

Rui Filipe Costa Araújo

米

Rui Filipe Costa Araújo

UMinho | 2022

Universidade do Minho Escola de Ciências

Implementação de métodos de análise para diferentes metais na absorção atómica em matrizes de produtos químicos e águas

Universidade do Minho Escola de Ciências

Rui Filipe Costa Araújo

Implementação de métodos de análise para diferentes metais na absorção atómica em matrizes de produtos químicos e águas

Relatório de Estágio Mestrado em Técnicas de Caracterização e Análise Química

Trabalho efetuado sob a orientação do Doutor Rui Francisco Gonçalves Pinto Fernandes Pereira e da Engenheira Sofia Alexandra Fernandes de Oliveira

Direitos de Autor e condições de utilização do trabalho por terceiros

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Atribuição-NãoComercial-SemDerivações CC BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/

Agradecimentos

No plano de estudos do Mestrado em Técnicas de Caracterização e Análise Química, a Unidade Curricular que figura no segundo ano denomina-se de "Projeto Individual". Contudo, apesar do nome, não é algo que se faça verdadeiramente sozinho, tendo eu contado sempre com o apoio de várias pessoas a quem não posso deixar de agradecer.

Inicialmente, quero deixar uma palavra de agradecimento ao Doutor Rui Pereira por ter aceitado orientar-me ao longo do desenvolvimento desta dissertação, pelos conselhos e pela disponibilidade e acessibilidade que sempre demonstrou.

De seguida, à Engenheira Sofia Oliveira e a toda a equipa do laboratório do Grupo RNM pela oportunidade de realizar o estágio na empresa, por me terem recebido muito bem e me fazerem sentir integrado na equipa e pelo apoio prestado ao longo do desenvolvimento da dissertação.

Também não posso deixar de agradecer aos meus bons amigos que sempre demonstraram apoio e me proporcionaram momentos alegres e de descontração.

Por fim, agradecer à minha família e, muito particularmente, aos meus pais por me terem sempre dado exemplos a seguir, por me apoiarem incondicionalmente e por nunca terem deixado que me faltasse alguma coisa. Pela etapa que agora concluo e por todas as outras que possa vir a concluir, é a eles que tenho de agradecer.

O meu muito obrigado a todos!

Declaração de integridade

Declaro ter atuado com integridade na elaboração do presente trabalho académico e confirmo que não recorri à prática de plágio nem a qualquer forma de utilização indevida ou falsificação de informações ou resultados em nenhuma das etapas conducente à sua elaboração.

Mais declaro que conheço e que respeitei o Código de Conduta Ética da Universidade do Minho.

Implementação de métodos de análise para diferentes metais na absorção atómica em matrizes de produtos químicos e águas

Resumo

A água é a base da vida e sem ela, a vida como a conhecemos não seria possível. Uma das ações essenciais na gestão deste recurso passa por testar e analisar a água a que temos acesso de modo a perceber se esta está ou não em conformidade com os padrões definidos para a sua utilização.

A presente dissertação teve como objetivo a implementação de métodos de análise para diferentes metais, nomeadamente alumínio, cálcio, cobre, ferro, manganês, sódio e zinco por absorção atómica em matrizes aquosas. Esta técnica de análise em particular, assume um papel de destaque devido às características que apresenta, como a versatilidade, precisão e rapidez na obtenção de dados que permitem quantificar o teor de metais.

O trabalho aqui apresentado foi desenvolvido no âmbito do protocolo de colaboração entre o Departamento de Química da Universidade do Minho e a empresa Grupo RNM. O trabalho experimental foi desenvolvido totalmente na empresa e teve origem na necessidade de implementação de métodos de análise por absorção atómica para a deteção dos anteriormente referidos metais.

O trabalho desenvolvido permitiu a validação de métodos para a determinação de metais em matrizes de águas residuais e de consumo. Os resultados obtidos demonstraram a correta validação dos métodos analíticos específicos sendo animadores em relação à perspetiva de prosseguir com a validação necessária para outros metais e outras matrizes. Os metais que mais se destacaram foram o cobre e o ferro com recurso à análise por chama. Estes últimos obtiveram resultados excelentes em todos os parâmetros avaliados: gama de trabalho, sensibilidade, limiares analíticos, precisão, exatidão e linearidade.

Os métodos desenvolvidos e validados foram aplicados em situações reais onde obtiveram um desempenho positivo. Foi realizada uma análise a uma água de consumo proveniente da indústria têxtil com o objetivo de quantificar os metais presentes, que foi cumprido. Foi ainda realizado um controlo diário de uma série de águas internas com o propósito de monitorizar o teor de ferro nas mesmas. Procedeu-se ainda à análise de um produto químico em solução aquosa, na qual se determinou e confirmou o teor de metais indicado pelo fornecedor. Por fim, realizou-se a análise de uma água interna da empresa, ao longo de alguns dias, de modo a entender de que modo varia o teor de metais da mesma em função dos compostos em produção.

Perante a totalidade dos resultados obtidos, foi possível validar e aplicar todos os métodos analíticos, demonstrando que a espetroscopia de absorção atómica é de facto uma ferramenta analítica simples, eficaz e rápida.

Palavras-chave: espetroscopia de absorção atómica, validação de métodos, metais, análise de águas

Analysis methods implementation for different metals in atomic absorption for chemical and water matrices

Abstract

Water is the basis of life and without it life, as we know it, would not be possible. One of the essential actions to take passes by analyzing the water that we can easily access so that we can understand if it is usable or not.

The present dissertation aimed to validate analysis methods to different metals namely aluminum, calcium, copper, iron, manganese, sodium and zinc by atomic absorption spectroscopy in aqueous matrixes. This technique has a prominent role in this type of analysis since it is versatile, precise and fast regarding obtaining data that allows the quantification of metals.

The presented work was developed through a cooperation protocol between the Chemistry Department of University of Minho and the company Grupo RNM. The experimental part was fully completed in the company, and it came up due to the company 's need to implement atomic absorption spectroscopy methods to detect the previously mentioned metals.

It was possible to validate methods for metal determination in matrixes of waste and consumption waters. The results demonstrate an accurate validation of mentioned analytical methods and propelling regarding the prospect of pursuing the validation of more metals and different matrixes. The metals that presented the best results were copper and iron with the analysis being made with the flame technique. These metals obtained excellent results in all validations parameters: work range, sensibility, limits of detection and quantification, precision, accuracy and linearity.

The developed and validated methods were applied in real situations where a positive performance was obtained. A consumption water from the textile industry was analyzed to determine its metals, being successfully accomplished. A daily control was carried out in a series of internal waters of the company aiming to monitor its iron content. Besides that, an aqueous solution of a chemical product was analyzed to determine and confirm the metals content. Lastly, an internal water was analyzed over a few days to understand how the metals content varies according to the compounds in production.

Towards all the results obtained, it was possible to validate and apply all the developed methods, showing that atomic absorption spectroscopy is indeed a simple, effective and fast analytical tool.

Keywords: atomic absorption spectroscopy, method validation, metals and water analysis

Índice

Direitos de	e Autor e condições de utilização do trabalho por terceiros	ii
Agradecim	nentos	iii
Declaração	o de integridade	iv
Resumo		v
Abstract		vii
Lista de Fi	guras e Tabelas	x
Lista de Al	breviaturas e Acrónimos	xvi
1. Intro	dução	1
1.1.	A água no mundo	1
1.2.	Tratamento de águas	3
1.3.	Espetroscopia de absorção atómica	4
1.4.	Parâmetros de validação de um método de ensaio	6
1.4.1	1. Seletividade	7
1.4.2	2. Curvas de calibração	7
1.4.3	3. Gama de trabalho	8
1.4.4	4. Linearidade	9
1.4.5	5. Limiares analíticos	
1.4.6	5. Sensibilidade	
1.4.7	7. Precisão	11
1.4.8	3. Exatidão	12
1.5.	Documentação normativa e legislativa	13
1.6.	Enquadramento do trabalho realizado	15
2. Parte	e Experimental	16
2.1.	Materiais e reagentes	16
2.2.	Soluções preparadas para a validação dos métodos de ensaio	
2.3.	Preparação das amostras utilizadas na aplicação dos métodos	
2.4.	Procedimento para análises por EAA e EAA-FG	
3. Apre	sentação e discussão dos resultados	20
3.1. Se	leção das gamas de trabalho	20
3.2.	Parâmetros de avaliação para a validação dos métodos	21
3.2.1	I. Gama de trabalho	21
3.2.2	2. Sensibilidade	22

3.2.3.	Limiares analíticos	23	
3.2.4.	Precisão	24	
3.2.5.	Exatidão	25	
3.2.6.	Linearidade	26	
3.3. Res	sultados obtidos na validação de cada metal	27	
4. Aplicaçõ	es dos métodos desenvolvidos	31	
4.1. Águ	a proveniente de indústria têxtil	31	
4.2. Co	ntrolo diário do ferro em águas internas	31	
4.3. Det	erminação do teor de cálcio e sódio no produto "X"	32	
4.4. Ava	liação de água de neutralização interna	33	
5. Conclusa	io	35	
Anexos			
Referências bibliográficas			

Lista de Figuras e Tabelas

Figura 1: Representação gráfica da distribuição da água salgada e doce (lado esquerdo) e, especificamente, da distribuição de água doce (lado direito). Dados obtidos a partir da referência 2.

Figura 2: Representação esquemática da lâmpada de cátodo oco. Adaptado da referência 57.

Figura A4-1: Representação gráfica da curva de calibração do alumínio em chama.

Figura A4-2: Representação gráfica da curva de calibração do alumínio em grafite.

Figura A4-3: Representação gráfica da curva de calibração do cálcio em chama.

Figura A4-4: Representação gráfica da curva de calibração do cálcio em chama.

Figura A4-5: Representação gráfica da curva de calibração de manganês em chama.

Figura A4-6: Representação gráfica da curva de calibração do manganês em grafite.

Figura A4-7: Representação gráfica da curva de calibração do sódio em chama.

Figura A4-8: Representação gráfica da curva de calibração do zinco em chama.

Tabela 1: Efeitos adversos na saúde humana devidos à presença de vários metais.

Tabela 2: Requerimentos de operação para o acetileno, árgon e óxido nitroso.

Tabela 5: Reagentes utilizados na preparação de soluções.

Tabela 6: Gamas de trabalho identificadas para a deteção dos diferentes metais por absorção atómica em chama.

Tabela 7: Gamas de trabalho identificada para a deteção dos diferentes metais por absorção atómica em forno de grafite.

Tabela 8: Valores das absorvâncias do menor e maior padrão de ferro em chama.

Tabela 9: Valores obtidos para a aplicação do teste PG para o ferro em chama.

Tabela 10: Declives obtidos para várias curvas de calibração do padrão ferro em chama.

Tabela 11: Valores obtidos para a determinação dos limites de controlo para o ferro em chama.

Tabela 12: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o ferro em chama.

Tabela 13: Declives obtidos para várias curvas de calibração para o ferro em chama.

Tabela 14: Valores obtidos para a reprodutibilidade para o ferro em chama.

Tabela 15: Valores de absorvância dos padrões intermédios das curvas de calibração para o ferro em chama.

Tabela 16: Valores obtidos no cálculo da precisão intermédia para o ferro em chama.

Tabela 17: Valores de concentração do MR e das réplicas analisadas.

Tabela 18: Valores obtidos no cálculo da exatidão para o ferro em chama.

Tabela 19: Avaliação dos parâmetros para o alumínio em chama.

Tabela 20: Avaliação dos parâmetros para o cálcio em chama.

Tabela 21: Avaliação dos parâmetros para o cobre em chama.

Tabela 22: Avaliação dos parâmetros para o ferro em chama.

Tabela 23: Avaliação dos parâmetros para o manganês em chama.

Tabela 24: Avaliação dos parâmetros para o sódio em chama.

Tabela 25: Avaliação dos parâmetros para o zinco em chama.

Tabela 26: Avaliação dos parâmetros para o alumínio em grafite.

Tabela 27: Avaliação dos parâmetros para o manganês em grafite.

Tabela 28: Concentração de metais presentes numa amostra da água utilizada por um cliente do setor têxtil.

Tabela 29: Teores de cálcio e sódio nas diferentes amostras de produto "X" analisados.

Tabela 30: Concentração dos metais na água de neutralização ao longo do tempo.

Tabela A2-1: Frases de perigo (H) para os reagentes utilizados.

Tabela A2-2: Frases de precaução (P) para os reagentes utilizados.

Tabela A4-1: Valores das absorvâncias do menor e maior padrão de alumínio em chama.

Tabela A4-2: Valores obtidos para a aplicação do teste PG para o alumínio em chama.

Tabela A4-3: Declives obtidos para várias curvas de calibração do padrão alumínio em chama.

Tabela A4-4: Valores obtidos para a determinação dos limites de controlo para o alumínio em chama.

Tabela A4-5: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o alumínio em chama.

Tabela A4-6: Valores obtidos para a reprodutibilidade para o alumínio em chama.

Tabela A4-7: Valores de absorvância dos padrões intermédios das curvas de calibração para o alumínio em chama.

Tabela A4-8: Valores obtidos no cálculo da precisão intermédia para o alumínio em chama.

Tabela A4-9: Valores de concentração do MR e das réplicas analisadas para o alumínio em chama.

Tabela A4-10: Valores obtidos no cálculo da exatidão para o alumínio em chama.

Tabela A4-11: Valores das absorvâncias do menor e maior padrão de alumínio em grafite.

Tabela A4-12: Valores obtidos para a aplicação do teste PG para o alumínio em grafite.

Tabela A4-13: Declives obtidos para várias curvas de calibração do padrão alumínio em grafite.

Tabela A4-14: Valores obtidos para a determinação dos limites de controlo para o alumínio em grafite.

Tabela A4-15: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o alumínio em grafite.

Tabela A4-16: Valores obtidos para a reprodutibilidade para o alumínio em grafite.

Tabela A4-17: Valores de absorvância dos padrões intermédios das curvas de calibração para o alumínio em grafite.

Tabela A4-18: Valores obtidos no cálculo da precisão intermédia para o alumínio em grafite.

Tabela A4-19: Valores de concentração do MR e das réplicas analisadas para o alumínio em grafite.

Tabela A4-20: Valores obtidos no cálculo da exatidão para o alumínio em grafite.

Tabela A4-21: Valores das absorvâncias do menor e maior padrão de cálcio em chama.

Tabela A4-22: Valores obtidos para a aplicação do teste PG para o cálcio em chama.

Tabela A4-23: Declives obtidos para várias curvas de calibração do padrão cálcio em chama.

Tabela A4-24: Valores obtidos para a determinação dos limites de controlo para o cálcio em chama.

Tabela A4-25: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o cálcio em chama.

Tabela A4-26: Valores obtidos para a reprodutibilidade para o cálcio em chama.

Tabela A4-27: Valores de absorvância dos padrões intermédios das curvas de calibração para o cálcio em chama.

Tabela A4-28: Valores obtidos no cálculo da precisão intermédia para o cálcio em chama.

Tabela A4-29: Valores de concentração do MR e das réplicas analisadas para o cálcio em chama.

Tabela A4-30: Valores obtidos no cálculo da exatidão para o cálcio em chama.

Tabela A4-31: Valores das absorvâncias do menor e maior padrão de cobre em chama.

Tabela A4-32: Valores obtidos para a aplicação do teste PG para o cobre em chama.

Tabela A4-33: Declives obtidos para várias curvas de calibração do padrão cobre em chama.

Tabela A4-34: Valores obtidos para a determinação dos limites de controlo para o cobre em chama.

Tabela A4-35: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o cobre em chama.

Tabela A4-36: Valores obtidos para a reprodutibilidade para o cobre em chama.

Tabela A4-37: Valores de absorvância dos padrões intermédios das curvas de calibração para o cobre em chama.

Tabela A4-38: Valores obtidos no cálculo da precisão intermédia para o cobre em chama.

Tabela A4-39: Valores de concentração do MR e das réplicas analisadas para o cobre em chama.

Tabela A4-40: Valores obtidos no cálculo da exatidão para o cobre em chama.

Tabela A4-41: Valores das absorvâncias do menor e maior padrão de manganês em chama.

Tabela A4-42: Valores obtidos para a aplicação do teste PG para o manganês em chama.

Tabela A4-43: Declives obtidos para várias curvas de calibração do padrão manganês em chama.

Tabela A4-44: Valores obtidos para a determinação dos limites de controlo para o manganês em chama.

Tabela A4-45: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o manganês em chama.

Tabela A4-46: Valores obtidos para a reprodutibilidade para o manganês em chama.

Tabela A4-47: Valores de absorvância dos padrões intermédios das curvas de calibração para o manganês em chama.

Tabela A4-48: Valores obtidos no cálculo da precisão intermédia para o manganês em chama.

Tabela A4-49: Valores de concentração do MR e das réplicas analisadas para o manganês em chama.

Tabela A4-50: Valores obtidos no cálculo da exatidão para o manganês em chama.

Tabela A4-51: Valores das absorvâncias do menor e maior padrão de manganês em grafite.

Tabela A4-52: Valores obtidos para a aplicação do teste PG para o manganês em grafite.

Tabela A4-53: Declives obtidos para várias curvas de calibração do padrão manganês em grafite.

Tabela A4-54: Valores obtidos para a determinação dos limites de controlo para o manganês em grafite.

Tabela A4-55: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o manganês em grafite.

Tabela A4-56: Valores obtidos para a reprodutibilidade para o manganês em grafite.

Tabela A4-57: Valores de absorvância dos padrões intermédios das curvas de calibração para o manganês em grafite.

Tabela A4-58: Valores obtidos no cálculo da precisão intermédia para o manganês em grafite.

Tabela A4-59: Valores de concentração do MR e das réplicas analisadas para o manganês em grafite.

Tabela A4-60: Valores obtidos no cálculo da exatidão para o manganês em grafite.

Tabela A4-61: Valores das absorvâncias do menor e maior padrão de sódio em chama.

Tabela A4-62: Valores obtidos para a aplicação do teste PG para o sódio em chama.

Tabela A4-63: Declives obtidos para várias curvas de calibração do padrão sódio em chama.

Tabela A4-64: Valores obtidos para a determinação dos limites de controlo para o sódio em chama.

Tabela A4-65: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o sódio em chama.

Tabela A4-66: Valores obtidos para a reprodutibilidade para o sódio em chama.

Tabela A4-67: Valores de absorvância dos padrões intermédios das curvas de calibração para o sódio em chama.

Tabela A4-68: Valores obtidos no cálculo da precisão intermédia para o sódio em chama.

Tabela A4-69: Valores de concentração do MR e das réplicas analisadas para o sódio em chama.

Tabela A4-70: Valores obtidos no cálculo da exatidão para o sódio em chama.

Tabela A4-71: Valores das absorvâncias do menor e maior padrão de zinco em chama.

Tabela A4-72: Valores obtidos para a aplicação do teste PG para o zinco em chama.

Tabela A4-73: Declives obtidos para várias curvas de calibração do padrão zinco em chama.

Tabela A4-74: Valores obtidos para a determinação dos limites de controlo para o zinco em chama.

Tabela A4-75: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o zinco em chama.

Tabela A4-76: Valores obtidos para a reprodutibilidade para o zinco em chama.

Tabela A4-77: Valores de absorvância dos padrões intermédios das curvas de calibração para o zinco em chama.

Tabela A4-78: Valores obtidos no cálculo da precisão intermédia para o zinco em chama.

Tabela A4-79: Valores de concentração do MR e das réplicas analisadas para o zinco em chama.

Tabela A4-80: Valores obtidos no cálculo da exatidão para o zinco em chama.

Lista de Abreviaturas e Acrónimos

- CV: coeficiente de variação;
- EAA: espetroscopia de absorção atómica;
- EAA-FG: espetroscopia de absorção atómica em forno de grafite;
- EN: norma europeia;
- ETAR: estação de tratamento de águas residuais;
- LCO: lâmpada de cátodo oco;
- LD: limite de deteção;
- LQ: limite de quantificação;
- MRC: material de referência certificado;
- ND: não detetado;
- RELACRE: Associação de Laboratórios Acreditados de Portugal.

1. Introdução

1.1. A água no mundo

A superfície do planeta Terra é coberta por cerca de 70% de água. Apesar da aparente abundância deste recurso, apenas uma pequena parte é passível de utilização, a denominada água doce, que se encontra numa reduzida percentagem (2.5%) quando comparada com a restante água que pode ser encontrada nos oceanos (97.5%) (Figura 1). Relativamente à água doce, apenas 1% é facilmente acessível, encontrando-se, por exemplo, em lagos e rios, sendo que a restante se distribui entre glaciares e águas subterrâneas.¹

Figura 1: Representação gráfica da distribuição da água salgada e doce (lado esquerdo) e, especificamente, da distribuição de água doce (lado direito). Dados obtidos a partir da referência 2.

A água assume um papel de destaque entre o leque de recursos naturais disponíveis para a humanidade. Sem ela, não seria possível a subsistência de todas as formas de vida. A existência de fontes de água seguras e duradouras é um pilar fundamental no estabelecimento de uma comunidade estável. Isto significa que a relevância da água como um recurso natural, que requer conservação e uma gestão cuidadosa, deve ser reconhecida globalmente.²

Atualmente, as questões relacionadas com o meio ambiente despertam cada vez mais a atenção do público geral e são cada vez mais os acordos, como a Convenção de Viena para a Proteção da Camada de Ozono,³ o Protocolo de Kyoto,⁴ o Acordo de Paris⁵ ou a Convenção de Aarhus,⁶ que visam proteger e preservar o meio ambiente.

Apesar da escassez e da reconhecida importância da água e da consciencialização crescente do público geral relativamente às questões ambientais, continuam a existir vários processos danosos para o meio ambiente e, em particular, para os recursos hídricos. Um relatório de 2017 da autoria da Organização das Nações Unidas estima que cerca de 80% (podendo chegar aos 95% em países subdesenvolvidos) da totalidade das águas residuais geradas por atividades antropogénicas sejam despejadas no meio ambiente sem qualquer tipo de tratamento.⁷ Prevê-se que em 2050 o consumo global de água seja cerca de 33% superior ao atual, o que será altamente desafiante tendo em conta o panorama corrente.⁸

Estudos recentes^{9,10} apontam a agricultura como sendo uma das grandes responsáveis pela poluição aquática através da descarga de grandes quantidades de agroquímicos,¹¹ nutrientes,¹² matéria orgânica,¹³ microplásticos,¹⁴ agentes patogénicos,¹⁵ entre outros. A poluição aquática é agravada pela redução dos fluxos em corpos de água, algo que pode acontecer devido aos elevados gastos relacionados com a irrigação de plantações, por exemplo.¹⁶

Outra das principais ameaças são os resíduos gerados pelos vários tipos de indústria que, direta ou indiretamente, são prejudiciais para a água como um recurso natural.¹⁷ A interação direta destes resíduos com os recursos hídricos passa pela descarga dos mesmo em rios, mares ou oceanos, introduzindo assim uma quantidade infindável de compostos químicos poluentes nestes meios. De forma indireta, existe também a emissão de gases que podem contribuir para o aumento do efeito estufa ou para a formação de chuvas ácidas. O efeito estufa é um dos responsáveis pelo aquecimento global,¹⁸ o que conduz ao degelo de reservas naturais de água doce presentes em glaciares.^{19,20} Por outro lado, as chuvas ácidas desempenham um papel de destaque na contaminação das águas de rios, mares e oceanos.²¹

Os efeitos da poluição podem ser observados em áreas como a saúde, o ambiente e até a economia. De acordo com a ONU, falecem por ano mais pessoas devido ao consumo de água não adequada do que graças a todas as formas de violência, incluindo conflitos armados.²² A exposição prematura de crianças a um dos poluentes mais abundantes na água, os nitratos, pode causar problemas cognitivos ou de crescimento.²³ Existe ainda um vasto lote de doenças, de entre as quais se destacam a cólera, hepatite A, febre tifoide e a poliomielite, que se podem disseminar através de águas contaminadas.^{24,25}

A poluição aquática é um dos fatores favoráveis ao acontecimento do fenómeno denominado por eflorescência algal, que consiste na proliferação exponencial de algas em ambientes aquáticos,²⁶ o que vai resultar numa redução significativa dos níveis de oxigénio disponíveis na água para os restantes organismos.²⁷ Naturalmente, a carência de oxigénio será prejudicial para as plantas e animais, podendo mesmo surgir "zonas mortas" onde se observa uma grande ausência de organismos vivos.²⁸

Existe uma grande variedade de produtos químicos que em conjunto com metais pesados são altamente tóxicos para a vida aquática, diminuindo o tempo de vida dos organismos e a capacidade dos mesmos para se reproduzirem.²⁹ A longo prazo, pode mesmo conduzir à extinção de algumas espécies.^{30,31}

Um relatório elaborado pelo Banco Mundial, estima que o acesso a água de baixa qualidade seja um fator de tal forma significativo no crescimento económico ao ponto de ser responsável por uma redução de cerca de 1/3 do mesmo em alguns países.²³ A exposição a água contaminada contribui para o aumento de doenças e redução de produções alimentares, agravando assim a pobreza em vários países, nomeadamente nos subdesenvolvidos.²³

2

Por todas as razões elencadas nos parágrafos anteriores, torna-se evidente a necessidade de conhecer com exatidão e precisão os teores de contaminantes, tais como os metais, em águas, sejam elas de estádios naturais ou após processamento ou utilização social e industrial.

1.2. Tratamento de águas

Tendo em conta todos os fatores expostos anteriormente, a área do tratamento de águas adquire um papel cada vez mais preponderante para a manutenção dos países desenvolvidos e para o crescimento dos subdesenvolvidos.

O tratamento de águas consiste no processo de eliminar quaisquer elementos indesejáveis ou tóxicos da água ou alterar parâmetros físico-químicos da mesma de modo a torná-la apta para a aplicação desejada.³²

A adição de compostos químicos à água é há muito tempo considerada uma operação padrão no processo global de tratamento de águas. A concentração adicionada deve ser sempre a mínima necessária para obter os resultados desejáveis.³³ De entre os compostos químicos utilizados, pode ser dado destaque ao hipoclorito de sódio (NaCIO), ao ácido clorídrico (HCI) e ao hidróxido de sódio (NaOH) devido à sua ampla utilização e conhecida eficácia.

O hipoclorito de sódio é utilizado para remover compostos de amónio, oxidar sulfetos, ferro(II) e ferro(III) e atua como desinfetante.³⁴ Já o ácido clorídrico tem como função baixar o pH do meio, gerar dióxido de cloro para oxidação e desinfeção e, no caso de serem utilizadas resinas de troca iónica, atuar como agente regenerador das mesmas.³⁵ Por último, o hidróxido de sódio atua como agente neutralizante e de amolecimento, ajusta o valor de pH e regenera resinas de troca iónica em caso de utilização das mesmas.³⁶

Considerando a aplicação destes produtos, existe a necessidade de um controlo rigoroso da qualidade dos mesmos já que a presença de impurezas irá conduzir à presença destas no produto final, ou seja, as águas de consumo.³⁷

Os agentes químicos supramencionados devem ser analisados de forma a avaliar a presença de metais que constituem impurezas nas suas composições, nomeadamente alumínio, antimónio, arsénio, cádmio, cálcio, chumbo, cobre, crómio, ferro, magnésio, mercúrio, níquel, potássio, selénio, sódio e zinco. Os potenciais efeitos adversos que estes metais podem ter na saúde humana encontram-se listados na Tabela 1.

Metal	Complicações	Ref.
Alumínio	Doença de Alzheimer, demência, hiperatividade e distúrbios de	38
Auminio	aprendizagem em crianças	
Antimónio Complicações cutâneas, oculares e respiratórias		39
Arsénio	Lesões na pele e cancro da pele	40
Cádmio	Complicações pulmonares, ósseas, renais e cancro	41
Cálcio Problemas cardiovasculares, gastrointestinais e renais		42
Chumbo Anemia e lesões no cérebro e rins.		43
Cobre Danos nos rins e fígado		44
Crómio Problemas respiratórios		45
Forro	Em concentrações muito elevadas, pode causar problemas oculares,	45
Teno	cancro e doenças cardiovasculares	
Mercúrio	Complicações no sistema nervoso, digestivo e imunitário e problemas	47
Mercuno	pulmonares, renais e hematológicos	
Níquol	Doenças cardiovasculares e renais, fibrose pulmonar e cancro do trato	48
Miquei	respiratório	
Potáccio	Diminuição de pressão arterial e consequente aumento de risco de	49
FULASSIU	doenças coronárias ou enfarte, em doses elevadas	
Selénio	Problemas de coagulação de sangue, rins e fígado	50
Sódio	Aumento da pressão arterial e risco de enfarte	51
Zinco	Náuseas, dores de cabeça, capacidade imunitária reduzida e interferência	52.53
ZIIICO	na ação de outros nutrientes, em doses elevadas	

Tabela 1: Efeitos adversos na saúde humana devidos à presença de vários metais.

1.3. Espetroscopia de absorção atómica

Uma das técnicas de referência na análise de metais é a espetroscopia de absorção atómica (EAA). A EAA distingue-se das restantes técnicas devido à sua elevada sensibilidade, robustez em relação a interferências, rapidez, eficácia e baixos custos de análise.⁵⁴

O espetro de absorção atómica de um elemento é composto por uma série de linhas de ressonância que vão do estado fundamental até aos diferentes estados excitados. A transição entre o estado fundamental e o primeiro estado excitado constitui a primeira linha de ressonância e representa a maior absorção, sendo assim utilizada para a análise.⁵⁵

A EAA deteta elementos através da aplicação de comprimentos de onda características de radiação eletromagnética proveniente de uma fonte luminosa. O facto de cada elemento absorver radiação a um comprimento de onda que apenas é característico de si próprio é o fator que permite a identificação do mesmo.⁵⁶ Nesta técnica de análise, a amostra a analisar é encaminhada para o queimador, onde será atomizada. Depois, um feixe de radiação atravessa uma chama que contém os átomos absorventes do analito e um detetor irá determinar a quantidade de luz absorvida pela nuvem atómica do elemento em análise. Partindo do princípio de que os átomos existentes no meio atómico absorvente se encontram no estado fundamental e não existem efeitos de dispersão, é possível aplicar a lei de Lambert-Beer (equação 1.1):

$$A = \varepsilon . b . C \tag{1.1}$$

onde *A* corresponde à absorvância, ε corresponde ao coeficiente de absortividade molar, *b* corresponde ao caminho ótico percorrido pelo feixe e *C* corresponde à concentração de analito. Esta lei estabelece uma relação diretamente proporcional entre a absorvância medida e a concentração de átomos em solução, possibilitando assim a determinação da mesma.⁵⁷

A fonte de radiação mais comum são as lâmpadas de cátodo oco (LCO), as quais se encontram devidamente esquematizadas na Figura 2.

Figura 2: Representação esquemática da lâmpada de cátodo oco. Adaptado da referência 57.

Estas lâmpadas consistem num ânodo de tungsténio e um cátodo cilíndrico selado num tubo de vidro que contém um gás inerte, geralmente árgon, a uma pressão entre 1 e 5 torr. O cátodo pode ser fabricado diretamente a partir do metal que constitui o analito ou então serve de suporte para um revestimento desse mesmo metal. Quando uma corrente atravessa a lâmpada, dá-se uma descarga elétrica que provoca a ionização do gás raro. Os iões resultantes bombardeiam o cátodo que liberta os átomos do metal. O vapor atómico do metal será então excitado por colisões com os átomos do gás raro e emitirá a sua radiação característica.⁵⁸

Apesar de ser um método simples e que acarreta baixos custos operacionais, a técnica convencional de EAA de chama anteriormente descrita, por vezes não apresenta limites de deteção baixos o suficiente para determinar metais em concentrações reduzidas.⁵⁹ Como resposta a este problema surgiu a espetroscopia de absorção atómica com forno de grafite (EAA-FG), uma técnica que partilha os mesmos princípios básicos de funcionamento com a EAA, à exceção do atomizador que, neste caso, passa a ser um forno de grafite.⁶⁰

Na EAA-FG, a amostra é aquecida em três etapas. Inicialmente, ocorre a etapa da secagem em que uma baixa corrente aquece o tubo, onde se encontra a amostra, de modo a remover o solvente presente. Posteriormente, ocorre a pirólise, processo onde a matéria orgânica presente é destruída e volatilizam-se outros componentes matriciais. Por fim, surge a atomização que consiste na geração de uma alta corrente que aquece o tubo até à incandescência e atomiza o elemento a ser determinado, num ambiente inerte, e ocorre a absorção de radiação monocromática emitida pela LCO. A intensidade da radiação que é transmitida, ou não absorvida pelo vapor atómico, é então quantificada por um detetor fotoelétrico, sendo que esta grandeza é inversamente proporcional à quantidade de átomos existentes no percurso ótico. Depois deste processo, ocorre a fase de limpeza que consiste no aquecimento do tubo de grafite a uma temperatura superior à que ocorre a atomização de modo a eliminar possíveis resíduos da amostra ainda presentes. O tubo de grafite irá depois arrefecer automaticamente até a uma temperatura próxima da ambiente.⁶¹ Este processo de aquecimento gradual permite obter limites de deteção mais baixos com recurso a apenas uma pequena quantidade de amostra.⁶¹

Um método de ensaio consiste num processo que acarreta múltiplas manipulações propícias à introdução e acumulação de erros de caráter aleatório e/ou sistemático, podendo culminar numa alteração significativa do valor obtido no resultado final.^{62,63} Assim sendo, é de vital importância que os laboratórios disponham de meios e critérios objetivos que permitam demonstrar, com recurso à validação, que os métodos de ensaio praticados conduzem a resultados fidedignos e correspondentes à qualidade pretendida.⁶²

1.4. Parâmetros de validação de um método de ensaio

Na validação de um método de ensaio é essencial a avaliação de parâmetros tais como a seletividade, curva de calibração, gama de trabalho, linearidade, limiares analíticos, sensibilidade, precisão e a exatidão.

1.4.1. Seletividade

A seletividade de um método define-se como sendo a capacidade do mesmo identificar e distinguir um analito em particular entre uma mistura complexa sem sofrer interferência dos outros componentes da matriz.⁶²

Um método é considerado seletivo quando garante que a grandeza em análise é obtida apenas e só como resposta do analito. Para avaliar potenciais interferências podem ser realizados ensaios de recuperação.⁶² Nestes ensaios, utiliza-se uma série de amostras, com a mesma matriz, onde só se varia a concentração do analito em proporções conhecidas e que cubram toda a gama de trabalho. A avaliação da taxa de recuperação pode ser calculada com recurso à equação 1.2:

$$R(\%) = \frac{c_{af} - c_a}{c_f}$$
(1.2)

onde *R* corresponde à taxa de recuperação do analito, C_{ar} à concentração de analito na amostra fortificada, C_a à concentração de analito na amostra não fortificada e C_r é a concentração de analito adicionada à amostra fortificada.

Um método pode ser considerado seletivo se as taxas de recuperação obtidas forem próximas de 100%, contudo este valor pode variar conforme o método em estudo e cabe a cada laboratório definir os critérios de aceitação relativos às taxas conseguidas, baseados em dados e factos credíveis.⁶²

1.4.2. Curvas de calibração

A realização de curvas de calibração incide num processo através do qual se estabelece uma relação entre a resposta de um sistema de medida com uma concentração conhecida de uma substância. Usualmente, a denominada curva de calibração é representada por uma reta cuja equação é geralmente dada por:

$$y = a + bx \tag{1.3}$$

em que *a* representa a ordenada na origem, *b* o declive da reta e *y* é a resposta medida para uma concentração, *x*, de analito.

Na origem desta reta encontra-se um conjunto de pontos ordenados e independentes, $(x_1,y_1);...;$ (x_n,y_n) , em que n corresponde ao número de pontos na reta. Normalmente, o ponto (x_1,y_1) corresponde ao branco. A média dos valores de x, correspondente à concentração dos padrões utilizados, representa-se por \bar{x} e a média dos valores de y, correspondente ao sinal instrumental, por \bar{y} . Com estes dados é possível determinar o coeficiente de correlação (ρ), que pode ser utilizado para avaliar a calibração analítica, através da fórmula expressa na equação 1.4.

$$\rho = \frac{\sum_{i=1}^{N} \{ (xi - \bar{x}) \ (yi - \bar{y}) \}}{\sqrt{\left[\sum_{i=1}^{N} (xi - \bar{x})^2 \left\{ \sum_{i=1}^{N} (yi - \bar{y})^2 \right\} \right]}}$$
(1.4)

O valor do coeficiente de correlação pode-se encontrar entre -1 e +1. O valor de $\rho = +1$ indica uma correlação positiva, ou seja, uma reta com declive positivo e o valor de $\rho = -1$ representa correlação negativa e consequente declive negativo.

Em química analítica, considerando os critérios internos do laboratório e do próprio método analítico, as curvas de calibração devem ter valores de coeficiente de correlação superiores a 0.995.⁶²

1.4.3. Gama de trabalho

A gama de trabalho de um método é definida pelo intervalo de concentrações de analito que é possível determinar com exatidão e precisão, sendo que esta deve incluir o intervalo de concentrações das amostras que são analisadas com regularidade no laboratório.⁶⁴

Para validar a gama de trabalho, utiliza-se o teste de homogeneidade de variâncias[∞] e para avaliar a sua adequabilidade, recorre-se à norma ISO 8466-1[∞] para modelos lineares e à norma ISO 8466-2[∞] para modelos polinomiais do segundo grau.

A norma ISO 8466-1 recomenda que se analisem dez pontos de calibração e nunca menos de 5, igualmente distribuídos pelo intervalo de concentrações. O primeiro e o último padrão devem ser analisados em 10 réplicas independentes.

As variâncias associadas ao primeiro e último padrão (S_1^2 e S_{10}^2) são determinadas através da equação 1.5:

$$S_i^2 = \frac{\sum_{j=1}^{10} (y_{i,j} - \bar{y}_i)^2}{n_i - 1}$$
(1.5)

sendo que

$$\overline{y_i} = \frac{\sum_{j=1}^{10} y_{i,j}}{n_i} \tag{1.6}$$

para *i* = 1 e *i* = 10. Sabendo que *i* representa o número do padrão e *j* representa o número de repetições efetuadas para cada padrão.

Procede-se então à testagem das variâncias para aferir se existem diferenças significativas entre as mesmas, com recurso ao teste PG (equações 1.7 e 1.8).

$$PG = \frac{s_1^2}{s_{10}^2} se s_1 > s_{10}$$
(1.7)

$$PG = \frac{s_{10}^2}{s_1^2} \ se \ s_{10} > s_1 \tag{1.8}$$

Após a determinação do valor de PG, compara-se o mesmo com o valor tabelado da distribuição F de Snedecor-Fisher com n-1 graus de liberdade. A distribuição de F é uma distribuição de probabilidade contínua, o que significa que é definida por um número infinito de valores diferentes. Esta ferramenta estatística pode ser aplicada em várias situações, sendo de particular interesse a aplicação da mesma no teste acerca da equivalência da variância de dois conjuntos de dados.⁶⁷ Se PG > F, conclui-se que as variâncias são significativamente diferentes e que a gama de trabalho deve-se reduzir até PG \leq F. Se se verificar no imediato que PG \leq F, não existem diferenças significativas entre as variâncias e a gama de trabalho está bem ajustada.⁶²

1.4.4. Linearidade

Entende-se por linearidade a capacidade de um método apresentar resultados diretamente proporcionais à concentração de analito na amostra para uma determinada gama de trabalho.⁶⁶ De acordo com a norma ISO 8466-1, a linearidade pode ser estudada através de um teste de Mandel, que avalia se a função mais adequada para representar a calibração é a linear ou de segunda ordem. Inicialmente, é necessário ajustar os pares ordenados a dois tipos de reta, uma linear e uma não linear (geralmente de 2^a ordem) e calcular os respetivos desvios-padrão, $S_{y/x}$ e S_{y^2} . Depois, calcula-se a diferença das variâncias, DS^2 , através da equação 1.9.

$$DS^{2} = (N-2) \cdot S_{y/x}^{2} - (N-3) \cdot S_{y^{2}}^{2}$$
(1.9)

onde *N* corresponde ao número de padrões de calibração. De seguida, procede-se ao cálculo do valor teste, PG, através da equação 1.10.

$$PG = \frac{DS^2}{S_{y^2}^2}$$
(1.10)

Finalmente, compara-se o valor obtido com o valor tabelado da distribuição F de Snedecor-Fisher. Se PG ≤ F, a função de calibração é linear e se PG > F, a função de calibração não é linear.

1.4.5. Limiares analíticos

Este parâmetro de avaliação inclui o limite de deteção (LD) e o limite de quantificação (LQ).

O LD define-se como a menor concentração de analito detetável numa amostra por um determinado método ainda que de forma não exata nem precisa.⁶⁸ Já o LQ é a concentração mais baixa que é possível determinar de forma quantitativa com uma determinada exatidão e precisão.⁶⁸

Estes limiares analíticos podem ser determinados a partir de parâmetros da curva de calibração, o desvio padrão residual ($S_{y/x}$) e o declive (b).⁶² No caso do LD, pode ser obtido através da equação 1.11,

$$LD = 3.3 \ \frac{s_{y/x}}{b} \tag{1.11}$$

enquanto o LQ pode ser obtido através da equação 1.12,

$$LQ = 10 \, \frac{S_{y/x}}{b} \tag{1.12}$$

A concentração à qual corresponde o LQ deve sempre constar na reta da curva de calibração.69

1.4.6. Sensibilidade

A sensibilidade de um método avalia a capacidade do mesmo para distinguir concentrações de analito próximas entre si. Um método considerado sensível apresenta alterações significativas na resposta (y) mesmo quando apenas se introduzem pequenas alterações na concentração de analito (x). A sensibilidade pode ser determinada através da equação 1.13,

$$S = \frac{\Delta y}{\Delta x} \tag{1.13}$$

Caso a curva de calibração seja definida por um modelo linear, a sensibilidade do método é constante ao longo de toda a gama de trabalho e será igual ao declive da reta de calibração. Por outro lado, se for

definida por uma função quadrática, a sensibilidade irá sofrer alterações conforme a concentração de analito e será igual à primeira derivada da curva de calibração em análise.⁶²

1.4.7. Precisão

Entende-se por precisão o parâmetro que avalia a dispersão de resultados entre ensaios independentes incidentes na mesma amostra, amostras semelhantes ou padrões, sob condições de trabalho previamente definidas. É de notar que, de modo a minorar efeitos de matriz, se devem conduzir os estudos relativos à precisão em amostras.⁶²

Dentro deste parâmetro, existem duas medidas extremas que permitem avaliar a dispersão de dados existente: a repetibilidade e a reprodutibilidade. Existe ainda uma terceira medida que se coloca intermediamente entre as duas já mencionadas e que se designa por precisão intermédia.⁶² Segundo a norma ISO 5725⁷⁰, a precisão pode ser avaliada através da repetibilidade, reprodutibilidade e precisão intermédia.

Repetibilidade

A repetibilidade é utilizada para avaliar a precisão de um método de ensaio efetuado em condições idênticas, ou seja, a ensaios realizados em curtos intervalos de tempo e que incidem sob a mesma amostra em condições o mais semelhantes possível, como o mesmo laboratório, operador, equipamento e tipo de reagentes.⁶²

O limite de repetibilidade, *r*, define-se como o valor abaixo do qual se deve situar a diferença absoluta entre dois ou mais resultados obtidos, para uma probabilidade de 95%.⁷¹ É possível calcular este limite a partir do desvio padrão resultante dos ensaios de repetibilidade, *s*.

$$r = 2.8 \, s_r$$
 (1.14)

Reprodutibilidade

A reprodutibilidade avalia a precisão de um método de ensaio efetuado em condições diferentes, mas incidentes na mesma amostra, fazendo variar condições como o laboratório, operador, equipamento e intervalos de tempo.⁶²

O limite de reprodutibilidade, *R*, define-se como o valor abaixo do qual se deve situar a diferença absoluta entre dois ou mais resultados obtidos, para uma probabilidade de 95%.⁶² Este limite pode ser calculado através do desvio padrão resultante dos ensaios de reprodutibilidade, *s*_n.

$$R = 2.8 s_R$$
 (1.15)

1.4.8. Exatidão

A exatidão traduz o nível de concordância entre o resultado de um ensaio e o valor de referência aceite convencionalmente como verdadeiro. Para avaliar este parâmetro pode-se recorrer à utilização de materiais de referência certificados (MRC), entre outras hipóteses.

Consideram-se MRC os materiais que são produzidos de acordo com os requisitos da norma ISO 17034⁷², ou seja, que possuem propriedades específicas e com incertezas associadas. A aquisição de MRC deve ser efetuada junto de um fornecedor credível e reconhecido.⁶²

A determinação da exatidão do método realiza-se através da comparação do valor obtido na análise do MRC com o valor certificado. Caso o valor obtido não se encontre dentro do intervalo de incerteza indicado para o valor certificado, as causas para este desvio devem ser determinadas pelo laboratório e devem ser eliminadas ou aceites.⁶²

Os processos de avaliação dos resultados obtidos podem incidir no erro relativo, testes de hipótese, fator de desempenho Z ("Z-score") ou erro normalizado.

O erro relativo (*Er*) é atribuído à componente dos erros sistemáticos e calcula-se pela equação 1.16:

$$Er(\%) = \frac{Xlab - Xv}{Xv} * 100$$
(1.16)

onde X_{∞} corresponde ao valor obtido experimentalmente e X ao valor certificado do MRC. Um valor de "*Er*" inferior ou igual a 5% pode ser suficiente, sendo este valor indicativo e deve ser definido pelo laboratório.

A existência de erros sistemáticos associados ao método de análise também pode ser avaliada através da aplicação de um teste de hipótese:

$$t = \frac{(Xlab - Xv) * \sqrt{N}}{Sx_{lab}}$$
(1.17)

onde $X_{\text{\tiny bb}}$ corresponde à média dos valores experimentais obtidos na análise do MRC, $X_{\text{\tiny v}}$ corresponde ao valor aceite como verdadeiro proveniente do certificado do MRC, N é o número de amostras analisadas e $S_{X_{\text{\tiny bb}}}$ é o desvio padrão associado à média dos valores obtidos pelo laboratório.⁶²

Após o cálculo, o valor modular de *t* compara-se com o valor crítico, t_{ab} , devidamente tabelado para certo grau de confiança e N-1 graus de liberdade e interpreta-se o resultado. Se $|t| \ge t_{ab}$, não existem evidências estatísticas da existência de erros sistemáticos e, portanto, o ensaio é classificado como satisfatório. Se $|t| < t_{ab}$, existem evidências estatísticas da existência de erros da existência de erros sistemáticos e o ensaio deve ser classificado como não satisfatório.⁶²

O fator de desempenho Z ("Z-score") constitui mais uma via de avaliação do desempenho do laboratório na análise de MRC e calcula-se através da equação 1.18.

$$Z = \frac{Xlab - Xv}{s} \tag{1.18}$$

onde Xal corresponde ao valor obtido pelo laboratório, X é o valor certificado do MRC e s é a unidade de desvio, que pode ser a incerteza do MRC ou outra unidade de desvio interna.⁶²

A avaliação pode ser feita, seguindo o guia ISO/CEI 17043⁷³, de acordo com a seguinte escala:

- |Z| ≤ 2: satisfatório;
 - 2 ≤ |Z| < 3: questionável;
 - |Z| > 3: incorreto.

Na possibilidade de o laboratório calcular a incerteza do resultado (U_{eb}), o valor verdadeiro (X) deverá estar incluído no intervalo de confiança do valor obtido experimentalmente (X_{eb}). Se isto não se verificar, o intervalo poderá estar subestimado. Nestas situações, aplica-se o erro normalizado (*En*) para avaliar o desempenho.⁷³

$$En = \frac{X lab - Xv}{\sqrt{U_{lab}^2 + U_{ref}^2}}$$
(1.19)

onde U_{ef} corresponde à incerteza proveniente do certificado do MRC.

Se $|En| \le 1$, então a incerteza encontra-se bem estimada.

1.5. Documentação normativa e legislativa

O trabalho de validação de métodos não pode ser desenvolvido sem recurso a documentos normativos ou legais que estabeleçam critérios para o método atingir requisitos que deve cumprir ou o procedimento a seguir durante a validação do mesmo. Desta forma, o trabalho desenvolvido suportase em várias normas europeias e internacionais, decretos-lei e guias elaborados por entidades reconhecidas no campo da validação e acreditação de laboratórios.

As normas europeias (EN) estabelecem regras, diretrizes ou especificações com as quais um produto deve cumprir para que possa circular no mercado dos países pertencentes à União Europeia de forma mais fluída e sem tantos entraves.⁷⁴⁻⁷⁶ As EN utilizadas nesta dissertação (EN 901:2013; EN 939:2016 e EN 896:2013)³⁴⁻³⁶ limitam o teor máximo de metais em certos produtos químicos e o método indicado de preparação de curvas de calibração e de amostras para os mesmos. Estas normas foram particularmente úteis na definição das gamas de trabalho.

As normas ISO são elaboradas pela Organização Internacional de Normalização, uma organização não governamental composta por 167 representantes de organizações normativas nacionais. As normas internacionais são fundamentais para o comércio mundial já que permite que vários países adotem a mesma padronização, impulsionando assim a venda de produtos ou a prestação de serviços.^{77,78} As normas ISO empregues no desenvolvimento desta dissertação (ISO 17025; ISO 8466-1:1990; ISO 8466-2:2001; ISO 5725-4:2020; ISO 5725-6:1994; ISO 17034:2016; ISO/IEC 7043:2010) ^{65,66,70-73,79} estabelecem os critérios que os parâmetros de validação dos métodos devem cumprir.

Segundo a Constituição da República Portuguesa, um decreto-lei consiste num ato legislativo aprovado pelo governo.⁸⁰ Os decretos-lei (Decreto-Lei n° 236/98 e Decreto-Lei n° 152/2017)^{81,82} utilizados definem os valores máximos de vários componentes em vários tipos de água, em particular dos metais. À semelhança das EN, os decretos-lei foram parte fundamental da definição das gamas de trabalho selecionadas.

A Associação de Laboratórios Acreditados de Portugal (RELACRE) procura fornecer apoio e a promoção da comunidade portuguesa de entidades de avaliação da conformidade acreditadas. Um dos principais objetivos da RELACRE passa por promover os valores da qualidade nas vertentes do sistema português da qualidade, normalização, certificação e metrologia. Desta forma, esta associação desenvolveu uma vasta coleção de guias emitidos com o propósito de fornecer parâmetros e critérios a cumprir aos laboratórios. Assim sendo, foram utilizados guias RELACRE^{62,83} como referência para o estabelecimento de vários parâmetros dos métodos.

1.6. Enquadramento do trabalho realizado

O objetivo principal desta dissertação passou por implementar métodos de análise para vários metais, nomeadamente alumínio, cálcio, cobre, ferro, manganês, sódio e zinco, por EAA em matrizes aquosas.

O trabalho experimental exposto nesta dissertação foi desenvolvido no Grupo RNM, a qual é uma empresa de referência no setor químico, garantindo soluções ao nível de produção, distribuição, logística e transporte de produtos químicos para as mais variadas áreas, tais como o setor automóvel e metalúrgico, plásticos e borrachas, têxtil e ambientes e tratamento de águas. Por se tratar de uma empresa comprometida com o futuro, procura garantir sempre a sustentabilidade, proteção do meio ambiente e otimização dos recursos existentes. Devido aos valores pelos quais se rege, a empresa procura sempre garantir que todos os produtos que passam pelas instalações, quer seja para venda ou para utilização interna, estão de acordo com a legislação em vigor e com as respetivas normas. Desta forma, a implementação de métodos de análise para a determinação de metais é um passo fundamental para garantir que os objetivos do Grupo RNM são cumpridos.

2. Parte Experimental

2.1. Materiais e reagentes

De uma forma geral, para além de material de laboratório corrente, o equipamento principal utilizado ao longo do desenvolvimento da dissertação foi o espetrofotómetro de absorção atómica da "Thermo Scientific" modelo "iCE 3000 Series". Este equipamento foi utilizado cumprindo as especificações de utilização definidas pelo fabricante, tais como o intervalo de temperatura de operação ser entre 10 °C e 40 °C, sendo que a zona ótima de funcionamento é entre os 18 °C e os 21 °C. A temperatura média do laboratório foi de 20 °C. Foi sempre garantida a existência de um fluxo de ar de modo a garantir a ventilação do laboratório e a humidade relativa do local de operação, situando-se entre 20% e 80% para temperaturas entre 10 °C e 30 °C.

O equipamento funcionou com recurso a alguns gases, tais como o acetileno, árgon e óxido nitroso. Estes obedeceram a alguns requerimentos, descritos nas Tabelas 2, de modo a garantir um bom funcionamento.

	Acetileno	Árgon	Óxido nitroso
Pressão	0.62 bar	1.04 bar	2.75 bar
Pureza	≥ 98.5%	≥ 99.999%	Grau AA
Fluxo	0.8 a 5.1 L/min	-	

Tabela 2: Requerimentos de operação para o acetileno, árgon e óxido nitroso.

Os diferentes reagentes utilizados no desenvolvimento do trabalho experimental encontram-se descritos na Tabela 3. Todas as soluções aquosas foram preparadas utilizando água ultrapura, a qual foi obtida recorrendo a um sistema de purificação de água Milli-Q® EQ 7000 (resistividade 18.2 M Ω cm⁻¹).

Tabela 3: Reagentes utilizados na preparação de soluções.

Reagente	Concentração	Matriz	Fornecedor
Ácido nítrico, 68%	-		VWR Chemicals
Padrão de alumínio (lote 1)	1003.3 ± 3.2 mg/L	2 % HCI	VWR Chemicals
Padrão de cálcio (lote 1)	1000.9 ± 2.4 mg/L	2 % HNO₃	VWR Chemicals
Padrão de cobre (lote 1)	998.3 ± 2.7 mg/L	2 % HNO₃	VWR Chemicals
Padrão de ferro (lote 1)	997.1 ± 2.4 mg/L	2 % HCI	VWR Chemicals
Padrão de manganês (lote 1)	998.9 ± 2.4 mg/L	2 % HNO₃	VWR Chemicals
Padrão de sódio (lote 1)	999.6 ± 3.2 mg/L	2 % HNO₃	VWR Chemicals
Padrão de zinco (lote 1)	1001.2 ± 2.7 mg/L	2 % HNO₃	VWR Chemicals
Padrão de alumínio (lote 2)	1001.9 ± 3.5 mg/L	2 % HCI	VWR Chemicals
Padrão de cálcio (lote 2)	998.7 ± 2.6 mg/L	2 % HNO₃	VWR Chemicals
Padrão de cobre (lote 2)	1001.4 ± 4.8 mg/L	2 % HNO₃	VWR Chemicals
Padrão de ferro (lote 2)	1003.4 ± 2.4 mg/L	2 % HCI	VWR Chemicals
Padrão de manganês (lote 2)	997.7 ± 2.2 mg/L	2 % HNO₃	VWR Chemicals
Padrão de sódio (lote 2)	996.6 ± 3.0 mg/L	2 % HNO₃	VWR Chemicals
Padrão de zinco (lote 2)	1003.6 ± 2.9 mg/L	2 % HNO₃	VWR Chemicals

2.2. Soluções preparadas para a validação dos métodos de ensaio

As soluções necessárias para a validação dos métodos de ensaio consistem em água livre de metais e nas soluções dos padrões utilizados para traçar as curvas de calibração do alumínio, cálcio, cobre, ferro, manganês, sódio e zinco. A preparação detalhada de cada solução e as frases de perigo e precaução necessárias encontram-se no anexo 1 e 2, respetivamente.

2.3. Preparação das amostras utilizadas na aplicação dos métodos

A amostras não podem ser analisadas diretamente e assim, é necessário preparar as mesmas antes das análises. Desta forma, retirou-se um volume de 100 mL de cada amostra e acidificou-se com ácido nítrico até se atingir um pH igual ou inferior a 2. Este processo foi comum a todos as amostras com exceção para a amostra retratada no ponto 4.3, que teve um processo distinto de preparação indicado pelo fabricante e protegido por razões de confidencialidade.

2.4. Procedimento para análises por EAA e EAA-FG

Foram desenvolvidos dois procedimentos diferentes, tendo em conta as diferentes técnicas de análise aplicadas. Desenvolveu-se um procedimento para análises com recurso à técnica de absorção atómica em chama e outro para as análises com recurso a forno de grafite

Relativamente ao primeiro, o procedimento desenvolvido foi o seguinte:

- 1- Abrir os gases necessários no exterior, ativar a ventilação e abrir os gases no interior.
- 2- Ligar o equipamento e iniciar o software.
- 3- Ligar as lâmpadas necessárias para as análises a efetuar e deixar as mesmas estabilizar durante cerca de 10 minutos.
- 4- Preparar as soluções necessárias conforme descrito no ponto anterior.
- 5- Acionar a chama.
- 6- Selecionar o método.
- 7- Iniciar a sequência de sucção de padrões, caso necessário, de amostras.
- 8- Após finalizar a análise, aspirar água livre de metais durante 1 minuto de modo a limpar o equipamento.
- 9- Desligar a chama.
- 10- Fechar os gases no interior, desativar a ventilação e fechar os gases no exterior.

Já para as análises em forno de grafite, foi elaborado o procedimento que se segue:

- 1- Abrir o árgon no exterior, ativar a ventilação e abrir o gás e a água no interior.
- 2- Ligar o equipamento e iniciar o software.
- 3- Ligar as lâmpadas necessárias para as análises a efetuar e deixar as mesmas estabilizar durante cerca de 10 minutos.
- 4- Preparar as soluções necessárias conforme descrito no ponto anterior.
- Realizar a calibração e setup ótico do equipamento conforme descrito na instrução de trabalho.
- 6- Selecionar o método e colocar as soluções nos locais indicados pelo software.
- 7- Realizar a análise.
- 8- Finalizada a análise, selecionar a ação "Clean Cuvette".
- 9- Desligar o equipamento.
- 10- Fechar o gás e a água no interior, desativar a ventilação e fechar o gás no exterior.

No anexo 3, encontra-se a instrução de trabalho acerca da operação e manutenção do equipamento.

3. Apresentação e discussão dos resultados

Ao longo deste capítulo serão apresentados os resultados obtidos ao longo do desenvolvimento do trabalho experimental. Serão discutidas as gamas de trabalho selecionadas e os resultados obtidos na avaliação de cada parâmetro necessário para a validação dos métodos utilizados.

3.1. Seleção das gamas de trabalho

As gamas de trabalho foram selecionadas de acordo com os decretos-lei^{81,82} vigentes para a qualidade da água, as normas europeias válidas para as matrizes alvo de análise³⁴⁻³⁶ e com a bibliografia disponível.^{56,61,84,85} O principal objetivo passou por selecionar a gama de trabalho mais versátil possível para cada metal de modo a possibilitar a análise do maior número possível de amostras com recurso ao menor número possível de diluições ou outros processos passíveis de introdução de erros ou contaminações.

Assim sendo, as gamas de trabalho selecionadas para os métodos de análise por absorção atómica em chama e em forno de grafite encontram-se na Tabela 4 e 5, respetivamente. A definição destas gamas de trabalho é primordial para a determinação dos parâmetros de validação do método analítico.

De forma comum aos métodos em chama e grafite, com a exceção do alumínio em ambos, foi possível estabelecer o primeiro padrão a uma concentração relativamente próxima de 0. No alumínio isto não foi possível devido à baixa intensidade do sinal obtido com os padrões deste metal. Em contrapartida, foi possível utilizar um último padrão de concentração superior.

Metal	Concentração (mg/L)			
	Padrão 1	Padrão 2	Padrão 3	Padrão 4
Alumínio	7.5	10.0	15.0	20.0
Cobre	0.5	1.0	2.5	4.0
Cálcio	0.5	1.0	2.5	4.0
Ferro	0.5	1.0	2.5	4.0
Manganês	0.5	1.0	2.5	4.0
Sódio	0.5	1.0	2.5	4.0
Zinco	0.5	1.0	2.5	4.0

Tabela 4: Gamas de trabalho identificadas para a deteção dos diferentes metais por absorção atómica em chama.

Metal	Concentração (µg/L)			
	Padrão 1	Padrão 2	Padrão 3	Padrão 4
Alumínio	8.0	15.0	23.0	30.0
Manganês	1.5	3.0	5.0	7.0

Tabela 5: Gamas de trabalho identificada para a deteção dos diferentes metais por absorção atómica em forno de grafite.

3.2. Parâmetros de avaliação para a validação dos métodos

Segundo o Guia RELACRE 13^{®2}, os parâmetros necessários para validar um método de ensaio são a gama de trabalho, a sensibilidade, os limiares analíticos, a precisão e exatidão, e para além destes também foi selecionada a linearidade. Desta forma, foram estes os parâmetros selecionados para proceder à validação dos métodos em análise. Todos estes parâmetros foram calculados da mesma forma para os métodos de análise por EAA e EAA-FG e para os diferentes metais em estudo. Assim, será apresentado apenas um exemplo da metodologia utilizada para o cálculo de cada parâmetro e os restantes encontramse indicados no anexo 4.

3.2.1. Gama de trabalho

A gama de trabalho avaliou-se com recurso a um teste de PG para analisar se existe uma diferença significativa entre a variância de dois grupos de dados. O primeiro grupo de 10 réplicas da absorvância obtida para o menor padrão da reta de calibração e o segundo grupo com 10 réplicas contempla a absorvância do padrão de maior concentração utilizado na reta de calibração. O parâmetro considera-se validado caso a diferença entre as variâncias dos dois grupos de dados não seja significativa, ou seja, caso o valor determinado de PG for inferior ao valor tabelado de F. As variâncias dos dois conjuntos de dados foram obtidos com recurso às equações 1.5 e 1.6. De seguida, com recurso às equações 1.7 ou 1.8 determina-se o valor de PG que é posteriormente comparado com o valor tabelado correspondente da tabela de distribuição de F. A título de exemplo, na Tabela 6, são apresentados os valores das absorvâncias obtidos para o menor e o maior padrão de ferro em chama e, na Tabela 7, os valores obtidos para a aplicação do teste PG.

Conforme é possível comprovar através da observação da Tabela 7, o valor de PG foi menor que o valor de F e, assim, é possível validar a gama de trabalho selecionada.

Foi aplicada a mesma forma de cálculo a todos os métodos. Como foi referido anteriormente, os dados relativos aos restantes metais deste e dos restantes parâmetros encontram-se no anexo 4, sendo que foi possível a validação para todas as determinações.

	Valores das absorvâncias (u.a.)		
Ensaio	Menor padrão	Maior padrão	
1	0.020	0.154	
2	0.020	0.161	
3	0.020	0.152	
4	0.021	0.153	
5	0.020	0.152	
6	0.020	0.160	
7	0.021	0.166	
8	0.020	0.154	
9	0.021	0.154	
10	0.022	0.159	

Tabela 6: Valores das absorvâncias do menor e maior padrão de ferro em chama.

Tabela 7: Valores obtidos para a aplicação do teste PG para o ferro em chama.

Parâmetro	Menor padrão	Maior padrão
Média	0.021	0.157
Variância	5×10-6	2.2×10 ⁻⁵
PG	0.0	02
F	0.3	31

3.2.2. Sensibilidade

De modo a avaliar a sensibilidade do método analítico, avaliaram-se 10 réplicas de declives de diferentes curvas de calibração realizadas. Procedeu-se ao cálculo da média dos declives e ao desvio padrão dos mesmos para posteriormente determinar limites de controlo, com recurso às equações A1.20 e A1.21 (anexo 5), e avaliar se os declives se encontram dentro dos mesmos. Caso se verifique esta situação, o parâmetro é dado como validado. A título de exemplo, são apresentados na Tabela 8, os valores dos declives obtidos e, na Tabela 9, os valores para o cálculo deste parâmetro para a determinação de ferro pelo método de chama.

Através da análise das Tabelas 8 e 9, conclui-se que todos os declives obtidos se encontram dentro dos limites, validando assim este parâmetro.

Curva	Declive
1	0.0386
2	0.0401
3	0.0381
4	0.0382
5	0.0382
6	0.0399
7	0.0411
8	0.0387
9	0.0388
10	0.0396

Tabela 8: Declives obtidos para várias curvas de calibração do padrão ferro em chama.

Tabela 9: Valores obtidos para a determinação dos limites de controlo para o ferro em chama.

Parâmetro	Valor
Declive médio	0.0391
Desvio padrão	9.84×10 ⁻⁴
Limite inferior de controlo ¹	0.0361
Limite superior de controlo ²	0.0421

¹Determinado recorrendo à equação A1.20; ²Determinado recorrendo à equação A1.21.

3.2.3. Limiares analíticos

Os limiares analíticos avaliados foram o limite de deteção e de quantificação, com recurso às equações 1.11 e 1.12, respetivamente. Definiu-se como critério de validação dos parâmetros que os mesmos teriam de ser inferiores à concentração do padrão de menor concentração da curva de calibração. A título de exemplo, na Tabela 10, são apresentados os dados relativos ao cálculo destes parâmetros, assim como o valor dos mesmos para o ferro em chama, sendo possível verificar que o LD obtido para o ferro foi de 0.08 mg/L e o LQ foi de 0.24 mg/L.

Parâmetro	Valor
Declive	0.0401
Desvio padrão da reta	9.50×10 ⁻⁴
LD	0.08 mg/L
LQ	0.24 mg/L

Tabela 10: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o ferro em chama.

3.2.4. Precisão

A precisão na determinação da concentração dos metais em análise foi estudada com recurso à reprodutibilidade e à precisão intermédia, obtida para cada método analítico estudado. A reprodutibilidade avaliou-se através do coeficiente de variação (CV) de 10 réplicas de declives de curvas de calibração. Relativamente à precisão intermédia, foi avaliado o CV de dois padrões pertencentes à curva, ao longo de 10 dias. Os padrões selecionados foram os padrões intermédios para todos os métodos analíticos em estudo. Foi definido como critério de validação um CV máximo de 10% para ambos os parâmetros. O CV determina-se com recurso à equação A1.22, que se encontra devidamente especificada no anexo 5.

A título de exemplo, na Tabela 11, são apresentados os valores das curvas de calibração e, na Tabela 12, os dados obtidos no cálculo da reprodutibilidade. Na Tabela 13, apresentam-se os valores de absorvância dos padrões intermédios das curvas de calibração do ferro em chama e, na Tabela 14, os valores obtidos no cálculo da precisão intermédia.

Através das Tabelas 12 e 14, é possível aferir que o CV obtido foi sempre inferior a 10%, sendo assim possível validar este parâmetro.

Curva	Declive
1	0.0386
2	0.0401
3	0.0381
4	0.0382
5	0.0382
6	0.0399
7	0.0411
8	0.0387
9	0.0388
10	0.0396

Tabela 11: Declives obtidos para várias curvas de calibração para o ferro em chama.

Parâmetro	Valor
Declive médio	0.0391
Desvio padrão	9.84×10 ⁻⁴
CV de reprodutibilidade	2.51%

Tabela 12: Valores obtidos para a reprodutibilidade para o ferro em chama.

Tabela 13: Valores de absorvância dos padrões intermédios das curvas de calibração para o ferro em chama.

Curva	2º Padrão	3º Padrão
1	0.041	0.097
2	0.041	0.099
3	0.040	0.097
4	0.040	0.099
5	0.040	0.099
6	0.041	0.098
7	0.041	0.099
8	0.039	0.099
9	0.042	0.103
10	0.041	0.101

Tabela 14: Valores obtidos no cálculo da precisão intermédia para o ferro em chama.

Parâmetro	Valor 2º Padrão	Valor 3º Padrão
Declive médio	0.041	0.099
Desvio padrão	8.43×10 ⁻⁴	1.79×10 ⁻³
CV de reprodutibilidade	2.10%	1.81%

3.2.5. Exatidão

De forma a avaliar a exatidão do método analítico, procedeu-se à análise de cinco réplicas de um material de referência, o qual nos oferece a garantia de conhecer com exatidão a concentração de metal contida no mesmo. Neste caso em particular, o material de referência utilizado consistiu num padrão do metal, mas proveniente de um lote diferente do utilizado na preparação das curvas de calibração. Procedeu-se cálculo da média e do desvio padrão dos resultados obtidos e juntamente com a realização de um teste

de t (equação 1.17), pode-se aferir acerca da exatidão da determinação experimental. Quando terpermental é menor que t_{ertero}, o parâmetro é dado como validado. A título de exemplo, na Tabela 15, são apresentados os valores das réplicas analisadas e, na Tabela 16, os valores utilizados no cálculo da exatidão para o ferro em chama.

Os valores apresentados na Tabela 16 demonstram que o método é eficaz, já que o valor de |t| é inferior ao valor de t tabelado.

Solução	Concentração (mg/L)
MR	2.50
Réplica 1	2.58
Réplica 2	2.46
Réplica 3	2.47
Réplica 4	2.54
Réplica 5	2.30

Tabela 15: Valores de concentração do MR e das réplicas analisadas.

Tabela 16: Valores obtidos no cálculo da exatidão para o ferro em chama.

Parâmetro	Valor
Média	2.47
Desvio padrão	0.107
t	0.625
ttabelado	2.78

3.2.6. Linearidade

A linearidade foi avaliada através dos coeficientes de correlação obtidos. Caso o valor obtido fosse superior a 0.995, o método era considerado linear. A linearidade deve ser avaliada com recurso a um teste de Mandel, contudo como se estava a trabalhar com declives de valor muito baixo, todos os cálculos indicavam que o modelo de segunda ordem seria o mais indicado. Como se verificava experimentalmente que isso não acontecia, optou-se por avaliar a linearidade apenas com recurso aos coeficientes de correlação. Na Figura 9, representa-se o gráfico obtido para uma curva de calibração do ferro em chama e o respetivo coeficiente de calibração (R^a).

Através da observação dos dados presentes na Figura 9, conclui-se que a reta apresenta um coeficiente de correlação superior a 0.995 e, desta forma, o método pode ser considerado linear.

Figura 9: Representação gráfica de uma curva de calibração para o ferro em chama.

3.3. Resultados obtidos na validação de cada metal

Tal como já relatado, para um método ser considerado validado, é necessário que todos os parâmetros avaliados obtenham um resultado adequado nos ensaios realizados. De forma a concluir acerca da validação dos métodos analíticos utilizados, os resultados obtidos para as determinações de alumínio, cálcio, cobre, ferro, manganês, sódio e zinco, foram compilados nas Tabelas 17 a 25. Como se pode aferir através das mesmas, e tendo em conta o descrito nas secções anteriores, todos os parâmetros de cada método tiveram um desempenho adequado e, desta forma, consideram-se todos validados.

	Parâmetro	Resultado	Validação
	Reprodutibilidade	CV = 6.42%	Validado
	Sensibilidade	Declives dentro dos intervalos	Validado
	Gama de trabalho	0.14 < 0.31	Validado
Alumínio	Limite de deteção	0.52 mg/L	Validado
	Limite de quantificação	1.57 mg/L	Validado
	Linearidade	0.9995	Validado
	Precisão intermédia	9.01% e 9.23%	Validado
	Exatidão	0.02 < 2.78	Validado

	Tabela 17: Avalia	nção dos parâmetro	os para o alumínio	em chama.
--	-------------------	--------------------	--------------------	-----------

	Parâmetro	Resultado	Validação
	Reprodutibilidade	CV = 4.22%	Validado
	Sensibilidade	Declives dentro dos intervalos	Validado
	Gama de trabalho	0.01 < 0.31	Validado
Cálcio	Limite de deteção	0.12 mg/L	Validado
	Limite de quantificação	0.35 mg/L	Validado
	Linearidade	0.9996	Validado
	Precisão intermédia	5.48% e 6.24%	Validado
	Exatidão	0.50 < 2.78	Validado

Tabela 19: Avaliação dos parâmetros para o cobre em chama.

	Parâmetro	Resultado	Validação
	Reprodutibilidade	CV = 2.10%	Validado
	Sensibilidade	Declives dentro dos intervalos	Validado
	Gama de trabalho	0.07 < 0.31	Validado
Cobre	Limite de deteção	0.07 mg/L	Validado
	Limite de quantificação	0.21 mg/L	Validado
	Linearidade	0.9999	Validado
	Precisão intermédia	2.54% e 1.74%	Validado
	Exatidão	1.14 < 2.78	Validado

Tabela 20: Avaliação dos parâmetros para o ferro em chama.

	Parâmetro	Resultado	Validação
	Reprodutibilidade	CV = 2.51%	Validado
	Sensibilidade	Declives dentro dos intervalos	Validado
	Gama de trabalho	0.02 < 0.31	Validado
Ferro	Limite de deteção	0.08 mg/L	Validado
	Limite de quantificação	0.24 mg/L	Validado
	Linearidade	0.9998	Validado
	Precisão intermédia	2.07% e 1.81%	Validado
	Exatidão	0.63 < 2.78	Validado

	Parâmetro	Resultado	Validação
	Reprodutibilidade	CV = 1.46%	Validado
	Sensibilidade	Declives dentro dos intervalos	Validado
	Gama de trabalho	0.15 < 0.31	Validado
Manganês	Limite de deteção	0.04 mg/L	Validado
	Limite de quantificação	0.12 mg/L	Validado
	Linearidade	1	Validado
	Precisão intermédia	5.77% e 3.51%	Validado
	Exatidão	1.41 < 2.78	Validado

Tabela 21: Avaliação dos parâmetros para o manganês em chama.

Tabela 22: Avaliação dos parâmetros para o sódio em chama.

Sódio	Parâmetro	Resultado	Validação
	Reprodutibilidade	CV = 8.43%	Validado
	Sensibilidade	Declives dentro dos intervalos	Validado
	Gama de trabalho	0.02 < 0.31	Validado
	Limite de deteção	0.07 mg/L	Validado
	Limite de quantificação	0.20 mg/L	Validado
	Linearidade	0.9999	Validado
	Precisão intermédia	6.67% e 8.11%	Validado
	Exatidão	0.65 < 2.78	Validado

Tabela 23: Avaliação dos parâmetros para o zinco em chama.

Zinco	Parâmetro	Resultado	Validação
	Reprodutibilidade	CV = 3.83%	Validado
	Sensibilidade	Declives dentro dos intervalos	Validado
	Gama de trabalho	0.06 < 0.31	Validado
	Limite de deteção	0.006 mg/L	Validado
	Limite de quantificação	0.02 mg/L	Validado
	Linearidade	1	Validado
	Precisão intermédia	2.68% e 4.35%	Validado
	Exatidão	1.41 < 2.78	Validado

Tabela 24: Avalia	cão dos pa	râmetros para	a o alumínio	em grafite.
-------------------	------------	---------------	--------------	-------------

	Parâmetro	Resultado	Validação
Alumínio	Reprodutibilidade	CV = 8.05%	Validado
	Sensibilidade	Declives dentro dos intervalos	Validado
	Gama de trabalho	0.22 < 0.31	Validado
	Limite de deteção	0.48 µg/L	Validado
	Limite de quantificação	1.44 µg/L	Validado
	Linearidade	0.9999	Validado
	Precisão intermédia	9.05% e 8.13%	Validado
	Exatidão	0.29 < 2.78	Validado

Tabela 25: Avaliação dos parâmetros para o manganês em grafite.

ParâmetroResultadoValidaçãoReprodutibilidadeCV = 4.83%ValidadoSensibilidadeDeclives dentro dos intervalosValidadoGama de trabalho0.08 < 0.31ValidadoLimite de deteção0.31 µg/LValidadoLimite de quantificação0.93 µg/LValidadoLinearidade0.9992ValidadoPrecisão intermédia5.62% e 6.65%ValidadoExatidão0.70< 2.78Validado				
ReprodutibilidadeCV = 4.83%ValidadoSensibilidadeDeclives dentro dos intervalosValidadoGama de trabalho0.08 < 0.31		Parâmetro	Resultado	Validação
SensibilidadeDeclives dentro dos intervalosValidadoManganêsGama de trabalho0.08 < 0.31ValidadoLimite de deteção0.31 µg/LValidadoLimite de quantificação0.93 µg/LValidadoLinearidade0.9992ValidadoPrecisão intermédia5.62% e 6.65%ValidadoExatidão0.70< 2.78Validado		Reprodutibilidade	CV = 4.83%	Validado
ManganêsGama de trabalho0.08 < 0.31		Sensibilidade	Declives dentro dos intervalos	Validado
ManganêsLimite de deteção0.31 μg/LValidadoLimite de quantificação0.93 μg/LValidadoLinearidade0.9992ValidadoPrecisão intermédia5.62% e 6.65%ValidadoExatidão0.70< 2.78Validado		Gama de trabalho	0.08 < 0.31	Validado
Limite de quantificação0.93 µg/LValidadoLinearidade0.9992ValidadoPrecisão intermédia5.62% e 6.65%ValidadoExatidão0.70< 2.78Validado	Manganês	Limite de deteção	0.31 µg/L	Validado
Linearidade0.9992ValidadoPrecisão intermédia5.62% e 6.65%ValidadoExatidão0.70< 2.78		Limite de quantificação	0.93 µg/L	Validado
Precisão intermédia5.62% e 6.65%ValidadoExatidão0.70< 2.78		Linearidade	0.9992	Validado
Exatidão 0.70< 2.78 Validado		Precisão intermédia	5.62% e 6.65%	Validado
		Exatidão	0.70< 2.78	Validado

Através da observação das tabelas anteriores, conclui-se que foi possível validar todos os métodos, apesar de existirem alguns resultados próximos dos limites estabelecidos para a aceitação do critério. Entre estes, destacam-se os valores obtidos para a reprodutibilidade do sódio e do alumínio em grafite e os valores de precisão intermédia para o alumínio em chama e grafite. Ao longo do desenvolvimento do trabalho experimental, estes metais foram os que se revelaram mais sensíveis e suscetíveis a interferências. Em contrapartida, o cobre, ferro e zinco obtiveram resultados excelentes e bastante abaixo dos valores limite.

4. Aplicações dos métodos desenvolvidos

Conforme foi sendo realizada a validação de alguns métodos, os mesmos foram sendo aplicados em casos concretos que surgiram fruto do funcionamento normal da empresa. Ao longo deste capítulo, serão apresentados esses casos.

4.1. Água proveniente de indústria têxtil

A empresa foi abordada por um cliente do setor têxtil com o intuito de encontrar a razão de um problema que estava a afetar alguns dos processos produtivos do mesmo. Deste modo, e seguindo a metodologia desenvolvida, foi realizada uma análise com o objetivo de quantificar a presença de alumínio, cobre, ferro, manganês e zinco na água utilizada por este cliente. Os resultados obtidos encontram-se na Tabela 26.

Tabela 26: Concentração de metais presentes numa amostra da água utilizada por um cliente do setor têxtil.

Metal	Concentração
Alumínio	Inferior ao LD
Cobre	Inferior ao LD
Ferro	Inferior ao LD
Manganês	6.03 µg/L
Zinco	Inferior ao LD

A análise revelou que a água era isenta dos metais analisados, com exceção do manganês, que ainda assim apresentou uma concentração muito reduzida. Desta forma, foi possível concluir que o problema que afetava a produção não era proveniente da água utilizada.

4.2. Controlo diário do ferro em águas internas

Após concluída a validação do método para o ferro em chama, foi realizado um controlo diário do teor do metal em quatro tipos de águas internas da empresa. O primeiro tipo consiste numa água utilizada na produção de um composto comercializado pela empresa e que deve ser isenta de ferro, denominada de água "A". A segunda água é denominada de "água bruta" e é proveniente de captações de furos e de água

da chuva. De seguida, a "água de serviço", que é obtida a partir da anterior, e que passa num desferrificador, descalcificador, filtro multimédia e é ainda aplicado um tratamento à base de cloro. Por fim, a "água de osmose" que se obtém através da passagem da anterior por membranas de osmose, neutralização do cloro com bissulfito de sódio e correção do pH com hidróxido de sódio.

Os resultados obtidos para este controlo foram bastante extensos, já que se trata de um controlo diário realizado ao longo de alguns meses, e repetitivos. Desta forma, optou-se por apresentar apenas um resultado representativo de todos os restantes, já que ao longo do processo, nenhuma amostra apresentou diferenças significativas em comparação com as restantes.

Neste caso em particular, os resultados obtidos revelaram constantemente que os valores de ferro obtidos ao longo da realização do controlo eram sempre inferiores ao limite de deteção e, desta forma, as várias águas foram sempre consideradas isentas de ferro.

4.3. Determinação do teor de cálcio e sódio no produto "X"

Uma das aplicações dos métodos desenvolvidos consistiu na determinação de cálcio e sódio num produto químico. Este produto será denominado de "X" por razões de confidencialidade. A percentagem total do produto químico em questão varia entre 65% e 75%, conforme a necessidade dos consumidores. Esta variação percentual está diretamente relacionada com a variação do teor de cálcio e sódio. Desta forma, foram analisadas várias amostras de diferentes percentagens de modo a avaliar a variação de cálcio e sódio de acordo com a percentagem do composto químico em questão. A preparação das amostras foi executada de acordo com diretrizes fornecidas pelo fornecedor. O procedimento de preparação da amostra mantem-se, a pedido do fornecedor, confidencial. Na Tabela 27 encontram-se os resultados obtidos para diferentes amostras analisadas.

Amostra	Teor de cálcio (%)	Teor de sódio (%)
1	19.1	6.3
2	22.7	6.9
3	22.9	3.8
4	25.8	5.0
5	23.3	4.6
6	26.4	4.8
7	19.8	6.0
8	25.0	5.6
9	23.8	4.1
10	22.8	3.5
11	20.0	6.8
12	19.3	2.6

Tabela 27: Teores de cálcio e sódio nas diferentes amostras de produto "X" analisados.

É possível concluir através da Tabela 27 que, de uma forma geral, existe um aumento do teor de sódio quando o teor de cálcio está em menor percentagem. Também se verificou que o teor de cálcio presente está diretamente relacionado com a percentagem do produto químico, ou seja, quanto menor a percentagem menor é o teor do metal. Devido à confidencialidade do serviço em questão, não é possível divulgar a percentagem do produto químico em cada uma das amostras.

4.4. Avaliação de água de neutralização interna

A água de neutralização da empresa resulta do tratamento de águas utilizadas em vários processos industriais inerentes ao funcionamento da empresa, tal como a lavagem de chão, tanques, depósitos ou contentores. Todas estas águas são encaminhadas para um tanque de homogeneização, onde se mede o pH e depois são conduzidas para um tanque de neutralização. Neste último, acerta-se o pH para um valor entre 5.5 e 9.5 de modo a ser possível encaminhar esta água para uma estação de tratamento de águas residuais (ETAR).

Foi realizada uma avaliação destas águas durante onze dias com o objetivo de caracterizar esta água e avaliar a variação do teor de alumínio, cálcio, cobre e ferro, de acordo com os itens em produção. A preparação das amostras consistiu num processo de digestão (pormenorizado no anexo 6) e acidificação, conforme descrito na parte experimental (capítulo 2.3). Na Tabela 28, encontram-se os valores obtidos.

Dia	Alumínio (mg/L)	Cálcio (mg/L)	Cobre (mg/L)	Ferro (mg/L)
1	8.5	66.1	ND	1.0
2	5.1	34.2	ND	0.64
3	4.3	71.7	ND	0.65
4	2.2	50.6	ND	0.55
5	16.6	11.3	ND	0.62
6	6.9	58.4	ND	9.0
7	3.6	72.6	ND	7.8
8	93.8	12.0	ND	5.0
9	143.5	62.8	ND	31.8
10	78.4	51.8	ND	37.6
11	16.9	85.6	ND	9.5

Tabela 28: Concentração dos metais na água de neutralização ao longo do tempo. (ND: não detetado)

Através da observação da Tabela 28, é possível concluir que existe uma grande oscilação nos resultados, justificada pela variedade constante na produção da empresa. O único parâmetro que se manteve constante foi o cobre, que se manteve sempre abaixo do limite de deteção e se considera, portanto, como não detetado.

5. Conclusão

É reconhecido globalmente que a água é um dos recursos mais escassos e ao mesmo tempo, dos mais vitais para a humanidade. Contudo, o crescimento das dificuldades relacionadas ao acesso a água de qualidade aparentam não abrandar. Assim, é fundamental testar a água existente de modo a avaliar se a mesma pode ou não ser consumida. No caso de a água não estar de acordo com os padrões que permitem o seu consumo, é possível recorrer a uma vasta gama de tratamentos, entre os quais se encontra o recurso a produtos químicos. A análise destes produtos químicos também é de vital importância, já que a presença de contaminantes nestes pode causar a contaminação das águas.

A EAA assume um papel preponderante na área da análise de águas e de produtos químicos utilizados no tratamento das mesmas já que é uma técnica versátil, precisa e rápida.

Relativamente ao plano de estágio traçado inicialmente, apenas foi possível cumprir parcialmente o mesmo. Verificou-se ao longo do estágio que os processos de validação nem sempre resultam à primeira tentativa e por vezes surgem dificuldades que se opõem ao progresso. Estas dificuldades por vezes são resolvidas rapidamente, mas existem algumas cuja resolução não é tão simples e o tempo necessário para a sua resolução aumenta. Surgiram dificuldades relacionadas com os métodos em si, já que devido à suscetibilidade a interferências de alguns destes, por vezes não era possível obter retas aceitáveis. Também surgiram entraves relacionados com o equipamento em si, relacionados com a calibração do mesmo. Este tipo de dificuldades técnicas acarretava o contacto e assistência do fabricante, que por vezes não era possível obter imediatamente.

Ficaram concluídos os processos de validação da análise dos seguintes metais por EAA em matrizes aquosas: alumínio e manganês em chama e em grafite, e cálcio, cobre, ferro, sódio e zinco em chama. Os seguintes parâmetros foram avaliados: gama de trabalho, sensibilidade, limiares analíticos, precisão, exatidão e linearidade. Devido à obtenção de resultados positivos em todos os parâmetros e consequente validação dos métodos, futuramente será desenvolvida também a validação dos restantes itens previstos no plano de trabalhos.

De modo a dar seguimento à validação dos métodos, os mesmos foram empregues em situações reais. Realizou-se uma análise a uma água de consumo proveniente da indústria têxtil com o objetivo de quantificar os metais presentes, que revelou um teor de metias abaixo dos LD, com exceção para o manganês. Também se realizou um controlo diário de uma série de águas internas com o propósito de monitorizar o teor de ferro nas mesmas, que obtiveram sempre resultados abaixo do LD. Procedeu-se também à análise de um produto químico, em solução aquosa, de modo a determinar o teor de cálcio e sódio em função da percentagem do produto químico. Por fim, realizou-se a análise de uma água interna

da empresa ao longo de alguns dias de modo a entender de que modo varia o teor de metais da mesma em função dos compostos em produção.

O trabalho desenvolvido ao longo deste estágio foi sempre bastante valorizado e o seu progresso foi acompanhado com proximidade pelos responsáveis na empresa, devido à importância que tem para a mesma.

Do ponto de vista pessoal, tive sempre a oportunidade de colocar em prática todos os conhecimentos adquiridos ao longo do percurso académico e a liberdade de aplicar os mesmos de forma a procurar soluções para questões que foram surgindo ao longo do desenvolvimento do projeto, sempre com o apoio e supervisão da orientadora. Considero que esta foi uma experiência bastante enriquecedora e um contributo essencial para o meu futuro enquanto profissional.

Anexos

Anexo 1: Preparação das soluções utilizadas

- Água livre de metais: adicionou-se alguma água ultrapura a um balão de 1000 mL, acrescentouse 5 mL de ácido nítrico 68% e perfez-se o volume.

- Solução padrão dos metais (100 mg/L): colocou-se 5 mL de solução padrão do metal de concentração 1 g/L num balão de 50 mL e perfez-se o volume.

- Padrões para a curva de calibração de alumínio em chama: prepararam-se os padrões de concentração 7.5, 10, 15 e 20 mg/L através da adição de 1.5 mL, 2 mL, 3 mL e 4 mL de solução padrão de 100 mg/L a tubos de ensaio. Para totalizar um volume de 20 mL, acrescentou-se ainda o volume de água livre de metais necessário, ou seja, 18.5 mL, 18 mL, 17 mL e 16 mL.

- Padrões para a curva de calibração dos restantes metais em chama: prepararam-se os padrões de concentração 0.5, 1, 2.5 e 4 mg/L através da adição de 100 μL, 200 μL, 500 μL e 800 μL de solução padrão de 100 mg/L a tubos de ensaio. Para totalizar um volume de 20 mL, acrescentou-se ainda o volume de água livre de metais necessário, ou seja, 19.9 mL, 19.8 mL, 19.5 mL e 19.2 mL.

- Solução padrão de alumínio para grafite (200 μg/L): colocou-se 200 μL de solução padrão de alumínio 100 mg/L num balão de 100 mL e perfez-se o volume.

- Solução padrão de manganês para grafite (10 μg/L): colocou-se 10 μL de solução padrão de zinco 100 mg/L num balão de 100 mL e perfez-se o volume.

Anexo 2: Frases de perigo e precaução

Reagente	Frase (H)
	H272: Pode agravar incêndios; comburente.
Ácido nítrico	H290: Pode ser corrosivo para os metais.
Acido mitrico	H314: Provoca queimaduras na pele e lesões oculares graves.
	H318: Provoca lesões oculares graves.

Tabela A2-1: Frases de perigo (H) para os reagentes utilizados.

Tabela A2-2: Frases de precaução (P) para os reagentes utilizados.

Reagente	Frase (P)
	P210: Manter afastado do calor, superfícies quentes, faísca, chama aberta e outras fontes de ignição. Não fumar.
	P220: Manter afastado da roupa e de outras matérias combustíveis.
	P221: Tomar todas as precauções para evitar misturar com materiais combustíveis.
	P234: Mantenha sempre o produto na sua embalagem original.
	P260: Não respirar as poeiras/fumos/gases/névoas/vapores/aerossóis.
	P264: Lavar cuidadosamente após manuseamento.
Ácido Nítrico	 P280: Usar luvas de protecção/vestuário de protecção/protecção ocular/protecção facial. P301 + P330 + P331: EM CASO DE INGESTÃO: enxaguar a boca. NÃO provocar o vómito. P303 + P361 + P353: SE ENTRAR EM CONTACTO COM A PELE (ou o cabelo): retirar imediatamente toda a roupa contaminada. Enxaguar a pele com água [ou tomar um duche]. P305 + P351 + P338: SE ENTRAR EM CONTACTO COM OS OLHOS: enxaguar cuidadosamente com água durante vários minutos. Se usar lentes de contacto, retire-as, se tal lhe for possível. Continue a enxaguar. P310: Contacte imediatamente um CENTRO DE INFORMAÇÃO ANTIVENENOS/médico.
	P363: Lavar a roupa contaminada antes de a voltar a usar.
	P405: Armazenar em local fechado à chave.

Anexo 3: Regras gerais para a operação do equipamento de EAA

A presente Instrução de Trabalho tem como objetivo indicar como operar o equipamento destinado a análises com recurso à espetroscopia de absorção atómica.

2. ATIVAÇÃO DO EQUIPAMENTO

1- Abrir os gases no exterior de acordo com a análise a realizar. Se se realizar uma análise com chama de ar-acetileno, abrir apenas o acetileno. Se se realizar uma análise com chama de acetileno-protóxido de azoto, abrir os dois gases. Por outro lado, se realizar uma análise na câmara de grafite, proceder à abertura apenas do árgon.

2- No interior, proceder à ativação da ventilação e verificar se a mesma está a funcionar corretamente.

3- Proceder à abertura dos gases no interior. Caso utilize a função de chama do equipamento, abrir os gases necessários e o ar. Caso utilize a câmara de grafite, abrir o árgon e a água.

4- Ligar o equipamento e, se necessário, o forno de grafite.

5- Abrir o software SOLAAR no computador, cuja interface inicial terá o aspeto indicado na figura seguinte.

ningth (real	n	If Valage (V)		Absolution (A)	01810	Sample B	Signal	Red Concentr	ation Corrected	OTW D	-					-
			- 1			Al mod EX.M		1641,04	85/15/2024		A. Aude Tel				101-01	
ΛΛ		Δ		11	177	(here	4,002	25,0 9,000 0	mgt		System Loga	C Showal	(# Showton	15/00/2021	· · · · · · · · · · · · · · · · · · ·	28
1111		- 11		4	111	Sharebert 1	0.248	C.6 7,5000 U			Date	Ine	User		Menage	
				1.1		Thursday 2	2,242	0,0 55,0000 U			00/11/2021	15 45 33	line		Fame of	
0.0	8 H.	v		11		Standard &	2,968	0,0 20,000 U	-		09/11/2021	16.44.57	Uper		Flate off	
1				1		- Available of the		ALCONC. AS	entrant [e]	S	00/11/2021	10.75.50	User		Fiane in.	
				. in		Resample	Signal	Ente		MEAN	06/11/2021	15.32.43	User		Flane charging	
-	10	Case 173							Sonal		0641/2021	16 29 41	1 loss		figure on	
-	- F								(Spret		20/11/2021	10 20 36	Use		flane giving	
191									15.RSD		03/11/2021	161414	Uper		Deuterum Lang m	-
100	02	Lamp (31)						1	Concertitation		09/15/2921	151414	User		Lang solicited on	
112	A				man and a				Conected Concerting	05	05/11/2021	09.78-06	Une		Line wither or	
					minuburk				Auto Devilion		02/11/2021	16.19.25	User		Flate off	2
											* M.H. P.M.	12.15.44	1999		Provention)	
			11 - A - A		Corrected Total Background						1.0 0.8 0.8 0.4 0.2		Regreeted FR			
1						<u>[]</u>			dand :		0,0 0,1	0,2 0,3	0,4 0,5 0 Core	6 0,7	0.1 0.9 1.0	
0 10	20	10 40 Time (s)	50 6	4 75												

A partir desta interface, é possível criar um novo método de análise, abrir métodos já gravados, consultar o "Cook Book" e realizar análises.

3. REALIZAR UMA ANÁLISE

-

1- Carregar no ícone assinalado na figura seguinte. Após carregar no ícone, irá surgir o menu representado na segunda figura.

welength (n	er Status		MT Volkege (V)		Absolution	ce (A)		Results - RES	arra Signal	Red Concern	ration Corrected		_							
		- 1						Al mod 0311	-	16,11,01	03/11/2021		Audi	t Trail						
				ſ	1	2 777		Bank Standard 1 Standard 2	-0,002 0,019 0,027	25,8 0,000 U 0,8 7,5000 U 0,8 10,000 U	mgt		System Date 09/	Logs	C Show all Time 16.45.33	@ Showfr	m 13/08/ User User	2021 -	lo 11/ Message Flame of	/11/202
l	1.0	- 1		V	1.1	J,411		Standard 4 Analysis 183	0,061	0,0 20,0000 1	# #5/11/2621		05/	11/2021 11/2021	16:44:59		User		Flame off	
	/					/		Beramole	Simul	Bate		MEAN 1	05/	11/2021	16:39:58		User		Flame on Flame chary	nging
	5		C Lamp (R)					resunçõe	Sajisa	Care	Signal		03/	11/2021	16:39:49		User User		Flame off Flame on	
14		n [(Signel) % RSD		09/	11/2021	16:28:36		User User		Flame ignitie Douteeium L	ng Lano ov
			2 Lamp (%)								sd Concentration		- 09/	11/2021	16:14:14		User		Lamp switch	.hed on
	1										Corrected Concentration Auto Dik/ion		05/	11/2021	09:31:06		User		Lanp switch	thed on
													- 02/	11/2021	16:19:25		User		Flame off Channel and	in .
d - Cu						Correc	100						Calibratio	0		Segmente	dFn	(0 0	8
			.			Total Backg	ound						0,8 -							
													. 0,6-							
											-		0,4							
1						1							0,2 -							
								J					0,0	0,1	0,2 0,3	0,4 0,5	0,6 0	0,7 0,8	0,9	1,0
																Conc				_
		20	20 40	50	60	70														

invelorigit (real	PMT Votopr (V) Absolutions (A)	Sergels B Signel Bed Concentration Corrected B Arrendo 1931 Seguel Bed Second Arrive Second Arrive Second S	01812	4	and the second				00	11
0,0 1	6 3,277	Break Break Break Topological Break <	,	×	Synteen Lage Date 08-11/2021 08-11/2021 08-11/2021 08-11/2021 08-11/2021 08-11/2021 08-11/2021 08-11/2021 08-11/2021 08-11/2021 08-11/2021 08-11/2021 08-11/2021 08-11/2021	○ Show al Tree 16:45:30 16:45:30 16:45:37 16:39:40 16:29:40 16:29:41 16:24:51 16:14:14 16:14:14 16:19:26 16:19:26	Chosten Us Us Us Us Us Us Us Us Us Us Us Us Us	13/08/2021	Menage Menage Reve of Peers Pee	
gent-Dr 0.5 0.4 0.3	Control of Teal	Res Colo Trans 7	3				Begrootted F			
0.1 0.1 0.1 0.1 0.1 0 10 20	20 40 50 40 70 Tere 00		0K. Carol	Help	xe 0,1	0,2 0,3	0,4 0,5 Cont	¢,6 0,7	0,8 0,9 1,	-

- 2- Selecionar a opção "Library" e escolher o método desejado.
- 3- Selecionar o ícone indicado na figura de modo a abrir o menu das lâmpadas.

igh (red	PMT Voltage (V)	Abustance (A)	Sample	-	Red Concentratio	Corrected		A Auto Test			
۸۸	Δ.	A A 8 8	Al mod 1311	Abs	% mgt	mgt.		Syntom Loga	C Bood	S Storten [1309/2021	-] * [ILAL202]
00	1 1	2 9 9 9	Director of 1	0,018	0,0 7,5300 U			Date	Ine	Uue	Memace A
1111	I II.	1 / / / /	(Bundlerst 2	0,027	0,0 10,0000 U			08/11/2021	16-45.33	Uter	Faire of
M M	- W	1/.11	TBW/Bell 2	5,043	0,0 styl000 U			03/11/2021	16-44.50	User	Famr on
VIV	v	Julii	Stanovic 4	0,011	00 20,000 0	ALCONOM TO A		09/11/2021	16.44.57	Uper	Flate off.
1		1	- Analysis (1)		NICHE /	entered [e]		00/11/2021	16:39:58	User	Fiane an
- 22			Beaumete	Second 1	Bate Lo	11 1	antan I	• 09/11/2021	16.39.49	12 Gen	Flane charging
Care I	Contraction of the second s		- Charger			Sector		01/11/2021	16:39.49	User	Faute off
0	+CUMPTO					Chanal		00/11/2021	16.20.41	Une	Fame on
The second s	a second second second					% RSD		00/11/22/1	101014	Line	Deteron and and
	finding in the second					54		05/11/2021	101414	User	Loop tokthed on
R.S. 10.00	D3 Failblet					Concertention		05/11/2021	105712	Uper	Lanp politihed on
Carland						Convected concernment			09 31 06	Uses	Longs switched on
						Contractor .		2 02/11/2921	161925	User	Flate off
								an at comme	10.10.00	1075.0	Done torthe .
		2 3 4 Controls Decisioned				8		0.8 0.8 0.4 0.2			
								0,6 0,1	0,2 0,3 0	0,4 0,5 0,6 0,7 Cons:	0,8 0,9 1,0
									0,2 0,3 1	Conc. 0.3	- CA - CA - 1,3

4- Ligar as lâmpadas necessárias à análise através da barra "State". Selecionar "Off" nas lâmpadas pretendidas e deveram mudar o seu estado para "On". Ligar a lâmpada de deutério se necessário.

tentergit (rel	PMT Voltage (V)	Abustance (A)	Sangle B Signal	Red Concentration Co	Corrected an		a section of			
0,0	0	3,277	A mode 2011 Al Abs Dese 40002 Destanti 1 5,015 Denotes 1 5,015 Denotes 3 5,017 Denotes 4 5,011 Analysis 182	Science Science Science % mgt mgt 0.0 7,5000 U 0 0.0 7,5000 U 0 0.0 7,5000 U 0 0.0 7,5000 U 0 0.0 20,0000 U 0 0.0 20,0000 U 0 0.0 20,0000 U 0	9L 9L 7L2624 \$		System Loga Data 08/11/2021 09/11/2021 09/11/2021 09/11/2021	○ Show all Tange 16:45:33 16:44:51 16:44:57 16:23:56	IF Show tem 112/00/2021 Use Use Use Use Use	Barn of
	HCLave/D3	ubudaataataataa (Resample Signal	Bate a 300	rei Milasi grafi	7 ×	0941/2021 0941/2021 0941/2021 0941/2021 0941/2021 0941/2021 0941/2021 0941/2021	16 32 48 10 29 49 16 20 40 16 20 36 16 14 14 10 14 14 10 57 12 10 57 12	Use Use Use Use Use Use Use	Rame changing Rame of Rame on Rame on Rame goining Deutonian Lang net Lang ceitched on Lang ceitched on
Signed - Ger	- Indudiation for	(*) 2 (B	4 AtMg Code 2 Han Code 3 H Code 4 Code Code 5 Mr. Zn Code 6 Wr. Zn Code 6 Wr. Zn Code 6 Wr. Zn Code	8 10 8 8 6 8 8 10 8 10 9 10 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	75 04 75 04 75 04 75 04 75 04 75 04 0 04 0 04	Heb Lang Useps	2011/2201 1011/2201	191925	Use Too	Ren all
0,4		2 X 4 Corrected Total Deckground	C Destelon Larg Dn. How: 7212 Penet	Cansard Packin: a		ANN				
0.2- 0.1-						0,3	0,6 0,1	0,2 0,3	0,4 0,5 0,8 0,7 Conc	0.8 0.9 1.0
0.0	20 30 46 50 Time (1)	éa 70								

5- Ligar a chama. Carregar no botão representado na figura que estará a piscar no aparelho e segurar até que se estabeleça uma chama consistente (cerca de 3-4 segundos).

6- Preparar as soluções necessárias para a análise.

7- Verificar se os parâmetros da chama se encontram de acordo com o indicado no "Cook Book" (instruções acerca do "Cook Book" colocadas posteriormente) através da barra de estado identificada na figura.

8- Selecionar o ícone indicado na figura para iniciar a análise e seguir os passos indicados pelo software.

Nota: por defeito, a chama inicial do equipamento será de ar-acetileno. Ao selecionar o ícone indicado no passo 8, a chama irá alterar automaticamente para acetileno-protóxido de azoto, caso necessário. A chama de ar-acetileno deve estar ativa durante 10 minutos antes de proceder à alteração.

order Space			The second second	n.e				OWN				
git (real	MT Volage (V)	Abushare	Sample D	Signal	Red Co	occentration	Corrected a Concentration a		1. Aude Test			
۸۸	۸	A A55	M	Abs	250 00	gt.	mgt.		System Loga	C Show d	@ Showton 13/08/2021	· · · · · · · · · · · · · · · · · · ·
00		1711	Directored 1	0,018	0.0 7.5	5000 U			Date	Tree	Uver	Menage A
	U	1///	Standard 2	0,039	0.0 10	0000 U			08/11/2021	16:45:33	Uter	Flate of
V.V	V	J.411	Standard 4	0,011	0,0 20				03/11/2021	154450	User	Faint on
			Analysis 183	1000	12	148:35	05/11/2621		00/11/2021	16:39:56	User	Elane an
1.1		· ·	I manual I	mark 1		E.I	1		* 09/11/2021	16 39.49	User	Flane changing
			Resamptor	Seyed	Date:	î	Secul	100	03/11/2021	16:39:49	User	Faun of
LA :	CLANDIN						Clanet		09/11/2021	16.20.41	Use	Flame on Flame institute
THE T							% RSD		05/11/2021	161414	Uow	Deuterium Lang mil
	(Lino(N)						50 Cancerta store		03/11/2021	101414	Uner	Loop switched on
14		1				13	Connected Concentration		05/11/2021	10.57.12	Uow	Lanp contribution
1000 C	ագոորուրուրու	fronteerd model and and					Auto Distion		00/11/2021	161925	Use	Loop southed on
						- 11			· 00.00.0000	10.1540	10.00	Dan india
		(a) (8 (B)				_			(and the second			
19.14		Contraction of Contract							California		Company of the	(a E B
		R A 4 Teat				*	5		0.8- 0.8- 0.4- 0.2- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1	0,2 0,3 0	M 0.5 0.8 0.7 Core:	01 99 19
10 20	20 40 50 Time (s)	64 70										

9- Caso pretenda realizar uma análise em forno de grafite, não é necessário ativar a chama. Proceda de igual forma relativamente à ativação das lâmpadas e à preparação das soluções necessárias. Após a preparação, selecionar a opção "View" conforme assinalado na figura e abrir o ASLG.

	·····································				
	Part Volage (1) Assochares (3) 0 0 3,277 +60.we (1) -	Bit Control (19) Signal Part Concentration Carrented (19) March (19) Signal Part Signal Part Carcentration Carce	Image: Section 2 Image: Section 2 Image: Section 2	Prevail # 92extem [1500-507 Tage Use Tage Use Us	Manage A Pare of Pare of Pare of Pare of Pare of Pare of Pare of Pare of Pare of Pare of Pare of Pare
	22 Loop 10	Constraints Constraints Like Solar		16144 Une 1937 2 Une	Lang cells de la contra de la c
2 19 23 33 44 55 46 75 Tere (0)	9 29 30 40 50 60 75 Tree (5		03 00 06 83	02 8.3 0.4 8.5 6.5 0.7 Conc	0.8 0.9 1.0

10- Colocar as soluções no tabuleiro de acordo com as indicações do ASLG.

11- Selecionar o ícone indicado na figura para iniciar a análise e seguir os passos indicados pelo software.

ind	FMT Voluge (V)	Abustare		Sample B	Signal	Red Concentra	tion Corrected		L. Auto Tai			0101	
0,0	HCLang (3)	3,	277	Al Chose Constant Al Chose Constant Desclared 1 Standards 2 Standards 2 Standard 2 Standard 2 Standard	Abs 40,000 0,011 0,021 0,021 0,021 0,021 0,021 0,021 0,021	Control (Control (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) (Contro)	mgL v esntszen z 3grat (Seret) Strict s	MAN	System Loga Data 08/11/2021 09/11/2021 09/11/2021 09/11/2021 09/11/2021 09/11/2021 09/11/2021 09/11/2021	C Show all Tange 16.45.33 16.44.53 16.33.45 16.33.45 16.33.45 16.23.45 16.23.45 16.23.45 16.25.45 16.25.45 16.25.45	(# Show has 10,000-20 Uses Uses Uses Uses Uses Uses Uses Use	21 • • 10 11/02/21 Menage Fare of Pare of Pare of Pare of Pare of Pare of Rane of Rane of Rane of Bone of Bone of Bone of Bone of Pare	
			Corrected Total Decimand				Concertanteo Concertanteo Auto Disdeon			105712 093106 161925 121840	Use Use Use Too	Lano notified on Lano notified on Rees of Description	ן ק
							÷		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	0,2 0,3 1	0,4 0,5 0,6 0,1	7 0.7 0.9 1.0	
10 20	20 46 1 Time (1)	2 64 70									Core:		4

4. CRIAR UM NOVO MÉTODO

1- Carregar no ícone assinalado na figura seguinte. Após carregar no ícone, irá surgir o menu representado na segunda figura.

2- Selecionar a opção "New". Selecionar na tabela periódica o elemento para o qual pretende a análise e a respetiva técnica.

remo SOLAAR Edit View Action Security Stop Window Help	
3 - , # # T + 10 10 - & & 11 P	
Spectrometer Status	
Wavelength (rm) PMT Voltage (V) Absorbance (A)	Sample D Signal Red Concentration Concentrat
	Al Abs % mg4. mg4. ber -0,002 25,0 0,0000 0 11/11/2021
	Standard 1 0,016 0,0 7,000 U Standard 2 0,027 0,02 10,000 U Data Trime User Mensage
	University 2 0.001 00 190000011 - 001122/1 16.0033 User Paris of 00112221 16.0033 User Paris of 00112221 16.0038 User Paris of 0011221 16.0038 User Paris of 001121 16.0038 User Paris of 0011221 16.0038 User Paris of 0011221 16.0038 User Paris of 0011221 16.0038 User Paris of 0011221 16.0038 User Paris of 0011201 16.0038 User Paris of
	Method - Cu ? X 0011/2021 18.4457 User Pane of
· · · · · · · · · · · · · · · · · · ·	General Sequence Spectrometer Funce Calibration Sampling QC 09/11/2021 16:39:58 User Flame on
· · · ·	09/11/2021 15 35:49 User Pane charging
HELana (3)	Method Name: Calue Calue - System System
(The length -	Element 7 × 00/11/2021 15/25/6 User Pane going
The second secon	Uperator 09/11/2021 1614.14 Uper Deuterium Lamp ovi
D2 Lanp (%)	Descriptor: 00/11/2021 15/14/14 User Lanp settled on 05/11/2021 15/212
	Harfey BISLIP STREAM Concerning C
hududaahadaahadaahadaahadaa	B S Y Z P IB IC R U B A R D D I S D I KO Heb 02/11/2021 16.19.25 User Flane of
	REBALAHFIAU REUSITIPERUBITAN DATA DATA DATA DATA DATA DATA DATA D
	En Pr Nd Ph Shi Eu Ca Thi Dy Ho Er Thi Ybitu
ignal - Cu 😐 😐 🚨 💈	The 20 B http://file/file/file/file/file/file/file/fil
15	Segmented Fit
1 2 3 4 Corrected	
Background	
2,4	In Technic Transa
	Lbray
1,3	
	T
2.	
	or I says I was
	0,0 0,1 0,2 0,3 0,4 0,5 0,8 0,7 0,8 0,9 1,0
	Cont:
0	
0 10 20 30 40 50 60 70	
Time (s)	
e OFF +** Gas Flow 0,0 L/min Burner 50 mm Height 18	2 mm Ges Pressues (Air JAcetylme Ninvas Coste
a, press F1	Cu
📓 🖬 🤔 🍐 کر	^ @ (1) POR 11/1

- 3- Dar um nome ao método e proceder para a separador "Sequence".
- 4- No separador "Sequence", é possível inserir as ações necessárias para a realização do método. Para isso, carregar com o botão direito do rato na lista e selecionar a opção "Insert Action". A partir daí, é possível inserir todas as ações visíveis na figura seguinte.

a Thereno SOLAN The Left View Action Streetly Step Window Help 	े दे 🖸 🛵 स 🤌 🙀 🖲 🙀					- a x
Spectrameter Status						
Vicedorph (ma) PMC Visinge (r) Associations (s)	Stands D Signal Red Concentration Concentration Concentration Material 5 1000 2000 9 10000 10000 1000 1000	K. Austrian System Lags Data System Lags Data Opt11/2021 Opt1/2021 Opt	C Show al Time 16 45:33 16 44 59 16 33 49 16 33 49 16 23 59 16 19 25 16 19 25	Show team Iz000 User U	2021 © 10 [11/12/2021 Person of Person of	2
Despendencies OF OF <thof< th=""> OF OF</thof<>	C Code 3 C Code 3 C Code 3 C C C de Serie 1 C C C C C C de Serie 1 C C C C C de Serie 1 C C C C C C de Serie 1 C C C C C C C C C C C C C C C C C C	31icA	· · ·	Segmented Fit		
01 10 20 30 46 60 70 01 10 20 30 46 60 60 70	Gen Persone (AE (Activities))	0,0 0,1	0,2 0,3 1	2.4 0.5 0.5 (Cont:	1.7 0.8 0.9 1.0	DNIBE
1 P 🔞 🧟 🗖 🦉					^ (∰ 40) PO	R 15:02

5- Caso se trate de um método em chama, proceder para o separador "Calibration". Nesse separador, será selecionado o tipo de curva pretendido (na maior parte dos casos, será o linear e deve corresponder ao

assinalado na figura). Depois, selecionar o número de padrões na curva de calibração e indicar as concentrações dos mesmos nos locais assinalados.

rometer Status	DHT Moltrog 6/	D D D	Results - RESULTS.SLR	Council a				
	Hall Voltage (V)	Absorbance (A)	Semple ID Signel Red Concer At mod 0311 159150 At Abs % mg3.	dratien Concentration 2 050122021	Audit Trail			
0.0		2,777	Ellevik -0,002 25,8 0,0001 Standard 1 0,019 0,8 7,5000 Standard 2 0,027 0,8 10,0000		Date	Time	Show from 13/08/2021 Uper	Message ^
V,V	V	J,411	Method - Mn		? × 09/11/2021 09/11/2021	16.44:59	User User	Rame on Rame off
)		1	General Sequence Spectrometer Flame Calibration QC		09/11/2021 09/11/2021 09/11/2021	16:39:49	User	Rame changing Rame off
_	HCLamp(%)				09/11/2021 09/11/2021 09/11/2021	16:28:41 16:28:36 16:14:14	User User User	Flame on Flame igniting Deuterium Lamp swi
	D2 Lamp (%)		Concentration Units: mg/L	Calibration Direcks	09/11/2021 05/11/2021 05/11/2021	16:14:14 10:57:12 09:31:06	User User User	Lanp switched on Lanp switched on Lanp switched on
	hudunbuduntu		Standards:	Acceptable Fit: 0.995	02/11/2021	16:19:25	Uper	Flame off
- Cu			Standard Concentrations Master Standard Conce 0	From: (%) - 10				
		Carrected	1 0,200 6 0,000 2 1,000 7 0,000	Τα (23) + 40 -	ation		Segmented Fill	
	1	2 3 4 Total Background	3 2,500 8 0,000 4 4,000 9 0,000 5 0,000 10 0,000	Rescale limit 10 %				
			Scaling Factor: 1	If any calibration checks fait				
			Scaled Units: mg/L	Prag and Caninda				
				DK Cancel	Help			
					0,0 0,1	0,2 0,3 0,	1 0,5 0,6 0,7 Cont:	0,8 0,9 1,0
10 20	30 40 50 Time (s)	60 70						

6- Consultar o separador "Flame" de modo a verificar se os parâmetros da chama se encontram de acordo com o indicado no "Cook Book".

linging provide the second sec	Sample D Signal Red Max Abs Signal Red Max 0,002 2.0 Signal Max 0,002 2.0 Signal Max 0,002 2.0 Signal Max 0,002 0.0 Signal Max 0,002 0.0 Signal Max 0,002 0,02 Signal Max 0,002 0,02 Signal General Spectoral Spectoral Cabulation	Concession and mode Concession and mode E 1000000000000000000000000000000000000	? ×	L Audit Teal System Lags 09/11/2021 09/11/2021 09/11/2021 09/11/2021 09/11/2021	C Show all Time 18.45.33 16.45.57 16.35.59 18.38.49 16.33.49 16.33.49	Show hom 13/09/2021 User User User User User User User	In It/11/2021 Message Pane of Pane on Pane on	
	Fame Form Type: <u>Difference</u> FundThose (Unity) 1.0	Stabiliston Bure Stabiliston Time (mr) Network Upster Time (n) 4 Share Heige		09/11/2021 09/11/2021 09/11/2021 09/11/2021 05/11/2021 05/11/2021 02/11/2021	16.28:41 16.28:36 16.14:14 10:57:12 09:31:06 16:19:25 15:19:25	User User User User User User User	Flans on Flans grifing Dedekun Lamp sei Lamp seitched en Lamp seitched en Flans of Flans of Phone seitched en	
State State <th< td=""><td>Dydniae Foul Plov Aawleey Oxident</td><td>Bune Hegte (ne) 7.3 ☐ Optimie Bune Hegte</td><td></td><td>ation</td><td></td><td>Segmented Fil</td><td></td><td></td></th<>	Dydniae Foul Plov Aawleey Oxident	Bune Hegte (ne) 7.3 ☐ Optimie Bune Hegte		ation		Segmented Fil		
10 10 10 10 10 10 10 10 20 20 20 20 40 56 60 75 Time (9)		OK _ Cree	Heb	0,0 0,1 0	i,2 0,3 0,	A 0.5 0.6 0.7 Cont:	0.8 0.9 1.0	
ORY ++** Gas Flow 0.0 Lynnin Burrer 50 mm Height 18.2	ram, Gas Pressures Air Acetylene Reveal Octob							

7- Para gravar o método, regressar ao separador "General" e selecionar a opção "Save".

8- Caso se trate de um método em grafite, proceder para o separador "Sampling". Neste separador irá selecionar o tipo de preparação de soluções que pretende: manual ou com recurso ao autosampler. Selecionar a opção desejada no local assinalado na figura.

The Edit View Action Security Stop Window Help DO H H	
	◎ ◆ ■ ■ ☆ 果 > 樽] ■euto-Filitait ■ = =====
Verseterget (me) PHT Valage (r) Abandonese (i)	Sample D Siguel Feed Concentration 0 modelshift 164884 0540201 1 0 modelshift 164884 0540201 1 0 modelshift 0 modelshift 1500000 10 0 modelshift 0 modelshift 0 1000000 10 0 modelshift 0 modelshift 0 1000000 10 0 modelshift 0 modelshift 0 1000000 10 0 modelshift 0 modelshift 0 10000000 10 0 modelshift 0 modelshift 0 100000000 10
	Definid C 01/1/2021 116/159 Use Rear of General Sequence Spectramere Funces Catadator Simple QC 01/1/2021 116/159 Use Rear of 01/1/2021 01/1/2021 116/159 Use Rear of 01/1/20
	Stands Disc Educer freeston Splate Values (LL) D
A liquid to the liquid of the liquid to the liquid of the liquid to the	Intelliger Gluton Themistry TO 2 No No Warksy Gluton (k1) TOO 2 No 0 <t< td=""></t<>
€	Week Assembling frample greater from: Join
0.0 -0.1 0 10 20 20 46 56 60 70	
Pare CO2	rana Gu Denver (Alf) Actificat Constant
· / · · · <u>· · · ·</u>	1 via 447 cm 11/11/2021
Marmo SOLAAR File Edit View Action Security Stop Window Help	- σ
Portro SOLAR For Edit Vino Acton Security Stop Window Help Port Acton Security Stop Window Help Port Acton Security Stop Acton	
If Nerrow SOLAN Fits: Ext: Security:	
There SOLAN File Left View Action Security Tage Window Help Solar Sola	- 3
Intervision Security Se	
Processional Fits Ent View Actain Security they Window Hete Processional Security Th	
Herrich StadAN For Stadan Security Stop Window Hell Security Stop Window Hell Security State Security Stat	
Preventational Fits Ent View Action Society Bog Window Hep Provide H	
Premo SOLAN P	
There sould The Action Society Bog Window Hep To Ext View Action Society Bog Window Hep To Ext View Action Society The Actio	
Preventational Preventational	
Prevensional Pr	
Preventational Preventational	
Procession The first View Action Society Bog Window Hell Procession Process	
Processional Pr	

9- Proceder para o separador "Calibration". Nesse separador, será selecionado o tipo de curva pretendido (na maior parte dos casos, será o linear e deve corresponder ao assinalado na figura). Depois, indicar o número de padrões pretendido no local assinalado. Por fim, indicar a concentração da solução-mãe no caso de utilizar o autosampler e a concentrações dos padrões pretendidos.

Thermo SOLAAR File Edit View Artian Security Stan Window Hela							- 8 ×
🎎 🔧 뉴 너 너 가 🕂 lie la 🚄 🖢 🔲 🕨 🕷	💊 🖸 🔚 И 🕺 👽 👀 🚀						
Dectrimeter Satus							
Wavelength (m) PMT Voltage (V) Absorbance (A)	Sample ID Signal Rad Concentration Concentration		📐 Audit Trail				3
	Al Abs % mg4. mg4. Elevit -0,002 25,8 0,0000 U		System Laga	C Show all	@ Show ton 13/08/	2021 • 10 11/11/2021	
	Standard 1 0,019 0,0 7,000 U Standard 2 0,027 0,8 10,000 U		Date 08/11/2021	Time 16:45:33	Uper	Hersage Flame off	^
V V V J J I I	Viethod - Cu	? ×	09/11/2021	16:44:59	User	Flame on Flame off	
	General Sectores Sectorester Function Cellification Section IIC		09/11/2021	16:39:50	User	Flame on	
, , ,			09/11/2021	16:39:49	Uper	Flame changing	
121 04	×	Ca	09/11/2021	16:33:49	User	Flame off	
His Lamp (a)			09/11/2021	16:28:36	User	Faile on Flanc kniting	
			09/11/2021	16.14:14	Uper	Deuterium Lamp exi	
D2 Lawp (%)	Method Womme Linical Local Sequence Fit		09/11/2021	16:14:14	User	Lanp switched on	
	Concentration Units: auA. Calibration Direcks		05/11/2021	10.57:12	User	Lanp switched on	
hudrahudrahudrahudrahudrahudrahud	Acceptable Fit 0.995		02/11/2021	16.19.25	Uper	Flame off	
	Standardi: 4 🔆 D ba		00/01/2000	10-10-80	Har	Dana contina 3	×
l	- Chandred Concentrations					,	
(From: (\$)- 10 -						
🔣 Signal - Cu 😁 🖷 😫	Master Standard Conc: 20		ation				
	1 6,000 s 0.000		0001		A		
0,5 Corrected	2 10,050 2 0,000				segmented Fill		
0.4	3 19,950 8 0,000 4 30,000 9 0,000 6 0,000 10 0,000 6 0,000 10 0,000 7 0,000 10 0,000 8 0,000 8 0,000 10 %						
	H any calibration checks fait						
0,3	Scaled Unit: not.						
	OK Cancel	Help					
0,1			0,0 0,1 0	1,2 0,3 0,	4 0,5 0,6 0 Cont:	0,7 0,8 0,9 1,0	
0.0							
.01							
0 10 20 30 40 50 60 70 Time (\$)							
Flame OFF ••• Gas Flow 0,0 L/min Burner 50 mm Height 18,2 m	m Gas Pressures [Air] Acetyline Mircus Cuide						
For Help, press F1						Cu	ON LINE
💻 P ڬ 🧟 🧮 🎽	회원 감독 관계 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전					^ (∰ (‡i) POI	11/11/2021

10- Para gravar o método, regressar ao separador "General" e selecionar a opção "Save".

Para abrir um método já existente, repetir o passo 1, selecionar a opção "Library" e abrir o método desejado. É possível realizar alterações aos parâmetros dos métodos seguindo as mesmas instruções indicadas anteriormente para a criação de um novo método.

5. CONSULTAR O COOK BOOK

1- Selecionar o ícone indicado na figura e carregar num espaço vazio da barra de tarefas imediatamente ao lado.

ometer Status	PMT Voltage (V)	abortance (8)	Results - RESULT	S.SLR		Corrected					
			Sample ID	Signal	Red Concentrati	Concentration		K Audit Trail			
Δ Δ	Δ	A A55	Al	Abs	% mgt. 258 0.0000.0	mg4.		System Logo	C Show all	@ Show hon 13/08/2021	▼ ¹⁰ 11/11/2021
nn	0	1.1.1.1	Standard 1	0,019	0,8 7,5000 U			Date	Time	User	Mersage ^
	L II -	1///	Standard 2	0,027	0,8 10,0000 U			c 08/11/2021	16.45.33	User	Flame off
U.U	1	1.611	Standard 3	0,042	00 20,000 0	-		09/11/2021	16:44:59	User	Flame on
VIV	v		Analysis 183		17:46:35	85/11/2021		- 09/11/2021	16.44.57	User	Flame off
1		1						09/11/2021	16:35:58	User	Hame on
	1		Resample	Signal	Bate	\[MEAN	09/11/2021	16:33:43	Liser	Fame off
- ATD.	HCLass (0)					Signel		09/11/2021	16.28.41	Uper	Barre on
Anna						(Signe)		09/11/2021	16:28:36	User	Flame igniting
-						% RSD		* 09/11/2021	16.14:14	Uper	Deuterium Lamp oxi
	D2 Lanp (%)					Concentration		C09/11/2021	16:14:14	User	Lanp skitched on
						Corrected Concentration		05/11/2021	10.57:12	Uper	Lanp switched on
and a second	իսորութությութ					Auto Dilution		05/11/2021	1010.00	User	Lanp switched en
								02/11/2021	10.10.20	Uter	Dama continue V
)18 			· · ·
- Cu								Calibration			
		2 3 4 Corrected Total Background						0.8		segmented Fit	
								≪ 0,4 ·			
						,		0,2			
								0,0 0,1	0,2 0,3	0,4 0,5 0,6 0,7 Cont:	0,8 0,9 1,0
10 20	30 40 50 Time (s)	60 70									

2- No menu que irá surgir, selecionar a opção "Cook Book" na barra lateral e irá surgir a seguinte interface.

StolAAR Help																		- 0	×
t∰ (≂ ⇒ 10) [*] - Hide Back Forward Ωptions																			
Contents Igdes Search	Cook B	Book																	^ -
Image: Solution State Image: Solution State	The Co Click or	ok Bool n the El	k will show y lements in ti	you the defau he table to di	It parameter splay the info	s used for eac rmation for ea	h element, an ich, or use thi	d some other alphabetical	brief notes or list below of a	n possible inte available elem	erferences. ients.								
	н																	He	- 1
	ш	Be											<u>n</u>	Ē	N	<u>0</u>	E	Ne	- 1
	Na	Mg											AI	Si	P	5	s.	Ar	
	ĸ	<u>Ca</u>	<u>5c</u>	ш	¥	22	Hn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	Rb	Sr	¥	Zr	Nb	Mo	Τc	Ru	Rh	Pd	Aq	<u>Cd</u>	In	<u>Sn</u>	<u>Sb</u>	In	ĩ	Xe	
	<u>Ca</u>	Ba	La	н	Та	ж	Re.	Ωa	Ir	Pt	Au	Ha	п	Pb	Bi	Pa	18	Rn	- 11
	Er	<u>Ra</u>	<u>Ac</u>	Ku															
																			- 1
					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Th	Dy.	He	Er	Im	Yb	Lu	- 11
					In	102	Ψ	ND	150	Am	Lm	BK	<u>U</u>	E	Em	<u>M0</u>	No	<u>T</u> r	- 1
	в																		
	C D	The Co eleme	ook Book co nts.	ntains informa	ation for prep	aration of sto	ck solutions, o	hoice of instru	umental condi	tions and pos	sible interfere	ence effect fo	atomic abso	ption and flar	ne emission sp	ectrophotom	etric determina	tion of 67	
	E																		
	F	The in	formation co	ntained here	in should be	used as a gui	de to the corri	ect instrumen	tal conditions,	rather than a	a list of absolu	ite paramete	r settings.						
	н																		
	1																		- 11
	к																		- 11
	M																		
	N																		- 11
	P																		- 11
	Q																		- 11
	5																		
	1																		
	x																		
	W X																		~
ा २ 🖕 🧉 🖬 🎽													_				^ @ 40) PC	OR 14:17 11/11/202	n 😼

3- Selecionar o elemento de interesse e depois será possível obter informações relativas tanto à análise em chama como em grafite, conforme ilustram as figuras seguintes.

6. SUBSTITUIÇÃO DE UMA LÂMPADA

1- Abrir o menu das lâmpadas e selecionar a posição da lâmpada que se pretende substituir.

skongth (ree)	NIT Voltoge (V)	Absorbance (4)		Semple ID mod U331 rit rit rit rit rit rit rit ri	Signel 59 0,002 2 0,119 0 0,027 0 0,027 0 0,027 0 0,027 0 0,027 0 0,029 0 0,029 0 0,029 0 0,029 0 0,029 0 0,029 0 0,000 0 0,00000000	Red Concentral 115/18/3 mg4. 5/8 0,0000 U (8) 7,5000 U (8) 10,0000 U (9) 15,0000 U (10) 15,0000 U (12) 12,0000 U 12:08:35 Date	Correction Conce Conce 035192 mg4. 05/11/2 A Signal	ected Antration 2		TEAN		Audit Teat System Lage 09/11/2021 09/11/2021 09/11/2021 09/11/2021 09/11/2021	C Show all Time 18.453 16.445 16.435 16.335 16.335 16.335 16.335 16.335	(* Show 9 7 8 9 9	hom 13/ User User User User User User User	08/2021	✓ ¹⁰ 11 Message Fame off Fame off	1/11/2021
	22 Lanp (%)		Lamp Con Pos. 1 2 3 4 6	Element(s) AlMg Na K CuFe Mn 7n	Type Coded Coded Coded Coded Coded	Seriel Number	Max Current	Warm-up (%) 75 75 75 75 75 75 75	P State Off Off Off Off Off	må Hours	7 × Clore Help	09/11/2021 09/11/2021 09/11/2021 09/11/2021 05/11/2021 05/11/2021 02/11/2021 02/11/2021 02/11/2021	16/28/3 16/14/1 16/14/1 10/57/1 09/31/0 16/19/2 10/19/8	6 4 2 6 5	User User User User User		Flame ignit Deuterium Lamp seite Lamp seite Flame off Flame off	ing Lamp oxi ched en ched en ched en
mi - Cu		2 3 4 Corrected Total Background	E □ Deutari □ De Hours	um Lamp On sxterium Lamp On 70.621	Uncoded	Holow Cathode Law Carousel Position:	p 4 Alignment	•	011		Lanp Usage	ation		Segmer	ited Filt			
2							v				₹ 0,4 0,2 0,0	0,0 0,1	0,2 0,3	0,4 0,5 Cor	5 0,6 11:	0,7 0		1,0
	30 40 50 Time (s)	60 70																

2- Abrir o compartimento das lâmpadas e baixar a patilha preta de modo a libertar a lâmpada.

- 3- Remover a lâmpada, retirando-a de forma vertical. Nota: não manusear as lâmpadas diretamente com as mãos.
- 4- Após a remoção da lâmpada, o menu das lâmpadas irá exibir uma posição vazia no local de onde se retirou a lâmpada.

5 - 3 - 4 5 - 9 - 11 - 11 - 11 - 10 - 22 - 11 - 1 1 - 11 - 11 Spectrameter Salus		
Conserve (M) PMI * Society (M) Associations (A) 0,0 0 3,2277 +*CLarge (D)	Sample ID Signed Part Concentration Concentration All model NIT Exercise Exercise Exercise Exercise All model NIT Exercise Exercise Exercise Exercise All model NIT Exercise Exercise Exercise Exercise Barborit DI COD 50000 U Exercise Exercise Barborit DI COD 50000 U Exercise Exercise Interview 2 0.041 COD 50000 U Exercise Interview 2 0.041 COD Exercise Exercise Interview 2 0.041 Exercise Exercise Exercise Interview 2 Exercise Exercise Exercise Exercise Interview 2 Exercise Exercise Exercise	201 V 10 [121/1201 Morage volter, 406, sold spote, 456, sold spote, 456, sold spote, 456, sold spote, 456, sold spote, 456, sold Lano initiation Fame on Fame on Fame on
service and a se	Ver. Description Top Section of the sectin of the section of the section of the section of the se	There charging Plane color Down and y
		1,7 0,8 0,9 1,0
1	Conte Tings 222 Autompte Satur Ide	

5- Inserir a nova lâmpada, atendendo ao alinhamento da extremidade da lâmpada.

6- Após inserir a lâmpada, a posição previamente vazia irá agora surgir ocupada com a lâmpada respetiva.

	trometer Status	PMT Volume 40			Results - RESULTS.S	LR	TT		Concentrat 12	-	• 8								
	engin (rm)	PMI Vollage (v)	Absolitiance (H)		Semple ID	Signal	Red Conce	ntration Co	ncentration				Audit Trail						2
Image: Control of the second of the secon	A A	•			41 mod 03/41	Abs	% mg4.	4 03/ mg	11.2021 pl.	-		ſ	Seaton Lana	C. David			_	to Lanceman	=
	- 0.0	- A	בררי ני	-	llank Tanviani f	-0,002	25,8 0,000	U					Dute	C anow all	• show that	14/08/2021	-	12/11/2021	-
Image: Distance of the second seco				ŝ	Isodard 2	0,027	0,8 10,000	10	_				12/11/2021	10.22.97	Ua	4	Met	isege ate virlen myde	<u>^</u>
Vy V Jala (1)	1111	- N	17.11	5	itondard 3	0,042	0,0 15,000	10		_			12/11/2021	10:22:37	Use	a.	upd	ate video mode	
Image difference Image difference <td< td=""><td>VIV</td><td>V</td><td>Juli</td><td></td><td>tandard 4</td><td>0,061</td><td>0,0 20,000</td><td>10</td><td>1000</td><td>-</td><td></td><td></td><td>12/11/2021</td><td>10.22.28</td><td>Up</td><td>a</td><td>Star</td><td>t Blaster OK</td><td></td></td<>	VIV	V	Juli		tandard 4	0,061	0,0 20,000	10	1000	-			12/11/2021	10.22.28	Up	a	Star	t Blaster OK	
Harder Dimension Harder Dimension <td< td=""><td>)</td><td></td><td>1</td><td></td><td>analysis 163</td><td></td><td>11.005</td><td></td><td></td><td>1</td><td></td><td></td><td>12/11/2021</td><td>10:22:27</td><td>Usi</td><td>а</td><td>upd</td><td>ate_video_mode</td><td></td></td<>)		1		analysis 163		11.005			1			12/11/2021	10:22:27	Usi	а	upd	ate_video_mode	
Historia Seet					Resample	Signal	Date	A		M	TEAN		12/11/2021	10:22:27	Up	ar	upd	ale_videc_mode	
Image:		HELANS (0)				-		So	nal		_		11/11/2021	15 36 25	Us	a Ir	Lon	p switched on	
1 1 2 3 4 9 6 7 X 101/22/2 10.488 Uor Rue of Rue o	A 4000	(a camp (ii)						(\$4	(net)				09/11/2021	16:45:33	Use	a	Flar	te off	
Discussion Discusin Discussion Discussio	-	- hourse and the second		Lamp Co	nfiguration and Stat	u s						? >	09/11/2021	16.44:59	Up	H .	Elar	te on	
Image: Proper per per per per per per per per per		D2 Lanp (%)				-	-	1	1	1 1			09/11/2021	16:44:57	Use	a	Flam	te off	
Image: Construction of the product				Pos.	Element(s)	Туре	e Serial Num!	er Max Curror	warm-up at (%)	State	mA Hours	Clote	09/11/2021	16:33:49	Use	a T	Flat	te changing	
2 10 2000 10		hunderedenederede		1	AIM	Coded	-	10	75	Off		Help	08/11/2021	16:39:49	Up		Flar	te oll	
Image: Constraint of Particular System Image:				2	Na	Coded		8	75	Off			00/11/20021	10.00.41	114		El		×
Control Ling Control Ling<				3	ĸ	Coded		8	75	Off									
Construint <td></td> <td></td> <td></td> <td></td> <td>Cure Mo.Zo</td> <td>Coded</td> <td></td> <td>10</td> <td>75</td> <td>Off</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Cure Mo.Zo	Coded		10	75	Off									
Constrained and the second			- •	82 6	1	Uncoded		0	0	Off		Lamp Usage	ation						
1 2 2 4 6 6 7				- Deute	risml amn		- Holos Cathod	Lano					-		Connorded Fi				
1 <td></td> <td>1</td> <td>2 a d Corrected</td> <td></td> <td>Destantion Lans Do</td> <td></td> <td>Carrunel Posi</td> <td>ine 4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>beginemearr</td> <td></td> <td></td> <td></td> <td></td>		1	2 a d Corrected		Destantion Lans Do		Carrunel Posi	ine 4							beginemearr				
			Backgroun	d .															
		1 A A A A A A A A A A A A A A A A A A A		Hour	B: [70.62	Reset	M Automatic	Lano Algente	nt										
												880							
								- 11				₹ 0,	4.						
								_											
												0,	2 .						
10 10 10 19 20 20 40 60 10 19 20 20 40 60 10								v											
												0,	0.0 0.1	0.2 0.2	04 0.5	06 07	0.0	0.0 1.0	
19 29 29 29 40 50 60 79 Three 09													0,0 0,1	0,2 0,0	Cont:	0,0 0,0	0,0	0,0 1,0	
13 23 23 40 50 60 73 Time (8)																			
19 20 29 40 60 60 70 Three (6)																			
10 20 20 40 50 60 70 Time (s)																			
10 20 30 rmre (40 50 66 70 rmre (4)																			
inite (v)	10 20	30 40 50 Time (s)	60 70																
		tittle (b)		_															

7. ALINHA A PONTA DO AUTOSAMPLER

1- Selecionar a opção "Align Probe" no software do equipamento.

Thermo SOLAAR Is Edit View Action Security 2009 Window Help → → ↓ ↓ ↓ ↓ ↓	🍾 🖸 🗽 💷 🥠 🛒	9 M2				- 0
Geochammeter Status G	Results - RESULTS.SLR	ted Convectuation Corrected				
	Sample to Signa P	So Concentration Concentration		K Audit Trail		
	Al mod 03/11 Al Abs %	mgl. mgl.	1	Sector of a	and the free second	to frame prov
	Elerk -0,002 25)	0,0000 U		opum copr (3)	tow of the show from 14/08/2021	• 10 12/11/2021
	Standard 2 0,027 0,8	10,0000 U		12/11/2021	10.22-97 Uper	Mersage ^
	Standard 3 0,042 0,0	15,000 U		12/11/2021	10-22-37 User	update video mode
	Standard 4 0,061 0,0	20,0001 U	1	12/11/2021	10.22.28 User	Start Blaster OK
· · · · · · · · · · · · · · · · · · ·	Analysis 183	17:96:35 05/11/2021	1	12/11/2021	10:22:27 User	update_video_mode
	Berrymote Sincet	Bata [A]	I way I	12/11/2021	10.22.27 User	updake_video_mode
	signal	Senal		11/11/2021	15:36:26 User	Lanp switched off
HC Lamp (%)		Geneic		11/11/2021	15:35:25 User	Lanp switched on
		% RSD		09/11/2021	16 40 59 User	Fame on
		50		09/11/2021	10.44.55	Figure off
U2 Lanp(x)		Concentration		09/11/2021	16.39.58 Uper	Flame on
		Corrected Concent	absn	09/11/2021	16:33:49 User	Flame changing
in the first of a firs		Pas chain		08/11/2021	16.39.49 User	Flame off
				C 00/11/2021	10.00.41	Done of a
				D.		
⊾ Signal - Cu 🔲 🖼			6			
				Calibration		
0,5 Corrected				1.0 т	Segmented Fit	
1 2 3 4 Total						
Background				0.8		
0,4						
				. 0.8		
0.3				× 5		
				0,4		
2 0,2				0,2		
		~				
01-	2			0,0		
5,1				0,0 0,1 0,2	0,3 0,4 0,5 0,6 0,7	0,8 0,9 1,0
					Cont.	
0.0						
0 10 20 30 40 50 60 70						
Time (s)						
Tana Phana Tananata (C) Time (serv) Jana Gar Free Tune	Davaita Finner 202 Autorannelar Statur	Ide				
and the second of a second sec	the state of the s	*CIE				
arre OFF *** Gas Flow 0,0 L/min Burner 50 mm Height 18,2 mm	Gas Pressures Air Acetylene Nerrous Co					
elp, press F1						Cu
🛛 🖕 🧉 📰						^ (∰ (10) POR 12/11/2021

2- A ponta irá passar da posição de repouso para a posição de injeção de solução, conforme se pode observar nas figuras.

3- Ajustar a posição da ponta com recurso aos manípulos indicados nas figuras seguintes. O ajuste deve ser feito com movimentos suaves dos manípulos. Verificar o alinhamento através da câmara do equipamento.

4- A ponta deve ficar numa posição como ilustra a figura seguinte.

5- Finalizado o alinhamento, selecionar a opção "Action" no software, ir até à secção "Autosampler" e selecionar a opção "Park".

8. ALINHAR OU SUBSTITUIR O TUBO DE GRAFITE

1- Remover a blindagem de plástico da zona superior do autosampler.

2- Rodar a patilha cinzenta de modo a abrir o compartimento onde se encontra o tubo de grafite.

3- Manusear o tubo de grafite sempre com recurso a uma pinça ou a uma ferramenta própria (ilustrada na segunda figura).

4- O tubo deve ficar alinhado com o orifício centrado e voltado para cima.

5- Finalizado o alinhamento, colocar a patilha na posição original e colocar novamente a blindagem de plástico.

9. DICAS PARA OTIMIZAR UMA ANÁLISE EM CHAMA

Remover a cabeça do queimador antes de uma análise e, com recurso a um esguicho, colocar água no depósito e observar se a mesma escoa através do tubo de escoamento.

Verificar o alinhamento do queimador com recurso a dois pedaços de papel. Inserir um pedaço de papel na ranhura do queimador e colocar o outro pedaço sobre o orifício à esquerda do queimador. No papel colocado sobre o orifício, deve-se observar um feixe dividido ao meio, significativo de que o queimador está bem alinhado.

Por vezes, podem surgir impurezas na ranhura do queimador. Isto evidencia-se através da observação de irregularidades na base da chama. Caso aconteça, remover o queimador e proceder à sua limpeza com uma folha de papel. Pode também ser lavado com água.

Não se deve realizar uma análise de zinco seguida de uma análise de ferro. O ferro constitui um interferente na análise do zinco.

Antes de se proceder à análise de sódio, colocar o queimador a um ângulo de 20º de modo a reduzir a absorvância registada. A partir de certas concentrações, a curva começa a perder a linearidade e tende para um modelo de 2º grau.

Caso se note uma redução no volume de amostra aspirado através do tubo nebulizador, inspecionar o mesmo de modo a verificar se se encontra bloqueado. Existe uma maior probabilidade de se formar um bloqueio durante a análise de amostras com partículas, como águas residuais.

Garantir sempre que o tubo de escoamento nunca fica em contacto com a água residual. Caso isto aconteça, a bomba de nebulização pode entupir, resultando em medições erradas.

Se notar que a pressão do gás no manómetro desce de forma acentuada num curto espaço de tempo, deve fechar rapidamente todos os gases, já que este acontecimento pode ser indicador de uma fuga de gás.

10. DICAS PARA OTIMIZAR UMA ANÁLISE EM GRAFITE

Realizar a seguinte sequência de passos antes de iniciar a análise:

- 1- Purge (no caso de o equipamento estar parado há vários dias);
- 2- Wash;
- 3- Optical Setup
- 4- Align Probe

Antes de proceder à análise, deve-se analisar um conjunto de brancos (cerca de 10) e avaliar o resultado dos mesmos. Se os valores obtidos forem satisfatórios, proceder para a análise. Se os valores não forem satisfatórios, não se deve proceder à análise, mas solucionar o problema de modo a obter brancos satisfatórios. Os principais motivos que podem conduzir a resultados não satisfatórios nos brancos são:

Desgaste do tubo de grafite: os tubos têm uma capacidade de cerca de 350 análises.
Caso se encontre perto desse número ou então já esteja parado há um longo período de tempo (vários meses), trocar o tubo de grafite.

- Sujidade no tubo de grafite: realizar a ação "Clean Cuvette".

- Contaminação do branco: analisar um novo branco.

Nota: um branco considerado satisfatório é um que se encontre abaixo de 0,010. Abre-se uma exceção para o alumínio, onde é aceitável um branco até 0,015.

Deve-se inspecionar periodicamente a ponta da "tip" que insere a amostra no tubo de grafite. Se esta se encontrar escura, deve-se trocar a mesma. Por vezes, a "tip" raspa nas paredes do tubo e poderá ficar contaminada, afetando assim as amostras.

Realizar sempre o "Optical Setup" antes de iniciar a câmara que permite visualizar o tubo de grafite, caso contrário esta não irá funcionar.

Se ao abrir um gás no interior, a pressão no manómetro subir de forma acentuada, mesmo com o gás fechado no exterior, pode ser sinal de uma fuga de gás. Anexo 4: Dados experimentais obtidos para o alumínio, cálcio, cobre, manganês, sódio e zinco em chama e alumínio e manganês em grafite.

Alumínio em chama

Gama de trabalho

Valores das absorvâncias				
Menor padrão	Maior padrão			
0.019	0.048			
0.024	0.062			
0.021	0.055			
0.021	0.054			
0.018	0.047			
0.019	0.051			
0.019	0.056			
0.020	0.048			
0.018	0.053			
0.021	0.058			

Tabela A4-1: Valores das absorvâncias do menor e maior padrão de alumínio em chama.

Tabela A4-2: Valores obtidos para a aplicação do teste PG para o alumínio em chama.

Parâmetro	Menor padrão	Maior padrão
Média	0.020	0.053
Variância	3.33×10⁻⁵	2.33×10-5
PG	0.1	43
F	0.3	15

Sensibilidade

Curva	Declive
1	0.00235
2	0.00273
3	0.00270
4	0.00245
5	0.00235
6	0.00223
7	0.00261
8	0.00252
9	0.00249
10	0.00258

Tabela A4-3: Declives obtidos para várias curvas de calibração do padrão alumínio em chama.

Tabela A4-4: Valores obtidos para a determinação dos limites de controlo para o alumínio em chama.

Parâmetro	Valor
Declive médio	0.00250
Desvio padrão	1.61×10 ⁻⁴
Limite inferior de controlo	0.00202
Limite superior de controlo	0.00298

Limiares analíticos

Tabela A4-5: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o alumínio em chama.

Parâmetro	Valor
Declive	0.00234
Desvio padrão da reta	3.69×10 ⁻⁴
LD	0.52 mg/L
LQ	1.57 mg/L

Reprodutibilidade

Parâmetro	Valor	
Declive médio	0.0025	
Desvio padrão	1.61×10 ⁻⁴	
CV de	6 42%	
reprodutibilidade	0.42%	

Tabela A4-6: Valores obtidos para a reprodutibilidade para o alumínio em chama.

Precisão intermédia

Tabela A4-7: Valores de absorvância dos padrões intermédios das curvas de calibração para o alumínio em chama.

Curva	2º Padrão	3° Padrão
1	0.026	0.036
2	0.029	0.048
3	0.028	0.040
4	0.030	0.043
5	0.023	0.035
6	0.025	0.041
7	0.025	0.041
8	0.026	0.039
9	0.025	0.041
10	0.030	0.044

Tabela A4-8: Valores obtidos no cálculo da precisão intermédia para o alumínio em chama.

Parâmetro	Valor 2º Padrão	Valor 3º Padrão
Declive médio	0.027	0.041
Desvio padrão	2.41×10 ⁻³	3.77×10-3
CV de reprodutibilidade	9.01%	9.23%

Exatidão

Tabela A4-9: Valores de concentração do MR e das réplicas analisadas para o alumínio em chama.

Solução	Concentração (mg/L)
MR	15.00
Réplica 1	15.30
Réplica 2	14.72
Réplica 3	14.96
Réplica 4	14.89
Réplica 5	15.12

Tabela A4-10: Valores obtidos no cálculo da exatidão para o alumínio em chama.

Parâmetro	Valor
Média	14.99
Desvio padrão	0.222
t	0.020
ttabelado	2.78

Linearidade

Figura A4-1: Representação gráfica da curva de calibração do alumínio em chama.

Alumínio em grafite

Gama de trabalho

Valores das a	absorvâncias
Menor padrão	Maior padrão
0.019	0.048
0.024	0.062
0.021	0.055
0.021	0.054
0.018	0.047
0.019	0.051
0.019	0.056
0.020	0.048
0.018	0.053
0.021	0.058

Tabela 29: Valores das absorvâncias do menor e maior padrão de alumínio em grafite.

Tabela A30: Valores obtidos para a aplicação do teste PG para o alumínio em grafite.

Parâmetro	Menor padrão	Maior padrão
Média	0.020	0.053
Variância	3.33×10 ⁻⁶	2.33×10-5
PG	0.1	43
F	0.3	15

Sensibilidade

Curva	Declive
1	0.0081
2	0.0075
3	0.0078
4	0.0075
5	0.0081
6	0.0094
7	0.0080
8	0.0089
9	0.0088
10	0.0090

Tabela A313: Declives obtidos para várias curvas de calibração do padrão alumínio em grafite.

Tabela A32: Valores obtidos para a determinação dos limites de controlo para o alumínio em grafite.

Parâmetro	Valor
Declive médio	0.00832
Desvio padrão	6.70×10 ⁻⁴
Limite inferior de controlo	0.0063
Limite superior de controlo	0.0103

Limiares analíticos

Tabela A33: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o alumínio em grafite.

Parâmetro	Valor
Declive	0.0076
Desvio padrão da reta	0.0011
LD	1.44 µg/L
LQ	0.48 µg/L

Reprodutibilidade

Tabela A34:	Valores	obtidos	para a	a reprodutib	ilidade pa	ira o	alumínio	ет	grafite.
-------------	---------	---------	--------	--------------	------------	-------	----------	----	----------

Parâmetro	Valor
Declive médio	0.00832
Desvio padrão	6.70×10-4
CV de reprodutibilidade	8.05%

Precisão intermédia

Tabela A35: Valores de absorvância dos padrões intermédios das curvas de calibração para o alumínio em grafite.

Curva	2º Padrão	3º Padrão
1	0.133	0.195
2	0.120	0.180
3	0.125	0.184
4	0.127	0.187
5	0.139	0.194
6	0.150	0.219
7	0.156	0.227
8	0.143	0.206
9	0.154	0.219
10	0.134	0.210

Tabela A368: Valores obtidos no cálculo da precisão intermédia para o alumínio em grafite.

Parâmetro	Valor 2º Padrão	Valor 3º Padrão	
Declive médio	0.138	0.202	
Desvio padrão	0.012	0.016	
CV de	9.05%	8 13%	
reprodutibilidade	9.00%	0.15%	

Exatidão

Tabela A37: Valores de concentração do MR e das réplicas analisadas para o aluminio em gra	bela A	1 A37: I	Valores d	le concentração	o do MR e das	réplicas analisadas	para o alumínio em grafi	te.
--	--------	----------	-----------	-----------------	---------------	---------------------	--------------------------	-----

Solução	Concentração (mg/L)
MR	23.00
Réplica 1	23.60
Réplica 2	22.66
Réplica 3	22.10
Réplica 4	23.77
Réplica 5	23.32

Tabela A38: Valores obtidos no cálculo da exatidão para o alumínio em grafite.

Parâmetro	Valor
Média	23.09
Desvio padrão	0.70
t	0.29
ttabelado	2.78

Linearidade

Figura A3-2: Representação gráfica da curva de calibração do alumínio em grafite.

Cálcio em chama

Gama de trabalho

Valores das absorvâncias		
Menor padrão	Maior padrão	
0.085	0.732	
0.081	0.681	
0.087	0.775	
0.083	0.755	
0.081	0.758	
0.079	0.705	
0.084	0.703	
0.088	0.722	
0.083	0.728	
0.084	0.735	

Tabela A39: Valores das absorvâncias do menor e maior padrão de cálcio em chama.

Tabela A4-22: Valores obtidos para a aplicação do teste PG para o cálcio em chama.

Parâmetro	Menor padrão	Maior padrão
Média	0.084	0.729
Variância	7.61×10 ⁻⁶	8.09×10 ⁻⁵
PG	0.0	09
F	0.3	15

Sensibilidade

Curva	Declive
1	0.1833
2	0.1679
3	0.1923
4	0.1864
5	0.1933
6	0.1771
7	0.1749
8	0.1806
9	0.1840
10	0.1842

Tabela A4-23: Declives obtidos para várias curvas de calibração do padrão cálcio em chama.

Tabela A4-404: Valores obtidos para a determinação dos limites de controlo para o cálcio em chama.

Parâmetro	Valor
Declive médio	0.1824
Desvio padrão	7.70×10 ⁻³
Limite inferior de controlo	0.1593
Limite superior de controlo	0.2055

Limiares analíticos

Tabela A4-241: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o cálcio em chama.

Parâmetro	Valor
Declive	0.1776
Desvio padrão da reta	6.31×10 ⁻³
LD	0.12 mg/L
LQ	0.35 mg/L

Reprodutibilidade

Parâmetro	Valor
Declive médio	0.1824
Desvio padrão	7.70×10 ⁻³
CV de	4 22%
reprodutibilidade	7.2270

Tabela A4-26: Valores obtidos para a reprodutibilidade para o cálcio em chama.

Precisão intermédia

Tabela A4-27: Valores de absorvância dos padrões intermédios das curvas de calibração para o cálcio em chama.

Curva	2º Padrão	3º Padrão
1	0.175	0.457
2	0.154	0.380
3	0.171	0.437
4	0.171	0.420
5	0.156	0.481
6	0.174	0.438
7	0.183	0.429
8	0.175	0.448
9	0.174	0.464
10	0.179	0.447

Tabela A4-28: Valores obtidos no cálculo da precisão intermédia para o cálcio em chama.

Parâmetro	Valor 2º Padrão	Valor 3º Padrão
Declive médio	0.171	0.440
Desvio padrão	9.26×10-3	0.027
CV de reprodutibilidade	5.41%	6.24%

Exatidão

Tabela A4-29: Valores de concentração do MR e das réplicas analisadas para o cálcio em chama.

Solução	Concentração (mg/L)
MR	2.50
Réplica 1	2.53
Réplica 2	2.54
Réplica 3	2.39
Réplica 4	2.55
Réplica 5	2.57

Tabela A4-30: Valores obtidos no cálculo da exatidão para o cálcio em chama.

Parâmetro	Valor
Média	2.52
Desvio padrão	0.07
t	0.50
ttabelado	2.78

Linearidade

Figura A4-3: Representação gráfica da curva de calibração do cálcio em chama.

Cobre em chama

Gama de trabalho

Valores das absorvâncias		
Menor padrão	Maior padrão	
0.036	0.279	
0.036	0.271	
0.036	0.282	
0.039	0.283	
0.040	0.278	
0.039	0.278	
0.037	0.271	
0.039	0.272	
0.038	0.272	
0.038	0.287	

Tabela A4-31: Valores das absorvâncias do menor e maior padrão de cobre em chama.

Tabela A4-32: Valores obtidos para a aplicação do teste PG para o cobre em chama.

Parâmetro	Menor padrão	Maior padrão
Média	0.038	0.277
Variância	2.18×10 ⁻⁶	3.20×10-5
PG	0.0	68
F	0.3	15

Sensibilidade

Curva	Declive
1	0.0697
2	0.0678
3	0.0702
4	0.0703
5	0.0692
6	0.0693
7	0.0674
8	0.0675
9	0.0675
10	0.0716

Tabela A4-33: Declives obtidos para várias curvas de calibração do padrão cobre em chama.

Tabela A4-34: Valores obtidos para a determinação dos limites de controlo para o cobre em chama.

Parâmetro	Valor
Declive médio	0.0690
Desvio padrão	1.45×10-3
Limite inferior de controlo	0.0647
Limite superior de controlo	0.0734

Limiares analíticos

Tabela A4-35: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o cobre em chama.

Parâmetro	Valor
Declive	0.0702
Desvio padrão da reta	1.44×10 ⁻³
LD	0.07 mg/L
LQ	0.21 mg/L

Reprodutibilidade

Parâmetro	Valor
Declive médio	0.0690
Desvio padrão	1.45×10-3
CV de	2 10%
reprodutibilidade	2.10/0

Tabela A4-36: Valores obtidos para a reprodutibilidade para o cobre em chama.

Precisão intermédia

Tabela A4-37: Valores de absorvância dos padrões intermédios das curvas de calibração para o cobre em chama.

Curva	2º Padrão	3º Padrão
1	0.076	0.180
2	0.072	0.176
3	0.074	0.178
4	0.078	0.182
5	0.076	0.182
6	0.074	0.181
7	0.076	0.176
8	0.074	0.178
9	0.074	0.173
10	0.074	0.182

Tabela A4-38: Valores obtidos no cálculo da precisão intermédia para o cobre em chama.

Parâmetro	Valor 2º Padrão	Valor 3º Padrão
Declive médio	0.075	0.179
Desvio padrão	1.69×10-3	3.12×10-3
CV de reprodutibilidade	2.55%	1.74%

Exatidão

	Tabela A4-39:	Valores de	concentração	do MR	e das	réplicas	analisadas	para o	cobre em chama.
--	---------------	------------	--------------	-------	-------	----------	------------	--------	-----------------

Solução	Concentração (mg/L)
MR	2.50
Réplica 1	2.54
Réplica 2	2.43
Réplica 3	2.51
Réplica 4	2.44
Réplica 5	2.46

Tabela A4-40: Valores obtidos no cálculo da exatidão para o cobre em chama.

Parâmetro	Valor
Média	2.48
Desvio padrão	0.05
t	1.13
ttabelado	2.78

Linearidade

Figura A4-4: Representação gráfica da curva de calibração do cálcio em chama.

Manganês em chama

Gama de trabalho

Valores das absorvâncias		
Menor padrão	Maior padrão	
0.050	0.417	
0.058	0.414	
0.056	0.410	
0.059	0.415	
0.058	0.424	
0.053	0.408	
0.053	0.407	
0.054	0.394	
0.055	0.409	
0.059	0.407	

Tabela A4-41: Valores das absorvâncias do menor e maior padrão de manganês em chama.

Tabela A4-42: Valores obtidos para a aplicação do teste PG para o manganês em chama.

Parâmetro	Menor padrão	Maior padrão
Média	0.056	0.411
Variância	9.17×10 ⁻⁶	6.25×10 ⁻⁵
PG	0.1	47
F	0.3	15

Sensibilidade

Curva	Declive
1	0.1042
2	0.1031
3	0.1016
4	0.1033
5	0.1048
6	0.1024
7	0.1014
8	0.0997
9	0.1034
10	0.1021

Tabela A4-43: Declives obtidos para várias curvas de calibração do padrão manganês em chama.

Tabela A4-44: Valores obtidos para a determinação dos limites de controlo para o manganês em chama.

Parâmetro	Valor
Declive médio	0.1026
Desvio padrão	1.50×10-3
Limite inferior de controlo	0.0981
Limite superior de controlo	0.1071

Limiares analíticos

Tabela A4-45: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o manganês em chama.

Parâmetro	Valor
Declive	0.1015
Desvio padrão da reta	1.23×10-3
LD	0.04 mg/L
LQ	0.12 mg/L

Reprodutibilidade

Parâmetro	Valor
Declive médio	0.1026
Desvio padrão	1.50×10-3
CV de	1 46%
reprodutibilidade	1.40%

Tabela A4-46: Valores obtidos para a reprodutibilidade para o manganês em chama.

Precisão intermédia

Tabela A4-47: Valores de absorvância dos padrões intermédios das curvas de calibração para o manganês em chama.

Curva	2º Padrão	3º Padrão
1	0.111	0.265
2	0.112	0.264
3	0.112	0.259
4	0.118	0.272
5	0.106	0.256
6	0.105	0.265
7	0.101	0.254
8	0.099	0.267
9	0.109	0.280
10	0.117	0.282

Tabela A4-48: Valores obtidos no cálculo da precisão intermédia para o manganês em chama.

Parâmetro	Valor 2º Padrão	Valor 3º Padrão
Declive médio	0.109	0.266
Desvio padrão	6.29×10-3	9.35×10-3
CV de reprodutibilidade	5.77%	3.51%

Exatidão

Tabela A4-49: Valores de concentração do MR e das réplicas analisadas para o manganês em chama.

Solução	Concentração (mg/L)
MR	2.50
Réplica 1	2.50
Réplica 2	2.20
Réplica 3	2.60
Réplica 4	2.30
Réplica 5	2.40

Tabela A4-50: Valores obtidos no cálculo da exatidão para o manganês em chama.

Parâmetro	Valor
Média	2.40
Desvio padrão	0.16
t	1.41
ttabelado	2.78

Linearidade

Figura A4-5: Representação gráfica da curva de calibração de manganês em chama.

Manganês em grafite

Gama de trabalho

Valores das absorvâncias		
Menor padrão	Maior padrão	
0.040	0.191	
0.040	0.189	
0.046	0.212	
0.044	0.203	
0.046	0.208	
0.044	0.206	
0.046	0.203	
0.044	0.211	
0.044	0.204	
0.045	0.200	

Tabela A4-51: Valores das absorvâncias do menor e maior padrão de manganês em grafite.

Tabela A4-52: Valores obtidos para a aplicação do teste PG para o manganês em grafite.

Parâmetro	Menor padrão	Maior padrão
Média	0.044	0.203
Variância	4.99×10 ⁻⁶	5.90×10-5
PG	0.0	85
F	0.3	15

Sensibilidade

Curva	Declive
1	0.0270
2	0.0268
3	0.0298
4	0.0282
5	0.0296
6	0.0292
7	0.0308
8	0.0277
9	0.0306
10	0.0292

Tabela A4-53: Declives obtidos para várias curvas de calibração do padrão manganês em grafite.

Tabela A4-54: Valores obtidos para a determinação dos limites de controlo para o manganês em grafite.

Parâmetro	Valor
Declive médio	0.0289
Desvio padrão	1.39×10 ⁻³
Limite inferior de controlo	0.0247
Limite superior de controlo	0.0331

Limiares analíticos

Tabela A4-55: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o manganês em grafite.

Parâmetro	Valor
Declive	0.0270
Desvio padrão da reta	2.52×10-3
LD	0.31 µg/L
LQ	0.93 µg/L

Reprodutibilidade

Parâmetro	Valor
Declive médio	0.0289
Desvio padrão	1.39×10-3
CV de	4 83%
reprodutibilidade	4.00%

Tabela A4-56: Valores obtidos para a reprodutibilidade para o manganês em grafite.

Precisão intermédia

Tabela A4-57: Valores de absorvância dos padrões intermédios das curvas de calibração para o manganês em grafite.

Curva	2º Padrão	3º Padrão
1	0.077	0.140
2	0.080	0.138
3	0.091	0.151
4	0.087	0.140
5	0.085	0.154
6	0.088	0.156
7	0.082	0.137
8	0.091	0.163
9	0.086	0.158
10	0.089	0.145

Tabela A4-58: Valores obtidos no cálculo da precisão intermédia para o manganês em grafite.

Parâmetro	Valor 2º Padrão	Valor 3º Padrão
Declive médio	0.086	0.148
Desvio padrão	4.67×10 ⁻³	9.38×10 ⁻³
CV de reprodutibilidade	5.46%	6.33%

Exatidão

Tabela A4-59: Valores de concentração do MR e das réplicas analisadas para o manganês em grafite.

Solução	Concentração (mg/L)
MR	5.00
Réplica 1	4.94
Réplica 2	5.06
Réplica 3	4.99
Réplica 4	5.06
Réplica 5	5.03

Tabela A4-60: Valores obtidos no cálculo da exatidão para o manganês em grafite.

Parâmetro	Valor
Média	5.02
Desvio padrão	0.05
t	0.70
tabelado	2.78

Linearidade

Figura A4-6: Representação gráfica da curva de calibração do manganês em grafite.

Sódio em chama

Gama de trabalho

Valores das absorvâncias		
Menor padrão	Maior padrão	
0.062	0.507	
0.058	0.464	
0.070	0.451	
0.064	0.497	
0.056	0.395	
0.058	0.422	
0.049	0.376	
0.065	0.446	
0.063	0.440	
0.060	0.438	

Tabela A4-61: Valores das absorvâncias do menor e maior padrão de sódio em chama.

Tabela A4-62: Valores obtidos para a aplicação do teste PG para o sódio em chama.

Parâmetro	Menor padrão	Maior padrão
Média	0.061	0.444
Variância	3.29×10 ⁻⁵	1.64×10 ⁻³
PG	0.0	20
F	0.3	15

Sensibilidade

Curva	Declive
1	0.1273
2	0.1146
3	0.1103
4	0.1125
5	0.0979
6	0.1056
7	0.0934
8	0.1094
9	0.1084
10	0.1082

Tabela A4-63: Declives obtidos para várias curvas de calibração do padrão sódio em chama.

Tabela A4-64: Valores obtidos para a determinação dos limites de controlo para o sódio em chama.

Parâmetro	Valor
Declive médio	0.1088
Desvio padrão	9.17×10 ⁻³
Limite inferior de controlo	0.0812
Limite superior de controlo	0.1363

Limiares analíticos

Tabela A4-65: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o sódio em chama.

Parâmetro	Valor
Declive	0.0936
Desvio padrão da reta	1.90×10 ⁻³
LD	0.07 mg/L
LQ	0.20 mg/L

Reprodutibilidade

Parâmetro	Valor
Declive médio	0.1088
Desvio padrão	9.17×10-3
CV de	8 43%
reprodutibilidade	0.40%

Precisão intermédia

Tabela A4-67: Valores de absorvância dos padrões intermédios das curvas de calibração para o sódio em chama.

Curva	2º Padrão	3º Padrão
1	0.095	0.302
2	0.118	0.275
3	0.109	0.269
4	0.110	0.301
5	0.099	0.239
6	0.111	0.276
7	0.098	0.235
8	0.104	0.265
9	0.105	0.264
10	0.110	0.267

Tabela A4-68: Valores obtidos no cálculo da precisão intermédia para o sódio em chama.

Parâmetro	Valor 2º Padrão	Valor 3º Padrão
Absorvância média	0.106	0.269
Desvio padrão	7.06×10 ⁻³	0.021
CV de reprodutibilidade	6.67%	8.11%
Exatidão

Tabela A4-69: Valores de concentração do MR e das réplicas analisadas para o sódio em chama.

Solução	Concentração (mg/L)
MR	2.50
Réplica 1	2.48
Réplica 2	2.53
Réplica 3	2.52
Réplica 4	2.49
Réplica 5	2.51

Tabela A4-70: Valores obtidos no cálculo da exatidão para o sódio em chama.

Parâmetro	Valor
Média	2.51
Desvio padrão	0.02
t	0.64
ttabelado	2.78

Linearidade

Figura A4-7: Representação gráfica da curva de calibração do sódio em chama.

Zinco em chama

Gama de trabalho

Valores das	absorvâncias
Menor padrão	Maior padrão
0.042	0.367
0.046	0.337
0.035	0.369
0.041	0.352
0.035	0.363
0.038	0.344
0.036	0.342
0.038	0.348
0.039	0.373
0.040	0.339

Tabela A4-71: Valores das absorvâncias do menor e maior padrão de zinco em chama.

Tabela A4-72: Valores obtidos para a aplicação do teste PG para o zinco em chama.

Parâmetro	Menor padrão	Maior padrão
Média	0.039	0.353
Variância	1.18×10 ⁻⁵	1.81×10 ⁻⁴
PG	0.0	65
F	0.3	15

Sensibilidade

Curva	Declive
1	0.3648
2	0.3285
3	0.3682
4	0.3498
5	0.3645
6	0.3451
7	0.3407
8	0.3561
9	0.3694
10	0.3461

Tabela A4-73: Declives obtidos para várias curvas de calibração do padrão zinco em chama.

Tabela A4-74: Valores obtidos para a determinação dos limites de controlo para o zinco em chama.

Parâmetro	Valor
Declive médio	0.3533
Desvio padrão	0.013
Limite inferior de	0 3127
controlo	0.0127
Limite superior de	0 3939
controlo	0.0000

Limiares analíticos

Tabela A4-75: Dados para o cálculo dos limiares analíticos e valor dos mesmos para o zinco em chama.

Parâmetro	Valor
Declive	0.3410
Desvio padrão da reta	6.37×10 ⁻⁴
LD	0.006 mg/L
LQ	0.02 mg/L

Reprodutibilidade

Tabela A4-76:	Valores obtidos	para a reprodu	tibilidade para c	o zinco em chama.
---------------	-----------------	----------------	-------------------	-------------------

Parâmetro	Valor
Declive médio	0.3533
Desvio padrão	0.013
CV de	3 83%
reprodutibilidade	3.63%

Precisão intermédia

Tabela A4-77: Valores de absorvância dos padrões intermédios das curvas de calibração para o zinco em chama.

Curva	2º Padrão	3º Padrão
1	0.187	0.280
2	0.177	0.246
3	0.178	0.272
4	0.181	0.267
5	0.175	0.276
6	0.184	0.265
7	0.172	0.258
8	0.178	0.286
9	0.185	0.274
10	0.176	0.279

Tabela A4-78: Valores obtidos no cálculo da precisão intermédia para o zinco em chama.

Parâmetro	Valor 2º Padrão	Valor 3º Padrão
Absorvância média	0.179	0.270
Desvio padrão	4.81×10 ⁻³	0.012
CV de reprodutibilidade	2.68%	4.35%

Exatidão

rabcia n + 75. valores de concentração do min e das replicas analisadas para o zinco em chama	Tabela	A4-79:	Valores d	e concentração	do MR e	das réplicas	analisadas	para o zinco em chama
---	--------	--------	-----------	----------------	---------	--------------	------------	-----------------------

Solução	Concentração (mg/L)
MR	2.50
Réplica 1	2.54
Réplica 2	2.45
Réplica 3	2.49
Réplica 4	2.52
Réplica 5	2.51

Tabela A4-80: Valores obtidos no cálculo da exatidão para o zinco em chama.

Parâmetro	Valor
Média	2.50
Desvio padrão	0.03
t	0.13
t _{tabelado}	2.78

Linearidade

Figura A4-8: Representação gráfica da curva de calibração do zinco em chama.

Anexo 5: Equações utilizadas no cálculo da sensibilidade e da precisão

O limite superior de controlo calcula-se com recurso à equação A1.20,83

$$LSC = \bar{x} + 3s \tag{A1.20}$$

e o limite inferior de controlo calcula-se com recurso à equação A1.21,83

$$LIC = \bar{x} - 3s \tag{A1.21}$$

onde \bar{x} corresponde à média do conjunto de dados e s corresponde ao desvio padrão dos mesmos.

O CV é calculado através da equação A1.22,

$$CV = \frac{s}{\bar{x}} * 100$$
 (A1.22)

Anexo 6: Procedimento para a digestão ácida

- 1- Transferir 100 mL de amostra para um Erlenmeyer.
- 2- Adicionar 5 mL de ácido nítrico.
- 3- Adicionar esferas de ebulição.
- 4- Colocar em aquecimento numa placa a uma temperatura entre 100 °C e 120 °C.
- 5- Deixar evaporar até restar um volume entre 10 mL e 20 mL.
- 6- Remover da placa e deixar arrefecer.
- 7- Lavar as paredes do Erlenmeyer com água livre de metais.
- 8- Filtrar o conteúdo para um balão volumétrico de 100 mL e perfazer o volume com água livre de metais.

Referências bibliográficas

- 1 S. Manahan, *Environmental Chemistry, Ninth Edition*, CRC Press, Boca Raton, 2009.
- 2 T. H. Y. Tebbutt, in *Principles of Water Quality control, Fifth Edition*, ed. T. H. Y. Tebbutt, Butterworth-Heinemann, Oxford, 1998, 1–11.
- 3 Vienna Convention for the Protection of the Ozone Layer, 1985.
- 4 *Kyoto Protocol to the United Nations Framework Convnetion on Climate Change*, 1997.
- 5 Paris Agreement to the United Nations Framework Convention on Climate Change, 2015.
- 6 Convention on Access to Information, Public Participation in Decision-Making and Access to Justice in Environmental Matters, *Int. Leg. Mater.*, 1999, **38**, 517–533.
- 7 G. Ryder, United Nations World Water Assessment Programme, 2017, The United Nations World Water Development Report 2017, Wastewater: The Untapped Resource, Paris, UNESCO, 2017.
- 8 UNESCO World Water Assessment Programme, *The United Nations world water development report 2018: nature-based solutions for water*, 2018.
- 9 OECD, Diffuse pollution, degraded waters: emerging policy solutions, 2017.
- 10 A. E. Evans, J. Mateo-Sagasta, M. Qadir, E. Boelee and A. Ippolito, Agricultural water pollution: key knowledge gaps and research needs, *Current Opinion in Environmental Sustainability*, 2019, **36**, 20–27.
- A. Sebastian, A. Nangia and M. N. V. Prasad, in *Agrochemicals Detection, Treatment and Remediation*, ed. M. N. V. Prasad, Butterworth-Heinemann, 2020, 465–485.
- A. N. Sharpley, L. Bergström, H. Aronsson, M. Bechmann, C. H. Bolster, K. Börling, F. Djodjic, H. P. Jarvie, O. F. Schoumans, C. Stamm, K. S. Tonderski, B. Ulén, R. Uusitalo and P. J. A. Withers, Future agriculture with minimized phosphorus losses to waters: Research needs and direction, *AMBIO*, 2015, 44, 163–179.
- Y. Wen, G. Schoups and N. van de Giesen, Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change, *Scientific Reports*, 2017, 7, 43289.
- 14 A. A. Horton, A. Walton, D. J. Spurgeon, E. Lahive and C. Svendsen, Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities, *Science of The Total Environment*, 2017, **586**, 127–141.
- S. Zandaryaa and J. Mateo-Sagasta, Organic matter, pathogens and emerging pollutants, 2018, 125–138.

- 16 M. Bonsch, A. Popp, A. Biewald, S. Rolinski, C. Schmitz, I. Weindl, M. Stevanovic, K. Högner, J. Heinke, S. Ostberg, J. P. Dietrich, B. Bodirsky, H. Lotze-Campen and F. Humpenöder, Environmental flow provision: Implications for agricultural water and land-use at the global scale, *Global Environmental Change*, 2015, **30**, 113–132.
- J. G. Speight, in *Natural Water Remediation*, ed. J. G. Speight, Butterworth-Heinemann,
 2020, 165–198.
- 18 K. O. Ott, Global warming and the greenhouse effect, *Progress in Nuclear Energy*, 1995,
 29, 81–88.
- 19 Y. Ding, S. Zhang, L. Zhao, Z. Li and S. Kang, Global warming weakening the inherent stability of glaciers and permafrost, *Science Bulletin*, 2019, **64**, 245–253.
- 20 W. Haeberli, C. Huggel, F. Paul and M. Zemp, in *Reference Module in Earth Systems and Environmental Sciences*, Elsevier, 2021.
- A. Friedland and R. Relyea, *Essentials of Environmental Science, Second Edition*, W. H.
 Freeman, New York, 2015.
- 22 International Decade for Action 'Water for Life' 2005-2015. Focus Areas, https://www.un.org/waterforlifedecade/quality.shtml, (accessed 8 November 2021).
- 23 R. Damania, S. Desbureaux, A.-S. Rodella, J. Russ and E. Zaveri, *Quality Unknown: The Invisible Water Crisis*, World Bank, Washington, DC, 2019.
- P. H. Gleick, Dirty Water: Estimated Deaths from Water-Related Diseases 2000–2030,
 Research Report.
- S. Ryu, S. A. Won, J. Uh and J. Y. Song, Hepatitis A Virus Infection from a Contaminated Tap of Ground Water Facility in a Neighborhood Park, Republic of Korea, *Infection & Chemotherapy*, 2019, **51**, 62–66.
- 26 P. M. Glibert, D. M. Anderson, P. Gentien, E. Graneli and K. G. Sellner, *The global, complex phenomena of harmful algal blooms*, Oceanography Society, 2005.
- D. M. Anderson, P. M. Glibert and J. M. Burkholder, Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences, *Estuaries*, 2002, 25, 704–726.
- F. A. Khan and A. A. Ansari, Eutrophication: An ecological vision, *The Botanical Review*, 2005, **71**, 449–482.
- R. Qadri and M. A. Faiq, in *Fresh Water Pollution Dynamics and Remediation*, eds. H.
 Qadri, R. A. Bhat, M. A. Mehmood and G. H. Dar, Springer, Singapore, 2020, 15–26.
- S. D. Grave, K. G. Smith, N. A. Adeler, D. J. Allen, F. Alvarez, A. Anker, Y. Cai, S. F. Carrizo,
 W. Klotz, F. L. Mantelatto, T. J. Page, J.-Y. Shy, J. L. Villalobos and D. Wowor, Dead Shrimp

Blues: A Global Assessment of Extinction Risk in Freshwater Shrimps (Crustacea: Decapoda: Caridea), *PLOS ONE*, 2015, **10**, e0120198.

- H. Zhang, Q. W. Wei, H. Du and L. X. Li, Present status and risk for extinction of the Dabry's sturgeon (Acipenser dabryanus) in the Yangtze River watershed: a concern for intensified rehabilitation needs, *Journal of Applied Ichthyology*, 2011, 27, 181–185.
- 32 M. Scholz, *Sustainable Water Treatment: Engineering Solutions for a Variable Climate*, Elsevier Science Publishing Co Inc, 2018.
- V. Gitis and N. Hankins, Water treatment chemicals: Trends and challenges, *Journal of Water Process Engineering*, 2018, 25, 34–38.
- 34 European Committee for Standardization, *EN 901:2013 Chemicals used for treatment* of water intended for human consumption - Sodium hypochlorite, Brussels.
- 35 European Committee for Standardization, *EN 939:2106 Chemicals used for treatment* of water intended for human consumption - Hydrocloric acid, Brussels.
- 36 European Committee for Standardization, *EN 896:2013 Chemicals used for treatment* of water intended for human consumption - Sodium hydroxide, Brussels.
- 37 C. Kelly, M. Porter, N. Groocok and R. Breach, Quality Control of Water-Treatment Chemicals, *Water and Environment Journal*, 2007, **9**, 454–457.
- 38 K. Klotz, W. Weistenhöfer, F. Neff, A. Hartwig, C. van Thriel and H. Drexler, The Health Effects of Aluminum Exposure, *Deutsches Ärzteblatt International*, 2017, **114**, 653–659.
- R. G. Cooper and A. P. Harrison, The exposure to and health effects of antimony, *Indian Journal of Occupational and Environmental Medicine*, 2009, **13**, 3–10.
- 40 Y.-S. Hong, K.-H. Song and J.-Y. Chung, Health Effects of Chronic Arsenic Exposure, Journal of Preventive Medicine and Public Health 2014, **47**, 245–252.
- G. Genchi, M. S. Sinicropi, G. Lauria, A. Carocci and A. Catalano, The Effects of Cadmium Toxicity, *International Journal of Environmental Research and Public Health*, 2020, **17**, E3782.
- K. Li, X.-F. Wang, D.-Y. Li, Y.-C. Chen, L.-J. Zhao, X.-G. Liu, Y.-F. Guo, J. Shen, X. Lin, J. Deng,
 R. Zhou and H.-W. Deng, The good, the bad, and the ugly of calcium supplementation: a review of calcium intake on human health, *Clinical Interventions in Aging*, 2018, 13, 2443–2452.
- 43 N. R. C. (US) C. on M. L. in C. Populations, *Adverse Health Effects of Exposure to Lead*, National Academies Press (US), 1993.
- 44 National Research Council (US) Committee on Copper in Drinking Water, *Health Effects* of *Excess Copper*, National Academies Press (US), 2000.

- 45 S. Wilbur, H. Abadin, M. Fay, D. Yu, B. Tencza, L. Ingerman, J. Klotzbach and S. James, HEALTH EFFECTS, Agency for Toxic Substances and Disease Registry (US), 2012.
- N. Khatri, S. Tyagi and D. Rawtani, Recent strategies for the removal of iron from water:
 A review, *Journal of Water Process Engineering*, 2017, **19**, 291–304.
- 47 K. M. Rice, E. M. Walker, M. Wu, C. Gillette and E. R. Blough, Environmental Mercury and Its Toxic Effects, *Journal of Preventive Medicine and Public Health*, 2014, **47**, 74–83.
- 48 G. Genchi, A. Carocci, G. Lauria, M. S. Sinicropi and A. Catalano, Nickel: Human Health and Environmental Toxicology, *International Journal of Environmental Research and Public Health*, 2020, **17**, 679.
- 49 C. M. Weaver, Potassium and Health, *Advances in Nutrition*, 2013, **4**, 368S-377S.
- 50 M. Vinceti, E. T. Wei, C. Malagoli, M. Bergomi and G. Vivoli, Adverse Health Effects of Selenium in Humans, *Reviews on Environmental Health*, 2001, **16**, 233–252.
- 51 P. K. Whelton and J. He, Health effects of sodium and potassium in humans, *Current Opinion in Lipidology*, 2014, **25**, 75–79.
- 52 S. Tubek, Zinc supplementation or regulation of its homeostasis: advantages and threats, Biol Trace Elem Res, 2007, **119**, 1–9.
- 53 A. Villagomez and U. Ramtekkar, Iron, Magnesium, Vitamin D, and Zinc Deficiencies in Children Presenting with Symptoms of Attention-Deficit/Hyperactivity Disorder, *Children (Basel)*, 2014, 1, 261–279.
- S. J. Hill and A. S. Fisher, in *Encyclopedia of Spectroscopy and Spectrometry, Third Edition*,
 eds. J. C. Lindon, G. E. Tranter and D. W. Koppenaal, Academic Press, Oxford, 2017, 37–
 43.
- 55 J. M. González-López, E. M. González-Romarís, I. Idoate-Cervantes and J. F. Escanero, Atomic Absorption Spectroscopy: Fundamentals and Applications in Medicine, IntechOpen, 2012.
- 56 E. Metcalfe, *Atomic Absorption and Emission Spectroscopy*, *First Edition*, Wiley, Chichester; New York, 1987.
- 57 D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch, *Ninth Edition, Fundamentals of Analytical Chemistry*, Cengage Learning, Belmont, CA, 2013.
- D. J. Butcher, in *Encyclopedia of Analytical Science, Second Edition*, eds. P. Worsfold, A.
 Townshend and C. Poole, Elsevier, Oxford, 2005, 221–228.
- A. Gonzálvez and M. de la Guardia, in *Comprehensive Analytical Chemistry*, Elsevier, 2013, 60, 51–76.
- 60 M. Sperling, in *Encyclopedia of Analytical Chemistry*, American Cancer Society, 2006.

- D. L. G. Borges and J. A. Holcombe, in *Encyclopedia of Analytical Chemistry*, American Cancer Society, 2017, 1–20.
- 62 Associação de Laboratórios Acreditados de Portugal, Guia RELACRE 13 "Validação de Métodos Internos de Ensaio em Análise Química", RELACRE, 2000.
- 63 T. N. Rao, *Validation of Analytical Methods*, IntechOpen, 2018.
- N. Brito, Validação de métodos analíticos: Estratégia e discussão, *Pesticidas: R. Ecotox. Meio Ambiente*, 2003, **13**, 129–146.
- 65 International Organization for Standardization, *ISO 8466-1:1990 Water quality* Calibration and evaluation of analytical methods and estimation of performance characteristics — Part 1: Statistical evaluation of the linear calibration function.
- 66 International Organization for Standardization, ISO 8466-2:2001 Water quality Calibration and evaluation of analytical methods and estimation of performance characteristics — Part 2: Calibration strategy for non-linear second-order calibration functions, 2001.
- 67 P. M. Lee, *Bayesian Statistics: An Introduction, Fourth Edition,* Wiley, Chichester, West Sussex; Hoboken, New Jersey, 2012.
- 68 I. R. Berry and R. A. Nash, *Pharmaceutical process validation, Third Edition,* Marcel Dekker, New York, 2003.
- 69 A. S. Lister, in *Separation Science and Technology*, eds. S. Ahuja and M. W. Dong, Academic Press, 2005, 6, 191–217.
- 70 International Organization for Standardization, *ISO 5725 Accuracy (trueness and precision) of measurement methods and results*, 2020.
- 71 International Organization for Standardization, *ISO 5725-6:1994 Accuracy (trueness and precision) of measurement methods and results Part 6: Use in practice of accuracy values*, 1994.
- 72 International Organization for Standardization, *ISO 17034:2016 General requirements* for the competence of reference material producers, 2016.
- 73 International Organization for Standardization, *ISO/IEC* 17043:2010 Conformity assessment General requirements for proficiency testing, 2010.
- 74 About CEN, https://www.cencenelec.eu/about-cen/, (accessed 13 July 2022).
- 75 W. Niedziella, Wie funktioniert Normung? eine Einführung in die nationale (DIN/DKE), europäische (CENELEC) und internationale (IEC) elektrotechnische Normung, VDE, Berlin Offenbach, 2, komplett überarb. Aufl., 2007.
- 76 European standards, https://ec.europa.eu/growth/single-market/europeanstandards_en, (accessed 13 July 2022).

- 77 H. J. Koch, Practical Guide to International Standardization for Electrical Engineers Impact on Smart Grid and e-Mobility Markets, 2017.
- 78 Organização Internacional de Padronização (ISO),
 https://economiaenegocios.com/organizacao-internacional-de-padronizacao-iso/,
 (accessed 13 July 2022).
- 79 Lexionário Decreto-Lei | DRE, https://dre.pt/dre/lexionario/termo/decreto-lei, (accessed 13 July 2022).
- 80 Decreto-Lei nº236/98. D.R. I Série. 1-A (98-08-01).
- 81 Decreto-Lei nº152/2017. D.R. I Série. 1 (17-12-07).
- 82 Associação de Laboratórios Acreditados de Portugal, *Guia RELACRE 9 "Alguns Exemplos de Cartas de Controlo em Laboratórios Análise Química"*, RELACRE, 1998.
- 83 B. Welz and M. Sperling, *Atomic Absorption Spectrometry*, *Third Edition*, Wiley-VCH, Weinheim; New York, 1999.
- J. Sneddon and D. J. Butcher, A Practical Guide to Graphite Furnace Atomic Absorption
 Spectrometry, First Edition, Wiley-Interscience, New York, 1998.