JSON file was created, where the attributes Data Product Owner (dataProductOwner), 

Data Quality (dataQuality) and Code Access (codeAccess) are added to the existing hive 

table type. The added metadata definition for hive tables is presented in Figure 21 . 

Figure 20. JSON File from Data Procut type creation 

curl -u admin:hortonworks1 -ik -H "Content-Type: application/json" -X POST 

http://localhost:21000/api/atlas/v2/types/typedefs -d 
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Figure 21. Hive Table Metadata Structure 

In this case, and because it is an edition of an existing type, and not a creation of a new 

metadata type (as in the case of Data Product), the attributes must be defined according 

to the already existing set of properties. Thus, each new attribute added is defined by: 

name, datatypeName, multiplicity, isComposite, isUnique, isIndexable, 

reverseAttributeName, defaultValue, description, and options (some of these attributes 

like description are set to null, because in terms of implementation and considering the 

propose of this extension they are not required to have other definition). There is also a 

hierarchical association that must be made explicit (hierarchicalMetaTypeName), since 

there is already a hierarchy defined for the hive table type (which, for example, composes 

the hive databases) and without this definition, the code would go into error and the 

extension for the new attributes wouldn't be successful. Like the creation of the Data 

Product type, all the attributes are manually collected and are of string type. Through 

them, we can access the Data Quality report of each table, for example. Figure 22 shows 

a part of the JSON file created for the extension of the hive table already defined in 

Apache Atlas. 
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Figure 22. JSON File for the extension of Hive Table Type 

To execute this JSON file, the PUT method was used in order to edit the existing type, 

having executed the following command: 

 

In short, once all the extensions are completed, it is possible to use Apache Atlas to create 

and catalog the various nodes of the Data Mesh. A Data Product corresponds, in this proof 

of concept, to a hive database. In turn, the various tables that make up the Data Product 

are of the hive table type, and the domains can be found by clustering the various 

databases (you can also find them by searching for their name in Apache Atlas). The next 

figures show the extensions made in Apache Atlas. Figure 23. Search by Domain 

Designation shows, it is possible to use Apache Atlas, so that by searching for a domain 

name, all the data products that compose it are displayed.

 

Figure 23. Search by Domain Designation 

curl -u admin:hortonworks1 -ik -H "Content-Type: application/json" -X PUT 

http://localhost:21000/api/atlas/types -d 
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On the other hand, by using the side bar to search by data product, it is also possible to 

get a list of the full set of existing data products in the Data Mesh, as shown in Figure 24. 

  

Figure 24. List of existing Data Products in the Data Mesh 

By selecting a given data product, and following the logic presented before in this section 

on the Apache Atlas extension, we can retrieve information such as Data Product Owner, 

Dashboards Access, and Consumption List, as shown in Figure 25. 

 

Figure 25. Data Product Details 

 Once inside the universe of a data product, it is possible to navigate and retrieve more 

details about the tables that are present in each data product's database. In the case of this 
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proof of concept, only one database was considered. The Figure 26 and Figure 27 show 

a possible navigation path from the database of the data product to its tables.  

 

Figure 26. Data Product's Database View 

 

Figure 27. Data Product's Tables View 

Already within each table that Is held in each data product, it is possible to access a new 

set of information that is considered pertinent and more specific to each table, such as the 

data quality report, and the code repository that fuels them. Figure 28 shows the 

extensions made to Apache Atlas to provide these features for each table. Furthermore, it 

is possible to see the data lienage in each case, as shown in Figure 29. 
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Figure 28. Data Product's Tables Details 

 

Figure 29. Data Lineage in each Table 

The navigation flow shown in figure 29 represents an example of the flow that a Data 

Analyst undergoes when discovering and investigating a new dataset. Thus, with the 

previously presented Apache Atlas extensions, it is possible to have a decentralized 

architecture with functional centralization when it comes to cataloging its various nodes 

and data. 
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4.6. DATA QUALITY SCRIPT AND REPORT 

Data quality analysis is a process that accompanies the flow of data in several phases: 

either in the analysis of data quality at the time of ingestion (to understand its context and 

characteristics), after the creation of data pipelines (to infer on the consistency of this data 

with that already present in the data storage systems), and as reports and indicators that 

allow monitoring the data. Data quality is also a conceptual class presented in the domain 

model (section 3.1) and it is seen as crucial when dealing with decentralized data 

architectures. Thus, an automated Data Quality script was developed and integrated into 

this proof of concept. This script allows Data Mesh users to know the data they want to 

use, in terms of quality assessment. For example, a Data Analyst who needs to gather data 

and report based on it, can access, through Apache Atlas, the output of this script and 

quickly infer on the nature of the data that will be used, knowing its schema, maximum 

and minimum values, among other characteristics. A part of this script is shown in Figure 

30.  

 

Figure 30. Data Quality Script 

For this analysis to become more intuitive, the script output is transformed into a 

dashboard, using the Microsoft PowerBI tool, as illustrated in Figure 31. Through this 

dashboard, the user can analyze the percentage of rows with information (not null), the 

number of attributes that contain the hive table in question, the distribution of not nulls, 

nulls and blank spaces in each attribute, the distribution of the lengths of the various 

columns, and even know the maximum and minimum values for each attribute. This script 

was developed in Scala and it was implemented in Jupyter Notebooks that encode the 

various data pipelines of each Data Product. As mentioned earlier in this section, users 

can access this dashboard through Apache Atlas, clicking on each Data Product and 

navigating to the table environment. 
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Figure 31. Data Quality Dashboard 

Data products (e.g. product cost) can also have their own visualizations (not a mandatory 

condition for all data products) and, therefore, it is also relevant to allow various users of 

the Data Mesh to have access to these analytical dashboards. Thus, in the details of each 

Data Product in Apache Atlas, it is possible to find the analytical dashboards that 

correspond to them, using the Microsoft PowerBI tool. The dashboards developed within 

this proof-of-concept are for illustrative purposes only and hold no particular meaning 

neither they intend to display a properly defined and planned data visualization. Figure 

32 show an example of a dashboard developed in this work. 

 

Figure 32. Product Cost's Analytical Dashboard  
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In this proof of concept, analytical dashboards and data quality dashboards were 

developed for each data product, being the remaining dashboard in the appendix. 

4.7. CODE REPOSITORY 

As illustrated in the domain model (section 3.1), it is important to have a code repository 

to store the code from the various notebooks (or other scripts and files) that are being 

developed and that maintain the data pipelines. More than the storage component, a Data 

Mesh user can find a data product in Apache Atlas, and by requesting access to it, they 

can analyze the code that builds and maintains the data pipeline, allowing the users to 

analyze the code and frameworks used for building the data product’s pipelines. Thus, a 

repository on GitHub was used as a code storage component. It is important to note that 

although in this proof-of-concept a centralized type of code repository has been used, it 

is possible that a more decentralized perspective is adopted (in this way, each domain or 

even data product, may have its own repositories). In the repository of the present proof-

of-concept, the folder structure is very similar to the structure presented previously in 

Figure 16, being divided by the various domains and data products. However, there are 

folders that contain information that targets all domains and, therefore, these folders are 

also located in the root of the data repository (e.g.: Data Quality Script folder). The 

explained structure can be seen in Figure 33 Figure 34. 

 

Figure 33. Folder Organization in Code Repository 
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Figure 34. Detailed view of a folder content 

However, although in the context of this proof of concept, there is centralization regarding 

the code repository, this is not mandatory and therefore must be adjusted to the actual 

context of each organization. Moreover, each data product team should choose, among 

the options available on the self-serve data platform, the tool that best fits their needs. 

Assuming that the eventual disparity of choices between the teams does not compromise 

the availability of the data repositories, each team must submit in Apache Atlas the 

address where this code can be accessed and analyzed, if necessary. 

4.8. CONSUMPTION LIST 

The consumption list, as explained before in section 3.1, is the component that allows the 

various users to request access to a particular data product. This list is connected to an 

authentication and authorization mechanism, which allows processing the validity of the 

requests made by the Data Mesh users. It is thus possible to find in this list the set of users 

that subscribe to each data product, and through the security mechanism associated with 

this list, maintain the homeostasis of the Data Mesh, as far as accesses by users is 

concerned. Ideally, this consumption list would be developed using a data security 

monitoring and management technology on a cluster, such as Apache Ranger. However, 

although the setup of this service was done on the cluster of this proof of concept, it was 

not possible to implement this Data Mesh feature, given the time available to complete 

this research process. Therefore, to demonstrate the applicability of the conceptual classes 

presented in the domain model (section 3.1), a Google Form was created. This form serves 

as an example of the consumption list component.  

This access form requires the identification of the cluster, data product team, domain and 

data products to which the access is requested, as well as the reason for this request, and 

the same is later sent to the respective domain owners. The consumption list is available 

in Apache Atlas (thanks to the extension made in this work) and it can be accessed directly 
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by each user. However, these rules (e.g.: sending the access requested to the domain 

owner) and parameters (e.g.: filling in the data product team) were defined in the scope 

of the proof-of-concept and should be extended to the necessary parameters in a real 

context. It should be added that this consumption list can be managed by each Domain 

Owner, as well as by a team assigned to the management and monitoring of the Data 

Mesh data product accesses - each organization should therefore think and build its teams 

in a way that meets its needs and does not compromise the proper functioning of the Data 

Mesh. Figure 35 shows a possible way of filling in the consumption list form, in order to 

request access to a specific data product.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 35. Consumption List Form 
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4.9. DATA MESH COMMUNICATION CHANNEL 

One of the conceptual classes proposed in the domain model (section 3.1), which goes 

beyond the conceptual classes identified during the literature review process, is the Data 

Mesh Communication Channel. This component was created to make the communication 

more direct when it comes to topics related to the Data Mesh. In organizations, there is a 

significant flow of data between teams that often translates into emails, scheduling 

meetings, etc. Thus, the main intention of the communication channel is to reduce the 

entropy associated with communications regarding Data Mesh issues, by creating a 

specific channel for this purpose.  

In the case of this proof of concept, the Slack tool was chosen. In this tool, as many 

channels as necessary can be created and directed to the various domains and data 

products. The connection to these channels is also available in the Mesh and Data Catalog 

(Apache Atlas), so that the various users can directly access these channels and 

communicate more directly and quickly to those responsible for each topic (e.g.: data 

product team). 

 

Figure 36. Data Mesh Communication Channel 
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5. CONCLUSION 

The purpose of this chapter is to present the conclusions drawn during the elaboration of 

this master’s thesis, as mentioned in section 1.5. This chapter is divided into three 

sections, the conclusions concerning the literature review and state-of-art, the conclusions 

of the proof-of-concept, and the future work respectively. The first section summarizes 

the conclusions regarding the concepts explained, the analysis of the motivation for the 

appearance and the various approaches presented in Data Mesh. The second section is 

related to the conclusions retrieved after the realization of the present proof-of-concept 

and, in the future work section, the work to which this master’s thesis is proposed is 

presented. 

5.1. CONCLUSIONS ABOUT THE LITERATURE REVIEW 

The main objective of the literature review process is to enable a better understanding of 

where the present master’s thesis topic comes from. For this, it was important not only to 

understand the whole related work (although scarce) on Data Mesh, but also concepts 

such as Big Data, Data Warehouse, Big Data Warehouse and Data Lake. It was quickly 

possible to infer that there is a huge "unknown" as far as Data Mesh is concerned, from 

its conceptual component to the practical implementation component. When analyzing 

the three approaches exposed in section 2.4 , it is possible to see that although they share 

some bases among themselves (e.g.: Data as a Product concept, guarantee and use of 

DATSIS principles), there is no consistency among them, because as it is an emergent 

architecture there are still no well-established guidelines on Data Mesh design and 

implementation. This last fact justifies the relevance and potential benefit of this master’s 

thesis. 

Throughout chapter 2, the evolution of data architectures over time - from Data 

Warehouses to Data Lakes - was explored. Naturally, and as explained in this chapter of 

the document, each of these data architectures has been demonstrating its limitations (e.g.: 

scalability), and it is within these limitations that the various evolutions have emerged 

until today. As far as Data Lakes are concerned, being these currently the most common 

type of data repository adopted by companies (Dehghani, 2020a), it was possible to infer 

that despite all the advantages associated with them (e.g.: the possibility of a large data 
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injection without worrying about rigid data schemas), they have not come to satisfy 

efficiently the needs of organizations. And so, there is a problem that must be addressed. 

The sections 2.2, 2.3, 2.4 allowed to conclude that Data Mesh is not just about inserting 

new technologies in existing architectures, or adding new capabilities, or reorganizing 

only their components. Data Mesh brings with it the need to change the current paradigm, 

encompassing this change several aspects ranging from the platform's infrastructure itself 

to the reorganization of the teams that work with this platform. The fact that organizations 

make data "agnostic of its nature", when ingested, raises the problem of lack of 

ownership. Now, in an organization where data "belongs to everyone, but in reality, to no 

one" there are, as stated in the related work, problems of data quality - which ends up 

affecting the potential of their analytical value, and so on. So, Data Mesh tries to solve 

this problem making data the true organization’s concern.  

Therefore, it is possible to synthesize, that Data Mesh ensures compliance with DATSIS 

principles, turns data into a product, organizes the various teams and data products 

according to the organizational domains (from which they emerge) and decentralizes the 

whole process (relieving current teams of the pressure of requests they feel), providing a 

self-serve infrastructure, so that the various teams can create and process their data 

products. These are made available in a Mesh's own node, known by all users, who can 

access it according to the federated governance policy present in that node (e.g.: can only 

read the node and not change its content). This way, it is possible to overcome the 

bottleneck felt in the data platform teams and ensure the quality of the data, within the 

organization, as demonstrate by Zalando work in Data Mesh (Max Schultze & Arif Wider, 

2020). Regarding the evolutionary process of science, and according to Kuhn, there is a 

change of the paradigm (Kuhn, 1970).  

Analyzing Netflix and Zalando work, it is possible to conclude that the migration process 

from a Data Lake architecture to a Data Mesh architecture is possible. Furthermore, it is 

possible to realize that the architecture previously instituted (the Data Lake) is reused and 

is part of the Mesh (working, for example, as a node of it). However, when analyzed the 

practical work of both it is possible to infer that there is no similarity in the way Data 

Mesh is implemented and designed - as much as they respect most of its core concepts 

(domains driven approach, data as products, self-serve data infrastructure and federated 
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computational governance). The present master’s thesis topic is therefore justified in this 

"gap". 

There are still many open challenges that need to be studied and developed such as: “What 

are the rigorous and concrete steps that can be followed to implement a Data Mesh?”; 

"What are the conceptual and technological components for a Data Mesh architecture that 

can be easily translated into a real solution?"; or “Will the convergence of data processing 

technologies be beneficial in terms of data quality? Even if this convergence is beneficial 

for the better management of the self-serve infrastructure?”. In short, there is the need to 

stablish the design and implementation of the Data Mesh - this being the main objective 

of this master’s thesis. 

5.2. CONCLUSIONS ABOUT THE PROPOSED APPROACH 

Throughout chapter 3, the produced artifacts are presented: the domain model, the 

conceptual architecture, and the technological architecture. The domain model 

synthesizes the conceptual classes that must be present when building and using the Data 

Mesh. Intentionally, this model mixes more technical components (e.g.: batch 

processing), as well as topics related to the structuring and organization of the data teams 

themselves (e.g.: establishment of a Data Product Team) - since the Data Mesh is exactly 

this paradigm shift at all levels, from those related to infrastructure and technologies, as 

well as the organizational level of the companies, of the people that make up the teams. 

The domain model serves as the ignition for the whole of chapter three, and for the 

artifacts that follow: the conceptual architecture and the technological architecture. The 

conceptual architecture intends, at a high level, to define and make explicit the various 

components (even at the infrastructure level) that are necessary to support the Data Mesh, 

naturally ending up in the technological architecture. This second architecture arises from 

the need to provide companies with tangible solutions of what may be the tools to be 

adopted to build and maintain Data Mesh - and may even, by reviewing these presented 

technologies, infer that they only need to reorganize their mindset, teams, and way of 

working, to build their Data Mesh from within and reuse what they already have. These 

technologies are, however, only examples and suggestions, leaving it up to each company 

to adopt those that best meet its needs. 
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Once these models (artifacts of the master's thesis) were consolidated, the proof-of-

concept was carried out to validate the postulated assumptions. It is concluded, with the 

realization of the proof of concept, that the model of established domains is possible to 

be implemented, corresponding to a functional decentralized architecture. Despite not 

having been implemented in its entirety (which would not be feasible within the scope of 

a master’s thesis), its key elements are implemented and there is, above all, a catalog of 

data and nodes, which encompasses various aspects - the point that centralizes the 

decentralization of the architecture. Phase to the known commonly instituted data systems 

(where there is no such concern in treating data as a product and fulfilling a series of 

metrics to enhance usability), the implemented architecture allows the various users to 

discover in a complete way (and with complete means the team, people, quality, lineage, 

etc. behind it) the data they want to handle. Moreover, all data products share the same 

"space" (since the existing resources allow only one cluster to be used), but are available 

separately, and their access can be granted depending on the authorization given, via the 

consumption list. The consumption list also allows the users that consume each data 

product, to be known. Let's consider that the available services are the services made 

available on the Hadoop cluster, combined with those that go beyond this environment 

but are necessary for the Data Mesh architecture (such as GitHub). Thus, each team can 

develop its data products using the technologies that are most favorable to it, and consume 

the data from each product via the Hive table. It is thus considered that this master's thesis 

fulfills its main goal and the defined objectives. 

5.3. SCIENTIFIC PUBLICATIONS 

The present master's thesis made it possible to publish two scientific papers on the topic 

of Data Mesh, both of which were accepted and presented at the respective conferences. 

The first paper: "Data-Driven Information Systems: The Data Mesh Paradigm Shift", was 

the first Data Mesh scientific paper worldwide (at the time of publication), and it was 

published at 29th International Conference of Information System Development 2021, as 

a vision paper, in collaboration with Professor Carlos Costa and Professor Maribel 

Yasmina Santos. This paper presents the domain model and conceptual architecture.  

The second scientific publication, entitled "Data Mesh: Concepts and Principles of a 

Paradigm Shift in Data Architectures", is the first scientific article that portrays the state-

of-the-art of the Data Mesh topic, and was published in International Confonference 
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Enterprise Information Systems 2021 (Centeris 2021), as a full paper, also by the same 

authors. 

Finally, an empirical paper entitled "Advancing Data Architectures with Data Mesh 

Implementations" has been submitted for evaluation at the 34th International Conference 

on Advanced Information Systems Engineering (CAiSE 2022). This paper was written in 

partnership with the same authors of the previously mentioned papers and aims to present 

the proof-of-concept that aims to validate the models proposed in this master thesis. 

5.4. FUTURE WORK 

After analyzing the existing literature about the concept of Data Mesh, it can be quickly 

concluded that there is still a long path to explore to establish a clear basis for the 

constructs, models, methods, and instantiations of the Data Mesh. Although the concept 

is already being embraced by some organizations, when analyzed the work developed by 

Netflix or Zalando (Justin Cunningham, 2020; Max Schultze & Arif Wider, 2020), for 

example, there are significantly different approaches to accomplish a Data Mesh 

architecture (Justin Cunningham, 2020; Max Schultze & Arif Wider, 2020), but at the 

same time, there are no general models and methods that can be followed, without the 

same being too conceptual to be translated into real-world instantiations. On the other 

hand, there is a relevant core aspect related to the success of the Data Mesh 

implementation: the organizational reorganization - from the rearrangement and 

management of the teams to the company's vision towards data as a product. In this sense, 

not only is necessary to take into consideration the conceptual and technological aspects 

of the design and implementation of a Data Mesh, but also there is the need to consider 

the relationship between this concept and the organizational needs, structure, and 

processes. Finally, it is also necessary to find the contexts and scenarios in which the Data 

Mesh may fail or show significant disadvantages, highlighting opportunities for refining 

and evolving the concept.  

Thus, this master’s thesis, tried to tackle some of these challenges related to the Data 

Mesh concept, which have been discussed throughout this section. This work focused on, 

not only on proposing and demonstrating models and methods at the conceptual level, but 

also at the technological level (major gap identified in the literature), while discussing 

organizational aspects whenever applicable and relevant.  
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However, there are some key points that can still be pointed out as future work on this 

topic: the first and most related to the presented proof-of-concept presented, will be the 

full functional development of the consumption list, using technologies suitable for this 

purpose, such as the Apache Ranger. Next there are the challenges of mapping the data 

within the various data products so that, node to node, there is not too much replication 

of data and effort (the development of a framework that enables this mapping and helps 

contextualize the topic). Finally, there is also the challenge of “change”: whether in terms 

of the impact that this paradigm shift has on the people in the organizations (in terms of 

reorganizing teams, for example), or in how the change of data within each data product 

will be handled in the Data Mesh as a whole. Data Mesh is progressing every day, as new 

contributions come in from all over the world, which does not mean that there is not still 

a long way to go when it comes to consolidating the subject.   
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APPENDIX – DATA PRODUCT’S DASHBOARDS  

This appendix contains all the dashboards developed in this work, both for data quality 

and analytics of each data product. To organize the presentation of this information, the 

data quality dashboards will be presented first, followed by the analytical dashboards for 

each data product.  

 

Figure 37. Data Quality Online Sales 

 

Figure 38. Data Quality Product Cost 
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Figure 39. Analytical Dashboard Profits (1) 

 

Figure 40. Analytical Dashboard Profits (2) 

 

Figure 41. Analytical Dashboard Online Sales 
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