
i

Universidade do Minho
Escola de Engenharia
Departamento de Informática

João Pedro Porto Dias

PhagePro: Prophage finding tool

July 2021

iii

Universidade do Minho
Escola de Engenharia
Departamento de Informática

João Pedro Porto Dias

PhagePro: Prophage finding tool

Master dissertation
Master Degree in Bioinformatics

Dissertation supervised by
Oscar Manuel Lima Dias
Luı́s Daniel Rodrigues de Melo

July 2021

Creative Commons Attribution-ShareAlike 4.0 International
CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/deed.en

A C K N O W L E D G M E N T S

Ever Tried. Ever Failed. No matter. Try again. Fail again. Fail better.

Samuel Beckett

Começo por agradecer aos meus orientadores, Oscar Dias e Luı́s Melo, pelo interes-

sante projecto proposto e pela disponibilidade e prontidão demonstrada na resolução

de dúvidas que foram surgindo no decorrer da dissertação. Um obrigado também ao

professor Miguel Rocha pela ajuda na transferência de mestrado e por me orientar na

busca de projecto de tese.

Aos colegas do laboratorio agradeço a paciência e o tempo dispendidos para me ex-

plicar e ajudar na resolução de problemas mais técnicos que por vezes se demonstravam

uma ’dor de cabeça’.

Aos ’colegas de vila real’ que, embora longe fisicamente, sempre se mostraram

disponveis para ajudar no que fosse preciso e para me dar apoio quando as coisas

corriam menos bem.

Quero continuar por agradecer aos colegas da sala 0.09 e aos colegas de mestrado

pela companhia e o tempo dispendido na partilha de momentos, sejam eles momentos

elucidativos ou momentos de lazer. Reparando bem, todos os membros integrantes da

sala tinhas diferenças significativas e tinham para oferecer diferentes prespectivas. Isso

fez com que a vossa companhia me tornasse uma pessoa mais completa e certamente

me melhorou o meu trabalho. Obrigado.

Quero agradecer à minha familia por me fazerem ser quem sou e por me terem dado

os recursos e apoio necessários para concretizar os meus objectivos de vida.

Este estudo contou com o apoio da Fundação para a Ciência e Tecnologia (FCT)

portuguesa no âmbito do financiamento estratégico da unidade UIDB/04469/2020. A

v

vi

obra também foi parcialmente financiada pelo Projeto PTDC/SAU-PUB/29182/2017

[POCI-01-0145-FEDER-029182].

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I

have not used plagiarism or any form of undue use of information or falsification of

results along the process leading to its elaboration. I further declare that I have fully

acknowledged the Code of Ethical Conduct of the University of Minho.

vii

A B S T R A C T

Bacteriophages are viruses that infect bacteria and use them to reproduce. Their

reproductive cycle can be lytic or lysogenic. The lytic cycle leads to the bacteria death,

given that the bacteriophage hijacks hosts machinery to produce phage parts necessary

to assemble a new complete bacteriophage, until cell wall lyse occurs. On the other

hand, the lysogenic reproductive cycle comprises the bacteriophage genetic material in

the bacterial genome, becoming a prophage. Sometimes, due to external stimuli, these

prophages can be induced to perform a lytic cycle. Moreover, the lysogenic cycle can

lead to significant modifications in bacteria, for example, antibiotic resistance.

To that end, PhagePro was created. This tool finds and characterises prophages

inserted in the bacterial genome. Using 42 features, three datasets were created and

five machine learning algorithms were tested.

All models were evaluated in two phases, during testing and with real bacterial cases.

During testing, all three datasets reached the 98 % F1 score mark in their best result. In

the second phase, the results of the models were used to predict real bacterial cases

and the results compared to the results of two tools, Prophage Hunter and PHASTER.

The best model found 110 zones out of 154 and the model with the best result in dataset

3 had 94 in common.

As a final test, Agrobacterium fabrum strC68 was extensively analysed. The results

show that PhagePro was capable of detecting more regions with proteins associated

with phages than the other two tools.

In the ligth of the results obtained, PhagePro has shown great potential in the discovery

and characterisation of bacterial alterations caused by prophages.

Keywords: Virus, Bacteriophages, Machine learning, Galaxy, PhagePro

viii

R E S U M O

Bacteriófagos são vı́rus que infetam bactérias usando-as para garantir a manutenção

do seu genoma. Este processo pode ser realizado por ciclo lı́tico ou lisogénico. O ciclo

lı́tico consiste em usar a célula para seu proveito, criar bacteriófagos e lisar a célula. Por

outro lado, no ciclo lisogénico o bacteriófago insere o seu código genético no genoma da

bactéria, o que pode levar à transferência de genes de interesse, tornando-se importante

uma monitorização dos profagos.

Assim foi desenvolvido o PhagePro, uma ferramenta capaz de encontrar e caracterizar

bacteriofagos em genomas bactérias. Foram criadas features para distinguir profagos

de bactérias, criando três datasets e usando algoritmos de aprendizagem de maquina.

Os modelos foram avaliados durante duas fases, a fase de teste e a fase de casos

reais. Na primeira fase de testes, o melhor modelo do dataset 1 teve 98% de F1 score,

dataset 2 teve 98% e do dataset 3 também teve 98%. Todos os modelos, para teste em

casos reais, foram comparados com previsões de duas ferramentas Prophage Hunter e

PHASTER. O modelo com os melhores resultados obteve 110 de 154 zonas em comum

com as duas ferramentas e o modelo do dataset 3 teve 94 zonas.

Por fim, foi feita a análise dos resultados da bactéria Agrobacterium fabrum strC68.

Os resultados obtidos mostram resultados diferentes mas válidos, às ferramentas com-

paradas, visto que o PhagePro consegue detectar zonas com proteı́nas associadas a

fagos que as outras tools não conseguem.

Em virtude dos resultados obtidos, PhagePro mostrou que é capaz de encontrar e

caracterizar profagos em bacterias.

Palavras-Chave: Virus, Bacteriófagos, Aprendizagem de maquina, Galaxy, Phage-

Pro

ix

C O N T E N T S

1 I N T R O D U C T I O N 1

1.1 Motivation 1

1.2 Goals 3

1.3 Schedule 3

1.4 Structure 4

2 S TAT E O F T H E A RT 5

2.1 Virus and bacteriophages 5

2.1.1 Virus history 5

2.1.2 Virus classification 6

2.1.3 Bacteriophages 8

2.1.4 Bacteriophage reproduction 11

2.1.5 Bacteriophage identification 13

2.1.6 Phage gene hallmarks 14

2.2 Computational tools 15

2.2.1 Auxiliary tool groups 15

2.3 Machine learning 23

2.3.1 Support Vector Machine 30

2.3.2 Decision Trees 31

2.3.3 Naive Bayes algorithm 32

2.3.4 K-Nearest Neighbors 33

2.3.5 Gradient Boosting 33

2.3.6 Multilayer Perceptrons 33

2.3.7 Logistic Regression 35

2.3.8 Metrics 35

x

C O N T E N T S xi

2.3.9 Hyperparameters 39

2.4 Prophage finding tools 40

2.4.1 PHAST 40

2.4.2 PhiSpy 41

2.4.3 PHASTER 43

2.4.4 Marvel 44

2.4.5 Prophage Hunter 45

3 M E T H O D S 48

3.1 Data collection 48

3.2 Features 49

3.3 Data Pre-processing 51

3.4 Models 52

3.5 Feature selection 52

3.6 Performance evaluation 52

3.7 Model optimization 53

3.8 Protein Annotation 54

3.9 Boundary locating 56

3.10Activity scoring algorithm 56

3.11Galaxy 58

4 D E V E L O P M E N T 59

4.1 Data collection 59

4.2 Feature extraction 60

4.2.1 Bacteria feature extraction 60

4.2.2 Prophage feature extraction 61

4.2.3 Features 62

4.3 Model development, testing and improvement 63

4.4 Boundary location 64

4.5 Activity scoring 65

C O N T E N T S xii

5 R E S U LT S 67

5.0.1 Data collection 67

5.0.2 Feature analysis 69

5.0.3 Feature selection 73

5.0.4 Assessing dataset unbalance 73

5.0.5 Model optimization 76

5.0.6 Model selection 79

5.0.7 Publishing on Galaxy 83

5.0.8 Case Study 86

6 C O N C L U S I O N 91

6.1 Future work 94

Bibliography 96

7 S U P P O RT M AT E R I A L 110

7.1 Details of results 110

A C R O N Y M S

BLAST Basic Local Alignment Search Tool

BLASTp Protein BLAST

PHAST Phage Search Tools

PHASTER Phage Search Tool Enhanced Release

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

dsDNA Double-stranded DNA

dsRNA Double-stranded RNA

ssDNA Single-stranded DNA

ssRNA Single-stranded RNA

SDS-PAGE Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

NCBI National Center for Biotechnology Information

WU BLAST Washington University BLAST

HMM Hidden Markov Models

tRNA Transfer RNA

tmRNA Transfer-messenger RNA

xiii

C O N T E N T S xiv

BLASTn Nucleotide BLAST

ACLAME A CLAssification of Mobile genetic Elements

CDS Coding sequence

PGDR Phage-like dense region

GLIMMER Gene Locator and Interpolated Markov ModelER

DBSCAN Density-based spatial clustering of applications with noise

ORF Open reading frame

PHANTOME PHage ANnotation TOols and MEthods

pVOG Prokaryotic Virus Orthologous Groups

CD-HIT Cluster Database at High Identity with Tolerance

tBLASTn Translated nucleotide BLAST

PAM Point Accepted Mutation

BLOSUM BLOcks of Amino Acid Substitution Matrix

SVM Support vector machine

RF Random forests

DT Decision trees

RBF Radial basis function

TP True positive

TN True negative

FP False positive

C O N T E N T S xv

FN False negative

ROC Receiver Operating Characteristics

AUC Area Under the Curve

ECOD Evolutionary Classification of Protein Domains

Gb Genbank

PPV Positive Predictive Value

L I S T O F TA B L E S

Table 1 Summary list of tools and their most relevant characteristics. Sen-

sitivity and PPV values were taken from the tool publication article

or comparisons made between newer tools and tools already

available. 47

Table 2 Hyper parameters tested for each algorithm. 54

Table 3 Description of the reasons used to evaluate the putative prophage

zones. If any of the reasons are full filled, the zone being analysed

is excluded from the results. 66

Table 4 Feature values for each dataset. There are three types of values

for each bacteria and phage to notice the differences between

each variation of the datasets. Furthermore, differences between

features can be compared, either between bacteria-phage or D. 1

- Bac - D. 2 - Bac, for example. 70

Table 5 F1 score of tested machine learning algorithms with different

scaller methods of dataset one. 72

Table 6 F1 score of tested machine learning algorithms with different

scaler methods of dataset two. 72

Table 7 F1 score of tested machine learning algorithms with different

scaler methods of dataset three. 73

Table 8 Dataset 1 (576983 samples from bacteria sequences and 56253

samples from phage sequences) results for all machine learning

algorithms tested with a balancing method. 75

xvi

L I S T O F TA B L E S xvii

Table 9 Dataset 2 (1398656 samples from bacteria sequences and 141577

samples from phage sequences) results for all machine learning

algorithms tested with a balancing method. 75

Table 10 Dataset 3 (1398656 samples from bacteria sequences and 536532

samples from phage sequences) results for all machine learning

algorithms tested with a balancing method. 75

Table 11 Model performance before optimization. 76

Table 12 Model performance for each dataset balance method after opti-

mization. 76

Table 13 Confusion matrix for each machine learning algorithm before hy-

perparameter tunning. 77

Table 14 Confusion matrix for each machine learning algorithm after hyper-

parameter tunning. 78

Table 15 Number of common zones between the selected models and

the zones predicted and intersected by Prophage Hunter and

PHASTER. 80

Table 16 Table with the algorithm used to train the model and the respective

F1 score. 81

Table 17 Table with the confusion matrix of both models. 81

Table 18 Results for each division of the dataset and model associated with

the common phages. 82

Table 19 Number of common zones between the selected models trained

with the artificial dataset and the zones predicted and intersected

by Prophage Hunter and PHASTER. 82

Table 20 Final candidates and their characterisation. 88

Table 21 Proteins of the final candidates associated with a phages’ lifecycle

function. 88

Table 22 Results for Prophage Hunter with similarity matching. 88

Table 23 Results for Prophage Hunter without similarity matching. 89

L I S T O F TA B L E S xviii

Table 24 Results for PHASTER. 89

Table 25 This table shows the coordinates of each the region in the bacterial

genomes predicted by the two models. These predicted regions

are possible prophages and therefore are candidates to posterior

analysis. 110

Table 26 Table with the number of the candidates proteins assigned to each

function in the phage lifecycle. These functions are vital in the

exclusion of bad quality candidates due to assessing if the phage

has known proteins that can be assign to known phage functions

inside the host. 114

Table 27 This table presents the reason or reasons of the why the can-

didates where excluded of the final result and which ones are

staying in the final result. 118

1

I N T R O D U C T I O N

1.1 MOTIVATION

Bacteriophages are viruses that have high specificity to bacteria and each bacteriophage

strain has a small range of hosts that can infect. Furthermore, bacteriophages have

two lifecycles, lytic or lysogenic. The lytic cycle is an aggressive lifecycle where the

bacteriophage hijacks the hosts machinery to replicate phage parts and create a new

phage progeny until the lysis occur and there is the release of the new phages and the

death of the bacteria. On the other hand, on the lysogenic lifecycle, the bacteriophage

integrates bacterial genome into the genomic pool of the bacteria and successive bacterial

generations called a prophage. In some cases, external stimuli can induce the integrated

genomic material to adopt an lytic lifecycle that can lead to bacteria death.

These organisms are present in large quantities among all types of environments

and have an important role in the dynamic of the environment, independently of the

lifecycle, either by reducing the population of a bacteria or by transducing genes of

interest. Additionally, their genome is very plastic, with the exception of core genes,

meaning that throughout the bacteriophage lifecycles, new proteins could be created

or transferred from one bacteria to another leading to alterations in the dynamics of the

environment.

1

1.1. Motivation 2

These characteristics have awakened scientific interest to explore the possibilities

that bacteriophages have in various industries. One example is in the medical field

where bacteriophages are being used to treat infections without reported side effects,

presenting a possible alternative to antibiotics. Other example that can be explored is

precise modifications of bacteria to produce compounds of interest in an optimized way,

reducing secondary products or energy consumption. But for these to be possible, an

extensive analysis of the bacteriophages is required.

Currently, there are two types of methods to study bacteriophages, wet lab or

bioinformatics approach. The first approach is more precise but it is limited to the specific

situation, offers less generalisation possibilities and requires trained professionals and

specialised facilities to produce good results. On the other hand, the increase of phage

sequencing increases phage knowledge that allows a bioinformatics approach. This

approach has more flexibility to new information, can process more data and does not

require highly trained professionals but lacks the depth to each case that the wet lab

approach offers. Hence, although great strides were made in the bioinformatics field,

there are ways to improve and create bioinformatics tools and help scientists to reach

their objectives.

So in this work, a supervised machine learning approach is used to predict

prophages in bacteria and characterise the found prophages. This approach is based

in structural and compositional differences between bacteria and phages that allow a

mathematical algorithm to detect differences. This type of algorithm is trained with data

features or characteristics that are going to be analysed in every sample and mapped by

the algorithm to form a model. After the model learns all features of the data, it can be

used to predict new samples that the model has never seen. Beyond this type of learning

there are unsupervised and reinforcement learning that learn from data in different ways.

1.2. Goals 3

1.2 GOALS

The main objective is to implement tools that can predict and characterise prophages.

Below the objectives are described in more detail.

• Review of the state of the art on already existing computational tools.

• Analyse the most commonly used computational tools (PHAST, PHASTER, Prophage

Hunter).

• Creating a pipeline that allows the predicting and characterising prophages.

• Implementing the pipeline.

1.3 SCHEDULE

Starting data: November 1st 2019

Week 1-12: Reviewing the state of art.

Week 6-15: Analysing the existing tools for prophage search (PHASTER).

Week 15-30: Developing a pipeline for prophage search and analysis.

Week 31-38: Implementation of the previously developed pipeline.

Week 13-40: Writing the thesis.

1.4. Structure 4

1.4 STRUCTURE

This thesis is organised in five chapters.

In the first chapter, I describe my motivation, goals, and the thesis’ schedule, including

each task’s time frame.

In the second chapter, the state of the art is presented. This chapter includes a brief

introduction to the viral world, describing the history, viral reproduction, and classification,

exploring the bacteriophage thematic. Furthermore, various tools and databases are

described and analysed to clarify the current status quo, and outline objectives.

The third chapter includes steps for each tool structure and algorithm.

The fourth chapter illustrates how the tools and algorithms were implemented.

The fifth chapter presents and discusses the tool’s results in standard datasets to

compare the results with other tools.

The sixth chapter provides the conclusions. This chapter includes future improvements

and other possible goals.

2

S TAT E O F T H E A R T

2.1 VIRUS AND BACTERIOPHAGES

2.1.1 VIRUS HISTORY

In 1977, three divisions were proposed, Eubacteria, Archaebacteria and Urkaryotes,

mostly due to differences in their ribosomes [1]. The nomenclatures was changed to

Bacteria, Archaea and Eukarya to avoid confusion between prokaryote domains [2].

Nowadays, it is possible to prove these divisions through comparative biochemistry and

genomics [3]. In contrast, viruses have been studied by the scientific community for

a long time without being identified, as various scientists noticed an infectious agent

without recognising the exact cause. Only advances in filtration systems and electronic

microscopy, allowed for the isolation these viruses. In 1948, Holmes [4], proposed a

classification into three groups: Phaginae, which infect bacteria, Phytophaginae, which

infect plants, and Zoophaginae, which infect animals [5]. Furthermore, in 1950, the Virus

subcommittee of the International Nomenclature Committee, proposed eight criteria to

classify virus. In 1957, Lwoff summarised viral characteristics that described different

viruses to clarify the subject [6]. Another distinction was proposed in 1962 when Lwoff,

Horne and Tournier suggested a classification based on their genetic material and

characteristics [7]. As more information was becoming available, in 1984, Abeles et al..

5

2.1. Virus and bacteriophages 6

classified virus-based on various characteristics like morphology, genetic material, host

[8], making the classification more precise.

2.1.2 VIRUS CLASSIFICATION

Viral classification has become more reliant on chemical information and morphology, as

more information became available, and the increased complexity of virus profiling. The

division between viruses can be based on four aspects: genetic material characteristics,

capsid symmetry, presence or absence of envelope and other capsid information [9, 10].

Undoubtedly, the viral genetic material alters the phenotype of the virus. Hence, the

virus can be divided by the type of genetic material present, DNA or RNA, and the type of

strand, linear or circular, and double or single. DNA viruses have large variability (single or

double-stranded, linear, or circular) despite high genetic stability. These viruses are highly

regulated, frequently using enzymes from the host, and their gene expression is usually

divided into two phases. The first includes the synthesis of DNA and proteins required for

DNA replication, and the second involves the expression of structural proteins. However,

gene expression can be divided into early gene expression, middle gene expression

and late gene expression. Early gene expression uses hosts machinery (polymerase,

sigma factor and promoters) to initiate gene transcription of promoters needed in DNA

synthesis and used in regulatory functions, namely, repression of early gene transcription,

and transcription of middle genes. In the middle gene expression, various regulatory

factors, and promoters, required in the late gene expression, are transcribed. In late gene

expression, virion components, like structural proteins, and lysis enzymes are produced

[11–14].

Other differentiating virus characteristics include the different host requirements and

with the increase of genome size, the virus becomes more independent. Furthermore,

host’s dependency is associated with the need for host enzymes, like the DNA poly-

2.1. Virus and bacteriophages 7

merase, and deoxynucleotide triphosphate precursors [15]. RNA viruses are divided

into by two groups: riboviruses and retroviruses. Riboviruses are RNA-dependent RNA

polymerase (RbRp) viruses. These viruses need a replicase complex, constituted by

RbRp, helicases, ATPases, and other proteins, to replicate their genetic material [16].

Alternatively, retroviruses will encode reverse transcriptase and retroviral integrase to

convert their RNA to DNA [17]. Compared with DNA viruses, both riboviruses and retro-

virus, show higher mutation rates, associated with fewer mismatch repair mechanisms

[18]. However, repair mechanisms and repair structures, e.g. DNA polymerase, can

replicate genetic material to maintain genetic stability, preventing lethal mutations. An

advantage for the lack of replicative control, is the genetic heterogeneity. Hence, similar

phenotypes can be obtained through different mechanisms, facilitating adaptation to new

environments, having a larger ”genetic range” or robustness. These viruses can also

be classified as positive and negative strand. Positive strand viruses are mostly single-

stranded that encode functional mRNAs. After infection, these viruses can be translated

without other processes. Negative strand viruses cannot produce directly infectious virus

and cannot be translated immediately, needing a transcription process first. Ambience

viruses are a hybrid of both conditions, i.e. can directly transcribe functional mRNA’s

[16].

As mentioned before, viral morphology also weights in the classification of viruses.

The first case is capsid symmetry, e.g. helical and icosahedral symmetry. The capsid

is the membrane closest to the genetic material and is constituted by repetitions of

the same or similar proteins. In helical symmetry, these proteins are placed in a spiral

around the genetic material. Each protein is ordered and, except for the protein chain

extremities, has the same structure, with the same number of neighbour proteins. In

contrast, icosahedral symmetry has a more spherical shape. The icosahedral structure

follows a mathematical rule, and the three-dimensional structure can be calculated.

This structure involves all genetic material, and can act as a limiter on the viral genetic

material’s size and slow evolutionary changes [19]. Additionally, more complex viruses

can have another layer, called envelope. This envelope is composed of lipids and proteins

2.1. Virus and bacteriophages 8

from the virus and the host. Therefore, each envelope will have different compositions,

since the host and the proteins coded by the virus may vary. The different composition

will provide distinct abilities. For instance, different receptors in this membrane will result

in a different capacity to infect hosts. Furthermore, enzymes that could be integrated into

the membrane and facilitate the infection process can also be present [20].

The concept of host in viral classification relies on the specific host range that each

virus has. This range can be defined as the spectrum of host species that can support a

specific viral life cycle. The virus needs to enter the host, release its genetic material,

replicate, or integrate their genetic material in the host’s genetic pool. For all these

crucial tasks, various protein complexes, enzymes and environment conditions are

required and, considering that virus only encode a percentage of this information in their

genetic material, host support is required. This leads to viral dependence on certain host

factors, restricting the virus infection range. However, genetic variations could reduce

this dependence and allow to a broader spectrum of infection [21–23]. Viruses can be

distinguished as plant, animal and bacteria viruses or bacteriophage.

2.1.3 BACTERIOPHAGES

According to the latest ratification (March 2021) of the International Committee on Taxon-

omy of Viruses, or ICTV [24, 25], phages are distributed in distinct taxonomic groups,

according to their morphological characteristics, ranging from phages with dsDNA, ss-

DNA, dsRNA and ssRNA. Additionally, different characteristics in their morphology are

also considered, e.g., in the head proteins or tail proteins (structural proteins). One

specific example is the Order Caudovirales [24] being divided in nine families, accordingly

to the shape of the tail. One example are the three families, Myoviridae, Podoviridae,

and Siphoviridae representing the vast majority of phages. These phage have a tail, a

long protein structure involved in bacterial phage attachment, and a double strand DNA

2.1. Virus and bacteriophages 9

[3, 26]. More examples of tail morphologies are the polyhedral shape group, that has

seven families, having either single or double-stranded RNA or DNA, single or double-

stranded, the filamentous shape group has three families and can have double-strand

or single-strand DNA and finally, the pleomorphic shape group has six families and has

double-stranded DNA.

As the bacteriophage have high specificity to bacteria, an emerging interest

developed in the analysis of bacteriophages to fight bacteria without disrupting the

microbiome [27] and the capacity of viral transduction, i.e., the transference of genetic

material between bacteria, to add traits or to understand how bacteria can evolve from

phage’s [28]. However, the interest in the use of phage’s is not new. In 1931, experiments

were performed by Félix d’Herelle, in patients with bacterial infections [29]. Years later,

Bruynoghe and Maisin, published their work in viral use to treat cutaneous furuncles

and carbuncles [30]. Although this type of therapy was forgotten for many years, in

part, due to the rise of antibiotic treatment, experiments with promising results have

emerged in recent years, e.g. in humans, treatment for infections by Escherichia coli or

Pseudomonas aeruginosa have been tested [31] and, in the food industry, phage therapy

is gaining its place has a regulator of gut problems in animals, precisely controlling

bacteria’s presence. Moreover, in plants and processed food, phage’s have shown

promising results in reducing bacteria’ presence [32]. An impressive characteristic is the

phage abundance in every biome and microbiome, and the role these viruses perform

[33, 34].

This type of treatment has advantages in bacterial infections in comparison with

antibiotics. The specificity of the bacteriophages preserves the microbiome, due to

the phages being described only to affect the intended bacteria, leaving the remaining

biome unaffected, reducing side effects of possible microbiome disruption. Furthermore,

it can affect both Gram-positive and Gram-negative bacteria, only depending on the

chosen phage [35–37]. Also, if bacteria adapt to the virus [38, 39], genetic engineering

can surpass the new bacteria defences [40]. In addition to the use of phages, phage-

2.1. Virus and bacteriophages 10

derived proteins can be used against bacterial infections, namely endolysins [41]. This

characteristic somewhat shows the control that virus have, in this case, in bacteria. Thus,

phage therapy is considered a solution to the growing antibiotic resistance bacteria

[34]. Another opportunity favouring phage study is the evaluation of their capacity for

horizontal gene transfer. This process is denominated transduction whereas genes

are transferred from one bacteria another, using phages as vectors [42]. These genes

can encode antibiotic resistance proteins, leading to further complications in controlling

microorganism populations.

Although phage therapy has promising results on the treatment of bacterial infec-

tions, there are limitations that need to be considered. First, for a narrow and precise

performance against the infection, the bacteria must be identified prior to treatment. One

possibility relies on the use of a broader combinations of phages (phage cocktails). The

treatment outcome could vary between patients, e.g., the speed that the body defences

act. Hence, the results may not be stable and have different results [27]. Another limita-

tion is that the phage used in to infect the bacteria needs to have a lytic cycle, as only

this lifecycle has a predictable outcome of killing bacteria. On the other hand, lysogenic

cycle integrates the bacterial genome and cannot have a immediate response to kill

the bacteria. Furthermore, phage genetic material can be integrated into the bacterial

genome and provide advantages to the bacteria [43], due to this genetic material having

selective benefits to the bacteria concerning the environment or the host, e.g., antibiotic

resistance [44, 45]. This limitation reveals another problem for therapy application. The

bacteriophage genetic material must be identified and sequenced to discard genes

like integrase, which are responsible for integrating of the genetic material and not the

bacterium death, missing the purpose of the phage infection. Other factors include genes

responsible for bacterial virulence and resistance against harsh environments [46].

One example of an interesting case study is Helicobacter pylori. This bacterial

species is highly prevalent in the human population and inhabits the human digestive tract

[47]. However, the relationship between humans and H. pylori is not new, as this bacteria

2.1. Virus and bacteriophages 11

can lead to complications in the human host, e.g. carcinomas, ulcers, and alterations

in the gut microbiome [48, 49]. Usually, the treatment for these diseases involves using

antibiotics like ampicillin or tetracycline. However the rise of antibiotic resistance is a

problematic and socioeconomic limitations are becoming a more significant obstacle for

the simple antibiotic solution, encouraging scientists to look for new alternatives [50–52].

These factors endorse the study of bacteriophages, using them to infect and lyse H

pylori, without causing other complications and side effects associated with the use of

antibiotics. This treatment has shown promising results in other diseases related with

infections caused by, for instance, Staphylococcus or Pseudomonas, independently of

sex or age [53].

2.1.4 BACTERIOPHAGE REPRODUCTION

The phage’s genome path inside a bacteria can be categorised by his reproductive

cycle, e.g. lytic [54] or lysogenic [55] (1) and can be divided into six steps, with three

being optional or requiring external stimuli: attachment (performed by both), penetra-

tion(performed by both), genetic material integration (performed by both), biosynthe-

sis(performed in lytic cycle, lysogenic require external factors), maturation (performed

in lytic cycle, lysogenic require external factors) and lysis (performed in lytic cycle, lyso-

genic require external factors add ref). In both cycles, the bacteriophage adheres to

the receptors in the cell wall. In the lytic cycle, after the introduction of the genome in

the cytoplasm, the bacteriophage will use the cell replication machinery to replicate the

genomic material, leading to the creation of viral parts, e.g. tail proteins and capsid pro-

teins, to assemble more bacteriophage particles. In the end, the cell wall lysis will occur,

and newly created bacteriophage will be released to the environment. In the lysogenic

cycle, after the genetic material enters the host, the phage genome is integrated into the

bacterial chromosome or remains as an episomal element. The phage genetic material

2.1. Virus and bacteriophages 12

integrated into the bacterial genetic pool is called prophage. This process is usually

mediated by the integrase gene that recognises specific attachment sites (based in

genetic material homology) named bacterial attachment site (attB) and phage attachment

site (attP). Posteriorly, the phage genetic material is replicated and passed to its progeny,

without killing the host [56–58]. Sometimes, external stimuli induces replication of viral

proteins, which leads the phage to enter lytic cycle [59].

Figure 1: Schematic represention the steps in the lytic and lysogenic phage lifecycles. On the
rigth (lysogenic cycle), the phage integrates his genetic material in the bacterial genome
passed to next bacterial generations. On the left (lytic cycle), the phage highjacks
bacterial machinery and uses it to produce phage parts until the bacteria is lysed.

2.1. Virus and bacteriophages 13

2.1.5 BACTERIOPHAGE IDENTIFICATION

In vitro options for phage identification in phage identification, e.g. Cryo-electron mi-

croscopy, SDS-PAGE, electronic microscopy, and DNA methods [3]. For example, Cryo-

electron microscopy consists of freezing the sample and then analysing the physical

structure with computer software. These steps need special equipment and a set of

meticulous procedures which have high costs and require time and, specialised technical

expertise [60, 61]. Another example is SDS-PAGE, which consists of protein separation,

based on its molecular weight [62]. Additionally, if the phage has a non-active lytic cycle,

external stimuli, e.g. ultraviolet light, could prove that the bacteria is infected with a

phage by inducing the lytic cycle and producing clear spots in the bacterial culture. Fur-

theremore, as the genetic material is integrated in the bacterial genome, bioinformatics

tools started being used on more detailed analyses. These tools started being used

when genetic sequencing had cost reductions and yield improvements. Such condition

improvements, allowed an accurate read of genetic material that would be used in more

complex and explanatory analyses, by identifying features from the bacterial genome

[63], which derive from compositional differences between the phage sequences and

the bacterial genetic material of different origins, and proteins of interest like integrase.

Furthermore, when analysing gene presence and distribution, phage genes show a

higher homogenised order than bacterial genes, with less strand shifts and higher gene

concentration. Moreover, sequence patterns, oligonucleotide frequencies, amino-acid

composition, and dinucleotide frequencies are differential factors between phages and

bacteria [64–66].

In various studies [67, 68], phage concentration in bacteria was evaluated. An

extensive range of prophage presence in bacteria variating with strain was discovered, in

some cases accounting for ten percent of the bacterial genomes. Genome size seems

to influence the existence and integration as well. Thus, genomes could have suffered

an evolutionary pressure to eliminate all non-essential genetic material. Furthermore,

2.1. Virus and bacteriophages 14

the different phage characteristics can be used as features for phage identification in

silico. The most relevant differences are GC content [69], oligonucleotide frequencies,

codon usage from hosts’ genome, and identity to previously annotated known phage’s

[70]. Another method compares genes with key functions in the bacteriophages, e.g.

integration or lysis. However, this method alone could lead to errors as bacteria can

produce particles that resemble phage structures, e.g., phage tails and bacterial secretion

systems or bacteriocins (antimicrobial compound) [71–73].

2.1.6 PHAGE GENE HALLMARKS

Phage prediction was often associated with genetic structures thought to be related to

phage traits. On the other hand, these structures have a bacterial origin, rather than

having exclusivity in phages. For example, gene transfer agents (GTA) [74] are phage

like particles present in Bacteria and Archaea that help in the horizontal gene transfer.

Additionally, there are pathogenic islands [75], consisting in additional genes received by

horizontal gene transfer and an encapsulins [76] that are a shell-forming proteins.

Phages can easily lose or gain genetic material, which leads to great diversity and

small percentage of redundancy in their genetic sequences. Furthermore, this suggests

that most genetic material encode genes and consequently, have a higher GC content.

Another factor that affects viral genetic composition is the host. Phages tend to adapt

their genetic material to the host, not being recognised by the proteins and enzymes that

degrade foreign DNA [77–79]. Hence, phage genetic mosaicity must be considered as

an essential feature in phage evolution. Thus, sequence recombination is frequent in

phage’s [80] and suggests that phage characterisation through genetic material would

be almost impossible. However, essential genes tend to maintain their identity, such as

head or tail genes, genes involved in DNA replication, and nucleotide metabolism genes.

2.2. Computational tools 15

These genes are maintained to keep structure and interactions between genetic material

avoiding loss of functions [81].

In vitro prophage identification has disadvantages, e.g. specialised workers and

product costs, when used in a larger and more detailed analysis. Computational tools

that can be used in prophage prediction, like PHAST [82] (recent version is PHASTER

[83]), PhiSpy [84], Prophage hunter [85] are available. These tools help scientists avoid

unnecessary steps in their research, such as processing DNA sequences, cutting costs,

time and redirecting attention for investigation improvement.

Nevertheless, the tools available at one given moment are only as good as the

information available , therefore, with the increasing knowledge availability in databases

and the growth of data complexity, an update to tools that can analyse, and correlate data

is of great need. Furthermore, new analyses and new approaches that can go along with

the advances of experimental tools to answer same or new problems create a vacancy

for new research, new work, and new tools.

2.2 COMPUTATIONAL TOOLS

2.2.1 AUXILIARY TOOL GROUPS

The task of creating a main tool capable of predicting prophages integrated in bacteria

genetic material is not a linear task and several auxiliary tools have to be put together to

evaluate the input. The number of tools and the complexity depends on the main tools’

pipeline and, auxiliary tools can be grouped based on their objective.

2.2. Computational tools 16

Homology search group

This group includes tools used to search sequences in databases that could be related

to the input sequence. The main tools are BLAST [86], RAPSearch [87] and DIAMOND

[88].

BLAST

BLAST or Basic Local Alignment Search Tool is a widely used bioinformatics tool that

performs sequence alignment, e.g. nucleotide sequences to a nucleotide database

(BLASTn), translated nucleotide sequences to a protein database (BLASTx), amino acid

sequences to translated nucleotide databases (tBLASTn), amino acid sequences in

protein databases (protein BLAST) and others [89]. This tool aligns sequences scoring

matches, mismatches, gaps, and content percentage. Commonly, used matrices include

PAM-30, PAM-70, BLOSUM-45, and BLOSUM-62. The program will return similar

sequences and the score, e.g., e-value and bit score.

RAPSearch

RAPSearch or Reduced Alphabet based Protein similarity Search and the improved

version, RAPSearch2, are tools used to search homology between short reads. A

key feature presented by this program is speed. The program sacrifices sensitivity for

speed, approximately, 100-fold faster than BLAST. This is achieved by reducing sequence

length, translating the DNA or RNA sequence to a protein sequence and reducing search

alphabet redundancy. The reduction of the alphabet is only made on chemically and

structurally similar amino acids, e.g. isoleucine and leucine, that, when replaced, do

not affect the final structure or function and, consequently, the result. Furthermore, the

program uses a seed extension approach, finding the maximum number of highly similar

seeds (subsequence) before evaluating and extending them.

2.2. Computational tools 17

DIAMOND

DIAMOND or double index alignment of next-generation sequencing data is a tool

used to search homology between sequences. This software claims to be 20,000

times faster than BLAST with the same level of sensivity (99%). This feature is made

possible with better memory bandwith management. Concretly, DIAMOND also uses

the seed and extension aproach, where similar subsequences are searched and their

localisation stored in an index. DIAMOND uses a doble indexing, sorted lexicographically

and traversed together, contrary to BLAST. Furthermore DIAMOND uses longer seeds

characterised by weigth and shape. These two parameters are used to describe the

number and layout of seed positions. DIAMOND also uses the a reduced amino acid

alphabet, similar to RAPSearch.

HMMER Tools

Usually, sequences are identified using alignment tools like BLAST, aligning sequences

against databases, identifying it, or finding their homologous sequences. This method

proved efficient and fast, but difficulties arose when aligning distant sequences. Thus,

profile searches emerged. This approach considers positional information and can

calculate relations between sequences. One of the profiling types are Hidden Markov

Models. This algorithm can find patterns in sequences, analysing each position as a

state and calculating the next step. One example of their use is the analysis of proteins to

determine their function and structure or finding homologous sequences. Furthermore, it

can be used as an evolutionary algorithm to predict sequence and organism evolutionary

behaviour [89].

HMM tools, available at (http://hmmer.org/) [90], can be used to analyse proteins from

genomic data, including tools such as pHMMer, HMMsearch, HMMscan and jackHMMer.

PHMMer searches for protein sequences in proteins databases and allows gaps in the

sequences. HMMscan searches Pfam for protein sequences. HMMsearch searches for

2.2. Computational tools 18

profiles in a proteins sequence database. Lastly, jackHMMer searches protein databases

for profiles, protein sequences or multiple sequence alignment. All algorithms use

thresholds to select proteins of interest.

In metagenomic data, a HMM phage profile was created using annotated phage

proteins from RefSeq. The data was then clustered and curated, and the database vFAM

was assembled.

Gene finding tool group

As the name suggests, this group includes tools for finding genes and translation initiation

sites. This analysis is done when the number of genes is used to evaluate the input

genome or when it is pertinent to analyse and annotate the functional genes in the

genome to search their sequences in databases. Several studies have been with tools in

this group [91–94] and their results suggest that there are three main tools, GLIMMER

[95], GeneMark or GeneMarks [96] and Prodigal [97].

GLIMMER builds an index for the whole genome and then differentiates coding from

non-coding genes using interpolated Markov models, whereas GeneMark analyses the

FASTA file using an inhomogeneous Markov chain model depending on the sequence

type. Prodigal runs differently by scanning all the sequence for stop and start codons,

scanning ORFS and saving all guanines and cytosines in each codon, building a frame of

model bias to score the start in ORF length and GC codon position, connecting all nodes.

A log table, created from 6-mer subsequences, is used to score each gene. Each gene

is posteriorly connected with nodes and the genes with a positive score are chosen.

tRNA SEARCH TOOLS

Transfer RNA sequences have become an interesting topic in phage location, due to their

importance, in phage insertion and protein expression [98, 99]. This led to the necessity

2.2. Computational tools 19

of development and implementation of tools that could predict where tRNA are located.

Between all the existing tools, tRNAscan and Aragorn have been used the most times in

phage locating tools.

tRNAscan-SE [100] is a tool to search for tRNA genes in genomic sequences, and

is highly used in prophage finding tools, due to tRNA being one of the markers for the

boundaries of prophage. This tool accepts a DNA or RNA sequence in FASTA format and

uses the tRNAscan and the Pavesi algorithm to find putative tRNA genes. The results of

both tools are merged. The putative tRNAs are then analysed by the covels algorithm

[101], a covariance model originated from the alignment of tRNA. If the score is above

twenty bits, the zone is checked for pseudogenes and secondary structures, followed by

anticodon and intron analyses, and the result of the discovered tRNA genes is outputted.

Aragorn [102] implements a heuristic algorithm that will search a sequence for certain

patterns. More concretely, this sequence will be parsed to find possible loops in the DNA

sequence that can represent tRNA genes. These loops are constituted by four stem

regions (A, T, D, C) and four loop regions (T, D, C, V). Aragorn searches for loops by

locating a specific subsequence corresponding to the T-loop and to the T-stem. Starting

from the T-stem, the program will try to locate a specific motif corresponding to the A box,

followed by the D-stem and D-loop. Between the D-stem and the T-stem, the A-stem is

formed. The V-loop surges upstream the T-stem. Finally, the C-stem and C-loop appear

when a specific pattern is found between the D-stem and T-stem. All the possible loops

are evaluated with BRUCE program [103], among other criteria.

Databases

Databases are a crucial support for every tool and pipeline. They store all the prevoous

information produced and allow constant creation and knowledge improvement. Addition-

ally, a key feature of databases is data comparison, i.e., redundancy and incorrect data

2.2. Computational tools 20

are not included in future works, removing possible errors that could arise from altered

results.

Depending on the type of data required, there are numerous databases, some con-

nected to others and some just storing a particular subject data. In biology and in phages,

several databases can provide reliable data.

Pfam

Pfam [104] is a database created for protein families and their HMM profiles. Each entry

in the database is analysed by HMMer tools, which build a HMMer profile. Then the

sequences are queried against Pfamseq, curated and their HMMer profile is identified.

Pfamseq was built with only reference protein sequences from UniprotKB [105] to improve

speed and resource management, due to the data’s growth (size and complexity). In

the database, entries are stored by different types like family and domain, being these

the most representative. The Evolutionary Classification of Protein Domains (ECOD)

[106] is used to group entries in clusters with evolutionary relationships. This database is

available at https://pfam.xfam.org/.

NCBI database

Created in 1988, the National Centre of Biotechnology Information (NCBI) is a biological

database that gathered and maintain previously created databases, i.e., GenBank has

become an excellent support for the scientific community. NCBI harbours various online

resources, ranging from data repositories in literature, health, genomes, genes, proteins,

and chemicals to online biological data analysing tools, like BLAST. One of the most

important features is the close relation with the European Nucleotide Archive (ENA) and

DNA Database BANK of Japan (DDBJ) and the scientific community, harbouring new

knowledge, while sharing it world-wide and keeping researchers up to date with the

work performed in other institutions. Additionally, NCBI provides the Entrez information

2.2. Computational tools 21

retrieving system Application Programming Interface (API). This tool allows the user to

retrieve information from the database, parsing all the information and outputs [107]. This

database is available at https://www.ncbi.nlm.nih.gov/.

PVOG

Prokaryotic Virus Orthologous Groups (pVOGs) [108] is a database that provides annota-

tions of viral proteins, gene identification, and phylogenetic analyses. It was constructed

based on entries from GenBank and RefSeq. Records were manually curated to eliminate

non-relevant data. The first draft offered 2912 virus, 77 archeal virus and indeterminate

virus. pVOG uses GeneMarks [96], a tool that uses heuristic methods (Markov Models)

for predicting the beginning of genes in bacterial genomes (predicting 10393 genes), to

improve data quality. Orthologous gene clustering was performed by masking the most’

distant’ genes and blasting them all-against-all. The new dataset (pVOGs) was compared

to the old dataset (POG) to reduce redundancy. Old entries were replaced with new

RefSeq references and new and more accurate protein annotations, for instance, gene

start and stop.

This dataset was made available in 2016 and updated several times. All information

are available in http://dmk-brain.ecn.uiowa.edu/pVOGs/.

ACLAME

ACLAME or A CLAssification of Mobile genetic Elements was established in 2003 and has

studied and gathered curated information of agents that can move genes between organ-

isms or inside the same organism [109, 110]. ACLAME uses an HMM pipeline to process

proteins based in similarity with other proteins and finds their family and characteristics,

thus classifying mobile genetic elements (MGEs). This pipeline uses a Markov clustering

algorithm to produce families represented with a set of characteristics. A gene ontology

2.2. Computational tools 22

algorithm is used to perform functional annotation to further improve proteins recall.

More information about ACLAME can be found at http://aclame.ulb.ac.be/Classification/

description.html .

Sequence clustering tools

Biological data clustering is a method that has become important with the appearance

of databases and growing quantities of data. One feature of this method is sequence

comparison. This creates the possibility of establishing ‘connections’ between sequences

with domain decomposition, sequence comparison manner, sequence similarity measure,

cut-off threshold and transitivity [111]. Two examples of these tools are CD-HIT [112]

and DBSCAN [113]. CD-Hit is a clustering program that uses a greedy algorithm, i.e.,

an algorithm that usually does not reach the best global solution, but quickly obtains a

good local solution. The tools that use this program are fast and efficient when analysing

a large set of sequences. CD-Hit starts by organising the sequences by decreasing

size order, where the first sequence represents the first cluster. Then, the program

compares the next sequence with the existing cluster and, if there is a similarity above

the established threshold, the sequence is associated with that cluster. If the similarity

does not reach a predetermined threshold, a new cluster is formed, represented by

that sequence. This comparison is performed until there are no sequences left. The

principle is that if sequences have a number of equal peptides, there is similarity between

sequences. The filtration mechanism is based in words. There are three types of

clustering namely partition-based clustering, hierarchical clustering, and density-based

clustering.

DBSCAN [113] or density-based spatial clustering of applications with noise belong to

the last one [114]. This algorithm works by defining a point as the centre of a circle and

associating all the points inside the area of the circle to that cluster. This algorithm only

requires a minimum number of circles that the algorithm will create and the radius of the

2.3. Machine learning 23

circles (epsilon). By establishing a defined radius, this algorithm allows outlier (noise)

identification by isolating points that do not belong to any of the clusters, contrary to other

algorithms that would be more malleable when establishing the desired cluster.

2.3 MACHINE LEARNING

Machine Learning (ML) [115] is a field of artificial intelligence, representing a different

software design approach. Traditionally, programming uses rules and code to form an

output, whereas machine learning uses algorithms and data to create the program.

This method is used in bioinformatics in various fields, e.g. evolution, genomics and

proteomics. The exciting features of machine learning are data handling and processing

complex and variate data in large quantities. For instance, in phylogenetics, machine

learning can be used to construct phylogenetic trees; in genomics, it can be used in gene

finding or motif identification; and proteomics to predict protein function and structure. In

general terms, machine learning suits a function to a task as results can be extrapolated

from this function without knowing the result a priori. Hence, certain concepts need to be

considered to understand this field.

Concepts

• Input: Raw data that represent the reality of the problem. Each input is divided

in samples or instances that should be independent of each other, in order to not

create learning problems. Features describe each sample.

• Feature:Observation made to each sample to explain the problem and can be

continuous or categorical. Furthermore, each feature can be independent or

dependent. If a feature is independent of other features, it is a good feature to

describe the samples and the problem. If a feature is dependent on other features,

2.3. Machine learning 24

normally it is the output or the feature that the other features influence and predict.

Good variable need high variance and low correlation among each other.

• Dataset: Data gathered in a database table or matrix, where in the row are samples

or instances and in the columns are the features. Normally one of the columns

represents the output, the target to predict. The dataset can be divided into

training and test datasets for the two machine learning phases, training and testing.

Alternatively, the dataset can be divided in several sub datasets where all the data

is used to train and test sequentially.

• Training phase: Process of learning is performed. The algorithm parameters are

adjusted to learn all the data patterns and relations, to produce the respective

output. The result of this process is a model.

• Model: Explains the relation between the data and the output. If a model is

successfully trained, it can be used in data outside the data used in the training

phase.

• Testing phase: Part of the dataset not used in the training phase is used to evaluate

how successful the training phase.

Figure 2 shows an example of a standard workflow for supervised machine learning.

Figure 2: Example of a machine learning workflow for model development. In this case the
workflow is associated with a supervised learning algorithm.

2.3. Machine learning 25

Pre-processing

Pre-processing is a crucial step for good quality data. Working with bad data can lead

to training issues and create a poorly trained model in testing and deployment. Various

steps can be performed to avoid such problems.

The first step when analysing raw data is to handle missing data, which can be

classified as ‘Missing Completely At Random’ (MCAR), ‘Missing at Random’ (MAR), or

‘Missing Not At Random’ (MNAR) [116]. The first problem is when values are missing

randomly without relation. Such a problem is overcome by removing or substituting the

missing value by an extrapolated value, or replacing it with an average value, i.e. mean,

median or mode of that feature (column). Removing the row involves the loss of a hole

sample which is not the best solution, for small datasets. Data replacement, despite

not having lost information, can lead to an overepresentation of unreal values. Missing

values dependent on other features are another problem. In this case the problem can be

solved by dropping the column or by aggregating features. The last problem is acquiring

data meaning that data extraction needs to be revised and corrected. Other problems

are duplicated and inconsistent values, which are associated with human errors, either

by removing the row or correcting the value.

The second step is encoding categorical data, which is an optional step, depending on

the used machine learning algorithm. For instance logistic regression or support vector

machines, cannot recognise and use non numerical data. Hence, encoding consists

on converting categorical data to a unique value. Categorical values can be divided

into ordinal (with inherent order) and nominal (without inherent order). Ordinal data,

even when encoded must keep the order between the categorical value to preserve all

information thus, not every encoding method works well. Encoding methods, like one-hot

encoding, label encoding, ordinal encoding, binary encoding, have specific methods of

maintaining data information and relations. For example, one-hot encoding creates the

same number of different classes of categorical data, and vectors and encodes the value

of ‘1’ to the vector of the respective class and ‘0’ to the other vector. On the other hand, to

2.3. Machine learning 26

preserve class relations, label encoding creates a vector with crescent values to simulate

order between classes.

The third step is feature scaling, which rescales all features from the original scale

to a finite scale, usually in the ranges of [0,1] or [-1,1] using scalers such as Min-Max

scaler, Standard scaler, Max abs scaler, Robust scaler, quantile transformer scaler. This

step is crucial to avoid features having larger weights in the learning process, such

as distance-based algorithms and is performed by rescaling features’ values from the

original scale to a finite scale, normally [0,1] or [-1,1]. A short description of the scalers

below.

• Min-max scaling: Transforms feature values by using maximum e minimum values.

• Standard scaler: Transforms feature values using mean and standard deviation.

• Max abs scaler: Transforms feature values using maximum absolute value.

• Robust scaler: Transforms feature values using quantile range.

• Quantile Transformer Scaler: Transforms feature values using quantiles information.

Feature selection

As mentioned before, features are used to describe the distribution of the population in the

problem. Nevertheless, not all features are good descriptors. Bad features are irrelevant

to the problem or redundant, leading to overfitting and high model complexity without

improving the results, increasing computational costs and time consumed. Various

feature selection methods have been implemented to resolve possible problems that

originated from bad feature. These methods balance the dataset reduction with the

model performance and can be categorized into three groups [117]:

• Filter method: This method uses a value threshold to exclude columns with lower

variance than the threshold value, with only, considering column variance without

2.3. Machine learning 27

creating connections to other columns or the output. Other filter types use the

correlation between columns to exclude one of those with a higher correlation (near

1), meaning that having both columns will not bring any relevant information and

excluding it will not affect the result [118].

• Wrapper methods: These methods try to find which the best combination of features

and can be implemented in various ways depending on the technique used to

remove features.

– The first technique is backward elimination where the model with all the data is

inserted into the algorithm and, iteratively, columns (features) will be removed,

and the model’s performance will be evaluated. If the performance of the

model is altered, the column will not be removed.

– The second technique is Recursive Feature Elimination, consisting on a start

model with a determined number of features that will be fitted to the data,

recursively, resulting only in the best features.

– The third technique is forward search where the algorithm will start with a

model with one feature, adding subsequent features at a time and evaluating

the model’s performance. This type of method is greedy and will give the best

model with the best features but is more time and computational costly [119].

• Embedded Methods: These methods are included in machine learning models,

where during the training process, the training algorithm will store the best features

for posterior iterations. LassoCV and tree-based models are examples of this type

of method [120].

Splitting data

After ensuring the good quality data and relevant to the problem, the data needs to

be split into training and testing dataset to validate the model. The division needs to

2.3. Machine learning 28

ensure enough data for training to avoid over and underepresentation between outcomes.

Hence, several methods have been developed to divide the data [121].

• Holdout: Simple division of the dataset in training and testing set, normally using

most of the data to train and the rest for testing. This method has the problem

of increasing model bias due to not using all the data to train and test, leading to

under representing data.

• Cross-validation: This method divides the dataset into subsets without replacement,

using it for training and testing until all data is used. Thus, the prediction error will

be calculated with all data, instead of only using one part to reduce classification

bias. Examples include leave-one-out, leave-out-k cross-validation, stratified K-Fold

Cross-Validation and Leave-P-Out Cross-Validation. The first leaves an almost

unbiased model but has high variance that can lead to unreliable estimates. The

leave out k cross-validation divides data into k subsets using one subset to test and

the rest for training. The stratified k-fold cross-validation is used to improve models

with imbalanced datasets as this technique ensures, approximately, the number

of samples in each class. The last method leave-P-Out Cross-Validation leaves a

determined number of samples out instead of a proportion, having a lower bias and

requiring high computational power [122].

• Bootstrapping: Contrary to cross-validation, bootstrapping reuses samples to

estimate a population statistics and create new sample population maintaining the

sample distribution. Bootstrapping takes a single sample and uses it to estimate the

population and their features recursively until the desired size is achieved. There

are three bootstrapping methods nonparametric, semiparametric and parametric

[123].

2.3. Machine learning 29

Learning methods

The learning process is the most crucial step in the machine learning workflow. This step

dictates how an algorithm recognizes patterns in data and creates the model used to

classify wanted output. Thus, the choice of the learning algorithm, which can describe all

the data and be extrapolated to unseen data, is an important task. To this end, learning

algorithms can be divided into three major types:

• Supervised learning, where the input data is split in training and testing data and

have known labels associated, allowing to train the model with the training data

and the label data, build a model and then test the model, by giving the model the

testing data without the labels (predicting results) and then comparing the results

with the true test labels. Additionally, considering the data and problem premises,

two types of algorithms can be used, regression or classification algorithms.

– Regression considers that the output (Y) for a determined input data is con-

tinuous. This type of supervised learning is associated with an error function,

e.g. Mean Squared Error (MSE) or Root Mean Squared Error (RMSE), due to

continuous results, where each point has variant differences compared to the

True results. The main objective for these models, is to have a robust model

that can generate outputs for variate data with the smallest error. Examples

of regression algorithms are linear regression, support vector regression or

logistic regression.

– Classification algorithms have known data labels associated and classify the

output with a finite and determinate value. These models are evaluated with

metrics, e.g. accuracy or recall, trying always to maximise these values, with

a model that can produce results from the broadest data possible. Examples

of classification algorithms are support vector machines, random forest, and

Naive Bayes.

2.3. Machine learning 30

• Unsupervised learning is not performed by splitting the data into train and test and

the input data does not have labels. Depending on the algorithm used, patterns are

found in data and results are drawn from it. These algorithms are used in clustering

problems, (e.g. k-means) and dimensionality reduction (e.g. principal component

analysis.

• Reinforced learning uses different concepts to create a model. In this case, an

agent, the entity that acts, has a state in an environment, in which it will act. The

action performed by the agent will change the environment, which will affect the

state and produce a reward, that can be negative or positive. The perception that

the agent has of the current state is called mapping. If the agent analyses the

next environment according to the possible actions he could take, this action is

called policy. The function that the agent will try to improve has the best reward

according to the current state. In model-based reinforced learning, the agent makes

an action based on previous information, using a model created with previous

actions and consequences (changes in the environment and rewards). If the action

only considers the current state and reward, it is called a free-model reinforced

learning [124]. Furthermore, two types of reinforced leaning may be considered,

positive and negative. The first promotes performance maximisation, while the

other identifies which steps are detrimental to the performance.

Based on the existing literature, supervised learning algorithm are the most used for

phage data prediction [125]. The most common machine learning classification algo-

rithms are support vector machines (SVMs) and random forests (RF) [126].

2.3.1 SUPPORT VECTOR MACHINE

Support Vector Machines (SVMs) create a high-dimensional map with the data features,

and iteratively try to maximise the distance between the closest data points. SVMs

2.3. Machine learning 31

separated into linear SVMs, i.e. hard-margin and soft margin and non-linear SVMs, which

can compute a new feature space via the use of kernel funtions. Hard-margin SVMs can

separate only linear sperable data, while the soft margin adjusts to misclassifications by

changing the margin positions. Regarding Kernel functions, for instance, the polynomial

kernel tries to adjust the hyperplane to the data with a polynomial transformation, while

the radial basis function uses the distance from the points to the centre to adjust the line

and improve classification [127]. The following figure 3 is a schematic representation of

SVM.

Figure 3: SVM schematic representation, showing the separation of two data classes by maxi-
mized margins and a optimal hyperplane. Adapted from [128].

2.3.2 DECISION TREES

Decisions trees 4 are decision structures that separate data features through various

nodes where each split is evaluated for the cost to the accuracy keeping the lowest

cost in the split. Hence, the solution is ‘greedy’ and not the best overall, leading to a

specialisation of the tree to predict one characteristic. There are several methods to

improve trees, e.g. stopping splitting features to avoid overfitting or pruning by removing

branches that have low importance. The best split occurs when the maximal difference

between branches is achieved. One example of the use of decision trees is the random

forest algorithm that votes the best decision tree to classify a specific characteristic

2.3. Machine learning 32

maintaining a low correlation between decision trees but a strong capability to predict

various data types when in a group.

Figure 4: Representation of a decision tree. In this scheme, there are three distinct types of
nodes. The root node, has no ’parental’ nodes and two ’child’ nodes. The other type
of nodes are nodes with child nodes and parental nodes that can be called decision
nodes and the terminal nodes that only have parental nodes.Adapted from [129].

2.3.3 Naive Bayes ALGORITHM

The Naive Bayes algorithm assume the conditional independence of the features ac-

cording to each class with each feature having its weight in the classification [130].

This assumption is using both the Bayes theorem and the Naı̈ve assumption. The first

calculates the probability of an event happening with the occurrence of a previous event.

The second Naı̈ve assumption is that each feature is independent of the others.

From these assumptions, there are several applications such as, the Gaussian Naive

Bayes classifier, where the continuous values are assumed to have a normal distribution,

2.3. Machine learning 33

multinomial Naive Bayes, where values have a binomial distribution and Bernoulli Naive

Bayes, where features are independent Boolean inputs.

2.3.4 K-NEAREST NEIGHBORS

The k-Nearest Neighbors algorithm can be used in regression or classification problems.

This type of learning algorithm receives the data and tries to classify dependent variable,

based on the distance from the point to the near neighbours, using distance functions

like Euclidean (direct distance between two points) or Manhattan (absolute sum of the

difference between two points).

2.3.5 GRADIENT BOOSTING

Gradient Boosting Algorithm uses various learning algorithms to increase the model’s

robustness, suiting the best learning algorithm to the input data. This algorithm can

be compared to the random forest algorithm, where specifically trained trees are used

to classify the results, while the gradient boosting algorithm uses different learning

algorithms to classify data better.

2.3.6 MULTILAYER PERCEPTRONS

Multilayer Perceptrons (MLP), Convolutional Neural Networks, and Recurrent Neural

Networks are Artificial Neural Networks. These algorithms work as the brain by mimicking

the behaviour of passing information between layers of neurons leading to the creation

and specialization of several neuron architectures best suited to different problems.

2.3. Machine learning 34

An MLP network consists of an input layer, a hidden layer(s) and an output layer and

each layer is composed of neurons, that hold or process information, as shown in figure

5. The input layer has neurons representing the problems information and ideally has the

mapping of all the data. The hidden layer is composed of several neurons specialised

in making a specific prediction of output by receiving information from the anterior layer

and returning a response to the posterior layer. The output layer is responsible for

outputting the predicted values. Besides the layers and neurons, weights and bias are

important factors in a neural network. These parameters influence the activation of

neurons between layers. The activation process consists of adding all weighted inputs

to a neuron and using an activation function (or transfer function) for calculating the

neuron’s value. If the value is above the threshold, the that neuron is activated. Both

weight and bias will be randomized and changed between layers to adjust to the data

and outputs [131].

Figure 5: Representation of the MLP supervised algorithm with three layers. Adapted from [132].

2.3. Machine learning 35

2.3.7 LOGISTIC REGRESSION

Logistic regression uses the logistic function on the data to find binary dependencies

in the data. If the task is a regression problem, various algorithms can be used. The

simplest is linear regression, where the dependent variable (Y) linearly depends on

an invariable feature (X). If there is more than one invariable feature, the problem is

considered multiple linear regression, otherwise simple linear regression. This algorithm

follows the Y = mx + b formula.

2.3.8 METRICS

The testing phase evaluates the training process performance. In this phase, the data

that was separated from the training dataset will be predicted using the trained model

without using the true labels.

In classification, after prediction, the true labels are compared to the predicted labels

and fours scores will be calculated, true positives (TP), true negatives (TN), false positives

(FP) and false negatives (FN). Considering an label/ output X, the true positives are the

number of samples with label X which the model correctly predicted true negatives are

the number of samples without label X which the model correctly predicted that label; the

false positives are the number of samples that the model incorrectly assigned with label

X; the false negatives are the number of samples that the model incorrectly assigned

other label. These metrics can be displayed in a confusion matrixwhich allows calculating

the following scores.

2.3. Machine learning 36

Figure 6: Confusion matrix representation for binary classification . Adapted from [133] .

• Accuracy: Accuracy measures the number of correct predictions in all predictions.

Accuracy =
TP + TN

TP + FP + TN + FN

• Recall: Capacity of predicting a label in all the samples that have that label.

Recall =
TP

TP + FN

• Precision: Fraction of correct predictions in all the predictions of that label.

Precision =
TP

TP + FP

• F1 score: Recall and precision are important metrics to evaluate how the model

performs but should not be used independently. If recall has the highest value,

precision will have the lowest and vice versa. Thus, a trade-off between precision

and recall is needed to simultaneously find the best possible value to both metrics.

F1 score proposes a harmonic mean between the two metrics, not to be sensitive

to extremly large values.

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall

• ROC/AUC curve: The Receiver operating characteristics (ROC) evaluates the

relation of recall and false-positive rates. Furthermore, the area under the curve

2.3. Machine learning 37

(AUC) parameter can improve the model scoring due to calculating the area under

the curve created with ROC.

Figure 7: ROC/ AUC representation, where TPR is the true positive rate and FPR is the false
positive rate. The area in blue is the area to be maximised. Adapted from [134].

On the other hand, it is not possible to calculate the previous metrics in regression

problems. In this case, the model’s performance is estimated by calculating the difference

error between the true value and the predicted value, using error functions, such as,

Mean Squared Error, Root Mean Squared Error, Mean Absolute Error, R squared and

adjusted R square.

• Mean Squared Error: Squared difference between points and the regression line.

2.3. Machine learning 38

• Root Mean Squared Error: Standard deviation of the prediction errors. The pre-

diction errors are calculated by the difference between the regression line and the

predicted points.

RMSE =
∑(Predicted − Actual)
Numbero f observations

• Mean Absolute Error: Sum of the difference of every true point to predicted point

divided by the number of points.

MAE =
∑(abs(Predicted − Actual))

Samplesize

• R squared: Measures how much variance does independent variables explain in

dependent variables.

Rsquared = 1 − (Explainedvariance)
Totalvariance

• Adjusted R squared: Modification of R squared with sensibility to the number

of predictors in the model. This metric considers the number of predictors that

the solution has, increasing the score when the predictor has better results than

predicting by change and decreasing the score when the predictor has worst results

than predicting by chance.

AdjustedRsquared = 1 − (1 − Rsquared)(Samplesize − 1)
(Totalsamplesize − Numbero f predictors − 1)

2.3. Machine learning 39

2.3.9 HYPERPARAMETERS

An important part of improving a model is choosing the right algorithm hyperparameters

for the data. These parameters will vary with the machine learning algorithm and the data

inputted and changed before training, because they will change the way the algorithm

learns. Thus, various methods are available to optimise hyperparameter tunning.

• Grid Search: Manually and exhaustive hyperparameter search. This method

combines every parameter inputted and trains a model for each combination,

returning the best model with the highest scoring metric.

• Random Search: Same as grid search but does not performs an exhaustive search.

Instead, randomly tries combinations of hyperparameters.

• Bayesian Optimization: Bayesian optimization uses Bayesian reasoning to find

the best hyperparameters. Each iteration, this method recognizes past change

estimations to choose the next hyperparameters until reaching the maximal iteration

number.

• Gradient-Based Optimization: Uses second derivatives of the training criterion to

derive a formula to hyper parameter optimization

• Evolutionary Optimization: Creates a population of hyperparameters distributed in

tuples, evaluates each tuple score (fitness function), ranks the hyperparameters

based on the score and replaces the worst tuples with changed tuples. Iterates

these steps until a satisfactory result is obtained.

These types of hyperparameter techniques are used along with different splitting data

techniques to minimize the errors when choosing the best models and hyperparameters.

2.4. Prophage finding tools 40

2.4 PROPHAGE FINDING TOOLS

2.4.1 PHAST

Phage search tool or PHAST, is a tool created to analyse bacterial genomic sequences

in the search for prophages. This tool had advantages over the existing tools at the time

of development, as it was web implemented, faster, more precise and sensitive, and

hence, a broadly used tool in the research community. It uses various programs, such

as, GLIMMER [95], BLAST, ARAGORN, tRNAscan-SE and DBSCAN [135] to analyse

the sequence and predict the phage location.

As the advantages described before can show, this tool implemented different

features in their workflow to improve the final prediction result, like other useful information.

The first step was creating a phage and bacterial database with NCBI sequences and

other non-identified databases to fasten the search and BLAST time for identifying

putative proteins. The first step towards prophage prediction is the genome annotation

and comparison. Here, the program takes as input a DNA sequence in FASTA format

or annotated GenBank genomes. If the input is a raw DNA sequence, the program will

execute certain additional steps to characterise the input. There is ORF identification with

the help of GLIMMER. Then, the annotation of translated ORF is performed by BLAST

against the PHAST database. After the annotation, the program will locate tRNA and

tmRNA in the sequence with tRNAscan-SE and ARAGORN. Finally, BLAST between

protein sequences and the phage database is performed. Only e-value scores beneath

10−4 are saved for posterior analysis. The second step is the identification of prophage

regions and integrity prediction. Here density-based spatial clustering of applications

with noise (DBSCAN) is used to form and analyse clusters of sequences, using the size

of the cluster and the maximal spatial distance between two neighbour genes in the

same cluster as metrics in consideration. On the other hand, an additional task will be

performed if the input is a GenBank sequence. The program will perform a search for

2.4. Prophage finding tools 41

phage keywords like integrase, protease, tail fibre. If six or more of these protein are

found the region is considered a putative prophage. If an integrase is found, the adjacent

regions are scanned for attachment sites.

There are various outputs for this web tool that can be downloaded to posterior

analysis and are graphs and images, that can be explored in the website, that allow the

user to explore the prophage regions in the bacterial genome.

2.4.2 PHISPY

PhiSpy introduced a new way to analyse and predict prophages in bacterial genomes.

It calculates various characteristics based on the composition of the sequence, ’word’

abundance and uses Random Forest as the classification algorithm.

The first step to build a valid classification algorithm was data collection. This step

resumes as getting information from PHANTOME server (http://www.phantome.org) of

bacterial genome and phage genomes and, then calculating various sequence metrics.

The sliding window algorithm was used, considering a forty gene window. The first

parameter calculated was the skew of AT and GC. These were calculated by modifying

the accumulative calculus of A, C, G and T, for each consecutive gene. This version

compensates for local composition differences. The second parameter was the differ-

ences in the median protein’s length by subtracting the median of all proteins in each

window by the median of all proteins in the bacterial genome. The third parameter was

computing the orientation of the transcription strand. The genes are divided by their

orientation in each window, calculating the maximum window of consecutive genes.

The fourth parameter was measuring the abundance of phage ’words’. These ’words’

can be described as a group of 12 consecutive base pairs, which allow constructing a

library of bacterial, phage and unique (only present in bacteria or phage) words. Then

2.4. Prophage finding tools 42

Shannons’s index [136], an index used to calculate species diversity, and the frequency

of presence of phage words are calculated. The final parameter was the percentage of

homology between the genes in the search window and the phage. If at least ten genes

are homologous to the phage genes, the region is considered prophage, otherwise is

considered a bacteria. The second step was training and validating the classification

algorithm. The training set consisted of five parameters of non-related genomes. If the

algorithm found similarities in the genomes parameters, these genomes were considered

related. Otherwise, they were considered distant. Then, R [137], a project for statistical

analysis (https://www.r-project.org/), was used to rank each window and suggest if the

window is phage or bacteria. The third step, is to characterise if the gene is a prophage

gene or not. If the gene is in more than half of the search windows, it is considered a

phage gene. The last step is defining the att sites in predicted prophages. The search

zone is extended to 2000 bp beyond the border of the putative prophage region to find

the insertion site. If the search finds intregrase or recombinase or tRNA/tmRNA genes or

both, the region is expanded. Otherwise, the initial region is considered. After finding

the attL e attR sites, the proteins in the region are associated with phages subsystems

and, if a quarter of the proteins in that region belong to the phage subsystem, the final

prevision is the initial prevision.

Finally, a region can be considered prophage, if more than five proteins are related

to a phage subsystem (or the region has an unknown protein representing more than

half of the proteins in the window).

The output of this tool is the classification of each region in the bacteria genome.

This tool also calculates true positives, false positives, false negatives.

2.4. Prophage finding tools 43

2.4.3 PHASTER

The PHASTER tool is an update to the tool PHAST, described above, which made the

tool more efficient, fast and precise. Addictionally, it was implemented with various

changes to the design and how the output can be explored. Besides all of the following

alterations, only the core of the sequence analysis was adjusted.

The first update focused on the database. The tool had a self-updating process,

where the new output results are saved in the database, having more data to compare

in the future. Hence, the database started growing and becoming slower, having to be

optimized.

1. CD-Hit [112] was implemented for database curation and reducing redundancy in

bacterial genomes;

2. Update to clustering parameters optimization;

3. Upgrading BLAST to a newer version with faster and increased performance;

4. Upgrade to the partition query sequences;

5. Update to the bacterial database;

6. Better servers;

7. Quick check in the database for the query sequence added, avoiding processing

sequences already analysed.

This allowed the tool to decrease queries’ running time in both the bacterial database

and the viral database.

The output of this tool is also more interactive and allows to download content for

posterior analysis.

2.4. Prophage finding tools 44

2.4.4 MARVEL

Marvel [138] is a tool that predicts of prophage in bacteria stem from metagenomic

sequences and uses composition features and a random forest classifier.

The basic dataset was created starting the microbial RefSeq dataset, specifically

bacterial genomes and dsDNA virus from Caudovirales order. Phages with tail were

selected as the representative group and constitute the major Ambiental sample. The

dataset was divided into ”before” and ”after” 2016, suggesting that the division simulates

the use of different tools in recent isolated sequences. The training dataset (before

2016) had a larger number of genome samples than the testing dataset (after 2016).

Both datasets were then processed to generate contigs with specific lengths. For each

analysed fragment, ten contigs were created with determined lengths, that may or may

not have overlap. Bins were created from contigs originated from contigs that originated

from the same organism. This process created two datasets to train the classification

algorithm. Then the program performs the feature extraction to develop a classifier. The

extracted features were:

• DNA k-mer and GC composition;

• The mean length of each gene (total length of predicted CDSs in the genome or

contigs in a bin dividing by the total number predicted CDSs);

• The mean spatial distance between genes (mean length of CDSs regions;

• Gene density (number of total CDSs dividing by the length of the genome);

• Frequency of strand change between neighbour genes (sum of the strand shifts

number dividing by the number of CDSs genomes);

• Relative ATG frequency (number of ATG triplets in a strand, all the contigs in a bin

and the complete genome dividing by the number of 3-mers in the sequence);

2.4. Prophage finding tools 45

• The fraction of significant gene hits in a pVOGs database (each CDS in the genome

is search with HMMscan against the database of viral HMM, dividing the number of

hits for the total CDS number;

Features that gave small gains were eliminated. The selected features were gene

density, strand shifts and the fraction of significant gene hits in a pVOGs database.

The output of this tool is the separation of metagenomic dsDNA phage sequences

from bacterial genomes.

2.4.5 PROPHAGE HUNTER

Prophage hunter is a web tool created to predict prophage location and function using

a machine learning algorithm, logistic regression, trained by phage genomes retrieved

from the NCBI database. Temperate phages with the integrase gene. The rest was

considered as positive validation. From bacterial hosts, sequence fragments served as

negative training and negative validation.

The Prophage Hunter machine learning algorithm is briefly described next. Initially,

the genomes are aligned with BLASTn, using an e-value of 10−5 as a cut-off. Then the

prophage genomes are used as the reference dataset, and the genome from the host

is considered the negative dataset (the same length was used in phage and genome).

Twenty four features are calculated and used in the model, namely protein length,

transcriptional orientation, Watson-Crick ratio, transcription strand switch and amino

acids composition (one feature per amino acid). The output of this step was the beginning

and the end of the prophage, the probability of being active, phylogenetic relation and the

protein’s functional annotation. The second step is Fuzzy matching. Here, a database

is created with annotated phage genomes. Then the CDS are extracted, selected by

similarity (above than 75 %). From this database, eleven prophage classes were identified.

2.4. Prophage finding tools 46

InterproScan is then used to search the Pfam database for domain functions, categorise

those functions in classes, and create relations between classes and prophage activity.

Four of those domain classes were found to be highly correlated with active prophages,

namely:

• Assembly;

• Hypothetical protein;

• Infection;

• Unsorted;

These classes are used as initial regions of the prophage and compared to

bacterial genomic sequences using BLASTx. The sequences with previous classes

are selected for posterior analysis. The last step is to locate boundaries. The selected

sequences that do not have an infection, assembly, packing, or integrase classes are

not included in the posterior analysis, due to these classes being important for prophage

activity. The final process is to search for att sites twenty Kb upstream and downstream

from the remaining sequences remaining. The att pair selected to represent the borders,

is the one with the better alignment bit score.

The output obtained from this tool is a table with the candidate prophage, start

and end of the sequence, the category (active or inactive), the score, the closest phage,

the number of genes and downloadable DNA, protein and CDS files.

2.4. Prophage finding tools 47

Table 1: Summary list of tools and their most relevant characteristics. Sensitivity and PPV values
were taken from the tool publication article or comparisons made between newer tools
and tools already available.
Tool Classifier Input Output Sensitivity PPV References

Phage Finder (2006) Phage like hits
Information file

GenBank file
Information file 67% 94% [139]

Prophinder (2008) Phage like hits density GenBank file
Web service

Information file
79% 94% [140]

PHAST (2011) Gene density
DNA sequence

GenBank file

Web service

Information file
85% 94% [82]

PhySpy (2012) Machine learning GenBank file Information file 94% 99% [141]

VirSorter (2015) Viral genes
DNA sequence

FASTA file

Web service

Information file
75% 84% [142]

PHASTER (2016) Gene density
DNA sequence

GenBank file

Web service

Information file
87% 91% [83]

VRprofile (2018)

Gene density

Gene analysis

DNA sequence Information file 85% 66% [143]

Marvel (2018) Machine learning FASTA file Information file 87% 91% [138]

Prophage Hunter (2019) Machine learning/clustering
FASTA file

GFF file
Information file 99% - [85]

ProphET (2019) Prophage density
FASTA file

GFF file
Information file 73% 84% [144]

Phigaro (2020) Prophage density FASTA file Information file - 89% [145]

3

M E T H O D S

3.1 DATA COLLECTION

Creating a robust dataset by gathering and cleaning data, is a fundamental step to

explain and discriminate all the problem variables. Here, bacterial sequences constitute

the negative dataset and phage’s sequences the positive dataset. The first step for the

construction of the dataset is gathering available data. The same period of time report

by Song [85], was used to build the negative dataset as a limitation for extracting of

the accession numbers and host from the NBCI virus database [146]. Then, a BLAST

search was performed between phages and hosts to determine which bacteria had

phage parts and their coordinates. Phage accession numbers were extracted from NBCI

virus database. The second step was the manual curation of the BLAST search result file

in order to remove unwanted characters and facilitate an automatic parsing, favouring the

data processing. The third step consisted of removing the phage’s sequences from the

bacterial genome. In this step, the Entrez Programming Utilities [147] was used to access

bacterial genomes in the NCBI nucleotide database, remove the phage sequence from

the bacterial genome, and store the sequences. In the final step the features that will be

used to differentiate phage from bacteria were considered. The features were calculated

for 10000 base pairs and 5000 base pairs windows throughout the DNA sequences (both

curated bacterial and phage’s). An additional step was performed to create a synthetic

48

3.2. Features 49

phage dataset, where phage gene sequences were randomly deleted or inserted and

completed with random genetic material from the bacteria. As bacterial genetic material

sequences are larger than the phage genetic material sequences, the dataset had

more bacteria sequences than phage sequences creating an unbalanced dataset. Each

dataset was split into two datasets to ensure model training and optimization, using the

dataset with 70% of all data to train and test models and the second dataset (other 30%)

for tunning of the algorithm parameters. Finally, an oversampling algorithm (SMOTE) and

an undersampling algorithm (RandomUnderSampler) were implemented to reduce the

class imbalance.

3.2 FEATURES

A dataset feature can be explained as being a property that can describe the analysed

data. In this case, 42 features were calculated based on three major genetic material

characteristics.

• Gene density

This group is based on protein density along with the genetic sequence window.

1. The first calculated feature was the number of genes in the same orientation divided

by the number of genes found in the window.

2. The second calculated feature was based on the sum of all the genes in the window,

divided by the window’s total length.

3. The third calculated feature was the number of genes in the negative strand divided

by the number of genes in the positive strand.

4. The last calculated feature was the number of changes in the orientation of the

transcription.

3.2. Features 50

It is not yet documented why there is a difference between organisms and their

transcription but it was proposed that the lack of RNA and DNA polymerase and disruption

of terminus might justify the orientation of the phage sequence. [148, 149]. Also, studies

have shown a preference between transcription in the positive strand in contrast to the

negative strand [150].

• Genetic material composition

This group is based on the composition of the genetic sequence.

1. The first feature is the amino acid percentage, therefore accounting for twenty

features (alanine(A), cysteine (C), aspartic acid (D), glutamic acid (E), phenylalanine

(F), glycine (G), histidine (H), isoleucine (I), lysine (K), leucine (L), methionine (M),

asparagine (N), proline (P), glutamine (Q), arginine (R), serine (S), threonine (T),

valine (V), tryptophan (W) and tyrosine (Y)).

2. The second feature is the guanine and cytosine abundance in the sequence.

3. The last feature is skew in the abundance of guanine and cytosine to adenine and

thymine.

Several studies have shown that the organism composition varies with the availability

of amino acids in the environment and allows classifying organisms [151–153]. A study

[154] was conducted in several environments where multiple organisms were analysed,

and their relative amino acid composition and GC content calculated, showing that

the relative amino acid composition and GC content changed with the environment.

Considering that a bacterium is an environment for a phage, these features can represent

interesting study methods. Thus, considering that each bacterium can be contemplated

as the phage environment, the bacterial amino acid composition will vary the composition

of the phage. Furthermore, phage’s can be considered mobile genetic elements, which

could mean that their host could change in each life cycle, resulting in a composition that

can slightly vary, leading to a different composition than the host. In addition to these

features, GC skew has also proven to be a feature that can characterise organisms [155].

3.3. Data Pre-processing 51

• Dinucleotide abundance

The last group is the relative dinucleotide abundance. In this category sixteen features

are calculated from all possible nucleotide combinations CpC, CpG, CpU, CpA, GpC,

GpG, GpU, GpA, UpC, UpG, UpU, UpA, ApC, ApG, ApU and ApA. These features

have have potential to be used to differentiate bacteria from phage, because of the

heterogeneity between the bacterial genome and the phage sequences caused by the

different origin of both organisms [65, 156, 157].

3.3 DATA PRE-PROCESSING

Building datasets with features obtained from different methods will create values with

different orders of magnitude between features. Thus, when using these features, the

ones with a higher order of magnitude could influence the model rendering the other

useless. Here, several methods were tested to pre-process three datasets (10000 bp

dataset, 5000 bp dataset and dataset with alterations):

• Min-max scaler (MinMaxScaler function)

• Robust scaler (RobustScaler function)

• Standard scaler (StandardScaler function)

• Normalizer (Normalizer function)

3.4. Models 52

3.4 MODELS

Several machine learning algorithms could be fitted to the data to precisely classify the

desired output. In this work were used:

• Support Vector Machine (SVM) using SVC function;

• Random Forest (RF) using RandomForestClassifier function;

• K — Nearest Neighbors (knn) using KNeighborsClassifier function;

• Gaussian Naive Bayes (GNB) using GaussianNB function;

• Multi-layer Perceptron (MLP) using MLPClassifier function;

3.5 FEATURE SELECTION

Feature selection is an important method to use in a machine learning pipeline to reduce

running time, computational burdens and reduce the probability of overfitting. In this work,

the implemented method used a variance threshold to remove all columns with a variance

lower than 0.5, more specifically, columns that did not increase model performance.

3.6 PERFORMANCE EVALUATION

A performance evaluation was implemented to evaluate how the model predicts the

desired output accurately. To this end, several metrics must be applied to the model.

The first models created from 70 % of the data were evaluated with precision, recall,

F1 score, and Receiver Operating Characteristic Area Under the Curve (ROC-AUC). A

3.7. Model optimization 53

confusion matrix was also generated to distinguish the model predictions further, either

being phage or bacteria.

In the second instance, to further improve the created models, a cross-validation

algorithm was implemented with three splits to choose the best parameters for each

model. Moreover, a grid search algorithm with a five splits cross-validation, was used to

choose the best model with the best parameters using the metrics f-score, ROC-AUC,

accuracy, precision, and recall scoring each one of them.

In the third instance, model result predictions were compared to zones of other tools

that had already been validated.

3.7 MODEL OPTIMIZATION

Model optimization is used to further improve the created models through a careful

analysis of parameters combined to obtain the best model with optimized parameters.

Here, different classification algorithms were fitted to create various prediction models,

and several parameters were tested and evaluated, as shown in the following table 2.

3.8. Protein Annotation 54

Table 2: Hyper parameters tested for each algorithm.
Algorithm Parameter Values

GNB N estimators 100,500,1000

Learning rate 1,0.5,0.1,0.01

RF N estimators 100,500, 1000

Min samples split 3,5,7

Criterion Gini, entropy

SVC C 0.1,1,10

Kernel Linear, rbf, poly, sigmoid

Knn Leaf size 3,5,7,9

N neighbors 3,5,7

P 1,2

MLP hidden layer sizes (50,50,50), (50,100,50), (150,100,50)

Activation Tanh, relu

Solver Sgd, adam

Alpha 0.0001,0.05

Learning rate Constant, adaptive

A grid search algorithm was implemented to evaluate each model with the respective

combination of parameters. Following the parameter selection, the model was fitted and

evaluated with five splits in cross-validation.

Furthermore, five models were created for each algorithm with a Stratified Shuffle Split

of the 5000 bp dataset to reduce data bias.

3.8 PROTEIN ANNOTATION

An important step in prophage characterization is protein identification. This step requires

searching databases to find the name and molecular function of all proteins inside the

putative prophage region. To this end, three tools were implemented.

1. The first implemented tool was DIAMOND [88]. Before the tool can be used, a

database needs to be implemented to align the proteins in the putative region with

3.8. Protein Annotation 55

known proteins. Thus, two databases were applied using the ’makedb’ method. The

data used to build this database was from Swissprot [158] identification numbers

with the respective sequences in FASTA format. After this step, diamong ’blastp’

method can use to align unknown proteins to proteins in the database. These

results present themselves with protein, hit, length of the query sequence, the

query of the sequence, positions were blasted, e-value and bit score.

2. The second implemented tool was InterproScan [159, 160]. This tool calculates

various metrics for each protein sequence, like HMM profile and patterns, to explore

multiple databases, like Pfam and PANTHER, and characterise the query sequence.

Various outputs can be extracted from this tool depending on the databases that

are being used. In this work, the output is the protein identification, the protein

domain and molecular function associated with the domain and scores attributed to

the comparison between the query and the sequences in the databases. To further

improve protein identification, a database from ACLAME [109] was extracted with

the help of a request python package to a format with database id, name, function,

and sequence. The data was then processed to drop missing or repeated values

and convert database functions to functions the activity process evaluation could

interpret. Diamond was implemented to compare this database with the inputted

proteins.

3. The third tool implemented was BLAST to compare entire phage sequences to the

zones found. This method allows the identification of the prophage genomic region.

3.9. Boundary locating 56

3.9 BOUNDARY LOCATING

Boundary locating is a step to find more realistic borders of each putative prophage

instead of limiting the putative prophage to an artificial step of the search window used in

the 10000 bp or 5000 bp division.

This step was implemented with the search of ’truncated’ genes. The insertion of

the bacteriophage in the bacterial genome is made in certain regions. These regions

have been documented on specific regions and few generalizations can be made. One

possible generalization is that the bacteriophage inserts itself, within a gene, splitting it

into two. Hence, this algorithm extends the search zone in one kb to each side and then

using 200 bp window combinations from each side to search for a gene with BLASTp in

the Swissprot database. If a gene is located, the gene with the best bit score is selected

and the region is added to the original window coordinates. Another implemented method

was the tRNAscan-SE program that scans the main sequence and outputs the tRNA

coordinates in the sequence. If the tRNA is close to a putative prophage zone, this

coordinate will be the new prophage boundary.

3.10 ACTIVITY SCORING ALGORITHM

The dynamics established between bacterial defence against phage infections and the

respective phage evasion mechanisms are proven to be complex [77]. While the phage

can insert the totality of the genetic material, it can suffer several alterations like insertions

or deletions, that could disrupt some vital phage functions. Thus, a scoring algorithm was

implemented to evaluate the potential of the prophage to be functional when induced.

The first step to develop an accurate and robust algorithm capable of evaluating

prophages possible functionality is to define which proteins each phage requires to

have a viable reproductive cycle. Studies have already made progress in this matter by

3.10. Activity scoring algorithm 57

identifying, for example, what does the smallest phage codify [161] or analyse certain

prophage genomic structures that are possible to be induced [151, 162]. Unfortunately,

due to the existence of a large variety of phages in nature with different compositions

and protein requirements, a structure that could be applied to all prophages cannot be

developed. Thus, the general characteristic in common is the phases in the phage’s

lifecycle. These phases were used to create classes for the proteins based on their

functions. In an approach of learning by the available examples, a dataset of phages and

their reproductive cycle was downloaded from ACLAME [109] database with the help of

request python package.

The second step was creating a protein profile to characterize the phage and its

lifestyle. All proteins in the CDS regions with products or notes were extracted and stored

in a dictionary for each NCBI accession number. These extracted products or notes

represent the required proteins/functions to enable the correspondent lifestyle.

The third step is processing the products and notes extracted in the last step to

establish be possible comparisons between phage compositions. Thus, this step has two

phases: creating a dictionary/language capable of being understood by the computer

to attribute a class to the protein and the second the attribution of a class to each

protein and creation of rules that can represent a class phage constitution. The first

phase required searching for proteins’ name and attributing them to a phage lifecycle

phase class. A word dictionary from the ACLAME database was created to further

improve the classification of each protein by enriching the vocabulary. This process

required scrapping of all phage functions described in the database with the associated

protein description. Then, manually, all words associated with the function and not in the

dictionary, were added. For the second phase, products and notes from the previous step

were compared with words and expressions in the dictionary and a class was attributed.

Some word relations were implemented for further optimisation. The final process was

creating rules that could describe putative phage functions and the phage capacity to

have a complete lifecycle.

3.11. Galaxy 58

3.11 GALAXY

Galaxy is a workflow engine that allows the use and integration of bioinformatic tools in a

user-friendly manner, available in the galaxy tool shed [163].

The tool’s implementation in a structure suitable for galaxy integration was performed by

downloading galaxy instance and installing following the documentation for the Windows

subsystem https://galaxyproject.org/admin/config/windows/. After the installation of

the galaxy instance, Planemo, which is a command-line tool found in https://planemo.

readthedocs.io/en/latest/writing standalone.html, was used to build an Extensible

Markup Language (XML) wrapper file for the python implemented tool with the description

of the requirements, commands with which the tool was going to function and which file

was going to use, inputs and outputs. An additional XML file was created to search and

install for packages not included in the galaxy tool shed.

4

D E V E L O P M E N T

This work was developed in Python 3.7.5 using the integrated development environment

Pycharm [164], google colaboratory and dockers. It is possible to divide the workflow

into five major parts that are represented bellow.

4.1 DATA COLLECTION

Data collection was made by manually downloading a dataset of phages and their hosts

from NCBI virus website. This allowed establishing the first dataset of bacteria names

and phages’s accession numbers.

As the phages infect and integrate themselves in the hosts genomic sequences, the

phage sequences integrated into the bacteria genomic sequences needed must be

removed. A ’blast’ script was developed to find the coordinates of the prophages in

bacteria. The main function of this script uses NCBIWWW.qblast to access BLAST

services in NCBI and takes as input the file with the phage accession numbers and the

hosts’ names. The output of the main function is the coordinates of the phage and the

bacteria accession number, writing them in a .csv file. The ’ [’ and ’] ’ were removed and’

; ’ was added in the end to automatise the parsing process. After this step, a function was

implemented to find coordinates of phages in the bacteria, writing the result as a dictionary

where the keys are the bacteria, and the values are coordinates. Finally, the dictionary

59

4.2. Feature extraction 60

is exported in a .json file. Then, the sequence associated with the bacteria’s accession

number in the NCBI database was downloaded. The sequences within the coordinates

retrieved from the dictionary were saved into a file, together with the information on the

DNA’s strand (positive or negative strand). Finally, all phage accession numbers in the

NCBI virus database were manually downloaded and processed in the feature extraction

step to retrieve more phage sequences. Such procedure was used to create the first and

second datasets, with and 5000 base pairs windows, respectively. The second dataset

was then split in to five divisions and each was used for the models. The third dataset

was created with the same bacteria sequences but different phage sequences. In this

case, three types of phage samples were used (altered with insertions, deletions and

regular). The first type was phage sequences with insertions where some genes were

removed and replaced, in the same position, with random bacterial sequences of the

same size. The second type was gene deletions in the phage sequence, adding the

bacterial sequence with the deleted size. The third type were regular sequences.

4.2 FEATURE EXTRACTION

Feature extraction was performed in two phases, one procedure for extracting features

from the bacteria and the other to extract features from phages.

4.2.1 BACTERIA FEATURE EXTRACTION

The feature extraction procedure for bacteria required the result file from the data collec-

tion, where the sequences in common with phages and bacteria (BLAST results) were

saved. This file was a dictionary structured with the bacterial accession number as keys,

and the sequence in common with the phage and a number representing the state of

4.2. Feature extraction 61

their position in the bacterial strand (’1’ if not inverted ’ 0’ if inverted) as values. For each

bacterium, various sequences having the state 1 or 0 adjacent to it were available. This

file was loaded, using two functions that load the sequence from the NCBI nucleotide

database. The first function loads the bacterium’s accession number and the second

removes the portion of the sequence in the dictionary from the bacterial sequence. This

step was performed to remove possible phage ’contamination’s’, as phages integrate the

bacterial sequence and may change the bacteria’s overall constitution. After removing of

the sequences, an algorithm to search and find the genes and the translation initiation

site identification was used. This step was performed because removing of the prophage

sequences from the bacteria’s genome could alter gene count and gene positions, in-

fluencing features that depend on the gene sequence. This sequence was divided into

10000 bp or 5000 bp fragments using a sliding window algorithm and each window was

processed by twelve functions to calculate features.

4.2.2 PROPHAGE FEATURE EXTRACTION

The genetic material information was required to calculate the phages’ features. Thus, for

each NCBI’s accession number two functions were applied. The first is used to retrieve

the DNA sequence and the second to retrieve the positions of the genes, allowing to

count the number of genes, their length, and their position in the transcription (inverted

or not inverted). Windows were created and analysed with twelve feature functions using

a similar sliding window algorithm.

4.2. Feature extraction 62

4.2.3 FEATURES

Eigth functions were implemented for transcription orientation, gene density, number of

genes in the negative strand versus the number of genes in the positive strand, number

of genes in the same transcription, amino acid percentages, GC percentage, GC skew

and dinucleotide abundance to calculate all features:

1. Transcription orientation: Calculates the number of genes in the same transcription

orientation.

2. Gene density: Calculates the gene density by dividing the number of the genes by

the total length of the window.

3. Ratio negative-strand vs positive-strand: Function that divids the number of genes

in the negative strand by the number of genes in the positive strand.

4. Transcription orientation change ratio: Calculates the number of changes of tran-

scription, by dividing the number of the genes by the number of changes.

5. Amino acid quantity: calculates the percentage of amino acids in the window. This

function creates twenty features, one for each amino acid.

6. GC percentage: calculates the percentage o guanine and cytosine in the window.

7. GC skew: Calculates the difference between guanine, cytosine and adenine,

thymine in the window.

8. Dinucleotide abundance: Calculates the percentage of each pair combination of

nucleotides in the window.

4.3. Model development, testing and improvement 63

4.3 MODEL DEVELOPMENT, TESTING AND IMPROVEMENT

All models were developed in a google collaboration notebook, as the testing and

improvement of the models, through the steps describe below:

1. The first step was loading the data into the notebook and associate the output

column. Twenty percent of all the data was saved into a file as an independent

test phase in this step. In a quick analysis to prevent an imbalanced dataset, two

methods to under and over sampling were implemented resulting in three datasets

(normal, undersample and oversample).

2. The second step was pre-processing the dataset and feature selection resulting in

a ’scaler.sav’ file for each type of dataset with the scaler variables saved to use in

posterior data. The feature selection provided an array with the same number of

columns as the dataset (no feature extracted).

3. The third step consisted of loading the algorithms, building the first models with the

three datasets, and creating the scaler. All models were evaluated, and the models

were saved using a joblib package.

4. The fourth step was independent testing where the data was loaded, prepossessed

with the scaler created in step 2 and the results calculated.

The first dataset had an additional step where a pipeline was used with two steps

of analysis. The first uses Gridsearchcv to find the best parameters to the data and

algorithm and the second uses a cross validation to select the best model for the best

tested parameters based in scoring metrics. The result is a trained model and scores.

4.4. Boundary location 64

4.4 BOUNDARY LOCATION

Boundary location finding was implemented in the main function ’inser site’ with two

auxiliary functions ’diamond blst swiss’ and ’trnascan’ The main function takes as input

the start and end coordinate of the window of the putative prophage and an identification

number, called cv, that is, a number associated with each putative prophage. This

function creates 200 bp zones from the 1000 bp upstream and downstream from the

putative prophage zone and parse all sequences by joining one window from each side

until all combinations are performed, translating, and writing the sequences in a FASTA

file. Then the diamond blst swiss function uses DIAMOND to align sequences against

the Swissprot database. The resulting file contains the genes associated with the zone

and each zone has two numbers associated with each window.

The resulting file is parsed and the zone containing genes with more than half of the

length of the zone and the higher bit score is selected as the new zone.

Another process of finding the real insertion site of the putative prophage zone is to

use the trnascan function that calls the tRNAscan-SE program to find tRNAs in the main

sequence. After this analysis, if a tRNA is close to the sequence it will become the new

boundary of the putative prophage zone.

The final step is adding the extra sequence to each side of the putative prophage zone.

Hence, this function returns the number of base pairs that will be added to each side.

For instance, zone ’D0-U2’, where ’0’ represents the first window on the downstream

side and ’2’ represents the third window on the upstream side. Thus, in this case, two

hundred base pair will be added to the left side and six hundred to the right side of the

putative prophage.

4.5. Activity scoring 65

4.5 ACTIVITY SCORING

The steps for making an algorithm that calculates the phage’s activity score can be

divided into four parts.

1. The first part was creating a dataset of phages with their lifestyle to be possible a

comparison between them and a prophage. So, a function called ’phage lifestyle’

was created. This function uses request package to scrap a data source for the

dataset and saves it in a .csv file.

2. The second part was creating a language that could be interpreted and create

the relation between the protein function and a certain bacteriophage lifecycle.

So, to create a dictionary, a main function named ’functi simp’ and an auxiliary

function named ’prot in phi’ were created. The main function scrapes the ACLAME

database for the identification number and the function of the protein. Then uses

each identification number to get the description of the protein and associates

the function of the protein to its description. The results were the function and

description of a protein saved in a .csv file.

3. The third step was a manual curation of associating each protein or description to

a class in the language dictionary and organising the results from the second part

to the same language in the dictionary. The selected functions are adsorption, pen-

etration, integration, biosynthesis, assembly, lysis, hypothetical and undetermined.

4. The fourth step was processing each phage and its lifestyle. The main function

named ’make perf phage’ was created with three auxiliary functions named ’get

phage df’, ’org struct’ and ’save phage perf’ . The main function uses ’get phage

df’ to load the phage data in a dataframe with the NCBI accession number and

the phage lifestyle. Then it uses the ’org struct’ function to get the product or note

of the CDS and tRNA proteins, which is processed with the language dictionary,

4.5. Activity scoring 66

resulting in an array with the ratio of all protein in the classes divided by all proteins

in the phage. The last function is used to save the results in a .csv file.

Acquiring data from phages that had known and inducible lifestyles allowed creating

of the rules implemented in the final step. The final step is the scoring algorithm. Using

the results obtained above, enable the creation of several rules that could represent an

active phage and their functions or the lack of them and how cryptic the phage was. After

comparing the results above and adjusts to zones with several phage proteins, these

rules were established to exclude the phage:

Table 3: Description of the reasons used to evaluate the putative prophage zones. If any of the
reasons are full filled, the zone being analysed is excluded from the results.

Reason Description

1 Less than ten proteins.

2 Less than three known phage’s proteins.

3 If the composition of the phage is less than 50 % of unknown proteins and there are no known proteins or the composition of the phage is less than 82 % of unknown proteins.

4 If the known composition of the phage is more than 50 % hypothetical and unknown proteins, and integration, assembly and penetration proteins have not been identified.

5 If the composition of the phage is 75 % biosynthesis and integration and undetermined is unavailable.

6 If less than 20 % of the phages are unknown and unrelated with biosynthesis and no integration, assembly and penetration are found.

7 If the composition consists in 90% of biosynthesis, hypothetical and undetermined and it has less than 7 hits in known phage proteins.

These conditions classify the phage’s capacity and allow the exclusion of various

incomplete phages based on the proteins found in the region.

5

R E S U LT S

One of the objectives of this work was to create a model that could differentiate phage

sequences inserted in a bacterial genome. As this is not a linear problem, dataset 1 (with

10000 bp parts), dataset two (with 5000 bp parts) and dataset 3 (5000 bp with altered

phage sequences) were created to represent various features distributions. All datasets

were pre-processed, and their features calculated, balanced and used to train models.

These models were evaluated, and the results were compared to zones predicted by

other tools (Prophage Hunter and PHASTER). Only the zones predicted by both tools

were used to evaluate the newly trained models to ensure that these had a high probability

of being a prophage.

5.0.1 DATA COLLECTION

The first part of data collection was required the bacteria and phages sequences. Since

using all bacteria with prophages would result in a huge dataset that would be very time

consuming and would create an even more unbalanced dataset, only 5006 bacteria

accession numbers were obtained by aligning 3594 phage’s present in the NCBI Virus

database (until 2018) to the respective host with BLAST. The bacteriophage dataset was

obtained by downloading all phages in the NCBI virus database, with a complete genome

(date 10/11/2020), which comprised around 43776 phage accession numbers.

67

68

Dataset 1

The negative part of dataset 1 was built with bacterial genomes, from which the phage

sequences were removed, and split into 10000 bp windows. For the positive part of

dataset 1 the phages were split into 10000 bp windows, resulting in 576983 samples

from bacteria sequences and 56253 samples from phage sequences, creating a highly

unbalanced dataset. Hence, an oversampling algorithm (SMOTE) and an undersampling

algorithm (RandomUnderSampler) were implemented, resulting in the oversampled

dataset having 1153966 samples of bacteria and phage and in the undersampled dataset

with 56253 bacteria and 56253 phage samples.

Dataset 2

Dataset 2 followed the same procedure performed in dataset 1 but with windows of

5000 bp resulting in 1398656 samples from bacteria sequences and 141577 samples

from phage sequences. From the tests performed in dataset 1, the results between

undersampling and oversampling did not vary significantly and therefore, to avoid a

bigger computational effort and time spent in model development, only undersampling

was performed, creating a dataset with 141577 bacteria and 141577 phage samples.

Dataset 3

The negative part of dataset 3 was obtained with the same method as for dataset

2 (with 5000 bp windows). The positive part used 5000 bp windows, where each

window was processed two times beyond the normal process. The first process used

insertions and the second were deletions, resulting in a dataset with 1398656 samples

from bacteria sequences and 536532 samples from phage sequences. Undersampling

was implemented too, resulting in a dataset with 536532 bacteria and 536532 phage’s

69

samples. The option to use 5000 bp windows to the third dataset was supported by the

fact that dataset 2 provided better results than dataset 1.

5.0.2 FEATURE ANALYSIS

The number and orientation of genes are necessary when creating four of the features.

Prodigal was used to predict the localization and orientation of the genes in the bacterial

genomes. This method was used as the removing the common sequences between

phage and bacteria could lead to the disturbance of gene zones/coordinates. On the

other hand, for all phage accession numbers, NCBI nucleotide genome information was

used to extract gene localization and orientation.

A feature analysis was performed to evaluate feature distribution between datasets

and between phage and bacteria, from the full 42 features. The table 4 exhibits the

mean of the features of each dataset to demonstrate how the features vary between

dataset, organism (Phage or Bacteria), size of the window and the alterations to the

phage sequences and several conclusions could be drawn.

70

Table 4: Feature values for each dataset. There are three types of values for each bacteria and
phage to notice the differences between each variation of the datasets. Furthermore,
differences between features can be compared, either between bacteria-phage or D. 1 -
Bac - D. 2 - Bac, for example.

Features D. 1 - Bac D. 1 - Phage D. 2 - Bac D. 2 - Phage D. 3 - Bac D. 3 - Phage

Transcription orientation 1.629 4.124 0.988 2.209 0.988 1.76

Protein length 982.626 808.412 994.404 843.639 994.404 222.947

Watson and Crick use ratio 1.664 0.962 1.112 0.499 1.112 0.395

Strand switch in transcription 5.245 13.265 4.15 7.683 4.15 5.914

A 0.078 0.062 0.079 0.062 0.079 0.058

C 0.032 0.028 0.032 0.028 0.032 0.029

D 0.028 0.034 0.027 0.035 0.027 0.033

E 0.027 0.035 0.026 0.035 0.026 0.034

F 0.043 0.039 0.042 0.041 0.042 0.046

G 0.056 0.058 0.055 0.057 0.055 0.052

H 0.028 0.028 0.027 0.028 0.027 0.028

I 0.056 0.052 0.055 0.054 0.055 0.06

K 0.042 0.043 0.042 0.044 0.042 0.048

L 0.086 0.089 0.085 0.091 0.085 0.094

M 0.017 0.017 0.018 0.017 0.018 0.018

N 0.037 0.037 0.036 0.039 0.036 0.042

P 0.059 0.052 0.06 0.051 0.06 0.046

Q 0.034 0.035 0.034 0.035 0.034 0.036

R 0.096 0.091 0.096 0.087 0.096 0.079

S 0.088 0.089 0.092 0.088 0.092 0.087

T 0.054 0.06 0.055 0.06 0.055 0.057

V 0.053 0.058 0.053 0.058 0.053 0.056

W 0.017 0.017 0.018 0.017 0.018 0.017

Y 0.027 0.03 0.026 0.03 0.026 0.033

GC content 49.243 47.894 49.6 47.377 49.6 44.747

GC skew 0.0 0.021 0.0 0.018 0.0 0.017

CpC 0.922 0.914 0.917 0.919 0.917 0.939

CpG 1.083 0.939 1.087 0.933 1.087 0.916

CpU 0.875 1.018 0.876 1.012 0.876 1.001

CpA 1.104 1.087 1.113 1.093 1.113 1.1

GpC 1.247 1.03 1.248 1.05 1.248 1.102

GpG 0.921 0.944 0.916 0.943 0.916 0.967

GpU 0.896 0.976 0.899 0.973 0.899 0.93

GpA 0.979 1.087 0.979 1.073 0.979 1.039

UpC 0.978 1.083 0.978 1.067 0.978 1.033

UpG 1.106 1.103 1.115 1.108 1.115 1.118

UpU 1.146 1.021 1.147 1.032 1.147 1.069

UpA 0.741 0.74 0.735 0.75 0.735 0.769

ApC 0.896 1.014 0.899 1.005 0.899 0.96

ApG 0.874 0.969 0.874 0.972 0.874 0.961

ApU 1.1 0.99 1.106 0.99 1.106 0.998

ApA 1.147 1.037 1.148 1.045 1.148 1.082

71

Differences between bacteria and phage’s

In dataset one with bacterial sequences (D. 1 - Bac) and dataset one with phage

sequences (D. 1 - Phage) it is possible to notice differences in features related to the

number and orientation of genes in the subsequence and dimer constitution, along with

smaller differences in amino acids. The same differences are noticed in dataset two

with bacteria sequences (D. 2 - Bac) and dataset two with phage sequences (D. 2 -

Phage), suggesting a difference in structural composition between phage and bacteria

sequences.

Differences between window sizes (10000 bp and 5000 bp)

Two window sizes were tested to divided bacterial and phage genomes, 10000 bp (D. 1

– Bac and D. 1 - Phage) and 5000 bp (D. 2 – Bac and D. 2 – Phage). Comparing both

bacterial datasets (D. 1 – Bac and D.2 – Bac) it is possible to notice some differences in

the features related to the gene structure. The same was not possible to confirm in the

constitutional features (amino acid and dimer).

Differences between phage and phage with alterations

The phages’ part of dataset three (D. 3 – Phage) was created with normal and altered

phage subsequences. These alterations were made by deleting genes from the subse-

quences and completing the sequences with a portion of the hosts genome and insertions

by inserting a random host genome portion in a random position of the genome and

removing the last genes. As shown in table 4, D. 2 – Phage and D. 3 – Phage columns,

these changes in the phage subsequences impacted all features but as expected, highly

impacted features related to the structure and localization of the genes.

After analysing the distribution of the features, it is possible to confirm that there is

a different order of magnitude between the feature columns. Therefore, the next step

72

consisted of testing different scaler algorithms to transform the data into the same order

of magnitude and understand if a scaler is indeed required to improve results. Hence,

10% of the dataset was randomly selected and balanced, to have the same number of

phage sequences and bacterial sequences, to ptest various scaler methods posteriorly.

In tables 5, 6, 7, the F1 score, rounded to two decimal cases, is shown for all combina-

tions possible.

Table 5: F1 score of tested machine learning algorithms with different scaller methods of dataset
one.

Algorithm MinMax Standard Robust Normalizer None

SVM 0.82 0.91 0.91 0.32 0.33

Random forest 0.91 0.91 0.90 0.87 0.90

Knn 0.83 0.89 0.89 0.70 0.62

GradientBoosting 0.84 0.84 0.84 0.78 0.84

MLP 0.88 0.91 0.91 0.71 0.66

Table 6: F1 score of tested machine learning algorithms with different scaler methods of dataset
two.

Algorithm MinMax Standard Robust Normalizer None

SVM 0.73 0.86 0.84 0.22 0.18

Random forest 0.87 0.87 0.87 0.83 0.87

Knn 0.77 0.83 0.85 0.67 0.56

GradientBoosting 0.77 0.77 0.77 0.68 0.77

MLP 0.83 0.89 0.88 0.65 0.64

73

Table 7: F1 score of tested machine learning algorithms with different scaler methods of dataset
three.

Algorithm MinMax Standard Robust Normalizer None

SVM 0.93 0.97 0.97 0.87 0.86

Random forest 0.97 0.97 0.97 0.96 0.97

Knn 0.90 0.96 0.96 0.93 0.90

GradientBoosting 0.94 0.94 0.94 0.92 0.94

MLP 0.96 0.97 0.97 0.93 0.93

Tables 5, 6, 7 show that from the five possibilities tested for each dataset (four different

scaler methods and no method use) the standard scaler produced the best results and

therefore it will be used in the next steps. Another noticeable result is that the random

forest and gradient boosting algorithms seem not to be influenced by the scaler methods.

5.0.3 FEATURE SELECTION

After accessing the best scaler, the next step is feature selection to exclude possible

redundant and uninformative features. A variance method was applied to evaluate the

variance between features to this end.

• Variance: This test was performed using a variance threshold of 0.5, resulting in no

columns being dropped. These results have shown no values among all samples

with low variance.

5.0.4 ASSESSING DATASET UNBALANCE

The first dataset was used to test if the skew between the numbers of phage sequences

and bacterial affects model performance. When the model fits the data, it will learn its

74

patterns and to associate the characteristics of each sample with the desired output.

This phase is successful if the model can learn and correctly predict the testing data,

and can to be generalized to other data outside the dataset. In this case, the ability to

generalize the model can be affected by two problems underfitting and overfitting. In the

first case, underfitting refers to the failure of the model to learn the patterns in the training

dataset leading to the incapacity of generalization. This problem derives from bad or

poor data, specifically, when there is not enough information. For example, not enough

samples or features, fail to create a good enough target function or a complete mapping

of the data. In the second case, overfitting refers to over tunning the target function or

exceeding the data’s strict mapping, leaving no flexibility to new data. This problem arises

when the model learns the training data too well but performs poorly when chllanged

with new data. Another step that can lead to overfitting is hyperparameter tunning. If the

hyperparameters found and tested are too strict to the training data, that can lead to a

poor model performance with new data. Therefore, assessing the dataset balancing is

an important step.

The results for the three datasets, dataset 1 shown in table 8, dataset 2 shown in table

9 and dataset 3 shown in table 10, were tested for:

1. Normal: without balancing.

2. Undersampling: randomly reducing the number of the class with the most samples

to match the number of the smallest class.

3. Oversampling: matching the smallest class number of samples to the class with

the most samples

75

Table 8: Dataset 1 (576983 samples from bacteria sequences and 56253 samples from phage
sequences) results for all machine learning algorithms tested with a balancing method.

Algorithm Normal Undersampling Oversampling

SVM 0.92 0.96 0.97

Random forest 0.90 0.95 0.98

Knn 0.86 0.94 0.98

GradientBoosting 0.84 0.94 0.95

MLP 0.90 0.96 0.98

Table 9: Dataset 2 (1398656 samples from bacteria sequences and 141577 samples from phage
sequences) results for all machine learning algorithms tested with a balancing method.

Algorithm Normal Undersampling Oversampling

SVM 0.89 0.95 0.97

Random forest 0.88 0.95 0.98

Knn 0.85 0.94 0.98

GradientBoosting 0.78 0.92 0.93

MLP 0.90 0.95 0.97

Table 10: Dataset 3 (1398656 samples from bacteria sequences and 536532 samples from phage
sequences) results for all machine learning algorithms tested with a balancing method.

Algorithm Normal Undersampling Oversampling

SVM 0.96 0.97 0.98

Random forest 0.96 0.97 0.98

Knn 0.95 0.96 0.98

GradientBoosting 0.93 0.95 0.95

MLP 0.96 0.97 0.98

These results suggest that using a balancing method is better than using the no

balancing method. Likewise, it can be seen that oversampling provides a negligible

improvement to the model (undersampling +0.01 and in oversampling +0.02).

76

5.0.5 MODEL OPTIMIZATION

As referenced before, the model optimization can be performed by tunning the algo-

rithm hyperparameters to fit the data. An exhaustive hyperparameter search method

(GridSearchcCV) was implemented to determine the highest scores using three cross-

validation splits, to test whether hyperparameter tunning was relevant to this work. So,

30% of dataset 1 was not used in training, but along with balancing methods, was used to

test if the models and hyperparameters performed better with balanced data. In table 11,

the F1 scores before hyperparameter tunning for all tested machine learning algorithms

are shown.

Table 11: Model performance before optimization.

Model Normal Und Over

SVM 0.94 0.97 0.97

Random forest 0.99 0.98 0.99

Knn 0.97 0.98 0.99

GradientBoosting 0.93 0.81 0.83

MLP 0.99 0.98 0.99

After testing all possible combinations of hyperparameters, presented in table 2 in

section 3.6, the best combinations were found and tested with the same datasets

used in the previous test to establish comparisons. Table 12 exhibits the selected

hyperparameters with the associated results (F1 score).

Table 12: Model performance for each dataset balance method after optimization.
Model Hyperparameters Normal Und Over

SVM C = 10, class weight=’balanced’, kernel=’rbf’ 0.97 0.90 0.91

Random forest n estimators=500, min samples split=3, criterion=’entropy’, class weight=’balanced’ 0.96 0.83 0.86

Knn leaf size = 10, n neighbors=7, weights=’distance’ 0.98 0.92 0.97

GradientBoosting learning rate=0.1, n estimators=1000, 0.93 0.86 0.93

MLP hidden layer sizes= (50,50,50), learning rate=’constant’, activation = ’tanh’, solver=’adam’, alpha = 0.05 0.95 0.91 0.91

77

Overall, hyperparameter tuning, except for the dataset without balancing in SVMs and

gradient boosting, reduced F1 score. Several possible problems could be the root of

the problem associated with the decrease in model performance. The confusion matrix

of each model was obtained to explain which prediction values got worse. The values

presented in tables 13 and 14 are TP (samples correctly classified as bacteria), FP

(samples incorrectly classified as Phage), TN (samples correctly classified as Phage)

and FN (samples incorrectly classified as Bacteria) for all algorithms.

Table 13: Confusion matrix for each machine learning algorithm before hyperparameter tunning.
Model TP FP TN FN

Gradient boosting algorithm with undersampling 23849 259 16924 7184

Gradient boosting algorithm 21845 2263 22830 1278

Gradient boosting algorithm with oversampling 23706 402 17702 6406

Multi-layer perceptron algorithm with undersampling 23451 657 23920 188

Multi-layer perceptron algorithm 23831 277 23797 311

Multi-layer perceptron algorithm with oversampling 23713 395 24028 80

K-nearest neighbors algorithm with undersampling 23469 639 23656 452

K-nearest neighbors algorithm 23980 128 22935 1173

K-nearest neighbors algorithm with oversampling 23607 501 24082 26

Random forest algorithm with undersampling 23445 663 23975 133

Random forest algorithm 23994 114 23703 405

Random forest algorithm with oversampling 23891 217 24037 71

Support vector machine algorithm with undersampling 23395 713 23362 746

Support vector machine algorithm 23622 486 21869 2239

Support vector machine algorithm with overersampling 23515 593 23536 572

78

Table 14: Confusion matrix for each machine learning algorithm after hyperparameter tunning.
Model TP FP TN FN

Gradient boosting algorithm with undersampling 23755 353 18501 5607

Gradient boosting algorithm 23751 357 21508 2600

Gradient boosting algorithm with oversampling 23829 279 21956 2152

Multi-layer perceptron algorithm with undersampling 23260 848 20757 3351

Multi-layer perceptron algorithm 23829 279 21956 2152

Multi-layer perceptron algorithm with oversampling 23506 602 20756 3352

K-nearest neighbors algorithm with undersampling 23839 269 20900 3208

K-nearest neighbors algorithm 23974 134 23085 1023

K-nearest neighbors algorithm with oversampling 23705 403 23148 960

Random forest algorithm with undersampling 23973 135 17411 6697

Random forest algorithm 24006 102 22530 1578

Random forest algorithm with oversampling 23851 257 18337 5771

Support vector machine algorithm with undersampling 23332 776 20253 3855

Support vector machine algorithm 23159 949 23680 428

Support vector machine algorithm with oversampling 23348 760 20824 3284

Limited improvements

Support vector machine and gradient boosting models trained with datasets without

balancing were the only models that improved performance. In SVM, samples incorrectly

classified as phage (FN) decreased showing an improvement when classifying bacteria.

Contrary to the improvement in reducing FN, samples incorrectly classified as bacteria

(FP) increased. In GB, the opposite occurred. Here, the number of FP decreased after

the optimization, but the number of FN increased.

Overall deterioration

Globally, all the models tended to get worst after the optimization. The total number of

incorrect FP values decreased from 8307 to 6503 samples after optimization. However,

the number of FN increased in a greater proportion from 21264 before optimization to

79

46018 after optimization. This tendency seems to indicate that after optimization, the

models got overfitted bacteria-wise.

Two reasons can help to explain these results. The first reason is overfitting hyperpa-

rameters, meaning that adjusting the algorithm decision function could lead to inflexibility

when classifying samples. The second possible reason is that the tested hyperparameter

and the used method may not be the best.

Hence, hyperparameter tunning was not used in posterior analyses, as the scores,

without tunning, were already very high. Additionally, as the scores were high, using

hyperparameter tunning could overfit the model and hyperparameters to the existing

data, making sample classification outside the training dataset, harder.

5.0.6 MODEL SELECTION

The three models from the algorithms (Random forests and Multi-layer perceptron) were

selected to further testing in light of the previous results (table 11). Prophage Hunter

and PHASTER were used to analyse a group of 119 bacterial genomes (chromosomes

and plasmids), whose name were taken from the supplementary material of [60] and

sequences were taken from the NCBI database to prove that the models could be

extrapolated to predict phage sequences from bacterial sequences in real situations.

Each FASTA was submitted to Prophage Hunter and PHASTER, and the predicted

zones’ coordinates were saved into a file using default options. Then the same dataset

was processed by PhagePro’s models and the algorithm of boundary location to join

adjacent zones and expand to more real boundaries. The coordinates were saved into a

file for posterior comparison. The third-party tools’ predicted zones were intersected and

only common zones were selected to evaluate PhagePro’s results. The intersection aims

to increase the confidence of the predicted zone, as both tools have different methods for

scoring based in the presence of phage proteins that increases the probability of being a

80

phage zone. This step reduced the possible zones, 327 predicted by Prophage Hunter

and 374 predicted by PHASTER, to 154 common zones between.

Although, further wet lab validation is needed, using these high confidence putative

zones establish a strong base to differentiate model performance by aiming to predict the

highest number of putative phage zones. This does not mean that there are only those

putative prophage zones in the bacteria, but increasing the capability of predicting high

confidence putative zones, can also increase the capability of predicting zones that are

not found by other tools, as it is demonstrated in the case study. The number of common

zones between the three tools is shown in table 15.

Table 15: Number of common zones between the selected models and the zones predicted and
intersected by Prophage Hunter and PHASTER.

Model Number of common zones

Multi-layer perceptron with oversampling 40

Multi-layer perceptron with undersampling 43

Multi-layer perceptron without dataset balancing 29

Random forest model with oversampling 21

Random forest model with undersampling 43

Random forest model without dataset balancing 8

Table 15 shows that the selected models had a poor performance when tested in

real bacterial genomes, chromosomes and plasmids. This performance issue could be

associated with the size of the region that is being analysed. Specifically, the region

could be too large to be sensitive to small prophage sequences. Additionally, the region

could have a profile similar to the host, favouring the classification as bacteria. Another

explanation could be that the region suffered alterations with integration or replication of

the bacterial genetic material. The phage features were extracted from isolated phages,

whose composition could be different from the composition of an integrated phage.

On the other hand, it can be noticed that the models trained with undersampling

performed better when presented data outside the artificial training/testing/validation

81

datasets. Therefore, this data balancing method was used in dataset 2 and dataset 3 to

process the unbalanced data.

After building dataset 2 with undersampling, the algorithms that had the highest number

of common zones in dataset 1 (Multi-layer perceptron and Random forest) were used to

train models and test them. Tables 16 and 17, present the F1 score and confusion matrix

for both models:

Table 16: Table with the algorithm used to train the model and the respective F1 score.

Model F1 score

Multi-layer perceptron 0.92

Random forest 0.93

Table 17: Table with the confusion matrix of both models.

Model TP FP TN FN

Multi-layer perceptron 55178 5498 56358 4318

Random forest 55719 4957 56490 4186

The results presented in the table above 17 show that the models trained with smaller

windows (5000 bp) have the worst overall performance distinguishing bacteria from

phage. Nevertheless, this score could not be real as table 15 shows. Thus, both models

were tested with the dataset containing 154 common zones. The model trained with

Multi-layer perceptron algorithm was able to predict 81 (out of 154) and the model trained

with Random forest was able to predict 106. These results suggest that having smaller

windows can lead to an increase in the number of zones found. Therefore, to explore

different combinations of the dataset, the undersampled dataset was divided and shuffled

into five different datasets, training one model with each division and the models tested

against the common zones.

82

Table 18: Results for each division of the dataset and model associated with the common phages.

Model Number of common zones

Multi-layer perceptron division 1 82

Multi-layer perceptron division 2 110

Multi-layer perceptron division 3 89

Multi-layer perceptron division 4 99

Multi-layer perceptron division 5 75

Random forest division 1 74

Random forest division 2 82

Random forest division 3 71

Random forest division 4 66

Random forest division 5 69

Table 18 shows that overall, the division of the dataset worsen random forest results

compared to the results without division though improving the results for Multi-layer

perceptron models. From all those models, Multi-layer perceptron division 2 was the

model selected to integrate PhagePro, showing better results when predicting high

confidence integrated zones.

Dataset 3 was built using undersampling and tested against the common zones to

reduce errors when predicting zones with alterations. The results in table 19, show that

the best model is the model trained with the SVM algorithm and was therefore selected

to be integrated into PhagePro.

Table 19: Number of common zones between the selected models trained with the artificial
dataset and the zones predicted and intersected by Prophage Hunter and PHASTER.

Model Common zones (154)

Multi-layer perceptron algorithm 76

Support Vector machine algorithm 94

Gradient boosting algorithm 90

K-nearest neighbors algorithm 88

Random forest algorithm 73

83

5.0.7 PUBLISHING ON GALAXY

PhagePro was implemented in the Galaxy framework which provides easy access and

a simple interface for bioinformaticians and non-bioinformatics with less computational

experience. According to the galaxy structure, the tool can be divided into input, history,

and outputs/data visualisation. PhagePro was implemented to require only a FASTA file

with the bacterial genome, as shown in figure 8.

Figure 8: Main page of PhagePro in Galaxy.

For each PhagePro’s execution, four elements are produced in the history section. The

first represent the input and the other different results. As depicted below 9, from the

bottom to top, the first element is the uploaded FASTA file, the second is the table with all

prophages and their characteristics, the third element is the drawing of the bacteria and

the fourth is all the proteins found and their name.

84

Figure 9: Menu where the results appear.

Regarding data/results visualization, the first result’s is a summary table with the

prophages candidates, their coordinates, the number of proteins and related phage’s.

The second result is an illustration, in a pdf format, of the bacteria and the found

prophages in green. The last element is a table with all proteins found, where the first

column represents the correspondent phage, the second column represents the hits in

the Interproscan database, the third is the hits in the NCBI database and the last two

columns are the start and end coordinates of the protein. All results can be downloaded in

the interface or visualized. The result examples for the simulated example are presented

in the following figure.

85

Figure 10: Resume table of Agrobacterium fabrum strC58 chromosome circular results. These
results include the coordinates of each prophage, the protein number and related
phages.

Figure 11: Drawing of Agrobacterium fabrum strC58 chromosome circular and the localization of
the prophages included in the final result.

86

Figure 12: Table with the protein of one of the prophage candidates Agrobacterium fabrum strC58
chromosome circular. This table shows from which database the name proteins come
from and their coordinates.

5.0.8 CASE STUDY

Agrobacterium fabrum strC68

The Agrobacterium fabrum strC68 genome, along with its plasmids, was submitted to

the tool in FASTA format to test the full performance and development of the tool. The

tool performance will be evaluated through several analyses of different parts of the

workflow. The first is to analyse the number of putative prophage windows that the tool

found. Up to this part, the tool divided the genome in 5000 bp windows with 2500 bp

87

overlap in each one of them, calculated 42 features, classified the zones as prophage or

bacteria, merged adjacent zones and expanded each border, either by finding tRNA in the

proximity or by finding the best BLAST hit in the conjugation of small fragments upstream

and downstream. These steps resulted in 94 zones with structural and compositional

resemblance to a phage sequence, which were passed on the ensuing analysis.

Table 25 show the predicted zones with the respective coordinates.

The second part is analysing the constitution of each putative zone. For each putative

prophage zone, all proteins found inside the boundaries were sought in Interpro and

Pfam and SwissProt database (using the NCBI request to find the name of the protein).

Then each protein was associated with a function of the phage lifecycle, using keywords.

For this task, a dictionary where the keys are the lifecycle functions, and values each

lifecycle’s function keywords was used. Table 26 contains the number of functions found

in each putative zone.

After obtaining all possible functions for the proteins in the putative prophage zone, the

third part is excluding all putative zones that do not meet the established rules. As shown

in table 27, each candidate is assigned to one zone, or with the reason that led to the

exclusion of that zone.

After evaluating all zones 92 out of the 94 zones were excluded. Most zones were

excluded for reason 3 in table 3, which clearly shows that there is still a large gap in

information to annotate proteins, that needs to be addressed to have more detailed and

accurate results. Nevertheless, with the current information, as the putative prophage

zones include 82% of protein without association to a function on the phage lifecycle they

were excluded. Moreover, the second reason to exclude prophage zones was reason 4

in the same table. Hence, although the percentage of known proteins function is higher,

they are not associated with important phage lifecycle functions, such as, integrase for

integration, capsid for assembly and tail for penetration.

The final results for the case study is shown in table 20 and table 21:

88

Table 20: Final candidates and their characterisation.

Candidate Start End Number of proteins Number of hits in the prophage protein database

Candidate 172 430677 457559 56 14

Candidate 469 1173774 1186485 23 7

Table 21: Proteins of the final candidates associated with a phages’ lifecycle function.
Candidate Number of proteins associated with phage functions

Candidate 172 biosynthesis: 5, undetermined: 38, hypothetical: 3, integration: 2, assembly: 2, penetration: 5, lysis: 1

Candidate 469 biosynthesis: 6, undetermined: 13, penetration: 2, integration: 2

If the proteins of each candidate are analysed with more detail, there are good markers

that the predicted region is a prophage region. As shown in table 21, Candidate 172

comprises proteins that are more exclusive to phage’s, namely proteins associated

with the integrase family, several proteins associated with phage tails and proteins

associated with the regulation of phage protein expression. Candidate 469, although

smaller, contains proteins associated with phage tails, phage integration and proteins

responsible for evasion to bacterial restriction mechanisms.

The same FASTA file was submitted to Prophage Hunter and PHASTER, providing the

following results:

Prophage Hunter with similarity matching

Table 22: Results for Prophage Hunter with similarity matching.

Predicted zones Start End Score

1 430704 460982 0.71

2 3628690 3647612 0.82

3 5580626 5605220 0.86

89

Prophage Hunter without similarity matching

Table 23: Results for Prophage Hunter without similarity matching.

Predicted zones Start End Score

1 430704 460982 0.71

2 549543 565973 0.92

3 2962819 2981286 0.68

PHASTER

Table 24: Results for PHASTER.

Predicted zones Start End Score

1 430704 460936 Intact

2 940715 959523 Incomplete

3 5277049 5281544 Questionable

At first glance, it is possible to notice that there is only one zone in common with our

results; thus, a more in-depth analysis was performed. From the three predicted zones

shown in table 22, only the first match PhagePro’s final results. The second zone has a

high score (0.82), and an overlapping zone was predicted by our tool (candidate 1454).

Nevertheless, this zone was rejected because of reason 3 in table 3. The third zone

has a high score (0.86), and a smaller overlapping zone is included in the preliminary

PhagePro results (table 25). Nevertheless, the zone was rejected because of reason

7 in table 3. In this last case, it is possible that if the boundary location method were

adjusted, this zone could be included in the final results, because it had already six hits

in the prophage protein database.

Table 23 has three predicted zones, with the first matching PhagePro. The second

zone has a high score (0.92), overlapping the preliminary PhagePro results (candidate

221 in table 25). A more in-depth analysis of candidate 221 reveals that the zone has

no hits with the prophage protein database and was rejected for reason 3. The third

90

zone with a lower score (0.68), is also present in the preliminary results of PhagePro

(candidate 1187). However, it was rejected because of reason 7, making it a highly

unknown zone.

Table 24 has three predicted zones but only the first in common with PhagePro final

results. Nevertheless, our model was able to find a smaller zone inside the second

predicted zone (candidate 381) but, although the zone had good indicators of being

a prophage (contains tail and lysis associated proteins). However, the zone did not

pass the prediction confidence conditions because of reason 1. The last predicted zone

contains about 4500 bp and seven proteins, thus being excluded from PhagePro’s final

results. Our tool predicted an adjacent zone with a small overlapping sequence segment

(candidate 2105). Still, the zone was rejected due to reason 3.

6

C O N C L U S I O N

The main objective of this work was to create a tool that could help users find prophages

in bacterial genomes to track changes in bacterial genomes using phages as vectors.

Five machine learning algorithms were used to train models and the resulting models

were tested with different datasets obtained using different techniques. Additionally,

two balancing methods were tested to reduce the skew in phage representation in the

datasets, either by producing more phage instances or reducing bacterial instances.

Other methods were created to approximate this computational approach to reality.

Furthermore, two approximations to find the real prophage boundaries were implemented

and structural conditions were established to classify phage activity, thus improving the

prediction by excluding zones that do not have known phage proteins or have a highly

degraded structure.

Combinations of the different machine learning algorithms and scaling methods were

tested for each dataset, to determine the best scaling method. The scaling method

that had the best results overall was the standard scaling method from all combina-

tions. Moreover, the random forest algorithm and gradient boosting do not seem to

be influenced by scaling methods expect for the normalizer that deteriorates model’s

performance. Regarding the balancing methods, a portion of all the datasets was tested

using an oversampler and an undersampler and combining the balancing methods with

the plus models, resulting in slightly better results in all models when using the over-

sampler. Likewise, different combinations of hyperparameter were tested using as data

91

92

a portion of dataset one. The results have shown that, for the most part, tunning the

hyperparameters made the model performance worst, possibly by overfitting bacteria

predictions. This hypothesis is reinforced by comparing the number of FP in table 11

(before hyperparameter tunning) and table 12 (after hyperparameter tunning). After

finding the best hyperparameters, there was an increase in erroneous phage predictions.

In addition, a comparison was made between zones predicted by models in development

and zones predicted by Prophage Hunter and PHASTER. The first set of models (trained

with 10000 bp windows) performed poorly, as the best models only reached 43 of 154

zones. The second set of models was created using previously acquired knowledge with

the algorithms mentioned above, but only with undersampling as a balancing method

, as the best models were obtained with undersampling. Although the F1 score metric

decreased, the number of zones predicted by the random forest algorithm reached 106

of 154 zones. Additionally, a new approach to reduce model bias was tested, using a

stratified split of the data, resulting in five splits (five datasets), and each one used to train

and test models. All models created from the stratified split were used in the 154 zones,

whereas one of models using Multi-layer perceptron algorithm achieved 110 zones.

Finally, to bridge gaps in the prediction of prophage zones with bacterial alterations,

dataset 3 was built and used to train and test models, using undersampling as a balancing

method. From the five machine-learning algorithms tested, Support Vector Machine

achieved the highest number of zones found (94/154).

Regarding the performance of the tool in the case study, PhagePro predicted two

zones with good phage indicators, such as the different composition and structure of the

sequence in the bacterial genome and exclusive phage proteins correlated with prophage

proteins (integrase, tail, among others). Furthermore, comparing the results with the

results of Prophage Hunter and PHASTER, it is possible to notice some limitations in the

other tools that PhagePro is capable of surpassing, such as excluding zones with little

protein knowledge and small zones.

93

The main objective for this thesis was accomplished; building a tool that could find and

characterise prophage sequences in bacterial genomes, but there are limitations and

future work that will be addressed to improve the tool and its capabilities.

Regarding limitations, three major areas can be improved. The first is related to

predictive models. As mentioned before, the models with the best scores detecting

the common zones, and selected to incorporate the tool workflow, did not predict all

existing zones, showing that there is room for improvements. Either by trying different

machine learning algorithms or approaches to the classification problem, perhaps deep

learning would be more suited for this task, or a better hyperparameter optimization

method. Additionally, adding more phage information or samples could provide a broader

representation of the phage population. One example of this information is phage

sequences, extracted from bacteria through scientific experiments, that could have

different feature variations making the model more aware of phage alterations. The

second major area that could be improved is boundary locating. Although the methods

implemented in this tool make a good approximation to the real prophage boundaries,

predicting the exact phage insertion location can be a good improvement. It would remove

unwanted bacteria parts or add smaller but important fragments of putative prophages.

The last major area to be improved is phage activity classification. Unfortunately, there is

little information on the topic of what is a complete prophage or a prophage capable of

performing all steps in his lifecycle. Furthermore, a good portion of phage proteins is

hypothetical, making the classification of these proteins to a lifecycle step difficult. Other

smaller improvements include more input options to allow other file types to be processed

or a simple sequence without needing a file. Moreover, prophage representation in

the results could be improved to allow the user to interact with the different results and

illustrations.

6.1. Future work 94

6.1 FUTURE WORK

Future work can help to improve the quality of the predictions and user experience.

Additionally, when the tool is available to other users, user feedback could highlight

problems/optimizations. Nevertheless, the following improvement road map is proposed:

• Increase phage data, either by gather experimental data or building new features.

• Allow prophage illustration.

• Allow the user to select what conditions to exclude putative prophage zones to

apply in the workflow, allowing the user to explore less known phages that have

proteins less represented in databases.

• Decrease tool run time.

• Testing different hyperparameters and hyperparameter tunning methods to improve

the prediction results.

• Gather information about the structure and localization of integration sites, BLAST-

ing prophage sequences to bacterial genomes, saving small size hits (for example,

less than 250 bp) and searching the location of the BLAST hit in both genomes,

seeing in which location/ protein is located.

• Improve boundary location.

• Build a database with phage related information, for example, phage composition in

NCBI databases and prophages experimentally extracted, conserved protein sites

and different variations for major phage proteins, like integrase, capsid and tail.

• A method to compare differences between genomes, either by inputting the

genomes or comparing the found prophage genomes using the tool with genomes

stored in the database.

6.1. Future work 95

• A predictive model that could bridge gaps between the protein and her function in

the phage lifecycle, for example by calculating features directly from the sequence

to the function avoiding searching databases and surpassing knowledge limitations

in databases.

• A hub or workflow of tools that could expand the knowledge of phages or events

caused by phages. For example, creating a tool that could simulate the behavior

of a bacteria or community of bacteria when a certain concentration of phages

is added or removed from the environment. Or, if the objective is to increase or

create a metabolic pathway to produce new products, a tool that could simulate the

behavior of a bacterium when a phage enters the bacteria, hijacking the bacterial

machinery or integrating the phage genome in the bacteria changing the expression

of metabolites or creating new metabolic pathways.

B I B L I O G R A P H Y

[1] Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic do-

main: The primary kingdoms (archaebacteria/eubacteria/urkaryote/16S ribosomal

RNA/molecular phylogeny) (tech. rep. No. 11).

[2] Rivera, M. C., & Lake, J. A. (2004). The ring of life provides evidence for a genome

fusion origin of eukaryotes. Nature, 431(7005), 152–155.

[3] Clokie, M., & Kropinski, A. (2009). Bacteriophages: Volume I.

[4] H Andrewes, B. C. (1955). The Classification of Viruses.

[5] Steinhaus, E. A. (n.d.). NOMENCLATURE AND CLASSIFICATION OF INSECT

VIRUSES’.

[6] LWOFF, A. (1957). The Concept of Virus. Journal of General Microbiology, 17 (1),

239–253.

[7] LWOFF, A., HORNE, R., & TOURNIER, P. (1962). A system of viruses. Cold

Spring Harbor symposia on quantitative biology, 27, 51–55.

[8] Abeles, A. L., Snyder, K. M., & Chattoraj, D. K. (1984). P1 plasmid replication:

Replicon structure. Journal of Molecular Biology, 173(3), 307–324.

[9] Gelderblom, H. R. (1996). Structure and Classification of Viruses (4th edition).

University of Texas Medical Branch at Galveston.

[10] Norrby, E. (n.d.). The morphology of virus particles . Classification of viruses.

[11] Campbell, A. M. [Allan M]. (n.d.). Bacteriophages.

[12] Yang, H., Ma, Y., Wang, Y., Yang, H., Shen, W., & Chen, X. (2014). Transcrip-

tion regulation mechanisms of bacteriophages: Recent advances and future

prospects.

96

97

[13] Gruffat, H., Marchione, R., & Manet, E. (2016). Herpesvirus Late Gene Expression:

A Viral-Specific Pre-initiation Complex Is Key. Frontiers in Microbiology, 7 (JUN),

869.

[14] White, E. A., & Spector, D. H. (2007). Early viral gene expression and function.

Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis.

[15] Replication, V. D. N. A. (2017). Introduction to DNA Viruses, 0–5.

[16] Payne, S. (2017). Introduction to RNA Viruses. Viruses, 97–105.

[17] Barr, J. N., & Fearns, R. (2016). Genetic Instability of RNA Viruses. Genome

Stability: From Virus to Human Application, (January), 21–35.

[18] Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral

Mutation Rates. JOURNAL OF VIROLOGY, 84(19), 9733–9748.

[19] Norrby, E. (1983). The morphology of virus particles. Classification of viruses. In

Textbook of medical virology (pp. 4–16).

[20] STRAUSS, J. H., & STRAUSS, E. G. (2008). The Structure of Viruses. In Viruses

and human disease (pp. 35–62).

[21] Fermin, G. (2018). Host Range, Host-Virus Interactions, and Virus Transmission.

In Viruses: Molecular biology, host interactions, and applications to biotechnology

(pp. 101–134).

[22] McLeish, M. J., Fraile, A., & Garcı́a-Arenal, F. (2018). Ecological Complexity in

Plant Virus Host Range Evolution. Advances in Virus Research, 101, 293–339.

[23] Suttle, C. A. (2000). Cyanobacteria and Eukaryotic Algae. Algae, 247–296.

[24] International Committee on Taxonomy of Viruses (ICTV). (n.d.).

[25] Turner, D., Kropinski, A. M., & Adriaenssens, E. M. (2021). A Roadmap for

Genome-Based Phage Taxonomy. Viruses, 13(3).

[26] Chibani, C. M., Farr, A., Klama, S., Dietrich, S., & Liesegang, H. (2019). Classifying

the unclassified: A phage classification method. Viruses, 11(2).

[27] Domingo-Calap, P., & Delgado-Martı́nez, J. (2018). Bacteriophages: Protagonists

of a post-antibiotic era. Antibiotics, 7 (3), 1–16.

98

[28] Thomas, C. E., Ehrhardt, A., & Kay, M. A. (2003). Progress and problems with the

use of viral vectors for gene therapy.

[29] d’Herelle, F. (1931). BACTERIOPHAGE AS A TREATMENT IN ACUTE MEDICAL

AND SURGICAL INFECTIONS*. Yale University School of Medicine.

[30] Wittebole, X., De Roock, S., & Opal, S. M. (2014). A historical overview of

bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial

pathogens. Virulence, 5(1), 226–235.

[31] Roach, D. R., & Debarbieux, L. (2017). Phage therapy: awakening a sleeping

giant. Emerging Topics in Life Sciences, 1(1), 93–103.

[32] Endersen, L., O’Mahony, J., Hill, C., Ross, R. P., McAuliffe, O., & Coffey, A.

(2014). Phage Therapy in the Food Industry. Annual Review of Food Science and

Technology, 5(1), 327–349.

[33] Sano, E., Carlson, S., Wegley, L., & Rohwer, F. (2004). Movement of viruses

between biomes. Applied and Environmental Microbiology, 70(10), 5842–5846.

[34] Cobián, A. G., Uemes, G., Youle, M., Cantú, V. A., Cantú, C., Felts, B., . . . Rohwer,

F. (n.d.). Viruses as Winners in the Game of Life.

[35] Principi, N., Silvestri, E., & Esposito, S. (2019). Advantages and Limitations of Bac-

teriophages for the Treatment of Bacterial Infections. Frontiers in Pharmacology,

10(MAY), 513.

[36] Manohar, P., Nachimuthu, R., & Lopes, B. S. (n.d.). The therapeutic potential

of bacteriophages targeting gram-negative bacteria using Galleria mellonella

infection model.

[37] Fischetti, V. A. (2011). Exploiting what phage have evolved to control gram-positive

pathogens. Bacteriophage, 1(4), 188–194.

[38] Kaján, G. L., Doszpoly, ·. A., Zoltán, ·., Tarján, L., Vidovszky, M. Z., & Papp, ·. T.

(2020). Virus-Host Coevolution with a Focus on Animal and Human DNA Viruses.

Journal of Molecular Evolution, 88, 41–56.

[39] Barrangou, R., & Marraffini, L. A. (2014). CRISPR-Cas systems: prokaryotes

upgrade to adaptive immunity.

99

[40] Guenther, C. M., Kuypers, B. E., Lam, M. T., Robinson, T. M., Zhao, J., & Suh, J.

(n.d.). Synthetic Virology: Engineering Viruses for Gene Delivery.

[41] Krause, R. M. (n.d.). STUDIES ON THE BACTERIOPHAGES OF HEMOLYTIC

STREPTOCOCCI II. ANTIGENS I˜ELEASED FROM THE STREPTOCOCCAL

CELL WALL BY A PHAGE-AssoCIATED LYSIN.

[42] Vale, F. F. [Filipa F.], & Lehours, P. (2018). Relating phage genomes to helicobacter

pylori population structure: General steps using whole-genome sequencing data.

[43] Almand, E. A., Moore, M. D., & Jaykus, L. A. (2017). Virus-bacteria interactions:

An emerging topic in human infection. Viruses, 9(3).

[44] Haaber, J., Leisner, J. J., Cohn, M. T., Catalan-Moreno, A., Nielsen, J. B., Westh,

H., . . . Ingmer, H. (2016). Bacterial viruses enable their host to acquire antibiotic

resistance genes from neighbouring cells. Nature Communications, 7.

[45] Chen, J., Quiles-Puchalt, N., Chiang, Y. N., Bacigalupe, R., Fillol-Salom, A., Chee,

M. S. J., . . . Penadés, J. R. (2018). Genome hypermobility by lateral transduction.

Science, 362(6411), 207–212.

[46] Torres-Barceló, C. (n.d.). The disparate effects of bacteriophages on antibiotic-

resistant bacteria.

[47] Hooi, J. K., Lai, W. Y., Ng, W. K., Suen, M. M., Underwood, F. E., Tanyingoh, D., . . .

Ng, S. C. (2017). Global Prevalence of Helicobacter pylori Infection: Systematic

Review and Meta-Analysis. Gastroenterology, 153(2), 420–429.

[48] Kamangar, F., Qiao, Y. L., Blaser, M. J., Sun, X. D., Katki, H., Fan, J. H., . . .

Dawsey, S. M. (2007). Helicobacter pylori and oesophageal and gastric cancers

in a prospective study in China. British Journal of Cancer, 96(1), 172–176.

[49] Bravo, D., Hoare, A., Soto, C., Valenzuela, M. A., & Quest, A. F. (2018). Helicobac-

ter pylori in human health and disease: Mechanisms for local gastric and systemic

effects.

[50] De Francesco, V., Giorgio, F., Hassan, C., Manes, G., Vannella, L., Panella, C., . . .

Zullo, A. (2010). Worldwide H. pylori Antibiotic Resistance: a Systematic Review

(tech. rep. No. 4).

100

[51] Qasim, A., O’Morain, C. A., & O’Connor, H. J. (2009). ¡i¿Helicobacter pylori¡/i¿

eradication: role of individual therapy constituents and therapy duration. Funda-

mental & Clinical Pharmacology, 23(1), 43–52.

[52] Ghannad, M. S., & Mohammadi, A. (2012). Bacteriophage: Time to re-evaluate

the potential of phage therapy as a promising agent to control multidrug-resistant

bacteria.

[53] Slopek, S., Durlakowa, I., Weber-Dabrowska, B., Kucharewicz-Krukowska, A.,

Dabrowski, M., & Bisikiewicz, R. (1983). Results of bacteriophage treatment of

suppurative bacterial infections. II. Detailed evaluation of the results.

[54] Blader, I., Coleman, B., Chen, C.-T., & Gubbels, M.-J. (n.d.). The lytic cycle of

Toxoplasma gondii: 15 years later.

[55] Howard-Varona, C., Hargreaves, K. R., Abedon, S. T., & Sullivan, M. B. (2017).

MINI REVIEW Lysogeny in nature: mechanisms, impact and ecology of temperate

phages Why study lysogeny? Nature Publishing Group, 11, 1511–1520.

[56] Horie, M., Honda, T., Suzuki, Y., Kobayashi, Y., Daito, T., Oshida, T., . . . Tomon-

aga, K. (2010). Endogenous non-retroviral RNA virus elements in mammalian

genomes. Nature.

[57] Feschotte, C. (n.d.). Virology: Bornavirus enters the genome.

[58] Malik, S. S., Azem-e-Zahra, S., Kim, K. M., Caetano-Anollés, G., & Nasir, A.

(2017). Do Viruses Exchange Genes across Superkingdoms of Life? Frontiers in

Microbiology, 8(OCT), 2110.

[59] Carlson, K. (2005). Working with bacteriophages: common techniques and

methodological approaches.

[60] Casjens, S. (2003). Prophages and bacterial genomics: What have we learned

so far? Molecular Microbiology, 49(2), 277–300.

[61] Oleastro, M., & Vale, F. F. [F F]. (2013). Helicobacter pylori eradication – the

alternatives beyond antibiotics. (January), 1656–1667.

[62] Clokie, M. R. J., & Kropinski, A. M. (2009). Bacteriophages : methods and proto-

cols. Methods in molecular biology, 501, xxii, 307 p.

101

[63] Sharma, D., Priyadarshini, P., & Vrati, S. (2015). Unraveling the Web of Viroinfor-

matics: Computational Tools and Databases in Virus Research.

[64] Ahlgren, N. A., Ren, J., Lu, Y. Y., Fuhrman, J. A., & Sun, F. (2017). Alignment-free

d2 oligonucleotide frequency dissimilarity measure improves prediction of hosts

from metagenomically-derived viral sequences. Nucleic Acids Research, 45(1),

39–53.

[65] Srividhya, K. V., Alaguraj, V., Poornima, G., Kumar, D., Singh, G. P., Raghaven-

deran, L., . . . Krishnaswamy, S. (2007). Identification of Prophages in Bacterial

Genomes by Dinucleotide Relative Abundance Difference. PLoS ONE, 2(11),

e1193.

[66] Ru, X., Li, L., & Wang, C. (2019). Identification of phage viral proteins with hybrid

sequence features. Frontiers in Microbiology, 10(MAR), 507.

[67] Bossi, L., Fuentes, J. A., Mora, G., & Figueroa-Bossi, N. (2003). Prophage

Contribution to Bacterial Population Dynamics. Journal of Bacteriology, 185(21),

6467–6471.

[68] Hatfull, G. F., & Hendrix, R. W. [Roger W]. (2011). Bacteriophages and their

Genomes.

[69] Nelson, K. E., Weinel, C., Paulsen, I. T., Dodson, R. J., Hilbert, H., Martins dos

Santos, V. A. P., . . . Fraser, C. M. (2002). Complete genome sequence and

comparative analysis of the metabolically versatile Pseudomonas putida KT2440.

Environmental Microbiology, 4(12), 799–808.

[70] Edwards, R. A., Mcnair, K., Faust, K., Raes, J., & Dutilh, B. E. (2016). Computa-

tional approaches to predict bacteriophage-host relationships. FEMS Microbiology

Reviews, 048, 258–272.

[71] Thaler, J.-O., Baghdiguian, S., Noe, N., & Boemare, N. (1995). Purification and

Characterization of Xenorhabdicin, a Phage Tail-Like Bacteriocin, from the Lyso-

genic Strain F1 of Xenorhabdus nematophilus (tech. rep. No. 5).

102

[72] Und, M., Weihenstephan, L., Zink, R., Loessner, M. J., & Scherer, S. (1995). Char-

acterization of cryptic prophages (monocins) in Listeria and sequence analysis of

a holinlendolysin gene. Microbiology, 141, 2577–2584.

[73] Hoa NGUYEN, A., Tomita, T., Hirota, M., Sato, T., & Kamio, Y. (1999). Bioscience,

Biotechnology, and Biochemistry A Simple Purification Method and Morphology

and Component Analyses for Carotovoricin Er, a Phage-tail-like Bacteriocin from

the Plant Pathogen Erwinia carotovora Er A Simple Purification Method and

Morphology and Component Analyses for Carotovoricin Er, a Phage-tail-like Bac-

teriocin from the Plant Pathogen. Bioscience, Biotechnology, and Biochemistry,

63(8), 1360–1369.

[74] Lang, A. S., & Beatty, J. T. (2007). Importance of widespread gene transfer agent

genes in α-proteobacteria. Trends in Microbiology, 15(2), 54–62.

[75] Novick, R. P., Christie, G. E., & Penadés, J. R. (2010). The phage-related chro-

mosomal islands of Gram-positive bacteria NIH Public Access $watermark-text

$watermark-text $watermark-text. Nat Rev Microbiol, 8(8), 541–551.

[76] Sutter, M., Boehringer, D., Gutmann, S., Günther, S., Prangishvili, D., Loessner,

M. J., . . . Ban, N. (2008). Structural basis of enzyme encapsulation into a bacterial

nanocompartment. Nature Structural and Molecular Biology, 15(9), 939–947.

[77] Labrie, S. J., Samson, J. E., & Moineau, S. (2010). Bacteriophage resistance

mechanisms. Nature Reviews Microbiology, 8(5), 317–327.

[78] Leskinen, K., Blasdel, B. G., Lavigne, R., & Skurnik, M. (n.d.). RNA-Sequencing

Reveals the Progression of Phage-Host Interactions between R1-37 and Yersinia

enterocolitica.

[79] Mojardı́n, L., & Salas, M. (2016). Global Transcriptional Analysis of Virus-Host

Interactions between Phage 29 and Bacillus subtilis. 90.

[80] Dion, M. B., Oechslin, F., & Moineau, S. (2020). Phage diversity, genomics and

phylogeny. Nature Reviews Microbiology, 18(3), 125–138.

[81] Sallie, R. (2005). Virology Journal Replicative Homeostasis: A fundamental mech-

anism mediating selective viral replication and escape mutation.

103

[82] Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J., & Wishart, D. S. (n.d.). PHAST: A

Fast Phage Search Tool.

[83] Arndt, D., Grant, J. R., Marcu, A., Sajed, T., Pon, A., Liang, Y., & Wishart, D. S.

(2016). PHASTER: a better, faster version of the PHAST phage search tool.

Nucleic acids research, 44(W1), W16–W21.

[84] Akhter, S., Aziz, R. K., & Edwards, R. A. (n.d.). PhiSpy: a novel algorithm for

finding prophages in bacterial genomes that combines similarity-and composition-

based strategies.

[85] Song, W., Sun, H. X., Zhang, C., Cheng, L., Peng, Y., Deng, Z., . . . Xiao, M.

(2019). Prophage Hunter: an integrative hunting tool for active prophages. Nucleic

acids research, 47 (W1), W74–W80.

[86] Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W.,

& Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs (tech. rep. No. 17). Oxford University Press.

[87] Ye, Y., Choi, J. H., & Tang, H. (2011). RAPSearch: A fast protein similarity search

tool for short reads. BMC Bioinformatics, 12(1), 1–10.

[88] Buchfink, B., Xie, C., & Huson, D. H. (2014). Fast and sensitive protein alignment

using DIAMOND. Nature Methods, 12(1), 59–60.

[89] Krallinger, M., & Valencia, A. (2005). Text-mining and information-retrieval services

for molecular biology.

[90] Eddy, S. R. [Sean R]. (n.d.). Profile hidden Markov models.

[91] Brief review: Gene-Finding for Bacterial Genomes — BioBam. (n.d.).

[92] Team I Gene Prediction Group - Compgenomics 2019. (n.d.).

[93] Team II Gene Prediction Group - Compgenomics 2019. (n.d.).

[94] Team III Gene Prediction Group - Compgenomics 2019. (n.d.).

[95] Salzberg, S. L., Deicher, A. L., Kasif, S., & White, O. (1998). Microbial gene

identification using interpolated Markov models. Nucleic Acids Research, 26(2),

544–548.

104

[96] Besemer, J., Lomsadze, A., & Borodovsky, M. (2001). GeneMarkS: a self-training

method for prediction of gene starts in microbial genomes. Implications for finding

sequence motifs in regulatory regions (tech. rep. No. 12).

[97] Hyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser,

L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site

identification. BMC Bioinformatics, 11, 119.

[98] Bailly-Bechet, M., Vergassola, M., & Rocha, E. (2007). Causes for the intriguing

presence of tRNAs in phages. Genome Research, 17 (10), 1486–1495.

[99] Ventura, M., Lee, J. H., Canchaya, C., Zink, R., Leahy, S., Moreno-Munoz, J. A.,

. . . Van Sinderen, D. (2005). Prophage-like elements in bifidobacteria: Insights

from genomics, transcription, integration, distribution, and phylogenetic analysis.

Applied and Environmental Microbiology, 71(12), 8692–8705.

[100] Lowe, T. M., & Eddy, S. R. [Sean R]. (1997). tRNAscan-SE: a program for improved

detection of transfer RNA genes in genomic sequence (tech. rep. No. 5).

[101] Eddy, S. R. [Sean R.], & Durbin, R. (1994). RNA sequence analysis using covari-

ance models. Nucleic Acids Research, 22(11), 2079–2088.

[102] Laslett, D., & Canback, B. (n.d.). ARAGORN, a program to detect tRNA genes

and tmRNA genes in nucleotide sequences.

[103] Laslett, D., Canback, B., & Andersson, S. (2002). BRUCE: A program for the

detection of transfer-messenger RNA genes in nucleotide sequences. Nucleic

Acids Research, 30(15), 3449–3453.

[104] El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., . . .

Finn, R. D. (2019). The Pfam protein families database in 2019. Nucleic Acids

Research, 47 (D1), D427–D432.

[105] D158-D169. (2017). UniProt: the universal protein knowledgebase The UniProt

Consortium. Nucleic Acids Research, 45.

[106] Cheng, H., Schaeffer, R. D., Liao, Y., Kinch, L. N., & Pei, J. (2014). ECOD:

An Evolutionary Classification of Protein Domains. PLoS Comput Biol, 10(12),

1003926.

105

[107] NCBI Resource Coordinators. (2015). Database resources of the National Center

for Biotechnology Information. Nucleic Acids Research, 44, 7–19.

[108] Grazziotin, A. L., Koonin, E. V., & Kristensen, D. M. (2017). Prokaryotic Virus

Orthologous Groups (pVOGs): A resource for comparative genomics and protein

family annotation. Nucleic Acids Research, 45(D1), D491–D498.

[109] Leplae, R. [R.]. (2004). ACLAME: A CLAssification of Mobile genetic Elements.

Nucleic Acids Research, 32(90001), 45D–49.

[110] Leplae, R. [Raphaël], Lima-Mendez, G., & Toussaint, A. (2009). ACLAME: A

CLAssification of mobile genetic elements, update 2010. Nucleic Acids Research,

38(SUPPL.1), D57.

[111] Liu, H., & Teow, L. N. (2005). Performance evaluation of protein sequence cluster-

ing tools. In Lecture notes in computer science (Vol. 3515, 2, pp. 877–885).

[112] Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). Sequence analysis CD-HIT:

accelerated for clustering the next-generation sequencing data. 28(23), 3150–

3152.

[113] Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A Density-Based Algorithm

for Discovering Clusters in Large Spatial Databases with Noise.

[114] DBSCAN Clustering — Explained. Detailed theorotical explanation and. . . — by

Soner Yıldırım — Towards Data Science. (n.d.).

[115] Tong, J. C. (2013). Cross-Validation.

[116] How to Deal with Missing Values in Your Dataset - KDnuggets. (n.d.).

[117] Feature Selection and Feature Extraction in Machine Learning: An Overview —

by Mehul Ved — Medium. (n.d.).

[118] How to Choose a Feature Selection Method For Machine Learning. (n.d.).

[119] Feature Selection using Wrapper Method - Python Implementation. (n.d.).

[120] Hands-on with Feature Selection Techniques: Embedded Methods — by Younes

Charfaoui — Heartbeat. (n.d.).

[121] (2) (PDF) A Study of Cross-Validation and Bootstrap for Accuracy Estimation and

Model Selection. (n.d.).

106

[122] Berrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computa-

tional Biology: ABC of Bioinformatics, 1-3, 542–545.

[123] 15.3 - Bootstrapping — STAT 555. (n.d.).

[124] Dayan, P., & Niv, Y. (2008). Reinforcement learning: The Good, The Bad and The

Ugly.

[125] Zhang, M., Yang, L., Ren, J., Ahlgren, N. A., Fuhrman, J. A., & Sun, F. (2017).

Prediction of virus-host infectious association by supervised learning methods.

BMC Bioinformatics, 18(Suppl 3).

[126] Boulesteix, A. L., Janitza, S., Kruppa, J., & König, I. R. (2012). Overview of random

forest methodology and practical guidance with emphasis on computational

biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 2(6), 493–507.

[127] 15.3 - Bootstrapping — STAT 555. (n.d.).

[128] Support Vector Machines(SVM) — An Overview — by Rushikesh Pupale —

Towards Data Science. (n.d.).

[129] Decision Tree Algorithm, Explained - KDnuggets. (n.d.).

[130] Mohammed, M., Khan, M. B., & Bashie, E. B. M. (2016). Machine learning:

Algorithms and applications.

[131] Crash Course On Multi-Layer Perceptron Neural Networks. (n.d.).

[132] 1.17. Neural network models (supervised) — scikit-learn 0.24.2 documentation.

(n.d.).

[133] Model Evaluation Metrics in Machine Learning - KDnuggets. (n.d.).

[134] Choosing Evaluation Metrics For Classification Model. (n.d.).

[135] Ram, A., Jalal, S., Jalal, A. S., & Kumar, M. (2010). A Density Based Algorithm

for Discovering Density Varied Clusters in Large Spatial Databases. International

Journal of Computer Applications, 3(6), 1–4.

[136] Diversity Indices: Shannon and Simpson. (n.d.).

[137] R Core Team. (2017). R: A language and environment for statistical computing. R

Foundation for Statistical Computing. Vienna, Austria.

107

[138] Amgarten, D., Braga, L. P., da Silva, A. M., & Setubal, J. C. (2018). MARVEL, a

tool for prediction of bacteriophage sequences in metagenomic bins. Frontiers in

Genetics, 9(AUG), 1–8.

[139] Fouts, D. E. (2006). Phage Finder: Automated identification and classification

of prophage regions in complete bacterial genome sequences. Nucleic Acids

Research, 34(20), 5839–5851.

[140] Lima-Mendez, G., Van Helden, J., Toussaint, A., & Leplae, R. (2008). Prophinder:

A computational tool for prophage prediction in prokaryotic genomes. Bioinfor-

matics, 24(6), 863–865.

[141] Akhter, S., Aziz, R. K., & Edwards, R. A. (2012). PhiSpy: A novel algorithm for

finding prophages in bacterial genomes that combines similarity-and composition-

based strategies. Nucleic Acids Research, 40(16), 1–13.

[142] Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A., & Sun, F. (2017). VirFinder: a

novel k-mer based tool for identifying viral sequences from assembled metage-

nomic data. Microbiome, 5(1), 69.

[143] Li, J., Tai, C., Deng, Z., Zhong, W., He, Y., & Ou, H. Y. (2018). VRprofile: gene-

cluster-detection-based profiling of virulence and antibiotic resistance traits en-

coded within genome sequences of pathogenic bacteria. Briefings in bioinformat-

ics, 19(4), 566–574.

[144] Reis-Cunha, J. L., Bartholomeu, D. C., Manson, A. L., Earl, A. M., & Cerqueira,

G. C. (2019). ProphET, prophage estimation tool: A standalone prophage se-

quence prediction tool with self-updating reference database. PLoS ONE, 14(10),

1–11.

[145] Starikova, E. V., Tikhonova, P. O., Prianichnikov, N. A., Rands, C. M., Zdobnov,

E. M., Ilina, E. N., & Govorun, V. M. (2020). Phigaro: High-throughput prophage

sequence annotation. Bioinformatics, 36(12), 3882–3884.

[146] Hatcher, E. L., Zhdanov, S. A., Bao, Y., Blinkova, O., Nawrocki, E. P., Ostapchuck,

Y., . . . Rodney Brister, J. (2017). Virus Variation Resource-improved response to

emergent viral outbreaks. Nucleic Acids Research, 45(D1), D482–D490.

108

[147] Entrez Programming Utilities Help - NCBI Bookshelf. (n.d.).

[148] Canchaya, C., Fournous, G., & Brüssow, H. (2004). The impact of prophages on

bacterial chromosomes.

[149] Campbell, A. M. [Allan M.]. (2002). Preferential Orientation Preferential Orienta-

tion of Natural Lambdoid Prophages and Bacterial Chromosome Organization.

Theoretical Population Biology, 61(4), 503–507.

[150] Bujak, K., Decewicz, P., Kaminski, J., & Radlinska, M. (2020). Identification,

characterization, and genomic analysis of novel serratia temperate phages from

a gold mine. International Journal of Molecular Sciences, 21(18), 1–28.

[151] Mavrich, T. N., Casey, E., Oliveira, J., Bottacini, F., James, K., Franz, C. M., . . .

van Sinderen, D. (2018). Characterization and induction of prophages in human

gut-associated Bifidobacterium hosts. Scientific Reports, 8(1), 1–17.

[152] Kogay, R., Neely, T. B., Birnbaum, D. P., Hankel, C. R., Shakya, M., & Zhaxybayeva,

O. (2019). Machine-Learning Classification Suggests That Many Alphaproteobac-

terial Prophages May Instead Be Gene Transfer Agents. Genome Biology and

Evolution, 11(10), 2941–2953.

[153] Du, M. Z., Liu, S., Zeng, Z., Alemayehu, L. A., Wei, W., & Guo, F. B. (2018). Amino

acid compositions contribute to the proteins’ evolution under the influence of their

abundances and genomic GC content. Scientific Reports, 8(1), 1–9.

[154] Moura, A., Savageau, M. A., & Alves, R. (2013). Relative Amino Acid Composition

Signatures of Organisms and Environments. PLoS ONE, 8(10), e77319.

[155] Grigoriev, A. (1998). Analyzing genomes with cumulative skew diagrams. Nucleic

Acids Research, 26(10), 2286–2290.

[156] Lucks, J. B., Nelson, D. R., Kudla, G. R., & Plotkin, J. B. (2008). Genome Land-

scapes and Bacteriophage Codon Usage. PLoS Comput Biol, 4(2), 1000001.

[157] Bahir, I., Fromer, M., Prat, Y., & Linial, M. (2009). Viral adaptation to host: a

proteome-based analysis of codon usage and amino acid preferences. Molecular

Systems Biology, 5, 311.

109

[158] O’Donovan, C., Martin, M. J., Gattiker, A., Gasteiger, E., Bairoch, A., & Apweiler,

R. (2002). High-quality protein knowledge resource: SWISS-PROT and TrEMBL.

Briefings in bioinformatics, 3(3), 275–284.

[159] Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., . . . Hunter, S.

(2014). InterProScan 5: Genome-scale protein function classification. Bioinfor-

matics, 30(9), 1236–1240.

[160] Blum, M., Chang, H.-Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A.,

. . . Finn, R. D. (2020). The InterPro protein families and domains database: 20

years on. Nucleic Acids Research, (1).

[161] Brüssow, H., & Hendrix, R. W. [Roger W.]. (2002). Phage Genomics: Small is

beautiful.

[162] Banks, D. J., Lei, B., & Musser, J. M. (2003). Prophage Induction and Expression

of Prophage-Encoded Virulence Factors in Group A Streptococcus Serotype M3

Strain MGAS315. Infection and Immunity, 71(12), 7079–7086.

[163] Afgan, E., Baker, D., Batut, B., Van Den Beek, M., Bouvier, D., Ech, M., . . .

Blankenberg, D. (2018). The Galaxy platform for accessible, reproducible and

collaborative biomedical analyses: 2018 update. Nucleic Acids Research, 46(W1),

W537–W544.

[164] PyCharm: the Python IDE for Professional Developers by JetBrains. (n.d.).

7

S U P P O R T M AT E R I A L

7.1 DETAILS OF RESULTS

Table 25: This table shows the coordinates of each the region in the bacterial genomes predicted
by the two models. These predicted regions are possible prophages and therefore are
candidates to posterior analysis.

Candidate Start End

cand 0 0 4493

cand 10 26768 33411

cand 70 176435 192608

cand 90 225744 231038

cand 99 248655 253566

cand 130 326869 330948

cand 172 430677 457559

cand 208 521539 531747

cand 221 553440 562858

cand 257 643780 648223

cand 299 748346 753122

cand 309 772779 777231

cand 360 901286 906032

110

7.1. Details of results 111

cand 381 952990 958158

cand 402 1005698 1030650

cand 419 1048008 1052217

cand 443 1108801 1113392

cand 469 1173774 1186485

cand 480 1200490 1222035

cand 500 1251588 1260798

cand 524 1310382 1331605

cand 549 1373181 1377948

cand 567 1418967 1423649

cand 585 1463055 1467377

cand 600 1491924 1505366

cand 610 1525991 1530476

cand 659 1648496 1653758

cand 686 1711154 1721296

cand 702 1756761 1761753

cand 724 1813147 1825943

cand 738 1845550 1850536

cand 762 1905891 1938858

cand 795 1988551 1993415

cand 823 2058583 2062279

cand 832 2081194 2085717

cand 856 2142229 2154370

cand 880 2202048 2207023

cand 886 2217210 2221609

cand 913 2283922 2288995

cand 957 2393646 2397884

7.1. Details of results 112

cand 979 2446566 2453423

cand 996 2492645 2495951

cand 1003 2508595 2516741

cand 1037 2593746 2609929

cand 1072 2680635 2687598

cand 1104 2761964 2766767

cand 1136 2840340 2851344

cand 1187 2968743 2986566

cand 1253 3133434 3139308

cand 1398 3496185 3506431

cand 1413 3530422 3547906

cand 1454 3636037 3640953

cand 1471 3677759 3682339

cand 1477 3693478 3698473

cand 1507 3768525 3793157

cand 1527 3818219 3823561

cand 1568 3920943 3934890

cand 1578 3945479 3949971

cand 1609 4023164 4028647

cand 1637 4093373 4103114

cand 1651 4127799 4132888

cand 1669 4173908 4178794

cand 1746 4366597 4386413

cand 1757 4396525 4402407

cand 1801 4503724 4508657

cand 1808 4520712 4525302

cand 1840 4602919 4607420

7.1. Details of results 113

cand 1853 4633754 4638447

cand 1870 4676105 4680697

cand 1896 4740624 4746825

cand 1913 4783549 4789182

cand 1923 4808597 4813394

cand 1957 4893050 4902960

cand 1970 4926137 4952689

cand 1985 4963529 4968468

cand 2003 5009305 5014355

cand 2014 5038175 5044635

cand 2033 5083269 5090982

cand 2052 5131369 5136433

cand 2076 5190558 5195156

cand 2087 5219297 5224972

cand 2096 5241734 5246644

cand 2105 5264064 5278117

cand 2130 5325459 5343222

cand 2158 5395323 5400338

cand 2165 5412992 5423909

cand 2180 5451348 5456268

cand 2187 5468843 5486117

cand 2199 5498390 5502924

cand 2213 5533790 5538315

cand 2224 5561750 5571488

cand 2238 5595244 5610663

cand 2249 5623695 5666281

cand 2264 5662099 5666281

7.1. Details of results 114

Table 26: Table with the number of the candidates proteins assigned to each function in the phage
lifecycle. These functions are vital in the exclusion of bad quality candidates due to
assessing if the phage has known proteins that can be assign to known phage functions
inside the host.

Candidate Number of proteins associated with each lifecycle function

cand 0 undetermined: 11, biosynthesis: 4

cand 10 biosynthesis: 9, undetermined: 6

cand 70 undetermined: 28, biosynthesis: 8

cand 90 undetermined: 10, penetration: 2, assembly: 1

cand 99 undetermined: 8, integration: 1, biosynthesis: 4

cand 130 undetermined: 6, assembly: 2

cand 172 biosynthesis: 5, undetermined: 38, hypothetical: 3, integration: 2,

assembly: 2, penetration: 5, lysis: 1

cand 208 biosynthesis: 5, undetermined: 13, adsorption: 1, hypothetical: 1

cand 221 undetermined: 17, biosynthesis: 1

cand 257 undetermined: 1, hypothetical: 7

cand 299 biosynthesis: 7

cand 309 undetermined: 3

cand 360 biosynthesis: 5, undetermined: 6

cand 381 undetermined: 3, biosynthesis: 1, penetration: 1

cand 402 biosynthesis: 8, undetermined: 48, assembly: 1, hypothetical: 1

cand 419 undetermined: 9, biosynthesis: 3

cand 443 undetermined: 8, biosynthesis: 3

cand 469 biosynthesis: 6, undetermined: 13, penetration: 2, integration: 2

cand 480 undetermined: 43, biosynthesis: 4, hypothetical: 4, adsorption: 1

cand 500 undetermined: 11, biosynthesis: 3

cand 524 undetermined: 34, biosynthesis: 13, hypothetical: 2, lysis: 3, penetra-

tion: 1, assembly: 2

7.1. Details of results 115

cand 549 undetermined: 13, biosynthesis: 6

cand 567 undetermined: 8, biosynthesis: 1

cand 585 hypothetical: 1, penetration: 2, undetermined: 5, biosynthesis: 2

cand 600 undetermined: 26, integration: 6, biosynthesis: 7

cand 610 undetermined: 7

cand 659 biosynthesis: 1, undetermined: 7, hypothetical: 1

cand 686 hypothetical: 2, undetermined: 10, biosynthesis: 9

cand 702 undetermined: 8, assembly: 1

cand 724 hypothetical: 1, lysis: 1, undetermined: 17, biosynthesis: 6, adsorption:

1

cand 738 undetermined: 7, biosynthesis: 1

cand 762 undetermined: 102, integration: 4, biosynthesis: 22

cand 795 biosynthesis: 5, undetermined: 9, integration: 2

cand 823 biosynthesis: 7

cand 832 hypothetical: 1, undetermined: 1, biosynthesis: 2, lysis: 1

cand 856 undetermined: 20, biosynthesis: 5, hypothetical: 2

cand 880 biosynthesis: 2, undetermined: 9, lysis: 1, hypothetical: 1

cand 886 undetermined: 10, hypothetical: 1

cand 913 undetermined: 8, assembly: 2

cand 957 undetermined: 8

cand 979 biosynthesis: 1, undetermined: 7, integration: 1

cand 996 undetermined: 1

cand 1003 biosynthesis: 3, undetermined: 3

cand 1037 undetermined: 21, biosynthesis: 3, integration: 6, penetration: 3

cand 1072 undetermined: 16, assembly: 2, biosynthesis: 1

cand 1104 biosynthesis: 4, undetermined: 6, lysis: 1

cand 1136 undetermined: 10, biosynthesis: 3, hypothetical: 1, adsorption: 1

7.1. Details of results 116

cand 1187 undetermined: 30, biosynthesis: 6, integration: 1

cand 1253 undetermined: 3

cand 1398 undetermined: 12, hypothetical: 2, biosynthesis: 3

cand 1413 undetermined: 21, hypothetical: 4, penetration: 2, biosynthesis: 4

cand 1454 undetermined: 12

cand 1471 undetermined: 10, biosynthesis: 2, hypothetical: 2

cand 1477 undetermined: 8, lysis: 1

cand 1507 undetermined: 29, biosynthesis: 6, integration: 1

cand 1527 biosynthesis: 2, undetermined: 4, adsorption: 1

cand 1568 undetermined: 9, biosynthesis: 7

cand 1578 undetermined: 11

cand 1609 biosynthesis: 4, undetermined: 9, lysis: 1

cand 1637 undetermined: 19, hypothetical: 2, biosynthesis: 1

cand 1651 undetermined: 9, biosynthesis: 2

cand 1669 undetermined: 9

cand 1746 undetermined: 39, hypothetical: 1, adsorption: 2, integration: 1, biosyn-

thesis: 5

cand 1757 hypothetical: 1, undetermined: 7, biosynthesis: 3

cand 1801 undetermined: 9

cand 1808 undetermined: 9, biosynthesis: 2

cand 1840 biosynthesis: 1, undetermined: 6

cand 1853 undetermined: 6, biosynthesis: 2

cand 1870 undetermined: 7

cand 1896 undetermined: 9

cand 1913 biosynthesis: 7, undetermined: 4

cand 1923 undetermined: 5, biosynthesis: 2

cand 1957 biosynthesis: 6, undetermined: 15

7.1. Details of results 117

cand 1970 hypothetical: 4, undetermined: 31, assembly: 1, biosynthesis: 3, inte-

gration: 2

cand 1985 undetermined: 5, biosynthesis: 5, integration: 2

cand 2003 biosynthesis: 1, undetermined: 1, penetration: 1

cand 2014 biosynthesis: 3, undetermined: 8, hypothetical: 1, integration: 1

cand 2033 undetermined: 9, integration: 1, assembly: 1, penetration: 1, biosyn-

thesis: 5

cand 2052 undetermined: 5, integration: 1

cand 2076 undetermined: 5, biosynthesis: 1, hypothetical: 1

cand 2087 undetermined: 8, biosynthesis: 1, hypothetical: 1, adsorption: 2, inte-

gration: 3

cand 2096 hypothetical: 1, undetermined: 7, biosynthesis: 1

cand 2105 penetration: 3, integration: 5, undetermined: 18, hypothetical: 2

cand 2130 undetermined: 30, biosynthesis: 7, assembly: 1

cand 2158 undetermined: 10, biosynthesis: 1, hypothetical: 1, assembly: 1

cand 2165 biosynthesis: 7, undetermined: 17

cand 2180 hypothetical: 1, undetermined: 6, biosynthesis: 1

cand 2187 undetermined: 20, biosynthesis: 1

cand 2199 undetermined: 5, biosynthesis: 2, integration: 1

cand 2213 biosynthesis: 3, lysis: 2, undetermined: 3, integration: 1

cand 2224 undetermined: 15, biosynthesis: 5

cand 2238 undetermined: 26, hypothetical: 1, biosynthesis: 4, integration: 2,

assembly: 1

cand 2249 adsorption: 1, undetermined: 48, hypothetical: 1, integration: 8, biosyn-

thesis: 10, penetration: 3

cand 2264 undetermined: 1

7.1. Details of results 118

Table 27: This table presents the reason or reasons of the why the candidates where excluded of
the final result and which ones are staying in the final result.

Candidate Reason

cand 0 50% undetermined e hypothetical proteins, without integration, assem-

bly, and penetration proteins

cand 10 Constitution above 90% of biosynthesis, hypothetical e undetermined

and less than 7 hits in known phage proteins

cand 70 50% undetermined e hypothetical proteins, without integration, assem-

bly, and penetration proteins

cand 90 Less than 3 proteinas associated with phages

cand 99 Constitution above 90% of biosynthesis, hypothetical e undetermined

and less than 7 hits in known phage proteins

cand 130 Less than 10 proteins

cand 172

cand 208 50% undetermined e hypothetical proteins, without integration, assem-

bly, and penetration proteins

cand 221 82% undetermined and hypothetical proteins

cand 257 82% undetermined and hypothetical proteins

cand 299 75% biosynthesis proteins, without hypothetical, undetermined and

integration

cand 309 82% undetermined and hypothetical proteins

cand 360 82% undetermined and hypothetical proteins

cand 381 Less than 10 proteins

cand 402 82% undetermined and hypothetical proteins

cand 419 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 443 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

7.1. Details of results 119

cand 469

cand 480 82% undetermined and hypothetical proteins

cand 500 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 524 Less than 3 proteinas associated with phages

cand 549 82% undetermined and hypothetical proteins

cand 567 82% undetermined and hypothetical proteins

cand 585 Less than 10 proteins

cand 600 Less than 3 proteinas associated with phages

cand 610 82% undetermined and hypothetical proteins

cand 659 82% undetermined and hypothetical proteins

cand 686 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 702 82% undetermined and hypothetical proteins

cand 724 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 738 82% undetermined and hypothetical proteins

cand 762 Constitution above 90% of biosynthesis, hypothetical e undetermined

and less than 7 hits in known phage proteins

cand 795 82% undetermined and hypothetical proteins

cand 823 75% biosynthesis proteins, without hypothetical, undetermined and

integration

cand 832 Less than 10 proteins

cand 856 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 880 82% undetermined and hypothetical proteins

cand 886 82% undetermined and hypothetical proteins

7.1. Details of results 120

cand 913 82% undetermined and hypothetical proteins

cand 957 82% undetermined and hypothetical proteins

cand 979 Less than 10 proteins

cand 996 82% undetermined and hypothetical proteins

cand 1003 Less than 10 proteins

cand 1037 82% undetermined and hypothetical proteins

cand 1072 82% undetermined and hypothetical proteins

cand 1104 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 1136 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 1187 Constitution above 90% of biosynthesis, hypothetical e undetermined

and less than 7 hits in known phage proteins

cand 1253 82% undetermined and hypothetical proteins

cand 1398 82% undetermined and hypothetical proteins

cand 1413 Constitution above 90% of biosynthesis, hypothetical e undetermined

and less than 7 hits in known phage proteins

cand 1454 82% undetermined and hypothetical proteins

cand 1471 82% undetermined and hypothetical proteins

cand 1477 82% undetermined and hypothetical proteins

cand 1507 Constitution above 90% of biosynthesis, hypothetical e undetermined

and less than 7 hits in known phage proteins

cand 1527 82% undetermined and hypothetical proteins

cand 1568 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 1578 82% undetermined and hypothetical proteins

cand 1609 82% undetermined and hypothetical proteins

7.1. Details of results 121

cand 1637 82% undetermined and hypothetical proteins

cand 1651 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 1669 82% undetermined and hypothetical proteins

cand 1746 82% undetermined and hypothetical proteins

cand 1757 82% undetermined and hypothetical proteins

cand 1801 82% undetermined and hypothetical proteins

cand 1808 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 1840 82% undetermined and hypothetical proteins

cand 1853 82% undetermined and hypothetical proteins

cand 1870 82% undetermined and hypothetical proteins

cand 1896 82% undetermined and hypothetical proteins

cand 1913 Constitution above 90% of biosynthesis, hypothetical e undetermined

and less than 7 hits in known phage proteins

cand 1923 82% undetermined and hypothetical proteins

cand 1957 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 1970 82% undetermined and hypothetical proteins

cand 1985 Less than 3 proteinas associated with phages

cand 2003 Less than 10 proteins

cand 2014 82% undetermined and hypothetical proteins

cand 2033 Less than 3 proteinas associated with phages

cand 2052 82% undetermined and hypothetical proteins

cand 2076 82% undetermined and hypothetical proteins

cand 2087 82% undetermined and hypothetical proteins

cand 2096 82% undetermined and hypothetical proteins

7.1. Details of results 122

cand 2105 82% undetermined and hypothetical proteins

cand 2130 Constitution above 90% of biosynthesis, hypothetical e undetermined

and less than 7 hits in known phage proteins

cand 2158 82% undetermined and hypothetical proteins

cand 2165 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 2180 82% undetermined and hypothetical proteins

cand 2187 82% undetermined and hypothetical proteins

cand 2199 Less than 10 proteins

cand 2213 Less than 10 proteins

cand 2224 50% undetermined e hypothetical proteins, without integration, assem-

bly and penetration proteins

cand 2238 Constitution above 90% of biosynthesis, hypothetical e undetermined

and less than 7 hits in known phage proteins

cand 2249 Less than 3 proteinas associated with phages

cand 2264 82% undetermined and hypothetical proteins

