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Abstract 

This work aims at presenting, in a comprehensive manner, several approaches to model and 

simulate closed loop topologies using the classical Lagrangian formulation. One of the great 

advantages of the Lagrangian approach is its simplicity and easiness of obtaining the equations 

of motion. However, a critical aspect arises when the mechanical systems include closed loop 

topologies, since the process of deriving the equations of motion becomes a complex task. The 

key point of the present study is to convert the closed loop nature into open systems, which 

ultimately simplifies the modeling process when the Lagrangian formulation is utilized. For 

this purpose, three different methods are considered, namely those based on the cut joint 

approach, the clearance joint constraint model, and the elastic joint formulation are used. In the 

sequel of this process, a slider-crank mechanism is utilized as a demonstrative application 

example, and the main results are compared with those obtained with the well-established 

Newton-Euler method for constrained multibody systems. Moreover, this example allows the 

comparison of the main characteristics and peculiarities of the described approaches. 
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1. Introduction 

Over the last few decades, there has been an increasing interest in the development of the 

equations of motion for multibody systems, that is, systems with multiple bodies whose 

interactions are affected by the application of external forces and by the presence of kinematic 

joints or constraints. The main reason for that is because many complex systems, such as 

mechanisms, manipulators, biosystems, etc., can be modeled and analyzed with a multibody 

system approach. By and large, the process of deriving the equations of motion for constrained 

multibody systems has been developed over the last decades along with two fundamental 

approaches, namely the vectorial mechanics and the analytical mechanics. In the vectorial 

method, which is supported by Newton-Euler’s laws of motion of rigid bodies using Cartesian 

coordinates and kinematic constraints, the dynamics of the systems is evaluated taking into 

account vectorial quantities, chiefly force and momentum [1, 2]. In turn, in analytical or 

variational mechanics approach, which is based on the Lagrange’s equations of motion, two scalar 

quantities play a key role in the process of modeling multibody systems, namely mechanical 
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energy and work [3]. In fact, these are the two most popular and frequent formulations, when 

dealing with dynamic modeling and analysis of constrained multibody systems in which the 

bodies experience large displacements [4-10]. Aside from these two fundamental formulations, 

there are several other methodologies available in the literature to derive the equations of motion 

for constrained multibody systems, each having their own peculiarities and field of application. 

Amongst the various alternative formulations to develop the equations of motion, those proposed 

by d’Alembert [11], Hamilton [12], Maggi [13], Gibbs-Appell [14, 15], Jourdain [16], Kane [17-

19], Dirac [20], Hooker and Margulies [21], Pars [22], Udwadia-Kalaba [23], should be 

mentioned here. These several formulations of constrained multibody systems dynamics can 

differ in the principle considered, type of coordinates adopted, and methods used to handle the 

violation of constraints [24-31]. Schiehlen [32] has described dozens of different formulations 

that allow for the generation of the equations of motion. 

One of the major differences between Newton-Euler and Lagrangian formulations comes from 

the type of coordinates adopted to define the geometric configuration of the system under 

analysis. Thus, the Newton-Euler equations of motion are typically derived using absolute 

coordinates, that is a set of Cartesian and angular coordinates, to characterize the configuration 

of each body with respect to an inertial reference frame [5, 6]. This choice of coordinates implies 

the use of constraint equations with the purpose of establishing the kinematic relations between 

adjacent and constrained bodies. The consideration of absolute coordinates allows for the 

systematic generation of the equations of motion, in the measure that each body has the similar 

representation and, hence, the kinematic constraint equations can be easily obtained [33]. This 

feature is of paramount importance when a general-purpose code is required. A drawback 

associated with absolute coordinates is the large number of equations, which eventually leads to 

inefficient construction and resolution of the equations of motion. In turn, the Lagrangian method 

is developed on the basis of generalized coordinates, which have the advantage of leading to a 

smaller number of equations. Additionally, the use of generalized coordinates does not require 

for algebraic constraint equations [34]. For open loop kinematic chains, the generalized 

coordinates are independent coordinates, while for closed loop chains, a minimum number of 

independent coordinates must be established. In general, this option leads to efficient resolution 

of the equations of motion in terms of coordinates, mainly when dealing with open loop systems. 

However, the generation of the equations of motion with generalized coordinates can exhibit a 

high level of nonlinearity for closed systems, in the measure that they are quite difficult to derive. 

This feature limits their implementation in general computer codes. It is worth to mention that 

there are several alternative types of coordinates that can be used to derive the equations of motion 

for multibody systems, and the interested reader on the details is referred to references [35-44]. 

The Newton-Euler method constitutes a quite attractive approach to generate the equations of 

motion for constrained multibody mechanical systems, because it is a direct and straightforward 

formulation, and a very interesting choice for developing general-purpose codes. In a simple 

manner, the Newton-Euler method provides a collection of differential equations for the bodies, 

together with a set of algebraic constraint equations that represents the kinematic pairs, resulting 

in the equations of motion to be a system of differential algebraic equations (DAE) [45]. To 

promote the easiness of resolution of the equations of motion, the kinematic constraint equations 

are differentiated to include the accelerations constraint equations directly into the equations of 

motion to achieve a set of ordinary differential equations (ODE). In general, this formulation 

leads to solutions with a large number of equations, but with a low level of complexity and 

nonlinearity. The Newton-Euler approach uses absolute coordinates and, consequently, a high 

number of coordinates and kinematic constraints are required, reason why this method is often 

named as maximal coordinates formulation. A drawback associated with the Newton-Euler 

method is the necessity to incorporate an effective technique to handle the violation of constraints, 

such as the well-established Baumgarte method [46], since the kinematic constraints are not 

directly included in the equations of motion. Thus, the Newton-Euler approach is typically not 

appropriate for the dynamics and control of complex systems due to the large number of different 

states. As mentioned earlier, this approach can be used with diverse types of coordinates, resulting 



 3 

in different formulation, such as body-coordinates, point-coordinates and joint-coordinates, 

having each one of them specific advantages and disadvantages for a certain case of study [47].  

The Lagrangian formulation can be a quite useful alternative to Newton-Euler method to apply 

to mechanical systems with large number of bodies, in particular when the systems have open 

kinematic structures. In a simple manner, the Lagrangian formulation provides a set of ODE and 

does not require the incorporation of kinematic constraint equations, since they are implicitly 

taken into consideration. Therefore, the obtained solutions do not need any method to eliminate 

or minimize the violation of constraints, making the computational resolution of the equations of 

motion a quite efficient process in dynamics and control of simple systems [34]. The Lagrangian 

formulation results in a small number of equations of motion, because it uses generalized 

coordinates in the process of their derivation. In most of the cases, the number of equations of 

motion is equal to system’s degrees-of-freedom, reason why this methodology is often named as 

minimal coordinates formulation [48]. The equations of motion derived with the Lagrangian 

method can exhibit terms with high degree of complexity and nonlinearity. This issue is 

particularly critical when dealing with mechanical systems with closed loop topologies, such as 

in mechanisms and parallel manipulators [49, 50]. This feature can be considered as a drawback 

in terms of systematization and implementation in computer codes. In addition, the final form of 

the equation of motion is, in general, quite difficult to analyze and interpret from a physical point 

of view, in the measure that generalized variables are considered in the process of the generation 

of the equations of motion. 

It must be highlighted that the problem of dynamic modeling and simulation of multibody 

mechanical systems that include closed loop topologies is a nontrivial task when the Lagrangian 

formulation is to be employed. This methodology requires a significant amount of mathematical 

complex manipulation in order to obtain the necessary derivatives to generate the Lagrange’s 

equations of motion. A reason for that deals with the closed loop nature of the systems, which 

implies the use of a very few number of degrees-of-freedom, and, therefore, the number of 

generalized independent coordinates is quite small too. Hence, the center of mass coordinates and 

velocities, which need to be expressed in terms of generalized independent coordinates, reveal 

complex and nonlinear relations that affect the mathematical issues described above. In sharp 

contrast, the Newton-Euler method does not require any derivatives, because it is based on a direct 

and standard procedure that can be applied to all of the bodies that belong to a mechanical system, 

independently of the having open and/or closed kinematic chains.  

Thus, the main focus of this work is to examine and compare several different formulations to 

model constrained multibody systems with closed loop topologies based on the classical 

Lagrangian method. For this purpose, three approaches are presented, for which the fundamental 

feature is to transform the closed loop kinematic chains into open ones, in order to facilitate the 

application of the Lagrangian formulation. The three methodologies described in the following 

sections are based on the cut joint approach, the clearance joint method and the elastic joint 

formulation available in the literature. The cut joint approach is based on the use of Lagrange 

multipliers associated with the vector loop closure constraints in the dynamics equations of 

motion. The clearance joint approach utilizes a single Lagrange multiplier for a distance or virtual 

link constraint. The elastic joint approach treats the system as open loop with resistive elastic 

springs replaced at the cut joint. These approaches allow the use of suitable alternatives for the 

utilization of the Lagrangian formulation into closed loop systems by closing them recurring to 

distinct kinematic and force constraints. In the sequel of this process, the academic planar slider-

crank mechanism with ideal joints is considered with the objective of demonstrating the particular 

characteristics and potential limitations related to each methodology described, namely in terms 

of computational accuracy and efficiency. 

The remaining of this paper is organized as follows. In section 2, the Newton-Euler method is 

revised and applied to a planar slider-crank mechanism, which is of interest for the aim of this 

study and constitutes the reference of comparison for other approaches considered. A detailed 

analysis of the Lagrangian formulation is presented in section 3, where the slider-crank system is 

also utilized, since it includes a closed loop kinematic chain. Then, Sections 4, 5, and 6 deal with 
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the Lagrangian formulations with cut joints, clearance joints and elastic joints, respectively, and 

the slider-crank mechanism is again utilized. In section 7, a collection of the results obtained from 

computational simulations of the proposed approaches are presented and discussed. A summary 

of this study and concluding remarks are provided in section 8.  
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2. Newton-Euler formulation with absolute or cartesian coordinates 

The Newton-Euler approach is among the most popular methods to formulate the equations of 

motion for dynamic modeling and analysis of multibody mechanical systems [51]. This 

formulation is simple, direct and quite intuitive for general-purpose codes to model multibody 

systems. Thus, this section is aimed at presenting, in a review manner, the key ingredients related 

to Newton-Euler formulation. For that, the academic slider-crank mechanism is selected as a 

demonstrative application example. Figure 1 shows a generic configuration of the planar slider-

crank system, which consists of three rigid moving bodies, namely the crank (1), the connecting 

rod (2) and the slider (3). The ground is the fixed body and it is numbered as 0. Three revolute 

joints and one translational joint impose a total of eight kinematic constraints. The Newton-Euler 

formulation can be developed using absolute center of mass coordinates, reason this approach is 

often referred to as body-coordinate formulation [52]. Thus, the vector of coordinates that 

completely describes the configuration of the slider-crank multibody model is expressed as [53] 

  
T

1 1 1 2 2 2 3 3 3x y x y x y  =c  (1) 

in which c is a 9×1 vector that includes two Cartesian coordinates and one angle, with respect to 

a global system, per body. The nine absolute coordinates in Eq. (1) are not independent, since the 

slider-crank mechanism has one degree-of-freedom. This results from three moving bodies and 

eight non-redundant constraints that represent the kinematic restrictions associated with revolute 

and translational joints [54]. 

 

Fig. 1. Generic configuration of the planar slider-crank mechanism. 

For the dynamic analysis, the slider-crank mechanism is initialized with the crank angular 

velocity equal to 150 rad/s. At the start of the dynamic simulations of the slider-crank multibody 

model, the crank and connecting rod are aligned in the x direction, which corresponds to the top 

dead point. The geometric and inertia properties of each body of the slider-crank mechanism are 

listed in Table 1. 

Table 1. Geometric and inertia properties for the slider-crank mechanism. 

Body Length [m] Mass [kg] Moment of inertia [kg·m2] 

Crank (1) 0.153 0.038 7.4×10–5 

Connecting rod (2) 0.306 0.076 5.9×10–5  

Slider (3) - 0.038  1.8×10–6  

 

In order to be able to construct the equations of motion for the slider-crank mechanism based 

on the Newton-Euler formulation, it is first necessary to draw the free-body diagrams of each 

system component, as shown in Fig. 2. For the sake of simplicity, the centers of mass of the crank 

and connecting rod are located at the midpoint of the corresponding bodies, while the center of 

mass of the slider is positioned at the revolute joint C. The Newton’s third law is considered in 

the representation of the free-body diagrams, namely in what concerns the joint reactions [55]. 

The free-body diagrams allow for a simple and clear description of all the applied and reaction 

forces and moments that act on each body of the slider-crank mechanism. Moreover, the 

gravitational forces are the only external applied forces considered in the present study. 
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Fig. 2. Free-body diagrams of each body of the slider-crank mechanism. 

With regard to Fig. 2, the seven reaction forces and one reaction moment at the kinematic 

joints of this multibody system can be condensed in an 8×1 vector in the form 

  
T

1 2 3 4 5 6 7 8       =λ  (2) 

The Newton-Euler equations of motion of the slider-crank mechanism can be constructed with 

regard to the free-body diagrams depicted in Fig. 2, resulting in a total of nine translational and 

rotational equations as  

 1 1 1 3m x  = − −  (3) 

 1 1 2 4 1m y m g = − − −  (4) 

 1 1 1 1
1 1 1 1 2 1 3 1 4 1sin cos sin cos

2 2 2 2

l l l l
I         = − + + −  (5) 

 2 2 3 5m x  = −  (6) 

 2 2 4 6 2m y m g = − −  (7) 

 2 2 2 2
2 2 3 2 4 2 5 2 6 2sin cos sin cos

2 2 2 2

l l l l
I         = − + −  (8) 

 3 3 5=m x  (9) 

 3 3 6 7 3m y m g = − −  (10) 

 3 3 8I  = −  (11) 

This set of equations represents the Newton-Euler, or translational and rotational, equations of 

motion of the slider-crank mechanism, which constitutes a linear system of nine equations with 

17 unknowns, namely nine accelerations and eight joint reactions. Equations (3)-(11) can be 

rewritten in a compact form as [53] 

 a r= +Mc h h  (12) 

where M is a 9×9 constant and diagonal mass or inertia matrix that contains the masses and mass 

moments of inertia of the bodies, c  is a 9×1 vector of linear and rotational accelerations, ha 

denotes a 9×1 vector of applied forces and moments, and hr represents a 9×1 vector that includes 

joint reaction forces and moments. This set of arrays can be expressed as  

  1 1 1 2 2 2 3 3 3diag m m I m m I m m I=M  (13) 

  
T

1 1 1 2 2 2 3 3 3x y x y x y  =c  (14) 

  
T

a 1 2 30 0 0 0 0 0= − − −m g m g m gh  (15) 
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l l l l

l l l l

h







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
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
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 (16) 

The vector of joint reaction forces is expressed as a coefficient matrix times the vector of the 

components of reaction forces and moments, that is, the vector of Lagrange multipliers given by 

Eq. (2). Indeed, the coefficient matrix represents the directions of the reaction forces and moment 

arms, or levers, of the reaction moments [56]. 

Thus, in order to ensure that the multibody model has a unique and appropriate solution, it is 

necessary to take into account eight additional equations that result from kinematic constraints 

associated with the revolute and translational joints. Thus, with regard to Fig. 1, eight algebraic 

constraint equations can be easily obtained as  

 1
1 1 1cos 0

2

l
Φ x  − =  (17) 

 1
2 1 1sin 0

2

l
Φ y  − =  (18) 

 1 2
3 1 1 2 2cos cos 0

2 2

l l
Φ x x  + − + =  (19) 

 1 2
4 1 1 2 2sin sin 0

2 2

l l
Φ y y  + − + =  (20) 

 2
5 2 2 3cos 0

2

l
Φ x x + − =  (21) 

 2
6 2 2 3sin 0

2

l
Φ y y + − =  (22) 

 
7 3 0Φ y =  (23) 

 
8 3 0Φ  =  (24) 

The set of algebraic constraint equations (17)-(24) can be expressed in a generic and compact 

form as [53] 

 ( ) =Φ Φ c 0  (25) 

The constraint equations (25) are developed at the position level, and therefore, they cannot be 

directly appended to equations of motion (12), but the constraint equations at the acceleration 

level must be considered instead. Thus, the first time derivative of Eq. (25) yields the constraint 

equations at the velocity level, which can be written as  

  =Φ Dc 0  (26) 

in which D denotes an 8×9 Jacobian matrix that comprises the partial derivatives of the constraint 

equations at the position level with respect to the vector of coordinates; that is /c, and c  is a 

9×1 vector of velocities of the system in the form 



 8 

  
T

1 1 1 2 2 2 3 3 3x y x y x y  =c  (27) 

The constraint equations at the acceleration level can be obtained by differentiating Eq. (26) 

with respect to time, yielding 

  =Φ Dc γ  (28) 

where  is an 8×1 vector commonly named right-hand side vector of acceleration constraints that 

includes the quadratic terms in velocities in the equations of motion, namely the centrifugal 

parcel. The name, quadratic velocity vector, is due to the existence of the quadratic terms of 

velocities [53]. A detailed analysis of the constraint equations at the position, velocity and 

acceleration levels of the slider-crank mechanism can be found in Appendix A. 

It is worth noting that the Jacobian matrix D for the slider-crank mechanism under analysis is 

an 8×9 coefficient matrix that, by definition, can be obtained by taking the partial derivatives of 

the constraint equations at the position level (17)-(24) with respect to the vector of coordinates 

(1), yielding 

 

1

1

1 2

1 2

2

2

12

12

1 22 2

1 22 2

22

22

1 0 sin 0 0 0 0 0 0

0 1 cos 0 0 0 0 0 0

1 0 sin 1 0 sin 0 0 0

0 1 cos 0 1 cos 0 0 0

0 0 0 1 0 sin 1 0 0

0 0 0 0 1 cos 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

l

l

l l

l l

l

l





 

 





 
 

− 
 − − −
 

− =
 − −
 

− 
 
 
  

D  (29) 

Comparing Eqs. (16) and (29), it can be observed that the coefficient matrix of the joint 

reaction forces and moments corresponds to the transpose Jacobian matrix associated with the 

kinematic joints, that is, the joint reactions vector can have the following form 

 
T

r = −h D λ  (30) 

A complete description of the relation given by Eq. (30) can be found in Appendix B, for 

which the d’Alembert’s principle is considered [57]. 

Thus, it is now possible to obtain a linear system of 17 equations with 17 unknowns for the 

slider-crank system, by appending the equations of motion (12) to the acceleration constraint 

equations (28). Taking advantage of the relation between coefficient matrix and Jacobian matrix 

(30), finally the equations of motion of the slider-crank mechanism can be written as 

 
T

a+ =Mc D λ h  (31) 

 =Dc γ  (32) 

or, alternatively, in a matrix structure 

 

T
a     

=    
    

c hM D

λ γD 0
 (33) 

Equation (33) is formed as a combination of the differential equations of motion (12) and the 

kinematic algebraic equations at the acceleration level (28), which is often referred to as “mixed 

set of differential algebraic equations” (DAE) [58]. In fact, Eq. (33) constitutes a system of DAE 

of index-1 [59] that is linear in the accelerations and in the Lagrange multipliers. The solution of 

the linear equations presented previously is an initial value problem, requiring the state of the 

system at some instant of time to be specified [60]. Thus, since all the linear and rotational 
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components of positions and velocities can be easily established from the characterization of the 

slider-crank multibody model, the 17 equations (33) can be solved for nine linear and rotational 

accelerations, c , and eight joint reaction forces and moments, , by using any numerical 

algorithm for solving systems of linear equations [61]. Then, in each integration time step, the 

accelerations, c , together with the vector of velocities, c , are integrated in time to obtain the 

system velocities and positions at the next time step. This procedure is repeated up to the final 

time of dynamic analysis is reached.  

It must be noticed that the resolution of the system of equations (33) does not necessarily 

satisfy the position and velocity constraint equations (25) and (26), because these two sets of 

equations are not explicitly used in the dynamic analysis procedure. Consequently, for moderate 

or long simulation time, the initial constraint equations are rapidly violated due to the 

integration process, namely integration truncation errors. With the purpose of eliminating, or at 

least minimizing, the constraints violation during the numerical resolution of the equations of 

motion, any of the available methods in the literature should be utilized. The interested reader 

is referred to the works by Baumgarte [62], Wehage and Haug [63], Chang and Nikravesh [64], 

Bayo et al. [65], Kim et al. [66], Yoon et al. [67], Chiou and Wu [68], Yu and Chen [69], Weijia 

et al. [70], Blajer [71], Neto and Ambrósio [72], Braun and Goldfarb [73], Flores et al. [74], 

Zhang et al. [75], Marques et al. [76] and Pappalardo et al. [77] for further details on the methods 

to handle the constraints violation. 

Finally, it should be mentioned that the Newton-Euler formulation can be expanded to 

incorporate other features associated with multibody dynamics, such as complex constraints, 

spring and damper actuators, drivers, contact and friction phenomena, as well as general 

procedures to generate, assembly and solve the equations of motion, just to mention a few. 

 

3. Lagrangian formulation  

The Lagrangian formulation allows the equations of motion of multibody mechanical systems 

to be obtained in a simple and straightforward manner, since it is based on scalar quantities, 

namely kinetic and potential energies, rather than vector variables as in the Newton-Euler 

methodology. However, this approach has some difficulties when applied to constrained 

multibody systems with closed loop chains, such as in mechanisms and manipulators. For that 

reason, in this section, the Lagrangian formulation is revisited and developed from the Newton-

Euler approach. In the sequel of this process, the planar slider-crank mechanism, shown in Fig. 

1, is considered as a demonstrative application example. 

It is well-known that Lagrange established the concept of generalized coordinates, which can 

be either distances or angles [3, 78]. Similarly, generalized forces can be associated with forces 

or moments. Broadly, the generalized coordinates are directly related to the degrees-of-freedom 

that exist in the system under analysis, resulting in a minimum number of equations of motion, 

reason why this approach is often named as minimal coordinates formulation [79]. Thus, for the 

slider-crank mechanism, illustrated in Fig. 1, there is one generalized coordinate only, since the 

system has a single degree-of-freedom. Therefore, the Lagrangian formulation should generate 

one equation of motion for the slider-crank mechanism. It is clear that for this linkage system, the 

crank angle would be the obvious choice to be the independent generalized coordinate, which can 

be represented by 

  1q =  (34) 

It must be mentioned that the set of coordinates utilized to develop the equations of motion 

based on the Lagrangian formulation is not unique, since the coordinates can be related to each 

other. Thus, for instance, the Cartesian coordinates of the center of mass of the crank may be 

expressed as functions of the independent generalized coordinates using the following constraint 

equations 

 1
1 1cos

2

l
x =  (35) 
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 1
1 1sin

2

l
y =  (36) 

The corresponding velocity constraints can be obtained as the time derivatives of Eqs. (35) 

and (36), yielding 

 1
1 1 1sin

2

l
x  = −  (37) 

 1
1 1 1cos

2

l
y  =  (38) 

or in a compact and generic form as 

 =c Wq  (39) 

where c  represents center of mass velocities of the bodies, W is the transformation matrix, which 

allows for the relation between the Cartesian and generalized coordinates, and q  denotes the 

generalized velocities. It should be mentioned that, the transformation of coordinates is the central 

core of the Lagrangian formulation, and small variations or changes in the center of mass 

coordinates consistent with all the position constraints can be obtained from the virtual 

displacements in the generalized coordinates, q, as 

 δ δ δ


= =


c
c q W q

q
 (40) 

in which there is no partial time derivative multiplied by a time increment, because the system’s 

configuration does not change during a virtual displacement. The most general form of the 

transformation matrix can be written as [79] 

 
 

= =
 

c c
W

q q
 (41) 

It is clear that the mechanical power P of the slider-crank mechanism under analysis may be 

expressed in terms of either c  or q , that is 

 
T

a=P h c  (42) 

 
T

a=P Q q  (43) 

where Eq. (43) represents the generalized power associated with generalized applied forces, Qa, 

and generalized velocities q . Combining Eqs. (39), (42) and (43), it yields the following relation 

between applied forces, ha, and generalized forces Qa, 

 
T

a a=Q W h  (44) 

Thus, the generalized forces can be easily determined from the knowledge of the center of 

mass approach using the transformation matrix W. 

The key issue of the Lagrangian formulation is the concept of the Lagrangian function related 

to the system dynamics and, by definition, is expressed as 

 L T V= −  (45) 

where T is the kinetic energy of the system and V is the potential energy of the system. 

The kinetic energy of the slider-crank mechanism can be written in terms of the center of mass 

coordinates as follows 

 T1

2
T = c Mc  (46) 
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Differentiating Eq. (46) with respect to the velocities results in 

 T
=



T
c M

c
 (47) 

Hence, the time derivative of Eq. (47) results in the inertial forces as 

 
Td

d

 
= 

 

T

t
c M

c
 (48) 

where the mass matrix M is assumed to be constant, since the system does not change the mass.  

In turn, the potential forces can, by definition, be expressed as [55]  

 T

p


= −



V
h

c
 (49) 

Thus, the generic form of the Lagrange’s equations of motion of the slider-crank mechanism, 

expressed in terms of center of mass coordinates and velocities, can be developed with basis on 

the kinetic and potential energies as  

 
T

d

d

d

T V

t

  
+ = 

  
h

c c
 (50) 

in which the first term represents the inertial forces, the second one denotes the potential forces, 

such as those associated with gravity and springs, and the right-hand side of Eq. (50) is the term 

for non-potential, or non-conservative, forces applied to the system. In the most general case, the 

total applied forces on the system are given by the summation of conservatives and non-

conservative forces, i.e., ha = hp + hd. 

It is appropriate to express the equations of the motion (50) as function of the generalized 

coordinates, q, and generalized velocities, q , that is 

 
T

d

d

d

T V

t

    
+ = 

    

c c
Q

c q c q
 (51) 

It must be recalled from Calculus of Variations that [80] 

 
d d d

d d d

         
= +    

         

T T T

t t t

c c c

c q c q c q
 (52) 

yielding 

 
d d d

d d d

         
= −    

          

T T T

t t t

c c c

c q c q c q
 (53) 

Introducing now Eq. (53) into Eq. (51) results in  

 
T

d

d d

d d

T T V

t t

       
− + =   

       

c c
Q

c q c q q
 (54) 

It should be noticed that 

 
d d

d dt t

          
= = =     

          

c c q c c
q

q q q q q q
 (55) 

Considering now Eq. (41) and (55), the Lagrange’s equations of motion (54) can be written in 

terms of generalized coordinates and generalized velocities as  
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T

d

d

d

T T V

t

   
− + = 

   
Q

q q q
 (56) 

Finally, taking into account the concept of Lagrangian function given by Eq. (45), the 

Lagrange’s equations of motion of second kind in its classical fashion can be expressed as 

 
T

d

d

d

L L

t

  
− = 

  
Q

q q
 (57) 

where L denotes the Lagrangian function of the system, which is the difference between kinetic 

and potential energies, expressed in terms of the generalized coordinates and their time 

derivatives, that is, the generalized velocities. The equations represented by (57) are also called 

as Euler-Lagrange’s equations of motion, because although Lagrange was the first to formulate 

them specifically as the equations of motion, they were previously derived by Euler as the 

conditions under which a point passes from one specific place and time to another in such a way 

that the integral of a given Lagrangian function with respect to time is stationary, which represents 

the principle of minimum action [81]. 

In order for the slider-crank mechanism to be formulated with Lagrangian approach, it is first 

necessary to establish the quantities required to obtain the Lagrangian function. This multibody 

system has one degree-of-freedom, thus, one is also the number of generalized coordinates that 

uniquely represent the system’s configuration, that is, the position and orientation of all bodies. 

As in the previous section, the bodies have lengths li, masses mi, and moments of inertia Ii, in 

which i = 1, 2 and 3. Thus, the vector of generalized coordinates and velocities are defined as 

  1q =  (58) 

  1q =  (59) 

The first step to derive the Lagrange’s equation of motion consists of expressing the center of 

mass position of bodies in terms of the generalized coordinates. Thus, based on the geometry of 

the slider-crank mechanism shown in Fig. 1, the position of the center of mass of the crank, 

connecting rod and slider can be written as 

 1
1 1cos

2

l
x =  (60) 

 1
1 1sin

2

l
y =  (61) 

 2
2 1 1 2cos cos

2

l
x l  = +  (62) 

 1
2 1sin

2

l
y =  (63) 

 3 1 1 2 2cos cosx l l = +  (64) 

 3 0y =  (65) 

From the geometric configuration of the slider-crank mechanism, it is clear that the angular 

coordinate of the connecting rod can be expressed as function of the generalized independent 

coordinate, 1, as  

 
1 1

2 1

2

sin sin −  
= − 

 

l

l
 (66) 
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The velocities of the center of mass of the crank, connecting rod and slider, expressed in terms 

of the generalized coordinates and their derivatives, can be obtained by differentiation of Eqs. 

(60)-(65), yielding 

 1
1 1 1sin

2

l
x  = −  (67) 

 1
1 1 1cos

2

l
y  =  (68) 

 2
2 1 1 1 2 2sin sin

2

l
x l    = − −  (69) 

 1
2 1 1cos

2

l
y  =  (70) 

 3 1 1 1 2 2 2sin sinx l l   = − −  (71) 

 3 0y =  (72) 

where the angular velocity of the connecting rod must be expressed in terms of the generalized 

coordinates and generalized velocities of the slider-crank mechanism. Therefore, taking the time 

derivate of Eq. (66), results in 

 
1 1 1

2
2 2 2

2 1 1

cos

sin

 



= −

−

l

l l
 (73) 

The kinetic energy associated with the slider-crank mechanism bodies can be expressed as 

 ( )2 2 21 1

2 2
i i i i i iT I m x y= + + ,      i = 1, 2, 3 (74) 

The gravitational potential energy related to each body of the system can be defined as 

 i i iV m gy= ,      i = 1, 2, 3 (75) 

Thus, using the above presented equations and after some basic mathematical manipulation 

the Lagrangian function can be written as  

 

( )

2 2 2

1 1 1 1 1 1 1 1

4 2
2 2 2 3 21 1

2 1 1 2 1 1 1 2 1 1

2 4 3 2

3 1 1 1 1

1 1 1
sin

2 8 2

1 1 1
sin

2 2 4 4 2

1
2

2

L I m l m gl

l l
I l A m l B C l D E m gl

m l B l C l D

  

  



= + − +

 
+ + + + − + 

 

+ +

 (76) 

in which 

 

2

1

2 2 2

2 1 1

cos

sin
A

l l




=

−
 (77) 

 
2

1sinB =  (78) 

 

2 2

1 1

2 2 2

2 1 1

sin cos

sin
C

l l

 


=

−
 (79) 

 

2

1 1

2 2 2

2 1 1

sin cos

sin
D

l l

 


=

−
 (80) 
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2

1cosE =  (81) 

The derivatives necessary to achieve the Lagrange’s equations of motion for the slider-crank 

mechanism (57) can be expressed as  

 ( )
4 2

2 2 2 3 2 4 31 1
1 1 1 1 1 2 1 1 2 1 1 1 3 1 1 1 1

1

1
2

4 4 4

l lL
I m l I l A m l B C l D E m l B l C l D    



 
= + + + + + + + + + 

  
 (82) 

 ( )

( )

2

1 1 1 1 1

1

4 2
2 2 3 2 4 31 1

2 1 1 2 1 1 1 3 1 1 1 1

4 2
2 2 3 2 4 31 1

2 1 1 2 1 1 1 3 1 1 1 1

d 1

d 4

2
4 4

2
4 4

L
I m l

t

l l
I l A m l B C l D E m l B l C l D

l l
I l A m l B C l D E m l B l C l D

 


  

  

 
= + + 

 

 
+ + + + + + + + 

 

 
+ + + + + + + 

 

 (83) 

 

( )

4 2
2 2 2 3 21 1

1 1 1 2 1 1 2 1 1 1

1

2 4 3 2

2 1 1 3 1 1 1 1

1 1 1
cos ' ' ' ' '

2 2 2 4 4

1 1
cos ' ' 2 '

2 2

l lL
m gl I l A m l B C l D E

m gl m l B l C l D

  


 

 
= − + + + + + − 

  

+ + +

 (84) 

Finally, introducing Eqs. (83) and (84) into Eq. (57), and after mathematical treatment, the 

Lagrange’s equations of the slider-crank mechanism can be written in the form 

 1m h =  (85) 

where the inertia and generalized force terms are expressed as 

 

( ) ( )

( )

2 2
2 2 2 21 1

1 2 1 2 1 1 2 3 1 12 2 2

2 1 1

4 2 2 3 2

1 1 1 1 1 1
2 3 2 32 2 2 2 2 2

2 1 1 2 1 1

cos 1
cos sin

sin 4

sin cos sin cos1
2

4 sin sin

l
m I I m m l m m l

l l

l l
m m m m

l l l l


 



   

 

= + + + + + +
−

 
+ + + 

−  −

 (86) 

 

( )

( )
( )

( )
( )

( )

( )

2 2 2

1 1 2 1 2 2 2 2 2

2 1 2 1 1 1 2 3 1 1 12
2 2 2

2 1 1

2 2 22
1 1 2 14 21 1

2 3 1 122 2 2 2 2 2
2 1 1 2 1 1

3
3 1 1 1

2 3 1
2 2

2 1

sin 21 1 1
sin 2 sin 2

2 8 2sin

sin 2 sinsin 2 cos1
4

8 sin sin

sin 2 cos sin1
2

2 s

l l l
h I m l m m l

l l

l l
m m l

l l l l

m m l
l l


    



  


 

  

−
= + − + −

−

 −
 + − −
 − −
 

−
+

− ( )
( )3

2

3 2 2
21 1 1

1 1 2 1 1
2 2 2 2

1 2 1 1

sin cos 1
cos

2in sin

l
m m gl

l l

 
 

 

 
 + − +
 

−
 

 (87) 

A complete and detailed analysis of the Lagrangian formulation for the slider-crank system is 

presented in Appendix C. It must be mentioned that the equations of motion developed with 

Lagrangian formulation can be obtained in a straightforward manner, in the measure that the 

kinematic and potential energies can be easily defined. In fact, according to Lagrange’s own 

words, this formulation involves algebraic operations only, and it does not require any figures, 

such as the case of free-body diagrams in the Newton-Euler approach [3].  
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From the analysis of Eq. (85), it can be observed that the Lagrangian formulation results in a 

set of ordinary differential equations (ODE) that allows for the definition of system’s dynamics 

in terms of generalized coordinates. Therefore, Eq. (85) can be solved and the resulting 

acceleration integrated in time to obtain the velocity at the next instant of time. The velocity is, 

then, integrated in order to obtain the system’s position. This procedure is repeated up to the final 

time of simulation is reached. It must be noticed that, in the Lagrangian formulation, there is no 

violation of constraints, which is an intrinsic merit of this approach. 

The Lagrangian formulation leads to less number of equations of motion, when compared, for 

instance, with Newton-Euler approach; however its form exhibits higher degree of nonlinearity 

in most of the cases. Nonetheless, the Lagrangian formulation leads to a tedious and 

overwhelming procedure particularly when modeling closed loop systems. 

It must be noticed that the quantity m in Eq. (86) represents the non-constant inertia terms in 

the Lagrangian formulation for the slider-crank mechanism, as it happens in the case of Newton-

Euler method, which can lead to some numerical difficulties when solving the equations of 

motion. It is worth noting that the inertia terms vary with system’s configuration, since they 

depend on the relative positions of the bodies. In fact, the inertia terms associated with Lagrangian 

formulation express the relation between the kinetic energy of the system and the derivatives with 

respect to generalized velocities. Thus, the inertia terms have different dimensions, because 

Lagrangian formulation utilizes generalized coordinates. In turn, the force parcel, h, given by Eq. 

(87) include quadratic quantities, namely the centrifugal forces, together with the quantities 

associated with gravity.  

 

4. Lagrangian formulation with cut joints 

One of the great merits of the Lagrangian formulation deals with its simplicity and easiness to 

derive the equations of motion, because scalar quantities are utilized in the process, namely 

kinetic and potential energies. However, this formulation can be quite cumbersome when the 

mechanical system under analysis includes closed loops in its kinematic structure, such as in the 

case of mechanisms and parallel manipulators. Thus, an interesting and versatile alternative 

approach to model and simulate multibody mechanical systems with closed loop chains consists 

of cutting open the closed kinematic structure, and introducing constraints to connect the ends of 

the bodies at the open joint. This approach results in open systems, which are quite simple and 

straightforward to model under the umbrella of Lagrangian formulation. Moreover, the 

introduction of the kinematic constraints associated with the cut procedure is a trivial task, as it 

will be demonstrated. For this purpose, let consider again the planar slider-crank system, in which 

one of the joints is cut open, as shown in Fig. 3a. This procedure introduces two extra degrees-

of-freedom, hence, the slider-crank mechanism is transformed in a combination of a double 

pendulum with a slider link. In order to have a proper behavior of the planar slider-crank 

mechanism, two kinematic constraints must be included in the multibody model to ensure the cut 

open joint remains closed, reason why this approach can be named as “Lagrangian formulation 

with cut joints” or with “relative coordinates”, that contrasts with the classical Lagrangian 

formulation when there is no explicit kinematic constraints. The Lagrangian formulation with cut 

joints has been a very convenient and popular method to model complex systems with closed 

loop topologies under the framework of multibody system dynamics [53, 83, 84].  

 

Fig. 3. Slider-crank mechanism and its equivalent model after the cut open procedure. 
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From the analysis of Fig. 3b, it is clear that the multibody system, which results from the cut 

open procedure described above, has a total of three degrees-of-freedom, being the independent 

coordinates defined by the absolute angles of the crank and connecting rod, 1 and 2, together 

with the horizontal position of the slider, x3. Therefore, vectors of generalized coordinates and 

velocities can be established as  

 

1

2

3x





 
 

=  
 
 

q  (88) 

 

1

2

3x





 
 

=  
 
 

q  (89) 

With the aim of assemble or close the slider-crank mechanism, and to guarantee its correct 

dynamic behavior, two kinematic constraints need to be considered to close the loop, namely 

 
1 1 1 2 2 30 cos cos 0CΦ x l l x  D =  + − =  (90) 

 
2 1 1 2 20 sin sin 0CΦ y l l  D =  + =  (91) 

or in a compact form as  

 ( ) =Φ Φ q 0  (92) 

The second time derivative of Eqs. (90) and (91) yields 

 
2 2

1 1 1 1 2 2 2 3 1 1 1 2 2 2sin sin cos cosΦ l l x l l        − − − = +  (93) 

 
2 2

2 1 1 1 2 2 2 1 1 1 2 2 2cos cos sin sinΦ l l l l        + = +  (94) 

which can be written in a compact and matrix form as  

  =Φ Dq γ  (95) 

where the Jacobian matrix, vector of generalized accelerations and right-hand side vector of 

acceleration constraints are given by   

 
1 1 2 2

1 1 2 2

sin sin 1

cos cos 0

l l

l l

 

 

− − − 
=  

 
D  (96) 

 

1

2

3x





 
 

=  
 
 

q  (97) 

 

2 2

1 1 1 2 2 2

2 2

1 1 1 2 2 2

cos cos

sin sin

l l

l l

   

   

 +
=  

+ 
γ  (98) 

In order for the slider-crank model to be simulated in the multibody system environment based 

on the Lagrangian formulation, it is required that the system’s equations of motion be derived. 

For that, let consider the Lagrange’s equations of motion of first kind written as [57]  

 
T T

d r

d

d

L L

t

  
− = + 

  
Q Q

q q
 (99) 
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where the generalized reaction forces associated with the two kinematic constraints have been 

incorporated, which can be defined as [79] 

 
T

r = −Q D λ  (100) 

Once again, the first step to derive the Lagrange’s equations of motion for the slider-crank 

mechanism consists of expressing the bodies’ center of mass position in terms of the generalized 

coordinates (88). Thus, with regard to the information of the slider-crank multibody model 

presented in Fig. 3, the position of the center of mass of the crank, connecting and slider can be 

written as 

 1
1 1cos

2

l
x =  (101) 

 1
1 1sin

2

l
y =  (102) 

 2
2 1 1 2cos cos

2

l
x l  = +  (103) 

 2
2 1 1 2sin sin

2

l
y l  = +  (104) 

 3 3x x=  (105) 

 3 0y =  (106) 

In turn, the velocities of the center of mass of the crank, connecting rod and slider, expressed 

in terms of the generalized coordinates and generalized velocities, can be obtained by simple 

differentiation of Eqs. (101)-(106), yielding 

 1
1 1 1sin

2

l
x  = −  (107) 

 1
1 1 1cos

2

l
y  =  (108) 

 2
2 1 1 1 2 2sin sin

2

l
x l    = − −  (109) 

 2
2 1 1 1 2 2cos cos

2

l
y l    = +  (110) 

 3 3x x=  (111) 

 3 0y =  (112) 

The kinetic and potential energies associated with the slider-crank mechanism represented in 

Fig. 3b can be established as 

 ( )2 2 21 1

2 2
i i i i i iT I m x y= + + ,      i = 1, 2, 3 (113) 

 i i iV m gy= ,      i = 1, 2, 3 (114) 

Thus, using the above equations relative to the positions and velocities of the bodies’ center of 

mass, and after some basic mathematical manipulation, the Lagrangian function of the slider-

crank mechanism can be written as  
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( )2 2 2 2 2 2

1 1 1 2 1 1 2 2 2 2 3 3 2 1 2 2 1 1 2

1 2 1 1 2 2 2

1 1 1 1 1 1
cos

2 4 2 4 2 2

1 1
sin sin

2 2

L I m l m l I m l m x m l l

m m gl m gl

     

 

   
= + + + + + + − −   

   

 
+ − 

 

 (115) 

The derivatives necessary to obtain the Lagrange’s equations of motion for the slider-crank 

mechanism (99) can be expressed as 

 ( )2 2

1 1 1 2 1 1 2 1 2 2 1 2

1

1 1
cos

4 2

L
I m l m l m l l   



  
= + + + − 

  
 (116) 

 ( )2

2 2 2 2 2 1 2 2 1 1

2

1 1
cos

4 2

L
I m l m l l   



  
= + + − 

  
 (117) 

 3 3

3

L
m x

x


=


 (118) 

 

( )

( ) ( )

2 2

1 1 1 2 1 1 2 1 2 2 1 2

1

2 1 2 2 1 2 2 1

d 1 1
cos

d 4 2

1
sin

2

L
I m l m l m l l

t

m l l

   


    

   
= + + + − −   

   

− −

 (119) 

 

( )

( ) ( )

2

2 2 2 2 2 1 2 2 1 1

2

2 1 2 2 1 1 2 1

d 1 1
cos

d 4 2

1
sin

2

L
I m l m l l

t

m l l

   


    

   
= + + − −   
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Incorporating Eqs. (119)-(124) into Eq. (99), after mathematical treatment, the Lagrange’s 

equations of motion for the slider-crank model of Fig. 3b read  

 

11 12 13 1 1

T

21 22 23 2 2

31 32 33 3 3





    
    

= −    
        

m m m h

m m m h

m m m x h

D λ  (125) 

in which 

 
2 2
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4
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2
m m m l l  = = −  (127) 

 13 31 23 32 0m m m m= = = =  (128) 
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2 2
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 ( ) 2

2 2 1 2 2 1 1 2 2 2

1 1
sin cos

2 2
h m l l m gl   = − − −  (132) 

 3 0h =  (133) 

At this stage, it must be recalled that the inertia matrix (125) is positive-definite and varies 

with system’s configuration, since in the Lagrangian formulation the inertia relates the kinetic 

energy of the system with the derivatives with respect to generalized velocities. The generalized 

force terms (131)-(133) incorporates the quadratic quantities and terms related to gravity.  

In dynamic analysis of the slider-crank mechanism represented in Fig. 3b, a unique solution is 

obtained when the algebraic constraint equations at the acceleration level (95) are considered 

simultaneously with differential equations of motion (99), together with a set of appropriate initial 

conditions for generalized coordinates and velocities. Therefore, the resulting Lagrange’s 

equations of motion for the planar slider-crank mechanism with cut joints can be expressed in the 

matrix structure as  

 

T T

d
    

=    
    

qM D Q

λD 0 γ
 (134) 

Equation (134) forms a set of five differential algebraic equations (DAE) that can be solved 

for the three generalized accelerations, q , and the two Lagrange multipliers, , associated with 

the two cut joint constraints (90) and (91). Then, the generalized velocities and coordinates at 

the next time step can be obtained by using any available numerical integration scheme [80]. 

This procedure is repeated up to the final time of simulation is reached. Since Eq. (134) does 

not explicitly use the constraint equations at the position and velocity levels, thus during the 

numerical resolution of those equations of motion, the original constraint equations start to be 

violated due to the integration process or inappropriate initial conditions. Therefore, any of the 

methods able to eliminate or minimize the errors in the position and velocity constraint 

equations must be adopted in this context [76]. 

 

5. Lagrangian formulation with clearance joint constraint 

An alternative approach that can be considered for the modeling process of closed loop 

multibody systems deals with the incorporation of a clearance joint, which converts them into 

open systems. Once again, the key point of this procedure is to avoid the complicated and 

tedious analysis of system with closed topologies when applying the Lagrangian formulation. 

With the objective to describe the Lagrangian formulation with clearance joints, let, once again, 

consider the planar slider-crank mechanism as a demonstrative application example. Figure 4a 

shows a slider-crank mechanism with a revolute clearance joint between the connecting rod and 

slider, where the clearance size is exaggerated for illustrative purpose. 
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Fig. 4. Slider-crank mechanism with a revolute clearance joint modeled as a virtual or massless link. 

One simple way to model a clearance joint consists of considering the massless link approach 

[82], in which the existence of the clearance at the joint is incorporated by adding a virtual or 

imaginary rigid body without mass and with a fixed length equal to the clearance size, as it is 

illustrated in the representation of Fig. 4b. The inclusion of this additional virtual body introduces 

an extra degree-of-freedom, which can be easily modeled using a constant length constraint [53].  

Since the slider-crank mechanism with a revolute clearance joint is as an open system, then 

the absolute angle of the crank and connecting rod, together with the horizontal position of the 

slider can be utilized as independent coordinates. Therefore, the vectors of generalized 

coordinates and generalized velocities can be defined by Eqs. (88) and (89), respectively. Thus, 

the application of the Lagrange’s equations to this multibody system leads to Eq. (125). With the 

aim of incorporating the virtual link in the spirit of Lagrangian formulation, let consider a constant 

length constraint to model the revolute clearance joint. For this purpose, and based on the 

information represented in Fig.4b, one constraint equation can be written as  

 ( ) ( )
2 2 2

1 0  − + − − =D C D Cx x y y l  (135) 

where l is the constant distance between points C and D, that is, the clearance size. The Cartesian 

coordinates of these two points, C and D, can be expressed in terms of the generalized coordinates 

as 

 1 1 2 2cos cos = +Cx l l  (136) 

 1 1 2 2sin sin = +Cy l l  (137) 

 3=Dx x  (138) 

 0=Dy  (139) 

Thus, the constraint Eq. (135) can be expressed as function of the generalized coordinates as 

 ( ) ( )
2 2 2

1 3 1 1 2 2 1 1 2 2cos cos sin sin 0     − − + − − − =x l l l l l  (140) 

In a similar way to the case of Lagrangian formulation with cut joints, described in the previous 

section, the second time derivative of Eq. (140) must be evaluated, yielding 

 1  =Φ γDq  (141) 

where 
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 (144) 

Finally, considering Eqs. (99), (100) and (125), the Lagrange’s equations of motion of the 

slider-crank mechanism with a revolute clearance joint are given by 

 

T T

d

0 λ γ

    
=    

    

qM D Q

D
 (145) 

Equation (145) represents the equations of motion of the slider-crank mechanism in which the 

number of selected coordinates is higher than the number of degrees-of-freedom of the system. 

In fact, Eq. (145) forms a set of four DAE that can be solved for the three generalized 

accelerations, q , and one Lagrange multiplier, , as function of time, given the appropriate 

initial conditions for the generalized coordinates and velocities. The remaining procedures to 

solve the equations of motion are exactly the same as discussed in the previous section.  

 

6. Lagrangian formulation with elastic joints 

The incorporation of an elastic or flexible joint in multibody mechanical systems allows for 

a certain amount of play due to the local elastic deformation [85]. As a consequence of this 

aspect, the existence of an elastic joint in multibody systems with closed topologies permits to 

transform them into open systems, which eventually, simplifies their modeling process when 

the Lagrangian formulation is utilized. In order to show the main aspects related to this 

alternative approach to handle multibody mechanical systems with closed loop kinematic 

structures, let consider the slider-crank mechanism as a demonstrative example of application 

example. Figure 5a depicts a planar slider-crank mechanism with an elastic, flexible or bushing 

joint [85, 86]. 

  

Fig. 5. Slider-crank mechanism with as elastic joint modeled as a spring. 

An elastic joint can be incorporated in a multibody model much like as a spring, as it is shown 

in the representation of Fig. 5b, where a revolute joint is replaced by that spring element. This 

procedure adds two extra degrees-of-freedom to the system, being the response of the joint 

controlled by forces rather than kinematic constraints as in the case of ideal or perfect joints. It is 

clear that a kinematic joint in a multibody system imposes restrictions at the kinematic level to 

the adjacent bodies, while an elastic or flexible joint leads to force constraints [87-92]. From the 

operating conditions point of view, it can be observed that for a large value of spring stiffness, 

the two spring connecting points, C and D, do not separate from each other in a significant 
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manner, and, therefore, the closed loop kinematic structure of the slider-crank mechanism is 

ensured. 

In a similar way to the previous section, the slider-crank mechanism with an elastic joint 

constitutes an open system with three degrees-of-freedom. Therefore, the vector of generalized 

coordinates and generalized velocities can be established by Eqs. (88) and (89), respectively. The 

spring element can be easily incorporated in the Lagrange’s equations of motion (57) in terms of 

elastic potential energy, since a spring element represents a conservative force. In fact, the elastic 

potential energy associated with a spring can be evaluated as 

 ( )
2 2 2

s

1 1

2 2
= = D + Dx yV k kΔ  (146) 

where k represents the spring stiffness and D denotes the elongation of the spring, which, with 

regard to Fig. 5b, can be expressed in terms of the generalize coordinates as 

 1 1 2 2 3cos cos D = + −x l l x  (147) 

 1 1 2 2sin sin D = +y l l  (148) 

The Lagrangian function for the slider-crank mechanism with an elastic joint represented in 

Fig. 5b can be defined as 

 s= − −i iL T V V ,      i = 1, 2, 3 (149) 

in which the kinetic energy and the gravitational potential energy have the same expressions as 

in the previous section, being the elastic potential energy given by Eq. (146). 

Thus, the contribution of the elastic joint to the Lagrangian formulation of the slider-crank 

mechanism depicted in Fig. 5b can be evaluated as 
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Finally, introducing Eqs. (119)-(124), (150)-(152) into Eq.(57), it yields 
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where the inertia terms of the mass matrix are given by Eqs. (126)-(130). In turn, the generalized 

force terms for the slider-crank mechanism with an elastic joint are written in the following form 

 ( ) 2

1 2 1 2 2 1 2 1 2 1 1 1 1 1 1

1 1
sin cos sin cos

2 2
     

 
= − − + + D − D 

 
x yh m l l m m gl l k l k  (154) 

 ( ) 2

2 2 1 2 2 1 1 2 2 2 2 2 2 2

1 1
sin cos sin cos

2 2
     = − − − + D − Dx yh m l l m gl l k l k  (155) 

 3 = Dxh k  (156) 

in which Dx and Dy are given by Eqs. (147) and (148). 
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In contrast with the cut joints and clearance joints approaches, the Lagrangian formulation 

with elastic joints results in a set of ordinary differential equations of motion for the case of the 

slider-crank mechanism, because the elastic joint is incorporated into the equations of motion via 

elastic potential energy that is the basis of the Lagrange’s equation (57). With the Lagrangian 

formulation with elastic joints there is no kinematic constraints, being the resolution of the 

equations of motion efficient, and, therefore, it is not required any additional method to handle 

the violation of constraints as the case of the two previous formulations described in sections 4 

and 5. However, the definition of the value of the stiffness of the spring element can introduce 

some numerical instability in the resolution of the equations of motion. In short, the dynamic 

equations of motion (153) can be solved for the three generalized accelerations, q , and, 

subsequently, the generalized velocities and generalized positions at the next time step can be 

obtained in a similar fashion as it was described previously.  

An extension of this methodology is the contact mechanics approach that utilizes a 

dissipative Hertzian-based normal contact and friction models [93-97]. These approaches are 

similar to the elastic joint approach except that the springs/dampers are of nonlinear nature. 

 

7. Results and discussion 

The performance of the five formulations described is compared through the dynamic 

simulation of the slider-crank mechanism whose geometric and inertia properties and initial 

conditions are presented in section 2. The Newton-Euler approach with Cartesian coordinates is 

taken as the reference to be compared with the Lagrangian formulation as well as the Lagrangian 

formulations in which one joint is cut open to increase the number of degrees-of-freedom and, 

consequently, coordinates, namely the cut joint, the clearance joint constraint and the elastic joint 

approaches. The total simulation time is set to 0.13 s, which represents approximately two full 

rotations of the crank for the initial conditions, and the time integration process is performed using 

the Euler’s method. The remaining parameters utilized in the dynamic simulations are listed in 

Table 2. 

Table 2. Parameters for dynamic simulations. 

Parameter Value 

Gravitational acceleration, g 9.81 m/s2 

Integration time step, Δt 10-7 s 

Radial clearance, l 0.1 mm 

Spring stiffness, k 106 N/m 

 

The output motion of the mechanism is analyzed through the kinematics of the slider, namely 

its longitudinal position, velocity and acceleration. Each quantity is presented by four different 

plots, in which the Newton-Euler approach is compared with each proposed Lagrangian 

formulation. Figure 6 depicts the position of the slider, and similar macroscopic results are 

obtained for the five methodologies. The existing differences are not comparable with the global 

motion of the slider and they are originated by the joint compliance in the elastic approach and 

the massless link size in the clearance joint model. The remaining formulations present equivalent 

results with even smaller differences justified by the position constraints violation. In what 

concerns the longitudinal velocity of the slider, the elastic joint approach shows a clearly different 

behavior with high frequency oscillation, while the other methods have similar response, as 

depicted in Fig. 7. The same tendency is demonstrated by the longitudinal acceleration of slider 

for which the discrepancies of the elastic joint model are more conspicuous, as exhibited in Fig. 

8. The Lagrangian formulation with clearance joint also reveals some minor oscillations relatively 

to the Newton-Euler approach. 
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 (a) (b) 

   
 (c) (d) 

Fig. 6. Longitudinal position of the slider using Newton-Euler method compared with (a) Lagrangian, (b) 

Lagrangian with cut joint, (c) Lagrangian with clearance joint, (d) Lagrangian with elastic joint. 

   
 (a) (b) 

   
 (c) (d) 

Fig. 7. Longitudinal velocity of the slider using Newton-Euler method compared with (a) Lagrangian, (b) 

Lagrangian with cut joint, (c) Lagrangian with clearance joint, and (d) Lagrangian with elastic joint. 
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 (a) (b) 

   
 (c) (d) 

Fig. 8. Longitudinal acceleration of the slider using Newton-Euler method compared with (a) Lagrangian,  

(b) Lagrangian with cut joint, (c) Lagrangian with clearance joint, and (d) Lagrangian with elastic joint. 

   
 (a) (b) 

   
 (c) (d) 

Fig. 9. Mechanical energy variation using Newton-Euler method compared with (a) Lagrangian, (b) Lagrangian 

with cut joint, (c) Lagrangian with clearance joint, and (d) Lagrangian with elastic joint. 
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Since no dissipative elements are introduced in any of the presented formulations, it is 

expected to achieve conservation of the mechanical energy of the system for all cases. In that 

sense, the variation of mechanical energy relatively to the initial state is displayed in Fig. 9. All 

methodologies seem to have a cyclic variation of mechanical energy and the lowest level 

oscillation is obtained with the pure Lagrangian formulation. The Lagrangian formulation with 

cut joint presents a slightly higher energy variation, which is still lower than with the Newton-

Euler approach. The clearance and elastic joint methodologies show significantly higher energy 

fluctuation which is, respectively, two and three orders of magnitude above the results obtained 

with the previous methods. 

The magnitude of the force between the connecting rod and the slider at joint C is presented 

in Fig. 10 as function of the crank angle. The reaction force in the joint can be directly obtained 

for the Newton-Euler, the cut joint and the clearance joint approaches during the resolution of the 

equations of motion through the Lagrange multipliers. It must be noted that, for the clearance 

joint model, since the units of Eq. (140) are m2, the calculated Lagrange multiplier does not return 

exactly a force and, therefore, needs to be normalized. Regarding the Lagrangian formulation, 

only the angular motion of the crank is obtained in the dynamic simulation, thus, an inverse 

dynamic analysis is required to compute the force at the joint. In the elastic joint approach, the 

force is calculated though the spring deformation. Figure 10 exhibits identical results for the 

Newton-Euler, Lagrangian and Lagrangian with cut joint. For the clearance joint model, small 

fluctuations of the joint force with high frequency are identified and, for the elastic joint approach, 

the most prominent differences are found where the maximum force achieves twice the magnitude 

compared with the previous cases. 

   
 (a) (b) 

   
 (c) (d) 

Fig. 10. Contact force magnitude at joint C as function of the crank rotation angle using Newton-Euler method 

compared with (a) Lagrangian, (b) Lagrangian with cut joint, (c) Lagrangian with clearance joint, and  

(d) Lagrangian with elastic joint. 
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The computational efficiency of the different modelling techniques for the slider-crank 

mechanism is evaluated using the Euler integration algorithm with a time step of Δt = 10-7 s for 

all simulations. Thus, the time ratio relatively to the Newton-Euler approach is presented in Fig. 

11, as well as the segmentation of the different calculation steps. Moreover, the percentage of 

time spent in each computation phase is also detailed in Table 3. The results demonstrate that the 

Newton-Euler approach is clearly the most expensive method from the computational point of 

view when equal number of evaluations of the equations of motion is considered. On the other 

hand, the Lagrangian formulation presents a much higher efficiency with approximately ten times 

less computational time, which results from the minimal number of coordinates and, 

consequently, equations of motion. The utilization of cut joint or clearance joint present similar 

simulation time with 67% and 61% of the time spent by Newton-Euler approach, respectively, 

while the elastic joint model takes around 36%. A closer look at the time spent in each calculation 

step can justify the discrepancies obtained between all formulations. It is demonstrated that the 

resolution of the equations of motion corresponds to a large share of computation time, mainly in 

the Newton-Euler approach, and it is dramatically reduced when using the Lagrangian 

formulation. The assemble of the system of equations of motion, i.e., joining the dynamic 

equations with the constraint equations also represents a significant amount of the computational 

cost, which is saved in the Lagrangian formulation and in the elastic joint approach. It must be 

noted that, although the generalized forces vector requires significantly more computation time 

in the Lagrangian formulation due to its nonlinear nature, it is largely compensated by the time 

saved in the remaining steps. 

 

Fig. 11. Simulation time ratio with respect to the Newton-Euler method and segmentation for different calculation 

steps. 

The previously presented results consider a constant time step of integration to produce a 

reasonable comparison between methodologies. However, each formulation might require a 

different time step according to its characteristics. Bearing that in mind, an analysis of the 

influence of the time step in the accuracy of the results was performed, in which two different 

quantities are evaluated for four different time step values. First, the sum of the position violation 

of constraints at the final time of simulations is displayed in Table 4, which is not applicable to 

the Lagrangian formulation nor the Lagrangian formulation with elastic joint. Then, the average 

absolute variation of the mechanical energy of the system is presented in Table 5. 

 

Table 3. Time consumed in each calculation step for all formulations. 
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Calculation Step Newton-Euler Lagrangian 
Lagrangian with 

Cut Joint 

Lagrangian with 

Clearance Joint 

Lagrangian with 

Elastic Joint 

Mass Matrix NA 27% 6% 7% 13% 

Generalized Forces 

Vector 
1% 58% 3% 3% 8% 

Jacobian Matrix 6% NA 6% 7% NA 

RHS Vector of 

Accelerations* 
5% NA 2% 1% NA 

Assemble of 

Equations of Motion 
32% NA 38% 36% NA 

Resolution of 

Equations of Motion 
40% 1% 23% 23% 42% 

Integration Process 16% 14% 20% 22% 38% 

* right-hand side vector of accelerations 

Table 4. Sum of the position violation of constraints [m] at the end of the simulations for different integration steps  

Δt [s] Newton-Euler Lagrangian 
Lagrangian with 

Cut Joint 

Lagrangian with 

Clearance Joint 

Lagrangian with 

Elastic Joint 

10-5 2.85·10-3 

NA 

2.85·10-3 * 

NA 
10-6 2.85·10-4 2.85·10-4 * 

10-7 2.85·10-5 2.85·10-5 8.03·10-5 

10-8 2.85·10-6 2.85·10-6 2.49·10-5 

* The simulation did not reach the end since the mechanism presented a close to singular Jacobian matrix 

Table 5. Average absolute variation of mechanical energy [J] during the simulation for different integration steps  

Δt [s] Newton-Euler Lagrangian 
Lagrangian with 

Cut Joint 

Lagrangian with 

Clearance Joint 

Lagrangian with 

Elastic Joint 

10-5 2.62·10-2 3.94·10-3 9.87·10-3 * 1.69·105 

10-6 2.62·10-3 3.94·10-4 9.86·10-4 * 2.23·10-1 

10-7 2.62·10-4 3.94·10-5 9.85·10-5 2.95·10-2 5.06·10-2 

10-8 2.62·10-5 3.94·10-6 9.85·10-6 2.57·10-3 4.64·10-2 

* The simulation did not reach the end since the mechanism presented a close to singular Jacobian matrix 

Regarding the violation of constraints, both the Newton-Euler and the Lagrangian with cut 

joint exhibit the same level of violation, which decreases proportionally to the time step. The 

Lagrangian formulation with clearance joint shows a higher level of violation due to the nature 

of the kinematic constraint. It must be highlighted that, with this methodology, the use of a larger 

time step leads to a configuration in which the Jacobian matrix can become singular and, 

therefore, the equations of motion cannot be solved. This issue is closely linked with the size of 

the massless link, i.e., if the clearance size is increased, this problem tends to be avoided. 

In what concerns the mechanical energy variation, all formulations except the Lagrangian with 

elastic joint exhibit a reduction with the same order of magnitude of the decrease of the time step. 

As previously demonstrated in the results of Fig. 9, for the same time step, the Lagrangian 

formulation shows the lowest variation of mechanical energy followed by the Lagrangian with 

cut joint, Newton-Euler and, then, Lagrangian with clearance joint. The results presented in Table 

5 show that the same relative performance can be achieved with a different step size. Regarding 

the Lagrangian formulation with elastic joint, the need of a given time step is closely linked with 

the defined spring stiffness; i.e., a stiffer joint requires a smaller time step, otherwise it can lead 

to high energy gains as shown in the Table 5. 

These results could be expanded to other studies in which the modeling of slider-crank 

mechanisms is required [98-103]. 
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Table 6. Comparison between the characteristics of the five formulations utilized to model the slider-crank mechanism. 

Category Topic 

Formulation 

Newton-Euler Lagrangian 

 Classical with Cut Joint with Clearance Joint with Elastic Joint 

Formulation 

Conceptual Basis Force Equilibrium Energy Balance Energy Balance Energy Balance Energy Balance 

Dependent on the Reference Coordinate Frame Yes No Yes Yes Yes 

Determination of All State Variables of the System Intrinsic Req. Addit. Calc.* Req. Addit. Calc.* Req. Addit. Calc.* Req. Addit. Calc.* 

Coordinates 

Generalized Coordinates Dependent Independent Dependent Dependent Dependent 

Number of Generalized Coordinates Large Minimum Moderate Moderate Moderate 

Number of Constraint Equations Large None Reduced Reduced Reduced 

Equations of 

Motion 

 

Type of Equations of Motion DAE ODE DAE DAE ODE 

Constraint Equations Yes No Yes Yes No 

Derivation of the Equations of Motion Simple Hard Moderate Moderate Moderate 

Order of Nonlinearity Moderate High Moderate Moderate Moderate 

Matrices Sparse Dense Moderately Dense Moderately Dense Dense 

Constant Mass Matrices Yes No No No No 

Computation of System Energy Req. Addit. Calc.* Intrinsic Intrinsic Intrinsic Intrinsic 

Computation of Reaction Forces Intrinsic Req. Addit. Calc.* Req. Addit. Calc.* Req. Addit. Calc.* Req. Addit. Calc.* 

Physical Interpretation Easy Difficult Difficult Difficult Difficult 

Stabilization Required Not Required Required Required Not Required 

Modeling 

Modeling Systematization Easy Difficult Difficult Difficult Difficult 

Analysis of Complex Systems Easy Difficult Moderate Moderate Moderate 

Development of a General-Purpose Program Easy Difficult Difficult Difficult Difficult 

Computational 

Performance 

Computational Efficiency Moderately Efficient Very Efficient Efficient Efficient Efficient 

Required Time Step Moderately High High Moderately High Moderately Low Low 

Accuracy Accurate Very accurate Accurate Accurate Accurate 

* Req. Addit. Calc. - Required Additional Calculation 
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8. Concluding remarks 

In this work, a comparative analysis of several distinct approaches for modeling and analysis 

of closed loop kinematic chains using the Lagrangian formulation has been presented. For that, 

the classical Newton-Euler and Lagrangian methods were revisited. Subsequently, the three 

approaches based on the Lagrangian formulations were described with the main goal of 

examining their similarities and highlighting their differences, when compared with the Newton-

Euler and the Lagrangian methods. The three approaches investigated were the cut joint approach, 

the clearance joint constraint model, and the elastic joint formulation. In the sequel of this process, 

the academic slider-crank mechanism was utilized as a demonstrative application example, which 

allowed to quantify the peculiarities of each approach considered. In a simple manner, the three 

formulations proposed were aimed at transforming the closed loop topology of the slider-crank 

mechanism and, eventually, to facilitate the application of the Lagrangian formulation to obtain 

the equations of motion for each approach. This allows for alternative ways compared to the 

traditional mathematical and computational efforts required in the derivative process, when the 

Lagrangian formulation is applied to multibody systems having closed loop kinematic chains. 

The dynamic response of the slider-crank mechanism multibody model with all the five 

different formulations described (Newton-Euler, Lagrangian, Lagrangian with cut joint, 

Lagrangian with clearance joint, and Lagrangian with elastic joint), together with their 

computational accuracy and efficiency were analyzed and compared. From the main results 

obtained with computational simulations, it can be stated that the Lagrangian formulations with 

cut joints, clearance joints, and elastic joints are all effective and attractive to model and analyze 

multibody systems with closed loop structures. In addition, based on the results obtained and 

discussed in this study, none of the formulations can be identified to be superior to the others, 

since there are several features that affect their performance, as observed in the critical analysis 

summarized in Table 6. The cut joint approach allows mimicking the motion of an ideal 

mechanical system, although it requires two additional constraint equations which result in a set 

of DAE and lower computational efficiency. On the other hand, the clearance joint method only 

introduces one additional constraint, which might present numerical difficulties, when the 

clearance size is too small. Lastly, the elastic joint approach is based on a set of ODE, since it 

does not involve any kinematic constraint, and the closure of the system’s loop is done through a 

force constraint, requiring a proper selection of the stiffness value to control both the joint 

eccentricity and computational efficiency. 

Finally, this work can be expanded to implement the described approaches to more complex 

systems, and to incorporate other features, such as contact forces that can be generated in the 

clearance joints, damping elements to smooth the oscillatory behavior related to the elastic joint 

formulation, etc. A detailed analysis of alternative numerical integration schemes, methods to 

handle the violation of constraints, can also be potential further developments. 
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Appendix A. Constraint equations for the slider-crank mechanism 

In order to obtain the kinematic constraint equations for the slider-crank mechanism, it is 

necessary to develop the kinematic loops associated with the joints. Figure A.1 shows three 

possible kinematic chains for the slider-crank mechanism’s joints, which are not scaled drawn. 

   

Fig. A.1. Closed kinematic chains for the revolute joints of the slider-crank mechanism. 

In what follows, three absolute coordinates are utilized to obtain the kinematic constraint 

equations, namely two Cartesian coordinates associated with the center of mass of each body and 

one angular coordinate related to the orientation of the slider-crank mechanism’s bodies. Thus, 

the revolute joint A imposes two restrictions, which can be materialized by two algebraic 

constraints expressed as  

 1
1 1 1cos 0

2

l
Φ x  − =  (A.1) 

 1
2 1 1sin 0

2

l
Φ y  − =  (A.2) 

In a similar manner, the remaining revolute joints B and C can be formulated with regard to 

the corresponding kinematic loops represented in Fig. A.1, yielding 

 1 2
3 1 1 2 2cos cos 0
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The translational joint can be modeled by a set of two simple kinematic constraints as 

 
7 3 0Φ y =  (A.7) 

 
8 3 0Φ  =  (A.8) 

The eight kinematic scleronomic holonomic constraints can be written in a compact form as  

 ( ) =Φ Φ c 0  (A.9) 

where c represents the array of absolute coordinates given by Eq. (1). In the most general case, 

position constraints given by Eq. (A.9) are nonlinear algebraic equations. 

The constraint equations at the velocity level can be obtained as the first time derivative of the 

position constraints (A.1)-(A.8), yielding 

 1
1 1 1 1sin 0

2

l
Φ x   + =  (A.10) 

 1
2 1 1 1cos 0

2

l
Φ y   − =  (A.11) 
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 8 3 0Φ  =  (A.17) 

The velocity constraints equations (A.10)-(A.17) can be written in a matrix structure as 
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 (A.18) 

or in a compact form as 

  =Φ Dc 0  (A.19) 

where D represents the Jacobian matrix, that is, the matrix of the partial derivatives, /c, and 

c  is the array of velocities given by Eq. (27). It must be noticed that velocity constraints given by 

(A.19) are algebraic equations linear in velocities. 
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The time derivative of the velocity constraints yields the kinematic constraints at the 

acceleration level. Thus, the time derivative of velocity constraints (A.10)-(A.17) results in 

 21 1
1 1 1 1 1 1sin cos 0

2 2

l l
Φ x     + + =  (A.20) 

 21 1
2 1 1 1 1 1cos sin 0

2 2

l l
Φ y     − + =  (A.21) 

 2 21 1 2 2
3 1 1 1 1 1 2 2 2 2 2sin cos sin cos 0

2 2 2 2

l l l l
Φ x x        − − − − − =  (A.22) 

 2 21 1 2 2
4 1 1 1 1 1 2 2 2 2 2cos sin cos sin 0

2 2 2 2

l l l l
Φ y y        + − − + − =  (A.23) 

 22 2
5 2 2 2 2 2 3sin cos 0

2 2

l l
Φ x x    − − − =  (A.24) 

 22 2
6 2 2 2 2 2 3cos sin 0

2 2

l l
Φ y y    + − − =  (A.25) 

 7 3 0Φ y =  (A.26) 

 8 3 0Φ  =  (A.27) 

In a similar manner to the velocity constraints, the acceleration constraints (A.20)-(A.27) can 

be written in a matrix structure as  
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 (A.28) 

or in a compact form as 

  =Φ Dc γ  (A.29) 

where D represents the Jacobian matrix, c  denotes the array of accelerations given by Eq. (14), 

and  is the right-hand side vector of acceleration constraints that contains the quadratic terms in 

velocities. Finally, it is worth noting that acceleration constraints given by (A.29) are algebraic 

equations linear in accelerations. 
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Appendix B. Joint reaction forces expressed as DT 

The joint reaction forces are usually written as function of Jacobian matrix and Lagrange 

multipliers (30). This relation can be demonstrated using the d’Alembert’s principle of zero 

virtual work, that is, the forces associated with ideal constraints do not produce work. This 

principle was first stated by Lagrange [3], reason why it is often called Lagrange-d’Alembert’s 

principle [57]. 

With the purpose to proof Eq. (30), let consider the most general form of the holonomic 

constraint equations for constrained multibody systems written as [53] 

 ( , )t =Φ Φ c 0  (B.1) 

which restrict the system’s motion in the configuration space constituted by coordinates c. 

The virtual displacement of the system configuration, which is an imaginary variation of the 

kinematic configuration of the systems at a stationary instant of time, is consistent with the 

constraints enforced on the system’s motion [79]. It is worth recalling that a virtual quantity or 

variation, , acts in a similar way as an operator with respect to independent variables only, since 

the virtual variables are assumed to be fixed during a virtual displacement. It was Lagrange’s 

choice symbol  to emphasize the virtual character of the variation. Actually,  is not related to 

differentiation, but it is associated with the concept of virtual displacement only. The variation of 

the constraint equations (B.1) is, by definition, be expressed as  

 δ δ δt
t

 
= +

 

Φ Φ
Φ c

c
 (B.2) 

in which the last term can be neglected, because the time is frozen for any virtual displacement, 

and, consequently, Eq. (B.2) can be simplified as  

 δ δ δ δ


=  =


Φ
Φ c Φ D c

c
 (B.3) 

where D is the well-known Jacobian matrix, which contains the derivatives of the constraint 

equations with respect to the vector of coordinates c, and c represents the vector of virtual 

displacements of system’s coordinates. 

The analysis of Eq. (B.3) reveals that the constraints gradient, /c, is orthogonal to the 

virtual displacements, c, in the c-configuration space constituted by all the coordinates, as it is 

shown in Fig. B.1. In other words, it can be said the c adheres to constraint equations (B.1), in 

the measure that c is perpendicular to the gradient of  with respect to c. 

  

Fig. B.1. Admissible variations c for constraint surface in the c-configuration space. 

Backing to Eq. (30), it is clear that the Lagrange multipliers vector, , represents the array of 

joint reaction forces. Thus, according to the d’Alembert’s principle, the virtual work done by the 

constraint forces can be written in the form 

 
TδU δ 0= =λ Φ  (B.4) 

Introducing Eq. (B.3) into Eq. (B.4) yields 

(c,t)=0 c


c

Tangential 
direction

c

ci+1

ci
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T δ 0=λ D c  (B.5) 

Taking advantage of the following transpose of matrix product property from Algebra 

 T T T( ) =AB B A  (B.6) 

then, Eq. (B.5) can be rewritten as  

 T T( ) δ 0=D λ c  (B.7) 

Finally, comparing Eqs. (30) and (B.7), it can be concluded that 

 
T

r =h D λ  (B.8) 

 

Appendix C. Lagrangian formulation for the slider-crank mechanism 

The development of the Lagrange’s equations of motion for the slider-crank mechanism 

presented in Fig. 1 is straightforward, resulting in a second order nonlinear differential equation 

in 1 (85). Thus, this appendix deals with the detailed derivation of those equations of motion 

based on the Lagrange’s method. Since the slider-crank mechanism has one degree-of-freedom, 

the vectors of generalized coordinates and velocities can be established as 

  1q =  (C.1) 

  1q =  (C.2) 

From the geometric analysis of the slider-crank system configuration, a constraint condition 

can be defined as  

 
1 1 2 2sin sin = −l l  (C.3) 

which leads to 

 
1 1

2 1

2

sin sin −  
= − 

 

l

l
 (C.4) 

The first time derivative of Eq. (C.4) results in 

 
1 1 1

2
2 2 2

2 1 1

cos

sin

 



= −

−

l

l l
 (C.5) 

In order to obtain the Lagrange’s equations of motion, it is first necessary to express the bodies’ 

center of mass position in terms of generalized coordinate 1. With regard to Fig. 1b, the position 

of the center of mass of the crank can be written as 

 1
1 1cos

2

l
x =  (C.6) 

 1
1 1sin

2

l
y =  (C.7) 

The velocity components of the center of mass of the crank, expressed in terms of the 

generalized coordinate and its time derivative, can be obtained by simple differentiating Eqs. 

(C.6) and (C.7), yielding 

 1
1 1 1sin

2

l
x  = −  (C.8) 
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 1
1 1 1cos

2

l
y  =  (C.9) 

The kinetic and potential energies associated with crank can be established as 

 ( )2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

2 2 2 8
T I m x y I m l  = + + = +  (C.10) 

 1 1 1 1 1 1

1
sin

2
V m gy m gl = =  (C.11) 

In a similar manner, the position of the center of mass of the connecting rod can be written as 

 2
2 1 1 2cos cos

2

l
x l  = +  (C.12) 

 1
2 1sin

2

l
y =  (C.13) 

The time derivatives of Eqs. (C.12) and (C.13) can be expressed as  

 2
2 1 1 1 2 2sin sin

2

l
x l    = − −  (C.14) 

 1
2 1 1cos

2

l
y  =  (C.15) 

Taking advantage of the Pythagorean identity together with Eqs. (C.3) and (C.5), the kinetic 

and potential energies associated with connecting rod can be established as 

 ( )
4 2

2 2 2 2 2 2 3 21 1
2 2 2 2 2 2 2 1 1 2 1 1 1

1 1 1 1

2 2 2 2 4 4

l l
T I m x y I l A m l B C l D E  

 
= + + = + + + + 

 
 (C.16) 

 2 2 2 2 1 1

1
sin

2
V m gy m gl = =  (C.17) 

where A, B, C, D and E terms are established as 

 

2

1

2 2 2

2 1 1

cos

sin
A

l l




=

−
 (C.18) 

 
2

1sinB =  (C.19) 

 

2 2

1 1

2 2 2

2 1 1

sin cos

sin
C

l l

 


=

−
 (C.20) 

 

2

1 1

2 2 2

2 1 1

sin cos

sin
D

l l

 


=

−
 (C.21) 

 
2

1cosE =  (C.22) 

Similarly, the position of the center of mass of the slider can be written as 

 
3 1 1 2 2cos cosx l l = +  (C.23) 

 
3 0y =  (C.24) 

The time derivatives of Eqs. (C.23) and (C.24) can be expressed as follows 
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 3 1 1 1 2 2 2sin sinx l l   = − −  (C.25) 

 
3 0y =  (C.26) 

Once again, taking advantage of the Pythagorean identity together with Eqs. (C.3) and (C.5), 

the kinetic and potential energies associated with the slider can be defined as 

 ( ) ( )2 2 2 4 3 2

3 3 3 3 3 1 1 1 1

1 1
2

2 2
T m x y m l B l C l D = + = + +  (C.27) 

 
3 0V =  (C.28) 

where B, C, and D terms have been defined previously.  

The Lagrangian function for the slider-crank mechanism shown in Fig. 1, which is the core to 

derive the Lagrange’s equations of motion, can be established as  

 
1 2 3 1 2 3L T T T V V V= + + − − −  (C.29) 

Introducing the corresponding equations presented above into Eq. (C.29), yields 
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 
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+ +

 (C.30) 

The derivatives of the Lagrangian function required to obtain the Lagrange’s equations of 

motion of the slider-crank mechanism can be expressed as  

( )
4 2

2 2 2 3 2 4 31 1
1 1 1 1 1 2 1 1 2 1 1 1 3 1 1 1 1
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 (C.32) 
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 (C.33) 

where 

 1'A A =  (C.34) 

 1'B B =    (C.35) 

 1'C C =    (C.36) 

 1'D D =  (C.37) 
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 1'E E =  (C.38) 
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sin 2
'
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 (C.39) 

 
1' sin 2B =  (C.40) 
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 (C.42) 

 
1' sin 2E = −  (C.43) 

Finally, introducing Eqs. (C.32) and (C.33) into Eq. (57), and after mathematical treatment, 

the Lagrange’s equations of motion for the slider-crank mechanism can be written in the form 

 1m h =  (C.44) 

where the inertia and generalized force terms are expressed as  
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 (C.45) 
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