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Abstract: The generation of graphene surface plasmons (SPs) by a frequency-difference nonlinear
(NL) process caused by the interaction of two optical beams was experimentally demonstrated several
years ago by measuring the differential reflectance of the probe beam. However, the understanding of
these results requires much larger second-order optical conductivities of graphene than calculations
performed so far can yield. In this work, we carefully calculate the relevant NL conductivities and
show that, indeed, the experimental observations of the differential reflectance must have originated
from physical processes beyond the coherent frequency-difference generation of SPs described by the
density-matrix perturbation theory approach, presumably by hot-electron effects. We also suggest
an alternative way of detecting optically generated SPs, which can be feasible at lower powers of
the optical pulses. Such additional experiments are expected to help understand the remaining
discrepancy between the theory and the existing experimental data.

Keywords: graphene; light–matter interaction; surface plasmon; nonlinear conductivity

1. Introduction

Graphene, a monolayer-thick transparent conductor, is known to support evanescent
waves called surface plasmons (the correct name for these excitations that involve charge
density oscillations and the associated electromagnetic field is ”surface plasmon-polariton”,
we abbreviate it for convenience) (SPs) [1]. Since the optical conductivity of graphene
can be tuned electrically by adjusting the Fermi energy, making the SPs’ electrical control
feasible, it gave rise to a broad field of intense research named graphene plasmonics [1–5].
Graphene SPs, occurring in the THz-to-IR spectral range, are characterized by large in-
plane wavevectors, beyond the light cone, and cannot be excited directly by propagating
electromagnetic (EM) waves because the conditions of energy and momentum matching
cannot be fulfilled for an SP and a propagating photon.

Even though several methods of SP excitation by light do exist, such as using the
attenuated total internal reflection (ATR) configuration, different kinds of grating, or just
a symmetry-breaking object placed in the vicinity of the graphene sheet [5], all-optical
generation of SPs in homogeneous graphene would be highly desirable [6,7]. Several
years ago, it was proposed theoretically [8] to use two optical beams with slightly different
frequencies to generate SPs via a frequency-difference (DF) nonlinear (NL) process. A
similar idea exploiting a four-wave mixing process was presented in Ref. [7]. Graphene
had been predicted and demonstrated to have a strong third-order nonlinearity (the Kerr
effect) in the THz-to-IR spectral range [9–14], with a number of potentially interesting
effects following from this, such as the third [11] and also higher-order [15] harmonics
generation, optical bistability [16], saturable absorption [17], etc. The reason is the Dirac-
type electronic energy spectrum of graphene [9]. Although it is a centrosymmetric material
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where the second-order conductivity (or susceptibility) should vanish by symmetry [18],
this restriction can be bypassed if one uses oblique optical beams with non-zero and unequal
in-plane components of the wavevector, thus breaking the symmetry (see Figure 1). Indeed,
second-harmonic generation signals were observed for suspended graphene, caused by
curvature fluctuations over the graphene sheet [19]. Another possibility to leverage the
second-order nonlinearity is, for instance, to use the surface asymmetry of a dual-layer
graphene heterostructure, which has been shown to enable to the generation of a difference-
frequency signal at THz frequencies [20].

The idea illustrated in Figure 1 was implemented experimentally in Ref. [6] and
investigated further in subsequent articles [21,22]. These experiments used graphene on
top of SiO2 and two femtosecond laser pulses, a pump, and a probe, to excite the SPs. The
probe wavelength was fixed at λa = 615 nm while the pump wavelength, λb, was varied
between 615 and 545 nm. By recording the differential reflectivity of the probe, at the
condition of energy and in-plane momentum matching for plasmons (see Supplementary
Information (SI)), a resonance associated with the SP generation was observed [6,21], as had
been predicted theoretically [8]. By recording the differential reflectivity of the probe, at the
condition of energy and in-plane momentum matching for plasmons (see Supplementary
Information (SI)), a resonance associated with the SP generation was observed [6,21].
However, contrary to what was predicted theoretically [8], this resonance appeared as a
narrow signal, symmetric with respect to the pulse peak, on top of a broader asymmetric
band which was also observed outside of the plasmon resonance. This asymmetric temporal
variation of the differential reflectance was tentatively attributed to hot-electron effects [21]
and it is not well understood so far. Even though the relation of the observed resonant
peak in the differential reflectance to the generation of graphene surface plasmons looks
doubtless, its quantitative explanation is lacking. Several authors [8,22,23] used the density-
matrix perturbation theory to calculate the graphene’s nonlinear response for DF generation,
but there is a strong disagreement between the experimentally observed magnitude of the
resonance and the published theoretical predictions. Theoretical values of the second-order
conductivity calculated specifically for the scheme of Figure 1 in Refs. [8,22,23] differ by
orders of magnitude from the experimental data and also between themselves [22].

In this work, we carefully recalculate the relevant NL conductivities and the differ-
ential reflectance of the probe beam (which actually involves two second-order processes)
and compare our calculated results to the experimental data of [6] and to the previous
calculations. The derived analytical formulae for the second-order conductivities are
verified by numerical calculations. We will assume that the incident optical fields are
monochromatic plane waves characterized by well-defined frequencies, ωa = 2πc/λa
and ωb = 2πc/λb, wavevectors and incidence angles, so that the in-plane wavevector
projections are qqqj = (2π/λj)

√
ε1 sin θjeeex for j = a, b, as shown in Figure 1. Throughout the

article, we call the fields a and b the probe and pump, respectively. Electric current and the
corresponding electromagnetic field oscillating with the difference frequency ω = ωb −ωa
and wavevector qqq = qqqb − qqqa = (qa + qb)eeex represent the DF excitation, which can be
resonant with intrinsic surface plasmons of the doped graphene.

The article is organized as follows. In Section 2.1 we present our formalism and final
expressions for the second-order conductivities and compare the one describing the SP
generation with those obtained in the previous calculations [8,22,23]. In Section 2.2, explicit
formulae for the differential transmittance and reflectance measured in experiments [6,21]
are presented based on the results of Section 2.1. In Section 3, we compare our calculated
optical spectra representing the NL effects with the experimental data and also outline
an alternative way of detecting the optically generated SPs (Section 3.2). The last section
is devoted to a summary and concluding remarks. All detailed derivations are left for
Supplementary Information (SI).
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Figure 1. Schematics of all-optical generation of surface plasmons via a frequency-difference NL
process of interaction of two optical beams, a and b, represented by their electric fields EEEa,b, including
the incident and reflected ones. EEESP represent the surface plasmon field.

2. Materials and Methods

We begin with the calculation of the second-order nonlinear conductivity of graphene.
This calculation requires taking into account non-local effects, otherwise, the second-order
response vanishes, as we shall see.

2.1. Second-Order Conductivities

We work within the Dirac cone approximation and use the density matrix formalism
to calculate the second-order nonlinear conductivity, as it was done in the previous works
(the work [22] used a tight-binding Hamiltonian, which is equivalent to the Dirac-cone
approximation in the vicinity of the Dirac point) [8,23]. The Hamiltonian of the electrons
coupled to the electromagnetic field is taken in the so-called velocity (or AAA) gauge [24,25]:

Ĥ = vFσσσ ·
(

ppp +
e
c
AAA(t, rrr)

)
, (1)

where vF is the Fermi velocity (a material parameter), σσσ = (σx, σy), σi is the ith Pauli matrix,
ppp is the usual momentum operator, and AAA(t, rrr) is the vector potential (the electric field
is given by EEE = − 1

c (∂AAA/∂t). Using the density-matrix perturbation theory [18] with the
second term in (1), we find a general expression for the DF conductivity (see SI for details):

σkji(ΩΩΩ, ΩΩΩp, ΩΩΩq
)
=

e3

h̄2ωqωpS
∑
nml

vk
mn,−(qqq+ppp)v

j
lm,pppvi

nl,qqq

ωlm −ωp − iγlm

f (εm)− f (ε l)

ωnm −
(
ωp + ωq

)
− iγnm

+
e3

h̄2ωqωpS
∑
nml

vk
mn,−(qqq+ppp)v

j
nl,pppvi

lm,qqq

ωlm −ωq − iγlm

f (εm)− f (ε l)

ωnm −
(
ωp + ωq

)
− iγnm

− e3

h̄2ωqωpS
∑
nml

vk
mn,−(qqq+ppp)v

j
nl,pppvi

lm,qqq

ωnl −ωp − iγnl

f (ε l)− f (εn)

ωnm −
(
ωp + ωq

)
− iγnm

− e3

h̄2ωqωpS
∑
nml

vk
mn,−(qqq+ppp)v

j
lm,pppvi

nl,qqq

ωnl −ωq − iγnl

f (ε l)− f (εn)

ωnm −
(
ωp + ωq

)
− iγnm

(2)
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where ΩΩΩp = (ωp,ppp), ΩΩΩq = (ωq,qqq), and ΩΩΩ = (ωp + ωq,ppp + qqq), with ωp and ωq denoting
the frequencies of the fields and ppp and qqq the respective in-plane wavevectors. The sums are
over different states near the Dirac point and

vj
mn,qqq = 〈m|vjeirrr·qqq|n〉 (3)

are the matrix elements of the spatially modulated velocity components. Here
ωmn = (εn − εn)/h̄ is the energy difference between states |m〉 and |n〉 and f (εn) is the
occupation number of state |n〉, at equilibrium described by the Fermi–Dirac function.
Finally, γnm are phenomenological damping parameters for transitions between states |n〉
and |m〉.

The relevant transitions for DF generation are shown in Figure 2, which represent two
channels [8]: Channel 1 with transitions between the states

|1〉 = | − 1,kkk1〉 , |2〉 = |1,kkk2〉 , |3〉 = |1,kkk3〉 , (4)

and the intraband transition in the conduction band, and Channel 2 involving the states

|1′〉 = | − 1,kkk1′〉 , |2′〉 = | − 1,kkk2′〉 , |3′〉 = |1,kkk3′〉 , (5)

with the intraband transition in the valence band.

|2'⟩

kx

SP

SP

EF

|1⟩

|2⟩

|3⟩
|3'⟩

|1'⟩

Figure 2. Transitions and states considered in the calculation of the conductivity for DF generation at
frequency ω: Channel 1 (right) and Channel 2 (left). For the process of generation of probe photons
(ωa), the green and yellow arrows are inverted.

For the case of DF generation of the field oscillating with the frequency ω = ωb −ωa,
we have ΩΩΩ = (ω, qqq) and ΩΩΩa,b = (ωa,b, qqqa,b), the only relevant component of the conductivity
tensor, for the experimental arrangement of Figure 1, is the one with i = j = k = x, and the
general expression (2) takes the form:

σxxx(ΩΩΩ, ΩΩΩb ,−ΩΩΩa) =
e3

h̄2ωbωaS
∑
123

vx
23,−qqqvx

31,qqqb
vx

12,−qqqa

ω32 −ω− iγ32

(
f (ε1)− f (ε3)

ω31 −ωb − iγ31
− f (ε2)− f (ε1)

ω12 + ωa − iγ12

)

+
e3

h̄2ωbωaS
∑

1′2′3′

vx
1′2′ ,−qqqvx

3′1′ ,qqqb
vx

2′3′ ,−qqqa

ω2′1′ −ω− iγ2′1′

(
f (ε3′ )− f (ε2′ )

ω2′3′ + ωa − iγ2′3′
− f (ε1′ )− f (ε3′ )

ω3′1′ −ωb − iγ3′1′

)
,

(6)

where we retained only resonant terms. Evaluation of the matrix elements of the modulated
velocity operator (3) can be done in different ways, the most straightforward is considering
the velocity operator vvv = vFσσσ (see SI for details). In principle, in the AAA-gauge one has to
calculate them with the full Hamiltonian including the interaction [24,25]. However, in
our case, the interaction operator commutes with eirrr·qqq and we can use the unperturbed
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Hamiltonian (without AAA). The matrix elements contain Kronecker δ-s that cancel out two
summations in Equation (6) and yield the conservation of momentum qqq = qqqb −qqqa.

To compute (6), we expand the matrix elements vj
mn,qqq, the energy differences, ωnm, and

the Fermi–Dirac distributions to the first order in the wavevectors qqqj and qqq. For example,
for a state |n〉 = |1,kkk′〉 with kkk′ = kkk +qqqj, then:

f (εn) = fc(εkkk′) ≈ fc(εkkk) + ∂εkkk f (εkkk)qqqj · ∇kkkεkkk (7)

We denote by fc(ε) the distribution function for the electrons in the conduction band
and by fv(ε) = fc(−ε) the one for electrons in the valence band. Additionally, for simplicity,
we set equal all phenomenological damping constants, γnm = γ. With these approxima-
tions, considering both channels the lowest order term in the conductivity is proportional
to q. At zero temperature, the following analytical expression is obtained:

σxxx(ΩΩΩ, ΩΩΩb,−ΩΩΩa) ≈ δqqq,qqqb−qqqa

e3v2
FEF

h̄3ωbωaπ2

2ωF −ωa

(2ωF −ωa)
2 + γ2

qA(ω, q, γ) , (8)

where

A(ω, q, γ) =
π(ω + iγ)
(vFq)4

(vFq)2 + 2(ω + iγ)2

√1−
(

vFq
ω + iγ

)2
− 1


≈ −π

4
1

(ω + iγ)
(9)

is an auxiliary function, which is independent of q in the limit q→ 0.
Figure 3 shows the behavior of the real and imaginary parts of σxxx(ΩΩΩ, ΩΩΩb,−ΩΩΩa) as

functions of ω and q, for two values of the Fermi energy. The results obtained by the
analytical formula (8) are confirmed by direct numerical evaluation of Equation (6). In the
left panel, for a fixed value of q, the real part of the conductivity peaks at ω ≈ vFq, and
the imaginary part becomes considerable for frequencies ω < vFq. An important feature
of Equation (8) for the second-order conductivity σxxx(ΩΩΩ, ΩΩΩb,−ΩΩΩa) is that it goes to zero
as q→ 0, as it should for a centrosymmetric material. This physically meaningful feature
was lacking in the results of Refs. [8,23]. The reason for this probably is the problem with
intraband matrix elements for the rrr operator, first pointed out by Blount [26]. The analytical
formula derived in Ref. [22], although showing the correct limiting behavior for q→ 0, is
somewhat different from ours and we were not able to reproduce it following the steps
indicated in the supporting material of that article. Let us emphasize that the points in
Figure 3 represent the results of direct numerical evaluation of Equation (6), performed
without approximations such as expansions in terms of wavevectors, so we believe that
these spectra are correct within the model and approach used. It is the imaginary part
of the conductivity that is important to describe the SP generation process, so we have
from Figure 3 a |Imσxxx(ΩΩΩ, ΩΩΩb,−ΩΩΩa)| ≈ 3 esu ≈ 10−16Am/V2 for ω = 50 ps−1. Even
though it is larger than the value calculated in Ref. [22], it is below the experimentally
estimated value [6] by some 3 orders of magnitude. We shall discuss the possible cause of
this discrepancy in Section 3.
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Figure 3. Real and imaginary parts of σxxx(ΩΩΩ, ΩΩΩb,−ΩΩΩa) plotted vs ω (left panel) and q (right panel).
The solid and dashed lines were calculated using expression (8) with Fermi levels EF = 300 and
500 meV, respectively. The triangles and squares are numerical calculations of expression (6). In
the right panel, θb was fixed at 40◦, while in the left plot, ω was fixed at 94 ps−1. In both cases
ωa = 3065 ps−1, γ = 10.6 meV, and θa = 20◦.

Similar calculations can be carried out for the conductivities oscillating with the
frequencies ωb and ωa, representing the DF destruction/generation of the pump and probe
photons, respectively. Our analytical expressions, obtained with the same approximations
as Equation (8), are:

σ
(2)
xxx(ΩΩΩb, ΩΩΩa, ΩΩΩ) ≈ −δqqq,qqqb−qqqa

e3v2
FEF

h̄3ωaωπ2

q
2ωF −ωa − iγ

A(ω, q, γ) ; (10)

σxxx(ΩΩΩa, ΩΩΩb,−ΩΩΩ) ≈ δqqq,qqqb−qqqa

e3v2
FEF

h̄3ωbωπ2

q
2ωF −ωa − iγ

A(ω, q,−γ) . (11)

We notice that

1
ωa
|σxxx(ΩΩΩa, ΩΩΩb,−ΩΩΩ)| ≈ 1

ωb
|σ(2)

xxx(ΩΩΩb, ΩΩΩa, ΩΩΩ)| ≈ 1
ω
|σxxx(ΩΩΩ, ΩΩΩb,−ΩΩΩa)| . (12)

This relation can be used for numerical estimates of the former [6]. We also verified
Equations (10) and (11) by direct numerical evaluation.

2.2. Reflection Coefficients of the Optical Beams

The reflection coefficients of the optical beams are affected by the SP generation and
this is how the latter was detected in Ref. [6]. Here we shall calculate the “perturbed”
reflection and transmission coefficients using the results of the previous section. We
consider a situation similar to the experiments [6], with graphene cladded by two dielectrics
with dielectric constants ε1 = 1 and ε2 = 2.4 and two p−polarised optical waves impinging
on it. We define the reflection and transmission coefficients as rj = ER

j /EI
j and tj = ET

j /EI
j

(j = a, b). The calculation is carried out in a standard way and follows Ref. [5], where the
graphene conductivity (entering boundary conditions for the magnetic field) now includes
an NL term. If only the second-order processes that correspond to the DF generation are
considered, the transmission coefficients are (see SI for details):

ta = t(0)a

1− 2t(0)a |t
(0)
b |

2π2i
σ
(2)
xxx(ΩΩΩa, ΩΩΩb,−ΩΩΩ)σ

(2)∗
xxx (ΩΩΩ, ΩΩΩb,−ΩΩΩa)|EI

b|
2 cos2 θT

b√
ε1cωD∗(ω, q)

cos θT
a

 ; (13)

tb = t(0)b

(
1 + 2t(0)b |t

(0)
a |2π2i

σ
(2)
xxx(ΩΩΩb, ΩΩΩa, ΩΩΩ)σ

(2)
xxx(ΩΩΩ, ΩΩΩb,−ΩΩΩa)|EI

a|2 cos2 θT
a√

ε1cωD(ω, q)
cos θT

b

)
(14)
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where t(0)j denotes the transmission coefficient in the absence of the second pulse,

t(0)j =
2(ε1/kI

jz) sec θT
j cos θ I

j

(ε1/kI
jz) + (ε2/kT

jz) +
4πi
ωj

σ(1)(ωj)
, (15)

kI(T)
jz denotes the z−component of the incident (transmitted) wave,

D(ω, q) =
ε2

κ2
+

ε1

κ1
+

4πi
ω

σ(1)(ω, q) , (16)

σ(1) is the linear conductivity of graphene (taken according to the Drude model for SPs and
accounting for interband transitions [5] for the optical beams) and κm =

√
q2 − εmω2/c2

(m = 1, 2). The corresponding reflection coefficients are given by:

rj = 1− sec θ I
j cos θT

j tj (j = a, b) (17)

with θ I
j and θT

j being the incidence and transmission angles.
Notice that the condition

ReD(ω, q) = 0 (18)

determines the SP dispersion relation [27]. We can see from Equations (13) and (14) that
there is a transfer of energy between the two optical fields, which is mediated by the SP
field formed in the vicinity of graphene and, therefore, is resonant under the condition (18).
This process, in spite of being due to the second-order response of graphene, is, in fact, of
the third-order in optical fields.

3. Results and Discussion
3.1. Calculated Optical Spectra

Figure 4 presents the spectral variation of the normalized differences in the reflectance,
∆R = R− R0, transmittance, ∆T = T− T0, and absorbance, ∆A = A− A0 (the quantities
with the subscript 0 correspond to the absence of the second beam), for the situation
presented in Supplementary Material of Ref. [6] where θ I

a = 20◦ and θ I
b = 40◦. All these

spectra show the SP resonance at ωSP = 177 ps−1. The reflectance of the probe beam in
Figure 4 shows a dip at resonance, but it could be a peak if θ I

a were larger than the Brewster
angle (situation corresponding to Figure 2 of Ref. [6]) because ∆Ra ≈ (r(0)a ∆r∗a + r(0)∗a ∆ra),
r(0)a is nearly real and changes its sign at the Brewster angle, while its variation owing to
the NL effect, ∆ra, does not. The differential transmittance spectrum of the probe beam
has a resonance peak for any θ I

a and the absorbance is diminished at resonance (Figure 4,
right). At the same time, the absorbance of the pump beam is increased (and ∆Ab > |∆Aa|)
because of the SP-mediated photon downconversion (b→ a) and plasmon-related losses.

The chosen value of the intensity of the pump, Ib = 1016 erg cm−2s−1, approximately
correspond to the fluence of 0.1 mJ/cm2 and pulse duration of 0.1 ps, mentioned in Ref. [6].
From Figure S1 of Supplementary Material of that article, we can find the depth of the
resonant minimum of ∆R/R0 of ≈ 1.6 · 10−3, while our calculations predict a value of the
order of 10−9 at the SP resonance. Since ∆R is quadratic in the second-order conductivity,
our calculated result for it is lower than the value extracted from the experiment in Ref. [6]
by roughly 3 orders of magnitude, as already mentioned in Section 2.1. It means that some
important effect was not included in the model used in our calculations (it could be a
thermal nonlinearity [21,22]) or the perturbative approach is not valid because of the high
intensity of the pump pulse.
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Figure 4. Differential reflectance (left, solid lines), transmittance (left, dashed lines), and absorbance
(right) of the pump (blue curves) and probe (green curves) beams as functions of ω. Here the Fermi
energy EF = 500 meV, θ I

a = 20◦, and θ I
b = 40◦, while other parameters are the same as in Figure 3. The

plasmon resonance is observed at approximately ωSP = 80 ps−1. We assumed the same intensities
for both optical beams, Ia = Ib = 1016 erg cm−2s−1, in order to facilitate the comparison.

3.2. How to Detect the Optically Generated SPs?

As pointed out in the previous section, the differential reflectance method [6,21] relies
on a process that is of the third order with respect to the optical fields. Considering the
optical beams as plane waves, it seems that the variation of the reflection coefficients of
these beams is small and consequently hard to detect unless very high intensities of the
pump beam are used. Then other (non-electronic) types of nonlinearity can arise, for
instance, due to photothermal effects [22], which is less interesting from the point of view of
applications. Thus, it might be preferable to try and detect the optically generated surface
plasmons using another route. Time-resolved THz spectroscopy is a powerful technique
in the spectral range relevant to graphene SPs [28] and it could help detect the flux of
plasmons escaping from the optical spots where they were generated. Below we shall
evaluate this flux.

Let us assume for simplicity that the optical beams are focused by cylindrical lenses so
that the system is uniform along the y-direction. As a first approximation, we neglect the
uncertainty of the in-plane components of the wave vectors kkka and kkkb (qa and qb) as if they
were plane waves. In this situation, the energy flux in the x−direction associated with the
generated SPs, per unit length along y, is (see SI for details):

J = q
ω

16π ∑
m=1,2

εm

κ3
m
|Em,x(ω, q)|2 ∝ |D(ω, q)|−2 , (19)

with D(ω, q) defined by Equation (16). At the plasmon resonance, the evanescent field is
strongly enhanced and the energy flux increases.

Since SPs are dissipated because of the Ohmic losses, we can neglect the inverse
process of optical photon generation with the propagation of SPs. Thus, the flux (19) is
responsible for the removal of energy from the optical beams. If the incident energy fluxes
are J(I)

a , J(I)
b (per unit length along y), and if both reflected and transmitted beams a and

b are measured, it should be possible to detect a variation of the total energy of both
optical beams since, at the plasmon resonance, it should be diminished by J because of the
energy conservation,

J(I)
a + J(I)

b =
(

J(R)
a + J(T)a + J(R)

b + J(T)b + La + Lb

)
+ J , (20)

where L stands for losses associated with the transmission and reflection of the optical
beams at the graphene-covered surface, which are related to Reσ(1)(ωa,b) and, therefore,
can be evaluated. Detection of a positive difference between the left-hand side and the
parenthesis in the right-hand side of (20) will indicate the SP generation, J > 0. Another
possibility is to try to detect the SP flux by converting it into propagating THz light, as was
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done in the first demonstrations of graphene surface plasmons [2,3]. Yet another possibility
to detect the generated plasmons is to measure the electric current arising due to the heating
up of charge carriers in graphene, following SP decay [29]. The advantage of detecting the
SP flux using either of these approaches, instead of relying on the plasmon-assisted down-
conversion of probe photons is that the variation is a second-order process with respect to
the optical fields, consequently, it should require lower intensities of the optical beams.

4. Concluding Remarks

Summarizing all the aforesaid, we would like to emphasize that the calculated value of
the second-order conductivity of optically pumped graphene is too low (by approximately
3 orders of magnitude) to explain the experimental results of all-optical generation of sur-
face plasmons [6,21]. An alternative approach to the detection of the resonantly generated
SPs can be tried as discussed in Section 3.2. The presence of an incoherent part in the
measured differential reflectance signal also indicates that the nonlinear optical coupling to
plasmons in graphene cannot be described perturbatively through the electronic nonlin-
earity, as suggested in some recent publications [15,30,31]. In particular, the hot-electron
model proposed to describe non-equilibrium electrons generated with strong, ultrafast light
pulses [30] can be an alternative approach. It can explain the background signal present in
the results of Ref. [6], but probably not the coherent part of the differential transmittance
because hot electrons lose their phase memory when become thermalized. So, the situation
remains rather puzzling, and additional experiments are required to find further insights.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app122312376/s1, detailed calculation of the NL-conductivities
and reflection coefficients.
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