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Abstract: In this work, we introduce lead-free organic ferroelectric perovskite N-methyl-N′-diazabicyclo
[2.2.2]octonium)–ammonium triiodide (MDABCO-NH4I3) nanocrystals embedded in three different
polymer fibers fabricated by the electrospinning technique, as mechanical energy harvesters. Molec-
ular ferroelectrics offer the advantage of structural diversity and tunability, easy fabrication, and
mechanical flexibility. Organic–inorganic hybrid materials are new low-symmetry emerging materi-
als that may be used as energy harvesters because of their piezoelectric or ferroelectric properties.
Among these, ferroelectric metal-free perovskites are a class of recently discovered multifunctional
materials. The doped nanofibers, which are very flexible and have a high Young modulus, behave
as active piezoelectric energy harvesting sources that produce a piezoelectric voltage coefficient
up to geff = 3.6 VmN−1 and show a blue intense luminescence band at 325 nm. In this work, the
pyroelectric coefficient is reported for the MDABCO-NH4I3 perovskite inserted in electrospun fibers.
At the ferroelectric–paraelectric phase transition, the embedded nanocrystals display a pyroelectric
coefficient as high as 194 × 10−6 Cm−2k−1, within the same order of magnitude as that reported for
the state-of-the-art bulk ferroelectric triglycine sulfate (TGS). The perovskite nanocrystals embedded
into the polymer fibers remain stable in their piezoelectric output response, and no degradation is
caused by oxidation, making the piezoelectric perovskite nanofibers suitable to be used as flexible
energy harvesters.

Keywords: organic lead-free perovskites; piezoelectric crystals; nanofiber composites; electrospin-
ning; blue luminescence; functional organic materials

1. Introduction

Mechanical energy harvesting at low frequencies from materials that are environmen-
tally friendly and scavenging energy from multiple sources, for example, human body
movements, are at the forefront of research [1,2].

Ferroelectrics are inherently piezoelectric and pyroelectric materials; that is, they are
able to produce an intrinsic electrical potential difference in response to an applied force
(or originate a mechanical movement due to an applied electric field) and a temperature
gradient, respectively.

Valasek discovered the first ferroelectric, Rochelle salt or potassium sodium tartrate
tetrahydrate [KNaC4H4O6] (4H2O) in 1920 and was, in fact, the first semiorganic molecular
ferroelectric crystal that is also nontoxic [3,4].

Among ferroelectrics, the inorganic perovskites (formula ABX3 (A, B = metal cations,
X = anion; usually an oxide)) are a well-known family of solid-state inorganic compounds
finding application in capacitors, sensors, actuators, etc. The best known are metal oxides
such as strontium, barium, or lead titanate (SrTiO3, BaTiO3, PbTiO3, respectively), and
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their solid solutions such as Pb(Zr,Ti)O3 (PZT), niobates such as PZN (PbZn1/3Nb2/3O3)
(PZN), (PbMg1/3Nb2/3O3) (PMN), and lithium niobate LiNbO3). These materials have,
until now, been used by several industries largely because of their functional properties,
their combining ferroelectricity with nonlinear optical and electro-optic effects, as well as
their multiferroicity [5,6].

So far, the commercially available piezoelectrics are dominated by inorganic per-
ovskites, namely PZT-based materials, and polymers such as polyvinylidene difluoride
(PVDF) and its modifications such as PVDF-TrF [7,8]. However, because of lead toxicity,
lead-based ferroelectrics are presently a serious environmental hazard. These concerns
originated active research on substituting those perovskite-type materials, one ion A or X,
with a molecular building unit [9,10].

Hybrid organic–inorganic perovskites (HOIPs) are a recent class of ferroelectric crys-
talline materials for optoelectronic applications, which are competitive with inorganic
perovskites. These semiorganic ferroelectrics possess many advantages when compared
with inorganic ones. For example, they can be synthesized at room temperature, they are
more flexible and with lower weight than their inorganic counterparts, and they have re-
markable structural variability resulting in high tunable properties. Therefore, they became
an attractive research topic for their application as piezoelectric and pyroelectric materials
that replace inorganic materials [11–14]. Importantly, highly efficient solar cells have been
demonstrated using methylammonium lead halide perovskites, which enabled the search
for lead-free perovskites. Lead-free HOIPs are a recently discovered and highly promising
family of perovskites [15–20].

A lead-free organic–inorganic perovskite recently discovered is (N-methyl-N′-diazabicyclo
[2.2.2]octonium)–ammonium triiodide (MDABCO-NH4I3), which has a spontaneous po-
larization of 22 µC/cm2, close to that of barium titanate (which is around 26 µC/cm2), a
high phase transition temperature at 448 K, and several polarization directions. It displays
attractive properties for applications in flexible optoelectronic devices [21,22].

The fabrication of structures at the nanoscale has been attracting an increased amount
of attention because of their size-dependent properties. One-dimensional structures such as
nanowires, nanotubes, and nanofibers are the smallest dimensional structures displaying
new properties with potential applications in fields such as electronics, photonics, sensing,
and energy harvesting.

Electrospinning is a well-established technique for forming micro- and nanoscale
fibers with a large surface-to-volume ratio forming mats of several square centimeters
area. Electrospun fiber mats are nanostructured multifunctional materials drawn from a
precursor polymeric solution blended with functional nanoparticles under very strong
static electric fields [23–27].

In addition, the nanofiber’s anisotropic shape and large surface area ratio contribute
to an increase in their mechanical strength and flexibility. In this context, nanoscale ferro-
electrics with perovskite structure is a promising research area [11,28].

One application of functional electrospun fibers is in the harvesting of electrical
nanoenergy at low frequencies through the piezoelectric effect because of the polarization
induced by the material deformation [29]. Piezoelectric nanogenerators, usually called
PENGs, show potential for powering low-power devices. An example of the use of a
semiorganic perovskite as a PENG was reported for the methylammonium lead iodide
(CH3NH3PbI3) incorporated in PVDF polymer fibers made by electrospinning; an output
voltage of approximately 220 mV at 4 Hz, under an applied force of approximately 7.5 N, a
maximum output power of 0.8 mW/m2 was generated [30].

In this manuscript, MDABCO-NH4I3 perovskite embedded into electrospun nanofibers
is capable of acting as lead-free piezoelectric (PENG) nanogenerators for effective mechan-
ical energy harvesting. In particular, for poly(vinyl chloride) (PVC) polymer, an instan-
taneous output power density of 2020 µWm−2 is delivered under the application of a
mechanical periodical force. The pyroelectric coefficient of a polycrystalline MDABCO-
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NH4I3 in electrospun fibers has a similar order of magnitude to that displayed by hybrid
ferroelectric triglycine sulfate (TGS).

2. Experimental Section
2.1. Materials and Nanofibers Preparation

MDABCO-NH4I3 was synthesized following the synthetic procedure reported by
Yu-Meng You and Ren-Gen Xiong [21]. The precursor (MDABCO)I was synthesized, as
reported by Kreuer et al. [31]. The MDABCO-NH4I3 crystals grown were ground in a
mortar and sieved to a size smaller than 40 µm.

All chemicals and solvents were purchased from Sigma-Aldrich (Schenlldorf, Ger-
many) and used as received. Poly (methyl methacrylate) (PMMA, Mw 120,000) was
purchased from Alpha-Aesar (Kandel, Germany). Polyamide 66 (PA66) and Poly(vinyl
chloride) (PVC), high molecular weight, a density of 1.40 g/mL), were purchased from
BDH Chemicals (Poole, UK) and Janssen (Beerse, Belgium), respectively. The 10% polymer
solution (w/v) of PMMA was prepared by dissolving the powder in a dichloromethane
(DCM)/N,N-dimethylformamide (DMF) solvent blend system (80:20, v/v), with vigor-
ous stirring (400–600 rpm) at room temperature. The 10% (w/v) of polymer solution of
PA66 was prepared by dissolving the polymer in 5 mL of 1,1,1,3,3,3-hexafluoro-2-propanol
(HFP) with vigorous stirring (400–600 rpm) at room temperature. Then, a 10% precursor
electrospinning solution of PVC was prepared by dissolving the pellets in 5 mL of the
tetrahydrofuran (THF)/DMF (50:50, v/v) solvent blend system. After complete dissolution,
0.1 g of MDABCO-NH4I3 was ground and incorporated in small portions in a 1:5 weight
ratio, and the resulting solution was sonicated for 10 min and stirred for several hours
under ambient conditions before the electrospinning process, shown in Figure 1.

Materials 2022, 15, x FOR PEER REVIEW 3 of 19 
 

 

mechanical energy harvesting. In particular, for poly(vinyl chloride) (PVC) polymer, an 

instantaneous output power density of 2020 μWm−2 is delivered under the application of 

a mechanical periodical force. The pyroelectric coefficient of a polycrystalline MDABCO-

NH4I3 in electrospun fibers has a similar order of magnitude to that displayed by hybrid 

ferroelectric triglycine sulfate (TGS). 

2. Experimental Section 

2.1. Materials and Nanofibers Preparation 

MDABCO-NH4I3 was synthesized following the synthetic procedure reported by Yu-

Meng You and Ren-Gen Xiong [21]. The precursor (MDABCO)I was synthesized, as re-

ported by Kreuer et al. [31]. The MDABCO-NH4I3 crystals grown were ground in a mortar 

and sieved to a size smaller than 40 µm. 

All chemicals and solvents were purchased from Sigma-Aldrich (Schenlldorf, Ger-

many) and used as received. Poly (methyl methacrylate) (PMMA, Mw 120,000) was pur-

chased from Alpha-Aesar (Kandel, Germany). Polyamide 66 (PA66) and Poly(vinyl chlo-

ride) (PVC), high molecular weight, a density of 1.40 g/mL), were purchased from BDH 

Chemicals (Poole, UK) and Janssen (Beerse, Belgium), respectively. The 10% polymer so-

lution (w/v) of PMMA was prepared by dissolving the powder in a dichloromethane 

(DCM)/N,N-dimethylformamide (DMF) solvent blend system (80:20, v/v), with vigorous 

stirring (400–600 rpm) at room temperature. The 10% (w/v) of polymer solution of PA66 

was prepared by dissolving the polymer in 5 mL of 1,1,1,3,3,3-hexafluoro-2-propanol 

(HFP) with vigorous stirring (400–600 rpm) at room temperature. Then, a 10% precursor 

electrospinning solution of PVC was prepared by dissolving the pellets in 5 mL of the 

tetrahydrofuran (THF)/DMF (50:50, v/v) solvent blend system. After complete dissolution, 

0.1 g of MDABCO-NH4I3 was ground and incorporated in small portions in a 1:5 weight 

ratio, and the resulting solution was sonicated for 10 min and stirred for several hours 

under ambient conditions before the electrospinning process, shown in Figure 1. 

 

Figure 1. MDABCO-NH4I3 perovskite crystal flow chart for the preparation of MDABCO-NH4I3 

@PVC electrospinning solution. 
Figure 1. MDABCO-NH4I3 perovskite crystal flow chart for the preparation of MDABCO-NH4I3

@PVC electrospinning solution.

The precursor solution was loaded into a 5 mL syringe with its needle (0.5 mm outer
diameter and 0.232 mm inner diameter) connected to the anode of a high-voltage power
supply (Spellmann CZE2000, Bochum, Germany). The nanofibers were produced by a con-
ventional electrospinning technique, previously described in [26,32], with a configuration
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that tends to produce oriented fiber mats. Briefly, the equipment used has four common
components: a high-voltage power supply, a precision syringe pump, a syringe fitted with
a metal needle (spinneret), and a drum collector (connected to a motor speed controller).
The power supply is connected to both the spinneret and the drum collector. The polymer
solution is extruded through the spinneret at a constant flow rate controlled by the syringe
pump. An aluminum foil is attached to the collector in order to collect the prepared fibers.
Our electrospinning apparatus has a vertical geometry.

Polymer nanofibers with embedded MDABCO-NH4I3 perovskite using three different
polymers were fabricated. Solutions with pure PVC, PMMA, and PA66 polymers were
also electrospun and taken as a reference. For the electrospinning of MDABCO-NH4I3
containing polymers and reference solutions, a voltage of 18 kV was applied between the
tip and collector. The flow rate of the solution and the needle-to-collector distance were
kept at 0.18–0.30 mL/h and 12 cm, respectively.

The MDABCO-NH4I3 crystals are not stable in the open air at room temperature.
When the crystals are exposed to air, the perovskite oxidizes, as shown in Figure 2a,b. The
iodide ions slowly oxidize. The product is molecular iodine, I2, which darkens the crystals.
Previously, to prepare precursor electrospinning solutions, several solvents were tested. In
Figure 2c, it is possible to see that for solvents tetrahydrofuran (THF), methanol, ethanol,
and acetone, the intense dark yellow color appears because of the degradation of the
perovskite. Hexafluoroisopropanol (HFP) was chosen to prepare the electrospun polymer-
doped solutions because the solutions remain stable, and the perovskite is protected from
oxidation for long periods of time after preparation.
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Figure 2. MDABCO-NH4I3 perovskite crystal, after several hours (a) and after 2 weeks (b) of exposure
in the open air at room temperature. Perovskite solutions in different solvents (c), from left to right:
water, hexafluoroisopropanol (HFP), tetrahydrofuran (THF), dichloromethane (DCM), chloroform,
dimethylacetamide (DMAc), dimethylformamide (DMF), methanol, ethanol, and acetone.

To make good use of the outstanding crystal properties, we found that, by embedding
them into a polymer matrix, the perovskite crystals are protected from oxidation while keep-
ing their optical, piezoelectric, and pyroelectric properties. The perovskite nanocrystals,
when embedded into the fibers, are stable for more than half a year because the polymers
function as shields protecting the perovskites from oxidation.
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PMMA was chosen to prepare the hybrid matrix with MDABCO-NH4I3 organic
perovskite because it is a biocompatible polymer. PA66, a polymer with a high melting
point at 275–280 ◦C, was also chosen because it enables the measurement of the pyroelectric
effect on the perovskite nanofibers near their Curie temperature. Finally, PVC polymer was
chosen because of its nontoxicity, flexibility, strength, and high melting point around 220 ◦C.
The electrospinning process was stable for all the polymers chosen, and the obtained fibers
showed uniform surfaces and small diameters, demonstrating that there were no crystallites
on their surface. The hybrid functional MDABCO-NH4I3@PVC, MDABCO-NH4I3@PA66,
and MDABCO-NH4I3@PMMA nanofibers were further utilized for optical and dielectric
characterization, as well as the exemplification of a piezoelectric voltage generator.

2.2. Scanning Electron Microscopy (SEM)

The morphology, size, and shape of MDABCO-NH4I3 perovskite nanofibers were stud-
ied using a Nova Nano SEM 200 scanning electron microscope (FEI Company, Hillsboro,
OR, USA), operated at an accelerating voltage of 10 kV. Nanofibers were deposited on a sil-
ica surface previously covered with a thin film (10 nm thickness) of Au-Pd (80–20 weight %)
using a high-resolution sputter cover, 208HR Cressington Company (Watford, UK), coupled
to a Cressigton MTM-20 high-resolution thickness controller. The diameter range of the
nanofibers was measured by SEM images using ImageJ 1.51n image analysis software
(ImageJ2, NIH, https://imagej.nih.gov/ij/, 12 September 2022). The average diameter and
diameter distribution were determined by measuring 80 random nanofibers from the SEM
images, and the fiber diameter distributions fit to a log-normal function.

2.3. X-ray Diffraction and Raman Spectroscopy

The crystallinity and crystallographic orientation of MDABCO-NH4I3 inside the fibers
were studied by X-ray diffraction. The diffraction pattern using θ–2θ scans was recorded
on a Bruker D8 Discover (Bruker company, Billerica, MA, USA) with Cu-Kα radiation of
wavelength 1.5406 Å.

Raman spectroscopy was performed on a LabRAM HR Evolution confocal Raman
spectrometer (Horiba Scientific, France, Lille) using Horiba Scientific’s Labspec 6 Spec-
troscopy Suite software (LabSpec-Version 6) for instrument control, data acquisition, and
processing. The Raman spectra were obtained using a laser excitation with wavelength
532 nm, at 0.1% laser intensity, with 30 s acquisition time in a spectral range between 50
and 3500 cm−1.

2.4. Mechanical Tests

Elastic modulus, stress at yield (at 0.2% offset), tensile strength, and strain at break (at
60% tensile strength) were measured using a universal tensile testing machine Zwick/Roell
Z005 (ZwickRoell, Germany), following the ASTM D882–02 standard. Several 10 × 30 mm
samples, with a gauge length of 16 mm, were tested alongside the oriented fiber direction
under a crosshead velocity of 25 mm/min.

2.5. Optical Absorption and Photoluminescence

Optical absorption (OA) measurements on an MDABCO-NH4I3 solution were carried
out using a Shimadzu UV-3101PC UV–Vis-NIR (Shimadzu Corporation, Kyoto, Japan)
spectrophotometer. Photoluminescence spectra were recorded on a Fluorolog 3 spectrofluo-
rimeter (HORIBA Jobin Yvon IBH Ltd., Glasgow, UK). For optical absorption measurements,
a 3 mg/mL solution of MDABCO-NH4I3 was prepared in water. The sample was measured
in a quartz cuvette with a 1 cm path length. Photoluminescence (PL) spectra were acquired
using an excitation wavelength of 290 nm, with input and output slits fixed to provide a
spectral resolution of 3 nm.

The same spectrophotometer equipped with an integrating sphere, Shimadzu ISR-
240A (Shimadzu, Duisburg, Germany), and barium sulfate taken as reference, was used to
measure the diffuse reflectance spectrum for the nanofiber array in the wavelength range

https://imagej.nih.gov/ij/
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of 250–800 nm with 1 nm step size. The energy of the band gap (Eg) was determined using
the Kubelka–Munk function given by [[hvF(R)]1⁄2] = α(hv − Eg), where hv represents the
energy of the incident photon, Eg corresponds to the energy of the bad gap, and F(R) is
called the Kubelka–Munk function directly determined from the total reflectance coefficient
of the material (R) through the equation F(R) = (1 − R)2/2R [33,34].

2.6. Dielectric Spectroscopy

The dielectric properties of the electrospun fibers with embedded MDABCO-NH4I3
inclusions were characterized by impedance spectroscopy, at temperatures of 300–460 K
and in the frequency range of 20 Hz–3 MHz. The complex permittivity, written as ε = ε′ −
iε′ ′, where ε and ε′ ′ are the real and imaginary parts, respectively, were calculated from the
measured capacitance (C) and loss tangent (tan δ), using the equations:

C = ε′ε0(A/d) and tan δ = ε′ ′/ε′

Here A is the electric contact area, and d is the fiber mat thickness. To perform the
measurements, the samples formed a parallel plate capacitor and were included in an
LCR network. To form the capacitor, the aluminum foil used as the substrate to collect the
fiber mats was the bottom electrode, while the top electrode was the base of cylindrical
metal contact, with approximately 10−2 m diameter. A Wayne Kerr 6440A (Wayne kerr
Electronics, London, UK) precision component analyzer was used together with a dedicated
computer and software to acquire the data. Shielded test leads were employed to avoid
parasitic impedances due to connecting cables. Temperature-dependent measurements
were performed at a rate of 2 ◦C/min, using a Polymer Labs PL706 PID controller (Polymer
Labs, Los Angeles, CA, USA) and furnace.

Pyroelectricity results from the temperature dependence of spontaneous polarization.
By changing the temperature, an electric field originating from changes in intrinsic dipoles
is compensated by the surface layer of free charges. The rate of change in the spontaneous
polarization p = dPs/dT is the pyroelectric coefficient. The change in polarization was
detected by measuring the pyroelectric current I = A (dPs/dT)(dT/dt) with a Keithley
617 electrometer (Keithley Instruments GmbH, Landsberg, Germany), where A is the
electrode area and dT/dt is the rate of temperature change. The measurements were
performed in a capacitor geometry under short-circuit conditions.

2.7. Fabrication of an MDABCO-NH4I3@PVC Piezoelectric Nanogenerator

A piezoelectric nanogenerator, fabricated using an MDABCO-NH4I3@PVC electro-
spun fiber mat as the active piezoelectric component, is described in Figure 3. The top
and bottom electrodes (area 40 × 40 mm2) are high-purity copper thin plates. Thin copper
wires were attached to the electrodes. The entire system was laminated with 1mm thick
cork sheets to protect and facilitate the handling of the nanogenerator.
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Figure 3. Schematic of MDABCO-NH4I3@PVC. (a) Electrospun nanofiber mat sandwiched between
two copper electrodes. (b) Wires attached to the electrodes. (c) The complete laminated system with
thin cork sheets.
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3. Results and Discussion
3.1. Electrospun Fibers

The perovskite polymer solutions obtained remain stable with no color change for
several weeks, shown in Figure 4a. The electrospinning process is stable, with no current
fluctuations and a steady flow of the polymer solution at the tip of the needle. The fabricated
fibers are very flexible (inset), show no ‘beads’ or crystallites grown on their surface, have a
white appearance and are flexible, Figure 4b.
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Figure 4. Perovskite polymeric solution (a) and MDABCO-NH4I3@PVC electrospun nanofiber mat
(b) the inset shows a fiber mat folded around a cylindrical stick, demonstrating the flexibility of the
fibers.

3.2. Fibers Morphology and Crystallinity

Figure 5 shows scanning electron microscopy (SEM) images of the fibers prepared
with different polymers with embedded MDABCO-NH4I3 perovskite, along with the
corresponding histograms of the diameter sizes. The diameter distributions are observed
to follow a log-normal dependence, with average values from 200 to 605 nm.
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NH4I3 perovskite crystals. The red curves indicate logarithmic normal distributions using the mean
and standard deviations of each set of fibers.
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X-ray diffraction patterns obtained from the doped fibers are shown in Figure 6b–d
and compared to the correspondent pattern for the polycrystalline synthesized MDABCO-
NH4I3 perovskite, Figure 6a, where all the Bragg peaks were indexed using the published
crystal structure (CIF file 1836322) [21]. We conclude that the embedded perovskite is in its
crystalline ferroelectric phase for all fibers and is randomly oriented inside the different
polymer matrices. The crystallite size of the perovskites was evaluated for each polymer,
from fitting with the Debye–Scherrer equation the two most intense Bragg reflections

(
111
)

and (200), see SI, Figure S1a–c. The average size varies between 62 and 83 nm, as indicated
in Table 1.
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Table 1. The average crystallite size of MDABCO-NH4I3 perovskite crystals embedded in electrospun
fibers.

MDABCO-NH4I3 in Size (nm)

PVC 62 ± 12
PMMA 77 ± 06
PA66 83 ± 17

3.3. Optical Absorption and Luminescence

The reflectance spectra of an MDABCO-NH4I3 pellet and MDABCO-NH4I3@PVC
nanofibers show two absorption bands with the maximum at wavelengths of 297 nm and
365 nm and 298 nm and 367 nm, respectively, as shown in Figure 7. PVC electrospun fibers
are highly transparent in all UV–Vis spectra. The energy band gap, Eg, calculated for pellet
crystals and nanofibers, from the intersection with the energy axis of a linear Kubelka–
Munk function, are 4.760 eV and 4.824 eV, respectively, as indicated in the insets of Figure 7.
These values are in excellent agreement with 4.950 eV, as previously reported in [35]. Similar
reflectance spectra measured for MDABCO-NH4I3@PMMA and MDABCO-NH4I3@PA66
nanofibers are shown in SI Figure S2.
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Figure 7. UV–vis reflectance of MDABCO-NH4I3 powder and electrospun PVC fibers with MDABCO-
NH4I3 nanocrystals. The inset shows the Kubelka–Munk function indicating a band gap energy of
4.760 and 4.824 eV for powder and fibers, respectively.

At high wavelengths (low photon energies), both free perovskite and electrospun fibers
containing the perovskite are highly transparent, and the absorption becomes stronger at
the band-gap energy. High transparency in the visible and near-infrared regions of the
optical spectra is important for linear and nonlinear optical applications [36,37].

Figure 8 shows the OA of a water solution MDABCO-NH4I3, the emission of PL
from the same solution, and the dissolved MDABCO-NH4I3@PVC fibers for excitation at
289 nm. For the MDABCO-NH4I3 water solution, the PL emission shows one intense band
in the UV with a maximum at 325 nm, a slightly lower intense band in the blue with a
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maximum at 395 nm, and a redshifted band with a maximum at 645 nm. For nanofibers (the
solvent used dissolves only the polymer and not the perovskite nanocrystals), an extremely
intense PL band at 325 nm and a less intense redshifted band with a maximum at 645 nm
are observed. It is remarkable that MDABCO-NH4I3 nanocrystals inside the fibers show
intense solid-state UV and blue luminescence, which is reported in this study for the first
time for MDABCO-NH4I3 perovskite nanocrystals.
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Figure 8. Optical absorption and photoluminescence emission of MDABCO-NH4I3 aqueous solution
(3 mg/mL) and MDABCO-NH4I3@PVC nanofibers dissolved in tetrahydrofuran. The excitation
wavelength for PL measurements were 289 nm.

3.4. Dielectric Measurements

The complex dielectric permittivity measured on a polycrystalline sample of MDABCO-
NH4I3 (pellet), between 300 K and 470 K as a function of frequency, shows that the
ferroelectric–paraelectric phase transition occurs at 440 K, shown in Figure 9a,b. As ex-
pected for a proper ferroelectric system, the real part of the permittivity increases with
decreasing frequency, reaching the Curie transition temperature of 42,500 (at 20 Hz). Quite
extraordinarily, this very high value of ε′, measured on a pellet, is 3000 times higher than
that reported for an oriented single crystal, which was 14,068 at the same frequency of
20 Hz [21]. This indicates the high purity of our synthesized MDABCO-NH4I3 crystals.

The real and imaginary parts of the dielectric permittivity were also measured on
an MDABCO-NH4I3@PA66 electrospun fiber mat in the same temperature and frequency
range, as shown in Figure 10 for frequencies below 1000 Hz. The transition is perceptible at
462 K, a little above the temperature of 440 K measured for a polycrystalline perovskite
(Figure 9). When ferroelectric nanostructures are under stress/strain, their ferroelectric
transition temperature varies compared with bulk unstressed ones. The shift in transition
temperature depends on the strain state of the crystal. For example, hydrostatic strain tends
to decrease the transition temperature [38], while anisotropic strain states can strongly
increase the transition temperature [39,40]. In our case, from the X-ray diffraction results of
Figure 6, we observe a slight shift of the XRD peaks compared with the bulk, indicating the
MDABCO-NH4I3 nanocrystals are under strain inside the fibers. This nanofiber-induced
strain is anisotropic because of the high aspect ratio of the nanofibers and has increased the
transition temperature compared with the bulk. As such, the observed increased transition
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temperature results from the fact that the nanocrystals are immersed in the polymer matrix,
making it necessary to go higher in temperature for the dispersed nanocrystals to make
the ferroelectric–paraelectric transition temperature. The permittivity results also indicate
a diffuse character of the phase transition, widened as compared with the bulk, induced
by the small size of the MDABCO-NH4I3 nanocrystals [41,42] embedded in the polymer
matrix.
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Figure 10. Dielectric permittivity of MDABCO-NH4I3 nanocrystals embedded in electrospun fibers,
MDABCO-NH4I3@PA66a showing the ferroelectric–paraelectric phase transition at 462 K. In this
figure, the up and down black arrows indicate respectively the heating and cooling cycles.

3.5. Pyroelectricity in Fibers

In this work, we report for the first time the measurement of the pyroelectric coefficient
of polycrystalline MDABCO-NH4I3 perovskite (a pellet) and nanocrystals embedded in
electrospun fibers of PA66, that is, MDABCO-NH4I3@PA66. Note that PA66 is the only
polymer that allowed the pyroelectric measurement to be carried out since both PMMA and
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PVC melt before the perovskite phase-transition temperature is achieved. The measured
coefficients, as a function of temperature, are shown in Figure 11 for a fiber mat.

Extraordinarily, the pyroelectric coefficient of the MDABCO-NH4I3 nanocrystals in-
creases to a very high value of 194 × 10−6 Cm−2k−1 achieved at 483 K, which is slightly
above the Curie transition temperature value obtained for measurements of dielectric per-
mittivity. This indicates a diffuse phase transition, which is expected to occur for nanocrys-
tals randomly oriented inside a polymer matrix. The pyroelectric coefficient value obtained
is within the same order of magnitude as that reported for the state-of-the-art semiorganic
ferroelectric triglycine sulfate (TGS) single crystal, reported being 306 × 10−6 Cm−2k−1 at
the ferroelectric–paraelectric phase transition [43].
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3.6. Piezoelectric Voltage and Effective Piezoelectric Coefficients in Fibers

The behavior of the electrospun nanofiber mats fabricated from MDABCO-NH4I3@PA66,
MDABCO-NH4I3@PMMA, and MDABCO-NH4I3@PVC is now studied as a piezoelectric
energy generator. The generated open-circuit voltage, Voc, and short-circuit currents, Isc,
are shown in Figure 12 as functions of the external forces applied. In Supplementary File,
Figure S6, the piezoelectric current generated by an MDABCO-NH4I3@PA66 fiber mat is
shown. There is a linear relationship between the output electric current generated and
the applied external forces, as expected for a piezoelectric material. Figure S7 shows the
output voltage generated from the MDABCO-NH4I3@PVC nanofiber mat with reverse
polarity. To analyze the reproducible behavior of the piezoelectric active nanofiber mat as a
nanogenerator, a stability test was performed during a time interval of 4 h, uninterrupt-
edly, under a periodical force applied with 2.7 N at a frequency of 3 Hz, Figure S8. The
nanogenerator output voltage does not decrease over time. This is an important property
indicating that the MDABCO-NH4I3 perovskite nanocrystals may be used to integrate
future nanogenerators devices. For the MDABCO-NH4I3@PVC fiber mat, Figure S9 shows
the piezoelectric current generated during a time interval of 130 s under a periodical force



Materials 2022, 15, 8397 13 of 17

applied with 4.5 N at a frequency of 3 Hz, as well as for frequencies between 1 Hz and
10 Hz.
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current as a function of time from MDABCO-NH4I3 incorporated into different electrospun polymer
nanofibers.

The MDABCO-NH4I3@PVC nanofibers are very flexible and show a tensile strength
and Young modulus of approximately 4.0 MPa and 58 MPa, respectively, as shown in
Figure S9. Flexibility and high Young modulus are important characteristics for the perfor-
mance of a fiber mat as a nanogenerator because they will increase its capacity to last for
longer under an applied external force.

For a frequency of 3Hz and compression stress of 11 kPa, Voc reaches 16.5 V for the
PENG formed by the MDABCO-NH4I3@PVC nanofiber mat. For MDABCO-NH4I3@PMMA
and MDABCO-NH4I3@PA66, Voc reaches 6.1 V and 2.0 V, respectively. Low frequencies,
such as 3Hz, are those that enable the generator to return to its original microscopic
configuration before the next force is applied.

The charge generated by a piezoelectric mat, calculated from Q =
∫

Idt (C), results
in charge of 786 pC for the MDABCO-NH4I3@PVC mat considering a material response
time of the order of 10−3 s and the maximum Isc obtained of 786 nA. For MDABCO-
NH4I3@PMMA and MDABCO-NH4I3@PA66 fiber mats, the charges generated are 288 pC
and 95 pC, respectively. We may now calculate the effective piezoelectric coefficient, given
by deff = Q/F (pCN−1), for the three nanofiber mats under a periodical force applied at 4.5 N.
These are 175 pCN−1, 64 pCN−1, and 21 pCN−1, for MDABCO-NH4I3@PVC, MDABCO-
NH4I3@PMMA, and MDABCO-NH4I3@PA66, respectively. The piezoelectric coefficient
reported for a single MDABCO-NH4I3 crystal is d33 = 14 pCN−1 along the [1 1 1] direction
of the crystal [21]. Therefore, the piezoelectric coefficient for the hybrid system formed
by MDABCO-NH4I3 nanocrystals embedded in PVC fibers is one order of magnitude
higher. Note that for this hybrid perovskite PENG, there is a small contribution from the
piezoelectric polymer, which is piezoelectric (d31~1.5 pCN−1) [44]. The present result is
consistent with the very high effective piezoelectric coefficient displayed by electrospun
fibers incorporated with active organic piezoelectric materials, which has been previously
reported for nonlinear optical organic crystal derivatives of nanocrystalline push–pull
nitroaniline molecules and diphenylalanine dipeptides, when embedded in nano and
microfibers fabricated by the electrospinning technique [45–47].
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It is also important to calculate the peak power density, P = Isc/A (µWm−2) (A is
the area of the electrode) delivered by the MDABCO-NH4I3@PVC nanofiber mat, which
amounts to 1960 µWm−2, two orders of magnitude higher than that reported for the
methylammonium lead iodide (CH3NH3PbI3) embedded into poly(vinylfluoride(PVDF)
nanofibers, reported to be 12 µWm−2 for Rl = 10 MΩ [30]. Furthermore, our MDABCO-
NH4I3@PVC piezoelectric generator is capable of delivering a peak power density with a
magnitude similar to that achieved for electrically poled MDABCO-NH4I3 films deposited
on a polyimide substrate after a preheating treatment up to 140 ◦C. Here, the piezoelectric
generator delivered a peak power density of 2000 µWm−2 under an Rl = 250 MΩ [48].
Therefore, our electrospun-doped fiber mat can achieve a high peak power density without
the need for electrical polling or previous heating treatment, which is very advantageous.

In the present work, we demonstrate that incorporating the organic lead-free per-
ovskite MDABCO-NH4I3 into electrospun PVC fibers, processed at room temperature
without poling, is an easy and straightforward way to fabricate piezoelectric generators
using lead-free perovskite nanocrystals as active materials. Moreover, the piezoelectric
voltage coefficient is defined as

geff = deff/(ε′ε0) VmN−1

which, as an important quantity for quantifying the performance of a material for integra-
tion as a piezoelectric sensor, was calculated for our electrospun fiber mats. For MDABCO-
NH4I3@PVC, ε′= 50 at 20 Hz and geff = 3.6 VmN−1. This extremely high piezoelectric
voltage coefficient is one order of magnitude higher than that displayed by a polyvinyli-
dene fluoride (PVDF) polymer thin film for which geff = 0.29 VmN−1 [49,50] and six times
higher than that exhibited by the layered lead perovskite (4-aminotetrahydropyran)2PbBr4,
which was reported to be geff = 0.67 VmN−1 [11].

4. Conclusions

In this study, we show that the lead-free organic ferroelectric perovskite N-methyl-
N′-diazabicyclo[2.2.2]octonium)–ammonium triiodide (MDABCO-NH4I3) nanocrystals
incorporated into electrospun fibers of three different polymers, processed at room temper-
ature and without poling, can generate output voltages ranging from 2 V to ~17 V, using
lead-free perovskite nanocrystals as active piezoelectric materials. In particular, we show
that MDABCO-NH4I3 embedded in PVC fibers displays an effective piezoelectric voltage
coefficient as high as geff =3.6 VmN−1.

A piezoelectric nanogenerator (PENG) fabricated using an MDABCO-NH4I3@PVC
electrospun fiber mat as the active piezoelectric component is demonstrated as a proof-of-
concept. In addition, electrospun fibers exhibit intense blue photoluminescence at 325 nm,
emitted by the embedded perovskite nanocrystals in the UV–vis–NIR and optical spectra.
It is remarkable that MDABCO-NH4I3 inside the fibers show intense luminescence, which
has not been reported before for this perovskite. Importantly, the pyroelectric coefficient
of MDABCO-NH4I3 nanocrystals increases to the very high value of 194 × 10−6 Cm−2k−1

achieved at the ferroelectric–paraelectric transition. This pyroelectric coefficient has a
magnitude within the same order as that reported for a semiorganic ferroelectric triglycine
sulfate (TGS) single crystal. Additionally, the nanocrystals maintain their optical, piezo-
electric, and pyroelectric properties for long periods when embedded into electrospun
fibers, inhibiting perovskite oxidation, which is promoted by the polymer matrix that acts
as a shielding.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15238397/s1, Table S1: fit parameter values correspondent
to Bragg reflection (111); Table S2: fit parameter values correspondent to Bragg reflection (200);
Figure S1: asymmetric pseudo-Voigt fits; Figure S2: UV–vis reflectance; Figure S3: DSC spectra;
Figure S4: Raman spectra; Figure S5: FTIR–ATR spectra; Figure S6: piezoelectric current; Figure
S7: MDABCO-NH4I3@PVC nanofiber mat piezoelectric current with reverse polarity; Figure S8:
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piezoelectric current generated for frequencies between 1 Hz and 10 Hz, and stability test; Figure S9:
elastic modulus, stress at yield, tensile strength, and strain at break. References [50–54] are cited in
the Supplementary Materials.
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