
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Gustavo Linhares Galvão

Robi: A Visual Programming Language
for Educational Robotics

April 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Gustavo Linhares Galvão

Robi: A Visual Programming Language
for Educational Robotics

Master dissertation
Master Degree in Informatics Engineering

Orientador / Supervisor
Pedro Rangel Henriques /
Cristiana Araújo

April 2022

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

Gustavo Linhares Galvão

A B S T R A C T

This document presents a Master’s thesis with researches focused on the teaching of
computational thinking and present the development details of Robi, a block-based visual
programming language that is able to program a robot built with an Arduino Uno. These
researches had the purpose of evaluating if the development of Robi, a block-based program-
ming language that communicates with Arduino, would really be needed. The researches
have proved that from the popular programming environments that exist in the market,
that were investigated, none have the requirements that Robi requires. The platform will be
used to teach computational think through a block-based programming environment and
educational robotics. Robi development is motivated by the intersection between the costs
of educational robotics kits and the existing block-based programming language, in which
simplicity and intuitiveness could be improved, so children with learning difficulties or even
younger children, in the context of educational robotics, can leverage the learning benefits
that the Robi environment can bring. The educational robotics kit used with the block-based
programming environment developed, is the one based on Arduino Uno, a microcontroller
board that, together with electronic components, can be considered cheaper than some of
the famous educational robotics kits. The main goal of this project is to provide a simpler
and more intuitive visual programming language platform to program a robot based on
Arduino Uno.

Keywords: Computational Thinking; Visual programming language; Block-based pro-
gramming language; Educational robotics

iii

R E S U M O

Este documento apresenta uma tese de Mestrado com investigações voltadas ao ensino
do pensamento computacional e apresenta os detalhes do desenvolvimento de Robi, uma
linguagem de programação visual baseada em blocos, que é possível programar um robô
construído com um Arduino Uno. Essas investigações tiveram o objetivo de avaliar se
o desenvolvimento de Robi, uma linguagem de programação baseada em blocos que se
comunica com o Arduino, seria realmente necessário. As investigações comprovaram que
dos ambientes de programação populares existentes no mercado, que foram investigados,
nenhum possui os requisitos que Robi exige. A plataforma será utilizada para ensinar
pensamento computacional por meio de um ambiente de programação baseado em blocos
e robótica educacional. O desenvolvimento de Robi é motivado pela combinação entre os
custos dos kits de robótica educacional existentes no mercado e linguagens de programação
baseada em blocos existentes, em que simplicidade e intuitividade poderiam ser aprimoradas,
para assim, crianças com dificuldades de aprendizagem ou até crianças mais novas, no
contexto da robótica educacional, poderiam fazer proveito dos benefícios da aprendizagem
que o ambiente Robi pode trazer. O kit de robótica educacional utilizado com o ambiente de
programação baseado em blocos desenvolvido é um kit com o Arduino Uno, uma placa de
microcontrolador que, junto com componentes eletrônicos, pode ser considerada mais barata
que alguns dos famosos kits de robótica educacional. O objetivo principal deste projeto é
fornecer uma plataforma de linguagem de programação visual mais simples e intuitiva para
programar um robô baseado em Arduino Uno.

Palavras-Chave: Pensamento computacional; Linguagem de programação visual; Lin-
guagem de programação baseada em blocos; Robótica educacional

iv

C O N T E N T S

1 introduction 1

1.1 Objectives 2

1.2 Research Approach 2

1.3 Research Hypothesis 3

1.4 Document Structure 3

2 state of art 4

2.1 Computational Thinking 5

2.2 Block-based programming language 6

2.2.1 Scratch 6

2.2.2 Code.org 7

2.2.3 Alice 8

2.2.4 Kodu Game Lab 8

2.3 Educational Robotics 8

2.3.1 LEGO Mindstorms EV3 9

2.3.2 mBot 9

2.3.3 Robomind 10

2.4 Summary 11

3 proposed approach 12

3.1 System Architecture 12

3.2 Compiler 14

3.3 System Requirements 15

3.4 Technological decision 16

3.5 System architecture revised 17

4 language 20

4.1 Grammar 20

4.1.1 Example 23

4.2 Blocks 25

4.2.1 Movement Category 25

4.2.2 Sensor Category 26

4.2.3 Flux Category 26

4.2.4 Operators Category 28

4.2.5 Variable 30

5 robot 31

v

contents vi

5.1 Components 31

5.2 Arduino Programming code 34

5.3 Code Upload Process 35

6 robi programming system 36

6.1 Visual Language Interface 36

6.1.1 Blocks Connections 37

6.1.2 Blocks Movements 40

6.1.3 Operator Blocks and Expressions 40

6.2 Code setup 41

6.3 Translator 45

7 comparison between robi and scratch 49

8 testing robi 52

8.1 Basic Exercise - Moving Robi robot 52

8.2 Intermediate Exercise - Looping through the robot movement 53

8.3 Rectangular Movement Exercise 55

8.4 Result 58

9 conclusion 60

9.1 Future work 61

9.1.1 Bluetooth Integration 61

9.1.2 Improvements on Robi system 61

9.1.3 Class management 62

a code sent to the robot 63

L I S T O F F I G U R E S

Figure 1 System architecture 13

Figure 2 Domain Model: Entity-Relationship Diagram 14

Figure 3 Compiler architecture 15

Figure 4 Updated system architecture 19

Figure 5 An example of a visual program created in the Web Interface 25

Figure 6 Robot components 32

Figure 7 Circuit diagram 33

Figure 8 Robi robot 34

Figure 9 LED blinking 35

Figure 10 Robi programming environment 37

Figure 11 Connection between blocks 39

Figure 12 Connection between aggregating blocks 39

Figure 13 Plus operation from a math operator block 40

Figure 14 Nested math operator blocks 41

Figure 15 Nested conditional operator blocks 41

Figure 16 Square exercise implemented in Robi language 49

Figure 17 Square exercise implemented in Scratch language 49

Figure 18 Categories existing in Robi platform 50

Figure 19 Categories existing in Scratch platform 50

Figure 20 Scratch programming environment 51

Figure 21 First exercise solution 52

Figure 22 Second exercise solution 54

Figure 23 Third exercise solution 55

Figure 24 Exercise 3 with variables 57

vii

1

I N T R O D U C T I O N

This thesis has the purpose of developing a new programming language, aiming to be
the most intuitive and simple as possible in a way that makes it is possible to improve
computational robotics skills, so that younger children or even children with a learning
difficulties can leverage. Children with special educational needs are an example of students
with greater learning difficulties. Although children with learning disabilities, if taught
in conventional ways, may have difficulty reading, writing, spelling, reasoning, recalling
and/or organize information, they are as smart as than their peers. Having the right support
and intervention, these children can improve their academic grades, succeed in school and
even achieve successful, often distinguished careers later in life (Ismail et al., 2009). In
order to support and improve the learning of students by making use of the benefits that
Computational Thinking brings, it is intended in the context of the project under which this
Master’s works appears, resort to the development of a block-based programming language.
According to Weintrop and Wilensky (2017), Block-based programming environments
leverage a programming primitive-as-puzzle-piece metaphor that provides visual cues to the
user about how and where commands can be used as their means of constraining program
composition. This type of visual programming language consists of dragging blocks into
a scripting area, and fitting them together, to form scripts (Weintrop and Wilensky, 2017).
Although the aim of this thesis is not directly associated to children with special educational
needs, but since they have learning difficulties, and the purpose of this thesis is the develop
a simpler and more intuitive visual programming language to support the teaching of
Computational Thinking through educational robotics.

As Virnes et al. (2008) stated, educational robotics has the potential for improving special
needs education and for eliminating barriers to learning if it can be focused on the special
needs of the children. Motivated by the benefits that robotics tools brings, in which made
it possible for the students to practice and learn many necessary skills, like collaboration,
cognitive skills, self-confidence, perception, and spatial understanding (Karna-Lin et al.,
2006), we considered the integration of the block-based programming language with an
Arduino Uno, an open source microcontroller that can be easily programmed and repro-
grammed at any instant of time. As reported by Louis (2016), the Arduino platform was
introduced in 2005, and was designed to provide a low cost and easy way for hobbyists,

1

1.1. Objectives 2

students and professionals to create devices that interact with their environment using
sensors and actuators. One of the reasons to the Arduino be a low cost product, is due to the
independence of suppliers of parts and components. This contrasts with robotics kits such
as Lego, Fischer and other manufacturers, which have their own standard and proprietary
components, making them more expensive (Junior et al., 2013).

Some examples of block-based programming environments that are very used to introduce
programming are the following: Scratch, Alice, Snap!, App Inventor and Blockly. They
provide a fun and engaging introduction to programming concepts without the need to deal
with syntax that has been a historically obstacle to students that recently started learning
text-based programming (Grover and Basu, 2017). However, despite the fun and engaging
block-based programming environments, they either didn’t have integration with robot kits,
or when they had, either the robot kit was expensive, or they lacked a level of simplicity
and intuitiveness that could benefit younger children. Not having integration with a robot
makes them less flexible as to the use of fundamental features that could support the
learning process of those students. For that reason, it was decided to develop Robi, a visual
programming language for educational robotics dedicated on having a higher level simplicity
and intuitiveness, using a cheaper solution when it comes to the robot.

1.1 objectives

The development of this project have the following objectives:

• Design a programming language;

• Develop a block-based programming environment as a platform that could be used to
teach programming to children;

• Generate code compatible with Arduino programming language;

• Use Arduino compiler to make the code developed in the environment to control the
Robi robot.

1.2 research approach

To accomplish this Master’s work, a methodology based on literature revision, solution
proposal and implementation will be followed, going through an iterating over the next
steps:

• Bibliographic study to understand the state of the art in the areas of educational
robotics, educational programming in a block-based environment;

1.3. Research Hypothesis 3

• Definition of the features and design the block-based programming language.

• Definition and design of the block-based programming language.

• Integration of the visual programming environment developed with the Arduino-based
robot.

• Testing, results evaluation and discussion.

1.3 research hypothesis

Using a very easy and iconic Block Programming Language to control Robots, it is possible
help children on the training of Computational Thinking, improving their skills to solve
problems.

1.4 document structure

This document is organized into nine chapters. In Chapter 2 is presented the State of the
Art of this Master thesis, in which contains researches about computational thinking and its
interventions and what are in the market, as well as researches about the relation between
computational thinking and students with learning difficulties. In Chapter 3 is presented
the overall architecture, system requirements and the technological decisions of the system
that will be implemented. In Chapter 4 is presented the grammar and the blocks that is part
of the visual programming language developed. In Chapter 8 is presented the components
used to built the robot and how it works. In Chapter 6 is presented Robi interface and the
translation process developed. In Chapter 7 is presented a comparison between Robi and
Sratch platforms. In Chapter 8 is presented three exercises that were given to children, and
the correspondent solutions. Finally, in Chapter 9 is presented the conclusion of this Master
Thesis.

2

S TAT E O F A RT

In this chapter will be described relevant topics to the development of this Master Thesis,
that involves researches regarding special educational needs. The main purpose of that
research is to evaluate that computer-based interventions can be a factor that benefits these
students with special educational needs. Other relevant topics that will be discussed in this
chapter, are computational thinking and its impact; block-based programming languages;
and educational robotics. A study on the popular block-based programming environments
and educational robotics kits that exist on the market will also be carried out, in order
to assess whether the development of the visual programming language Robi, is really
necessary.

There are children with special educational needs as Hyperactivity and Autism that can
eventually leverage the learning of this approach.

Children who exhibit developmentally inappropriate levels of inattention and/or hyperactivity-
impulsivity are recognized as children with Attention-Deficit Hyperactivity Disorder (ADHD).
These children are known to experience not only behavioral and social problems frequently,
but also academic difficulties (Jitendra et al., 2008).

As stated by Jitendra et al. (2008), in order to improve the academic achievement of
students with ADHD, it’s important to have interventions that directly focus on academic
skill deficits in content areas such as reading and mathematics. Jitendra et al. (2008) also
mentioned that several models of peer tutoring have been investigated for use with these
students, and most of these models include characteristics known to be effective with this
population. Some of these models consists of:

• working one-to-one with another individual;

• the learner determining instructional pace;

• continuous prompting of academic responses;

• providing frequent, immediate feedback about quality of performance.

According to Román-González et al. (2018), teachers reported unexpected brilliant per-
formance and behavior of students usually disruptive and inattentive, when faced with

4

2.1. Computational Thinking 5

computer programming experiences. To put in another way, it’s possible to say that students
with hyperactivity, disruptive conduct or inattentiveness, for example, seem to respond
especially well to programming tasks.

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition mainly characterized
by a deficit in social interaction as well as in creative behavior (Munoz et al., 2018).

According to Elshahawy et al. (2020), computer-based interventions for children with ASD
have proven to be useful and effective due to the following reasons:

• Most technologies use visual interfaces, which goes along with the characteristics and
preferences of individuals with ASD;

• Considering that social interactions might be overwhelming for children with ASD,
they are more drawn to computing which is free from social demands;

• One of the key benefits of software development is that it provides a controlled
environment with immediate feedback and no surprises, which is suitable for children
with ASD;

• One of the reasons why they might be attracted more to computer programming
specifically, is that it is consistent and logical.

2.1 computational thinking

With the advances in technology in the past years, computing has become an area of great
interest and present in almost every job. With this popularity and being programming an
area in which students present several difficulties, the need arose to explore the education
of Computational Thinking (Teixeira et al., 2020). Computational Thinking is currently an
important subject of national education in many countries, some of them have even classified
Computational Thinking as a national program or have prepared new teaching content and
textbooks (Hsu et al., 2018). As mentioned by Grover et al. (2017), Computational Thinking
is recognized as a fundamental competency for success in the fields of science, technology,
engineering and mathematics (STEM). In addition, Computational Thinking also improves
creative problem solving in other disciplines.

Tang et al. (2020) stated that many researchers defined Computational Thinking in terms
of programming or computing concepts, so that they could not only design interventions
based on programming activities but also assess students’ programming skills as evidence
of students’ Computational Thinking skills.

Teaching computational thinking from an early age will benefit students not only to
overcome difficulties in programming courses, but also to improve students skills that can
be leveraged in all areas. This happens because the computational thinking ability promotes

2.2. Block-based programming language 6

the improvement of skills such as the development of critical thinking, abstract thinking,
logical reasoning, problem solving strategies and persistence (Araújo et al., 2019).

2.2 block-based programming language

The body of introductory programming should not correspond to the understanding
of the grammar or syntax of that particular programming language, but it should be the
development of the problem-solving skills with computing, that is called "Computational
Thinking" (Matsuzawa et al., 2016). As mentioned before, the block-based programming
languages are a way to develop interventions of Computational thinking. Computing is
an essential skill for all students to develop in order to fully participate in an increasingly
digital world (Weintrop and Wilensky, 2017).

Block-based environments uses a programming primitive-as-puzzle-piece metaphor to
provide visual cues to the user as to how and where commands may be used. Programming
is done by dragging command blocks from a palette into the scripting pane and assembling
them, like puzzle pieces, creating "stacks" of blocks (Weintrop, 2019). Some of the popular
environments of block-based programming are Scratch, Alice, and Code.org’s Hour of Code
activities. (Brown et al., 2016).

Block-based environments are today commonly used to introduce programming. An
example is the Hour of Code campaign, which provides online introductory programming
activities that reach millions of students. (Effenberger and Pelánek, 2018).

2.2.1 Scratch

Scratch is a block-based programming environment that emphasizes media manipulation
and supports programming activities that resonate with the interests of children, such as
creating animated stories, games, and interactive presentations (Maloney et al., 2008).

According to Weintrop (2019), since Scratch was launch, over 35 million users have created
accounts on the Scratch website and almost 40 million projects have been shared with a
majority of users being under the age of 14.

This visual programming language, despite interesting the youth, doesn’t have a clear
objective embedded in the platform, depending mainly on the teacher to use his creativity
to develop programming activities. In other words, Scratch does not contain a system of
levels with different activities and difficulties, with different subjects or themes, in which
could improve students motivation, or track the students progress. The platform has more
than 100 possible blocks to use. They are organized into sections, such as:

• Motion;

2.2. Block-based programming language 7

• Looks;

• Sound;

• Events;

• Control;

• Sensing;

• Operators;

• Variables;

• My Blocks.

2.2.2 Code.org

Code.org is a nonprofit organization that was founded in 2012, whose vision is that
every student in every school should have the opportunity to learn. Code.org created an
enormous interest in its Hour of Code initiative, an one-hour introduction to computer
science. The goal of the Hour of Code is to demystify code and show that everyone can
learn the programming basics (Liu et al., 2016).

The Code.org website contains a block-based environment with lots of different program-
ming activities, making use of different and well known games and characters, to motivate,
attract and interest the young public. Code.org contains a catalog of courses that can be used
since the kindergarten until the high school. There are courses the are planned for students
that can’t read, having blocks that contains only images. The platform makes possible for
teachers to have an account, to create classes and start assigning courses and check students’
progress. The courses consist of a variety of lessons and each lesson corresponds to either
a set of levels or unplugged activities. As the student progresses through the levels, the
difficulty increases. Each lesson corresponds to a different topic or subject, for example:
computational thinking, the artist, functions, the farmer and conditionals. A programming
activity level doesn’t show all the blocks available in the whole platform, only the ones
relevant to the level, what is good for the student to not divert the focus on the programming
question.

The visual programming language development will leverage some of the features found
on Code.org, such as the management area that the teachers have, that can track the students
progress and assigning courses with lessons to their students. It was decided to create
Robi, a visual programming language, and not use the Code.org because its creation didn’t
have educational robotics as its main focus. Having in consideration that the programming
language will be used to program a particular robot, the blocks could be better identified by

2.3. Educational Robotics 8

containing pictures of parts of the robot. A section of blocks focused on the robot sensors
could also be created. Robi platform will also enable teachers to create their own courses,
lessons and levels.

2.2.3 Alice

The Alice environment provides to the students the possibility to create animation and/or
games, without the need to focus on the syntax of the language. Alice allows the programmer
to create code without worrying about semicolons or curly braces, for example, and allows
the students to focus on the concepts (Ali and Smith, 2014). The code is constructed in the
form of puzzle pieces, causing the characters s in the virtual environment to execute tasks
(Liu et al., 2016).

According to Liu et al. (2016), Alice was shown to be an effective alternative to standard
programming languages in teaching programming to undergraduate computer science
students, since Alice’s approach addresses many of the issues afflicting programming
education.

Like Scratch, Alice shares the same downsides related to the problem raised on this thesis.
This software doesn’t contain a system of levels with different activities and difficulties, with
different subjects or themes, in which could support the teacher in the classes and improve
students motivation. Alice doesn’t have a teacher management area as the one found on
Code.org, which is a great feature that could support the teachers analysing their students
progress, or assigning different courses that could fit the students profile.

2.2.4 Kodu Game Lab

Similar to the programming languages described above, Microsoft Research’s Kodu Game
Lab are used as well to introduce students to computer science concepts and programming
(Stolee and Fristoe, 2011). Kodu is integrated in a real-time 3D gaming environment, with a
intuitive user interface (MacLaurin, 2011).

2.3 educational robotics

Educational robotics in early childhood education facilitates the students learning in a
playful way, based on principles of interactivity, social interrelations, collaborative work,
creativity, constructivist and constructionist learning and didactic approach centered on the
student, allowing them to improve their digital skills and develop logical and computational
thinking (González-González, 2019).

2.3. Educational Robotics 9

Robotics platforms, together with an easy-to-use visual programming tools, can be an
effective way to introduce computational thinking as it involves students being able to
sequence the coding commands needed to program a robot (Chalmers, 2018).

Educational robotics is used worldwide in education as a learning tool, but rarely focused
on students with with individual needs (Karna-Lin et al., 2006). If it can be focused mainly
on the special needs of children, educational robotics has the potential for improving special
needs education and for eliminating barriers to learning (Virnes et al., 2008).

2.3.1 LEGO Mindstorms EV3

Lego robotic systems comprise Lego bricks, a programming language, a microprocessor,
wheels and friction gears, such as gears and cogwheels. The visual programming language
based on the Lego system turns out to be a coherent and amusing subject since it uses flow
diagrams instead of written text. Lego Mindstorms is a robotic set created by Lego for
children aged 10 and above. It is aimed at getting students to acquire programming, basic
design and robotic principles. (Korkmaz, 2016).

According to Korkmaz (2018), Lego sets have many advantages, such as:

• Providing real-life experiences to students;

• Enabling both individual and team work;

• Allowing students to actively take part in learning processes;

• Using interdisciplinary knowledge;

• Presenting alternative ways for solving problems.

The visual programming language that will be developed, will make use of the way Lego
chose to provide its programming blocks, making more use of pictures instead of written
text. Although Lego provides a great approach at building the robot, and a platform to
implement code that is intuitive and easy to learn, Lego is more expensive than an Arduino
robot kit. The purpose of this thesis is also to provide a non expensive solution, so it was
decided to work with an Arduino, that makes possible to create economical robots (Pisarov
and Mester, 2019).

2.3.2 mBot

The robot mBot is built using an Arduino, and makes use of the mBlock software, a visual
programming language based on Scratch 2.0 to transfer the programming commands to the

2.3. Educational Robotics 10

mBot. The mBlock software does not only inherit the characteristics of Scratch, but also
increases many script modules to interact with hardware (Pisarov and Mester, 2019).

The Arduino platform has become very popular with people who are involved with
electronics. As reported by Badamasi (2014), unlike most previous programmable circuit
boards, the Arduino does not have a separate piece of hardware in order to load new code
onto the board, it just needs a USB cable to upload the code. Arduino consists of both a
physical programmable circuit board and and an Integrated Development Environment
(IDE) that runs on the computer, and is used to write and upload computer code to the
physical board (Pisarov and Mester, 2019).

The mBot is an economical mobile robot equipped with Bluetooth and various sensors.
With the drag and drop technique to implement code that can run on the robot, children can
learn to program quickly, so they control the robot and try out different features that mBot
has. This robot is an educational tool that gives beginners basic knowledge in programming,
electronics and robotics (Pisarov and Mester, 2019).

The solution provided by this thesis will also use an Arduino to create the robot. Since
mBot makes use of the mBlock software, that is based on Scratch, mBot doesn’t fit as a
solution to the problem raised on this thesis. The visual programming language that will be
developed, will have personalized programming blocks with pictures related to the robot,
making it more intuitive, with less text to read. In other words, the visual programming
language development will be dedicated to the Arduino robot.

2.3.3 Robomind

Different from the programming platforms described above, Robomind is not block–based
concept with a drag-and-drop interface, but a syntax based concept. (Faisal et al., 2017).
This platform can be used for students ranging from primary schools, secondary schools
and further education. Basically, the main objects of Robomind are how to control the
robot movement through a sequence of instructions written in a particular programming
language (Yuana and Maryono, 2016). The interface allows not only the users to inspect
which robot behaviors are running, but also the data collected from the robot sensors in
run-time (Svendsen, 2014).

Although Robomind contains a simple and attractive graphical display (Faisal et al., 2017),
this platform is textual based, so it restricts the public that have difficulties at reading and
writing, in which could demotivating. This solution doesn’t attend to the problem raised
by this thesis, since the proposal is to have a platform with a programming language more
visual, so it could be a better fit for students with special needs that the learning process. For
example, the learning process for the individuals with ASD is more effective when working

2.4. Summary 11

with technologies that use visual interfaces, in which goes along with their characteristics
and preferences. (Elshahawy et al., 2020).

2.4 summary

Based on the research done and discussed along this chapter, it’s possible to state that
computer-based interventions to students with special educational needs1 have proven to be
useful and effective for their learning. It’s also possible to state that the popular block-based
programming languages and educational robotics kits, that were presented in this chapter,
even with a lot of motivational and engagement potential still lack some simplicity to be
used with full success when working with children with special educational needs.

1 Students with hyperactivity and autism

3

P R O P O S E D A P P R O A C H

This chapter will present the proposal describing how the desired programming environ-
ment will be built. As this project aims at the creation of a new programming language, it
will be necessary to create a compiler, therefore, this chapter contains not only the system
architecture, but also what the compiler will consist of. This chapter will also present the
requirements elicited during the preliminary analysis phase, and the technological decision.

3.1 system architecture

The system will contain two web applications. One web application will be running in
the cloud, and the other one will be a web application that will run locally in the user’s
computer. The web application that will be running in the cloud will have the responsibility
of registering the users, providing the download of the web application that will run locally
and storing in its database all the data that comes from the local web application. The local
web application will contain the block-based programming environment, as well as the
management area for the teachers to assign and create courses for their respective students.
The local web application will contain also a compiler service, that as the name suggests,
will compile the code developed by the user to a code that the Arduino understands, so the
code upload can be possible. This web application will also contain a database.

The database associated with the local web application will also persist data that comes
from the user. Although the data will be persisted twice (in the remote database and in the
local database), it will increase the performance.

The local web application will contain a text converter, that will convert the visual code
implemented by the user to a text, so that it can be compiled and turned into a file with
a format that the Arduino can understand. Figure 1 shows the system architecture as
explained above.

12

3.1. System Architecture 13

Figure 1: System architecture

After being clear the system behavior and architecture, it was decided to create a class
diagram to have a better view of how the entities relate to each other. It can be seen in the
Figure 2.

3.2. Compiler 14

Figure 2: Domain Model: Entity-Relationship Diagram

3.2 compiler

While programming visually, using Robi block programming language, Robi editor
generates a textual image of the visual program developed. When the student presses the
button to upload the code to the Arduino robot, the textual file, so far created, is sent to a
compiler that transform that source program into the Arduino target language. In other
words, the text converter will generate a source program, that is sent to the compiler. As the
Figure 3 shows, the compiler will consist of two phases:

ANALYSIS PHASE: This phase will responsible for reading the source program, dividing it into
core parts and then checking for lexical and grammar. This phase is also responsible
to generate an intermediate representation of the source program and identifier table,
in which becomes an input to the Synthesis phase.

3.3. System Requirements 15

SYNTHESIS PHASE : This phase will be responsible for generating the object program with
help of the Analysis phase output and the identifier table. The object program is the
output of the compiler, and will be in a format that the Arduino can understand, so it
can be uploaded without any problems.

Figure 3: Compiler architecture

3.3 system requirements

During the analysis phase some requirements were identified in order to list the features
that will be necessary for the proper design of the visual programming language, as well

3.4. Technological decision 16

as to develop the software system with the functionalities necessary to accomplish the
objectives above stated. Below is the list of requirements so far collected:

1. A section to register users;

2. A section to provide the download of the platform;

3. An IDE with all the possible command blocks to program the robot;

4. Robot command blocks that should be as less textual as possible;

5. A programming script that should be built by connecting blocks together;

6. The system script area with code implemented by the user to be able to upload to an
Arduino Uno;

7. All users registered to the system to have teacher roles;

8. The user to be able to register student accounts;

9. The user to able to assign courses to the students they registered;

10. Courses that will contain correspondent lessons;

11. Lessons that can contain one or more levels;

12. The levels might contain only the relevant command blocks to that particular level.

13. The user to be able to create courses and correspondent lessons and levels;

14. The user to be able to track students progress;

15. The student to be able to log in to the account registered by his teacher;

16. The student to be able to access the courses assigned by his teacher;

17. The student to be able to track his own progress through the courses assigned to him;

3.4 technological decision

There are many languages and packages that could be used in the development of this
project, however, the technologies were chosen based on the author’s experience. The
languages and frameworks adopted are well known and proved to be efficient in similar
projects. Below are described the technologies that will be used to the development of Robi
platform:

• The frontend will be developed using the framework Angular.

3.5. System architecture revised 17

• The backend will be developed using Java, Gradle and Spring boot.

• The API will be tested using the following technologies:

– JUnit

– WireMock

– RestAssured

• The API will be documented using the following technologies:

– Spring Rest Docs

– Asciidoctor

• The relational database will be implemented with PostgreSQL.

• The programming blocks and the script area will be implemented by the use of an
SVG library.

• The textual script equivalent to the visual will be compiled to an hex file, so that the
Arduino can receive, upload, understand and execute the code (Fezari and Al Dahoud,
2018).

3.5 system architecture revised

During Robi development, it was decided not to develop the class Management1 wouldn’t
be needed, since the scope of the project was getting too large for a one year Master’s work.
But the main reason for that decision is that the referred class would provide features that
are secondary considering the project main focus. Not implementing the class Management
has impact in the following points:

• Technologies to support the system API documentation are no more needed, since the
system now contains only one endpoint;

• Database associated with the first block (the cloud component) is no more necessary,
since there is not more information related to the students to store in the cloud;

• Courses, lessons, levels and teacher-student relation can be removed from the Entity-
Relationship Diagram of Figure 2, since they make no more sense because they were
related to the class Management.

1 That class should offer to the Teacher functionalities to create classes, populate them with students and track
students performance.

3.5. System architecture revised 18

Another decision that was made during Robi development was about the creation of a
compiler. In order to compile and upload the code to the robot, Robi system is using the
same compiler as the Arduino IDE uses. The translation from the script implemented in
Robi platform to the program that will be sent to the compiler was necessary to develop.

To sum up, the new version of the system contains two services. One service will be in the
cloud, which corresponds to Robi platform, where the user creates the visual program in
Robi visual language, generating the script that will be sent to the robot. The other service
will run locally, in the user’s computer. That service is called Compiler service, and is
responsible to receive the code implemented by the user in the cloud Robo editor and to
compile and upload the code to the robot the user has. Figure 4 shows the updated system
architecture.

3.5. System architecture revised 19

Figure 4: Updated system architecture

In Robi platform, when the user clicks on the button to send the code to the robot, the
system will do a POST request with the script object to an endpoint located at localhost, on
port 8111. This endpoint is served by the Compiler service, and will be accessible to receive
requests from Robi platform system.

4

L A N G UA G E

Robi visual programming language, a block-based environment, was developed using
Angular 11, a free and open-source web application framework based on TypeScript, imple-
mented by Google. The main purpose of this development is to offer an intuitive and easy
to learn programming language and development environment, aiming at making more
effective the inclusion of children with special educational needs.

Robi programming language was designed with the purpose of programming an Arduino-
based robot. For this reason, this language is chiefly composed of robot movement and
sensor blocks. Besides these robot-oriented blocks, Robi contains also programming-oriented
blocks, such as repeat block, if block, if-else block, delay block, math operator blocks,
conditional blocks, variable block and set variable block.

4.1 grammar

Bellow is defined the complete set of terminal symbols:

• INIT

• VARIABLE

• IF-THAN

• IF-THAN-ELSE

• FORWARD

• BACKWARDS

• TURN_LEFT

• TURN_RIGHT

• DO

• TIMES

20

4.1. Grammar 21

• WHILE

• UPDATE

• TO

• AND

• OR

• GREATER_THAN

• LESS_THAN

• EQUALS

• NUMBER

• SENSOR

• PLUS

• MINUS

• TIMES

• DIVISION

A program is formally defined by the following rule:

• Variables INIT Block.

The INIT symbol corresponds to the Init block. The grammar rules are described below.

Variables : VARIABLE
. | Variables VARIABLE
Block : Instruction
. | Block Instruction
Instruction : Condition
. | Assignment
. | Loop
. | Move Expression
Condition : IF ConditionalInput THAN Block
. | IF ConditionalInput THAN Block ELSE Block
Move : FORWARD
. | BACKWARDS

4.1. Grammar 22

. | TURN_LEFT

. | TURN_RIGHT
Loop : DO Expression TIMES Block
. | DO WHILE ConditionalInput Block
Assignment : UPDATE VARIABLE TO Expression
ConditionalInput : Expression ConditionalOperator Expression
. | ConditionalInput NestedConditionOperator ConditionalInput
NestedConditionOperator : AND
. | OR
ConditionalOperator : GREATER_THAN
. | LESS_THAN
. | EQUALS
Expression : NUMBER
. | VARIABLE
. | SENSOR
. | Expression MathOperator Expression
MathOperator : PLUS
. | MINUS
. | TIMES
. | DIVISION

The "Variables" rule generates one or multiple VARIABLE symbols. The VARIABLE
symbol corresponds to the Variable block.

The "Block" rule can produce one or more "Instruction". That "Block" rule corresponds to
the blocks present in Robi environment.

The "Instruction" rule produces "Condition", "Assignment", "Loop" and "Move Expression".
It corresponds to the programming instructions, such as condition, assignment and loop.
Another instruction that this rule generates is robot related, it generates an instruction
correspondent to the robot movement.

The "Condition" rule is analog to a programming condition. That rule generates the IF
symbol, that is analog to the conditional "if" and the THAN symbol. Every code after the
THAN symbol will be part of the correspondent instruction.

The "Move" rule corresponds to the robot movement. It generates the following sym-
bols: FORWARD, BACKWARDS, TURN_LEFT and TURN_RIGHT. The FORWARD symbol
corresponds the Move forward block, the BACKWARDS symbol corresponds to the Move
backwards block, the TURN_LEFT symbol corresponds to the Turn left block and finally, the
TURN_RIGHT symbol corresponds to the Turn right block.

4.1. Grammar 23

The "Loop" rule can produce "DO Expression TIMES Block" and "DO WHILE Conditional-
Input" Block. The code after the DO symbol corresponds to the amount of times the code
that is inside the correspondent programming instruction will be repeated. The code after
the TIMES symbol corresponds to the code that will be executed in the loop instruction. The
first generation done by the "Loop" rule is analog to the for loop, and corresponds to the
Repeat block. The second generation is analog to the while loop, and corresponds to the
While block.

The "Assignment" rule corresponds to the Set variable block. The UPDATE symbol that is
part of what this rule produce, corresponds to the set action of a variable. The VARIABLE
symbol corresponds to the variable that will have its value set. The value that comes after
the TO symbol corresponds to the value that will be set in the correspondent variable.

The "ConditionalInput" rule corresponds to the input found in the conditional operator
blocks. This rule can produce multiple conditions joined by AND and/or OR operators, or
this rule can generate a condition with the conditional operators greater than, less than or
equals.

The "NestedConditionOperator" rule generates the AND and OR symbols. They corre-
spond to the "and" operator and "or" conditional operators, respectively.

The "ConditionalOperator" rule generates the symbols GREATER_THAN, correspondent
to the "greater than" conditional operator, LESS_THAN, correspondent to the "less than"
conditional operator and EQUALS, correspondent to the "equals" conditional operator.

The "Expression" rule can generate a "NUMBER" symbol, correspondent to a number,
VARIABLE symbol, SENSOR symbol, correspondent to the Sensor block, and can generate
multiple expresssions joined by a math operator, such as plus, minus, times and division.

And finally, the "MathOperator" rule generates the following symbols: PLUS, MINUS,
TIMES and DIVISION. These symbols corresponds to math operators plus, minus, times
and division, respectively.

4.1.1 Example

The implementation below has the objective of making the robot move forward until it
detects an obstacle. If an obstacle is detected, then the robot must turn and move forward
again, until it finds another obstacle. This action is repeated three times. Finally, after the
robot detects the last obstacle, the robot turns again. This example problem is solved using
the language defined by the grammar above:

: VARIABLE distance

: INIT

4.1. Grammar 24

: UPDATE distance TO 20

: DO 3 TIMES [

: DO WHILE (SENSOR GREATER_THAN distance) [

: FORWARD 250

:]

: TURN_RIGHT 1200

:]

: TURN_LEFT 1200

Figure 5 shows the visual representation in the block programming language for the
example described above.

4.2. Blocks 25

Figure 5: An example of a visual program created in the Web Interface

4.2 blocks

The blocks corresponding to the terminal symbols above are divided into 5 categories:
Movement, Sensor, Flux, Operators and Variable.

4.2.1 Movement Category

That set of blocks is responsible for the robot movement. At the right side of this block
there is an input. That input corresponds to the amount of time in milliseconds that the
motors will be turned on. On clicking this input, the user can either write a number from 0

to 9999 ms, or add a math operator block, a variable block, or the ultrasonic sensor block.

MOVE FORWARD Block responsible to move the robot forward.

4.2. Blocks 26

MOVE BACKWARDS Block responsible to move the robot backwards.

TURN LEFT Block responsible to make the robot turn left.

TURN RIGHT Block responsible to make the robot turn right.

4.2.2 Sensor Category

The robot contains only one sensor, that is the ultrasonic sensor block. This sensor is
responsible to retrieve the distance that it is from an obstacle.

ULTRASONIC SENSOR The image inside this block reflects the sensor presented in the robot.

4.2.3 Flux Category

The blocks contained in this category are related to the flux that the robot does, such as
iterations, delays and conditions. The blocks that contains a blue ellipsoid space with the
same format as the white ellipsoid that contains a number, has the purpose of being the
space in which the user can add the conditional operators, represented by the blue color.
The white ellipsoid space with a number in it, on clicked, allows the user to write a number

4.2. Blocks 27

between 0 and 999. As in the movement blocks, the user can either add a math operator
block, a variable block, or the ultrasonic sensor block.

WAIT Block responsible to make the robot stop and wait the given value by the user. The
range goes from 0 to 9999. The rectangular input found in this block does not allow
the user to add another block in it.

REPEAT Corresponds to the for loop. This block will repeat the code that is inside of it for a
given value by the user.

IF Corresponds to the if conditional. If the condition given by the user is true, then the
code inside of it will run.

WHILE Corresponds to the while loop. While the condition given by the user is true, then
the code inside of it will run.

IF ELSE Corresponds to the if else conditional. If the condition given by the user is true,
then the code inside of the upper space will run, or else, the code inside the lower
space will run.

4.2. Blocks 28

4.2.4 Operators Category

In this category there are three subsets of blocks, meaning that each subset contains
different behaviors. One subset corresponds to the AND operator and the OR Operator,
in which contain two blue ellipsoid spaces, one in each side. In other words, this subset
of blocks accepts in these spaces all the blue operator blocks, such as nested adding AND
operators and OR operators or the conditionals greater than, less than and equals. The
second subset is formed by the conditionals mentioned before: greater than less than and
equals. These three blocks are categorized by two white ellipsoid inputs with a number in it,
as found in the movement blocks and the repeat block. This means that this subset accepts
in those inputs the math operator blocks, variable blocks, or the ultrasonic sensor block.
The third subset corresponds to the math operators. The math operators blocks contains
the following math operations: plus (+), minus (-), times (*) and division (/). This subset is
categorized by having two white ellipsoid inputs, one in each side, and in the middle is the
math operation symbol. As in the repeat block, as well as in the second subset of operator
blocks mentioned in this section, is possible to nested add math operator blocks, as well as
the variable block and the ultrasonic sensor block.

AND OPERATOR Corresponds to the AND operator. This block can be placed inside the
inputs found in the blocks that accepts condition.

OR OPERATOR Corresponds to the OR operator. This block can be placed inside the inputs
found in the blocks that accepts condition.

CONDITIONAL GREATER THAN Corresponds to the condition greater than. This block can be
placed inside the inputs found in the blocks that accepts condition, including the AND

4.2. Blocks 29

and OR operators.

CONDITIONAL LESS THAN Corresponds to the condition less than. This block can be placed
inside the inputs found in the blocks that accepts condition, including the AND and
OR operators.

CONDITIONAL EQUALS Corresponds to the conditional equals. This block can be placed
inside the inputs found in the blocks that accepts condition, including the AND and
OR operators.

PLUS It corresponds to the math operation plus. It sums the two numbers or expressions
found in each side of the block.

MINUS It corresponds to the math operation minus. It subtracts the two numbers or
expressions found in each side of the block.

TIMES It corresponds to the math operation times. It multiplies the two numbers or
expressions found in each side of the block.

DIVISION It corresponds to the math operation division. It divides the two numbers or
expressions found in each side of the block.

4.2. Blocks 30

4.2.5 Variable

This category contains two blocks and one button. The button is responsible to create a
variable with a maximum of twelve letters or numbers. The variable name chosen by the user
must start with a letter. The set variable contains a dropdown. This dropdown is populated
as the user creates a variable. When the user chooses a variable in the dropdown, he can set
its value in the white ellipsoid input just below. This white ellipsoid input contains the same
behavior found in the movement blocks, regarding the adding of a block. The range in this
input goes from 0 to 9999.

SET VARIABLE Block responsible to set the value of a variable that the user selects in the
dropdown.

VARIABLE Corresponds to a variable. When this block is created, its initial value is set to 0.

5

R O B O T

The aim of building a robot and integrating it into Robi environment was to provide
an extra challenge to children, proposing the use of a physical material in addition to the
computer. Having a robot, the didactic and dynamic increases. It’s a material that children
could use in any environment suitable for it, allowing them or a teacher or even parents to
build any obstacle they desire in the physical world, with the goals they choose. Teamwork
could also be leveraged with the inclusion of a robot. One or more person can work in the
programming blocks, and one or more person can be responsible for putting the robot in the
correct place and analysing it.

5.1 components

The robot was built with the aid of an Arduino. The Arduino not only has extensive web
support but also enables the creation of electronic and interactive objects. Arduino also
contains a high amount of modules and sensors that can be integrated into it easily. Below
is the list of components was used to build the robot:

• 1 Acrylic Robot Chassis

• 2 DC motors

• 2 gears

• 2 Rubber wheels

• 1 HC-SR04 Ultrasonic Sensor

• 1 Arduino Uno

• 1 Arduino Sensor Shield

• 1 L298N Dual H-Bridge Motor Driver

• Male and female Jumpers Wire Set

31

5.1. Components 32

• 1 AA Battery Holder

• Motor Mounting Brackets

• ON-OFF Switch

• A 360º back-wheel

Figure 6, by Banggood (2021), shows the set of components used to build the robot.

Figure 6: Robot components

Since the robot is a three-wheel car with 2 motors, and the motors are DC motors, the
precision in which the robot has is not perfect. The DC motors works as soon as it has
current going through them. It doesn’t have any precision mechanism which makes them
spin in relation to degrees.

The robot contains two different places which needs battery. One place has a 6V battery
dedicated to the motors. That battery is connected to an ON-OFF switch, which easier the
process of turning on and off the DC motors. That 6V battery is connected also to the L298N
Dual H-Bridge Motor Driver. The other place contains a 9V battery dedicated to the Arduino.
The ultrasonic sensor and the L298N Dual H-Bridge Motor Driver are directly connected to
the Arduino.

5.1. Components 33

Figure 7, by Tech (2018), corresponds to the circuit diagram used as basis to do the robot
electronic part.

Figure 7: Circuit diagram

Is possible to upload code to the Arduino using the Arduino Integrated Development
Environment (IDE). This IDE is a cross-platform application that is written in functions from
C and C++, which makes easier implementing code to Arduino compatible boards.

Figure 8 corresponds to Robi robot after built.

5.2. Arduino Programming code 34

Figure 8: Robi robot

5.2 arduino programming code

As explained before, using the Arduino IDE, the user can program an Arduino using
functions from C and C++ languages. In order to the code be compiled successfully, the
code should contain two mandatory methods, the setup and loop methods. Some things to
take into consideration when programming an Arduino:

• All variables created outside the setup and loop methods will be declared/initialized.

• The setup method will be called only once. This method will be the first method to be
called.

• The loop method will be called repeatedly, in an infinity loop, unless the user power
off the Arduino, or press the Arduino reset button.

As an example of an Arduino implementation, the Listing 5.1 presents an example got
from the Arduino IDE itself, that makes a LED blink for periods of one second.

1 const i n t l e d _ d i g i t a l _ p o r t = 3 ;
2

3 void setup () {

5.3. Code Upload Process 35

4 pinMode (l e d _ d i g i t a l _ p o r t , OUTPUT) ;
5 }
6

7 void loop () {
8 d i g i t a l W r i t e (l e d _ d i g i t a l _ p o r t , HIGH) ;
9 delay (1 0 0 0) ;

10 d i g i t a l W r i t e (l e d _ d i g i t a l _ p o r t , LOW) ;
11 delay (1 0 0 0) ;
12 }

Listing 5.1: LED blink program

Figure 9 shows the result from the code present in the Listing 5.1.

Figure 9: LED blinking

5.3 code upload process

It’s possible to implement code using functions from C and C++, but the microcontroller
present in the Arduino board doesn’t receive/understand that language. In order to compile
and upload the code to the Arduino, the Arduino IDE makes use of an open source software
called AVRDUDE, an command-line driven user interface open source software which uses
the avr-gcc compiler to compile the Arduino IDE code and upload it to the board.

The avr-gcc compiler makes use of the standard AVR libc libraries, which are open-source
C libraries, specifically written for Atmel hardware, in which corresponds to the Arduino’s
microcontroller brand.

6

R O B I P R O G R A M M I N G S Y S T E M

As investigated and written in the State of the Art chapter from this thesis, children with
special educational needs, or more precisely, children diagnosed with Autism Spectrum
Disorder, tends to have preferences in technologies with visual interfaces. Robi programming
system was developed to be as much visual and intuitive programming language and robot-
oriented as possible. The robot-oriented blocks contain robot images by using those icons
to carry on information; programming-oriented blocks contain as less text as possible. The
system was developed to be simple, containing only the necessary instructions to program
the robot Robi, making use of the programming statements or commands commonly found
on programming languages, like loops, conditions, variables and math or conditional
expressions.

6.1 visual language interface

The system contains three main areas. The header, the left side bar, and the script area.
The header contains four buttons, aligned horizontally, and an input at the right end of the
header. The first button is to send the implemented code to the robot; the second button is
to clear the script area, with the exception of the Init block; the third button is to save the
implemented code and the last button is to load an implemented code. The input presented
in the header corresponds to the COM port number that the Arduino is connected. For the
computers with the Windows operational systems, the COM port number can be found in
the Computer Management window, in the Ports (COM & LPT) section.

The left side bar contains all the blocks available in Robi environment that can be dragged
and dropped in the script area. Since the left side bar contains more the 20 blocks, and in
order to improve the user experience, a category selection section was implemented at the
left side where the blocks are present. Below the category selection section, there are four
instructions images.

The script area will always contains the Init block, even if the user clicks on the clear code
button available in the header. This Init block is the only block that cannot be erased. The

36

6.1. Visual Language Interface 37

user can add as many blocks in the script area as he wants, but the code that will be sent
to the robot, are the blocks that are connected to the Init block. The Init block only allow
connection below it, which means that code created by the blocks will be interpreted from
top to bottom. Figure 10 presents Robi programming environment.

Figure 10: Robi programming environment

6.1.1 Blocks Connections

Every programming block present in Robi environment contains information about its
position (vertical and horinzontal), action, identifier, type, size (width and height) and the
blocks identifier that are plugged on it. Each block contains its own identifier and its own
action. The blocks type contained in Robi system are the following:

• Init

• Movement

• Sensor

• Wait

6.1. Visual Language Interface 38

• Flux

• If else

• Nest conditional operator

• Conditional operator

• Math operator

• Variable

• Set variable

With the exception of sensor, math operator, conditional operator, nest conditional operator
and variable types, all the blocks connect into each other vertically. In other words, the blocks
that are connectable vertically, are the ones with square corners. The blocks in an ellipsoid
format connects in ellipsoid spaces. The blue ellipsoid blocks can be connected on blue
ellipsoid spaces and every other ellipsoid blocks can be connected on white ellipsoid spaces
with a number in it. If a block that the user is dragging is close enough to a connectable
area from another block, the border that will link both blocks will be highlighted.

The blocks contain properties that will support the action of connection between blocks. If
a block is being dragged by the user, all other blocks present in the script area will have the
"isAnotherBlockMoving" Boolean property set to true. The blocks containing that property
with the value "true" will become connectable blocks. With regard to the connection between
blocks with square corners, these blocks contain two connectable areas, one in the bottom
and the other in the top, which means that either the bottom border or the top border from
these blocks can become highlighted. With regard to the connection between an ellipsoid
block and an ellipsoid space present either in another ellipsoid block or in a block with
square corners, if the ellipsoid block is inside the connectable area from that ellipsoid space
than the border from that space will be highlighted. If a border is highlighted, and the user
drops the block he is dragging, then that dropped block will be automatically positioned to
a place where it is aligned with the block it was connected. Figure 11 corresponds to how
the connection between blocks works.

6.1. Visual Language Interface 39

Figure 11: Connection between blocks

Within the square corners blocks there are blocks that are referred to in the system as
aggregating blocks. The aggregating blocks are the ones that contain a rectangular space
within them. The user can connect blocks inside that space. The Repeat block is an example
of an aggregating block. The code that the user created with blocks he placed inside that
space from the Repeat block will be repeated a given number of times that the he chose.
Another example is the If block. If the condition from that If block is true, then the code the
user created inside the If block space will be executed. Figure 12 presents an example of
aggregating blocks being used in the script.

Figure 12: Connection between aggregating blocks

6.1. Visual Language Interface 40

Every block contains a property called "pluggedBlocks". This property is an array of
block identifiers. Whenever a block or multiple blocks are connected to each other, for the
square corners block case, the uppermost block will add to the "pluggedBlock" array all the
identifiers from the blocks below, in order, from top to bottom. For the ellipsoid blocks case
is similar, the outermost ellipsoid block is analogous to the uppermost square corners block.

The square corners blocks that contains an input to add operators block contain a property
called "operatorsBlockPlugged". If an ellipsoid block is connected to an ellipsoid space
inside a square corners block, then that ellipsoid block identifier will not be added to the
"pluggedBlock" property, but will be added to the "operatorsBlockPlugged".

6.1.2 Blocks Movements

If multiple blocks are connected to each other, and if the user drags the block in the top,
then all the blocks connected to it will move together. In other words, if the user drags a
block, then every block that has its identifier present either in the "pluggedBlock" property
or in the "operatorsBlockPlugged" property from the block the user is dragging, will move
along with it. All operators block connected to the blocks moving along will also move
along.

Every block being dragged by the user, if dropped in the left side area, will be removed
from the script area.

6.1.3 Operator Blocks and Expressions

Each operator block, such as math operators, conditional operators, variables or even
the sensor block contains its own expression. Each time an operator block is inserted
inside another operator, the outermost block expression will always be updated. Figure 13

corresponds to a math operator block with the plus operation.

Figure 13: Plus operation from a math operator block

The math operator block shown in the Figure 13 above contains the following expression:
(4+8). If another math operator block is inserted in the block above, then the expression
from that block shown above will be updated. Figure 14 shows an example of nested math
operator blocks.

6.2. Code setup 41

Figure 14: Nested math operator blocks

The expression from the outermost block would be the following: ((3 - 2) + 8). For the
Conditional block operators, the expression is built similarly. The AND block correspond to
the "&&" operator, and the OR block corresponds to the "||" operator. Figure 15 presents an
example of a nested conditional blocks.

Figure 15: Nested conditional operator blocks

The expression for the condition above would be the following: ((3 < 5) & ((9 > 7) | (1 =
1))). After the user clicks in the send code to the robot button, and before the code is sent to
the service that will compile the code and upload to the robot, the symbols "&" and "|" will
be translated to "&&" and "||" respectively. The expression correspondent the the sensor
block is the following: (readPing()). The "readPing()" is a function that is already present
in the code that will be sent to the robot, independent of the blocks used by the user. If a
variable block is used in the script created by the user, then the expression correspondent
to it would be the variable name chosen by the user between parenthesis. For example, if
the user created a variable named "distance", then if that variable is used in the script, the
expression correspondent to it would be: (distance).

6.2 code setup

For the robot to work as planned, besides the implementation done by the user, its
programming comes with a configuration code, or a setup code. In that setup, there is
code to define the ports from the motors and ultrasonic sensor, libraries import, ultrasonic
sensor calibration and already implemented methods to support the code translation from
the interface to the Compiler service.

The code needs to import two libs, one correspondent to the motors, called "Servo.h", and
the other correspondent to the ultrasonic sensor, called "NewPing.h". The code responsible
to import the libs is shown in the Listing 6.1.

1 # include <Servo . h>

6.2. Code setup 42

2 # include <NewPing . h>

Listing 6.1: Libs import

As explained before, the robot contains two DC motors. Four Arduino ports are dedicated
to these two DC motors, the port number 5, 4, 3, and 2. The port number 5 makes the robot
left motor rotate forward; the port number 4 makes the robot left motor rotate backwards;
the port number 3 makes the robot right motor rotate forward and finally the port number 2

makes the robot right motor rotate backwards. About the ultrasonic sensor, there are two
Arduino analogical ports dedicated to it, the A1 and A2. The code responsible to the ports
definition is shown in the Listing 6.2.

1 const i n t LeftMotorForward = 5 ;
2 const i n t LeftMotorBackward = 4 ;
3 const i n t RightMotorForward = 3 ;
4 const i n t RightMotorBackward = 2 ;
5

6 # def ine t r i g _ p i n A1

7 # def ine echo_pin A2

Listing 6.2: Arduino ports definition

Other variables definition to be used throughout the code, NewPing lib initialization,
Servo lib initialization, and the setup method that every Arduino program contains, are
shown in the Listing 6.3.

1

2 # def ine maximum_distance 200

3

4 boolean goesForward = f a l s e ;
5

6 i n t d i s t a n c e _ f r o m _ u l t r a s o n i c _ s e n s o r = 1 0 0 ;
7

8 NewPing sonar (t r ig _ p i n , echo_pin , maximum_distance) ;
9

10 Servo servo_motor ;
11

12 void setup () {
13

14 pinMode (RightMotorForward , OUTPUT) ;
15 pinMode (LeftMotorForward , OUTPUT) ;
16 pinMode (LeftMotorBackward , OUTPUT) ;
17 pinMode (RightMotorBackward , OUTPUT) ;
18

19 servo_motor . a t t a c h (1 1) ;

6.2. Code setup 43

20 servo_motor . wri te (9 0) ;
21 delay (2 0 0 0) ;
22 d i s t a n c e _ f r o m _ u l t r a s o n i c _ s e n s o r = readPing () ;
23 delay (1 0 0) ;
24 d i s t a n c e _ f r o m _ u l t r a s o n i c _ s e n s o r = readPing () ;
25 delay (1 0 0) ;
26 d i s t a n c e _ f r o m _ u l t r a s o n i c _ s e n s o r = readPing () ;
27 delay (1 0 0) ;
28 d i s t a n c e _ f r o m _ u l t r a s o n i c _ s e n s o r = readPing () ;
29 delay (1 0 0) ;
30 }

Listing 6.3: Arduino code setup

The setup method shown in the Listing 6.3 above is a method that normally should be
sent to the Arduino. This method is the first to be executed, and is executed only one time.
Inside this method is implemented the digital ports used by the motors being declared as
OUTPUT, and the ultrasonic sensor calibration. Below this setup method, there are methods
that are implemented to support the translation process. The methods implemented are
shown in the Listing 6.4.

1 i n t readPing () {
2 delay (7 0) ;
3 i n t cm = sonar . ping_cm () ;
4

5 i f (cm == 0) {
6 cm = 2 5 0 ;
7 }
8

9 re turn cm ;
10 }
11

12 void moveForwardCustom (i n t delayTime) {
13 goesForward = f a l s e ;
14 moveForward () ;
15 delay (delayTime) ;
16 moveStop () ;
17 }
18

19 void moveStop () {
20 d i g i t a l W r i t e (RightMotorForward , LOW) ;
21 d i g i t a l W r i t e (LeftMotorForward , LOW) ;
22 d i g i t a l W r i t e (RightMotorBackward , LOW) ;
23 d i g i t a l W r i t e (LeftMotorBackward , LOW) ;
24 }

6.2. Code setup 44

25

26 void moveBackwardsCustom (i n t delayTime) {
27 moveBackward () ;
28 delay (delayTime) ;
29 moveStop () ;
30 }
31

32 void moveForward () {
33 i f (! goesForward) {
34 goesForward = true ;
35 d i g i t a l W r i t e (LeftMotorForward , HIGH) ;
36 d i g i t a l W r i t e (RightMotorForward , HIGH) ;
37 d i g i t a l W r i t e (LeftMotorBackward , LOW) ;
38 d i g i t a l W r i t e (RightMotorBackward , LOW) ;
39 }
40 }
41

42 void moveBackward () {
43 goesForward= f a l s e ;
44 d i g i t a l W r i t e (LeftMotorBackward , HIGH) ;
45 d i g i t a l W r i t e (RightMotorBackward , HIGH) ;
46 d i g i t a l W r i t e (LeftMotorForward , LOW) ;
47 d i g i t a l W r i t e (RightMotorForward , LOW) ;
48 }
49

50 void turnRight (i n t delayTime) {
51 d i g i t a l W r i t e (LeftMotorForward , HIGH) ;
52 d i g i t a l W r i t e (RightMotorBackward , HIGH) ;
53 d i g i t a l W r i t e (LeftMotorBackward , LOW) ;
54 d i g i t a l W r i t e (RightMotorForward , LOW) ;
55 delay (delayTime) ;
56 d i g i t a l W r i t e (LeftMotorForward , HIGH) ;
57 d i g i t a l W r i t e (RightMotorForward , HIGH) ;
58 d i g i t a l W r i t e (LeftMotorBackward , LOW) ;
59 d i g i t a l W r i t e (RightMotorBackward , LOW) ;
60 }
61

62 void t u r n L e f t (i n t delayTime) {
63 d i g i t a l W r i t e (LeftMotorBackward , HIGH) ;
64 d i g i t a l W r i t e (RightMotorForward , HIGH) ;
65 d i g i t a l W r i t e (LeftMotorForward , LOW) ;
66 d i g i t a l W r i t e (RightMotorBackward , LOW) ;
67 delay (delayTime) ;
68 d i g i t a l W r i t e (LeftMotorForward , HIGH) ;
69 d i g i t a l W r i t e (RightMotorForward , HIGH) ;
70 d i g i t a l W r i t e (LeftMotorBackward , LOW) ;
71 d i g i t a l W r i t e (RightMotorBackward , LOW) ;

6.3. Translator 45

72 }

Listing 6.4: Implemented methods to support the translation process.

Below the code shown in the Listing 6.4 is all the code from Robi interface that will be
translated by the Compiler service.

6.3 translator

After the user has implemented the desired code, and clicks on the send code to the robot
button, the visual instructions the user chose for the robot to replicate will generate a JSON
object, consisting of all the relevant information from each block, and also the COM port
defined by the user, and all the variables the user created, counting with the default variable
already created. That JSON object will then be sent to the service that will translate it to a
language that the avr-gcc compiler will understand, in order to then compile that translated
code to a language the Arduino understands.

Using the Figure 5 as an example, and assuming the user chose the COM Port number
4, and didn’t create any variable, the JSON object that will be generated and sent to the
Compiler service is shown in the Listing 6.5:

1 "blocks": {

2 "0": {

3 "action": "set_variable",

4 "operatorExpression": undefined,

5 "value": 20,

6 "variableName": "distance"

7 },

8 "1" : {

9 "action": "repeat",

10 "blocksInside": {

11

12 "0": {

13

14 "action": "while",

15 "blocksInside": {

16 "0": {

17 "action": "move_forward",

18 "operatorExpression": undefined,

19 "value": 250

6.3. Translator 46

20 },

21 "operatorExpression": "((readPing())>(distance))",

22 "value": "0"

23 }

24

25 },

26 "1": {

27 "action": "turn_right",

28 "operatorExpression": undefined,

29 "value": 1200

30 }

31

32 }

33 },

34 "2" : {

35 "action": "turn_left",

36 "operatorExpression": undefined,

37 "value": 1200

38 }

39 },

40 "portCOM": "4",

41 "variablesInScript": ["variavel"]

Listing 6.5: Generated JSON object

The blocks with the "operatorExpression" property with an undefined value correspond
to blocks with no operator block inserted in the input. For these cases, the "value" property
will be the property that will be taken into consideration for these particular blocks. For the
case that a block only accept conditional input, and the user doesn’t insert any conditional
operator, then the default value will be taken into consideration, that is the "false" value. If a
variable is created by the user, and the user doesn’t add the Set variable block, to set a value
for that created variable, then the default value will be taken into consideration, that is the
number 0.

With regard to the JSON object, every block present in it contain an action. That action
is the identifier that the Compiler Service will use to identify the block and then map it to
the correct code translation. About the output from the code translation, besides the code
the user implemented, there will be already functions added automatically. The functions
already existing in the code are the following:

6.3. Translator 47

• moveForward(): function responsible to turn on both motors making them rotate in
the same direction, making the robot to move forward.

• moveForwardCustom(int delayTime): function responsible to make the robot move
forward for a specific number of time in milliseconds given by the user. Whenever the
user uses the Move forward block, the block will be translated to this function here
described.

• moveStop(): function responsible to turn off both motors, making the robot stop.
Whenever the user uses the Wait block, the block will be translated to this function
here described, followed by a delay in the milliseconds the user chose.

• turnLeft(int delayTime): function responsible to turn on both motors in opposite
directions, making the robot turn left for a specific number of time in milliseconds
given by the user. Whenever the user uses the Turn left block, the block will be
translated to this function here described.

• turnRight(int delayTime): function responsible to turn on both motors in opposite
directions, making the robot turn right for a specific number of time in milliseconds
given by the user. Whenever the user uses the Turn right block, the block will be
translated to this function here described.

• readPing(): function responsible to return the value correspondent to the distance in
centimeters between the ultrasonic sensor and a obstacle in front of it. Whenever the
user uses the Sensor block, the block will be translated to this function here described.

Besides the functions above, the code also have a code setup implemented, such as the
import of libraries, variables being initialized, Arduino ports being defined and more.

About the "operatorExpression" property, during the translation process in the Compiler
Service side, that property will be calculated. If the expression corresponds to a set of
conditional operator blocks, then the value calculated and used in the correspondent
instruction, would be either "true" or "false". In case the expression corresponds to a set of
math operator blocks, sensor blocks and variables, then the value calculated and used in the
correspondent instruction, would be a number. The sensor block would be translated to the
number returned by the readPing() function, and the variable block would be translated to
the value set by the user, or by the default value zero, in case the user didn’t set a value for
that specific variable. In case the user didn’t add any expression to a block, then the value
used in the instruction correspondent to that particular block would be the value set by the
user, or in case it’s a block that accepts only condition instead of a number, would be the
default value, that is the "false".

6.3. Translator 48

After the translation process is done, then the code will be compiled and uploaded to the
COM Port chosen by the user in the interface. If the Arduino from the robot is connected in
the right COM Port, then code will be uploaded successfully.

The output from the translation, in addition with all the code configuration automatically
added by the Compiler service correspond to the final code that will be sent to the robot. So,
about the example shown in the Figure 5, the final code is shown in the Listing A.1 that is
shown in Appendix A.

For every block sent to the Compiler service, two lines code will be added right after the
correspondent instruction. The Listing 6.6 present these two lines:

1 moveStop () ;
2 delay (2 0 0) ;

Listing 6.6: Two lines code added after every block instruction

The Compiler service adds at the end of the loop method a while loop that will iterate
infinitely with the "moveStop()" method inside. This is shown in the Listing 6.7.

1 while (1) {
2 moveStop () ;
3 }

Listing 6.7: Stop instruction inside an infinity loop

Having a program developed by an user in Robi language, having it being translated to a
code that can be sent to the compiler so it can be successfully uploaded and executed by
Robi Arduino-based robot is process that defines Robi environment. The next step is to do a
comparison between Robi environment and Scratch environment.

7

C O M PA R I S O N B E T W E E N R O B I A N D S C R AT C H

Robi is a platform that was made to be simple, intuitive and to be as most visual as possible.
In the other hand, Scratch is a more textual platform than Robi programming environment,
but more powerful containing a higher amount of block categories, and consequently, more
blocks. Figure 16 and Figure 17 present an exercise example written in both environments.

Figure 16: Square exercise implemented in Robi language

Figure 17: Square exercise implemented in Scratch language

49

50

Figure 16 is less textual than Figure 17, but both contain the same objective. Another
noticeable difference is the blocs size. Robi platform contains bigger blocks than the Scratch
blocks.

With regard to the left side bar found on both systems, where the user can select a category
or drag a block to place in the script area. Figure 18 and Figure 19 present that case.

Figure 18: Categories existing in Robi platform

Figure 19: Categories existing in Scratch platform

51

While Robi contains 5 categories, Scratch contains 9 categories. With regard to the amount
of blocks, Robi contains 21 blocks, while Scratch contains at least 107 blocks.

Since Scratch doesn’t have any additional product, it uses a simulator at the right side of
the system. Figure 20 shows the Scratch programming environment.

Figure 20: Scratch programming environment

Robi can provide a simpler interface, since it doesn’t need a simulator to show the result
of the implemented code, because Robi focus on programming a robot.

8

T E S T I N G R O B I

Robi platform was tested by four children. Two of them are 7 years old, while one is 9

years old, and the other is 12 years old. Three exercises were proposed to them to implement
in Robi platform. The exercises given to the children are the described in the following
sections:

8.1 basic exercise - moving robi robot

The Basic Exercise has the objective of making the robot move forward, turn approximately
90 degrees, and then moving forward again. This exercise has the purpose of making the
children get to know the basics of Robi environment, such as connecting blocks to each
other, changing the input values from the movement blocks, and try-and-error to make the
robot turns the approximately degrees asked in this exercise. The solution for this exercise
is shown in the Figure 21.

Figure 21: First exercise solution

52

8.2. Intermediate Exercise - Looping through the robot movement 53

The final code generated by the Compiler service, correspondent to the solution of the
exercise here described, is shown in the Listing 8.1.

1 i n t v a r i a v e l = 0 ;
2

3 void loop () {
4

5 moveForwardCustom (1 2 0 0) ;
6 turnRight (7 5 0) ;
7 moveForwardCustom (1 2 0 0) ;
8 moveStop () ;
9 delay (2 0 0) ;

10

11 while (1) {
12 moveStop () ;
13 }
14

15 }

Listing 8.1: Code generated from solution of the first exercise

The code configuration that is automatically added by the Compiler service is omitted in
the Listing 8.1. A 7 years old child, since he didn’t have computer skills, had difficulties at
connecting the blocks. The other children didn’t have any problems at solving this exercise.

8.2 intermediate exercise - looping through the robot movement

The Intermediate Exercise consists in command the robot in order to repeat the movements
of the Basic Exercise ten times. The purpose of this exercise is to make them know the
importance of loops, and consequently, the advantage of programming instructions. The
solution for this exercise is shown in the Figure 22.

8.2. Intermediate Exercise - Looping through the robot movement 54

Figure 22: Second exercise solution

The final code generated by the Compiler service, correspondent to the solution of the
exercise here described, is shown in the Listing 8.2.

1 i n t v a r i a v e l = 0 ;
2

3 void loop () {
4

5 f o r (i n t i = 0 ; i < 1 0 ; i ++) {
6 moveForwardCustom (1 2 0 0) ;
7 turnRight (7 5 0) ;
8 moveForwardCustom (1 2 0 0) ;
9 moveStop () ;

10 delay (2 0 0) ;
11 }
12 moveStop () ;
13 delay (2 0 0) ;
14

15 while (1) {
16 moveStop () ;
17 }
18

19 }

Listing 8.2: Code generated from solution of the second exercise

The code configuration that is automatically added by the Compiler service is omitted in
the Listing 8.2. All the children tried adding the same blocks used in the solution from the

8.3. Rectangular Movement Exercise 55

first exercise ten times, as asked in the exercise. During the adding, they were told that they
could use another block present in the system, that is the Repeat block.

8.3 rectangular movement exercise

The Rectangular Movement Exercise has the objective of making the robot to move in
order to draw a rectangle. This exercise has the purpose of making the children use the
knowledge acquired from the past exercises. The solution for this exercise is shown in the
Figure 23

Figure 23: Third exercise solution

The final code generated by the Compiler service, correspondent to the solution of the
exercise here described, is shown in the Listing 8.3.

1 i n t v a r i a v e l = 0 ;
2

3 void loop () {
4

5 f o r (i n t i = 0 ; i < 4 ; i ++) {
6 moveForwardCustom (1 2 0 0) ;
7 turnRight (7 5 0) ;
8 moveStop () ;
9 delay (2 0 0) ;

10 }
11 moveStop () ;
12 delay (2 0 0) ;
13

14 while (1) {
15 moveStop () ;

8.3. Rectangular Movement Exercise 56

16 }
17

18 }

Listing 8.3: Code generated from solution of the third exercise

The code configuration that is automatically added by the Compiler service is omitted in
the Listing 8.3. Although all the children were able to achieve the solution of this exercise,
one of them, 7 years old, after implementing the solution, tried solving this exercise with an
alternative approach. He added only the movement blocks, without using the Repeating
block. He noticed that he was about to repeat the same values for the Movement blocks
inputs, so he asked if there was a way of accelerating this action. That was an opportunity
to introduce him the variable block. After the explanation, he came up the solution shown
in the Figure 24.

8.3. Rectangular Movement Exercise 57

Figure 24: Exercise 3 with variables

The final code generated by the Compiler service, correspondent to the alternative solution
of this exercise here described, is shown in the Listing 8.4.

1 i n t v a r i a v e l = 0 ;
2 i n t f r e n t e = 0 ;
3 i n t g i ro = 0 ;
4

5 void loop () {
6

8.4. Result 58

7 f r e n t e = 1000 ;
8 gi ro = 7 5 0 ;
9 moveForwardCustom ((f r e n t e)) ;

10 t u r n L e f t ((g i ro)) ;
11 moveForwardCustom ((f r e n t e)) ;
12 t u r n L e f t ((g i ro)) ;
13 moveForwardCustom ((f r e n t e)) ;
14 t u r n L e f t ((g i ro)) ;
15 moveForwardCustom ((f r e n t e)) ;
16 t u r n L e f t ((g i ro)) ;
17 moveStop () ;
18 delay (2 0 0) ;
19

20 while (1) {
21 moveStop () ;
22 }

Listing 8.4: Alternative solution of the third exercise

The code configuration that is automatically added by the Compiler service is omitted in
the Listing 8.4.

8.4 result

All the children were able to find a solution for the basic exercise. One of the children, 7

years old, took more time than the others, since he didn’t have practice using a computer.
The other children were able to solve the exercise without difficulties-

Although the intermediate exercise was solved by all the children without any difficulties,
none of them tried to look if there was another block that could simplify the script, so they
delayed more than what is expected for this exercise. After explaining how loop works
and after stating that throughout the blocks available in the platform there were blocks that
could loop through the code implemented, they found and used the Repeat block. The 7

years old child that didn’t have practice with computer delayed a little more than the others
at trying to connect the Movement blocks inside the Repeat blocks.

The rectangular movement exercise was proposed in a way that the children could come
up with different solutions. A 7 years old child, different from the one without computer
practice, asked about a way of simplifying the act of writing the same values on all the
blocks he added. So the variable concept was explained to him. The 9 years old child solved
this exercise without the use of Repeat block, and and 12 years old child did use the Repeat
block. Every child had their own solution. None of them delayed solving this exercise
neither had difficulties finding a solution.

8.4. Result 59

Based on the exercises given to the children, Robi environment proved to be an intuitive
and simple environment. The children were able to learn the basics of educational robotics
and consequently the programming itself. The children using the platform confirmed
that the first proposed exercise showed that the language was developed intuitiveness and
simplicity, since they could be able to identify the blocks responsible to move the robot, as
well making it turn to a desired side, and use them in the script. The second and third
proposed exercises were able to teach programming to them, as the children after finishing
the exercises gained knowledge about variables, loops and the possibility to create different
solutions for a single programming question.

9

C O N C L U S I O N

Researches were made to decide if the creation of a new platform to support the educa-
tional robotics was necessary. After analyzing some platforms being used throughout the
world, was noticed that the simplicity and intuitiveness could be improved. In that way,
develop Robi language and programming visual platform would be important, not only to
improve the simplicity and intuitiveness for a visual programming language, it is also an
advantage regarding the flexibility to adapt or upgrade the system in any direction.

Since the aim of this Master’s project was to develop a new programming language,
the design of a grammar was necessary. The creation of a grammar has the purpose of
supporting the development of the new programming language. The grammar rules and
symbols helped with the decision of blocks that Robi system would have and the conditions
that the system needed in order to connect the blocks.

The Arduino Uno is an open-source microcontroller board and since it is a well known
component, it has a great amount of documentation and forums easily found throughout
the internet. Besides the documentation, the Arduino Uno and the electronic components
that can be connected to it, offer a cheap approach if the desire is to build a robot. Having
knowledge of that, it was decided that the robot that Robi platform would be integrated
with, would be the Arduino Uno and its chassis car kit. Arduino Uno can be programmed
using the Arduino IDE, which uses the AVR-GCC compiler. In order to upload the code
the user writes using the visual programming language, Robi makes use of that AVR-GCC
compiler, so the system only needs to translate the code that will be sent to AVR-GCC
compiler.

Robi interface was developed from scratch. All blocks were designed using the SVG tech-
nology, with the support of the Angular framework, which helped with the maintainability,
readability and with the code reuse. The advantage of developing Robi from scratch is that
the chosen approach provides flexibility to add, change, update or remove anything as the
developer desires. Robi features require a flexible and powerful development, such as the
visual interface reflecting the robot, or the interface that shall be as simpler as possible.

60

9.1. Future work 61

Different from the LEGO programming environment, Robi provides a web application
solution, which opens opportunities to create a class management system or any other
advantage that a cloud solution provides.

After concluding that Robi system would bring benefits as a new visual programming
environment, the implementation was concluded after 7 months of hard work. Due to Covid
and severe time constraints, it was not possible to gather a great number of people to test
the system. So, the testing was done with 4 children, being two of them 7 years old. The
system showed to be intuitive and simple as expected. After the exercises done in Robi
environment, the children were asked to do the same in the Scratch environment. They
had more difficulty to find out where to start the program in Scratch and felt the system
less intuitive, to the fact of Scratch being less visual than Robi. For the children that tested
Robi, they confirmed the intuitiveness in Robi environment intuitive, as well the simplicity.
The experiment conducted was focused in the easiness of programming. In the future it
is necessary to plan usability tests.f Robi platform is accessible through the following link:
https://robi.di.uminho.pt/

9.1 future work

Robi has three main improvements that would bring even more benefits to the educational
robotics lessons.

9.1.1 Bluetooth Integration

In order to upload the code to the robot, it is needed to connect a cable in the robot, and
then click the correspondent button to send the code to the robot. Integrating a Bluetooth to
the robot would avoid to always having taking the robot off the position he was located, and
would improve the user experience. There is a good amount of documentation through the
internet explaining how to integrate the HC-05 Bluetooth module to the Arduino.

9.1.2 Improvements on Robi system

The robot developed contains only one sensor, that is the ultrasonic sensor, responsible to
return the distance in centimeters between the sensor and the closest obstacle. There is a
high amount of sensors or modules that could be integrated in the Arduino based robot,
such as color sensor, a sound emitter module, LED’s to blink whenever the robot is done
with the implementation given to it and more. As components are added to the robot, if
necessary, the correspondent blocks should also be created and added to the system, so the
user could make use of them.

https://robi.di.uminho.pt/

9.1. Future work 62

9.1.3 Class management

Currently Robi has only a platform to program the robot. The improvement of the system
to support the management of the students and the exercises they solved or needs to do
would bring benefits such as the tracking of their learning improvements. Another benefit
that this feature would bring is a path that the teacher could use to orient himself. He could
decide the set of exercises suitable to the students he is teaching.

A
C O D E S E N T T O T H E R O B O T

In this appendix is listed the code that represents the final code that is sent to the robot
when the program presses the ’Enviar ao robô’ button.

1 # include <Servo . h>
2 # include <NewPing . h>
3

4 const i n t LeftMotorForward = 5 ;
5 const i n t LeftMotorBackward = 4 ;
6 const i n t RightMotorForward = 3 ;
7 const i n t RightMotorBackward = 2 ;
8

9 # def ine t r i g _ p i n A1

10 # def ine echo_pin A2

11

12 # def ine maximum_distance 200

13

14 boolean goesForward = f a l s e ;
15

16 i n t d i s t a n c e _ f r o m _ u l t r a s o n i c _ s e n s o r = 1 0 0 ;
17

18 NewPing sonar (t r ig _ p i n , echo_pin , maximum_distance) ;
19 Servo servo_motor ;
20

21 void setup () {
22 pinMode (RightMotorForward , OUTPUT) ;
23 pinMode (LeftMotorForward , OUTPUT) ;
24 pinMode (LeftMotorBackward , OUTPUT) ;
25 pinMode (RightMotorBackward , OUTPUT) ;
26 servo_motor . a t t a c h (1 1) ;
27 servo_motor . wri te (9 0) ;
28 delay (2 0 0 0) ;
29 d i s t a n c e _ f r o m _ u l t r a s o n i c _ s e n s o r = readPing () ;
30 delay (1 0 0) ;
31 d i s t a n c e _ f r o m _ u l t r a s o n i c _ s e n s o r = readPing () ;
32 delay (1 0 0) ;
33 d i s t a n c e _ f r o m _ u l t r a s o n i c _ s e n s o r = readPing () ;

63

64

34 delay (1 0 0) ;
35 d i s t a n c e _ f r o m _ u l t r a s o n i c _ s e n s o r = readPing () ;
36 delay (1 0 0) ;
37 }
38

39 i n t readPing () {
40 delay (7 0) ;
41 i n t cm = sonar . ping_cm () ;
42

43 i f (cm == 0) {
44 cm = 2 5 0 ;
45 }
46

47 re turn cm ;
48 }
49

50 void moveForwardCustom (i n t delayTime) {
51 goesForward = f a l s e ;
52 moveForward () ;
53 delay (delayTime) ;
54 moveStop () ;
55 }
56

57 void moveStop () {
58 d i g i t a l W r i t e (RightMotorForward , LOW) ;
59 d i g i t a l W r i t e (LeftMotorForward , LOW) ;
60 d i g i t a l W r i t e (RightMotorBackward , LOW) ;
61 d i g i t a l W r i t e (LeftMotorBackward , LOW) ;
62 }
63

64 void moveBackwardsCustom (i n t delayTime) {
65 moveBackward () ;
66 delay (delayTime) ;
67 moveStop () ;
68 }
69

70 void moveForward () {
71 i f (! goesForward) {
72 goesForward = true ;
73 d i g i t a l W r i t e (LeftMotorForward , HIGH) ;
74 d i g i t a l W r i t e (RightMotorForward , HIGH) ;
75 d i g i t a l W r i t e (LeftMotorBackward , LOW) ;
76 d i g i t a l W r i t e (RightMotorBackward , LOW) ;
77 }
78 }
79

80 void moveBackward () {

65

81 goesForward= f a l s e ;
82 d i g i t a l W r i t e (LeftMotorBackward , HIGH) ;
83 d i g i t a l W r i t e (RightMotorBackward , HIGH) ;
84 d i g i t a l W r i t e (LeftMotorForward , LOW) ;
85 d i g i t a l W r i t e (RightMotorForward , LOW) ;
86 }
87

88 void turnRight (i n t delayTime) {
89 d i g i t a l W r i t e (LeftMotorForward , HIGH) ;
90 d i g i t a l W r i t e (RightMotorBackward , HIGH) ;
91 d i g i t a l W r i t e (LeftMotorBackward , LOW) ;
92 d i g i t a l W r i t e (RightMotorForward , LOW) ;
93 delay (delayTime) ;
94 d i g i t a l W r i t e (LeftMotorForward , HIGH) ;
95 d i g i t a l W r i t e (RightMotorForward , HIGH) ;
96 d i g i t a l W r i t e (LeftMotorBackward , LOW) ;
97 d i g i t a l W r i t e (RightMotorBackward , LOW) ;
98 }
99

100 void t u r n L e f t (i n t delayTime) {
101 d i g i t a l W r i t e (LeftMotorBackward , HIGH) ;
102 d i g i t a l W r i t e (RightMotorForward , HIGH) ;
103 d i g i t a l W r i t e (LeftMotorForward , LOW) ;
104 d i g i t a l W r i t e (RightMotorBackward , LOW) ;
105 delay (delayTime) ;
106 d i g i t a l W r i t e (LeftMotorForward , HIGH) ;
107 d i g i t a l W r i t e (RightMotorForward , HIGH) ;
108 d i g i t a l W r i t e (LeftMotorBackward , LOW) ;
109 d i g i t a l W r i t e (RightMotorBackward , LOW) ;
110 }
111

112 i n t v a r i a v e l = 0 ;
113 i n t d i s t a n c e = 0 ;
114

115 void loop () {
116

117 d i s t a n c e = 2 0 ;
118

119 f o r (i n t i = 0 ; i < 3 ; i ++) {
120 while (((readPing ()) > (d i s t a n c e))) {
121 moveForwardCustom (2 5 0) ;
122 moveStop () ;
123 delay (2 0 0) ;
124 }
125

126 turnRight (1 2 0 0) ;
127 moveStop () ;

66

128 delay (2 0 0) ;
129 }
130

131 t u r n L e f t (1 2 0 0) ;
132 moveStop () ;
133 delay (2 0 0) ;
134

135 while (1) {
136 moveStop () ;
137 }
138

139 }

Listing A.1: Final code that will be sent to the Robot

B I B L I O G R A P H Y

Azad Ali and David Smith. Teaching an introductory programming language in a general
education course. Journal of Information Technology Education: Innovations in Practice, 13

(6):57–67, 2014.

Cristiana Araújo, Lázaro Lima, and Pedro Rangel Henriques. An Ontology based approach
to teach Computational Thinking. In Célio Gonçalo Marques, Isabel Pereira, and Diana
Pérez, editors, 21st International Symposium on Computers in Education (SIIE), pages
1–6. IEEE Xplore, Nov 2019. ISBN 978-1-7281-3182-5. doi: https://doi.org/10.1109/
SIIE48397.2019.8970131.

Yusuf Abdullahi Badamasi. The working principle of an arduino. In 2014 11th international
conference on electronics, computer and computation (ICECCO), pages 1–4. IEEE, 2014.

Banggood. DIY L298N 2WD Kit Automóvel Rôbo Moteur Ras-
treamento Ultra-sônico para Arduino. https://pt.banggood.com/

Geekcreit-DIY-L298N-2WD-Ultrasonic-Smart-Tracking-Moteur-Robot-Car-Kit-for-Arduino-products-that-work-with-official-Arduino-boards-p-1155139.

html?cur_warehouse=CN, 2021. Accessed: 2021-12-16.

Neil CC Brown, Jens Mönig, Anthony Bau, and David Weintrop. Panel: Future directions
of block-based programming. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, pages 315–316, 2016.

Christina Chalmers. Robotics and computational thinking in primary school. International
Journal of Child-Computer Interaction, 17:93–100, 2018.

Tomáš Effenberger and Radek Pelánek. Towards making block-based programming activities
adaptive. In Proceedings of the Fifth Annual ACM Conference on Learning at Scale, pages
1–4, 2018.

Menna Elshahawy, Mariam Bakhaty, and Nada Sharaf. Developing computational thinking
for children with autism using a serious game. IEEE, 2020.

M Faisal, Rosihan Yuana, and Mr Basori. Comparative study between robomind and scratch
as programming assistance tool in improving understanding of the basic programming
concepts. In International Conference on Teacher Training and Education 2017 (ICTTE 2017).
Atlantis Press, 2017.

67

https://pt.banggood.com/Geekcreit-DIY-L298N-2WD-Ultrasonic-Smart-Tracking-Moteur-Robot-Car-Kit-for-Arduino-products-that-work-with-official-Arduino-boards-p-1155139.html?cur_warehouse=CN
https://pt.banggood.com/Geekcreit-DIY-L298N-2WD-Ultrasonic-Smart-Tracking-Moteur-Robot-Car-Kit-for-Arduino-products-that-work-with-official-Arduino-boards-p-1155139.html?cur_warehouse=CN
https://pt.banggood.com/Geekcreit-DIY-L298N-2WD-Ultrasonic-Smart-Tracking-Moteur-Robot-Car-Kit-for-Arduino-products-that-work-with-official-Arduino-boards-p-1155139.html?cur_warehouse=CN

BIBLIOGRAPHY 68

Mohamed Fezari and Ali Al Dahoud. Integrated development environment “ide” for arduino.
WSN applications, pages 1–12, 2018.

Carina Soledad González-González. State of the art in the teaching of computational thinking
and programming in childhood education. Education in the Knowledge Society, 20:1–15,
2019.

Shuchi Grover and Satabdi Basu. Measuring student learning in introductory block-based
programming: Examining misconceptions of loops, variables, and boolean logic. In
Proceedings of the 2017 ACM SIGCSE technical symposium on computer science education,
pages 267–272, 2017.

Shuchi Grover, Satabdi Basu, Marie Bienkowski, Michael Eagle, Nicholas Diana, and John
Stamper. A framework for using hypothesis-driven approaches to support data-driven
learning analytics in measuring computational thinking in block-based programming
environments. ACM Transactions on Computing Education (TOCE), 17(3):1–25, 2017.

Ting-Chia Hsu, Shao-Chen Chang, and Yu-Ting Hung. How to learn and how to teach
computational thinking: Suggestions based on a review of the literature. Computers &
Education, 126:296–310, 2018.

Afiza Ismail, Nazlia Omar, and Abdullah Mohd Zin. Developing learning software for
children with learning disabilities through block-based development approach. In 2009
International Conference on Electrical Engineering and Informatics, volume 1, pages 299–303.
IEEE, 2009.

Asha K Jitendra, George J DuPaul, Fumio Someki, and Katy E Tresco. Enhancing academic
achievement for children with attention-deficit hyperactivity disorder: Evidence from
school-based intervention research. Developmental disabilities research reviews, 14(4):
325–330, 2008.

Luiz A Junior, Osvaldo T Neto, Marli F Hernandez, Paulo S Martins, Leonardo L Roger, and
Fatima A Guerra. A low-cost and simple arduino-based educational robotics kit. Cyber
Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in
Robotics and Control (JSRC), December edition, 3(12):1–7, 2013.

Eija Karna-Lin, Kaisa Pihlainen-Bednarik, Erkki Sutinen, and Marjo Virnes. Can robots
teach? preliminary results on educational robotics in special education. In Sixth IEEE
International Conference on Advanced Learning Technologies (ICALT’06), pages 319–321.
IEEE, 2006.

Özgen Korkmaz. The effect of lego mindstorms ev3 based design activities on students’
attitudes towards learning computer programming, self-efficacy beliefs and levels of
academic achievement. Online Submission, 4(4):994–1007, 2016.

BIBLIOGRAPHY 69

Özgen Korkmaz. The effect of scratch-and lego mindstorms ev3-based programming
activities on academic achievement, problem-solving skills and logical-mathematical
thinking skills of students. MOJES: Malaysian Online Journal of Educational Sciences, 4(3):
73–88, 2018.

Jie Liu, Hayden Wimmer, and Roy Rada. " hour of code”: Can it change students’ attitudes
toward programming? Journal of Information Technology Education: Innovations in Practice,
15:53, 2016.

Leo Louis. working principle of arduino and u sing it. International Journal of Control,
Automation, Communication and Systems (IJCACS), 1(2):21–29, 2016.

Matthew B MacLaurin. The design of kodu: A tiny visual programming language for
children on the xbox 360. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 241–246, 2011.

John H Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk. Program-
ming by choice: urban youth learning programming with scratch. In Proceedings of the
39th SIGCSE technical symposium on Computer science education, pages 367–371, 2008.

Yoshiaki Matsuzawa, Yoshiki Tanaka, and Sanshiro Sakai. Measuring an impact of block-
based language in introductory programming. In International Conference on Stakeholders
and Information Technology in Education, pages 16–25. Springer, 2016.

Roberto Munoz, Rodolfo Villarroel, Thiago S Barcelos, Fabián Riquelme, Angeles Quezada,
and Patricia Bustos-Valenzuela. Developing computational thinking skills in adolescents
with autism spectrum disorder through digital game programming. IEEE Access, 6:
63880–63889, 2018.

Jelena Pisarov and Gyula Mester. Programming the mbot robot in school. In MechEdu
Conference & Workshop, pages 1–4, 2019.

Marcos Román-González, Juan-Carlos Pérez-González, Jesús Moreno-León, and Gregorio
Robles. Extending the nomological network of computational thinking with non-
cognitive factors. Computers in Human Behavior, 80:441–459, 2018.

Kathryn T Stolee and Teale Fristoe. Expressing computer science concepts through kodu
game lab. In Proceedings of the 42nd ACM technical symposium on Computer science education,
pages 99–104, 2011.

Alexander Svendsen. Robomind. a platform for on-the-fly programming and inspection of
behavior-based robot programs. Master’s thesis, UiT Norges arktiske universitet, 2014.

BIBLIOGRAPHY 70

Xiaodan Tang, Yue Yin, Qiao Lin, Roxana Hadad, and Xiaoming Zhai. Assessing computa-
tional thinking: A systematic review of empirical studies. Computers & Education, 148:
103798, 2020.

MERT Arduino & Tech. How to make Arduino Obstacle Avoiding Robot Car | Un-
der $20. https://www.youtube.com/watch?v=4CFO0MiSlM8&ab_channel=MERTArduino%

26Tech, 2018. Accessed: 2021-12-16.

Salete Teixeira, Diana Barbosa, Cristiana Araújo, and Pedro Rangel Henriques. Improving
Game-Based Learning Experience Through Game Appropriation. In Ricardo Queirós,
Filipe Portela, Mário Pinto, and Alberto Simões, editors, First International Computer
Programming Education Conference (ICPEC 2020), volume 81 of OpenAccess Series in
Informatics (OASIcs), pages 27:1–27:10, Dagstuhl, Germany, 2020. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik. ISBN 978-3-95977-153-5. doi: 10.4230/OASIcs.ICPEC.
2020.27. URL https://drops.dagstuhl.de/opus/volltexte/2020/12314.

Marjo Virnes, Erkki Sutinen, and Eija Kärnä-Lin. How children’s individual needs challenge
the design of educational robotics. In Proceedings of the 7th international conference on
Interaction design and children, pages 274–281, 2008.

David Weintrop. Block-based programming in computer science education. Communications
of the ACM, 62(8):22–25, 2019.

David Weintrop and Uri Wilensky. Comparing block-based and text-based programming
in high school computer science classrooms. ACM Transactions on Computing Education
(TOCE), 18(1):1–25, 2017.

Rosihan Ari Yuana and Dwi Maryono. Robomind utilization to improve student motivation
and concept in learning programming. In Proceeding of International Conference on Teacher
Training and Education, volume 1, pages 962–966, 2016.

https://www.youtube.com/watch?v=4CFO0MiSlM8&ab_channel=MERTArduino%26Tech
https://www.youtube.com/watch?v=4CFO0MiSlM8&ab_channel=MERTArduino%26Tech
https://drops.dagstuhl.de/opus/volltexte/2020/12314

	1 Introduction
	1.1 Objectives
	1.2 Research Approach
	1.3 Research Hypothesis
	1.4 Document Structure

	2 State of Art
	2.1 Computational Thinking
	2.2 Block-based programming language
	2.2.1 Scratch
	2.2.2 Code.org
	2.2.3 Alice
	2.2.4 Kodu Game Lab

	2.3 Educational Robotics
	2.3.1 LEGO Mindstorms EV3
	2.3.2 mBot
	2.3.3 Robomind

	2.4 Summary

	3 Proposed Approach
	3.1 System Architecture
	3.2 Compiler
	3.3 System Requirements
	3.4 Technological decision
	3.5 System architecture revised

	4 Language
	4.1 Grammar
	4.1.1 Example

	4.2 Blocks
	4.2.1 Movement Category
	4.2.2 Sensor Category
	4.2.3 Flux Category
	4.2.4 Operators Category
	4.2.5 Variable

	5 Robot
	5.1 Components
	5.2 Arduino Programming code
	5.3 Code Upload Process

	6 Robi Programming System
	6.1 Visual Language Interface
	6.1.1 Blocks Connections
	6.1.2 Blocks Movements
	6.1.3 Operator Blocks and Expressions

	6.2 Code setup
	6.3 Translator

	7 Comparison between Robi and Scratch
	8 Testing Robi
	8.1 Basic Exercise - Moving Robi robot
	8.2 Intermediate Exercise - Looping through the robot movement
	8.3 Rectangular Movement Exercise
	8.4 Result

	9 Conclusion
	9.1 Future work
	9.1.1 Bluetooth Integration
	9.1.2 Improvements on Robi system
	9.1.3 Class management

	A Code sent to the robot

