
Universidade do Minho
Escola de Engenharia

João Marcelo Mendes Borges

Robust Software Services for IoT
Embedded Systems

dezembro de 2021U
M

in
ho

 |
 2

02
1

M
ar

ce
lo

 B
or

ge
s

Ro
bu

st
 S

of
tw

ar
e

Se
rv

ic
es

 fo
r

Io
T

Em
be

dd
ed

 S
ys

te
m

s

João Marcelo Mendes Borges

Robust Software Services for IoT
Embedded Systems

Dissertação de Mestrado
Mestrado em Engenharia Eletrónica Industrial e Computadores
Sistemas Embebidos e Computadores

Trabalho efetuado sob a orientação do
Professor Doutor Jorge Cabral

Universidade do Minho
Escola de Engenharia

dezembro de 2021

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e

boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas

no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição-NãoComercial
CC BY-NC

https://creativecommons.org/licenses/by-nc/4.0/

ii

Agradecimentos

Em primeiro lugar, agradeço ao meu orientador, Professor Doutor Jorge Cabral, por me ter dado a

oportunidade de realizar este projeto e todo o conhecimento transmitido durante estes cinco anos.

A todos os meus professores do curso de Engenharia Eletrónica da Universidade do Minho pela ex-

celência da qualidade técnica de cada um.

Aos meus pais, por todo o apoio, atenção, carinho ao longo desta caminhada e por todo o investimento

em mim. Aos meus irmãos, Célia e Paulo, pela amizade e atenção dedicadas sempre que precisei. Um

especial obrigado à minha namorada por toda a ajuda, compreensão e apoio em todos os momentos, e

sobretudo por não se cansar de me ouvir falar de eletrónica todo o dia. Ao Carlos, Pedro e Ingrês, obrigado

pela vossa amizade e apoio ao longo destes anos.

Aos meus colegas de laboratório Embedded Systems Research Group que sempre me acompanharam

no desenvolvimento deste projeto. Especialmente ao Rui Almeida, obrigado por todo o incentivo e acon-

selhamento ao longo desta etapa e pela dedicação do seu escasso tempo a discutir e rever o documento.

Por fim, a todos que me ajudaram neste percurso, o meu maior obrigado!

Project ”(Link4S)ustainability - A new generation connectivity system for creation and integration of

networks of objects for new sustainability paradigms [POCI-01-0247-FEDER-046122 | LISBOA-01-0247-

FEDER-046122]” is financed by the Operational Competitiveness and Internationalization Programmes

COMPETE 2020 and LISBOA 2020, under the PORTUGAL 2020 Partnership Agreement, and through the

European Structural and Investment Funds in the FEDER component.

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iv

Resumo

Serviços de Software Robusto para Sistemas Embebidos IoT

O aumento do número de dispositivos conetados e o aparecimento de novas tecnologias LPWAN,

como o NB-IoT, permite que a nova geração de dispositivos IoT apresente tempo de vida superior a 10

anos, com recurso a uma bateria de dimensões AA convencionais. Contudo, durante este tempo, os

dispositivos IoT designados de end-devices, devem conseguir manter o devido funcionamento do sistema,

economizando o máximo de energia possível. Neste tipo de dispositivos o uso de reprogramação Over-

The-Air (OTA) também é necessário, pois, este permite mudar o comportamento do dispositivo caso o

paradigrama da aplicação mude ou software bugs sejam encontrados. Os end-device são normalmente

controlados por uma “entidade” superior chamada de cloud que com eles interage.

O objetivo desta dissertação é dar continuidade ao trabalho realizado no laboratório do ESRG, nomeada-

mente na dissertação de mestrado [1] que se focou no desenho de um dispositivo com um tempo de vida

superior a 10 anos. A solução final foi um dispositivo com um software bare-metal e com uma estima-

tiva de 17 anos de tempo operacional. Esta foi analisada e foram encontradas possíveis melhorias na

pilha de software. Assim sendo, este foi redesenhado para o uso de um sistema operativo Azure RTOS

ThreadX. Neste redesenho vários módulos foram otimizados e adicionados como encriptação, OTA, e co-

mandos. Estes novos módulos permitem a alteração de parámetros do dispositivo, tais como, o tempo de

amostragem dos sensores, o tempo de envio e atualizações incrementais do software. Para realizar as atu-

alizações (OTA) foi desenvolvido o algoritmo diferencial DeltaGen. Em todo o desenvolvimento foram feitos

testes unitários e usados analisadores estáticos para prevenir erros antes da colocação dos dispositivos

no terreno.

Foi desenvolvida a cloud que recebe a informação dos dispositivos e os controla utilizando uma ar-

quitetura baseada em microserviços que aumenta a flexibilidade e agilidade do sistema.

Em condições normais o dispostivo tem um tempo de operação estimado de 23 anos, sendo que em

condições ideais esta aumentaria para 30 anos. A aplicação possui comunicações encriptadas utilizando

os algoritmos de encriptação RSA e AES, atualizações OTA e reconfiguração a partir de comandos enviados

da cloud.

Palavras-chave: baixo-consumo, OTA, Azure RTOS ThreadX, design, NB-IoT, IoT

v

Abstract

Robust Software Services for IoT Embedded Systems

Following the rising of connected IoT devices, the usage of LPWAN technologies, such as NB-IoT, allow

end-devices to achieve ultra-low-power consumption, reaching increasingly higher lifetimes powered by a

battery cell of standard dimensions AA. Their long lifetime requires these devices to operate properly while

saving energy. Since the application paradigm can change in the extended device lifespan or software bugs

can be found, there is a need to make these devices autonomous and connected to the cloud, allowing

for reconfiguration without physical maintenance. The cloud controls the end-devices and receives the

transmitted end-devices data.

This dissertation aims to continue the work accomplished by the ESRG laboratory, in the master’s

thesis [1], which developed and further analysed both power consumption and performance of NB-IoT

monitoring end-device, targeting its optimisations through a software/hardware co-design to achieve ten

years of operation with a single battery cell. It resulted in a bare-metal software device with 17 years of

estimated operational time.

This work aimed to improve further the work done at ESRG by implementing new features to make

this device more autonomous. The application was re-designed with the operating system Azure RTOS

ThreadX. In the re-design, several modules architecture were optimised, encrypted communications were

added, and the ability to change the run-time device settings as the sensors sampling time, transmission

interval, and update to new firmware through incremental OTA updates. To perform these updates was

developed the differing algorithm DeltaGen. In the development phase, unit tests and static analysers

were completed. The cloud using a microservice architecture was implemented, being responsible for

controlling the devices and receiving the collected data.

In normal conditions, the final solution estimated lifetime is 23 years, and it can reach 30 years

without battery leakage. It contains end-to-end secure communications using the RSA and AES encryption

algorithms, OTA updates, and can be reconfigure through the cloud’s commands in run-time.

Keywords: ultra-low-power, OTA, Azure RTOS ThreadX, design, NB-IoT, IoT

vi

Contents

Resumo v

Abstract vi

1 Introduction 24

1.1 Contextualization and Motivation . 24

1.2 Objectives . 25

1.3 Document Structure . 26

2 State-of-the-Art 28

2.1 Internet of Things (IoT) . 28

2.1.1 Traditional Architecture . 29

2.1.2 Wireless Technologies . 30

2.2 Firmware Over-The-Air (FOTA) . 31

2.3 Real-Time Operating System (RTOS) . 35

2.3.1 Rate Monotonic Algorithm . 36

2.3.2 RTOS Overview . 36

2.3.3 Bare-metal to RTOS . 39

2.3.4 Azure RTOS ThreadX Thread States . 40

2.3.5 Azure RTOS ThreadX Timers . 41

2.4 Microservices Architecture . 42

2.4.1 Cryptography . 42

3 System Specification 45

3.1 Functional and Non-Functional Requirements . 46

3.2 Hardware . 46

3.2.1 Sensors . 47

3.2.2 Transceiver . 49

3.2.3 MCU . 49

3.2.4 Encryption . 51

vii

3.2.5 Power Supply . 51

3.3 Software . 51

3.3.1 Low-Level Portable Layer . 53

3.3.2 Application Layer . 53

4 Improvement Opportunities 59

4.1 Architectural Improvements . 59

4.1.1 End-device . 59

4.1.2 Cloud . 63

4.2 Use Cases . 63

5 Design 65

5.1 Use Cases . 65

5.2 Firmware Over-The-Air Algorithm . 67

5.3 End-device . 73

5.3.1 Code guidelines . 73

5.3.2 Software Stack . 75

5.3.3 Azure RTOS ThreadX Low-power mode . 76

5.3.4 System Control . 78

5.3.5 Sensors . 80

5.3.6 Cryptography . 83

5.3.7 Communication . 84

5.3.8 Commands . 89

5.3.9 Trace . 91

5.3.10 OTA . 92

5.3.11 Bootloader . 97

5.3.12 Application . 98

5.4 Cloud . 102

5.4.1 Microservices . 103

5.4.2 Commands . 104

5.4.3 Database . 106

5.4.4 OTA . 108

viii

6 Implementation 110

6.1 Firmware Over-The-Air Delta . 111

6.2 End-device . 116

6.2.1 Azure RTOS ThreadX Low-power mode . 116

6.2.2 Bootloader . 119

6.2.3 Helper Scripts . 121

6.2.4 Testing . 124

6.2.5 Code Size . 126

6.3 Cloud . 128

6.3.1 Microservices . 128

6.3.2 Command Response . 129

6.3.3 Commands . 130

6.3.4 Check Lost Packages . 131

6.3.5 Regular Transmissions Data Exportation . 132

7 Results 134

7.1 Modular Power Consumption . 135

7.1.1 Encryption . 136

7.1.2 Full System . 139

7.1.3 Emergencies . 140

7.1.4 Command Response . 142

7.1.5 OTA . 143

7.2 Power Consumption Estimation . 149

8 Conclusion 153

8.1 Future Work . 155

References 156

A Appendix 164

A.1 End-device Implementation . 164

A.1.1 System Control . 164

A.1.2 Sensors . 165

A.1.3 Cryptography . 169

ix

A.1.4 Communication . 169

A.1.5 Commands . 176

A.1.6 Trace . 179

A.1.7 OTA . 181

A.1.8 Application . 187

A.2 OTA Result Code Changes . 190

A.3 Code . 196

A.3.1 Cryptography . 196

x

List of Figures

2.1 Traditional IoT device architecture. 29

2.2 Data rate and Power Consumption per range of multiple technologies. 30

2.3 Essencial stages of the firmware update process. 32

2.4 FreeRTOS logo. 37

2.5 Zephyr RTOS logo. 38

2.6 ThradX logo. 39

2.7 ThreadX thread state transition. 40

2.8 Attributes of the control block of a ThreadX application timer. 41

2.9 Created application timer list. 42

2.10 Cloud system overview. 42

2.11 Classical cryptography scheme. 43

2.12 Cryptography encryption algorithms overview. 43

3.1 Top-level overview. 45

3.2 System hardware overview. 47

3.3 Link4S board 3D representation. 47

3.4 First application state machine. 51

3.5 Startup application software stack. 52

3.6 Class diagram of Low-level portable layer. 53

3.7 Sensors module interface. 54

3.8 Sensors data structure. 55

3.9 System control module interface. 55

3.10 Transmission module interface. 56

3.11 Transmission structures. 57

3.12 Modem class interface. 57

4.1 System overview. 59

4.2 End-device system overview. 60

4.3 Start application use cases. 64

xi

5.1 End-device use cases. 65

5.2 Cloud use case. 66

5.3 Database use cases. 66

5.4 OTA delta block diagram. 67

5.5 OTA command structure. 68

5.6 DeltaGen block diagram. 69

5.7 Join of old and new strings. 69

5.8 DeltaGen unsorted suffix arrays. 69

5.9 DeltaGen sorted suffix arrays. 70

5.10 DeltaGen rank array. 70

5.11 DeltaGen height array. 71

5.12 Delta Generation flowchart. 71

5.13 Delta output of the new string “bc” and “bceh”. 72

5.14 Delta output to the new string “bc” and “bceh” with ADD commands merged. 72

5.15 Re-designed system software stack. 75

5.16 ThreadX low-power mode extension. 77

5.17 ThreadX low-power mode timer adjustments flowchart. 77

5.18 System control alarm structure. 78

5.19 System control class diagram. 79

5.20 System control manager thread’s flowchart. 79

5.21 Sensor and variable structures class diagrams. 80

5.22 Sensors manager thread’s flowchart. 81

5.23 Sample variables thread’s flowchart. 81

5.24 Emergency thread’s flowchart. 82

5.25 Sensors class diagram. 82

5.26 Cryptography class diagram. 83

5.27 New communication architecture datagram. 84

5.28 New communication architecture datagram. 84

5.29 Communication Asynchronous Events Thread’s flowchart. 86

5.30 New communication class diagram. 87

5.31 State machine of the connection manager thread. 88

5.32 Commands datagram reception architecture. 89

xii

5.33 Commands manager thread’s flowchart. 90

5.34 Commands class diagram. 90

5.35 Trace thread’s flowchart. 91

5.36 Trace log file objects structure. 92

5.37 MCU memory organization. 92

5.38 Delta path from communication into OTA module. 93

5.39 OTA state machine. 94

5.40 OTA begin state flowchart. 94

5.41 Erase new application flash memory state flowchart. 94

5.42 Program new application flash memory state flowchart. 95

5.43 New firmware checksum calculation state flowchart. 95

5.44 End OTA state flowchart. 96

5.45 OTA module class diagram. 96

5.46 Bootloader config page. 97

5.47 Bootloader’s flowchart. 98

5.48 Application Manager thread’s flowchart. 98

5.49 Application Manager thread send and error handling loop flowcharts. 99

5.50 Application Message according to the type. 99

5.51 Threads priorities and preemption threshold values (lower priority number higher the

thread priority). 100

5.52 Application shared binary semaphores. 101

5.53 Cloud overview design. 102

5.54 Blackwing protocol. 103

5.55 Generic microservice’s flowchart. 104

5.56 Commands module interface by a high-level application. 105

5.57 Commands module class diagram. 105

5.58 Configuration collection. 106

5.59 Regulars and emergencies collections. 107

5.60 Commands and Commands Response collections. 107

5.61 Deltas collection. 108

5.62 OTA header. 108

5.63 Package example of OTA updates. 109

xiii

6.1 Tools and programming languages. 110

6.2 Example of delta in Delta collection. 115

6.3 Low-power mode implementation comparison. 118

6.4 Compile script configuration. 122

6.5 Output of system trace python script. 124

6.6 Unit tests summary. 125

6.7 Unit tests coverage report. 126

6.8 Cppcheck report results. 126

6.9 Exported data example. 133

7.1 Measurements setup . 134

7.2 RTOS application power consumption. 135

7.3 Application with run-time encryption power consumption. 136

7.4 Regular transmission of 1024 bytes using run-time encryption. 137

7.5 Application with static RSA encryption power consumption. 137

7.6 Static encryption. 138

7.7 ATEC vs MCU encryption engine comparison. 139

7.8 Full application power consumption. 139

7.9 Light and accelerometer emergencies power consumption. 140

7.10 Temperature emergency power consumption. 141

7.11 Temperature emergency server log. 141

7.12 Temperature emergency database element. 142

7.13 MCU set interval command power consumption. 142

7.14 Modem set interval command power consumption. 143

7.15 OTA delta in database. 143

7.16 OTA upgrade power consumption. 144

7.17 OTA upgrade package zoomed power consumption. 145

7.18 OTA upgrade new application power consumption. 145

7.19 Modem OTA transmissions power consumption. 146

7.20 OTA old configuration server message. 146

7.21 OTA database command. 147

7.22 OTA old regular server message. 147

7.23 OTA last command response server message. 147

xiv

7.24 OTA last command response in the database. 148

7.25 OTA new configuration server message. 148

7.26 OTA new regular server message. 149

7.27 System components weight on power consumption with example 1. 151

xv

List of Tables

3.1 Sensors specifications. 48

3.2 HDC2080 power consumption and sampling rate according to mode and variable mea-

sured. 48

5.1 Variable type suffixes. 74

5.2 Functions type suffixes. 74

5.3 Specific C type suffixes. 74

5.4 Specfic RTOS type suffixes. 75

5.5 Commands according to the module. 89

6.1 Application size metrics compiled with O3. 127

7.1 Modem average current consumption. 150

7.2 Sensors and MCU average current consumption. 150

7.3 “ota_3.11.0_dev_O3” to “3.11.3_dev_O3” OTA power consumption. 151

xvi

Code Snippets

6.1 OTA class constructor. 111

6.2 OTA class generate function. 111

6.3 Array Conversion. 112

6.4 DeltaGen generate function. 112

6.5 Optimized suffix array generation. 112

6.6 Rank Array (RA) generation function. 113

6.7 Height Array (HA) generation function. 113

6.8 Longest Common Prefix (LCP) calculation. 113

6.9 Raw delta generation function. 113

6.10 Delta package conversion. 114

6.11 ThreadX kernel waiting stage. 116

6.12 User low-power functions. 117

6.13 Finding the next timer to expire time. 117

6.14 Low-power user call functions. 117

6.15 Azure RTOS ThreadX user low power timer setup function. 119

6.16 Bootloader scatter file. 120

6.17 Bootloader initialize function. 120

6.18 Bootloader jump function. 121

6.19 Project compile constructor. 122

6.20 Project generate and compile functions. 123

6.21 Static encryption cloud header generation script. 123

6.22 C array header generation output example. 124

6.23 Unit test of the fitDatetimeInTime function. 125

6.24 Unit test for the OTA end state. 125

6.25 Blackwing config microservice handler. 128

6.26 Example of the configuration message array. 128

6.27 Config message parse function. 129

6.28 Command response function. 129

xvii

6.29 Set alarms command function. 130

6.30 Get alarms command function. 131

6.31 Check lost packages script main function. 132

A.1 System control refresh datetime thread. 164

A.2 System Control alarms struct. 165

A.3 System control set alarms function. 165

A.4 Sensors Manager thread entry loop. 166

A.5 Sensors Emergency Handler thread entry loop. 166

A.6 Sample Sensors thread entry loop. 167

A.7 Sensor struct. 167

A.8 Sensors’ variable struct. 168

A.9 Set sensor variable period functions. 168

A.10 Get sensor’s variables period functions. 169

A.11 Datagram and datagram objects structures. 169

A.12 Transmission setup new transmission function. 170

A.13 Transmission microservice setup. 170

A.14 Transmission append and insert datagram object functions. 170

A.15 Communication receive datagram function. 172

A.16 Insert datagram object auxiliary function. 174

A.17 Asynchronous thread. 174

A.18 Connection handler state machine pointer to functions array. 175

A.19 Signal communication error function. 175

A.20 Configuration connection manager state. 176

A.21 Data reception event flag wait. 176

A.22 Command opcode parse command opcode. 177

A.23 Command set and get function call. 177

A.24 Set and get alarm command. 178

A.25 Command result, opcode, board ID, and timestamp append. 179

A.26 Command response transmission. 179

A.27 Trace thread entry. 179

A.28 Trace threads and queue stack free space calculation function. 180

A.29 Calculate thread and queue free space functions. 180

xviii

A.30 Trace implementation of ThreadX stack error handler function. 181

A.31 OTA module interface functions. 182

A.32 OTA begin state. 182

A.33 OTA new application erase state. 183

A.34 OTA new application program state. 184

A.35 OTA new application checksum state. 186

A.36 OTA end state. 187

A.37 OTA wait for restart state. 187

A.38 Application manager thread entry. 187

A.39 Configuration event flag handle. 188

A.40 Error signal function. 189

A.41 Application error handling. 189

A.42 Old modem parse UART messages thread code. 190

A.43 New modem parse UART messages thread code. 192

Appendix/cryptography.c . 196

xix

Acronyms

3GPP 3rd Generation Partnership Project.

ADC Analogue to Digital Conversion.

AES Advanced Encryption Standard.

API Application Programming Interface.

ASCII American Standard Code for Information Interchange.

AWS Amazon Web Services.

BOM Bill of materials.

CB Control Block.

CI Continuous Integration.

CoAP Constrained Application Protocol.

COTS Commercial Off-The-Shelf.

DASA Differencing Algorithm based on Suffix Array.

DES Data Encryption Standard.

DRX Discontinuous Reception.

ECC Elliptic-curve Cryptography.

ECDH Elliptic-curve Diffie-Hellman.

ECDSA Elliptic Curve Digital Signature Algorithm.

EEPROM Electrically-Erasable Programmable Read-Only Mem-

ory.

eSIM embedded-SIM.

ESRG Embedded Systems Research Group.

EXTI External Interrupt.

FBC Fixed Block Comparison.

FOTA Firmware Over-The-Air.

xx

Gbps Gigabits-per-second.

GPIO General Purpose Input/Output.

HA Height Array.

HAL Hardware Abstraction Layer.

I2C Inter-Integrated Circuit.

IC Integrated Circuit.

IoE Internet of Everything.

IoT Internet of Things.

IP Intellectual Property.

ISR Interrupt Service Routine.

IV Initial Vector.

JSON JavaScript Object Notation.

LCP Longest Common Prefix.

LDO Low-Dropout Regulator.

Link4S (Link4S)ustainability.

LL Low Level.

LoRa Long Range.

LPMG Low Power Mode Governor.

LPTIM Low-power Timer.

LPUART Low-power UART.

LPWAN Low-Power Wide Area Network.

LTE Long Term Evolution.

M2M Machine to Machine.

mAh Milliamps Hours.

Mbps Megabits-per-second.

MCU Microcontroller Unit.

MD5 Message-Digest algorithm 5.

MISRA Motor Industry Software Reliability Association.

MPU Memory Protection Unit.

MQTT Message Queuing Telemetry Transport.

xxi

MSB Most Significant Bit.

MSI Multispeed Internal.

NAS Non-Acess Stratum.

NB-IoT Narrowband IoT.

OFDMA Orthogonal Frequency-Division Multiple Access.

OS Operating System.

OTA Over-The-Air.

P2M Person/People to Machine.

P2P Person/People to Person/People.

PCB Printed Circuit Board.

PSM Power Saving Mode.

RA Rank Array.

RAM Random Access Memory.

RFID Radio Frequency Identification.

RM Rate Monotonic.

RO Read-only.

ROM Read-Only Memory.

RSA Rivest-Shamir-Adleman.

RTC Real Time Clock.

RTOS Real-Time Operating System.

SA Suffix Array.

SC-FDMA Single-Carrier Frequency-Division Multiple Access.

SIM Subscriber Identification Module.

SoC System-On-a-Chip.

SPI Serial Peripheral Interface.

TCP Transmission Control Protocol.

UART Universal Asynchronous Receiver-Transmitter.

UDP User Datagram Protocol.

URC Unsolicited Result Code.

xxii

USART Universal Synchronous and Asynchronous Receiver-

Transmitter.

USB Universal Serial Bus.

UUID Universally Unique Identifier.

WFI Wait for Interrupt.

xxiii

Chapter 1: Introduction

This chapter starts by presenting this dissertation’s contextualization, motivation, and goals. First, the

contextualization gives an essential perspective of the frame of the dissertation. Then the motivation for

conducting a study on this topic following the dissertation objectives. Finally, this chapter concludes by

guiding the reader through the work done, presenting the document structure.

1.1 Contextualization and Motivation

This dissertation continues the work done in ESRG laboratory [1]. It is inserted in the (LINK4S)ustainability

project from the Link4S consortium, which is committed to working together in the generation of new sci-

entific knowledge to design, develop, construct and test novel Smart Embedded Connected Devices and

associated software platforms, aiming at the integration of networks of objects and social networks in the

context of mobility and energy ecosystems.

In the Masters’s thesis titled “Software/Hardware Co-Design for NB-IoT Low-Power Applications: Con-

sumption and Performance Analysis” [1], the purpose was to analyze both power consumption and perfor-

mance of NB-IoT monitoring end-device, targeting its optimizations through a software/hardware co-design,

in order to achieve ten years of operation with a single battery.

The end-device is a monitoring system with multiple sensors: methane, acceleration, luminosity, tem-

perature and humidity, which can continuously sample in low-power mode, enabling an internal interrupt

mechanism to detect if the sampled value is within a defined threshold. Therefore, these sensors’ in-

terrupt signals can wake up the end-device microcontroller, thens signalling an alert. Furthermore, the

microcontroller can enter low-power sleep and react to asynchronous events.

In terms of hardware, a previous benchmark of the development board provided by the partner NOS,

which helped explore what was required to implement an NB-IoT end-device, later allowing the design

of a custom solution. The resulting custom board developed reached an 11-year battery lifetime under

ideal operating conditions. However, the Low-Dropout Regulator chosen had a power quiescent current

prejudicial during the device’s sleep period. From the knowledge acquired with the measurements a new

board was developed, and the software was also improved, allowing to achieve a 17-year battery lifetime

under ideal conditions.

24

Chapter 1. Introduction

In terms of software, a comparison between a bare-metal and a freeRTOS approach, where the differ-

ence measured was not relevant for the device’s overall operation time, concluding that both approaches

were viable. However, it was unfeasible to improve the freeRTOS version because of its memory foot-

print. Moreover, were not implemented security mechanisms in the communications, such as encryption,

because of unavailability from the cloud side.

This dissertation aims to guarantee software-wise that the developed device can survive for all its

hardware lifetime, improving the application software without degradation the end-device operation lifetime.

1.2 Objectives

The main goal is to improve the software of a monitoring NB-IoT end-device, making it robust and

reliable enough to maintain the 10-years battery autonomy. This goal can be achieved with the following

objectives:

• Re-Design the bare-metal application to an RTOS based one

The re-design of the application to use an RTOS adds flexibility to the design and reliable operation,

and as the system becomes more complex, it simplifies software integration. In the application

re-design, the ability of the cloud to change settings of the end-device, a new sensors’ architec-

ture to optimize space, and auto-recovery should be added. The communication module can be

generalized to better modular software.

• Test and validation the application

Test and validation of the application are required to prevent unexpected code behaviour in run-time.

• Implementation of encryption algorithms to the communications

The LTE protocols as the NB-IoT have the message’s payload already encrypted in the control plane,

being natively encrypted in the radio interface by Non-Acess Stratum (NAS) messages [2]. However,

to achieve end-to-end data privacy it is required to use appropriate cryptographic solutions in data

exchange.

• Implementation of the cloud server for the end-devices

The reception of data from the end-devices, its storage, and run-time device control should be done

from the cloud server. The data should be saved in a database allowing further post-process by

other applications.

25

1.3. Document Structure

• Enable Firmware Over-The-Air (FOTA)

The end-devices can be located in remote and even inaccessible places, so adding new features

and resolving bugs or security vulnerabilities is impossible without recovering the devices or going

into their location and downloading new firmware. As a solution, Firmware Over-The-Air (FOTA) is

required because it allows upgrading the firmware wirelessly without physical interaction, preventing

long maintenance downtimes.

• Deployment of the end-devices

The end-devices and cloud software need to be ready for the LINK4S project use cases deployment.

1.3 Document Structure

The document contains six chapters that will be briefly described next. After this introductory chapter

is the state-of-the-art, it introduces concepts used during the dissertation. It starts with the traditional

Internet of Things (IoT) device’s architecture and covers wireless technologies. Then, an overview of the

Firmware Over-The-Air (FOTA), from the new firmware to the process of creating the Delta and sending it

to the end-device. Afterwards, some Real-Time Operating System (RTOS) concepts are introduced, mainly

focusing on solutions such as FreeRTOS, Zephyr, and Azure RTOS ThreadX. The Azure RTOS ThreadX time

and thread management is explained in detail. Then, the microservices cloud architecture is introduced,

and an overview of the cryptography.

Chapter three presents the system specification, which explains the dissertation start software and

hardware in the end-device, its functional and non-functional requirements, and use cases.

Chapter four contains the Improvement Opportunities that focus on finding the end-device software

and cloud solution improvements.

Chapter five contains the design, which is divided into three main topics: (i) End-device presents the

new software re-design adding new architectures to optimize or improve the current software taking advan-

tage of the improvements opportunities found in the previous chapter; (i) Cloud shows the microservices

architecture used in the cloud to handle the end-devices; (i) Delta presents the DeltaGen algorithm, which

is a differencing algorithm used to generate the delta to perform incremental updates.

Chapter six shows a comprehensive description of how the delta, end-device and cloud were imple-

mented and presents some development phase helper scripts.

Chapter seven contains the results of the end-device power consumption in the several implementation

stages. In the end, it is estimated the power consumption in a real application scenario.

26

Chapter 1. Introduction

The last chapter concludes with the work developed during the thesis and proposes future work to

improve the final solution.

27

Chapter 2: State-of-the-Art

In this chapter, several important concepts to the development will be discussed, starting with an

overview of the Internet of Things, which is a concept that enables the connecting of all devices that can

be located in remote places. Consequently, Firmware Over-The-Air is used to fix bugs of the development

phase and add more functionalities. Next, an overview of the RTOS advantages, disadvantages, utility,

and an overview of available RTOSes as FreeRTOS, Zephyr and the Azure RTOS ThreadX. Afterwards, the

microservices architecture used in the cloud is illustrated, and, finally, cryptography to secure communi-

cations between the device and the cloud is addressed.

2.1 Internet of Things (IoT)

The term Internet of Things (IoT) was invented in 1999, initially to promote Radio Frequency Iden-

tification (RFID) technology. It describes the network of physical objects (things), which are embedded

with sensors, software, and other technologies with the purpose of connecting and exchanging data with

other devices [3, 4, 5, 6]. This term was to refer Machine to Machine (M2M) communications [7]. A

few years later, the Internet of Everything (IoE) [8] appeared to describe interrelated elements of a whole

system, including people. IoE entails not only in M2M but also Person/People to Person/People (P2P)

and Person/People to Machine (P2M) communications.

The Internet of Things is already part of our lives. According to Gartner, there will be online by 2020,

20.4 thousand millions of IoT devices and by 2025, and the number is expected to rise to 75 thousand

millions devices [9]. Where a device’s purpose could be monitoring environmental variables for several

years in a remote place [10], supporting IoT devices (e.g. wearable medical device) [11], actuating in a

safety-critical or mission-critical situation. There are distinct applications domains, such as home automa-

tion [12], environmental monitoring [10, 13], healthcare [11, 14, 15], smart cities [16], smart energy [17],

agriculture [18], smart oceans [19, 20], among others. As a result, IoT devices’ characteristics vary from

large scale to low-cost design, resource constraints to device heterogeneity, opt for functions instead of se-

curity. Consequently, security, privacy [21], and reliability [22] issues are major concerns when designing

an IoT system.

28

Chapter 2. State-of-the-Art

2.1.1 Traditional Architecture

A traditional IoT device architecture is depicted in Figure 2.1. It comprises Sensors, Power Manage-

ment, Microcontroller Unit (MCU), Actuators and Wireless Communication Technologies. The sensors and

actuators depend on the device application. Some devices only have sensors, or actuators, or both [23].

Figure 2.1: Traditional IoT device architecture.

The Power Management is responsible for supplying the device’s components and can have multiple

forms. Batteries can be used as as power supply in [24, 10], or by energy harvesting from the environment,

or a hybrid solution that can have both. Also, the power does not require a battery or harvesting as

described previously if a power source is available. A device is power constrained when it is limited to use

a limited amount of energy.

The Sensors and Actuators enable the device to interact with the real world. Through the sensors, the

device can monitor, sense, and listen to the environment using variables such as temperature, humidity,

pressure, acceleration. The actuators allow the device to take action, for example, a General Purpose

Input/Output (GPIO) pin output set to high. The actuation can be done by driven MOSFETs, relays, motors,

among others.

The Wireless Communication Technology is responsible for connecting the device with its controller. Its

purpose is to allow M2M or P2M communications. It can take many forms and some of the techonologies

are described in detail in Section 2.1.2.

The Microcontroller Unit (MCU) is the “brain” of the end-device. It is responsible for executing the IoT

device’s purpose and managing all the devices’s components according to the application.

29

2.1. Internet of Things (IoT)

2.1.2 Wireless Technologies

Different wireless techonologies are used depending on the IoT application scenario [25]. Figure 2.2

illustrates the data rate and power consumption per range of different technologies. It can be seen that

increasing the data rate also increases the power consumption but does not influence the range. These

various technologies such as RFID, Wi-Fi, Bluetooth, Zigbee, Z-Wave, EnOcean, NB-IoT, LoRa, among

others, are chosen according to the application requirements.

Figure 2.2: Data rate and Power Consumption per range of multiple technologies (adapted from [26]).

From the low range technologies as RFID, which does not require a battery in the tags [27] into cellular

5G, which has a long-range and data rates greater than 100 Megabits-per-second up to a peak of 20

Gigabits-per-second. Focusing on the low-end constrained devices, which generally are power constrained,

Low-Power Wide Area Network (LPWAN) techonologies are a perfect fit for it due to its long-range and power

consumption.

Low-Power Wide Area Network (LPWAN)

LPWAN represents a new trend in the evolution of IoT technologies. Unlike 2G/3G/4G or Wi-Fi, these

techonolgies do not focus on minimizing latency or enabling high data rates per device. Instead, the key

performance metrics defined for LPWAN are coverage [28], scalability, and energy efficiency. LPWAN

technologies ensure a long transmission range, low energy consumption, and low-cost deployment solu-

tion. It allows up to 40 km as communication range in rural zones and 10 km in urban zones [29], up to

10 years of battery lifetime [30, 10], less than $ 5 of device cost and less than $ 1 per device per year

30

Chapter 2. State-of-the-Art

of operator subscription cost [31]. It was mainly designed for IoT applications that require transmitting

few tiny messages per day in long radio range [32] representing a market opportunity for communication

service providers [25].

LPWAN has multiple technologies, focusing on NB-IoT and Long Range (LoRa). The latter technology

was developed by Semtech and is the most widely used technology for LPWAN in the sub-GHz unlicensed

band [33]. Due to the utilization of unlicensed bands, the LoRa network is open to customers who lack

authorization from radio frequency regulators. As a result, the LoRa network is easy to deploy over a range

of more than several kilometres and serves customers with minimum investment and maintenance costs.

On the other hand, NB-IoT, which is a new narrow-band IoT system built from existing Long Term Evo-

lution (LTE) functionalities announced by the 3rd Generation Partnership Project (3GPP) in 2016, promises

to provide improved coverage for a massive number of low-throughput, low-cost devices with low device

power consumption in delay-tolerant applications.

Compared to the LoRa technology, NB-IoT reuses the LTE design extensively, including the numerolo-

gies, downlink Orthogonal Frequency-Division Multiple Access (OFDMA), uplink Single-Carrier Frequency-

Division Multiple Access (SC-FDMA), channel coding, rate matching, interleaving, and infrastructures, for

example, in Portugal, the telecommunication company NOS infrastructures. This significantly reduces the

time required to develop full specifications [34] and increase the technology coverage.

2.2 Firmware Over-The-Air (FOTA)

The raising of IoT devices and the various applications made the access and maintenance of them to

be a concern. The development can follow code guidelines and reviews, but event so bugs still exist in

the design or implementation. Therefore, the firmware must be kept in constant development to remove

bugs and improve functionality. An over-the-air firmware update system is preferable as it allows for faster

updates and encourages accessibility for the development.

FOTA raises other problems, such as the integrity of the firmware received can be compromised and

lack of security. In order to achieve integrity, there are several algorithms as checksums, MD5 and SHA.

Also, to a secure system, as [35] proposed an Over-The-Air firmware update to many nodes simultaneously,

creating a bootloader that allowed a sensor node to boot to the updated firmware or the existing one

assuring the security using Advanced Encryption Standard (AES) encryption.

Moreover, there are problems of update time and battery drain, for example, in a Low-Power Wide Area

Network (LPWAN) (with standards such as LTE-M and NB-IoT) a costumer can have more than 20000 IoT

31

2.2. Firmware Over-The-Air (FOTA)

modules [36], with the LTE-M connectivity, it can take until an hour to update just ten devices, taking this

as the average speed, it would take more than 83 days to update the entire fleet while burning battery and

data plans [36]. As a result, incremental firmware update solutions are developed to reduce the data size

transferred and compressions methods, e.g. [37].

The incremental update is done by sending a Delta to the board. The Delta is a sequence of commands

that from the old firmware, the new firmware can be reconstructed following the commands. These

commands are normally:

• ADD ([38]) – Adds to the current new firmware the received bytes in the add command;

• COPY ([38]) – Receives an old firmware address and copy the respectively received length from

the old firmware to the new;

• REPEAT ([38]) – Used when the new data have specific patterns with small differences;

• PAD ([39]) – It pads the new firmware memory with a specific data received;

• RUN ([40]) – The update module copies the data that is associated with the instruction a finite

number of times resulting in the more efficient transmission of repeated data [41];

The incremental firmware update process of the new firmware source to the device running has mul-

tiple stages, as illustrated in Figure 2.3.

Figure 2.3: Essential stages of the firmware update process. (Adapted from [39]).

The first stage receives the new and old firmware and improves the firmware similarity. This is used

because firmware can introduce slight modifications that can result in a disproportional increase in the

size of the delta script produced. For example, if a new function is added, the delta should be a COPY

command from address 0x0000 to the function address, ADD the new function code, and COPY from

the function end to the end of the firmware. The problem is that the new code is not just reallocated in

the memory (shifted). The instructions that call functions will use different target addresses (the address

of the called function in the flash memory) in the two versions. Therefore, since these modified target

addresses will be added using the ADD instructions, the size of the generated delta will be significantly

large. This is also true when a new global variable is defined or a previously defined variable is removed,

32

Chapter 2. State-of-the-Art

as other global variables may need to relocate. Hence, the instructions that reference them will have

different target addresses. The authors in [41] present some of the following techniques used to improve

the similarity of firmware images:

• Slop regions – It was first introduced in [42], and it consists of leaving a slop region defined as

free space located immediately after the function’s code. It enables the function to grow or shrink

in the pre-allocated slop free area, not requiring to shift other functions. A disadvantage of the slop

regions is that an excessive fragmentation of the memory space can occur, as some regions may

contain code while others remain clear. Also, it uses flash memory inefficient, but fragmentation

can increase energy consumption because the control circuitry needs to activate many memory

regions [41];

• Position independent code – Position independent code is a code that, being placed somewhere

in the primary memory, executes properly regardless of its absolute address. The function address

needs to be loaded and then jumped to it, adding indirection. Normally, the address of the function

is already present in the instruction stream;

• Interrupt Service Routine pinning – Interrupt Service Routine (ISR) are functions that are

invoked by software or hardware to answer to signals that need attention—for example, a timer

overflow. The interrupts vector table is normally placed at the beginning of the program memory.

When an interrupt occurs, it goes to a predefined vector position to handle the interrupt. Changing

the firmware can relocate these ISRs callbacks, affecting the memory addresses contained in the

interrupt vector table. In [38], it is solved by pinning the routines in fixed locations at the linking

stage;

• Relocatable code – When building a runnable program, it is compiled and linked together to

construct the final executable. The modules are referred to as relocatable are firstly made pseudo-

addresses, and when linked together, the linker assigns its values. Nevertheless, after the final

program is created, it should also execute from different memory addresses. Therefore, a relocat-

able code is software whose execution address can be dynamically moved around the available

address space and loaded in multiple addresses [41]. The authors in [43] use this technique to

mitigate the effect of function and variable shifts;

• Global variables’ address pinning – It was firstly introduced in [44], and it intends to ensure

that the addresses of the global variables are the same in both software versions. Hermes uses a

33

2.2. Firmware Over-The-Air (FOTA)

slop region between the .data and .bss to avoid address shifting of the undefined variables when

.data expands or shrinks;

There are several techniques to preserve the similarity between firmware. After having the new

firmware as similar as possible, the old and new firmwares are fed to perform the differing algorithm that

generates the Delta. The differencing algorithms can be of two types: block-level or byte-level according to

the granularity level that the new firmware is compared with the old one.

The block-level algorithms, e.g. [45, 46], split the firmware images into fixed block sizes and detect

the segments that are not common. Therefore, its accuracy depends on the block size. On the other hand,

the byte-level algorithms, e.g. [47, 48], can find common segments inside the block size using blocks of

variable lengths and utilising more fine-grained approaches in order to achieve better accuracy. Nextly, will

be explain the FBC ([45]), Rsync ([46]), R3diff ([48]), and DASA ([47]) differencing algorithms.

The Fixed Block Comparison (FBC) [45] is the simplest method of comparison between two firmware.

This algorithm splits both firmware into fixed block sizes and then compares each block. If the block

matches, it adds a COPY command. If not, it adds an ADD command. The main benefit of this algorithm

is low time, and space overhead and easy implementation [41].

The Rsync algorithm [46] is used by incremental programming as [38] to compute the common

segments between the firmware. It is a block-level algorithm that detects matching segments between

firmware by splitting the firmware images into fixed-size blocks and then uses a sliding window with a

size equal to the block size. For each block size, is calculated a pair of checksum and MD4 algorithms.

The unmatched blocks are accumulated in the delta. Although Rsync can find subsequences with higher

accuracy than FBC, it still faces similar drawbacks since its granularity depends on the window size used;

thus, being unable to detect common segments with a size smaller than that of the window used [41].

The R3 [48] is a byte-level comparison algorithm that computes the hash values of every three con-

tinuous bytes in the current image. It is chosen three bytes because copying smaller segments is not

beneficial because of the COPY command size. This algorithm iterates through all the possible prefixes

computing the optimal ADD command or CPY, adding to the delta script the smallest.

Differencing Algorithm based on Suffix Array (DASA) [47] is a byte-level comparison algorithm that fo-

cuses on minimizing space and time complexity for computing the optimal delta script. This is accomplish

using an efficient data struct, the Suffix Array (SA) [49]. A Suffix Array is a sorted array of all suffixes of

a string. It is a data structure used in, among others, full-text indices and data compression algorithms.

DASA starts by joining both firmware, adding padding extension formats “$-#”, then calculates and sorts

all SA. With the SA is calculated the Height Array (HA). The HA contains the length of the Longest Common

34

Chapter 2. State-of-the-Art

Prefix (LCP) of each suffix with the next one in sorted order. Using the HA is possible to get the LCP of

any two suffixes in linear time. Afterwards, it computes the optimal delta script using the previous arrays

as the R3 computes the optimal delta command with the smallest COPY or ADD command. As expected,

DASA outperforms Rsync in terms of delta script size [41, 47] since the Rsync is a blocked-size algorithm.

The Delta can be generated using the different algorithms described previously. Afterwards, the delta

is fed to the Board Compatibles Conversion stage. This stage is responsible for converting the delta

script generated to a pre-defined standard update protocol, assigning values to the delta commands.

With the compatible board packages, they need to be sent to the board. This transmission can have

security problems that can be protected with encryption and hashing keys as done by the authors [50]. It

was proposed that the server sign the firmware image and its metadata using Elliptic-curve Cryptography

(ECC).

2.3 Real-Time Operating System (RTOS)

A Real-Time Operating System (RTOS) is a software, preemptive and deterministic [51], that manages

the memory, I/O, data, and processors of a computer system, guaranteeing all timing constraints are

satisfied [52]. It adds flexibility and reliability operation and, as the system becomes more complex, it

facilitates the software integration. An operating system consists of two parts: kernel space and user

space.

There are several types of kernels (monolithic, micro-kernel and exo-kernel) and it provides the lowest-

level abstraction layer for the resources. The monolithic kernel was prominent in the early days, with

millions of lines of code and is often known as the spaghetti code. Where no information is hidden, and

the system is a collection of procedures. In the micro-kernel, the code is moved as much as possible

to the user space, making it easier to extend and port to new architectures. Consequently, because less

code runs in the kernel, it is more reliable and secure. Finally, the exo-kernel is usually used where strong

hardware interaction is required because it separates hardware from the application using conceptual

models such as file systems, virtual address spaces, and sockets. [51]

In a real-time system, operations performed must meet logical correctness and be completed on

time. Non-real-time systems require logical correctness but have no timing requirements. Therefore,

the tolerance of a real-time system towards failure to meet the timing requirements can be classified as

hard real-time, firm real-time and soft real-time. When missing a deadline is unacceptable, the system is

called hard real-time. In a firm real-time, the value of an operation completed past its timing constraint is

35

2.3. Real-Time Operating System (RTOS)

considered zero but not harmful. Finally, in a soft real-time system, the value of an operation diminishes

the further it completes after the timing constraint. [51]

Embedded devices have various applications and constraints, so an RTOS needs to be versatile. There-

fore, specific characteristics of it are developed/studied to the extreme, concerning power consumption

as [53] did in their proposed two mechanisms to achieve it: (1) Low Power Mode Governor (LPMG), which

is used to select an optical low power mode after computation of retention time in idle mode and (2)

Power-Off Mode, which disconnects power to the board when idle mode lasts for a long time. Similarly,

[54] achieve better power consumption by developing an efficient low power scheme with the prediction of

the expected execution time of real-time tasks and using the idle time of the system for scheduling these

tasks in low power modes. In the process, there were trade-offs of missing deadlines. As a result, it is not

a good operating system for hard real-time systems.

2.3.1 Rate Monotonic Algorithm

In 1973, Liu et al. [55] proposed the Rate Monotonic (RM) algorithm for preemptive scheduling tasks

with fixed priorities in a single processor and hard-real-time environment. It consists in assigning the task

priority according to their relative period. Therefore, the highest frequency task or the task with the shortest

period will get the highest priority. Then after assigning its priorities, the next highest frequency task will

get the next highest priority, and so on. In the end, the lowest frequency task or the task with the longest

period is the one that is going to have the lowest priority. The rationale behind this priority assignment

algorithm is that the least frequent task may span high-frequency deadlines.

2.3.2 RTOS Overview

With the increase in IoT devices, the vendors are pushing further down into small-footprint OSs and

focusing on RTOS [56]. According to [57], the fourth RTOSes most used in constrained devices and edge

nodes are Linux, FreeRTOS, Windows, and Zephyr with a percentage of 43, 35, 31, and 8, respectively.

Also, as of 2017, according to marketing research firm VDC Research, the ThreadX RTOS has become one

of the most popular RTOSes in the world, having been deployed in over 6.2 billion devices [58]. Since

Linux and Windows do not fit in ultra-low-power constrained devices because of their power consumption

and size, this section will present an overview comparing the FreeRTOS, Zephyr and Azure RTOS ThreadX.

36

Chapter 2. State-of-the-Art

FreeRTOS

FreeRTOS was initially developed by Richard Barry around 2003 from one of his consulting projects

and has grown gradually over 18 years [59]. It is open-source and written in the C language. It has

a microkernel architecture that provides robustness against bugs in the components [60]. In terms of

memory size, it has a minimal ROM, RAM and processing overhead. Typically an RTOS kernel binary

image will be in the 6K to 12K bytes [59]. It has plenty of services as tasks, mutexes, queues semaphores,

task notification, stream and message buffers, software timers, event groups.

In 2017 FreeRTOS went under the aegis of Amazon Web Services (AWS), having its libraries implement

clients for AWS IoT-specific value-added cloud services, including Over-The-Air (OTA). These libraries are

suitable for building smart microcontroller-based devices that connect to the AWS IoT cloud.

If the power consumption is constrained, the FreeRTOS has tickless mode available. This mode takes

advantage of the idle task hook to place the microcontroller into its low-power state, saving energy in the

process. In [61], the LM3S3748 microcontroller sleep and deep sleep modes were used to use FreeR-

TOS low-power mode, concluding that the best solution is to have the microcontroller sleeping tickless.

Moreover, FreeRTOS has a migration path to SafeRTOS, which includes certifications for the medical,

automotive and industrial sectors [59].

Figure 2.4: FreeRTOS logo.

Zephyr

Zephyr [62] was first released in 2017, and it is a small RTOS for connected, resource-constrained and

embedded devices supporting multiple architectures. It has a monolithic kernel with flexible configuration

and builds a system for compile-time definition of required resources and modules. The Zephyr main

advantage is a built-in set of protocol stacks as IPv4, IPv6, Constrained Application Protocol (CoAP), among

others. Also, it supports a virtual file system interface with several flash file systems for non-volatile storage

and management, and device firmware update mechanisms [62].

37

2.3. Real-Time Operating System (RTOS)

Figure 2.5: Zephyr RTOS logo.

Azure RTOS ThreadX

Azure RTOS ThreadX was initially named ThreadX and developed and marketed by Express Logic of

San Diego, California, United States. Express Logic was purchased for an undisclosed sum by Microsoft on

April 18, 2019, renaming it to Azure RTOS ThreadX and converting it to open-source. The name ThreadX

is derived from the threads used as the executable elements, and the letter X represents context switching,

i.e., it switches threads.

Azure RTOS ThreadX provides priority-based, fast interrupt response, preemptive scheduling, memory

management, interthread communication, mutual exclusion, event notification, and thread synchronization

features. The major distinguishing technology characteristics of ThreadX include preemption-threshold,

priority inheritance, efficient timer management, fast software timers, picokernel design, event-chaining,

and small size: minimal size on an ARM architecture processor is about 2 KB.

The preemption-threshold ease some of the inherent problems of preemption. It allows a thread to

specify a priority ceiling for disabling preemption. Threads with higher priorities than the ceiling are still

allowed to preempt, while those less than the ceiling are not allowed to preempt. For example, suppose a

thread of priority 25 only interacts with a group of threads that have priorities between 20 and 25. During

its critical sections, the thread of priority 25 can set its preemption-threshold to 20, preventing preemption

from all of the threads that it interacts with. This mechanism still permits critical threads (priorities between

0 and 19) to preempt this thread during its critical section processing, resulting in much more responsive

processing.

Event-chaining is typically useful when a single thread must process multiple synchronization events.

For example, the application can register a notification routine for each object instead of having separate

threads suspended for a queue message, event flags, and a semaphore. The application notification

routine can resume a single thread, interrogating each object to find and process the new event when

invoked. It generally results in fewer threads, less overhead, and smaller RAM requirements. It also

provides a highly flexible mechanism to handle the synchronization requirements of more complex systems.

38

Chapter 2. State-of-the-Art

The priority inheritance within its mutex services allows a lower priority thread to temporarily assume

the priority of a high-priority thread waiting for a mutex owned by the lower priority thread. This capability

helps the application avoid nondeterministic priority inversion by eliminating preemption of intermediate

thread priorities. Of course, preemption-threshold may be used to achieve a similar result.

The picokernel architecture is possible because instead of layering kernel functions on top of each

other like traditional microkernel architectures, ThreadX services plug directly into its core. This results in

the fastest possible context switching and service call performance.

ThreadX has extensive safety certifications from Technischer Überwachungsverein (TÜV, English: Tech-

nical Inspection Association) and UL (formerly Underwriters Laboratories) and is Motor Industry Software

Reliability Association MISRA C compliant.

The ThreadX is the foundation of Express Logic’s X-Ware Internet of things (IoT) platform, which also

includes embedded file system support (FileX), embedded UI support (GUIX), embedded Internet protocol

suite (TCP/IP) and cloud connectivity (NetX/NetX Duo), and Universal Serial Bus (USB) support (USBX).

ThreadX has won high appraisals from developers and is a very popular RTOS. The ThreadX RTOS has

become one of the most popular RTOSes globally, having been deployed in consumer electronics, medical

devices, data networking applications, and SoCs.

Figure 2.6: ThradX logo.

2.3.3 Bare-metal to RTOS

The bare-metal conversion to use an RTOS is one of the more extensive application re-design. The

author Paiva [1] used the FreeRTOS and resulted in the same lifetime of the bare-metal application but had

only 1 KB of RAM from the 20 KB of the device. Therefore, the RTOS should have the smallest footprint

possible and use little RAM, and in the application re-design, circular buffers and shared block of memories

are used.

Since several RTOSes are available, it was searched for the smallest footprint, faster, safe and open-

source. The small footprint is required due to the memory constraints and the fast to save battery energy.

The end-device will operate for more than ten years without human contact, so it is advantageous to have

safety certifications to maintain the RTOS proper operation, not compromising the application. It is good

for the RTOS to be open-source, enabling the addition of low-power modes and learning with its kernel.

39

2.3. Real-Time Operating System (RTOS)

The Azure RTOS ThreadX [63] fulfils all these requirements for the application’s re-design. In the

re-design, binary semaphores will be used as mutexes because they are faster and smaller. Preemption-

threshold will be used to avoid nondeterministic priority inversion. Since the application is not a complex

system, it will be disabled the event-chaining, increasing the RTOS performance and reducing the memory

footprint.

The Azure RTOS ThreadX version 6.1.3 does take advantage of the MCU low-power modes. Without

it, the application can not run for more than ten years. Therefore, a low-power mode needs to be added to

the kernel. This master’s thesis will extend the ThreadX kernel to use it. In order to be able to accomplish

that, it is required to understand the ThreadX thread states and how it implements time and application

timers. Therefore, the timer in Azure RTOS ThreadX will be explained in the next section.

2.3.4 Azure RTOS ThreadX Thread States

The ThreadX have five distinct thread states: ready, suspended, executing, terminated. The Figure

2.7 represents the thread state transition diagram for ThreadX.

Figure 2.7: ThreadX thread state transition (adapted from [64]).

A thread is in a ready state when it is ready for execution, and it is not executed until it is the highest

priority thread in the ready state. ThreadX executes the thread when this happens, changing its state to

executing. If a higher-priority thread becomes ready, the executing thread reverts to a ready state, and the

newly ready high-priority thread is then executed. It changes its logical state to executing. This transition

40

Chapter 2. State-of-the-Art

between ready and executing states occurs every time thread preemption occurs.

At any given moment, only one thread is executing because a thread in the executing state has control

of the underlying processor. Threads in a suspended state are not eligible for execution. The reasons for

being in a suspended state include suspension for time, queue messages, semaphores, mutexes, event

flags, memory, and basic thread suspension. After the cause for suspension is removed, the thread is

placed back in a ready state.

A thread in a completed state is a thread that has completed its processing and returned from its entry

function. Finally, a thread is in a terminated state because another thread or the thread itself called the

tx_thread_terminate service. A thread in a terminated or completed state cannot execute again.

The application should enter in low-power mode when all the threads are in a suspended state. For

example, a thread is sleeping or suspending waiting for an event flag to be set. The way ThreadX manages

time needs to be taken into account to design a low-power mode and will be explained in the next section.

2.3.5 Azure RTOS ThreadX Timers

The ThreadX has application timers (TX_TIMER) similar to hardware timers, except the hardware

implementation (usually a single periodic hardware interrupt is used) is hidden from the application. Such

timers are used by applications to perform time-outs, periodic, and or watchdog services. The TX_TIMER

has a Control Block (CB), as attributes are illustrated in Figure 2.8. It has the timer ID, name, initial number

of timer-ticks to count, number of timer-ticks for all timer expirations after the first (if one-shot timer, it is 0),

the timer expiration callback function, the input parameter of the expiration callback, pointers of a double

linked list to manage the timer activated, and two pointers of a linked list to manage the timers’ creation.

Figure 2.8: Attributes of the control block of a ThreadX application timer.

The application timers are used in the ThreadX services. For example, a thread has in its control block

an application timer. When it calls the thread_sleep, it activates the thread timer with the respective sleep

time and when the timer timeouts, the expiration function resumes the thread suspended.

41

2.4. Microservices Architecture

When a TX_TIMER data type is declared, a Timer CB is created and added to a doubly-linked circular

list, as illustrates in Figure 2.9. The pointer named tx_timer_create_ptr points to the first control block in

the list.

Figure 2.9: Created application timer list.

ThreadX can still function even without a periodic interrupt source. However, all-timer related process-

ing is disabled, including time-slicing, suspension timeouts, and timer services. This periodic interrupt is

used to call the ThreadX _tx_timer_interrupt.

2.4 Microservices Architecture

Microservices architecture is a cloud-native architecture that aims to realize software as packages

services, as illustrated in Figure 2.10. Each service is independently deployable on a potentially different

platform and technological stack [65]. It can run its own process communicating between then using

mechanisms as TCP-IP or RESTful.

Figure 2.10: Cloud system overview.

Migrating monolithic architectures to microservices-based ones carries many advantages: adaptability

to technological changes, reduced time-to-market, and better service structure [65, 66].

2.4.1 Cryptography

The fundamental objective of cryptography is to enable two devices, A and B, to communicate over

an insecure channel in a way that a stranger C that is listening to the channel can not understand [67].

42

Chapter 2. State-of-the-Art

This channel can be a network or phone line. The message that A wants to send to B is called plaintext.

After A encrypts the plaintext, using a predefined key, it sends the resulting ciphertext to B. B receives the

ciphertext and decrypts resulting in the plaintext of A. C that does not have the key is not able to decrypt

the ciphertext. The presented scheme is depicted in Figure 2.11.

Figure 2.11: Classical cryptography scheme. (Adapted from [67])

The cryptography encryption algorithms overview is illustrated in Figure 2.12. These algorithms can

be divided into two categories: key-based and keyless. In the latter, the relation between the plaintext and

the ciphertext is exclusively dependable on the encryption algorithm. As a result, keyless encryption is

generally less secure than key-based [68] because anyone who has access to the algorithm will be able to

decrypt every message.

Figure 2.12: Cryptography encryption algorithms overview. (Adapted from [68])

The key-based encryption algorithms can be divided into asymmetric key, symmetric key. The asym-

metric key-based encryption is composed of pairs of keys. Each pair consists of a public key (which may

be known to others) and a private key (which may not be known by anyone except the owner). The key

43

2.4. Microservices Architecture

generation depends on the algorithm, and it can be the RSA algorithm [69]. Using asymmetric encryption,

any person can encrypt a message using the receiver’s public key, but only the receiver’s private key can

decrypt the encrypted message. This allows for a client-server program where the client requests the

public keys, and then the server can then decrypt the received messages with its secret private key.

The symmetric key encryptions are different to the asymmetric by having the same key to encrypt and

decrypt. Therefore, the key needs to be kept secret and known by the sender and receiver. Changing

the key can increase the security, but the strength of symmetric encryption depends on the secrecy of

encryption and decryption keys [68]. The symmetric encryption can be divided into the block and stream

cyphers according to the grouping of the message bits. In a block cypher, an array of characters are

encrypted all at once and sent to the receiver. The block size for the stream cypher is one character [68].

Moreover, there are several symmetric key encryption algorithms such as Data Encryption Standard

(DES) [70, 69], 3DES [71, 69], Advanced Encryption Standard (AES) [69], BLOWFISH [72], HiSea [73],

RC4 [74], among others.

According to [75], symmetric encryption algorithms are almost 1000 times faster than asymmetric

algorithms because they require less processing power for computations. As a result, asymmetric encryp-

tion may be too heavy for IoT constrained devices. In contrast, symmetric encryption as AES is feasible,

as proven in [76]. The constrained resources of the IoT devices makes asymmetric encryption not suitable

for ultra-low-power applications, as stated in [77]. However, it can be solved by research in lightweight

implementations or hardware accelerators, as represented in [77].

44

Chapter 3: System Specification

This master’s thesis continues the master’s thesis work of the author Sofia Paiva [1], and, as such,

a review of the work done is presented in this chapter. The author developed a bare-metal monitoring

NB-IoT end-device with an estimated battery lifetime of 17-years proving that an NB-IoT device can have a

lifetime greater than ten years. This dissertation provides better software architecture, with an Real-Time

Operating System (RTOS), Firmware Over-The-Air (FOTA), new application design, and ensuring that the

software is operating correctly. However, ensuring the same ultra-low-power behaviour and lifetime greater

than 10-years.

The top-level overview is shown in Figure 3.1. It is composed of two major domains: the cloud and

the NB-IoT end-devices. The end-device is a monitoring system with a typical IoT architecture, as shown in

Section 2.1.1 without actuators. It has multiple sensors capable of monitoring the environmental variables,

an NB-IoT transceiver to communicate with the cloud maintaining the low-power consumption, and a

microcontroller as the system brain. The cloud has a microservice structure, controls the end-devices,

and receives the collected data.

Figure 3.1: Top-level overview.

The end-device stays most of its lifetime in sleep mode to save energy, waking only to sample the

sensors, transmit the respective samples, and when any sensor wakes up the MCU signalling an anomaly.

The latter is possible due to the sensors having the ability to, in low-power mode, do continuous sampling

and signalling the MCU.

45

3.1. Functional and Non-Functional Requirements

3.1 Functional and Non-Functional Requirements

Since this project continues the author Sofia master’s thesis, it includes its requirements and adds new

ones. As usual, every project development has its own functional and non-functional requirements that

must be followed in order to have a final product. Non-functional requirements define system attributes,

while functional describe what the system should do. Listed below are the requirements and constraints

concerning our system.

Functional Requirements

• Collect environmental data;

• Transmit collected data to the cloud;

• Signal abnormal behaviour;

• Receive commands from the cloud;

Non-functional Requirements

• Maintain operation for more than ten years;

3.2 Hardware

The board hardware is represented in Figure 3.2. It is composed of multiple sensors capable of

measuring temperature (HDC2080 [78]), humidity (HDC2080 [78]), acceleration (BMA400 [79]), and light

(OPT3002 [80]). Also, it has the ATECC608A [81] chip, which has multiple encryption algorithms, useful

for ensuring secure communications to the cloud. These communications are possible with the Quectel

BC66 [82], allowing the system to use the NB-IoT technology. All the external chips are controlled by the

Microcontroller Unit (MCU) (STM32L081KZ [83]), which is from the low power line of STMicroelectronics.

It also has incorporated hardware encryption engines, making it faster and easier to encrypt data as the

ATECC608A. All the components are powered by the Saft LM17500 [84] battery. The battery voltage is

dropped to 1.8 V through a TPS7A02 [85] LDO, powering the MCU and sensors.

46

Chapter 3. System Specification

Figure 3.2: System hardware overview.

The Link4S board 3D representation front and back is depicted in Figure 3.3.

Figure 3.3: Link4S board 3D representation.

3.2.1 Sensors

The sensors allow the system monitor the environment according to its purpose. The end-device has

three sensors to measure light, temperature, humidity, and acceleration. The sensors selected have low-

power modes that enable continuous sampling and trigger an external pin, signalling that the sampling

value is greater or less than the respective set threshold value.

47

3.2. Hardware

Table 3.1 represents the sensors power supply, power consumption, size, interfaces, and low-power

modes specifications.

Table 3.1: Sensors specifications.

Sensor Power Supply (V) Power Consumption Size (mm2) Interface Low-power Modes

HDC2080 1.62 - 3.6

650 uA/550 uA
@ Humidity/Temperature Measurement
0.55 uA @ 1 measurement/second

of Humidity and Temperature
160 nA @ Sleep Mode

3x3 I2C , INT Pin
Sleep

Auto triggered

OPT30002 1.6 - 3.6
3.7 uA @ Full-scale active
1.8 uA @ Dark Active
400 nA @ Shutdown

2x2 I2C , INT Pin
Shutdown
Single-shot
Continuous

BMA400 1.72 - 3.6
3.5 uA @ OSR-0 Normal Mode

850 nA @ OSR-0 Low-power Mode
160 nA @ Sleep Mode

2x2 I2C , SPI, 2 INT Pin
Sleep

Low-power
Normal

Temperature and Humidity (HDC2080)

The HDC2080 [78] is an integrated humidity and temperature sensor with high accuracy measure-

ments with very low power consumption. The capacitive-based sensor includes new integrated digital

features and a heating element to dissipate condensation and moisture. The HDC2080 digital features

include programmable interrupt thresholds to provide alerts and system wakes up without requiring a mi-

crocontroller to monitor the system continuously. Combined with programmable sampling intervals, a low

power consumption, and support for a 1.8-V supply voltage, the HDC2080 is designed for battery-operated

systems. Table 3.2 illustrates the sensor sampling rate, measurement variable, and power consumption

according to the sensor modes.

Table 3.2: HDC2080 power consumption and sampling rate according to mode and variable measured.

Mode Sampling Rate (Hz) Measurement Type Power Consumption (uA)
Normal - Temperature 550
Sleep - - 0.05

Continous 1 Temperature 0.3
Continous 1 Temperature & Humidity 0.55
Continous 0.5 Temperature & Humidity 0.3
Continous 0.1 Temperature & Humidity 0.105

Luminosity (OPT3002)

The OPT3002 [80] light-to-digital sensor provides the functionality of an optical power meter within a

single device. This optical sensor greatly improves system performance over photodiodes and photoresis-

tors. The OPT3002 has a wide spectral bandwidth, ranging from 300 nm to 1000 nm. Measurements

48

Chapter 3. System Specification

can be made from 1.2 nW/cm2 up to 10 mW/cm2, without the need to manually select the full-scale

ranges by using the built-in, full-scale setting feature. This capability allows light measurement over a

23-bit effective dynamic range. The results are compensated for dark-current effects, as well as other

temperature variations. It has an interrupt pin, which can summarize the measurement result with one

digital pin. The power consumption is represented in Table 3.1. As can be seen, it is very low, allowing

the OPT3002 to be used as a low-power, battery-operated, wake-up sensor when an enclosed system is

opened.

Accelerometer (BMA400)

Bosch Sensortec´s triaxial BMA400 [79] is an ultra-low-power acceleration sensor. It is a 12-bit dig-

ital triaxial acceleration sensor with smart on-chip motion and position-triggered interrupt features. The

BMA400 is especially suited for ultra-low-power devices, which need a long-lasting battery lifetime due to

its auto low power mode and auto wake-up. Further, it can distinguish between critical situations and false

signals, avoiding false alarms. The sensor’s power varies according to the mode used, as represented in

Table 3.1.

3.2.2 Transceiver

The transceiver is responsible for the communications with the cloud server, being the system com-

ponent with greater power consumption. In order to reduce the power consumption, the application uses

the NB-IoT technology explained in Section 2.1.2. The NB-IoT modem used was the Quectel BC66 [82]. It

has a high-performance, multi-band LTE Cat NB1 module with extremely low power consumption (3.5 µA

in PSM, 350 µA at Idle (DRX - 2.56s), and 110 mA at LTE Cat NB1 (23 dBm, single-tone)).

The Quectel BC66 is interfaced with the MCU by UART communication and AT commands interface,

having at own software accelerating the development process. The modem has the limit of each trans-

mission to the cloud is limited of 1024 bytes and reception of 512 bytes. Also, it is already integrated with

different protocol stacks such as UDP, TCP, MQTT, and LwM2M, facilitating the development process in

the MCU. The BC66 has a build-in eSIM reserved for future use, which will allow the removal of the SIM

external interface, reducing the number of components needed and the system power consumption.

3.2.3 MCU

The MCU is the STM32L081KZ [83], which incorporates the high-performance Arm Cortex-M0+ 32-

bit RISC core operating to a max frequency of 32 MHz, a Memory Protection Unit (MPU), high-speed

49

3.2. Hardware

embedded memories (up to 192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20

Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals. It operates from a 1.8 to 3.6

V power supply (down to 1.65 V at power down) having multiple power-saving modes:

• Sleep mode – only the CPU is stopped. All peripherals continue to operate and can wake up the

CPU when an interrupt/event occurs. Sleep mode power consumption is down to 140 µA/MHz.

• Low-power runmode – This mode is achieved with the Multispeed Internal (MSI) RC oscillator set

to the low-speed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator

in low-power mode to minimize the regulator’s operating current. Also, the clock frequency and the

number of enabled peripherals are both limited. It can achieve a power consumption down to 8 µA.

• Low-power sleep mode – This mode is achieved by entering Sleep mode with the internal voltage

regulator in low-power mode to minimize the regulator’s operating current. In this mode, both the

clock frequency and the number of enabled peripherals are limited; a typical example would be to

have a timer running at 32 kHz. When an event or an interrupt triggers wake-up, the system reverts

to the run mode with the regulator on. It has a power consumption down to 4.5 µA.

• Stop mode – All clocks are disabled except the RTC source clock (LSE or LSI) if desired. The MCU

can wake up by any external interrupt line. This mode has the lowest power consumption with state

retention (RAM and registers), with power consumption down to 0.4 µA without RTC and 0.8 µA

with it.

• Standby mode – This mode has the lowest power consumption, achieving power consumption

down to 0.28 µA without RTC and 0.65 µA with it. However, RAM and registers data are lost.

The application stays multiple of its lifetime in a sleep state and wakes up to sample, send the samples,

or react to unnormal events. Therefore, the stop mode is essential to extend the system battery and,

consequently, the system lifetime.

In order to connect the MCU to other components, for example, sensors and the transceivers, it

has embedded standard and advanced communication interfaces: up to three I2Cs, two SPIs, four US-

ARTs, a Low-power UART (LPUART). Moreover, it has several analogue features, one 12-bit ADC with

hardware oversampling, two ultra-low-power comparators, several timers, one Low-power Timer (LPTIM),

four general-purpose 16-bit timers and two basic timers, one RTC and one SysTick, which can be used

as timebases. It also features an AES hardware encryption engine, two watchdogs, one watchdog with

independent clock and window capability and one window watchdog based on a bus clock.

50

Chapter 3. System Specification

3.2.4 Encryption

The NB-IoT has the communications encrypted in the transmission layer. However, to have end-to-end

secure communications, it is needed to use encryption algorithms. The MCU, as described above, has

AES encryption engines that can be used, but the board also has the ATECC608A [81] chip. It operates

at a voltage level from 2 to 5.5 V and integrates Elliptic-curve Diffie-Hellman (ECDH) security protocol,

along with Elliptic Curve Digital Signature Algorithm (ECDSA), as well as accessories and consumables

authentication and more. This Integrated Circuit (IC) also offers an integrated AES hardware accelerator

with a typical operating current of 1 mA and less than 150 nA of sleep current. It is interfaced with the

MCU through the I2C protocol.

3.2.5 Power Supply

The board power supply is responsible for powering all the components. This board features two

voltage ranges: 1.8 V and 3.0 V (battery voltage). The 1.8 V are needed since the MCU and sensors

need it and the and it is obtained using the Low-Dropout Regulator (LDO) TPS7A02 [85]. It is an ultra-small,

ultra-low quiescent current (25 nA) LDO that can source 200 mA with excellent transient performance.

The system battery is the Saft LM17500 [84]. This battery has a nominal voltage of 3 V with a capacity

of 3 Ah with leakage of 1%.

3.3 Software

The state machine of the application that the author Sofia Paiva finished its master’s thesis [1] is

presented in Figure 3.4.

Figure 3.4: First application state machine.

51

3.3. Software

It starts by initializing and configuring the modem and the sensors. Then, it sends the system config-

uration information to the cloud and enters the infinite application loop. In the infinite application loop, it

is in the MCU stop mode power mode saving energy and wakes up for:

• Sample the variables – Triggered by the RTC wake up functionality, and when it wakes up, it

samples the variables. The variables are considered the physical measurements of which sensor

can be made. For example, the HDC2080 sensor has two variables because it can sample the

temperature and humidity;

• Send the samples made to the cloud – Triggered by the RTC alarm functionality, and it signals

to send the variables samples made;

• Handle an emergency – As described in Section 3.2.1, the sensors have signalling capabilities

to detect when a value is greater or less than a threshold previously configured. This signalling in

the application is called an emergency. When an emergency happens, the application reads all the

sensors and alerts the cloud server.

When something fails in the application, it enters the MCU standby power mode resetting.

In order to implement the state machine of Figure 3.4, it was used by the author [1] the software stack

represented in Figure 3.5. From the bottom to the top, it is composed of the Hardware, the Hardware

Abstraction Layer (HAL), the Low-Level Portable Layer, and the Application.

Figure 3.5: Startup application software stack.

52

Chapter 3. System Specification

3.3.1 Low-Level Portable Layer

The low-level portable layer, referred to as low-level, is responsible for an abstraction of the Hardware

Abstraction Layer (HAL), giving an Application Programming Interface (API) to the application, illustrated

in Figure 3.6. In this case, the HAL used is already available for STMicroeletronics’ MCU. This layer

is beneficial for providing portability to the software stack. This way, if the hardware changes, only the

low-level layer is needed to be re-implemented.

Figure 3.6: Class diagram of Low-level portable layer.

The methods of low-level portable layer API can be divided into three sections:

• Timers – The timers allow the application to wait specific periods and give the ability to use a

timer, for example, as a timeout timer. Also, it provides a straightforward API to use the RTC with

the structure calendar_t. This structure facilitates reading, writing the RTC and setting up alarms.

• System control – The system control is what actuates in the MCU’s clocks, power modes, being

the direct API to its needed internals.

• MCU external interfaces - The external interfaces are responsible for handling the General

Purpose Input/Output (GPIO) and its communication peripherals as I2C and UART.

3.3.2 Application Layer

The Application Layer uses the API offered by the Low-Level Portable Layer, and it is responsible for

executing the application purpose. It can do it by separating itself into multiple modules such as Security,

System Control, Transmission, Modem, and Sensors. These modules will explained in more extensive

depth in the following sections.

53

3.3. Software

Sensors

The sensors module is responsible for the manager of the sensors, for example, initializing, configurt-

ing, and reading them. Figure 3.7 illustrates the sensors module, it has initialize, configuration, sample,

read functions.

Figure 3.7: Sensors module interface.

The sensors module was designed so adding a new sensor would be easy. To achieve this, all sensors’

drivers have the API to initialize, configure, read, and handle its interrupts. A sensor structure is represented

in Figure 3.8. It comprises a sensor configuration, model, type, and units string, protocol (I2C, USART,

SPI), status, an array of pointers to the sensordata_t, the period, the counter, and counts.

The sensordata_t has the name of the sensor’s data, for example, TMP for temperature or HUM for

humidity, and the samples is an array of the struct datavalue_t, the number of samples.

The sample periods are decomposed in counts and counter so that it is possible to have multiple

periods to different sensors data. Firstly, the counts are calculated by finding the sensors’ minimum

period (configSensorsPeriods) and setting a common multiple to the other periods. Secondly, from the

minimum period is determined the counts (fitSensorsPeriods) (number of times the MCU wakes up to

sample) needed to achieve the respective period. Every time the MCU wakes up to sample, the counter

variable in all data sensors is incremented. When it matches the counts, the sensors data is sampled,

and the counter variable is reset.

The sensors sampling has two modes of operation: simple and average. No sample post-processing

is done in simple mode, and every sample is saved as a single sample. In average mode, a predefined

54

Chapter 3. System Specification

number of samples is required; when the sampling ends, the average, minimum and maximum values

are saved.

Figure 3.8: Sensors data structure.

Due to the twomodes of operation, the author of [1] came up with the datavalue_t struct type to achieve

a generic approach saving the samples. It is composed of the minimum, maximum, and average of type

unit_t. The unit_t is a struct with an integer value and the valuetype_t enumeration. The enumeration

is useful to know how to use the saved value. For example, if it is a 32-bits signed or a 16-bits unsigned

value.

System Control

Figure 3.9 represents the System Control interface. It controls all functions related to the MCU, such

as power modes (enterStopMode and enterStopMode) and the RTC (setPeriodicWakeup and setAlarm).

Also, it features a timestamp get function that can convert the RTC time to UNIX (getUnixEpochTime) or

string format.

Figure 3.9: System control module interface.

55

3.3. Software

Transmission

The transmission module interface is represented in Figure 3.10. It is composed of three functions: re-

pairServerConnection, checkServerConnection, and sendDatagram. The repairServerConnection repairs

the connection with the cloud server. The check server connection checks if it is possible to establish

a server connection, and the sendDatagram is responsible for serializing and sending the respective ap-

plication structure to the cloud. The external module variables are the socket, the data_go flag, and the

transmission structures: the configuration, the emergency and the regular. As for internals, there is the

datagram array and the hexafy function.

Figure 3.10: Transmission module interface.

The data received through the public structures represented in Figure 3.11 is serialized using the

message pack and transmitted to the cloud server. The public transmission structures represent the

possible application transmissions: emergencies, configurations, and regulars.

• config_t struct – It has the device id, the transmission timestamp, the sensors enabled string,

the modem configuration string, and the periods and interrupts state of the sensors in pair in a

16-bit unsigned array. The periods and interrupts pair, for example, [20, 1, 30, 0, 10, 2], and can

be understood that the first sensor data period is 20 seconds and the interrupt value 1; the second

has a period of 30 seconds and no interrupt; the third one has a period of 10 seconds, and an

interrupt value of 2.

• emergency_t struct – It is composed of the device id, timestamp in the transmission, the flag

that triggered the emergency, the sensors samples in the emergency moment and the samples

made number.

56

Chapter 3. System Specification

• regular_t struct – It is formed of the device id, the transmission timestamp and signals quality,

a pointer to the sensor data array and the number of sensors data structures.

The socket variable saves the socket modem number that is used. The data_go indicates when it is

time to send to the cloud. The hexafy function is responsible for converting an array of characters to a

hexadecimal one.

The message pack is an efficient binary serialization format. It lets data exchange among multiple

languages like JSON, but it is faster and smaller.

Figure 3.11: Transmission structures.

Modem

The modem is responsible for the NB-IoT technology, having its own communication interface with

the MCU through UART using AT commands, accelerating the development process. The driver for it is

represented in Figure 3.12.

Figure 3.12: Modem class interface.

57

3.3. Software

The modem interfaces present initialization, configuration, power on and off, get, and communication

functions. The communication is done through UDP or TCP having the open and close socket functions.

It is also possible to request the current clock time and check if the modem is connected to the network.

As public variables, the modem has the mRx_buffer and mTx_buffer buffers used to receive and

transmit data between itself and the MCU. Also, the modem struct saves modem data, as its status, cell

id, and signal quality. The application is not prepared to receive data from the cloud, but the modem

module saves it to the incoming_t struct.

The modem offers functions as parseModemMessage and modemProcessURC used to be called in

the bare-metal infinite main loop when the respective flags msg_rcv and urc_flag are set.

Security

The security was not implemented due to time and incompatible cloud implementation.

This chapter aimed to specify the end application of the master’s thesis [1] because it is being con-

tinued. Therefore, it was started by explaining the big picture by a top-level overview, functional and

non-functional requirements, and system hardware and software specifications. The application hardware

is an MCU (STM32L081KZ), sensors (HDC2080, OPT3002, BMA400), power supply (LDO TPS7A02 and

the battery Saft LM17500), encryption (ATECC608A and MCU encryption engines) and the transceiver

(Quectel BC66). The software application is composed of the HAL, the Low Level, Sensors, Transmission,

Modem, System Control and Security. The next chapter will explore the possible improvement opportuni-

ties.

58

Chapter 4: Improvement Opportunities

This chapter will present the general system overview, starting with the overall end-device architecture

that will be analysed, finding where the software can be improved or new features added. Then, the cloud

and use cases will be presented.

4.1 Architectural Improvements

The application system architecture is presented in Figure 4.1. It is composed of three layers: the end-

device, the network infrastructure and the cloud services. As explained in Section 3, the end-device is an

ultra-low-power device that stays most of its life sleeping and wakes up to measure environment variables

or signals when an anomaly occurs, communicating with a cloud server through the NB-IoT technology.

The network is one of the main advantages of the NB-IoT technology since it uses mobile antennas as

the LTE technology. This way, the end-device can be deployed where the mobile network delivers antenna

coverage. The mobile network used in this project is NOS [86] because they are project sponsors. Finally,

the cloud is composed of the server and the microservices, as the author Paiva proposed in [1], but they

were not implemented as itnot in its thesis scope. It should receive the end-devices data, parse it, and

save it in a database.

Figure 4.1: System overview.

4.1.1 End-device

There is two main software and architectural improvements in the end-device: the first is the addition

of commands from the cloud, enabling alter and retrieve device parameters in run-time, for example,

setting the enabled sensors, sampling rates and interrupt status, or getting a sensor configuration or the

transmission time interval. The second is the conversion of the application from a bare-metal design to an

59

4.1. Architectural Improvements

RTOS based one because it adds flexibility to the design and operation reliability. As the system becomes

more complex, it simplifies software integration [87]. Also, the RTOS can take advantage of the end-device

communication delays improving efficiency, consequently increasing the code binaries and the amount of

RAM space occupied due to internal variables and the threads stacks.

Figure 4.2 is the end-device system overview illustrating how the several software modules, explained

in Section 3.3, interact with each other.

Figure 4.2: End-device system overview.

Low-Level

The low-level portable layer is beneficial in the software stack since it allows the hardware to change,

and only this layer is required to be remade, wrapping the MCU HAL. Therefore, a better name for it is

HAL Wrapper.

In order to have a good software stack, the HAL Wrapper should provide a set of peripherals interfaces

needed by the upwards modules, including the flags and buffers. For example, the modem internal

variables in the class diagram of Figure 3.12 have the mRx_buffer and the mTx_buffer. These buffers

are used in the UART transmissions to the modem, so they should be allocated to the UART. Then, the

modem module uses that peripheral interface, consequently the peripheral buffers. Another example is in

the External Interrupt (EXTI) peripheral. When an interrupt occurs, the callback sets flags from the modules

60

Chapter 4. Improvement Opportunities

above. For example, the sensors external interrupts or the sample_time flag located in the sensors module.

These flags should be linked to the respective MCU pins, and the application uses them as required.

Sensors

The sensors module was designed to be as generic as possible. Hence, its drivers were implemented

with a set of required functions:

• initialisation – check if the sensor is available;

• configuration – configures the sensor sampling rate, interrupt mechanism, power modes;

• read – read the sensors data;

• interrupt handler – if the sensor has an interrupt mechanism, handle if needed; for example, some

sensors after an interrupt need to a register be read to be able to be triggered again;

The ability to turn on or off the interrupt and sensor could be added to this set of functions. Also, be

able to change the sensor interrupt value set.

With the addition of commands from the cloud server, it is needed to add new configuration variables,

for example, to enable or disable the interrupt, sampling, and sensor to the sensor structure represented

in Figure 3.8.

Since the same sensor can have multiple variables, the temperature and humidity sensor (HDC2080)

can measure the humidity and temperature, having the sensor two variables. The way the sensor structure

and the sensors module interpret the sensors data could be different. The variable approach is easier to

control with the new commands architecture and gives a clear data relationship.

Due to the generic approach in sensor samples save, the structure datavalue_t was used. This struc-

ture is composed of three unit_t structures allowing the average sensor mode, and each unit_t struct has

a 4-byte integer and a 4-byte valuetype_t resulting in 8 bytes per unit_t. Since every datavalue_t has three

unit_t, each occupies 24-bytes.

Suppose the sensor maximum samples number is set to 16, the datavalue_t array occupies 384 bytes

in memory. If only the samples are saved with a sensor sample size of 8-bit, it will take, in simple and

average mode, 16 and 48 bytes, respectively. Changing to a sensor sample size of 16-bit will take 32 and

96 bytes, respectively. Also, because the samples are saved in the array of structures in the sensordata_t,

the number of samples is chosen in compile-time, being impossible to have different sensordata_t array

sizes.

61

4.1. Architectural Improvements

Moreover, with the RTOS, the sensor each sampling could be different. A thread for each sensor

could not be possible due to RAM constraints, but maybe re-design in a way that is easier to achieve the

pretended generic approach.

To sum up, all the sensors module architecture can be improved, optimising in space, using and

functionality.

Modem

The modem has two transmission modes: hexadecimal and text mode. The implementation of author

Paiva [1] uses the hexadecimal mode. This mode decreases the data transmission by half, so changing

the mode to text mode is necessary.

The bare-metal implementation receives data asynchronously from the modem. Therefore, adding the

operating system will be very advantageous to enchant the modem driver.

Transmission

The transmission module is responsible for the communication between the end-devices and the cloud

server. The main module fills the public transmission structures and calls the sendDatagram function to

send a regular, emergency, or configuration message. In order to add modularity, the communication with

the cloud could be generic, not having specific structures to each type of communication. For example,

if a new parameter wants to be added in the configuration message, the struct config_data, the fill struct

code in main, and the struct read and structure of the datagram in transmission need to be changed. It

would be better if only the main module could append a new datagram object.

The application transmission bottleneck is the limit from the modem of transmission of 1024 bytes.

Hence, the transmission was designed to send a restricted number of 1024-bytes for each transmission,

restraining the data collected size between transmissions. Nevertheless, the transmission could be de-

signed to can part the message in 1024-bytes packets, restricting the data collected to the device memory

available to store.

The modem module is used by the main and the transmission module. In order to encapsulate it, it

can be controlled and managed by the transmission module, thus, increasing the architecture modularity.

Also, the transmission module has two buffers: (1) the buffer used to fill the datagram with the public

communication structs of size 512 bytes, and the hexadecimal version of the datagram with 1024 bytes of

length. The hexadecimal datagram buffer is due to the use of the modem in hexadecimal mode. Also, in

the modem implementation, it copies the hexadecimal datagram to an internal command buffer. It causes

62

Chapter 4. Improvement Opportunities

many buffers that can be shared to save RAM.

Adding the commands to can change end-device parameters in run-time will change the module pur-

pose, making the module able to send and receive messages. Therefore, the module name will be changed

to communication.

Software Stack

The software stack can improve by separating the HAL and the external MCU drivers (sensors, mo-

dem), resulting in the modem, and the sensors drivers are not in the application layer. Consequently,

the application layer stays only the needed modules to execute the application purpose. The Low-Level

Portable Layer should include the Hardware Abstraction Layer (HAL). Also, to add modularity, the appli-

cation modules should encapsulate the peripherals in the lower layers. For example, the Transmission

module can encapsulate the modem and security module, and the Sensors module the sensors drivers.

4.1.2 Cloud

The cloud was not in the scope of the master’s thesis of the author [1], so it did not design and

implemented. On the other hand, this master’s thesis will design and implement since it continues the

author’s work. The cloud architecture proposed is of microservices. Due to the project scalability, the

microservices architecture is beneficial for continuous development. Because it is easier to build, main-

tain the application, add flexibility, and improve productivity, scalability, and speed. It is composed of a

microservice server and microservices clients represented on the right side and left side of Figure 2.10,

respectively.

4.2 Use Cases

The end-device application overall use case is represented in Figure 4.3. The end-device stays most

of its life sleeping and wakes up to get the environmental data by sampling the sensors or sensors external

interrupts and transmitting them to the cloud through regular datagram transmissions. Also, when it sends

data to the cloud, it can receive commands that alter the system behaviour.

63

4.2. Use Cases

Figure 4.3: Start application use cases.

64

Chapter 5: Design

This chapter will present the Delta differencing algorithm for FOTA, then the end-device and cloud

use cases followed its designs. The device will be re-designed from a bare-metal architecture to use an

RTOS. Then new sensors and transmission architectures will be improved. New modules such as the

OTA, Commands, and the Trace will be introduced. Afterwards, the cloud microservices design using the

Blackwing framework and commands will be present.

5.1 Use Cases

The system design will be improved with the use cases illustrated in Figure 5.1. It is similar to Figure

4.3, but the command reception, encryption, and decryption in the communication data are added. When

it sends data to the cloud, it can receive commands that alter the system behaviour.

Figure 5.1: End-device use cases.

The cloud use case interaction with the end-device is represented in Figure 5.2. The end-device sends

its configuration, emergency, regular, and command response messages to the cloud. If they have any

command, the cloud microservices send back to the end-device.

65

5.1. Use Cases

Figure 5.2: Cloud use case.

The cloud microservices interactions with the database are represented in Figure 5.3. The microser-

vices insert the message received from the end-device and query the device’s commands waiting.

Figure 5.3: Database use cases.

66

Chapter 5. Design

5.2 Firmware Over-The-Air Algorithm

This section explains how the new firmware to be updated Over-The-Air will be generated using the

Delta algorithm. It starts with an overview of the delta generation through a block diagram, following the

delta commands and finalizing with the delta algorithm.

Figure 5.4 presents an overview of the OTA delta. Each one of the blocks will be described next in

detail. It starts by receiving the old and new firmware in Intel Hex [88] or binary format and converting them

to arrays to enter in the differencing algorithm named DeltaGen. DeltaGen generates the delta commands,

and these commands are converted to compatible board packages in the last stage.

Figure 5.4: OTA delta block diagram.

The Array Conversion stage, as described above, receives the new and old firmware in Intel Hex or

binary formats and converts them to arrays. The hex file format conveys binary information in American

Standard Code for Information Interchange (ASCII) text form. Each text line contains hexadecimal charac-

ters that encode multiple binary numbers. The binary numbers may represent data, memory addresses,

or other values, depending on their position in the line and the type and length of the line [88]. The binary

format is the representation of the memory in binary.

These arrays are fed into the Differencing Algorithm upon converting into arrays. This algorithm is

responsible for finding the common parts from the new and old firmware that can be copied. If it can

not, it add as new. The differencing algorithm generates the delta, which is composed of the following

commands:

• ADD – Adds a byte sequence of a specified length;

• COPY – Copies a byte sequence from the old code to the new code;

• END – Indicates the end of the delta;

The following form is used to describe the commands and their fields, where the subscript number in

each field represents the number of bytes it occupies:

67

5.2. Firmware Over-The-Air Algorithm

END1 (5.1)

The END command has the opcode number 0 and a fixed size of one byte. This command is useful

when the delta is split into multiple packages since it signals its end.

COPY1 n1−2 old_address_offset1−4 (5.2)

The COPY command has the opcode number 1, followed by the number of bytes to copy (n) from the

old firmware and the old firmware address offset to start copy.

ADD1 n1−2 < Byte1, Byte1 >n (5.3)

The ADD command has the opcode number 2 and the length (n) of new bytes received from the cloud

to add to the new firmware sequence.

Since the commands opcode values range from 0 to 2, it only requires two bits to be represented.

The remaining six bits from a byte will be used, as shown in Figure 5.5, to represent the number of bytes

needed in each parameter, reducing the delta size and having generic copy offsets (old address offset) and

length (n). The commands opcode bits 2-4 have the size of length (n) in bytes (i.e. one equals 1 byte), and

in the CPY command, the bits 7-5 are the size of the copy address. Figure 5.5 is depicted the described

command structure. In this figure example, in the CPY command, the number of bytes representing the

old address and length (n) is 1 (one) and 2 (binary 10 equals 2 in decimal), respectively. The parameter

length (n) of the command ADD number of bytes is 1 (one).

Figure 5.5: OTA command structure.

As a result, all the delta bytes have meaningful information and does not have, for example, zeros to

fill a four bytes word to identify the old address offset.

The delta algorithm is similar to the Differencing Algorithm based on Suffix Array (DASA) represented

68

Chapter 5. Design

in [47], which proposes an optimal differencing algorithm that uses a byte-level comparison to generate

the smallest delta size employing an efficient data structure called suffix array [49]. A Suffix Array is a

sorted array of all suffixes of a string. It is a data structure used in, among others, full-text indices and

data compression algorithms. In this master’s thesis is proposed the DeltaGen algorithm, whose core is

similar to the DASA algorithm using the suffix array and a byte-level comparison.

The DeltaGen block diagram is represented in Figure 5.4. It starts by receiving the new and old

firmware arrays and adding the sentinels $ and # into one array. The sentinels’ values can not be present

in the firmware arrays, and the value of $ has to be less than #.

Figure 5.6: DeltaGen block diagram.

The DeltaGen starts by joining two strings forming the T (text) array illustrated in Figure 5.7. For

example purposes, the string “abcabc” is the old firmware, and the “bc” is the new firmware.

Figure 5.7: Join of old and new strings.

The suffix array, as described above, it is an alphabetically sorted array of all suffixes of a string. From

the string T, the unsorted suffix arrays are exemplified in Figure 5.8.

Figure 5.8: DeltaGen unsorted suffix arrays.

Figure 5.9 represents the sorted suffixes arrays. The array at the left side of the figure has the index

of the respective sorted sub-array in the T array. This way, there is no need to save all the sub-strings

69

5.2. Firmware Over-The-Air Algorithm

and just the start index in the T string. This array of indexes forms the Suffix Array (SA), representing the

suffixes arrays index in alphabetic order.

Figure 5.9: DeltaGen sorted suffix arrays.

The Rank Array (RA) contains the index of the respective sub-array index in the SA array, illustrated

in Figure 5.10. For example, the suffix array that starts at index 0 in T has index 3 in alphabetic order.

Therefore, the first value of the RA array is 3. Moreover, the suffix “abc$bc#” with index 3 in T is the index

2 in the SA. As a result, the rank array will have in position three the index 2.

Figure 5.10: DeltaGen rank array.

To summarize, the RA has the position in the suffix array of the sub-arrays indexes represented in T,

resulting in Expression 5.4.

RA[SA[i]] = i (5.4)

The Suffix Array and the Rank Array are used to calculate the Height Array (HA). The Height Array

contains the Longest Common Prefix (LCP) between the ordered Suffix Array. The LCP between two sub-

arrays is the characters match length from the beginning of two arrays.Therefore, the first index of the

HA is 0, and the remaining values are the length of the Longest Common Prefix between the current and

70

Chapter 5. Design

previous suffix array as represented highlighted as green in Figure 5.11. For example, the suffix array

that starts in index 6 (“$bc#”) and 3 (“abc$bc#”) in T starts by comparing the “$” with “a”, which does

not equal, so the Height Array value in position 2 is 0. Moreover, the next comparison is the sub-arrays

“abc$bc#” with “abcabc$bc#”. It will match the “abc” sub-string of length 3. Therefore, the Height Array

value in position 3 is 3.

Figure 5.11: DeltaGen height array.

The height value is given by the Equation 5.5

Height =

0, i = 0

LCP (i− 1, i), i > 0

(5.5)

The SA, RA, and HA are used in generating the delta. This delta generation step flowchart is repre-

sented in Figure 5.12. It iterates through the new string suffix arrays and finds the Longest Common Prefix

(LCP) in the old string. If the LCP value is greater than 0, the COPY command is added with the LCP value

to the new string index. On the other hand, when the value equals 0, an ADD command is added with the

new string character index and incremented the new string index.

Figure 5.12: Delta Generation flowchart.

71

5.2. Firmware Over-The-Air Algorithm

Since the new string “bc” delta only uses a CPY command, the string “bceh” will be used to demon-

strate the ADD command. Therefore, the generated delta block output of the new strings “bc” and “bceh”

is represented in Figure 5.13. The new string “bc” delta is composed of a CPY and END command. There-

fore, to reconstruct the new string, it must copy two bytes from the start in index four of the old string

(“abcabc”). On the other hand, the string “bceh” delta has the same copy command as the “bc” string,

but it has two more ADD commands to add the character “e” and “h”.

Figure 5.13: Delta output of the new string “bc” and “bceh”.

The delta output from the Generate Delta step enters the Merge ADDs commands, which purpose is

to reduce the delta size by merging the ADD commands that are followed. From the example in Figure

5.13, the new string “bceh” has two additional commands with the bytes “e” and “h”. These two ADD

commands can be merged into one, resulting in the delta commands shown in Figure 5.14.

Figure 5.14: Delta output to the new string “bc” and “bceh” with ADD commands merged.

The ending delta is a sequence of commands to reconstruct the new string using the old string. In

order to use this algorithm with the real board firmware, in the DeltaGen Join Firmware Arrays step, an

offset of 255 to all positions is added. Since the firmware byte values range from 0 to 255, the offset is

required because the sentinels’ values need to be less than the array’s values.

The last stage of the delta is the Package Conversion. This stage is used to convert the commands

to serialized data that can be received by the end-device applying the command structure represented in

Figure 5.5.

72

Chapter 5. Design

Because the serialized data can be greater than the maximum package length that the board commu-

nication module can handle. Using the LINK4S project as an example, the modem (Quectel BC66) can

only receive 512 bytes at a time. Therefore, the serialized delta needs to be split. A package conversion

function will be done to solve this. The parameters for this function will be:

• Header size – The length of the first payload package that can be filled with the delta is reduced

according to the OTA header size received;

• Payload size – Length that can be filled with the delta commands;

The package conversion function will return a list of byte arrays with the respective delta, ready to send

to the end-devices. The delta needs to be sent through the cloud to the end-device, and the end-device

needs to parse and implement the commands as explained in Sections 5.4.4 and 5.3.10, respectively.

5.3 End-device

After the analysis in section 4, opportunities were found to add features, improve or re-design their

architecture. For example, add a new commands module that allows the device to be changed in run-time

or a more generic communication approach. In the application re-design will be presented new archi-

tectures to increase the modularity, memory optimization, functionality, and flexibility of the application.

Also, coding guidelines in variables, functions, enumerations, and structures adapted from the MISRA C

specification will be introduced.

Since an RTOS could have several advantages, it was searched for an RTOS that fits the application

constraints and then was re-design the modules taking advantage of it. The addition of the RTOS will

increase the system modularity without compromising the system lifetime and RAM. Furthermore, the

bare-metal conversion to use an RTOS is one of the more extensive application re-design. The author Paiva

[1] in her master’s thesis used the FreeRTOS resulting in the same lifetime as the bare-metal application

but had only 1 KB of RAM left from the 20 KB of the device. Therefore, the RTOS should have the smallest

footprint possible and use little RAM. As a result, the Azure RTOS ThreadX was chosen.

5.3.1 Code guidelines

The Motor Industry Software Reliability Association (MISRA) C advise using a specific code specifica-

tion. It was adapted to use in the end-device codebase to the following. All variables will use the snake

73

5.3. End-device

case code guidelines, meaning words are separated by underscores, for example, alarm_counter vari-

able. Also, the variables suffix will end with the variable type. For example, if a uint8_t alarm_counter is

declared, its name will be alarm_counter_u8. Table 5.1 exemplifies suffixes for several variable types.

Table 5.1: Variable type suffixes.

Variable Type Suffix
int8_t _s8
uint8_t _u8
int32_t _s32
*int32_t _ps32
**uint32_t _ppu32

char _c
const char _cc
uint8_t array _au8

The functions will be using the camel case code guidelines. For example, the send function in the

communication will be named communicationSendDatagram. Instead of using the underscore as the

snake case separating words, it uses upper case letters. It is helpful to distinguish variables from functions.

Also, the functions return will have the return type suffix represented in Tables 5.1, 5.2, and 5.3. These

suffixes allow knowing right away the function return in its call.

Table 5.2: Functions type suffixes.

Function Return Suffix
void _v

uint8_t _u8
int32_t _s32
enum _e

Specific C types such as enumerations, structs, unions, or any scalar will also have a suffix type in

the end, as represented in Figure 5.3. For example, to create the struct alarm, it will be called alarm_st,

and if a variable alarm is variable of the type alarm_st is declared, it will be named alarm_s.

Table 5.3: Specific C type suffixes.

C Type Type Suffix Variable Suffix
enum _et _e
struct _st _s
union _ut _u

any_scalar _t

Since it will be using an RTOS, Table 5.4 represents the RTOS variable type suffixes. For example, if

it is a binary semaphore, the variable will have the suffix _bsem.

74

Chapter 5. Design

Table 5.4: Specfic RTOS type suffixes.

RTOS Variable Type Suffix
Binary Semaphore _bsem
Counter Semaphore _csem

Thread _thread
Mutex _mux

Event Flags _eventflags
Event Flag Enumeration _ef

Queue _queue

Moreover, if any variable or function is private in the module (static), it starts with an underscore

“_”. The code guidelines are useful to help develop of software programs and thereby reduce errors.

If the coding standards are followed, the code is consistent and easily maintained because anyone can

understand it and modify it at any point in time.

5.3.2 Software Stack

A new proposal for the software stack is presented in Figure 5.15. Comparatively to the one in Figure

3.1, the Azure RTOS ThreadX layer above the hardware was added; the Low-Level Portable Layer was

renamed to HAL Wrapper, and it encapsulates the Commercial Off-The-Shelf (COTS) HAL; the External

Peripherals HAL and the Middleware Layer was added; the security and transmission module will be

renamed to Cryptography and Communication respectively.

Figure 5.15: Re-designed system software stack.

The HAL Wrapper and the External Peripheral HAL forms the Full System HAL. The HAL Wrapper en-

capsulates the MCU HAL providing a generic HAL to the application. As a result, changing the MCU would

only need reimplementation of this layer. The External Peripherals HAL are the drivers of the peripherals

75

5.3. End-device

external to the MCU, for example, the Modem, the encryption chip and the multiple sensors.

The Middleware contains the modules that control the lower layers needed by the Application (the layer

above). In this layer was added three modules: Commands, Trace, and OTA. The Commands module will

be responsible for altering the application parameters such as sensors sampling period and sending to the

cloud interval in run-time. The Trace module will be responsible for tracing the application to help in the

development phase. The OTA module will be responsible for parsing and handling the firmware updates

from the cloud.

The Transmission module was renamed Communication because it will incorporate transmission and

reception. It will be re-designed to have a generic transmission datagram encapsulating the datagram

from the application. Also, it will be responsible for managing the modem and the cryptography.

The System Control module will be responsible for answering the RTOS low-power modes and re-

freshing the RTC time. Moreover, the functions needed to the Commands module will be added to alter

it.

The sensors module will be re-designed to optimize space and enable run-time parameters changes.

Overall, the improvements to the software stack aim to increase the software modularity and the

application design, enabling easier continuous development. The following section will present the Azure

RTOS ThreadX low-power mode kernel extension and the Middleware layer specification.

5.3.3 Azure RTOS ThreadX Low-power mode

When all the threads are suspended and the kernel has no thread to execute, it goes to a kernel state

that, if activated, calls the assembly instruction Wait for Interrupt (WFI). The problem of only using the WFI

instruction is that it does not take advantage of the MCU low-power modes, and the kernel keeps waking

up due to the tick interrupt. Therefore, the kernel should enter a low-power mode when all the threads are

suspended, disabling the kernel timer tick and using the MCU low-power modes.

This low-power mode kernel extension is represented in Figure 5.16. It starts by searching in all

timers and finds the timer ticks from the next timer to expire. Then, it calls a user implemented function

(configPreSleepMode) that receives the number of timer ticks knowing how much time it can sleep. The

user application sets up a timer to wake up the MCU in the given time and disable the timer giving the

kernel tick, for example, the systick. Afterwards, the user-implemented function (sleepMode) is called to

enter the MCU low-power state. In low-power mode, the MCU will be awake from the set timer or an

interrupt. The kernel calls the configPosSleepMode functions to know how long the system has spent

sleeping to adjust its timers.

76

Chapter 5. Design

Figure 5.16: ThreadX low-power mode extension.

Since the ThreadX has the timer list _tx_timer_list with timer linked lists in each position, searching

for the next timer expiration is possible by going through all the linked lists in the timers list comparing the

timer ticks.

The timer adjustment process is represented in Figure 5.17. It uses an auxiliary timer list to save all

the timers, clear the original, and then subtract the time spent in low-power mode and insert them into

the original list.

Figure 5.17: ThreadX low-power mode timer adjustments flowchart.

The low-power mode extension of the ThreadX will allow the kernel to enter in the deepest low-power

77

5.3. End-device

modes of the MCU, saving energy not needing the constant tick if no thread is ready to run.

5.3.4 System Control

The system control provides time capabilities and energy manager controlling the RTC and the MCU

power drivers.

It was added the alarm concept. An alarm, represented by the structure in Figure 5.18, is a configured

time in a day that will be signalled when it is reached. A new transmission signal architecture will be used

in the regular datagram. It has two modes: the time interval and alarms mode. The time interval enables

the board to send every configured time. For example, every hour, it sends the regular datagram. The

alarms mode lets set up several alarms in a day, and when the time is reached, the regular datagram

is sent. For example, setting alarms to 6:30, 12:15, 18:30 will send the datagram at 6:30, 12:15, and

18:30, respectively. The alarms structure has the time_interval to indicate the mode in use, the respective

arrays of time, and the respective index in use.

Figure 5.18: System control alarm structure.

The new alarm architecture allows being configured using cloud commands. For this purpose was

added the following commands:

• Set/Get alarms – the set receives the alarms mode and, according to it, gets the regular send

interval or the send alarms. The get alarm sends the board alarms and mode to the cloud;

• Set/get RTC refresh time – sets the frequency of updating the RTC clock or returns the current

period;

The system control class diagram is represented in Figure 5.19. The systemControlTXAppDefine

function purpose is to create the system control module’s ThreadX services (threads, semaphores). The

systemControlInitialize sets the MCU low-power modes and the default system control settings. The

function systemControlSetCurrentDatetime will be used to set the RTC time and date. The system-

ControlGetUnixEpochTimestamp returns the timestamp in the UNIX format. Finally, the remaining

functions are used to activate, set, and get the alarms.

78

Chapter 5. Design

Figure 5.19: System control class diagram.

A thread will update the RTC periodically due to the RTC shift from real-time. This thread’s flowchart

is represented in Figure 5.20. It is a loop that starts by checking if the RTC update event flag is enabled.

If it is, it will read the alarms set interval, and call the getDatetime function pointer. If it is successful, set

the alarms, the RTC with the new DateTime, and sleeps the RTC refresh time. In case of error, it triggers

the get DateTime error, waits for the error to get fixed and goes to the getDatetime function call.

This module will have a pointer to a function that receives a DateTime struct and gets the current date

and time (systemControlSetDatetimeFunction). This thread will be controlled by setting or clearing the

sc_enable_rtc_update_ef event flag, and the system controls signals when the RTC is updated by setting

the sc_rtc_updated_ef event flag.

Figure 5.20: System control manager thread’s flowchart.

The system control is also responsible for enabling the RTOS low-power modes, receiving the time

that the system can sleep and returning to the RTOS kernel the time spent sleeping in order to the RTOS

recover from it.

The RTC wake-up mode will be used as the wake-up timer with a resolution of milliseconds up to 36

hours. The sleepMode will be done by calling the enterStopMode function in HAL Wrapper. The system’s

79

5.3. End-device

time in low-power mode will be calculated by subtracting the timestamp reading in the wake-up timer set

and the configPosSleepMode function.

5.3.5 Sensors

A new sensor architecture is presented that allows better control of the sensors by allowing run-time

commands and optimizing variable storage and variable granularity control. This new architecture structure

is represented in Figure 5.21 and provides easy addition of a sensor to the system as creating its sensor

struct and variables structs and sample arrays. The sensor struct has the generic function pointers to

the initialization, configuration, sample and handles its interrupt. The pointers to functions allow creating

generic algorithms in the sensors module.

Figure 5.21: Sensor and variable structures class diagrams.

The variable struct has the status struct that contains the current status information of the variable,

which can be changed through cloud commands. Enabling the possibility of changing the sampling,

interrupt status and change the sampling mode, including its average limit. Using the HDC2080 sensor

as an example, it can measure two physical variables, temperature and humidity. Therefore, this sensor

will have two variables (temperature and humidity). A variable will be composed by name, units, a sampling

period, counts, counter samples, and status. Figure 5.21 represents the new sensors structures.

The samples are encapsulated in the struct samples_st. This struct has sample index, sample array

size, sample array type, the latest sample, and a generic pointer to the samples array. The latter generic

pointer allows allocating only the bytes needed for each variable. For example, if a sample is 8-bits long with

the old storage architecture using the datavalue_t structure, it was allocated for the minimum, maximum

and average two 32-bits for every sample (sampling and sampling type). Using the array, if it stores 32

80

Chapter 5. Design

samples, it is only to be used 32 bytes. Equally, it is compatible with the simple and average sample

mode. This new way of saving the variables allows different sample sizes, not constraining into one.

The sensors module will have three threads:

• Sensors Manager – Responsible for sensors’ initialization, configuration and everything that

requires managing the sensors;

• Sample Variables – Sample the variables if the sampling is enabled and if the variable counts

reach the counter value;

• Emergency Manager – Handle the physical emergencies triggered by the sensors;

Figure 5.22 shows the sensors manager thread’s flowchart. It waits for the sensors’ init event flag to

be set. When set, it initializes the sensors, and if any are alive, it configures them and signals that the

sensors were initialized through the initialized event flag. If no sensors are “alive”, it will sleep for the “no

sensors” timeout value.

Figure 5.22: Sensors manager thread’s flowchart.

The sample variables thread is represented in Figure 5.23. If the sensors were initialized and the

sampling enabled. It increases the variables counts and checks if they equal the counter. When it does, it

samples the variables. When all the sensors’ variables were iterated, it sleeps for the minimum common

sampling values between variables periods.

Figure 5.23: Sample variables thread’s flowchart.

The emergency thread is illustrated in the flowchart of Figure 5.24. If the sensors are initialized, it

waits for external interrupts signalled by HAL Wrapper event flags having. When an external interrupt from

81

5.3. End-device

the sensors is triggered, it handles the sensor. If an emergency was enabled and triggered, the application

is signalled that an event flag that an emergency occurred. Moreover, the application can read it through

the getSensorsEmergencys_v function.

Figure 5.24: Emergency thread’s flowchart.

The resulting sensors module interface is represented in Figure 5.25. External functions have the

functions needed to enable the commands to set and get the variables status as the interrupt, sampling,

operation mode, and period. Also, it has functions to sample and get the sampled values. The module

has the sensors_eventflags used to enable or disable the sample and trigger the sensors’ initialization.

Internally, the module has multiple arrays of pointers to structs to manage all sensors, variables, and

samples structs more easily.

Figure 5.25: Sensors class diagram.

82

Chapter 5. Design

5.3.6 Cryptography

Since the communication protocol with the cloud server uses the AES and the RSA encryption, the

cryptography module provides the mechanisms for this type of encryption. Also, it offers a simple API to

the MD5 hash algorithm.

The module class diagram is represented in Figure 5.26. Hardware-wise the platform contains the

ATECC608A and the MCU encryption engines to implement the AES encryption. The RSA algorithm

that will be used is the PKCS #1 v1.5, and it does not have hardware acceleration. Therefore, it will

be implemented in software with the encryption library available from STMicroelectronics. Furthermore,

the MD5 will be implemented recurring to the encryption library and an open-source project adapted

implementation.

Figure 5.26: Cryptography class diagram.

The cryptography interface has the application define function that creates the binary semaphore

(crypto_bsem) to protect the concurrent use of the encryption. Then, there are functions to the RSA and

the AES, both initialization and encryption. The RSA has the modulus set, and the AES decrypt, get the key,

and Initial Vector (IV) functions. Internally, the module will have the aes_s and rsa_s structures that save

the data needed for the algorithms. Also, it will be possible to choose the AES encryption be implemented

by the ATEC and the MCU encryption engines by a macro in compile time to be easier to compare them.

83

5.3. End-device

5.3.7 Communication

The Communication will be responsible for the transmission and reception of data to and from the

cloud. It will have a new communication architecture that adds a generic datagram structuring and com-

mand reception. Also, it will be responsible for handling the asynchronous modem events and network

connection manager.

Transmission

The cloud reception datagram protocol is explained in Section 5.4. The payload is the message sent

by the end-devices. It is serialized using message pack. In the old application, the sensors sample was

constrained by the amount of data the communication could send in the interval between transmissions

and the buffers that allocated the samples—forcing the application to have fixed low sampling periods. Also,

the communication had predefined structures that were shared with the application. If a new parameter to

a type of transmission is added, or even if a new type of transmission is necessary, it would be necessary

to make the new construct of the datagram in the communication module.

Additionally, in the old transmission module, the cloud received a stream of data that is not identified,

consisting of numbers and or strings. If it goes out of order or has more than expected, the cloud could

not parse it. Therefore, adding a new parameter also will change the cloud parsing. As a solution, a new

communication architecture will be used. The datagram is composed of datagram objects, as illustrated

in Figure 5.27. Since the transmission is generic, adding a new object to a datagram type does not require

the re-implementation of communication module or cloud microservices.

Figure 5.27: New communication architecture datagram.

Figure 5.28 illustrates the transmission of a regular datagram. Each datagram object will be composed

of a string identifier and the respective data. For example, the board id identifier is “ID” and is followed

by the respective value. The temperature variable has the identifier “sTMP”, which indicates that it is in

simple mode followed by its samples.

Figure 5.28: New communication architecture datagram.

84

Chapter 5. Design

All the transmission datagrams contain in the start the parts object identified by “P” in Figure 5.28.

This object data is the current part and the total datagram parts. If the payload does not fit in the modem

transmission limit of 1024 bytes because it is 1500 bytes long, it will send in two modem transmissions.

The first datagram will have the object “P” with the data 1, 2 indicating that it is the first package of 2. When

it is in the last transmission, it will be sent with 2,2, indicating that the message is the current part 2, with

the total parts of 2. Moreover, to identify the datagram is useful to have the board id and timestamp in every

transmission. It will be accomplished by passing the number two to the communicationSendDatagram

repetition to repeat the first two objects (board id and timestamp).

The datagram objects can be encapsulated in the communication module giving the following generic

interface to the application:

• communicationSetupNewTransmission – It prepares everything to start a new transmission;

• communicationSetupMicroService – Sets the server microservice identifier, if it has one;

• communicationAppendDatagramObject – Receives the information needed to fill a datagram

object and append it to the datagram;

• communicationSendDatagram – Receives the number of objects that will be repeated in case

of the datagram exceeds the max transmission length and sends the datagram objects to the cloud;

• communicationEndTransmission – Finishes the transmission, giving the possibility for the start

of another;

Moreover, since the header does not change, it will enable static encryption by changing macros in

compile-time. The static encryption consists of the microservices header being already encrypted and

saved in the FLASH memory. Therefore, when filling the cloud header, it will just be copied.

Reception

The possibility to exchange commands adds the need to receive the message from the cloud. There-

fore, it needs to handle the reception of data and other asynchronous events such as the server closing

the communication socket. The communication will have the Communication Asynchronous Events

thread, represented in Figure 5.29. It will wait for asynchronous modem requests and will handle them.

An Unsolicited Result Code (URC) is a modem message not requested from the MCU. It can be the

modem signalling that received cloud data or the cloud closed the socket. If the server closes the socket,

the MCU has to close the modem socket.

85

5.3. End-device

Figure 5.29: Communication Asynchronous Events Thread’s flowchart.

When receiving data from the cloud, it is queried, parsed, signalled the application, and it will wait

for the application to handle the new data to have the buffers free to get new data from the modem. The

cloud data will follow the structure represented in Figure 5.32, it has, in the beginning, the Message-Digest

algorithm 5 (MD5). The MD5 [89] is a message-digest algorithm used as a hash function producing a

128-bit value hash value. Since it is a fast hash algorithm, the data received has an MD5 checksum to

verify the data integrity, adding safety to the data received.

The communication will use the datagram_t struct to receive the commands. According to the mes-

sage pack objects received, it will readjust the pointers inside the datagramobject_st. . For example, if

the communication receives a byte array and a 32-bits unsigned integer, the datagram_st struct will have

two objects: the first one will have the type UARR8_T, array length and pointing to the start o the array;

the second one will have the type UINT32_T and a pointer to the unsigned integer.

The communication will give the application an API to interact with the data received. It will signal an

event flag when data is received, and then the application can use the following functions:

• communicationSetupNewReception – Gets the datagram thread synchronization service;

• communicationReceiveSize – Returns the number of objects in the datagram struct;

• communicationGetReceivedObject – Receives the index of the datagram object and the point-

ers that will be set to enable access to it;

86

Chapter 5. Design

• communicationEndReception – Frees the datagram struct allowing it to be used for transmis-

sion or another reception;

The buffer used in the transmission will be used in the reception, saving RAM but, in contrast, can

not transmit and receive simultaneously.

Figure 5.30: New communication class diagram.

From the class diagram of Figure 5.30, the communicationTXAppDefine is used to create the

ThreadX variables in the kernel initialization. The communicationGetDatetime purpose is to set the

DateTime struct with the current time if it was successfully got it. The signalCommunicationError is

used to signal an error in the communication to resolve it.

Connection Manager

The communication will have the connection manager thread. It will be responsible for the modem

initialization, configuration, and server connection, including its error handling. This thread will be imple-

mented as the state machine in Figure 5.31. It starts by default and has six states:

• Initialization – Checks if the modem is alive, and if it is not, it tries to recover it;

• Configuration – Does the modem need configurations and enables the modem connection to the

network if needed and waits until it is connected;

• Check Network Connection – Checks if the modem is connected to the network and set the

after network connection modem low-power savings configurations;

• Check Server Connection – Pings the server checking if it can establish a connection with it,

meaning that it is alive;

87

5.3. End-device

• Open Socket – If no socket open, it forms a socket connection with the server;

• Wait for error – Waits for a signal of error in communication;

During execution, a failed state will rollback to the previous successful state. Multiple failures will

force the MCU to a sleep state and try to solve the error later. Upon a predefined number of failures, it

will go back to a previously successful state to guarantee that the error did not propagate. For example,

the send error event flag is triggered if the transmission fails and the state machine goes to the Open

Socket state. If it cannot open a socket with the server, it goes to the previous state and checks if it has a

server connection; if it is not successful in pinging the server, it goes to the state before pinging the server,

checking if the modem is connected to the network. If the modem is connected to the network, it will go to

the Check Server Connection state. If it is not successful, it means that the server is down. Therefore, it

will sleep for a specific time and will try again. When the tries increase, the sleeping time will increase too.

After a predefined number of unsuccessful attempts, it will go to the Check Network Connection state to

check if the modem did not lose connection when sleeping. When the server is available again, the Check

Server Connection state will be able to ping the server, then in the Open Socket state, a socket will be open

and will be signal that the error is fixed, and in the case of the send error, it will send the datagram again.

The connection manager thread will be again in the Wait for error state, waiting for an error to occur. If

the modem goes down, the Initialization state will try to recover it by resetting it and initializing.

Figure 5.31: State machine of the connection manager thread.

88

Chapter 5. Design

5.3.8 Commands

The Commands module allows the user to dynamically change the system and interact with it through

specific messages. Hence, firstly, the board parameters that should be changed or gotten were identified

and resumed in Table 5.5. Then the commands architecture.

The device can only receive data from the cloud when it transmits. After the device transmission,

the server has a small window to send a message back. Therefore, the commands will be sent to the

device when the device transmits data to the cloud, such as when a regular configuration, emergency, and

command response datagram are sent.

Table 5.5: Commands according to the module.

Module Command Opcode Description
System Control Set/get alarms 0 Set or get the board alarms
System Control Set/get standby 1 Set or get the standby time
System Control Set/get RTC refresh time 2 Set or get the system control manager thread’s period

Sensors Set/get sensors variables config 3 Set or get sensors variables configurations
Sensors Set sensors variables enable status 4 Set or get sensors variables configurations
Sensors Set sensors variables periods 5 Set or get sensors variables periods
Sensors Set/get sensors variables interrupt thresholds 6 Sets or gets the variable interrupt thresholds (manual and automatic)

Application OTA Update 7
Receives a chunk of data of the new application and saves

it in the FLASH memory
Application Get software version 8 Gets the board software version
Application Set/get EEPROM 9 Writes or reads from the EEPROM

The commands datagram reception architecture is represented in Figure 5.32. They have an opcode

associated, and new commands can be added by adding new opcodes. The set commands after the

opcode have the new data to set the respective command parameters. The get command is a set command

with the Most Significant Bit (MSB) set.

Figure 5.32: Commands datagram reception architecture.

Figure 5.33 represents the command manager thread. This thread waits for the data from the cloud

received event flag. Then it gets the command opcode, and if it is valid, verify if it is a set command. If it

is, it handles it according to its opcode by calling its function. A set command has a value ranging from 0

to the length of the commands opcodes, and a get command has the same opcode as the set command,

but the bit 16 is set. If it is a valid command, it will call the get command function, append the set to

89

5.3. End-device

the transmission, and get command results as the board id and current timestamp. The data is ready to

be sent, so it set the command response event flag and waits for the command response to be sent. It

returns to the beginning, waiting for the cloud data event flag.

Figure 5.33: Commands manager thread’s flowchart.

The commands class diagram is represented in Figure 5.34. It is composed of all the command

functions to implement the commands. Notice that the set OTA and software version are not defined

because these commands do not have a set functionality. It will return false in the command result

instead.

Figure 5.34: Commands class diagram.

90

Chapter 5. Design

The command module has the commands thread and two arrays of pointers to functions called set

and get commands. The command opcode is the correspondent index in these arrays.

5.3.9 Trace

The Trace module aims to provide a debug entity that allows faster problem solving during the devel-

opment phase. It will trace the thread stack’s free space using a chunk of the EEPROM to save its data

enabling the user to read with the MCU programmer after extensive tests.

Figure 5.35: Trace thread’s flowchart.

It will have the trace thread, represented in Figure 5.35. It starts by sleeping for 90 seconds, giving

time to the user can connect the MCU programmer and not overwrite the old data. Then it enters a loop

that starts by calculating the threads and queue stack free space, saves it to EEPROM, and sleeps for a

compile-time value. Also, the ThreadX can be be compiled with stack checking. The stack checking calls a

callback function when a thread stack overflows. This callback will be implemented in the Trace module. It

receives a pointer to the overflowed thread, and with that will be saved in the EEPROM the thread’s name.

Moreover, the trace module has the log space used to save objects to the EEPROM. This object’s

structure represented in Figure 5.36 is composed of an identifier, and according to it, it is of different

types. The types will be for strings, and binary semaphore gets services, but it can scale by increasing the

identifier number. The string object is composed of the identifier described previously and the respective

string. This string ends with the character “

0”. The binary semaphore gets the object as the string has its identifier, followed by the service variable

address and the called line number and module name.

91

5.3. End-device

Figure 5.36: Trace log file objects structure.

5.3.10 OTA

In order to update the device Over-The-Air, the end-device receives the delta and handles it, recon-

structing the new firmware through the old firmware. Therefore, this section will show how the device

memory is prepared to tackle updates and handle them.

The MCU memory is partitioned into two applications areas and a bootloader to enable the delta

update. The two applications areas have one running the current application, and the other memory

space is the destination of the reconstruction of the new firmware from the old one. The bootloader,

designed in Section 5.3.11, is required to be able to change the currently running application to the new

one. Therefore, the memory is organized as illustrated in Figure 5.37. Considering the default memory

constraints of the STM32L081KZ [83], which has 192 KBytes of flash memory, resulting in three partitions

of 8KBytes to the bootloader, and 92 KBytes for each application.

Figure 5.37: MCU memory organization, adapted from STM32L081KZ [83].

92

Chapter 5. Design

This memory layout allows new applications to be written into memory without corrupting the current

application. This process is done by receiving the delta from the cloud and handling it. The delta handle

in the end-device is interpreted as a command, represented in Figure 5.63. This command is received

through the communication reception module, which converts the raw data from the modem into datagram

objects. Then the commands module handles this datagram object by identifying the OTA opcode and

calling the OTA command. This delta path from communication into the OTA module is represented in

Figure 5.38.

Figure 5.38: Delta path from communication into OTA module.

It has already been explained how the delta arrives at the command module. That being said, the

remaining section will explain how the deltas are handled through a state machine that will be briefly

explained. Then flowcharts of each state will be presented, finalising with the class diagram of the module.

The OTA module handles the deltas using the state machine represented in Figure 5.39. The OTA

Begin state waits for a valid header and parses the new application start address, end address, and

checksum. If a valid header is received, it erases the new application flash space in the Erase New App

Flash Space state. Then, it enters the Program New App Flash Space, which stays most of the update since

the most important memory operations are made in this state. When it receives an END delta command,

all delta packages have been already received and written into the flash. After, it moves to the New App

Checksum state, which iterates through the new firmware checking the various datagram checksums. If

the checksum matches the received in the header, it enters the OTA End state, which writes the magic

key and new application address into the bootloader config. Then, it signals the application that a correct

firmware update has been done, and the application can restart. If something fails in the OTA update, it

aborts the update operation and returns to the Begin state.

93

5.3. End-device

Figure 5.39: OTA state machine.

The OTA Begin state flowchart is represented in Figure 5.40. Its primary purpose is to parse the OTA

header and validate its values. It checks if the package index is zero and the header byte array length is

not less than nine bytes required to have a valid header (5.62). If it passes the verification, it saves the

new application begin address, end address, and checksum. Then it checks if it is a valid new application

address, and if it is, it sets the new application current address to the new application first address, clears

the index of the word window, and returns S_NEW_APP_FLASH_ERASE as the next state. If either one of

the validation fails, it returns the S_FAILURE state.

Figure 5.40: OTA begin state flowchart.

The New App Flash Erase State, illustrated in Figure 5.41, starts by calculating the number of pages

to erase from the new application range from the begin and end address divided by the page size (128

bytes). If the application consumes more than the maximum page size, the update is aborted, returning

the S_FAILURE state.

Figure 5.41: Erase new application flash memory state flowchart.

94

Chapter 5. Design

The core of the OTA update is the New App Flash Program State because it is where the OTA commands

are parsed, and the new firmware is reconstructed to the flash memory. This state starts by checking if

the new package equals the expected index value. If it is, it parses all the commands in the new delta. The

OTA commands are explained in Section 5.2, but the following itemise is the board behaviour to them:

• END – all the delta packages were received and parsed. Returns the S_NEW_APP_CHECKSUM

state;

• CPY – copies from the old firmware flash space into the new application space;

• ADD – adds the received bytes presented in the update command into the new firmware;

If it parsed all the OTA commands and did not encounter an END command, this state returns the

S_NEW_APP_FLASH_PROGRAM state to continue in the same state. On the other hand, if it encounters

an invalid command, it returns the S_FAILURE state.

Figure 5.42: Program new application flash memory state flowchart.

The New App Checksum state, represented in Figure 5.43, iterates through all the bytes in the new

firmware, summing them. Then, it calculates the checksum, given by the equation in 5.6. Since it uses

the mod of 256, the checksum value ranges from 0 to 255.

checksum = Σnew_firmware_bytes % 256 (5.6)

After the checksum calculation, if it is equal to the header checksum, the OTA update is valid and

returns the S_END_OTA state. If it is not, it returns the S_FAILURE state.

Figure 5.43: New firmware checksum calculation state flowchart.

95

5.3. End-device

The End OTA state, shown in Figure 5.44, according to the current application set in the bootloader

config flash page, the new application address and the magic key. This state ends by signalling the

application that an OTA update has been realised successfully.

Figure 5.44: End OTA state flowchart.

The last OTA machine state is for ensuring the new application integrity. Since it already signalled

the application that a newer firmware is ready, this state prevents a new firmware change through the

reception of a new delta update—keeping the current new firmware intact. As the OTA End state, it signals

the application that a new firmware is ready to restart.

The resulting OTA class diagram is represented in Figure 5.45. It isolates the updates by only exposing

the OTA_e and getOTA_u32 functions. The state machine described above is implemented using the

private functions otaBeginState_t, newAppFlashEraseState_t, etc. The getOTA_u32 command returns the

expected package index from the OTA module.

The word_window_au8 and word_window_i_u8 variables are used to solve the problem of unaligned

memory access. For example, if the COPY command has an unaligned offset address and length of 2, it

will be copied to the word window array the two bytes from the flash. The following command will fill the

rest of the word. As a result, when the word is filled, the memory writes are aligned with the flash space.

If the following command is an END command, the word window will be padded with zeros.

Figure 5.45: OTA module class diagram.

96

Chapter 5. Design

5.3.11 Bootloader

The bootloader is the first program in memory and that the MCU initializes. It occupies the first

8 KBytes in the flash, as represented in Figure 5.46. Also, it is responsible for deactivating the board

peripherals and jumping to the application. The application jump can be the current running or a new

application area if the magic key and the new application address are set. The magic key is a simple

identifier that verifies who made the firmware update.

The bootloader has two hook variables that the application can change to signal a new firmware update

and its specific address. These variables are presented in the last flash page of the bootloader and are the

magic key and the new application address as represented in Figure 5.46. Moreover, the bootloader saves

the current application address in address offset 0x1FF4. If it has no address set (zero value), it jumps

to application one default address by default. The default address is the memory space after bootloader,

which has 0x2000 of offset.

Figure 5.46: Bootloader config page.

When the main application wants to change the application area, it writes to the magic key and the

respective new application address to the new application address bootloader variable and restarts. Then,

the bootloader reads the magic key address. Suppose that an update has been done successfully, and it

is the restart to change to the new application. In this case, the magic key value will match “ESRG”, so

it will deactivate the MCU peripherals, clean the magic key value, save the new application address in the

current application address, and jump to the new application as represented in Figure 5.47. If the magic

key does not match, it will jump to the current application running.

97

5.3. End-device

Figure 5.47: Bootloader’s flowchart.

5.3.12 Application

The application layer is composed of a single thread represented in Figure 5.48. It starts by waiting

for the communication initialization. After, it sets the system control get DateTime update function pointer

used in the system control to refresh the RTC and enables the RTC update.

Since the communication is initialized, the modem is already initialized, so the board id (the modem

SIM IMSI) is got. It waits for the RTC to be updated and checks if the sensors were initialized. If yes, it

enables the sampling and sets the regular alarm. Afterwards, the command manager thread is started

and sets the event flag to trigger a configuration transmission. Finally, it enters the Send and Application

Error Handling Loop, illustrated in Figure 5.49.

Figure 5.48: Application Manager thread’s flowchart.

The Send Loop is responsible for creating messages to be sent to the cloud. By monitoring the several

flags triggered by the middleware modules, this thread creates the corresponding messages, such as

configuration, emergency, regulars, and command response. The command response is the location for

the command’s response. It receives if the command was successful and the respective set or get values.

The application error handling monitors the error messages of all the modules. For example, if the

system control does not successfully call the get DateTime function, it triggers the getting DateTime error.

The error handle triggers a get DateTime communication error.

98

Chapter 5. Design

Figure 5.49: Application Manager thread send and error handling loop flowcharts.

As mentioned before, the send loop threads are responsible for sending messages to the cloud. Each

message has a specific layout, having the board id and the timestamp in common. The message layout

is described in the figure below.

Figure 5.50: Application Message according to the type.

The Configuration datagram will comprises the MCU’s model, Modem Configuration, Sensors’ Vari-

ables Configuration, OTA Configuration, Send Configuration, and Software Version. The Modem Configu-

ration is the modem cell ID, its tac and tau; the Variables Configuration are the sensors’ variables status,

name, period, and interrupt status; the OTA Configuration is the application one, application two, and

the current application running addresses; the Send Configuration have the transmission mode (alarms

or time interval), in alarms mode, it has all alarms, in time interval it has the time interval; the Software

Version is the current software version.

The Regular datagram will have the Signal Quality and the Sensors’ Variables Samples. The signal

quality is the modem signal quality in the transmission time; The sensors’ variables samples are the

samples between transmissions.

The Emergency datagram will have the Emergency Triggered and Variables Samples. The emergency

triggered identifies the interrupt that triggered the emergency; the Variables Samples are the sensors’

variable sampled after the emergency trigger;

The Regular and Emergency datagrams have the OTA package index if an OTA update was started.

99

5.3. End-device

The Command Response datagram has the following parameters that vary according to the command.

For example, a set alarms command will return the alarms mode (time interval or alarms), and the respec-

tive values according to the mode. If a set of variables interrupt status or period, it will have the sensors’

variables interrupt or the period, respectively.

The application threads execution over time, priority and priority preemption threshold is represented

in Figure 5.51. The lower the thread number, the higher the thread priority is. The thread priority has been

given using the RM algorithm explained in Section 2.3.1.

Figure 5.51: Threads priorities and preemption threshold values (lower priority number higher the
thread priority).

Since the communication with the modem is a core service, the Modem UART Message handler is

the thread with the higher priority, followed by the ThreadX timer thread. Because the threads Sensors

Emergency Manager, Sample Sensors, Communication Asynchronous Events threads are fast, they have

priority 8, 9, and 10, respectively, followed by the Connection Manager with 12. The Sensors Manager have

a priority of 16 compared to 17 of the System Control Manager because it is more important to configure

the sensors to update the current date and time. The Command Manager has priority (19) is greater than

the Application Manager (21) to prioritize the command reception. Finally, the Trace thread has the lowest

priority because it is a debug thread and does not change the other system’s threads behaviour.

The preemption threshold values will be assigned according to the shared services between threads.

Figure 5.52 represents the application shared binary semaphores.

100

Chapter 5. Design

Figure 5.52: Application shared binary semaphores.

Every thread except the Modem UART Messages and the System Timer thread has the preemption

threshold 8 to avoid binary semaphore deadlocks. This mechanism helps ease some of the inherent

problems of preemption and concurrent accesses.

101

5.4. Cloud

5.4 Cloud

This section presents the cloud microservices using microservice architecture and its database struc-

ture. Then a commands module will be proposed to be used to interface the database with high-level

applications.

The cloud design overview is represented in Figure 5.53. It uses the Blackwing framework to manage

the microservices and uses the MongoDB database. The server is responsible for receiving the end-device

messages, transferring the message to the respective microservice. The microservice then will parse the

message and save it into the database. In case that the respective board has a command waiting, the

microservices send it to the server, and the server sends it to the end-device

Figure 5.53: Cloud overview design.

The Blackwing is a python framework created by S. Camões. It is all written in python and handles

the microservices intercommunications, freeing the user to only implement the microservice code. The

server and the microservices are python processes, and the server communicates with the microservices

by TCP/IP. The server has a folder with the microservices settings needed to identify and establish con-

nections with them.

The Blackwing framework has a specific packet format presented in Figure 5.54. The message type

identifies if the header is encrypted or not. In case of not be encrypted, the header only will have the

microservice opcode. If it is encrypted, the header will be encrypted with the RSA algorithm having the

AES key and AES IV in it. Also, the payload will be encrypted using the AES algorithm using the key and

IV present in the header.

The AES key and IV of the header enable the cloud to decrypt the message payload (where the board

102

Chapter 5. Design

message is). Since the header is encrypted with the RSA algorithm, only the cloud can decrypt it. Conse-

quently, only the cloud can decrypt the message payload.

The microservices will be responsible for parsing the received payloads and sending, if available, a

command to the respective board.

Figure 5.54: Blackwing protocol.

The AES key and IV of the header enable the Blackwing server to decrypt the message payload (where

the board message is). Since the header is encrypted with the RSA algorithm, only the server can decrypt

it. Consequently, only the cloud can decrypt the message payload.

In case of the microservice has a response to the device, it sends the response to the server, the

server encrypts using the AES key and IV and sends it to the end-device.

5.4.1 Microservices

The cloud will have four microservices: Configuration, Regular, Emergency, and Command Response.

Since the end-device communication is generic, all microservices have a similar structure illustrated in

Figure 5.55. It will start by forming pairs with the received message, which will pair the communication

key identifier with the respective values. Then, it is a microservice-specific code, followed by a database

update or insertion of the data received. Finally, the microservice reaches the checking for command

response to the board by calling the response function. This function queries the database for a command

with the received board id. If a command is queried, the microservice will return to the Blackwing server

the command or none if not.

103

5.4. Cloud

Figure 5.55: Generic microservice’s flowchart.

The configuration will have to do a second parse into the received modem, sensors’ variables, and

send configurations. The modem configuration will separate the cell id, the tau, and the tac; the sensors’

variable will unify all the configurations. For example, if it receives the variable TMP, it will group its

period, interrupt id, interrupt status and state; in the send configuration, it will parse it according to the

transmission mode the alarm or time interval received;

The regular microservice will assign the respective RSSI, RSRP, and RSRQ names to the signal quality

and parses the sensors variables samples.

The emergency response does not have any post-processing modifications.

According to the command, the command response microservice will update the board configuration

and save the response into the command response database. For example, if the transmission mode is

changed from alarms to a time interval.

5.4.2 Commands

The commands query data from the end-devices and save it into the database. Furthermore, the

device behaviour can be changed using commands in the database and since its response is saved. The

end-devices can be controlled by gathering data and settings and inserting commands into and from the

database. Therefore, it is possible to develop a high-level application that queries the database and controls

the end-devices using the Command module, as illustrated in Figure 5.56.

104

Chapter 5. Design

Figure 5.56: Commands module interface by a high-level application.

In this master’s thesis is proposed the Command Module, it receives the command the parameters

settings and prepares and inserts the command into the database. Its class diagram is represented in

Figure 5.57.

Figure 5.57: Commands module class diagram.

All the commands module functions have as first parameter the board id. Also, when the commands

have two squared brackets means that it is receiving an array.

The commands module has the SensorVariableConfig data structures as an auxiliary to configure

sensors variables. Finally, the get functions insert the get commands into the database. For example,

the setSensorsVariablesPeriods receives an array of new periods to be set according to the sensor-variable

tuple array received. According to the sensor-variable tuple array in the function parameter, the get function

inserts the command that will retrieve the periods.

Command Response

The command Response function is used to query the database for a command for the respective

board. It will receive the database cursor, board id, and name of the microservice calling it. Then, it will

105

5.4. Cloud

query the database for a command for the respective board, prioritizing the OTA commands. If a command

is found, it will delete it from the Commands collection if it is not an OTA.

5.4.3 Database

In order to save the samples, configurations, emergencies, commands responses from the end-

devices, a database is required. Also, it is the interface between end-devices and a high-level application.

The database in use is MongoDB, which uses an alternative to traditional relational databases. No-

relational databases are quite helpful for working with large sets of distributed data.

This section will present all the database collections: Configuration, Regular, Emergency, Commands,

Commands Response, and Deltas.

All the collections table that saves packages from the end-device (Configuration, Emergency, Regular,

and Command Response) have the parameters “p”, board_id, board_timestamp, and system_timestamp.

The “p” parameter is the diminutive for parts. Since the transmission packages can be sent in multiple

packages, these arrays contain the number of the current and total packages. The board_id is the Univer-

sally Unique Identifier (UUID) used for device identification. The board and system timestamp is in UNIX

time format when the board transmits, and the system receives, respectively. The common elements in

all collections were explained. The rest of the section will explain specific parameters from each collection.

The Configuration collection, represented in Figure 5.58, has the end-device configurations. The end-

device configurations are: the alarms parameter has the time interval between regular transmissions or

the alarms through the day that it will transmit; the modem configuration is composed of the cell id, tau

and tac of the modem; the OTA dictionary has the addresses of the application 1 and 2 areas and the

current running (now). Also, it has the OTA packaged index and the total flash size of the end-device: the

sensors variables present in the board, its respective status, and the board software version.

Figure 5.58: Configuration collection.

106

Chapter 5. Design

Figure 5.58 illustrates the Regular and Emergency collection. The Regular collection has the signal

quality and the sensors samples. The Emergency collection has the triggered emergency flags and the

sensors’ variables samples in the emergency time.

Figure 5.59: Regulars and emergencies collections.

The commands are split into two collections: Commands and Commands Response. The Commands

collection has the commands waiting to be sent to the end-device, and the Commands Response has the

end-device to the commands. Both have the commands opcode, microservice to respond to, and the MD5

status. The differences between these collections are that the Commands collection has the command

datagram to send to the board and its description, which the Command Response does not have. Also, the

Command Response has the result of the command (set and get) and data according to the command.

For example, the get interrupts command has the interrupts values. The collections are exhibited in Figure

5.59.

Figure 5.60: Commands and Commands Response collections.

The deltas that enable the firmware update Over-The-Air are saved in the Delta collection depicted in

Figure 5.61. This collection is used by the OTA command when a command is inserted. The old and new

version parameters are used to find the respective delta. Also, it has the new and old addresses memory

addresses, the total number of packages and the respective delta packages.

107

5.4. Cloud

Figure 5.61: Deltas collection.

The database is the data core since it is where the information is saved, and the board interactions

wait to be sent to the board. For this reason, if it does not exist, the creation of the commands abstraction

layer would not be possible.

5.4.4 OTA

As described above in Section 5.2, the last stage of the delta generation is the package conversion. The

package conversion is a function that receives the header size and the maximum payload size returning the

delta in multiple packages according to the payload size received. The first package’s payload is reduced

to embed to the datagram an OTA header represented in Figure 5.62.

Figure 5.62: OTA header.

The OTA header is a byte array of nine bytes, composed by the new application begin address, end

address and checksum.

This header and the delta are included in the board’s package. This package structure is represented

in Figure 5.63. The packages start by having the OTA command opcode, followed by the OTA package

index and the respective delta byte array. The OTA package index is required because the packages need

to be received in the end-device ordered and since the modem can only receive 512 bytes at a time. As

described above, the first package has the OTA header of Figure 5.62 and, as the following packages, the

delta part. Notice that the last delta part has the delta command END at the end.

108

Chapter 5. Design

Figure 5.63: Package example of OTA updates.

The cloud server can only send the next delta datagram when the board receives the previous one

successfully. Therefore, the board will reject out-of-order packages.

The packages generated from the delta will be saved in the Delta collection, described in Section

5.4.3.

109

Chapter 6: Implementation

The implementation phase is the realization of the design phase. This chapter presents a comprehen-

sive description of how the Delta, end-device and cloud was implemented.

Not all the code will be shown since it became a large codebase. Therefore, some parts will be hidden

to better readability and understanding, having most of the hidden code in Appendix A.1.

Programming Languages and Tools

The programming languages used were C and Assembly for the end-device and Python for cloud mi-

croservices and scripts. The development environment used for the end-device was the Keil MDK IDE,

which is the complete software development environment for a range of Arm Cortex-M based microcon-

troller devices. Also, the STM32CubeMX was used for project generation. It is a graphical tool that allows a

straightforward configuration of STM32 microcontrollers. Furthermore, the Ceedling framework was used

to perform unit testing on the resulting software and the Cppcheck and clang-tidy as static analysers.

The microservices development was done with the editor Visual Studio Code. It is a source-code editor

made by Microsoft which includes support for debugging, syntax highlighting, intelligent code completion,

snippets, code refactoring, and embedded Git. For better interactions with the database, the MongoDB

Compass was used. It is an interactive tool for querying, optimising, and analysing database data.

Finally, Git was used for version control in the end-device, cloud, and scripts. It is a free and open-

source distributed version control system designed to handle small and substantial projects quickly and

efficiently.

Figure 6.1: Tools and programming languages.

During the development phase, it was implemented the modules designed previously and development

helpers. The following sections will be present its implementation.

110

Chapter 6. Implementation

6.1 Firmware Over-The-Air Delta

In the section will be present the Firmware Over-The-Air Delta implementation. It consists of imple-

menting the Array Conversion, Differencing Algorithm, and Package Conversion stages depicted in Figure

5.4.

The Delta implementation stage is embedded in the OTA class. This class receives through its con-

structor the old firmware version, new firmware version, MCU model, the max payload and header length

as represented in Code 6.1.

1 class OTA:
2 def __init__(self, old_version , new_version , old_addr , new_addr ,
3 mcu, max_payload=512, header_len=11):
4 ...

Code 6.1: OTA class constructor.

The OTA class has the function generate, represented in Code 6.2. This function starts by calling the

firmware array conversion. Then it declares the DeltaGen class, which is responsible for implementing the

differencing algorithm. After generating the delta through the DeltaGen class, the new firmware checksum

is calculated, and the package conversion converts the delta commands to board compatible packages.

The package conversion returns a commands delta dictionary composed of multiple delta datagrams. It

finishes by saving the delta dictionary into the Delta collection in the database.

1 def generate(self):
2 # Array Conversion Stage
3 self.old_firmware_array = self.array_conversion(self.app1_name ,
4 self.old_addr)
5 self.new_firmware_array = self.array_conversion(self.app2_name ,
6 self.new_addr)
7
8 if self.old_firmware_array is False or
9 self.new_firmware_array is False:
10 return False
11
12 # Differencing Algorithm Stage
13 self.deltagen = DeltaGen(self.old_firmware_array ,
14 self.new_firmware_array)
15 if not self.deltagen.generate():
16 return False
17
18 self.checksum = self._calculate_checksum(self.new_firmware_array)
19
20 # Package conversion stage
21 delta_cmd_packages_dict = self.package_conversion()
22
23 self.save(delta_cmd_packages_dict)
24
25 return True

Code 6.2: OTA class generate function.

The Array Conversion function, represented in Code 6.3, reads from the Hex or Bin file according to

111

6.1. Firmware Over-The-Air Delta

the received format and loads into byte arrays. It uses the python intelhex package to parse the firmware

file and check if it has gaps. If it does not, it returns the respective firmware array.

1 def array_conversion(self, path, start_addr):
2 file_path = os.path.join(dirname, path)
3
4 ih = IntelHex()
5 ih.fromfile(file_path , format = 'hex' if path[-3:] == 'hex' else 'bin')
6
7 has_gap, last_addr = self.has_gaps(ih.todict(), start_addr)
8
9 if has_gap:
10 return False
11
12 return ih.tobinarray(start=start_addr , size=last_addr -start_addr)

Code 6.3: Array Conversion.

The old and new firmware arrays are fed into the DeltaGen class. Its constructor adds an offset and

joins the arrays forming the array T, as explained in Section 5.2. The delta generation is done through the

function generate of DeltaGen. This function, depicted in Code 6.4, generates the delta commands by

calling all DeltaGen algorithm steps. It finishes by generating the new firmware through the old and the

delta commands. If the firmware generated through delta matches the new firmware, it returns the delta

commands. If not, it returns False. The DeltaGen most important functions will be explained next.
1 def generate(self):
2 self.generate_suffix_array()
3
4 self.generate_rank_array()
5
6 self.generate_height_array()
7
8 self.generate_raw_delta(add_bytes=3, cpy_bytes=7)
9
10 self.merge_adds()
11
12 self.generate_new_with_delta()
13
14 if not self.is_equal():
15 return False
16
17 self.remove_delta_offset()
18
19 return True

Code 6.4: DeltaGen generate function.

The Suffix Array (SA) was implemented using the python library pydivsufsort, as illustrated in Code

6.5 because it is a fast and optimized implementation of the SA.

1 def generate_suffix_array(self):
2 self.SA = divsufsort(self.T)
3 return

Code 6.5: Optimized suffix array generation.

The Rank Array (RA) is calculated from Expression 5.4 as Code 6.6. It assigns the index (i) to the

position of the SA value in the Rank Array.

112

Chapter 6. Implementation

1 def generate_rank_array(self):
2 self.RA = np.empty(len(self.SA), dtype=np.uint32)
3
4 for i in range(len(self.SA)):
5 self.RA[self.SA[i]] = i
6 return

Code 6.6: Rank Array (RA) generation function.

The Height Array (HA) construction is in Code 6.7 it uses the Suffix Array and Height Array and forms

the height array in time complexity of O(n log10(n)) as proposed in [47].

1 def generate_height_array(self):
2 self.HA = np.empty(len(self.SA), dtype=np.uint32)
3 k = 0
4
5 for i in range(len(self.SA)):
6 if self.RA[i] == 0:
7 self.HA[0] = 0
8 else:
9 j = self.SA[self.RA[i] - 1]
10 while self.T[i + k] == self.T[j + k]:
11 k += 1
12
13 self.HA[self.RA[i]] = k
14
15 if k > 0:
16 k -= 1
17 return

Code 6.7: Height Array (HA) generation function.

The HA is used in the LCP function. This function receives an interval and returns the minimum LCP

value. The offset of one in the interval is due to the HA values starting in position one. For example, the

LCP value of comparing the first SA and second is stored in position one of HA.

1 def LCP(self, i, j):
2 return min(self.HA[i+1:j+1])

Code 6.8: Longest Common Prefix (LCP) calculation.

The SA and HA arrays and the LCP function are used in generating the raw delta function, depicted

in Code 6.9. This function iterates through the new firmware and finds the common bytes between the

new and old firmware. If there are bytes in common, it adds a COPY command into the delta. If not, it

appends an ADD command. In the end, it appends the END command to signal the delta end.

1 def generate_raw_delta(self, add_bytes , cpy_bytes):
2 self.delta = list()
3
4 i = 0
5 while i < len(self.new):
6 (old_index , new_i) = self.findCommonBytes(i)
7
8 if old_index != None:
9 if new_i - i > cpy_bytes - add_bytes:
10 self.delta.append({'op':'CPY',
11 'len': new_i - i,
12 'start_index': old_index
13 })

113

6.1. Firmware Over-The-Air Delta

14 i = new_i
15 continue
16
17 self.delta.append({'op':'ADD',
18 'len': new_i-i,
19 'data': [self.new[i]] if new_i - i == 1 else
20 self.new[i:(new_i-i)+i]
21 })
22 i = new_i
23
24 self.delta.append({'op':'END',
25 'len': i,
26 })
27 return

Code 6.9: Raw delta generation function.

The last stage of Figure 5.4 is the package conversion. This stage is implemented recurring to the

function represented in Code 6.10. It starts by calling the convert_delta_to_small_datagrams, which

receives the delta, the maximum payload and the maximum payload with the header (max payload mi-

nus the header length) and returns the delta converted into board compatible arrays according to the

package limit. With all the delta byte arrays, it is generated the Link4S commands. Therefore, the pack-

age conversion function iterates through all the small datagrams adding the command opcode, package

index, and the respective delta forming the Link4S command package. This package is saved to the

board_delta_packages dictionary. Notice that in the first package it is added the OTA header.

1 def package_conversion(self):
2 board_delta_packages = dict()
3 small_datagrams_cmds = convert_delta_to_small_datagrams(
4 self.deltagen.delta,
5 self.max_payload ,
6 self.max_payload -self.header_len)
7
8 for ota_datagram in small_datagrams_cmds:
9 datagram.append(self._getOpcodes('otaUpdate'))
10 datagram.append(pckg_i)
11
12 if pckg_i == 0:
13 # Add OTA header
14 ...
15 datagram.append(ota_header)
16
17 datagram.append(ota_datagram)
18
19 board_delta_packages[f"package"{pckg_i}] = datagram.copy()
20 pckg_i += 1
21
22 board_delta_packages["total_packages"] = pckg_i
23 board_delta_packages["total_bytes"] = total_bytes
24
25 return board_delta_packages

Code 6.10: Delta package conversion.

Finally, when all the commands are ready, it adds to the board delta packages dictionary the total

bytes and number of packages and returns the board delta packages dictionary. This dictionary will be

114

Chapter 6. Implementation

extended with delta configurations and saved into the database resulting in an object represented in Figure

6.2.

Figure 6.2: Example of delta in Delta collection.

The database object is composed of the MCU model, old and new versions names and addresses, the

delta checksum, and the respective packages. The delta example of Figure 6.2 has a total of two packages.

Notice that both packages have the command opcode 8 in the first position, and the first package has the

OTA header in position two and the first delta partition in position three.

This section explained how the delta generation occurs from the board firmware files to the delta

database collection. Section 6.3.2 shows how the database is queried, and a command is sent to the

end-device. The following sections will illustrate the end-device and cloud implementation.

115

6.2. End-device

6.2 End-device

The end-device application was implemented according to the design, and because it is primarily a

translation of the flowcharts into code, it is presented in Appendix A.1. This section will show the peculiar

implementations, such as the Azure RTOS ThreadX low-power mode patch, the bootloader, and several

scripts made to help the development. It will end by presenting the code unit tests, coverage, static

analysers and the resulting application flash and ram size.

6.2.1 Azure RTOS ThreadX Low-power mode

The Azure RTOS ThreadX Low-power mode patch was performed by implementing a function extension

called _tx_low_power_mode. This function is called when the ThreadX kernel enters in waiting for events

state as represented in line 9 of ThreadX scheduler assembly Code 6.11. Before the function call, it is

required to push the registers R0 to R3 because the kernel uses its values.

1 __tx_ts_wait
2 CPSID i
3 LDR r1, [r2]
4 STR r1, [r0]
5 CMP r1, #0
6 BNE __tx_ts_ready
7 IF :DEF:TX_ENABLE_LOW_POWER_MODE
8 PUSH {r0-r3} ; Save of r0 to r3 registers
9 BL _tx_low_power_mode ; Jumps to the function of low-power mode
10 POP {r0-r3} ; Pop of r0 to r3 registers
11 ENDIF
12 __tx_ts_ISB
13 CPSIE i
14 B __tx_ts_wait

Code 6.11: ThreadX kernel waiting stage.

This mode uses three user functions configPreSleepMode, sleepMode, and configPosSleepMode

that are implemented using the weak keyword. This keyword allows the user to reimplement these functions

taking advantage of the MCU low-power modes.

The configPreSleepMode receives the time in ticks that the kernel can sleep. Its purpose is to turn

off the kernel tick source, set a wakeup mechanism and turn off peripherals that do not require running

while sleeping. The sleepMode default implementation calls the WFI and ISB assembly instructions. The

WFI puts the MCU cortex sleeping and waiting for an interrupt to be wake up. The ISB ensures that the

pipeline is flushed after waking up.

The configPosSleepMode is called after the MCU is awake. This function aims to return the time

elapsed while sleeping in ticks and re-enable the peripherals turned off in the pre-config function.

116

Chapter 6. Implementation

These functions allow the low-power implementation to be ported to others MCUs and only is required

these board specific functions reimplementation.

1 __weak ULONG configPreSleepMode(ULONG sleep_time_ul){
2 if(sleep_time_ul <= (TX_TIMER_ENTRIES <<1)){
3 return (ULONG)(~0);
4 }
5 return 0;
6 }
7 __weak VOID sleepMode(VOID){
8 __asm volatile ("WFI"); /*Wait for interrupt*/
9 __asm volatile ("ISB"); /*Ensure pipeline is flushed*/
10 return;
11 }
12 __weak ULONG configPosSleepMode(VOID){
13 return 0;
14 }

Code 6.12: User low-power functions.

The low-power mode kernel extension starts by finding the time of the next timer to expire by iterating

through the timers list, which has all the current ThreadX active timers as illustrated in Code 6.13.

1 tx_timer_current_pps = _tx_timer_list_start;
2
3 do{
4 /* Iterate for all the current ThreadX active timers to find
5 minimum time */
6 }while(tx_timer_current_pps != _tx_timer_list_end);
7
8 /* Setup the sleep time with the minimum remaining tick*/
9 sleep_time_ticks_ul = min_remaining_ul;

Code 6.13: Finding the next timer to expire time.

After the next timer expiration is found, it is checked if it is greater than the timer list array as repre-

sented in Code 6.14. If it is, the configPreSleepMode function is called with the time in ticks of the next

timer to expire. The time to expire is decremented to wake up one tick before the timer expiration. If it

enters low-power mode, it calls the sleepMode function entering in the MCU low-power state. When the

MCU wakes up, it calls the configPosSleepMode function, which returns the time passed in ticks. After

getting the time in sleeping, the remaining ticks of all the active timers are refreshed.

1 if(sleep_time_ticks_ul > TX_TIMER_ENTRIES){
2 /* Wake up 1 tick before*/
3 sleep_time_ticks_ul -= 1;
4
5 /* Configuration pre sleep mode, disable ticks */
6 before_sleep_time_ul = configPreSleepMode(sleep_time_ticks_ul);
7
8 if(before_sleep_time_ul != ((ULONG)~0)){
9 /* Enter sleep mode*/
10 sleepMode();
11
12 /* Configuration pos sleep mode, enable ticks*/
13 after_sleep_time_ul = configPosSleepMode();
14
15 /*Exited sleep mode, Using min_remaining_ticks variable
16 to have the result of ticks passed*/

117

6.2. End-device

17 min_remaining_ul = after_sleep_time_ul - before_sleep_time_ul;
18
19 /*** Refresh remaining ticks in the timers structs ***/
20 }

Code 6.14: Low-power user call functions.

The refresh remaining ticks in the timers structs iterate the timer entry wrap list removing the ticks

passed from the active timers. Then it reorganizes all timers entries because of the new times. It uses

an auxiliary timer list and inserts the timers with the new remaining values into the auxiliary list. After

inserting all the timers, the auxiliary list is copied to the timer list and set the current timer pointer pointing

to the start of the timer entry wrap. Finally, the timer system clock variable is refreshed with the time

passed. This variable has the tick count from the program begin.

This implementation was presented to the Azure RTOS ThreadX team, but they were also working on

this feature and release it further testing within the scope of this project before the official release to the

public. Their implementation is similar, but they separated the _tx_low_power_mode in two functions:

tx_low_power_enter and tx_low_power_exit as represented in Figure 6.3.

Figure 6.3: Low-power mode implementation comparison.

The tx_low_power_enter is responsible for searching the next active timer to expire, calling the

user implementation of the set up of the MCU wakeup mechanism and entering in low power mode.

The timer setup is done by TX_LOW_POWER_TIMER_SETUP and the low-power MCU entering through

TX_LOW_POWER_USER_ENTER macros. The user can reimplement these macros to call functions. These

functions are similar to configPreSleepMode and sleepMode.

118

Chapter 6. Implementation

When the MCU wakes up, it exits the tx_low_power_enter and enters the tx_low_power_exit. This

function calls the TX_LOW_POWER_USER_EXIT and TX_LOW_POWER_USER_TIMER_ADJUST. They separated

the configPosSleepMode into these two macros. The TX_LOW_POWER_USER_EXIT purpose is to re-enable

peripherals that were disabled when entering the low-powermode. The TX_LOW_POWER_USER_TIMER_ADJUST

returns the time passed in ticks while in sleep mode. Then the ThreadX implementation refreshes all the

active timers.

Since the Azure RTOS ThreadX version is tested and well refined, it was used to enable the RTOS low-

power mode. Therefore, the user functions were implemented to the Link4S board. The tx_low_power_

timer_setup is represented in Code 6.15. As described above, this function receives the sleep time in

ticks and starts by checking if the LPUART function is transmitting and if the sleep time is greater than

the time minimum required to go to sleep. If it is, it needs to set up a timer to wake up the MCU. The

LPTIM is used when the sleep time is lower than one second because the RTC does not have enough

resolution. Moreover, the RTC is used for values greater than the LPTIM limit. The use of the LPTIM allows

the system to enter in the lowest power consumption for short times, for example, while waiting for modem

communications.

1 void tx_low_power_timer_setup(ULONG sleep_time_ticks_ul){
2 if(lpuart_tx_bsem.tx_semaphore_count != 0 &&
3 sleep_time_ticks_ul > MIN_TIME_TO_GO_SLEEP){
4 go_to_sleep_u8 = 1;
5
6 /* Disable systick */
7 ...
8
9 /* Read RTC time */
10
11 if(sleep_time_ticks_ul < MS_TO_TICKS(MAX_LPTIM_TIME_MS)){
12 /*Set up LPTIM*/
13 ...
14 return;
15 }
16 used_lptim_u8 = 0;
17
18 /* Set RTC wake up */
19 ...
20 return;
21 }
22 go_to_sleep_u8 = 0;
23 return;
24 }

Code 6.15: Azure RTOS ThreadX user low power timer setup function.

6.2.2 Bootloader

The bootloader is the code that runs before the main application. As represented in Figure 5.46, its

location is in the flash start. Therefore, the bootloader starts in address 0x08000000 and has the size of

119

6.2. End-device

0x1F80 bytes (0x2000 minus the configuration page) as represented in its scatter file in Code 6.16.

1 LR_IROM1 0x08000000 0x1F80 { ; load region size_region
2 ER_IROM1 0x08000000 0x1F80 { ; load address = execution address
3 *.o (RESET, +First)
4 *(InRoot$$Sections)
5 *(+RO)
6 }
7 RW_IRAM1 0x20000000 0x00005000 { ; RW data
8 .ANY (+RW +ZI)
9 }
10 }

Code 6.16: Bootloader scatter file.

The bootloader application calls the bootloader initialize function depicted in Code 6.17. This function

read all bootloader’s configuration variables. Checks if the magic key has been written. If it has, it resets

the magic key and peripherals, set the MCU vector table to the new application address and jumps to the

new application address. If it has not and the current application address is different from zero, it sets the

vector table to the currently running application and jumps to it. If it equals 0, it sets the vector table to

the application one start address (0x0802000).

1 void bootloaderInit_v(void){
2 uint32_t new_app_addr_u32;
3 uint32_t current_app_addr_u32;
4 uint32_t magic_key_u32;
5
6 unlockFlash_v();
7 new_app_addr_u32 = *(volatile uint32_t*)(NEW_APP_ADDR);
8 current_app_addr_u32 = *(volatile uint32_t*)(CURRENT_APP_ADDR);
9 magic_key_u32 = *(volatile uint32_t*)(MAGIC_KEY_ADDR);
10 lockFlash_v();
11
12 if(magic_key_u32 == MAGIC_KEY){
13 /* Jump to New App */
14 resetMagicKey_v(new_app_addr_u32);
15
16 resetPeripherals_v();
17
18 SCB->VTOR = new_app_addr_u32;
19 boot_jump(new_app_addr_u32);
20 }
21 if(current_app_addr_u32 != 0){
22 /* Jump to the current app */
23 SCB->VTOR = current_app_addr_u32;
24 boot_jump(current_app_addr_u32);
25 }
26 else{
27 /* Jump to default first app */
28 SCB->VTOR = APP1_START;
29 boot_jump(APP1_START);
30 }
31 }

Code 6.17: Bootloader initialize function.

The application jump is performed by the assembly function represented in Code 6.18. It loads the

first function parameter (application address) to R1, moves it to the stack pointer, then loads into R0 the

120

Chapter 6. Implementation

program counter of the new application and branches to it. Notice that in the Cortex M0+ architecture,

the stack pointer and the program counter are located in the firmware’s first and second addresses,

respectively.

1 EXPORT boot_jump
2 boot_jump
3 LDR R1, [R0]
4 MOV SP, R1 ;Load new stack pointer address
5 LDR R0, [R0, #4] ;Load new program counter address
6 BX R0

Code 6.18: Bootloader jump function.

As mentioned before, the application implementation source code was not presented, and only the

most exotic implementations were shown. The following section reveals the helper source developed,

which helped with the software’s implementation and testing.

6.2.3 Helper Scripts

This section will present helper scripts that were used in the development phase. These scripts are

used to compile the application for multiple board devices, generate the encrypted cloud header used in

compile-time, and a System Trace EEPROM parser in a human-readable manner.

Compilation Script

Due to the component shortage, two different MCUs were used during the development of the Link4S

solution. Consequently, these MCUs models have different flash memories sizes and layouts. Hence, to

generate the code and then the delta efficiently, the compilation script was developed. This script compiles

the application changing it according to a configuration file saving the generated binaries in the database.

After having all board binaries, it generates the delta of the current version with one given by the user.

The configuration file of the compilation script is depicted in Figure 6.4. It comprises the project and

Keil paths, the database connection configuration, and common defines used in all boards. It has a list of

boards with the “stm32l081kzu6” and “stm32l082kbu6” configurations. According to the board, there is

specific defines and OTA configurations.

121

6.2. End-device

Figure 6.4: Compile script configuration.

The script uses the class Project that changes the Keil project file and the MCU’s scatter file for each

board. The constructor within the class Project (represented in Code 6.19) starts by reading the YAML

configuration file, the current Keil project, and backs it up; finds the software version in the application

codebase and the build type. Afterwards, it sets the configuration file optimization for the Keil project.

Finally, it tries to initialize the Link4S database, and if it succeeds, it uses it. The project backup is

performed to restore to the initial state at the end of the script execution.

1 class Project:
2 def __init__(self):
3 self.config = yaml.load(path.join(self.dirname, 'config.yaml'))
4 self.boards = self.config['boards']
5
6 self.proj = self.readKeilProject()
7 self.proj_backup = self.proj
8
9 self.find_software_version()
10 self.find_build_type()
11 self.full_version = \
12 f"{self.version}_{self.build_type}_{self.config['optimization ']}"
13
14 self.setOptimization(self.config['optimization'])
15
16 try:
17 db.init((self.config['db_url'],self.config['db_port']),"NB-IoT")
18 self.use_database = True
19 except:
20 self.use_database = False

Code 6.19: Project compile constructor.

All boards file generation is performed by the generate function represented in Code 6.20. It starts by

deleting the firmware in the destination folder and setting the project scatter file path to the one used in

122

Chapter 6. Implementation

the script. Then, it generates the firmware for both application positions by calling the compile function.

In the end, if the database is being used, it saves the firmware generated into the database.

1 def generate(self):
2 self.delete_bin_folder_content()
3 self.setScatterFilePath()
4
5 for board in self.boards:
6 start_addr = self.boards[board]['app1_addr']
7 app_len = self.boards[board]['app_len']
8 self.compile(board, start_addr , app_len)
9
10 start_addr = self.boards[board]['app2_addr']
11 self.compile(board, start_addr , app_len)
12
13 if self.use_database:
14 self.save_to_database()
15 return
16
17 def compile(self, board, start_addr , app_len):
18 self.generate_scatter_file(start_addr , app_len)
19 self.setDefines(self.boards[board]['defines'])
20 self.saveKeilProject()
21
22 system(f"{path.join(self.config['uv4_path'],'UV4.exe')} -b {self.

proj_abspath}")
23
24 self.copy_bin_hex_files()
25 self.rename_files(f"{self.full_version}_{hex(start_addr)}_{'MCU'}")
26 return

Code 6.20: Project generate and compile functions.

The compile function generates the MCU’s specific scatter file and sets its defines. Next, it calls the

Keil compilation command-line command. After the build, the generated files are copied and renamed

according to the MCU’s configuration. The delta generation is possible by joining above class with the

DeltaGen algorithm explained in Section 6.1.

Static Encryption Header Generation

A script was created to generate the static encryption cloud headers arrays used in compile-time. The

user sets the microservice opcode, AES key, IV parameters, and generates the cloud header array and

encrypts it, finalizing printing the respective C header array. This script’s main code is represented in Code

6.21. The Crypto class has the AES and RSA encryption functions that wrap the python Crypto package.

1 def main():
2 crypto = Crypto()
3
4 microservice = "9b41650f8148c71a"
5 aes_key = bytearray([0x85,0x89,0x44,...])
6 aes_iv = bytearray([0x4A,0xB8,0x48,...])
7
8 cloud_header = [microservice , aes_key, aes_iv]
9
10 cloud_header = msgpack.packb(cloud_header)
11

123

6.2. End-device

12 encrypted_data = crypto.rsa_encrypt(cloud_header)
13
14 print(convert_to_c_declaration(encrypted_data))

Code 6.21: Static encryption cloud header generation script.

The message pack is used to pack the cloud header to be as expected in the cloud. The result is a C

array within the RSA encrypted header for the respective microservice, AES key, and IV given, as illustrated

in Code 6.22.

1 {0xb, 0x11, 0x1b, 0xf8, 0x19, 0xb7, 0x7a, ...};
Code 6.22: C array header generation output example.

System Trace

The system trace is a script used for easier testing because it reads the EEPROM in an Intel Hex format

file and parses it. The script parses the free stack size values, the thread’s name that overflows, and finally,

the log space. The script output of the EEPROM shown in a human-readable manner is illustrated in Figure

6.5.

Figure 6.5: Output of system trace python script.

6.2.4 Testing

The modules were tested using the Ceedling framework and were used the static analyzer Cppcheck.

The board logs data to the EEPROM when running using the Trace module using the System Trace script.

This section will be started by showing the test summary and two unit tests as an example, and finally,

the unit tests code coverage and the results of the Cppcheck.

The test summary is represented in Figure 6.6. It performed 348 unit tests in the code base.

124

Chapter 6. Implementation

Figure 6.6: Unit tests summary.

Code 6.23 shows one test of the System Control function fitDatetimeInTime when the seconds

are equal to 60, and it is 28 of February in a not leap year. The expected results is a datetime with time

00:00:00 and date 1/03/2021 as the test asserts checks.

1 void test_feb_not_leap_year_day29_to_1(void){
2 datetime_st datetime = {
3 .hour_u8 = 23,
4 .min_u8 = 59,
5 .sec_u8 = 60,
6 .wday_u8 = 1,
7 .day_u8 = 28,
8 .mon_u8 = 2,
9 .year_u8 = 21
10 };
11
12 _fitDatetimeInTime_v(&datetime);
13
14 TEST_ASSERT_EQUAL_UINT8(0, datetime.hour_u8);
15 TEST_ASSERT_EQUAL_UINT8(0, datetime.min_u8);
16 TEST_ASSERT_EQUAL_UINT8(0, datetime.sec_u8);
17 TEST_ASSERT_EQUAL_UINT8(1, datetime.day_u8);
18 TEST_ASSERT_EQUAL_UINT8(3, datetime.mon_u8);
19 TEST_ASSERT_EQUAL_UINT8(21, datetime.year_u8);
20 }

Code 6.23: Unit test of the fitDatetimeInTime function.

The previous test does not require function mocks since there are no external dependencies. The unit

test in Code 6.24 uses the eraseFlash, flashWord, and ThreadX event flag set functions. Therefore,

these functions are mocked, setting what they are expected to receive as parameters and its return value.

Finally, when the endOTAUpdateState function is called, it asserts its return value and the function calls.

1 void test_flash_in_app1(void)
2 {
3 eraseFlash_e_ExpectAndReturn(CONFIGS_PAGE_ADDR , 1 , success);
4
5 flashWord_e_ExpectAndReturn(BOOTLOADER_NEW_APP_ADDR , OTA_APP2_ADDR ,
6 success);
7
8 flashWord_e_ExpectAndReturn(BOOTLOADER_MAGIC_KEY_ADDR , OTA_MAGIC_KEY ,
9 success);
10
11 _txe_event_flags_set_IgnoreAndReturn(TX_SUCCESS);
12
13 TEST_ASSERT_EQUAL_UINT8(S_WAIT_FOR_RESTART , endOTAUpdateState(1,NULL,2)

);
14 }

Code 6.24: Unit test for the OTA end state.

125

6.2. End-device

The unit test coverage result is illustrated in Figure 6.7. The core modules have 100% coverage

resulting in cleaner code with fewer bugs.

Figure 6.7: Unit tests coverage report.

It was used the Cppcheck with clang-tidy to static analyze the code. The output is represented in Figure

6.8. There are no critical errors and warnings, only style warnings and portability. The style warnings are

not critical, and the portability is for the different operating systems like Windows and Linux.

Figure 6.8: Cppcheck report results.

6.2.5 Code Size

The application code size varies according to its compile-time configurations, as represented in Table

6.1. The default application has enabled the accelerometer, temperature, and humidity sensors with 204

samples’ arrays each. Also, it has static encryption enabled. Table 6.1 has the number of bytes occupied

in the flash and RAM. The flash memory comprises the code and Read-only (RO) memory.

126

Chapter 6. Implementation

Table 6.1: Application size metrics compiled with O3.

Application Code (bytes) RO-data (bytes) FLASH (bytes) RAM (bytes)
No Encryption 51172 388 51560 14 452

Run-time encryption 59100 7572 66672 19 740
Static-encryption 53004 868 53872 14708

The application without encryption has the smallest flash and RAM footprint with 51560 and 14452,

respectively. The addition of the run-time encryption increases the footprint due to the RSA algorithm code

and RO memory. Also, it requires a buffer size of 4096 bytes to perform the RSA, which is a big chunk

of the memory RAM. Moreover, the encryption function uses approximately 1000 bytes to 256 without

or with static encryption. As a result, the run-time encryption has 66672 and 19740 bytes of flash and

ram, respectively. The static encryption footprint is close to the no encryption application, but it has the

AES algorithm code and RAM structures. Also, the encrypted headers are saved in the flash RO memory.

Therefore, it is bigger than the no encryption application. The resulting memory footprint is 53872 and

14708 bytes of flash and RAM, respectively.

127

6.3. Cloud

6.3 Cloud

The cloud comprises several messages parse microservices, the board’s command response, and

the commands module. This section will present the microservices using the Blackwing framework, the

command response, the commands, and helper scripts.

6.3.1 Microservices

The Blackwing framework server receives the message and forwards it to the respective microservice.

The microservice consists of a handler that receives the message, which in Blackwing this message is

called “letter”. This handler code is represented in 6.25. In the configuration microservice, this func-

tion starts by initializing the NB-IoT database. Then it calls the parse function of the config class. After

parsing the message, it calls the response function with the respective database handle, board id and

the microservice name. The response function will be explained in Section 6.3.2, but it is responsible for

querying the available commands to send back to the board.

1 class ParseConfigHandler(BlackWingHandler):
2 def attendRequest(self):
3 db.init(database_credentials , "NB-IoT")
4 config.parse(self.letter)
5 self.response = response(db, config.board_id , 'Configuration')
6 except Exception as e:
7 self.response = None

Code 6.25: Blackwing config microservice handler.

The parse configuration function was implemented using the class Config. This class has the parse

function illustrated in Code 6.27. This function receives the payload from the board similar to the array

represented in Code 6.26 and then pairs the received message. The pair joins the string identifier with

the following values, as an example, the identifier ’ID’ with the number “268031902005789”, and the

identifier “ALARMS” with the array of values “1,1,0,0”.

1 ['P', 1, 1, 'ID', 268031902005789, 'TIME', 1635259412,
2 'SWVER', '3.0.19_dev_O3', 'OTA_APP1', 134225920, 'OTA_APP2', 134320128,
3 'OTA_NOW', 134225920, 'MCU', 'STM32L081KZ', 'MCONF', '...',
4 'MP_VCONF', b'...', ..., 'ALARMS', 1, 1, 0, 0]

Code 6.26: Example of the configuration message array.

After pairing the payload, it queries the board configuration from the database, and each pair is post-

processed. The post-processing depends on the special identifier characteristics. For example, the board

id is renamed from “ID” to “board_id‘” to prettier database insertion. Other identifiers required post parse,

like alarms, the modem configuration, and identifiers that start with “MP_” or “OTA_”. The “MP_” means

128

Chapter 6. Implementation

that the message is packed with the message pack format and needs to be unpacked as represented in

line 21 of Code 6.27.

With all the pairs post-processed, the current system timestamp is appended and updated the config-

uration if it already exists in the database or inserts a new one.

1 class Config:
2 board_id = None
3
4 @classmethod
5 def parse(cls, payload):
6 pair_list = cls._pairReceivedMessage(payload)
7
8 # Get board id configuration
9 ...
10
11 for pair in pair_list[:]:
12 if pair[0] == 'ID':
13 pair_list[i] = ('board_id' ,pair[1])
14 cls.board_id = pair[1]
15 elif pair[0] == 'TIME':
16 pair_list[i] = ('board_timestamp' ,pair[1])
17 elif pair[0] == 'MCONF':
18 ...
19 ...
20 elif 'MP_' in pair[0]:
21 pair_list[i]=(pair[0][3:].lower(),msgpack.unpackb(pair[1]))
22 else:
23 pair_list[i] = (pair[0].lower() , pair[1])
24 i += 1
25
26 pair_list.append(('system_timestamp', system_time_unix))
27
28 # Save in the database , if already exists overwrites
29 db.update_one("Configurations", {"board_id": cls.board_id},
30 payload_dict)

Code 6.27: Config message parse function.

The other microservices are similar to the configuration. However, they can have different post identi-

fiers processing, and instead of updating the configuration database, new data is inserted into the respec-

tive database collection (emergency, regular, and command response).

6.3.2 Command Response

The command response function is responsible for querying the available commands to the respective

board, prioritizing the OTA update command as depicted in Code 6.28.

1 def response(db: db, board_id: int, microservice: str):
2 # Find OTA command
3 cmd = db.find_one('Commands', ...)
4
5 if cmd:
6 board_config = db.find_one("Configurations", ...)
7
8 delta = db.find_one('Deltas', ...)
9 if delta != None:
10 package = delta[f"package"{board_config['ota']['pckg_i']}]

129

6.3. Cloud

11 datagram_packed = msgpack.packb(package)
12 else:
13 cmd = False
14
15 else:
16 # No OTA update, lets check for others commands
17 cmd = db.find_one('Commands', ...)
18 if cmd:
19 datagram_packed = msgpack.packb(cmd['datagram'])
20 db.delete_one('Commands', {"_id": cmd['_id']})
21
22 if cmd:
23 if cmd['md5']:
24 # Adds MD5
25 ...
26 return cmd_datagram
27
28 return None

Code 6.28: Command response function.

This function receives the MongoDB database pointer, the board id and the respective microservice

name that is calling it. It starts by finding an OTA command in the Commands collection. If there is, it

gets the board configuration and retrieves the respective delta from the Deltas database. If there is no

OTA command, it queries other commands to the respective board. If it is found, it is deleted from the

database. Finally, according to the command, if the MD5 is enabled, the MD5 hash is added and returns

the command datagram. If there is not any command, None will be returned.

6.3.3 Commands

A command is formed using the Commands class. This class presents all the end-device set and get

commands available—the command structure changes according to the command. For example, the set

and get of the alarms and the auxiliary structures to configure the sensors’ variables will be presented.

The set commands functions follow a similar structure. They start by appending the command opcode

and the specific command data to the datagram array. Code 6.29 represents the set alarms command

function. It starts by appending the command opcode and a byte array with the time interval mode

and the respective alarms. In the array’s last position is appended the number of the alarms. Finally, the

insertCommand function is called. This function receives the board id, command datagram and description

and inserts them into the Commands database.

1 def setAlarms(self, board_id:int, interval_mode:bool,
2 hours:list, min:list, sec:list):
3 datagram = list()
4 datagram.append(self._getOpcodes('setAlarms'))
5
6 alarms_len = max(len(hours), len(min), len(sec))
7
8 if interval_mode:
9 datagram.append(bytearray([1]))

130

Chapter 6. Implementation

10 else:
11 datagram.append(bytearray([0]))
12
13 for i in range(alarms_len):
14 datagram[1] += bytearray([hours[i], min[i], sec[i]])
15
16 datagram.append(alarms_len)
17
18 description = f'Set Interval Mode: '{interval_mode}
19 ', Hours: '{hours}', Min: '{min}', Sec '{sec}
20
21 return self._insertCommand(board_id , datagram , description)

Code 6.29: Set alarms command function.

The get alarms function is illustrated in Code 6.30. This command only has the command get opcode,

which is the setAlarms opcode with the MSB bit set.

1 def getAlarms(self, board_id:int):
2 datagram = list()
3
4 datagram.append(self._getOpcodes('setAlarms') | 0x8000)
5
6 return self._insertCommand(board_id , datagram , f'Get Alarms')

Code 6.30: Get alarms command function.

Moreover, the VarID and SensorVariableConfig data classes were used to facilitate the variable configu-

ration. The VarID identifies the variable, and the SensorVariableConfig abstract the variable configurations,

having all the available variable’s parameters that can be changed. These data classes are fed to the set

and get functions involving sensors’ variables.

The commands module provides an interface to control the end-device. It enables changing its oper-

ation during its lifetime and even altering its running software through OTA updates.

The following sections will present helper scripts developed to enchant the development phase. These

scripts are the Check Lost Packages and Regular Transmission Data Exportation, which will be nextly

shown.

6.3.4 Check Lost Packages

In order to follow the board’s regular transmissions are sent successfully, the check lost packages

script was developed. This script receives the board id and a time margin and periodically checks if the

database has received the regular packages. If not, it signals to a log file. This script is illustrated in Figure

6.31. It starts by setting the process name according to the board id’s last seven digits and entering in

syncing mode. The sync mode periodically queries the database for new board configuration or regulars.

If any is found, it returns the system receive timestamp. After syncing with the board, it gets the board

configuration to get its transmission interval. This script only works with the board operating in the interval

131

6.3. Cloud

mode. Next, it sleeps for the regular interval, and when it wakes up, it enters an infinity loop where it

searches for regulars in a time window according to the current time and the margin time. If no regular is

found, it re-enters in the syncing mode.

1 def main()
2 # Parse args received
3 ...
4
5 setproctitle.setproctitle(f'NB-{str(board_id)[-7:]}')
6
7 timestamp = sync_mode(board_id)
8
9 board_config = db.find_one("Configurations", {"board_id":board_id})
10 interval_sec = board_config['alarms']
11
12 sleep((timestamp+interval_sec) - m_time.now() + margin_sec)
13
14 while True:
15 results=db.find(
16 db_collection , (
17 { "board_id": board_id ,
18 "$and" :
19 [{
20 "board_timestamp" : {"$gte":m_time.now()-2*margin_sec}
21 },
22 {
23 "board_timestamp" : {"$lte":m_time.now()+3600}
24 }]
25 },)
26)
27
28 if results.count() == 0:
29 # Package missed
30 timestamp = sync_mode(board_id)
31 else:
32 timestamp = results[0]['system_timestamp']
33
34 board_config = db.find_one("Configurations", {"board_id":board_id})
35 sleep(timestamp + board_config['alarms'] + margin_sec - m_time.now())

Code 6.31: Check lost packages script main function.

6.3.5 Regular Transmissions Data Exportation

Previously have been shown the check lost package script that helps monitor the board regular’s

transmissions. However, the regular transmissions data exportation script is used for the data required to

be read from the database to be post-processed. This script parses the received regular database query

and rearranges it into an excel file.

Since the same transmission can be divided into multiple parts, it starts by joining the regular trans-

mission with the same board timestamp and finding all variables. If it has more than one, it starts by

sorting the packages according to the package part and then joins all the samples. In both cases of having

one or more than one, it identifies the variables, and if there is a new variable column is added.

132

Chapter 6. Implementation

As an example, a signal quality test run was made. Its sampled variables (TXp, ECL, among others)

were exported, as is illustrated in Figure 6.9.

Figure 6.9: Exported data example.

133

Chapter 7: Results

This chapter shows the results of the power consumption of several application implementations.

These implementations include the RTOS, run-time and static encryption, command response, emergen-

cies and OTA updates.

The application uses three sensors (accelerometer, luminosity, and temperature/humidity). The tests

implied an accelerometer sample rate of 5 seconds and the remaining sensors to 10 seconds. All sensors’

variables except humidity were configured as simple and the humidity as average. The time interval

between data communications to the cloud depends on the measure type. Then, to estimate the total

current consumption, real application scenarios are presented.

Current consumption measurements have been made in two parts: the microcontroller and the sen-

sors, the modem and the ATECC608A IC since the Printed Circuit Board (PCB) developed in the Link4S

project supports it.

The setup used to measure the power consumption is represented in Figure 7.1. It was composed of

the precision Source/Measure Unit (SMU) (Keysight B2901A [90]), an oscilloscope (Tektronix MDO3012

[91]) to record MCU GPIO toggles from the application, and the power supply MP710067. The software

OpenChoiceDesktop from Tektronix was used to get the oscilloscope data. The Keysigh B2900 Quick

IV Measurement Software was used to measure the end-device power consumption and Matlab to post-

process the measured data, plot, and calculate the average current consumption.

Figure 7.1: Measurements setup

134

Chapter 7. Results

7.1 Modular Power Consumption

Figure 7.2 represents the application MCU power consumption with a send interval of 30 seconds. In

dashed orange line is the sensors’ initialization and from the beginning to the first blue dashed line is the

modem’s initialization.

The second blue dashed line represents the transmission of the configuration message. Between

the blue dashed lines is, in the beginning, the DateTime request from the system control that has the

MCU entering in low-power mode waiting for the modem DateTime request and in the continuous power

consumption the configuration datagram setup and transmission.

The pink dashed lines represent the sensors sample every 5 seconds, and between green dashed

lines is the regular transmission. The regular transmission wake up time is 797 milliseconds.

Figure 7.2: RTOS application power consumption.

The current spike at second 13.86 occurs when the modem enters its lower power consumption state

(PSM). It occurs 6 seconds after the last transmission. Also, the MCU enters in low-power mode to save

energy in the modem communications. Moreover, it can be seen in its initialization when it waits for the

modem’s network connection, server ping, and socket opening.

The following sections use the same 40 seconds measurement run but add the encryption using the

same dashed lines colour meaning.

135

7.1. Modular Power Consumption

7.1.1 Encryption

This subsection will shown the run-time, static encryption and compare the ATECC608A IC and MCU

engines AES encryption.

Run-Time Encryption

The run-time encryption adds the header and payload encryption using RSA and AES, respectively.

The difference from the previous measurement run is that the configuration and regular transmissions

take longer due to the encryption, as represented in Figure 7.3. The application with the previous run

configuration increased the regular transmission time from 797 to 2499 milliseconds.

Figure 7.3: Application with run-time encryption power consumption.

Figure 7.4 represents the measurement of a regular transmission of 1024 bytes using run-time en-

cryption. The RSA encryption occurs between the green dashed lines, and between the last green and

blue dashed lines is the AES payload encryption.

In a 1024 bytes regular transmission, the RSA is a significant part of the transmission taking 1.59

seconds to encrypt the cloud header of 48 bytes, resulting in an encrypted header of 128 bytes long. The

cloud header uses one more byte to be identified, remaining 895 bytes message payload. This message is

encrypted using the AES and takes 22 milliseconds. As a result, the RSA takes 45 % of the 3.55 seconds

transmission.

136

Chapter 7. Results

Figure 7.4: Regular transmission of 1024 bytes using run-time encryption.

Static Encryption

When the AES key does not change, the cloud header is constant. Since in the application it is constant,

was added static encryption. The static encryption has in the flash memory hardcoded the cloud header,

and only the payload AES encryption is performed.

The application power consumption in a 40-second run using static encryption is illustrated in Figure

7.5. It is similar to the one without encryption but increases the regular transmission time from 797 to 918

milliseconds. Compared to the run-time encryption, it reduces the time from 2499 to 918 milliseconds.

Figure 7.5: Application with static RSA encryption power consumption.

137

7.1. Modular Power Consumption

Figure 7.6 represents a 1024 bytes regular transmission measurement, where between the green and

blue line, the AES encryption is represented. The AES power consumption is similar to the run-time. As

a result, the regular transmission of 1024 bytes still has both encryptions, but the computing time was

reduced to 2,21 seconds.

Figure 7.6: Static encryption.

This AES encryption is using the MCU encryption engines. The next subsection will be compared with

the ATECC608A IC.

ATECC608A vs MCU AES Encryption

Figure 7.7 illustrates the current consumption of the MCU encryption on the left, between dashed

orange lines; on the right, between purple dashed lines, the ATECC608A IC initialization and, between

blue dashed lines, the encryption. Both encryptions are of 136 bytes. In the MCU, it took 1.76 ms with

an average current consumption of 934.2 µA, in contrast, the ATECC608A took 76.72 ms due to the

I2C communications overhead with an average current consumption of 1.02 mA. The ATECC608A took

236 ms to initiate with an average power consumption of 1.34 mA.

In terms of current consumption, the AES MCU encryption engine consumes less and is faster because

it does not have the I2C communication overhead. Also, it adds security, removing the data transmission

in the I2C line.

138

Chapter 7. Results

Figure 7.7: ATEC vs MCU encryption engine comparison.

7.1.2 Full System

The full system power consumption includes the MCU, sensors and modem power consumption, as

represented in Figure 7.8. The regular transmission interval was set to 20 seconds to the modem power

consumption fit in the 40 seconds run. From the figure can be noticed modem current spikes while

initializing the modem; the DateTime request and the configuration transmission through the modem

transmission current spikes. Nextly, the modem enters a stage that can receive data from the cloud and

then enters in PSM, saving energy.

Figure 7.8: Full application power consumption.

139

7.1. Modular Power Consumption

In the regular transmission, the modem transmission current spikes can be seen. Notice that the

MCU and sensors power consumption go unnoticed with the modem.

The typical application operation was described, from now on will be presented the emergencies, the

command response, and the OTA results.

7.1.3 Emergencies

In order to exemplify how emergencies affect power consumption, Figure 7.9 presents, between blue

and orange dashed lines, the trigger of the light and accelerometer emergencies, respectively.

Figure 7.9: Light and accelerometer emergencies power consumption.

Both sensors signal the MCU that an emergency has been triggered, and it sends an emergency to

the cloud.

When a light emergency is triggered, the sensor stays awake for 966 milliseconds and re-enters low-

power mode. On the other hand, the accelerometer sensor, when triggered, returns to the low-power

mode after 10 seconds without activity. As previously explained, the spike in the second 21.56 is due to

the modem entering in PSM.

The temperature emergency is presented in Figure 7.10. The sensor wakes up at second 10.89, and

then as the light and accelerometer, it wakes up the MCU and transmits to the cloud. The current spike

in the second 25 is from the modem entering PSM.

140

Chapter 7. Results

Figure 7.10: Temperature emergency power consumption.

When an emergency is triggered, it is sent to the cloud server, and it is saved to the Emergency

collection in the NB-IoT database. The server log for the temperature emergency in Figure 7.10 is illustrated

in Figure 7.11. The temperature limit was set to 28 degrees celsius, and as can be seen, highlighted as

green, the sensors’ samples show a temperature of 29.8 with the triggered flag TMP.

Figure 7.11: Temperature emergency server log.

The database saves the sensors samples, the respective triggered flags, and the system timestamp,

as represented in Figure 7.12.

141

7.1. Modular Power Consumption

Figure 7.12: Temperature emergency database element.

7.1.4 Command Response

As an example of the command response, the default initial regular transmission interval 10 seconds.

Then, when it sends the regular transmission, the command is sent to the MCU as represented between

orange dashed lines in Figure 7.13. The command received sets the regular transmission to 15 seconds.

Therefore, the regular transmission between green dashed lines is seen after 15 seconds of the command

parse.

Figure 7.13: MCU set interval command power consumption.

The modem power consumption to the command response is represented in Figure 7.14. The first

green dashed line illustrates when the regular transmission occurs, and the command response reception

and transmission are seen in the orange dashed line. When a command is received, the MCU sends a

command response. Therefore, it is seen power consumption similar to regular transmission. Moreover,

the second green dashed line represents the second regular transmission power consumption.

142

Chapter 7. Results

Figure 7.14: Modem set interval command power consumption.

7.1.5 OTA

In order to exemplify an OTA real scenario, the main application was modified, resulting in the applica-

tion with software version “ota_3.11.0”. This modified version has the regular transmission disabled after

the first transmission, the sampling disabled, and the transmission interval set to 20 seconds.

The OTA update will upgrade the firmware from the adapted version to “3.11.3”, which differences

are represented in Appendix A.2. To summarize, the modem UART messages parse thread was fully

reimplemented getting optimized; minor tweaks were made to fix bugs or typos; re-enables what was

disabled in the OTA version; changes the version string. The delta commands datagram resulted in a total

of 7657 bytes that represent 16 modem packages, as represented in Figure 7.15. The new software size

is 52644 bytes, which were reduced to a delta of 7657 bytes.

Figure 7.15: OTA delta in database.

143

7.1. Modular Power Consumption

Figure 7.16 illustrates all the MCU OTA power consumption. The MCU starts by initializing and, after

20 seconds, sends the first and only regular transmission highlighted between green dashed lines. When

the cloud receives it, it sends the first OTA command, which MCU handle is in orange dashed lines.

Then the board enters in a loop of handling the OTA command received and, when responding to the

cloud, receives the next OTA package. Notice that the first handle is more extensive since it erases the

new firmware memory and handles the first delta received. The higher current consumption is due to

performing read and write flash operations.

Moreover, from the figure, the 16 packages can be seen. According to the copy command, the actua-

tion length depends on how many bytes are copied from the old firmware version flash. When the device

receives all the packages, it realizes the checksum and restarts running the new application.

Figure 7.16: OTA upgrade power consumption.

Figure 7.17 illustrates the figure above zoomed-in at second 91 for better understanding. The command

handling starts in the first blue dashed line, and between the green orange dashed lines is the OTA module

writes and reads from and into the flash, respectively. Finally, from the second orange dashed line to the

second blue one, it is the command response datagram preparation and transmission to the cloud.

144

Chapter 7. Results

Figure 7.17: OTA upgrade package zoomed power consumption.

When all the packages are received and the new firmware is reconstructed successfully, the MCU

restarts to the new application received. Figure 7.18 results in zooming at second 134 the Figure 7.16.

It is after the MCU restart to run the new application received. It started by initializing the modem and

sampling the sensors as explained previous, every 5 seconds, and after 40 seconds (default-test value) of

the modem initialization, it sends a regular.

Figure 7.18: OTA upgrade new application power consumption.

The modem power consumption of the OTA update is illustrated in Figure 7.19. It starts with the

modem initialization as previously seen, and then when the regular is sent highlighted from the green

dashed lines. While the MCU handles the first OTA package, the modem enters in PSM, but when the

145

7.1. Modular Power Consumption

command response is sent for the first command, it enters in a loop of sending and receiving. The last part

of the modem power consumption is the MCU restart, system initialization and configuration transmission.

Figure 7.19: Modem OTA transmissions power consumption.

The OTA’s end-device side was explained, now will be shown the cloud and database operations. The

device started by sending the configuration represented in Figure 7.20. From this figure is highlighted

in green the “ota_3.11.0_dev_O3” software version and in the OTA section the address for the current

application running (now) “0x8002000”.

Figure 7.20: OTA old configuration server message.

Afterwards, the OTA command to update to the version “3.11.3_dev_O3” is executed and inserted

into the database, as illustrated in Figure 7.21. In the database is the command configuration with the

MD5 enabled, the old and new application address, and the respective MCU, among others.

146

Chapter 7. Results

Figure 7.21: OTA database command.

The command inserted in the database waits for the end-device communication with the cloud. Figure

7.22 shows the regular transmission where the OTA command is sent to the end-device, which description

is highlighted as green.

Figure 7.22: OTA old regular server message.

Afterwards, the end-device receives the command and answers to the command response microser-

vice. When received in the cloud, it is sent back to the end-device the OTA next package. Figure 7.23 is

the last command response. Since it has 16 packages, the last command response is the 15 package

because the board receives the 16 packages and restarts being the command response the new software

configuration.

Figure 7.23: OTA last command response server message.

The command response is saved in the database, as represented in Figure 7.24. This response has

147

7.1. Modular Power Consumption

the respective timestamps, OTA configuration, command result and opcode. In this case, the set and get

command were both successful.

Figure 7.24: OTA last command response in the database.

Since the board received all the packages and the checksum matched, it restarted as explained pre-

viously. Therefore, it sends the configuration running the new firmware, as illustrated in Figure 7.25.

This figure highlighted in green is the new software version “3.11.3_dev_O3” with the current application

running address “0x8019000”, the second application area. When a configuration is received and the

software version does not match the sent in the previous board’s configuration, the OTA command is

deleted from the database.

Figure 7.25: OTA new configuration server message.

From the configuration can be seen that the send interval is 40 seconds. Therefore, after 40 seconds,

the new firmware sends the regular transmission with the sensors’ samples, as illustrated in Figure 7.26.

148

Chapter 7. Results

Figure 7.26: OTA new regular server message.

The following section presents the application real-scenario power consumption and the memory oc-

cupied by the software with and without encryption.

7.2 Power Consumption Estimation

It is required to estimate how many Milliamps Hours (mAh) per day the system consumes to estimate

the application power consumption. Therefore, it can be expressed as the sum of the average power

consumption of the modem, the MCU & sensors, and the battery leakage as represented in Equation 7.1.

Since the average power consumption depends on the application configuration, the math to calculate

it will be generic. At the end of the section, will be presented application examples with the respective

estimated power consumption and lifetime.

Avgtotal = Avgmodem + Avgmcu&sensors + Avgleakage (7.1)

The modem average power consumption per day is given by the number of regular, emergency and

command response transmissions consumption and the modem sleep. Resulting in:

Avgmodem = Avgregular + Avgemegencies + Avgcmd_response + Avgsleep (7.2)

In each of them is present an average current consumption and its duration. Afterwards, the resulting

average current consumption is converted to an hour according to the number of times it occurs and

the remaining time the modem is sleeping. The modem power consumption is the sum of each type of

power consumption per day which is given by the average current consumption times the time per hour

as illustrated in Table 7.1.

149

7.2. Power Consumption Estimation

Table 7.1: Modem average current consumption.

Current Type Average Current (mA) Time (s) Per Hour (h) mAh/day per day
Regular

Transmission
7,0242 9,296 nregulars∗9,296

3600
1 = (Average Current * Per Hour)

Emergencies
Transmission

6,0273 7,7908 nemergencies∗7,7908
3600

2 = ”

Command Response
Transmission

7,189 7,8234 ncmd_responses∗7,8234
3600

3 = ”

Sleep 0,00395 - Remaining time 4 = ”
Avgmodem 1 + 2 + 3 + 4

Table 7.2 represents the power consumption and time of the MCU and sensors in different moments.

It was measured the 41 samples of each sensor and was made an average. Also, the MCU and sensors

calculation is similar to the modem, but it has the sensors sampling and the accelerometer, light, and

temperature emergencies. The sleep joins the MCU and sensors continuous sample that enables the

emergencies.

Table 7.2: Sensors and MCU average current consumption.

Current Type Average Current (mA) Time(s) Per hour (h) mA/h per day
Sensors
Sampling

0.872 0.0187 nsamples∗0.0187
3600

1 = (Average Current * Per hour)

Regular
Transmission

0.898 2.21 nregulars∗2.21
3600

2 = ”

Command Response
Transmission

0.871 0.61 ncmd_response∗0.61
3600

3 = ”

Accelerometer
Emergencies

0.0388 10.74 nacc_emergencies∗10.74
3600

4 = ”

Light
Emergencies

0.504 1.01 nlght_emergencies∗1.01
3600

5 = ”

Temperature
Emergencies

0,63 1.1336 ntemp_emergencies∗1.1336
3600

6 = ”

Sleep 0.003484 - Remaining time 7 = ”
Avgsensors&mcu 1 + 2 + 3 + 4 + 5 + 6 + 7

The battery used is the Saft LM 17500 [84], which has a leakage of 1 %. The battery average leakage

current is given by the battery capacity (C) in mAh, IL% is the self-leakage percentage per year. The

average leakage current consumption is represented in Equation 7.3. With the battery average leakage

current consumption, the average power consumption results in 0.082192mAh/day.

Ileakage =
C × IL%
24× 365

(7.3)

The OTA shown in Figures 7.16 and 7.19 power consumption is represented in Table 7.3. Since it was

using the power consumption daily, the OTA is very asynchronous. Therefore, the used mAh from the OTA

update will be calculated and substrated from the battery capacity.

150

Chapter 7. Results

Table 7.3: “ota_3.11.0_dev_O3” to “3.11.3_dev_O3” OTA power consumption.

Current Type Average Current (mA) Time (s)
MCU 1,347 70,51
Modem 12,896 112,16

The real capacity that will be used to estimate is given by Formula 7.4. It results in the battery capacity

minus the power consumption of the MCU and modem in an hour multiplied by the number of OTAs using

the values of Table 7.3.

Creal = Cbattery − nOTAs ∗
(IMCU × TMCU + Imodem × Tmodem)

3600
(7.4)

With the system’s daily average power consumption is possible to calculate the number of days that

the system can run, dividing the real battery capacity by the daily average as represented in Formula 7.5.

days =
Creal

Avgdaily
(7.5)

As an example real application use case, the temperature, humidity and light sensor will do 72 sam-

ples, each having 216 samples between transmission filling the datagram array in 6 hours. The ac-

celerometer sensors will be still enabled to signal emergencies and will be performed ten OTAs. Per day

864 samples, four regular transmissions, 0.33 command response, 0.33 accelerometer, 0.33 light, and

0,16 temperature emergencies — results in a total of five temperature emergencies and ten accelerometer

and light emergencies per month. In the lifetime, also having ten OTAs. Using the static encryption the

Avgdaily equals 0.353 mAh/day resulting in 8477 days, 23 years. If run-time encryption is used

instead of static encryption, the expected lifetime is reduced to 8442 days, 35 days less from static en-

cryption. The system components weight on power consumption is represented in Figure 7.27. If it had

ideal conditions where leakage does not exist, the expected operation time is 30 years.

Figure 7.27: System components weight on power consumption with example 1.

Using as an example the proposed in [1], where it has 60 samples and two transmissions per day. It

151

7.2. Power Consumption Estimation

is expected without battery leakage a total of 36 years which is reduced to 26 due to the discharge rate

of less than 1% per year.

152

Chapter 8: Conclusion

The increasing use of IoT devices for environmental monitoring or data acquisition to feed the machine-

learning models has never been so important. Battery-powered devices with a 10-years lifetime are great

to add to the current systems since they can acquire data without human intervention for several years.

The NB-IoT is one of the LPWAN technologies that allow reaching this lifetime. Since the NB-IoT uses

the existing LTE service, it can seamless connect to network even in location with poor LTE coverage, such

as, remote and underground locations. Therefore, human intervention or maintaining is costly when the

end-devices are deployed. As a result, the software must work during the the battery life without physical-

human intervention. Moreover, the ability to change the end-device software through Over-The-Air updates

is nowadays mandatory. However, to reduce the end-device power consumption, adding functionalities,

and fixing application bugs by unit testing and static analysers in the development phase are helpful to

catch bugs earlier.

The end-devices have an upper cyber layer (cloud) that receives their data and can be used to control

them. Therefore, the increasing number of devices requires scalable technology, such as the microservices

architecture. This architecture allows easier architectural cloud changes letting continuous development

and device control.

Regarding the work developed on this dissertation, one of the objectives was to re-design a bare-metal

solution to an RTOS based one. In the re-design, new features were added like the ability to change run-

time board parameters, such as sampling period and send interval through commands, a new sensor

support architecture to optimise the memory use, a generic encrypted communication architecture and

application error recovery.

The RSA and AES encryption were added in the communication layer resulting in end-to-end secure

communications. The communications were secured using encryption at run-time and statically (only the

AES is performed in run-time). When compared, it was possible to conclude that the run-time encryption

increased the RAM and flash memory usage from 14452 and 51560 bytes to 19740 and 66672 bytes,

respectively. On the other hand, the static encryption only increases to 53872 and 14708 bytes. Imple-

menting the AES encryption throughout the ATECC608A IC and the MCU encryption engines were also

compared. The latter was chosen because it has been proven faster and decreases the device’s Bill of

materials (BOM).

153

The modules were tested and validated in the development phase using unit tests, static analysis,

and running the device in harsh signal quality conditions to expose bugs. To help the development,

several helper scripts were made to simplify run-time debug and post transmission analysis. Since the

development is continuous and in development, it is possible to catch several bugs, but the boards can

still be deployed with software bugs. In order to be able to fix these bugs, Over-The-Air updates were added

to the end-device.

The OTA updates were added by doing incremental updates, resulting in the board receiving a delta

with commands to reconstruct the new firmware through the old one, receiving only the new things that

are not common between both firmwares, resulting in OTA updates with reduced size. In order to do that

it was implemented the DeltaGen differencing algorithm. This algorithm generates the delta using suffix

arrays and having a byte-level comparison between firmwares.

All these features culminated into an end-device with a life expectancy using the use case of 864

samples per day, with four transmissions with an interval of 6 hours, receiving up to ten commands,

accelerometer and light emergencies, five temperature emergencies with ten OTA updates. The board

lifetime is expected to be 23 years (taking into account the battery leakage). New features were added

to the software, but its lifetime was extended from 17 years to 23 years compared to the first software

version.

Alongside the end-device, cloud services were also developed that allow full control of all the devices.

It resulted in a microservice architectural server with microservices responsible for parsing the specific

board’s messages. These microservices are responsible for parsing the messages and saving them into

the database. A command module was developed that enables commands to be added to the database.

After the microservices finishes parsing the board’s message, these commands are queried by its board

unique identification number. These commands enable changing the device behaviour in run-time and

also perform OTA updates.

As a result, a well-designed, tested and validated end-device software application was developed that

is expected to run for 23 years. This device has a cloud to receive data, interact with the user and control

the devices. Also, throughout the database it is possible to read the end-devices data and change the

end-device at run-time with the commands module developed. If the application paradigm changes or

bugs are found, it is possible to update Over-The-Air the end-device.

Furthermore, a full deployment of 100 units is expected until June. Up to now, 20 units have been

deployed, and the results obtained proved that this dissertation reached its goal and objectives.

154

Chapter 8. Conclusion

8.1 Future Work

The unit tests and version control could be extended and implemented in a remote server automatic

test when new software commits are added, checking if new code additions can break the old code, adding

Continuous Integration (CI) to the Link4S project.

The sensors storage architecture has been optimised, but the sampling period could be improved to

utilise the RTOS timers. It can result in more memory (RAM) using the timers for each variable, but the

sampling flexibility would increase.

Also, the HAL Wrapper is currently implemented using the STMicroelectronics’ HAL, which can add

more overhead. It could be changed to the STMicroelectronics’ Low Level (LL), which is more MCU specific

and closer to the MCU hardware.

A high-level application, such as a dashboard, could be developed to more accessible data view and

device control using the commands module and database.

155

References

[1] S. Paiva, “Software/hardware co-design for nb-iot low-power applications: Consumption and perfor-

mance analysis,” Master’s thesis, University of Minho, 2020.

[2] Netmanias, “LTE Security II: NAS and AS Security,” 2021. [Online; accessed 23-April-2021].

[3] M. . Rouse, “internet of things (iot),” 2020. [Online; accessed 26-November-2020].

[4] E. Brown, “21 open source projects for iot,” 2016. [Online; accessed 26-November-2020].

[5] ITU, “Internet of things global standards initiative,” 2015. [Online; accessed 26-November-2020].

[6] DrewAHendricks, “The trouble with the internet of things,” 2015. [Online; accessed 26-November-

2020].

[7] J. Höller, V. Tsiatsis, C. Mulligan, S. Karnouskos, S. Avesand, and D. Boyle. Oxford: Academic Press,

2014.

[8] M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, “A review on internet of things (iot), internet of

everything (ioe) and internet of nano things (iont),” in 2015 Internet Technologies and Applications

(ITA), pp. 219–224, 2015.

[9] M. Vega, “Internet of things statistics, facts & predictions,” 2020. [Online; accessed 27-November-

2020].

[10] S. Paiva, S. Branco, and J. Cabral, “Design and power consumption analysis of a nb-iot end device

for monitoring applications,” in IECON 2020 The 46th Annual Conference of the IEEE Industrial

Electronics Society, pp. 2175–2182, 2020.

[11] S. Pinto, J. Cabral, and T. Gomes, “We-care: An iot-based health care system for elderly people,” in

2017 IEEE International Conference on Industrial Technology (ICIT), pp. 1378–1383, 2017.

[12] K. Gill, S. Yang, F. Yao, and X. Lu, “A zigbee-based home automation system,” IEEE Transactions on

Consumer Electronics, vol. 55, no. 2, pp. 422–430, 2009.

156

References

[13] M. T. Lazarescu, “Design of a wsn platform for long-term environmental monitoring for iot appli-

cations,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 3, no. 1,

pp. 45–54, 2013.

[14] S. K. Routray and S. Anand, “Narrowband iot for healthcare,” in 2017 International Conference on

Information Communication and Embedded Systems (ICICES), pp. 1–4, 2017.

[15] P. Chatterjee, L. J. Cymberknop, and R. L. Armentano, “Iot-based decision support system for in-

telligent healthcare — applied to cardiovascular diseases,” in 2017 7th International Conference on

Communication Systems and Network Technologies (CSNT), pp. 362–366, 2017.

[16] O. B. Mora, R. Rivera, V. M. Larios, J. R. Beltrán-Ramírez, R. Maciel, and A. Ochoa, “A use case in

cybersecurity based in blockchain to deal with the security and privacy of citizens and smart cities

cyberinfrastructures,” in 2018 IEEE International Smart Cities Conference (ISC2), pp. 1–4, 2018.

[17] B. K. Barman, S. N. Yadav, S. Kumar, and S. Gope, “Iot based smart energy meter for efficient energy

utilization in smart grid,” in 2018 2nd International Conference on Power, Energy and Environment:

Towards Smart Technology (ICEPE), pp. 1–5, 2018.

[18] R. A. Kjellby, L. R. Cenkeramaddi, A. Frøytlog, B. B. Lozano, J. Soumya, and M. Bhange, “Long-range

self-powered iot devices for agriculture aquaponics based on multi-hop topology,” in 2019 IEEE 5th

World Forum on Internet of Things (WF-IoT), pp. 545–549, 2019.

[19] C. Yi, H. Chen, and Y. Chen, “A smart meter design implemented with iot technology,” in 2018

International Symposium on Computer, Consumer and Control (IS3C), pp. 360–363, 2018.

[20] X. Deng, Y. Jiang, L. T. Yang, L. Yi, J. Chen, Y. Liu, and X. Li, “Learning-automata-based confident

information coverage barriers for smart ocean internet of things,” IEEE Internet of Things Journal,

vol. 7, no. 10, pp. 9919–9929, 2020.

[21] R. Chow, “The last mile for iot privacy,” IEEE Security Privacy, vol. 15, no. 6, pp. 73–76, 2017.

[22] L. Xing, “Reliability in internet of things: Current status and future perspectives,” IEEE Internet of

Things Journal, vol. 7, no. 8, pp. 6704–6721, 2020.

[23] J. K. Reena and R. Parameswari, “A smart health care monitor system in iot based human activities

of daily living: A review,” in 2019 International Conference on Machine Learning, Big Data, Cloud

and Parallel Computing (COMITCon), pp. 446–448, 2019.

157

References

[24] M. Borges, S. Paiva, A. Santos, B. Gaspar, and J. Cabral, “Azure rtos threadx design for low-end

nb-iot device,” in 2020 2nd International Conference on Societal Automation (SA), pp. 1–8, IEEE,

2021.

[25] A. L. (2017), “Iot cellular networks,” 2017. [Online; accessed 30-May-2021].

[26] BehrTech, “6 leading types of iot wireless tech and their best use cases,” 2021. [Online; accessed

30-May-2021].

[27] B. Nath, F. Reynolds, and R. Want, “Rfid technology and applications,” IEEE Pervasive Computing,

vol. 5, no. 1, pp. 22–24, 2006.

[28] Y. Song, J. Lin, M. Tang, and S. Dong, “An internet of energy things based on wireless lpwan,”

Engineering, vol. 3, no. 4, pp. 460–466, 2017.

[29] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range communications in unlicensed

bands: The rising stars in the iot and smart city scenarios,” IEEE Wireless Communications, vol. 23,

no. 5, pp. 60–67, 2016.

[30] D. Patel and M. Won, “Experimental study on low power wide area networks (lpwan) for mobile

internet of things,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pp. 1–5, IEEE,

2017.

[31] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area networks: An overview,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 2, pp. 855–873, 2017.

[32] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of cellular lpwan technologies for iot deploy-

ment: Sigfox, lorawan, and nb-iot,” in 2018 ieee international conference on pervasive computing

and communications workshops (percom workshops), pp. 197–202, IEEE, 2018.

[33] L. Vangelista, A. Zanella, and M. Zorzi, “Long-range iot technologies: The dawn of lora™,” in Future

access enablers of ubiquitous and intelligent infrastructures, pp. 51–58, Springer, 2015.

[34] Y.-P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman, and H. S. Razaghi,

“A primer on 3gpp narrowband internet of things,” IEEE Communications Magazine, vol. 55, no. 3,

pp. 117–123, 2017.

158

References

[35] K. Kerliu, A. Ross, G. Tao, Z. Yun, Z. Shi, S. Han, and S. Zhou, “Secure over-the-air firmware updates

for sensor networks,” in 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor

Systems Workshops (MASSW), pp. 97–100, 2019.

[36] Thales, “Is your fota solution efficient enough for lpwan?,” 2015. [Online; accessed 2-January-2021].

[37] Y. Wee and T. Kim, “A new code compression method for fota,” IEEE Transactions on Consumer

Electronics, vol. 56, no. 4, pp. 2350–2354, 2010.

[38] R. K. Panta, S. Bagchi, and S. P. Midkiff, “Zephyr: Efficient incremental reprogramming of sen-

sor nodes using function call indirections and difference computation,” in Proc. of USENIX Annual

Technical Conference, p. 65, 2009.

[39] O. Kachman, “Effective multiplatform firmware update process for embedded low-power devices,”

2018.

[40] D. G. Korn and K.-P. V. A. G. Differencing, “Compression data format,” tech. rep., Technical Report

HA1630000-021899-02TM, AT&T Labs-Research, 1999.

[41] K. Arakadakis, P. Charalampidis, A. Makrogiannakis, and A. Fragkiadakis, “Firmware over-the-air

programming techniques for iot networks-a survey,” ACM Computing Surveys (CSUR), vol. 54, no. 9,

pp. 1–36, 2021.

[42] J. Koshy and R. Pandey, “Remote incremental linking for energy-efficient reprogramming of sensor

networks,” in Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005.,

pp. 354–365, IEEE, 2005.

[43] W. Dong, Y. Liu, C. Chen, J. Bu, C. Huang, and Z. Zhao, “R2: Incremental reprogramming using

relocatable code in networked embedded systems,” IEEE Transactions on Computers, vol. 62, no. 9,

pp. 1837–1849, 2013.

[44] R. K. Panta and S. Bagchi, “Hermes: Fast and energy efficient incremental code updates for wireless

sensor networks,” in IEEE INFOCOM 2009, pp. 639–647, 2009.

[45] J. Jeong, “Node-level representation and system support for network programming,” University of

California, Berkeley, 2003.

[46] A. Tridgell et al., “Efficient algorithms for sorting and synchronization,” 1999.

159

References

[47] B. Mo, W. Dong, C. Chen, J. Bu, and Q. Wang, “An efficient differencing algorithm based on suf-

fix array for reprogramming wireless sensor networks,” in 2012 IEEE International Conference on

Communications (ICC), pp. 773–777, IEEE, 2012.

[48] W. Dong, B. Mo, C. Huang, Y. Liu, and C. Chen, “R3: Optimizing relocatable code for efficient

reprogramming in networked embedded systems,” in 2013 Proceedings IEEE INFOCOM, pp. 315–

319, IEEE, 2013.

[49] R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders, “Better external memory suffix array con-

struction,” Journal of Experimental Algorithmics (JEA), vol. 12, pp. 1–24, 2008.

[50] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli, “Secure firmware updates for

constrained iot devices using open standards: A reality check,” IEEE Access, vol. 7, pp. 71907–

71920, 2019.

[51] P. Hambarde, R. Varma, and S. Jha, “The survey of real time operating system: Rtos,” in 2014

International Conference on Electronic Systems, Signal Processing and Computing Technologies,

pp. 34–39, 2014.

[52] J. W. Valvano, Embedded Systems: Real-Time Operating Systems for Arm Cortex M Microcontrollers.

Texas: CreateSpace Independent Publishing Platform; 2nd ed. edition, 2017.

[53] H. J. Park, D. Woo, S. Kim, and P. Mah, “Multi-level ultra low-power mode support mechanisms

for wearable device,” in 2016 IEEE International Conference on Internet of Things (iThings) and IEEE

Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData), pp. 171–176, 2016.

[54] P. Kumar and M. Srivastava, “Predictive strategies for low-power rtos scheduling,” in Proceedings

2000 International Conference on Computer Design, pp. 343–348, 2000.

[55] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time envi-

ronment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61, 1973.

[56] C. Sabri, L. Kriaa, and S. L. Azzouz, “Comparison of iot constrained devices operating systems: A

survey,” in 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications

(AICCSA), pp. 369–375, 2017.

[57] Eclipse, “2020 IoT Developer Survey Key Findings,” 2021. [Online; accessed 30-November-2021].

160

References

[58] V. Research, “IoT & Embedded Operating Systems,” 2021. [Online; accessed 30-November-2021].

[59] FreeRTOS, “FreeRTOS,” 2021. [Online; accessed 30-November-2021].

[60] A. Musaddiq, Y. B. Zikria, O. Hahm, H. Yu, A. K. Bashir, and S. W. Kim, “A survey on resource

management in iot operating systems,” IEEE Access, vol. 6, pp. 8459–8482, 2018.

[61] M. Simonović and L. Saranovac, “Power management implementation in freertos on lm3s3748,”

Serbian Journal of Electrical Engineering, vol. 10, no. 1, pp. 199–208, 2013.

[62] Zephyr, “Zephyr Project,” 2021. [Online; accessed 30-November-2021].

[63] Microsoft, “Azure RTOS ThreadX,” 2021. [Online; accessed 12-February-2021].

[64] Microsoft, “Azure RTOS ThreadX documentation,” 2021. [Online; accessed 15-June-2021].

[65] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture enables devops: Migration

to a cloud-native architecture,” IEEE Software, vol. 33, no. 3, pp. 42–52, 2016.

[66] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to cloud-native architectures using microser-

vices: an experience report,” in European Conference on Service-Oriented and Cloud Computing,

pp. 201–215, Springer, 2015.

[67] D. R. Stinson, Cryptography: theory and practice. Chapman and Hall/CRC, 2005.

[68] M. F. Mushtaq, S. Jamel, A. H. Disina, Z. A. Pindar, N. S. A. Shakir, and M. M. Deris, “A survey on

the cryptographic encryption algorithms,” International Journal of Advanced Computer Science and

Applications, vol. 8, no. 11, pp. 333–344, 2017.

[69] G. Singh, “A study of encryption algorithms (rsa, des, 3des and aes) for information security,” Inter-

national Journal of Computer Applications, vol. 67, no. 19, 2013.

[70] F. Pub, “Data encryption standard (des),” FIPS PUB, pp. 46–3, 1999.

[71] D. Coppersmith, D. B. Johnson, and S. M. Matyas, “A proposed mode for triple-des encryption,” IBM

Journal of Research and Development, vol. 40, no. 2, pp. 253–262, 1996.

[72] T. Nie and T. Zhang, “A study of des and blowfish encryption algorithm,” in TENCON 2009 - 2009

IEEE Region 10 Conference, pp. 1–4, 2009.

161

References

[73] S. Jamel, M. M. Deris, I. T. R. Yanto, and T. Herawan, “The hybrid cubes encryption algorithm

(hisea),” in Advances in Wireless, Mobile Networks and Applications (S. S. Al-Majeed, C.-L. Hu, and

D. Nagamalai, eds.), (Berlin, Heidelberg), pp. 191–200, Springer Berlin Heidelberg, 2011.

[74] P. Jindal and B. Singh, “Rc4 encryption-a literature survey,” Procedia Computer Science, vol. 46,

pp. 697–705, 2015. Proceedings of the International Conference on Information and Communication

Technologies, ICICT 2014, 3-5 December 2014 at Bolgatty Palace & Island Resort, Kochi, India.

[75] T. Hardjono and L. R. Dondeti, Security in Wireless LANS and MANS (Artech House Computer Secu-

rity). Artech House, Inc., 2005.

[76] B. Girgenti, P. Perazzo, C. Vallati, F. Righetti, G. Dini, and G. Anastasi, “On the feasibility of attribute-

based encryption on constrained iot devices for smart systems,” in 2019 IEEE International Confer-

ence on Smart Computing (SMARTCOMP), pp. 225–232, 2019.

[77] A. Hameed and A. Alomary, “Security issues in iot: A survey,” in 2019 International Conference on

Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), pp. 1–5, 2019.

[78] T. Instruments, “HDC2080 Ultra-low-power digital humidity and temperature sensor ,” 2021. [Online;

accessed 23-June-2021].

[79] Bosch, “Acceleration sensor BMA400 sensor,” 2021. [Online; accessed 23-June-2021].

[80] T. Instruments, “OPT3002 Light-to-digital sensor,” 2021. [Online; accessed 23-June-2021].

[81] Microchip, “ATECC608A, Network and Accessories secure authentication,” 2021. [Online; accessed

23-June-2021].

[82] Quectel, “LTE BC66 NB-IoT,” 2021. [Online; accessed 23-June-2021].

[83] S. Eletronics, “Ultra-low-power Arm Cortex-M0+ MCU with 192-Kbytes of Flash memory, 32 MHz

CPU, AES,” 2021. [Online; accessed 23-June-2021].

[84] Saft, “Saft LM17500 Battery ,” 2021. [Online; accessed 21-April-2021].

[85] T. Instruments, “TPS7A0218PDBVR, 200-mA, nanopower-IQ (25 nA), low-dropout (LDO) voltage reg-

ulator with enable,” 2021. [Online; accessed 23-June-2021].

[86] NOS, “NOS,” 2021. [Online; accessed 21-April-2021].

162

References

[87] D. Andrews, I. Bate, T. Nolte, C. M. O. Pérez, and S. M. Petters, “Impact of embedded systems

evolution on rtos use and design,” in Proceedings of the 1st International Workshop Operating System

Platforms for Embedded Real-Time Applications (OSPERT’05) in conjunction with the 17th Euromicro

International Conference on Real-Time Systems (ECRTS’05), pp. 13–19, 2005.

[88] Wikipedia contributors, “Intel hex — Wikipedia, the free encyclopedia.” https://en.wikipedia.

org/w/index.php?title=Intel_HEX&oldid=1037499062, 2021. [Online; accessed 20-

September-2021].

[89] Wikipedia contributors, “Md5 — Wikipedia, the free encyclopedia.” https://en.wikipedia.

org/w/index.php?title=MD5&oldid=1038874008, 2021. [Online; accessed 15-August-

2021].

[90] Keysight, “B2901A Precision Source/Measure Unit, 1 ch, 100 fA, 210 V, 3 A DC/10.5 A Pulse,”

2021. [Online; accessed 10-November-2021].

[91] Tektronix, “MDO3000 Mixed Domain Oscilloscope,” 2021. [Online; accessed 10-November-2021].

163

https://en.wikipedia.org/w/index.php?title=Intel_HEX&oldid=1037499062
https://en.wikipedia.org/w/index.php?title=Intel_HEX&oldid=1037499062
https://en.wikipedia.org/w/index.php?title=MD5&oldid=1038874008
https://en.wikipedia.org/w/index.php?title=MD5&oldid=1038874008

Appendix A: Appendix

A.1 End-device Implementation

A.1.1 System Control

The system control is responsible for the MCU power modes and the RTC peripheral. This section will

show the system control thread implementation, the struct and the set function of the alarms.

The system control thread is represented in Code A.1. This thread can be enabled and disabled

through the system control event flag group. When enabled, it reads the current RTC and alarm time

and calculates the time interval to the next alarm. Then, it uses the getDateTime_pf to get the current

date-time. If it is successful, the system control set date-time function is called. With the RTC date-time

updated, re-enables the next alarm and signals RTC update. Finally, this thread sleeps and will repeat the

process when awake.

1 while(1){
2 tx_event_flags_get(&sc_eventflags , sc_enable_rtc_update , TX_AND,
3 &unused_var , TX_WAIT_FOREVER);
4
5 /* Read RTC current time */
6 ...
7
8 /* Read Alarm time */
9 ...
10
11 /* Time interval between the current time and next alarm */
12 ...
13
14 if(getDateTime_pf(&datetime_s) != success){
15 /* Get datetime error Error */
16 signalAppError_v(getdatetime);
17 }
18 else{
19 _fitDateTimeInTime_v(&datetime_s);
20
21 if(systemControlSetCurrentDateTime_e(&datetime_s) == success){
22 if(alarm_interval_s_s32 > 0){
23 /* Set again the next alarm */
24 }
25
26 tx_event_flags_set(&sc_eventflags , sc_rtc_updated_ef , TX_OR);
27 return;
28 }
29 }
30 tx_thread_sleep(datetime_interval_tick_u32);
31 }

Code A.1: System control refresh datetime thread.

The alarms were added to the system control. These alarms are stored in the struct represented in

164

Appendix A. Appendix

Code A.2. This struct contains if the alarm is in time interval mode and the respective parameters of an

alarm (hour, minutes, and seconds). The index indicates the next alarm to be activated.

1 typedef struct alarm{
2 uint8_t time_interval_u8;
3 uint8_t hour_au8[MAX_ALARMS];
4 uint8_t min_au8[MAX_ALARMS];
5 uint8_t sec_au8[MAX_ALARMS];
6 uint8_t index_u8;
7 }alarm_st;

Code A.2: System Control alarms struct.

The alarms struct is filled in compile-time with the time interval enabled and default transmission

interval. It can be set in run-time using the function represented in Code A.3. It receives a configuration

byte array and the number of alarms in the configuration array. The first position in the array has the

transmission mode, and the remaining are alarms. This function starts by doing alarms validation, setting

the transmission mode, and saving the new alarms received into the structure A.2. After saving the alarms,

the next alarm index needs to be set. Therefore, the index of the next alarm is synced according to the

current time. If something fails, it is returned failure; if not, it is returned success.

1 status_et systemControlSetAlarms_e(uint8_t*config_pu8 ,uint8_t n_alarms_u8){
2 /* Alarms validation */
3 ...
4
5 alarm_s.time_interval_u8 = 0;
6 if (config_pu8[0] >= 1){
7 alarm_s.time_interval_u8 = 1;
8 }
9
10 /* Save the new alarms */
11 ...
12
13 /* Sync the next alarm index with the current time*/
14 ...
15
16 return success;
17 }

Code A.3: System control set alarms function.

Finally, the system control has the systemControlInitialize function. This function sets the MCU

low-power settings, the LPUART sleep configuration, the standby and alarms default values. The MCU

low-power configurations include setting the main internal regular output voltage to the minimum scale,

enabling the ultra-low-power mode, and enabling the MCU to fast wake up from ultra-low-power mode.

The LPUART configurations enable the peripheral to wake up the MCU when receiving data.

A.1.2 Sensors

The sensors module comprises three threads: Sensors Manager, Sensors Emergency Handler, and

Sample Sensors. This subsection will present the implementation of each thread and, in the final, will be

165

A.1. End-device Implementation

shown the sensor and variable structs with an example function to alter and read them.

Code A.4 represents the sensors initialization thread. If the sensors “init” event flag is set, this thread

clears the sensors’ initialized event flag and starts by calling the sensors’ initialization functions.

This function iterate through all the sensors and confirms if they are alive. If any sensor is functioning,

the sensor manager thread configures them and signals through the sensors’ event flag that the sensors

were initialized. If there are no sensors and the sensor initialize event flag is set, it will sleep a defined

compilation time and try again. Both the Emergency Handler and Sample Sensors thread waits for the

sensors initialized event flag to be set to start its operation.

1 tx_event_flags_get(&s_eventflags , s_init_sensors_ef ,
2 TX_AND_CLEAR , &unused_var , TX_WAIT_FOREVER);
3
4 tx_event_flags_get(&s_eventflags , s_sensors_inited_ef ,
5 TX_OR_CLEAR , &unused_var , TX_NO_WAIT);
6 initializeSensors_v();
7
8 if(getSensorsEnabled_u8(NULL) > 0){
9 configSensors_v();
10
11 /* Sensors initialized */
12 tx_event_flags_set(&s_eventflags , s_sensors_inited_ef , TX_OR);
13 continue;
14 }
15 tx_thread_sleep(S_TO_TICKS(NO_SENSORS_TRY_SLEEP_S));

Code A.4: Sensors Manager thread entry loop.

The Emergency Manager thread, represented in Code A.5, waits for the hardware event flags to signal

a sensor’s external interrupt. When an interrupt is triggered, it gets the sensors and emergency binary

semaphores and then iterates through all the sensors finding the emergency that has been triggered. When

it is found, it is called the interrupt handler and the emergency is added to the emergencies_triggered_u8

if the sensor variable interrupt is enabled. If any emergency was triggered, the application emergency

event flag is set, signalling that an emergency has occurred.

1 /* Waits for an emergency */
2 tx_event_flags_get(&hw_eventflags , sensors_int_cu16 , TX_OR_CLEAR ,
3 &interrupts_flags_ul , TX_WAIT_FOREVER);
4
5 /* Waits until the sensors are initialized*/
6 ...
7
8 /* Get sensors and emergency binary semaphores */
9 ...
10
11 for(i_u8=0; i_u8 < n_sensors_u8; i_u8++){
12 /* Find sensor interrupt */
13 ...
14 /* Call interrupt handler */
15 sensors_aps[i_u8]->interruptHandler_pf(NULL);
16
17 /* if interrupt is enabled*/
18 emergencies_triggered_u8 |= \
19 (interrupts_flags_ul & sensors_aps[i_u8]->int_mask_u8);

166

Appendix A. Appendix

20 }
21 if(interrupts_flags_ul & emergencies_triggered_u8){
22 /* Alerts to a emergency received */
23 tx_event_flags_set(&a_eventflags , a_emergency_ef , TX_OR);
24 }
25 /* Put sensors and emergency binary semaphores */
26 ...

Code A.5: Sensors Emergency Handler thread entry loop.

Code A.6 illustrates the Sample Sensors thread entry loop. This thread iterates through all the sensors,

and if the variable sample time is reached, it samples the variable and saves the sampled value according

to the sensor’s sample mode (simple or average). The sensors sample have been joined into this thread,

and the sample time has a common multiplier and according to the variable period is calculated the counts

variable. The variable sample time is given by variable counter equals the variable counts.

1 tx_thread_sleep(min_sampling_time_u32);
2
3 /* Waits until the sensors are initialized and check if the
4 the sampling flag is set */
5 ...
6
7 tx_bin_semaphore_get(&sensors_aps_bsem , TX_WAIT_FOREVER);
8
9 for(i_u8=0; i_u8<n_sensors_u8; i_u8++){
10 if(/* Sensor active */){
11 for(j_u8=0; j_u8<sensors_aps[i_u8]->n_variables_u8; j_u8++){
12 if(/* variable and sampling enable */ &&
13 /* variable counter == variable counts */){
14 if (!sampled_u8){
15 status_u8=sensors_aps[i_u8]->readSensor_pf(data_as32);
16 if(status_u8 == OK){
17 sampled_u8 = 1;
18 j_u8 = 0;
19 }
20 }
21 if (status_u8 == OK){
22 if(/* Variable in average mode? */){
23 /* Save average sample */
24 ...
25 }
26 else{
27 /* Save simple sample*/
28 ...
29 }
30 ...
31 }
32 tx_bin_semaphore_put(&sensors_aps_bsem);

Code A.6: Sample Sensors thread entry loop.

In the sensors module, each sensor is described by its sensor struct. This struct, represented in Code

A.8, is composed of the model string, the sensors’ variables, active state, interrupt mask, and the pointers

to functions to initialize, configure, read and handle the interrupt. This module serves as the sensors

module interface.

1 typedef struct sensor{
2 uint8_t model_au8[S_MODEL_STR_SIZE];

167

A.1. End-device Implementation

3
4 variable_st* variables_aps[MAX_VARIABLES];
5 uint8_t n_variables_u8;
6 uint8_t active_u8;
7 uint8_t int_mask_u8;
8
9 uint8_t (*initSensor_pf)();
10 void (*configSensor_pf)(char*, uint8_t);
11 uint8_t (*readSensor_pf)(int32_t*);
12 void (*interruptHandler_pf)(uint8_t);
13 } sensor_st;

Code A.7: Sensor struct.

The sensor is composed of its physical variables. These variables struct are illustrated in Code A.8.

A variable is composed of the variable’s name, units, status, samples, period, counter, counts, and the

latest sample. The status variable enables the configuration of the emergency, sample mode, and variable

status.

1 typedef struct variable{
2 uint8_t name_au8[FIXED_SENSOR_NAME_LENGTH];
3 uint8_t units_au8[8];
4 status_st status_s;
5
6 samples_st samples_s;
7
8 uint16_t period_u16;
9 uint8_t counter_u8;
10 uint8_t counts_u8;
11
12 uint32_t latest_sample_u32;
13 } variable_st;

Code A.8: Sensors’ variable struct.

As an example of altering the sensor behaviour, changing the period can be performed by using the

function represented in Code A.9. This function receives the sensor and variable index with the respective

new period. If it is a valid index and period, it sets the variable with the new period.

1 status_et setSensorVariablePeriod_e(uint8_t sensor_u8 , uint8_t variable_u8 ,
uint16_t new_period_u16){

2 tx_bin_semaphore_get(&sensors_aps_bsem , TX_WAIT_FOREVER);
3 if (sensor_u8 >= n_sensors_u8 ||
4 variable_u8 >= sensors_aps[sensor_u8]->n_variables_u8 ||
5 new_period_u16 == 0){
6 tx_bin_semaphore_put(&sensors_aps_bsem);
7 return failure;
8 }
9 sensors_aps[sensor_u8]->variables_aps[variable_u8]->period_u16 = \
10 new_period_u16;
11 tx_bin_semaphore_put(&sensors_aps_bsem);
12 return success;
13 }

Code A.9: Set sensor variable period functions.

On the other hand, if the objective is to get the variable’s periods. It is possible recurring the Function

A.10. This function receives a pointer to a 16-bits array and fills it with the variable’s periods, returning the

number of periods written to the array.

168

Appendix A. Appendix

1 uint8_t getSensorsPeriods_u8(uint16_t *periods_pu16){
2 tx_bin_semaphore_get(&sensors_aps_bsem , TX_WAIT_FOREVER);
3 for(i_u8=0; i_u8 < variable_index_u8; i_u8++){
4 periods_pu16[i_u8] = variables_data_aps[i_u8]->period_u16;
5 }
6 tx_bin_semaphore_put(&sensors_aps_bsem);
7
8 return i_u8;
9 }

Code A.10: Get sensor’s variables period functions.

There are more functions to set the variable status and its configuration. Therefore, the sensor’s

configuration and behaviour can be set and get in run-time with these functions.

A.1.3 Cryptography

The cryptography module has the run-time RSA algorithm, AES, and MD5 with the STMicroelectronics

Encryption library. Also, the AES implementation using the encryption chip ATECC608A and the MD5 im-

plementation adapted from an open-source project. These implementations allow in compile-time, through

macros, to choose the algorithm implementation. The implementations will be compared in the results

section.

The code is presented in Listing A.3.1. It provides initialization, encryption and decryption functions.

The MD5 has two implementations to decrease the code size when the STMicroelectronics encryption

libraries are not used.

The ATECC608A module configures all module registers and locks them. This configuration is made

for the module to sleep 1.3 seconds after the last use. An API that initializes the module and provides

encryption and decryption functions was exposed.

A.1.4 Communication

The communication is divided into four modules: transmission, reception, asynchronous events, and

the connection manager as designed in Section 5.3.7.

In this module is shared between the transmission and reception a 1024 bytes buffer and the datagram

structure represented in Code A.11. This structure is comprises a pointer to the microservice, an array of

datagram objects, and the respective array object number. A datagram object is composed of a pointer to

the id, data, and binary semaphore and its respective length and type.

1 typedef struct datagramobject{
2 const char* id_pcc;
3 const void* data_pv;
4 TX_SEMAPHORE *bsem_p;
5 uint16_t len_u16;
6 uint8_t type_u8;

169

A.1. End-device Implementation

7 } datagramobject_st;
8
9 typedef struct datagram{
10 const uint8_t* microservice_pu8;
11 datagramobject_st objects_as[C_DATAGRAM_OBJ_SIZE];
12 uint16_t n_objects_u16;
13 } datagram_st;

Code A.11: Datagram and datagram objects structures.

The following subsections will explain how the respective modules use these structures.

Transmission

The transmission has an API that allows the user to transmit data to the cloud efficiently. This interface

starts with a function to set up a new transmission as represented in Code A.12. It starts by getting the

shared datagram buffer and then clears the microservice and the number of objects in the datagram.

1 void communicationSetupNewTransmission_v(void){
2 tx_bin_semaphore_get(&_datagram_bsem , TX_WAIT_FOREVER);
3
4 _datagram_s.microservice_pu8 = NULL;
5 _datagram_s.n_objects_u16 = 0;
6
7 return;
8 }

Code A.12: Transmission setup new transmission function.

The microservice can be set using the communicationSetupMicroservice function represented in

Code A.13.

1 void communicationSetupMicroservice_v(const uint8_t *microservice_pu8){
2 _datagram_s.microservice_pu8 = microservice_pu8;
3 return;
4 }

Code A.13: Transmission microservice setup.

In order to add objects to the datagram, it can be done by appending into the array or inserting in

specific array position with the functions as illustrated in Code A.14. The append function set the received

values into the last datagram object position, and the insert also receives an index in the parameter the

array set location.

1 void communicationAppendDatagramObject_v(void* data_pv, uint8_t type_u8,
2 const char *id_pcc,
3 uint16_t len_u16,
4 TX_SEMAPHORE *ptr_pbsem){
5 _datagram_s.objects_as[_datagram_s.n_objects_u16].data_pv = data_pv;
6 _datagram_s.objects_as[_datagram_s.n_objects_u16].type_u8 = type_u8;
7 _datagram_s.objects_as[_datagram_s.n_objects_u16].len_u16 = len_u16;
8 _datagram_s.objects_as[_datagram_s.n_objects_u16].bsem_p = ptr_pbsem;
9 _datagram_s.objects_as[_datagram_s.n_objects_u16].id_pcc = id_pcc;
10
11 _datagram_s.n_objects_u16 = \
12 (_datagram_s.n_objects_u16 + 1) % C_DATAGRAM_OBJ_SIZE;
13

170

Appendix A. Appendix

14 return;
15 }
16
17 void communicationInsertDatagramObject_v(uint8_t index_u8 , void* data_pv,
18 uint8_t type_u8,
19 const char *id_pcc,
20 uint16_t len_u16,
21 TX_SEMAPHORE *ptr_pbsem){
22 if(index_u8 < C_DATAGRAM_OBJ_SIZE){
23 _datagram_s.objects_as[index_u8].data_pv = data_pv;
24 _datagram_s.objects_as[index_u8].type_u8 = type_u8;
25 _datagram_s.objects_as[index_u8].len_u16 = len_u16;
26 _datagram_s.objects_as[index_u8].bsem_p = ptr_pbsem;
27 _datagram_s.objects_as[index_u8].id_pcc = id_pcc;
28
29 _datagram_s.n_objects_u16++;
30 }
31 return;
32 }

Code A.14: Transmission append and insert datagram object functions.

When the application finalizes inserting and appending the data that it wants to transmit, it calls the

function communicationSendDatagram. This function receives the index, used to repeat the objects from

the beginning to the index received if the datagram exceeds the modem maximum of 1024 bytes. Then it

starts by filling the cloud header.

The cloud header adds the microservice if it exists (different from NULL). If the encryption is enabled,

it can be performed in run-time or static. Since the cloud header does not change, it can be used static

headers already encrypted, and this way, the microcontroller does not require the overhead of encrypting

the header with the RSA. When the static encryption is enabled, the microservice pointer has a 128-bytes

string of the header, and it is copied. If it is using the run-time encryption, it adds the microservice opcode,

the AES and IV and encrypts it using the RSA. If no encryption is used and it has a microservice, it is added.

After filling the encryption header, the transmission enters the conversion to message pack the objects

and insert them into the datagram using the insertObject function. This function returns if it fails, the

datagram is full or not full. When the datagram is full, it saves the respective auxiliary variables, fills the

array header, and is encrypted and sent into the cloud. After transmitting, it repeats the number of objects

received as a parameter from the beginning of the object array. When it adds these objects, it returns to

the object that was not inserted because the datagram was full.

When there are no more objects to insert into the datagram, the last datagram is sent, and the function

returns success. If something fails, it returns failure.

1 status_et communicationSendDatagram_e(uint8_t repeat_until_object_i_u8){
2 ...
3 payload_start_u8 = fillCloudHeader_siu8();
4
5 trans_s.msg_len_u16 = payload_start_u8 + 9; /* 9 is the header offset

*/
6 start_msg_len_u8 = trans_s.msg_len_u16;

171

A.1. End-device Implementation

7
8 do{
9 if(repeat_until_object_i_u8 > 0){
10 /* Reset to the first array object */
11 ...
12 }
13 for(; obj_i_u16 < _datagram_s.n_objects_u16; obj_i_u16++){
14 /* Gets binary semaphore if != NULL*/
15 switch(_insertObject_ie(&obj_i_u16 , &trans_s)){
16 case FAILURE_TRANSMISSION:
17 /* Puts binary semaphore if != NULL */
18 return failure;
19 case FULL:
20 total_parts_u8++;
21 datagram_full_u8 = 1;
22 /* Backup array index variables*/
23 default:
24 break;
25 }
26 /* Puts binary semaphore if != NULL */
27 if(obj_i_u16 + 1 == repeat_until_object_i_u8){
28 /* Already repeated the objects, returns to the break
29 object */
30 ...
31 }
32 if(datagram_full_u8){
33 break;
34 }
35 }
36 /* Set the parts and total parts and array beginning */
37
38 /* Encrypt using AES */
39
40 /* Sends the datagram */
41 }while(part_u8 != total_parts_u8);
42 /* Returns transmission success or failure */
43 }

The parts and total parts variables are used to indicate the current datagram part and when the current

part equals the total parts indicates that the datagram was all sent. After the transmission, this module

offers the communicationEndTransmission_v, releasing the datagram binary semaphore.

Reception

The reception does the opposite of the transmission. It receives the data in message pack format and

converts it into datagram objects. Also, it has a generic interface as the transmission.

The communicationSetupNewReception_v gets the datagram binary semaphore, and its release

can be performed with the function communicationEndReception_v. The reception core function is the

communicationReceiveDatagram_e which its structure is represented in Code A.15.

1 status_et communicationReceiveDatagram_e(uint16_t len_u16){
2 /* Data received decryption*/
3 ...
4
5 /* MD5 verification */
6 ...

172

Appendix A. Appendix

7
8 /* Number of elements in array conversion*/
9 ...
10
11 /* Parse message pack payload */
12 for(object_i_u8 = 0; object_i_u8 < _datagram_s.n_objects_u16;

object_i_u8++){
13 switch(_buffer_au8[index_u8]){
14 case MP_BIN8:{ /*Parse BIN8*/
15 ...
16 }
17 case MP_BIN16:{ /*Parse BIN16 */
18 ...
19 }
20 case MP_I8:{
21 *free_memory_pu8 = _buffer_au8[index_u8+1];
22 _insertDatagramObject_v(free_memory_pu8 , 1, INT8_T,
23 object_i_u8);
24
25 free_memory_pu8 += 1;
26 index_u8 += 2;
27 break;
28 }
29 case MP_U8:{ /* Parse UIN8_T */
30 ...
31 }
32 case MP_I16:{ /* Parse INT16_T */
33 ...
34 }
35 case MP_U16:{ /* Parse UINT16_T */
36 ...
37 }
38 case MP_I32:{ /* Parse INT32_T */
39 ...
40 }
41 case MP_U32:{ /* Parse UINT32_T */
42 ...
43 }
44 case MP_I64:{ /* Parse INT64_T */
45 ...
46 }
47 case MP_U64:{ /* Parse UINT64_T */
48 ...
49 }
50 }
51 }
52 return success;
53 }

Code A.15: Communication receive datagram function.

This function starts by decrypting the data received if the encryption is enabled. Then, if the MD5 is

enabled, generate the hash key and compares it with the received. If it does not match, it returns failure.

After the integrity verification, it parses the number of objects in the array’s header.

If the number of objects does not exceed what the device can receive, it enters the message pack

payload loop parse. In this loop, it converts the message pack to datagram objects. In the listing above, it

is represented the conversion of an integer of 8 bits. It starts by saving the data received in the buffer to

free memory and calls the auxiliary function that inserts as datagram object the parameters received.

173

A.1. End-device Implementation

It is used the insertDatagramObject_v represented in Code A.16 as an auxiliary function. It receives

the object index with the void pointer to the data, its length and type, inserting it into the datagram object

array.

1 static inline void _insertDatagramObject_v(void* data_pv, uint16_t len_u16,
2 valuetype_et type_e,
3 uint8_t object_i_u8){
4 _datagram_s.objects_as[object_i_u8].type_u8 = type_e;
5 _datagram_s.objects_as[object_i_u8].len_u16 = len_u16;
6 _datagram_s.objects_as[object_i_u8].data_pv = data_pv;
7
8 return;
9 }

Code A.16: Insert datagram object auxiliary function.

In order to facilitate the use outside the module, the reception has the function communicationGet-

ReceivedSize_u16 that returns the number of objects in the datagram object array.

Asynchronous Events

The asynchronous events thread is responsible for handling the modem’s asynchronous events. These

are data received from the cloud and if the cloud closes the modem socket. This thread implementation

is depicted in Code A.17, it waits for asynchronous signals from the modem event flags, and according to

the asynchronous event, it reacts to it. If data was received from the cloud, it set up a new reception, gets

the data from the cloud and parses it with the communicationReceiveDatagram, explained previously in

this section. If data was received and parsed successfully, the cloud data communication event flag is set.

When the socket closed URC occurs, it is closed the respective socket.

1 tx_event_flags_get(&m_eventflags , urc_ef, TX_OR_CLEAR ,
2 &actual_flags_ul , TX_WAIT_FOREVER);
3
4 if(actual_flags_ul & urc_ef){
5 communicationSetupNewReception_v();
6 tx_bin_semaphore_get(&modem_bsem , TX_WAIT_FOREVER);
7 if(modemGetCloudData_e(_buffer_au8 , &aux_u16, C_BUFFER_SIZE)==success){
8 if(communicationReceiveDatagram_e(aux_u16) == success){
9 tx_event_flags_set(&c_eventflags , c_cloud_data_ef , TX_OR);
10 }
11 }
12 tx_bin_semaphore_put(&modem_bsem);
13 communicationEndReception_v();
14 }
15 else if(isSocketClosedURC_e(UINT8_PTR(&aux_u16)) == success){
16 tx_bin_semaphore_get(&modem_bsem , TX_WAIT_FOREVER);
17 modemCloseSocket_e(aux_u16);
18 tx_bin_semaphore_put(&modem_bsem);
19 }

Code A.17: Asynchronous thread.

174

Appendix A. Appendix

Connection Manager

The connection manager thread is handles the modem configurations, network, and server connec-

tion. This thread is implemented using a state machine, depicted in Figure 5.31, it was implemented

using an array of pointers as illustrated in Code A.18. It comprises the initialization, configuration, check

network connection, server connection, socket, and wait for error states. This section will present how a

communication error is signal and show the configuration state as an example.

1 machineState_fp* errorRecoveryMachineState_apf[S_MACHINE_LEN] = {
2 initializationState ,
3 configState ,
4 checkNetworkConnectionState ,
5 serverConnectionState ,
6 socketState ,
7 waitForErrorState
8 };

Code A.18: Connection handler state machine pointer to functions array.

The communication errors possible are sending and getting clock errors. They are used to signal the

communication error through the signalCommunicationError function. This function, represented in

Code A.19, starts by getting the error handling binary semaphore and alerts the error received. Then, it

waits for the error correction and frees the error handling binary semaphore.

1 void signalCommunicationError_v(communicationEventFlags_et error_flag_e){
2 tx_bin_semaphore_get(&_error_handling_bsem , TX_WAIT_FOREVER);
3
4 tx_event_flags_set(&c_eventflags , error_flag_e , TX_OR);
5
6 /* Waits for the correction of the error*/
7 tx_event_flags_get(&c_eventflags , error_ok_ef ,
8 TX_OR_CLEAR , &unused_var TX_WAIT_FOREVER);
9
10 tx_bin_semaphore_put(&_error_handling_bsem);
11 }

Code A.19: Signal communication error function.

The waitForErrorState function waits for an error event flag to be set. Then, according to the

error, it jumps to the respective error handler state. If the error was the transmission, it jumps to the

socketState. On the other hand, if the error was getting the clock, the problem could be with the modem

connection to the network. Therefore, it jumps to the checkNetworkConnectionState.

All the states receive the last state and try variables. Code A.20 presents the configuration state.

This state configures the modem and waits for the modem network connection. If it is unsuccessful, it

checks if the last state executed was the previous state (initializationState) or the current state (

configState). If it was, it enters in sleepAndChangeStateMachineState. This state receives the tries,

previous and next state, and if the tries exceed a compilation time defined limit, it returns to the state

before the current running or the current state.

175

A.1. End-device Implementation

1 nextstate_t configState(uint8_t last_state_u8 , uint8_t* tries_pu8){
2 uint8_t next_state_u8;
3
4 if(configModem_e() != success ||
5 waitForModemNetworkConnection_e() != success){
6
7 next_state_u8 = S_INIT;
8 if(last_state_u8 == S_INIT || last_state_u8 == S_CONFIG){
9 next_state_u8 = sleepAndChangeStateMachineState_siu8(...);
10 }
11 return next_state_u8;
12 }
13
14 *tries_pu8 = 0;
15 return S_NETWORK_CNX;
16 }

Code A.20: Configuration connection manager state.

All the states follow the same structure as the configState, but they can apply an error handling

mechanism. For example, the socketState changes the socket if it is not successful.

In the initializationState, if the modem fails, the recoverModem is called to try to recover it. If

it can not recover, the board enters standby mode.

A.1.5 Commands

This section presents the commands manager thread implementation followed by an example of the

set and gets alarms command.

The commands format mentioned in Design 5.3.8 and represented in Figure 5.32 has in the first

position the command opcode and then the respective command values.

The commandsmanager thread implementation is divided into five stages. The first stage, represented

in Code A.21, waits for a signal for the communication event flag. This flag indicates that the modem has

received, parsed data and is waiting to be handled by the upper layer. After receiving the signal, the

commands thread locks the shared memory binary semaphore and gets the received size.

1 tx_event_flags_get(&c_eventflags , c_cloud_data_ef , TX_AND_CLEAR ,
2 &unused_var , TX_WAIT_FOREVER);
3
4 tx_bin_semaphore_get(&sharedata_bsem , TX_WAIT_FOREVER);
5
6 rcv_size_u8 = communicationGetReceivedSize_u16();

Code A.21: Data reception event flag wait.

If the received size is equal to or greater than one, it gets the datagram object containing the command

opcode and cast it from the void pointer. If it is not a valid type, the set status is set as an invalid type.

On the other hand, if the receive size is 0, the shared memory binary semaphore is put, and it returns to

stage one.

176

Appendix A. Appendix

1 if(rcv_size_u8 >= 1){
2 /* Valid Command Size */
3 communicationGetDatagramObject_e(0, &data_pv, &type_u8, &len_u16);
4
5 switch (type_u8){
6 case UINT8_T:{
7 opcode_u16 = *UINT8_PTR(data_pv); break;
8 }
9 case UINT16_T:{
10 opcode_u16 = *UINT16_PTR(data_pv); break;
11 }
12 default:{
13 set_status_e = invalid_type;
14 }
15 }
16 ...
17 }
18 else{
19 /* Invalid Command */
20 tx_bin_semaphore_put(&sharedata_bsem);
21 continue;
22 }

Code A.22: Command opcode parse command opcode.

If the opcode type is valid, the set and get functions are called in a set command, and only the get

function is in the get command. All the set and get commands have the same structure, receiving the

received size as the parameter, and at the end of this section, a set and get example will be presented. If

it is not a valid type, it releases the shared memory binary semaphore and returns to stage one. If a valid

command was received before the get function call, it starts a new communication transmission.

1 if(set_status_e != invalid_type){
2 if(opcode_u16 > CMDS_LEN - 1){
3 /*Invalid Set Command OPCode*/
4 set_status_e = invalid_cmd;
5 }
6 else{
7 /* Call Set Command Function*/
8 set_status_e = set_commands_afp[opcode_u16](rcv_size_u8);
9 }
10 }
11
12 if(set_status_e == invalid_type){
13 /*Invalid Type Response*/
14 tx_bin_semaphore_put(&sharedata_bsem);
15 continue;
16 }
17
18 communicationSetupNewTransmission_v();
19 communicationSetupMicroservice_v(cmd_response_microservice);
20
21 if((opcode_u16 & GET_CMD_MASK) < CMDS_LEN){
22 /* Valid Command*/
23 get_status_e = \
24 get_commands_afp[opcode_u16 & GET_CMD_MASK](rcv_size_u8);
25 }

Code A.23: Command set and get function call.

As an example of a set and get command, Code A.24 represents the set and get alarms command

177

A.1. End-device Implementation

functions. The set alarms command receives an array with the alarms and the number of alarms received.

These variables are supplied into the system control set alarms function. Finally, since the transmission

alarms have changed, it activates the transmission next alarm and returns success. If something fails, it

returns failure.

The get alarms command uses the shared memory data to save the query alarms from the system

control, appending a new alarms object into the communication.

The remaining set and get functions are similar. According to the command, they get the command

received data and set and get the respective command purpose.

In case of a command that only has or a set or get implementation and it is tried to execute, it will be

returned failure. For example, if it is tried to set the software version.

1 status_et _setAlarmsCMD_e(uint16_t rcv_i_objs_u16){
2 void* config_array_pv , *n_alarms_pv;
3 uint8_t type_u8;
4 uint16_t len_u16;
5 status_et status_e;
6
7 communicationGetDatagramObject_e(1, &config_array_pv , &type_u8,
8 &len_u16);
9
10 if(type_u8 != UARR8_T){
11 return failure;
12 }
13
14 status_e = communicationGetDatagramObject_e(2, &n_alarms_pv , &type_u8,
15 &len_u16);
16
17 if(status_e != success || type_u8 != UINT8_T){
18 return failure;
19 }
20
21 if(systemControlSetAlarms_e(config_array_pv ,
22 (*UINT8_PTR(n_alarms_pv))) != success){
23 return failure;
24 }
25 systemControlActivateNextAlarm_e();
26 return success;
27 }
28
29 status_et _getAlarmsCMD_e(uint16_t rcv_i_objs_u16){
30 uint8_t *current_addr_pu8 = UINT8_PTR(&sharedata_u);
31
32 *UINT8_PTR(current_addr_pu8) = systemControlGetAlarms_u8(
33 current_addr_pu8+1);
34
35 communicationAppendDatagramObject_v(current_addr_pu8 + 1, UARR8_T,
36 "ALARMS", *current_addr_pu8 , NULL);
37 return success;
38 }

Code A.24: Set and get alarm command.

After the respective command set and get execution, is performed a final communication datagram

object append of the command result, opcode, board id, and current timestamp as represented in Code

178

Appendix A. Appendix

A.25.

1 /* Valid Command Size */
2 appendIDTimestampObject_v();
3
4 if(set_status_e != invalid_type){
5 /* Valid Command */
6 cmd_result_au8[SET_RESULT_POS] = MP_FALSE;
7 cmd_result_au8[GET_RESULT_POS] = MP_FALSE;
8 if(set_status_e == success){
9 cmd_result_au8[SET_RESULT_POS] = MP_TRUE;
10 }
11 if(get_status_e == success){
12 cmd_result_au8[GET_RESULT_POS] = MP_TRUE;
13 }
14 communicationAppendDatagramObject_v(VOID_PTR(cmd_result_au8),
15 BIN8_T, "MP_R_SG", 3, NULL);
16
17 communicationAppendDatagramObject_v(data_pv, type_u8, "OPCODE",
18 1, NULL);
19 }

Code A.25: Command result, opcode, board ID, and timestamp append.

The final stage of the commands is the transmission of the command response. The command

manager thread signals the application manager thread that a command response can be sent and waits

for the application manager to answer that the command response has been sent. When the command

response is sent, the command manager frees the shared memory binary semaphore as represented in

Code A.26.

1 tx_event_flags_set(&a_eventflags , a_cmd_response_ef , TX_OR);
2
3 tx_event_flags_get(&a_eventflags , a_cmd_response_sent_ef , TX_AND_CLEAR ,
4 &unused_var , TX_WAIT_FOREVER);
5 communicationEndTransmission_v();
6
7 tx_bin_semaphore_put(&sharedata_bsem);

Code A.26: Command response transmission.

A command addition can be performed by adding the set and get function pointers into the respective

command array, increasing the command’s opcode with a maximum of 32767 (15 bits value).

A.1.6 Trace

The trace module is helpful to trace the application. When enabled, it periodically traces the threads

(including the main thread) and queue stacks, including the thread’s stack overflows.

The trace thread code is represented in A.27. It starts by sleeping, enabling the user to get the last

trace EEPROM values. After this interval, it initializes the trace EEPROM and enters in the calculate threads

and queues stack free space loop.

1 void traceThreadEntry_v(unsigned long thread_input_ul){
2 tx_thread_sleep(S_TO_TICKS(STARTUP_DELAY_S));

179

A.1. End-device Implementation

3
4 _initializeTraceEEPROM_iv();
5
6 while(1){
7 /* Calculate threads and queues stack free space */
8 _traceThreadsQueuesStackFreeSpace_v();
9
10 tx_thread_sleep(S_TO_TICKS(TRACE_DELAY_S));
11 }
12 }

Code A.27: Trace thread entry.

The function responsible for trace the threads and queues stacks are represented in Code A.28. This

function calls the functions responsible for calculating the respective free thread and queue stack space.

There are static const arrays of pointers to the stacks and the respective sizes as an auxiliary. The free

space is saved in the EEPROM using the writeEEPROM function. The main thread pointer and size are

queried in run-time. Therefore it is not presented in the static const arrays. As a result, its calculation is

done last.

1 static inline void _traceThreadsQueuesStackFreeSpace_v(void){
2 uint16_t i_u16;
3 uint16_t free_space_u16;
4
5 for (i_u16 = 1; i_u16 < THREADS_N; i_u16++){
6 free_space_u16 = _calculateThreadFreeSpace_iu16(
7 thread_stacks_apu8[i_u16],
8 thread_stacks_size_au8[i_u16]);
9
10 writeEEPROM_e(STACK_FREE_SPACE_BEGIN+(i_u16<<1),
11 UINT8_PTR(&free_space_u16), 2);
12 }
13
14 for (i_u16 = 0; i_u16 < QUEUE_N; i_u16++){
15 free_space_u16 = _calculateQueueFreeSpace_iu16(
16 queue_stacks_apu8[i_u16],
17 queue_stacks_size_au8[i_u16]);
18
19 /* Write eeprom queue free space */
20 }
21
22 free_space_u16 = _calculateThreadFreeSpace_iu16(
23 main_thread_stack_ppu8 ,
24 main_thread_stack_size_u32);
25 /* Write eeprom main thread free space */
26 }

Code A.28: Trace threads and queue stack free space calculation function.

The stack free space calculation varies if it is a thread or a queue because the thread stack is used

from the end of the array to the begin and the queue is the reverse. The stacks are filled with the value

“0xEF” in the program startup. Therefore, calculating the free space is counting the intact “0xEF”. As

illustrated in Code A.29, it is received the pointer to the thread or queue stack and the respective size. If

it is a thread, it counters the free space from the beginning. If it is a queue, it counts from the stack end.

1 static inline uint16_t _calculateThreadFreeSpace_iu16(

180

Appendix A. Appendix

2 uint8_t *thread_pu8 ,
3 uint16_t thread_size_u16){
4 uint16_t free_space_counter_u16 = 0;
5
6 while(*(thread_pu8 + free_space_counter_u16) == 0xEF &&
7 free_space_counter_u16 < thread_size_u16){
8 ++free_space_counter_u16;
9 }
10 return free_space_counter_u16;
11 }
12
13 static inline uint16_t _calculateQueueFreeSpace_iu16(
14 uint8_t *queue_pu8 ,
15 uint16_t queue_size_u16){
16 uint16_t free_space_counter_u16 = queue_size_u16 - 1;
17
18 while(*(queue_pu8 + free_space_counter_u16) == 0xEF &&
19 free_space_counter_u16 > 0){
20 --free_space_counter_u16;
21 }
22 return queue_size_u16 - free_space_counter_u16 - 1;
23 }

Code A.29: Calculate thread and queue free space functions.

Moreover, the trace module has an available log to EEPROM macros that can be useful to trace, for

example, MCU hard faults.

When the trace is enabled, the ThreadX stack checking feature is enabled. This feature checks if the

thread stack overflows, and if it has, it calls a callback. The callback is implemented in the trace module,

as represented in Figure A.30. It receives the respective stack overflowed thread pointer, saves the thread

name into the EEPROM, traces the threads and queues stack free space and puts the system in the lowest

power mode.

1 void stack_error_handler(TX_THREAD *thread_ptr){
2 _traceThreadsQueuesStackFreeSpace_v();
3
4 writeEEPROM_e(TX_STACK_CHECKING_BEGIN_ADDR ,
5 UINT8_PTR(thread_ptr ->tx_thread_name),
6 TX_STACK_CHECKING_SIZE);
7
8 uint8_t aux_u8 = '\0';
9 writeEEPROM_e(TX_STACK_CHECKING_END_ADDR , UINT8_PTR(&aux_u8), 1);
10
11 systemControlEnterStandby_v();
12 }

Code A.30: Trace implementation of ThreadX stack error handler function.

A python script was implemented that reads the exported EEPROM memory and shows it in a human-

readable manner, as explained in Section 6.2.3.

A.1.7 OTA

In order to perform an Over-The-Air (OTA) update, the end-device receives the delta and handles it.

181

A.1. End-device Implementation

The OTA interface is the OTA_e and getOTA_u32 functions. These functions are represented in Code

A.31. The OTA_e is responsible for the OTA state machine implementation. It takes the OTA package

index, delta, and delta length received and calls the respective OTA state responsible for handling it. Since

some OTA states are sequential, for example, if the Begin state is successful, it enters the New App Flash

Erase State. This function handles the state machine logic. If any state fails, it sets the machine state to

the Begin state. The getOTA_u32 function returns the expected OTA package index.

1 status_et OTA_e(uint16_t ota_pckg_index_u16 , uint8_t* delta_pu8 ,
2 uint16_t delta_len_u16){
3 while(1){
4 ota_state_u8=otaMachineState_apf[ota_state_u8](ota_pckg_index_u16 ,
5 delta_pu8 ,
6 delta_len_u16
7);
8
9 switch(ota_state_u8){
10 case S_FAILURE:{
11 /* Set the initial state and return failure */
12 ota_state_u8 = S_OTA_BEGIN;
13 return failure;
14 }
15 case S_NEW_APP_FLASH_ERASE:
16 case S_NEW_APP_CHECKSUM:
17 case S_END_OTA:
18 continue;
19 default:
20 return success;
21 }
22 }
23 }

Code A.31: OTA module interface functions.

The OTA states were implemented using an array of pointers to functions. These pointers to functions

receive the OTA package index, a pointer to delta array, and delta length. The Begin state case, receives

the OTA header instead of the delta. The rest of this section will show the implementation of the several

OTA states.

Code A.32 is the OTA Begin state, it starts by checking if the OTA package is 0 and the header length

is valid. If it is valid, it parses the received header. Then it validates that the new application address is

located in the other application area. If the header received is valid, it sets the new application current

address variable and resets the word window index, returning the New App Flash Erase state.

1 static nextstate_t otaBeginState(uint16_t ota_pckg_index_u16 ,
2 uint8_t* header_pu8 ,
3 uint16_t header_len_u16){
4
5 if(ota_pckg_index_u16 != 0 || header_len_u16 < 9){
6 return S_FAILURE;
7 }
8 _new_app_begin_addr_vu32 = ARR_TO_INT32(header_pu8 , 0);
9 _new_app_end_addr_vu32 = ARR_TO_INT32(header_pu8 , 4);
10 _new_app_checksum_vu8 = header_pu8[8];
11 _pckg_index_vu32 = ota_pckg_index_u16;

182

Appendix A. Appendix

12
13 if(_new_app_begin_addr_vu32 == TO_UINT32(current_app_addr_cpv)){
14 /* Not valid address since it is the current app address*/
15 return S_FAILURE;
16 }
17
18 if(_new_app_begin_addr_vu32 != OTA_APP1_ADDR &&
19 _new_app_begin_addr_vu32 != OTA_APP2_ADDR){
20 /* Begin address is invalid */
21 return S_FAILURE;
22 }
23
24 /* Valid begin address */
25 _new_app_current_addr_vu32 = _new_app_begin_addr_vu32;
26 _word_window_i_u8 = 0;
27
28 return S_NEW_APP_FLASH_ERASE;
29 }

Code A.32: OTA begin state.

The new application erases state, represented in Code A.33, starts by calculating the number of pages

occupied by the new firmware. If the number of pages exceeds the maximum number per application, it

erases the new application space and returns the new application flash program state.

1 static nextstate_t newAppFlashEraseState(...){
2 uint32_t pages_to_erase_u32=(_new_app_end_addr_vu32 -
3 _new_app_begin_addr_vu32)/
4 OTA_FLASH_PAGE_SIZE;
5
6 if((_new_app_end_addr_vu32 - _new_app_begin_addr_vu32) %
7 OTA_FLASH_PAGE_SIZE){
8 pages_to_erase_u32++;
9 }
10
11 if(pages_to_erase_u32 > OTA_MAX_PAGES){
12 return S_FAILURE;
13 }
14
15 if(TO_UINT32(current_app_addr_cpv) == OTA_APP1_ADDR){
16 /* We are in the APP1 and need to delete the APP2 space*/
17 unlockFlash_v();
18 eraseFlash_e(OTA_APP2_ADDR , pages_to_erase_u32);
19 lockFlash_v();
20
21 return S_NEW_APP_FLASH_PROGRAM;
22 }
23
24 /* We are in the APP2 and need to delete the APP1 space*/
25 unlockFlash_v();
26 eraseFlash_e(OTA_APP1_ADDR , pages_to_erase_u32);
27 lockFlash_v();
28
29 return S_NEW_APP_FLASH_PROGRAM;
30 }

Code A.33: OTA new application erase state.

The new application flash program is the core state of the OTA update. Since it is here where the

delta commands are parsed and executed into the flash. Therefore, if it receives the expected package,

it iterates through the delta commands and parses them with the switch case of line 14 in Code A.34.

183

A.1. End-device Implementation

According to the command, the behaviour is different, but they have all one thing in common, the data

insertion into the flash. Since the flash needs to be written aligned, the _word_window_i_u8 index of the

four bytes array _word_window_au8 purpose is to accumulate bytes read from to when it has 4 bytes be

written to the flash.

The COPY command copies from the flash starting on the address received, appending to the word

window array. On the other hand, the ADD command appends the data received. In both cases, when

the word window has four bytes, they are written into the new application area. The insertion in the new

application area is sequential and incremented according to the word window array writes.

Finally, when an END command is received, the word window array is padded with zeros and written

into the flash, returning the checksum as the next state. If all delta commands are parsed, and an END

command was not found, it returns the current state as the next state. This state is depicted in Code A.34.

1 static nextstate_t newAppFlashProgramState(uint16_t ota_pckg_index_u16 ,
2 uint8_t* delta_pu8 ,
3 uint16_t delta_len_u16){
4 uint16_t delta_i_u16 = 0;
5 otat32bit_st read_word_s;
6
7 if(ota_pckg_index_u16 != _pckg_index_vu32){
8 return S_NEW_APP_FLASH_PROGRAM;
9 }
10
11 unlockFlash_v();
12
13 do{
14 switch (OPCODE_MASK(delta_pu8[delta_i_u16])){
15 case OTA_CPY_OPCODE:{
16 /* Handle unfinished word*/
17 uint16_t bytes_to_copy_u16;
18 SWITCH_BYTES_OCCUPIED(
19 bytes_to_copy_u16 , delta_pu8 ,
20 delta_i_u16 + 1,
21 LEN_BYTES_LEN(delta_pu8[delta_i_u16])
22);
23
24 uint32_t cpy_addr_u32;
25 SWITCH_BYTES_OCCUPIED(
26 cpy_addr_u32 , delta_pu8 ,
27 delta_i_u16+LEN_BYTES_LEN(delta_pu8[delta_i_u16])+1,
28 CPY_BYTES_LEN(delta_pu8[delta_i_u16])
29);
30 cpy_addr_u32 += TO_UINT32(current_app_addr_cpv);
31
32 for(uint16_t cpy_i_u16=0; cpy_i_u16 < bytes_to_copy_u16;){
33
34 /* Align copy address*/
35 uint8_t alignment_offset_u8 = cpy_addr_u32 % 4;
36
37 uint8_t to_read_u8;
38 if(bytes_to_copy_u16 - cpy_i_u16 > 4){
39 to_read_u8 = 4;
40 }
41 else{
42 to_read_u8 = bytes_to_copy_u16 - cpy_i_u16;
43 }

184

Appendix A. Appendix

44
45 /* Read the word*/
46 uint32_t cpy_addr_u32=cpy_addr_u32 -alignment_offset_u8;
47 read_word_s.value=readWordFromFlash_u32(cpy_addr_u32);
48 cpy_addr_u32 += to_read_u8 - alignment_offset_u8;
49
50 /* Insert to the word window */
51 uint8_t j_u8 = 0;
52 for(uint8_t i_u8=4-(to_read_u8 -alignment_offset_u8);
53 i_u8 < 4; i_u8++){
54 _word_window_au8[_word_window_i_u8++] = \
55 read_word_s.value_b[alignment_offset_u8+j_u8++];
56
57 if(_word_window_i_u8 == 4){
58 /* Window complete , lets flash word */
59 _word_window_i_u8 = 0;
60 flashWord_e(_new_app_current_addr_vu32 ,
61 ARR_TO_INT32(_word_window_au8 , 0));
62 _new_app_current_addr_vu32 += 4;
63 }
64 }
65 cpy_i_u16 += 4 - alignment_offset_u8;
66 }
67
68 delta_i_u16 += 1 + LEN_BYTES_LEN(delta_pu8[delta_i_u16]) +
69 CPY_BYTES_LEN(delta_pu8[delta_i_u16]);
70 break;
71 }
72 case OTA_ADD_OPCODE:{
73 /* Handle unfinished word*/
74 uint16_t bytes_to_add_u16;
75 SWITCH_BYTES_OCCUPIED(
76 bytes_to_add_u16 ,
77 delta_pu8 , delta_i_u16 + 1,
78 LEN_BYTES_LEN(delta_pu8[delta_i_u16])
79);
80
81 for(uint16_t add_i_u16 = 0; add_i_u16 < bytes_to_add_u16;
82 add_i_u16++){
83 /* Insert to the word window */
84 _word_window_au8[_word_window_i_u8++] =delta_pu8[
85 delta_i_u16+1+LEN_BYTES_LEN(delta_pu8[delta_i_u16])+
86 add_i_u16
87];
88
89 if(_word_window_i_u8 == 4){
90 /* Window complete , lets flash word */
91 _word_window_i_u8 = 0;
92 flashWord_e(_new_app_current_addr_vu32 ,
93 ARR_TO_INT32(_word_window_au8 , 0));
94 _new_app_current_addr_vu32 += 4;
95 }
96 }
97
98 delta_i_u16 += 1 + LEN_BYTES_LEN(delta_pu8[delta_i_u16]) +
99 bytes_to_add_u16;
100 break;
101 }
102 case OTA_END_OPCODE:{
103 /* In case of window are not empty, pad it
104 with zeros and flash the rest */
105 if(_word_window_i_u8 != 0){
106 while(_word_window_i_u8 < 4){
107 _word_window_au8[_word_window_i_u8++] = 0;
108

185

A.1. End-device Implementation

109 if(_word_window_i_u8 == 4){
110 /* Window complete , lets flash word */
111 flashWord_e(_new_app_current_addr_vu32 ,
112 ARR_TO_INT32(_word_window_au8 , 0));
113 _new_app_current_addr_vu32 += 4;
114 }
115 }
116 }
117 _pckg_index_vu32 = ota_pckg_index_u16 + 1;
118
119 return S_NEW_APP_CHECKSUM;
120 }
121 default:{
122 lockFlash_v();
123 return S_FAILURE;
124 }
125 }
126 } while (delta_i_u16 < delta_len_u16);
127
128 lockFlash_v();
129
130 _pckg_index_vu32 = ota_pckg_index_u16 + 1;
131
132 /* Continue flashing */
133 return S_NEW_APP_FLASH_PROGRAM;
134 }

Code A.34: OTA new application program state.

When the delta reception is finalized, the OTA’s next state is the New Application Checksum State,

which implementation is as illustrated in Figure A.35. This state iterates through the new application

space summing all the bytes. After having the sum, it is done the mod of 256. The result is compared

with the checksum received in the OTA header. If the checksum equals, the new application was written

successfully, and the current state machine state is changed to the end state to end the update.

1 static nextstate_t newAppChecksumState(...){
2 uint32_t sum_u32 = 0;
3 uint32_t read_word_u32;
4
5 unlockFlash_v();
6 for(uint32_t i_u32 = 0;
7 i_u32 + _new_app_begin_addr_vu32 < _new_app_end_addr_vu32;
8 i_u32 += 4){
9 read_word_u32 = readWordFromFlash_u32(i_u32 +
10 _new_app_begin_addr_vu32);
11
12 sum_u32 += (read_word_u32 & 0xFF) + ((read_word_u32 >>8) & 0xFF) +
13 ((read_word_u32 >>16)&0xFF)+((read_word_u32 >>24)&0xFF);
14 }
15
16 uint8_t checksum_u8 = sum_u32 % 256;
17 if(checksum_u8 != _new_app_checksum_vu8){
18 lockFlash_v();
19 return S_FAILURE;
20 }
21 lockFlash_v();
22 return S_END_OTA;
23 }

Code A.35: OTA new application checksum state.

186

Appendix A. Appendix

The OTA end-state purpose is to signal the bootloader that a new application is ready to jump to and the

application that a valid Over-The-Air update has been done. Therefore, it starts by erasing the bootloader

hook variables and writing the new application address and magic key in the bootloader. Finally, it signals

by an event flag the application and set the following state machine to wait for restart state.

1 static nextstate_t endOTAUpdateState(...){
2 unlockFlash_v();
3
4 eraseFlash_e(CONFIGS_PAGE_ADDR , 1);
5
6 /* Set bootloader new application address */
7 if(TO_UINT32(current_app_addr_cpv) == OTA_APP1_ADDR){
8 /* Set APP2 address*/
9 flashWord_e(BOOTLOADER_NEW_APP_ADDR , OTA_APP2_ADDR);
10 }
11 else{
12 /* Set APP1 address*/
13 flashWord_e(TO_UINT32(BOOTLOADER_NEW_APP_ADDR), OTA_APP1_ADDR);
14 }
15
16 /* Set the Magic Key */
17 flashWord_e(BOOTLOADER_MAGIC_KEY_ADDR , OTA_MAGIC_KEY);
18
19 lockFlash_v();
20
21 /* Signal application to reset */
22 tx_event_flags_set(&a_eventflags , a_ota_update_ef , TX_OR);
23
24 return S_WAIT_FOR_RESTART;
25 }

Code A.36: OTA end state.

The wait for restart state, represented in Code A.37, as the end state signals the application that a

valid update has been performed and returns the current state. This state maintains the integrity of the

received new application to protect against new OTA updates before application restart.

1 static nextstate_t waitForRestartState(...){
2 /* Signal application to reset */
3 tx_event_flags_set(&a_eventflags , a_ota_update_ef , TX_OR);
4
5 return S_WAIT_FOR_RESTART;
6 }

Code A.37: OTA wait for restart state.

A.1.8 Application

The application has the application manager thread. This thread, depicted in Code A.38, is responsible

for the system startup and the send and application error handling loop.

1 void appManagerThreadEntry_v(unsigned long thread_input_ul){
2
3 /* Waits until the sensors are initialized
4 and then enable sensors sampling */
5 ...
6

187

A.1. End-device Implementation

7 /* Waits until the modem initializes and connects to the network */
8 ...
9
10 systemControlSetDatetimeUpdateFunction_v(communicationGetDateTime);
11
12 /*Enables system control thread RTC update*/
13 tx_event_flags_set(&sc_eventflags , sc_enable_rtc_update , TX_OR);
14
15 /* Gets the board ID from modem sim card*/
16 id_u64 = getModemID_u64();
17
18 /* If the sensors are initialized , waits until the rtc is updated to

set the first alarm */
19 ...
20
21 /* Initializes RSA and AES encryption */
22 ...
23
24 /* Starts the command manager thread */
25 tx_thread_resume(&cmd_manager_thread);
26
27 /* Activates send config flag */
28 tx_event_flags_set(&a_eventflags , a_config_ef , TX_OR);
29
30 while(1){
31 /* Wait for application event flags */
32 tx_event_flags_get(&a_eventflags , app_mng_efs_cu32 , TX_OR_CLEAR ,
33 &actual_flags_ul , TX_WAIT_FOREVER);
34
35 /* Handle event flag */
36 ...
37 }
38 }

Code A.38: Application manager thread entry.

The system initialization starts by waiting for a signal that the sensors are initialized. It enables the

sensors’ sampling if there are sensors. Then, it waits for the modem initialization. When the modem is

initialized, the system control date-time update function pointer is set to the communicationGetDateTime

and enabled the system control refresh RTC event flag. After, this thread gets the board id, which is the

modem ID. If there are sensors and the RTC is updated, it is set the first regular alarm. Moreover, it is

initialized the RSA and AES encryption. The system is properly started, the commands manager thread is

resumed, and the configuration event flag is set.

The main loop handles the configuration, emergency, regular, command response and error appli-

cation event flags. Code A.39 represents the configuration event flag handling as exemplifying a trans-

mission. It starts by getting the shared data binary semaphore. This shared data will be used to save

the configuration’s datagram objects. Then a new transmission and the configuration microservice are

set up. The transmission is ready for appending its datagram objects. Therefore, it appends the objects

and sends them. The transmission is ended and released the shared data binary semaphore. The other

transmissions follow a similar structure.

1 if(actual_flags_ul & a_config_ef){

188

Appendix A. Appendix

2 tx_bin_semaphore_get(&sharedata_bsem , TX_WAIT_FOREVER);
3
4 communicationSetupNewTransmission_v();
5
6 communicationSetupMicroservice_v(config_microservice);
7
8 _appendConfigDatagramObjects_iv();
9
10 communicationSendDatagram_e(2);
11
12 communicationEndTransmission_v();
13
14 tx_bin_semaphore_put(&sharedata_bsem);
15 }

Code A.39: Configuration event flag handle.

The error handling is composed of the error signal and handle. The signal can be performed with the

function represented in A.40. It receives the error, changes the error variable and sets the error event flag.

There is no thread synchronisation since there is only one application error (the getting date time error).

When the errors increase, a binary semaphore will be added.

1 void signalError_v(status_et error_e){
2 unsigned long actual_flags_ul;
3
4 _error_vu8 = error_e;
5
6 tx_event_flags_set(&a_eventflags , a_error_ef , TX_OR);
7
8 tx_event_flags_get(&a_eventflags , a_error_solved_ef ,
9 TX_OR_CLEAR , &unused_var , TX_WAIT_FOREVER);
10
11 return;
12 }

Code A.40: Error signal function.

The application error handling code is illustrated in Code A.41. If the error event flag is set, it switches

to the respective error case. If the date-time error is signalled, it gets the modem binary semaphore and

signals a communication date-time error. When the error is fixed, it is set the application error solved event

flag.

1 if(actual_flags_ul & a_error_ef){
2 switch(_error_vu8){
3 case getdatetime:
4 tx_bin_semaphore_get(&modem_bsem , TX_WAIT_FOREVER);
5 signalCommunicationError_v(datetime_error_ef);
6 tx_bin_semaphore_put(&modem_bsem);
7 break;
8 default: break;
9 }
10 tx_event_flags_set(&a_eventflags , a_error_solved_ef , TX_OR);
11 }

Code A.41: Application error handling.

The application manager thread agglomerates all the transmissions and error handling to save memory

RAM. As a result, it is only required that the application manager stack size be large enough to the RSA

189

A.2. OTA Result Code Changes

encryption functions.

A.2 OTA Result Code Changes

1 uint32_t end_i_u32;
2 uint32_t begin_i_u32 = 2;
3 char* token_pc = NULL; /* useful for parsing */
4
5 while(1){
6 /* Retrieve a message from the queue. */
7 tx_queue_receive(&m_rx_queue , &end_i_u32 , TX_WAIT_FOREVER);
8
9 /* Process Received Message */
10 if (circStrstr((const char*)m_rx_au8,"OK", begin_i_u32 ,
11 M_RX_BUFFER_SIZE) != NULL){
12 tx_event_flags_set(&m_eventflags , ok_ef, TX_OR);
13 }
14 else if(circStrstr((const char*)m_rx_au8,"QIRD", begin_i_u32 ,
15 M_RX_BUFFER_SIZE) != NULL){
16 /* gets the string until the token_pc ':' */
17 token_pc = circStrtok((char*)m_rx_au8,":", begin_i_u32 ,
18 M_RX_BUFFER_SIZE);
19 if(token_pc != NULL){ /* alwyas true if message received */
20 token_pc = circStrtok(NULL, "\0", NULL, M_RX_BUFFER_SIZE);
21 if(token_pc != NULL){ /* all ':' strings start with + */
22 char *ptr_pc;
23
24 uint16_t len_rcv_u16 = TO_UINT16(circStrtoul(CHAR_PTR(m_rx_au8),
25 &ptr_pc, 10,
26 begin_i_u32+(token_pc-CHAR_PTR(&m_rx_au8[begin_i_u32])),
27 M_RX_BUFFER_SIZE));
28
29 circStrtoul(CHAR_PTR(m_rx_au8), &ptr_pc, 10,
30 begin_i_u32+(&ptr_pc[1]-CHAR_PTR(&m_rx_au8[begin_i_u32])),
31 M_RX_BUFFER_SIZE);
32
33 if(ptr_pc[0] == ',') {
34 circMemcpy(nb_iot.cloud_dest_pau8 + nb_iot.data_rcv_u16 ,
35 m_rx_au8, len_rcv_u16 ,
36 begin_i_u32+(&ptr_pc[1]-CHAR_PTR(&m_rx_au8[begin_i_u32])),
37 M_RX_BUFFER_SIZE);
38
39 nb_iot.data_rcv_u16 += len_rcv_u16;
40
41 /* Set event flag to alert URC received. */
42 tx_event_flags_set(&m_eventflags , rcv_data_ef , TX_OR);
43 }
44 }
45 }
46 }
47 else if (circStrstr((const char*)m_rx_au8, ">", begin_i_u32 ,
48 M_RX_BUFFER_SIZE) != NULL){
49 tx_event_flags_set(&m_eventflags , data_mode_ef , TX_OR);
50 }
51 else if (circStrstr((const char*)m_rx_au8,"ERROR", begin_i_u32 ,
52 M_RX_BUFFER_SIZE) != 0){
53 /* gets the string until the token_pc ':' */
54 token_pc = circStrtok((char*)m_rx_au8,":", begin_i_u32 ,
55 M_RX_BUFFER_SIZE);
56 if(token_pc != NULL){ /* alwyas true if message received */
57 /* checks if in fact there is a string terminated in ':' */

190

Appendix A. Appendix

58 token_pc = circStrtok(NULL, "\0", NULL, M_RX_BUFFER_SIZE);
59 if(token_pc != NULL){ /* all ':' strings start with + */
60 /* gets the informative message wether it was an error
61 or a simple response */
62 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8,
63 sizeof(nb_iot.last_msg),
64 begin_i_u32+(token_pc -(char*)&m_rx_au8[begin_i_u32]),

M_RX_BUFFER_SIZE);
65 }
66 }
67 else{
68 tx_event_flags_set(&m_eventflags , error_ef, TX_OR);
69 }
70 }
71 else{
72 /* gets the string until the token_pc ':' */
73 token_pc = circStrtok((char*)m_rx_au8,":", begin_i_u32 ,
74 M_RX_BUFFER_SIZE);
75 if(token_pc != NULL){ /* alwyas true if message received */
76 /* checks if in fact there is a string terminated in ':' */
77 token_pc = circStrtok(NULL, "\0", NULL, M_RX_BUFFER_SIZE);
78 if(token_pc != NULL){ /* all ':' strings start with + */
79 /* gets the informative message wether it was an error
80 or a simple response */
81 circStrlcpy((char*)nb_iot.last_msg,
82 (const char*)m_rx_au8, sizeof(nb_iot.last_msg),
83 begin_i_u32+(token_pc -(char*)&m_rx_au8[begin_i_u32]),
84 M_RX_BUFFER_SIZE);
85
86 if(circStrstr((const char*)m_rx_au8,"QIURC", begin_i_u32 ,
87 M_RX_BUFFER_SIZE) != NULL){
88 memcpy(nb_iot.cloud_urc_au8 , nb_iot.last_msg,
89 CLOUD_URC_BUFFER_SIZE);
90
91 /* Set event flag to alert URC received. */
92 tx_event_flags_set(&m_eventflags , urc_ef, TX_OR);
93 }
94 #ifdef USE_TCP
95 else if(circStrstr((const char*)m_rx_au8,"QISTATE", begin_i_u32 ,
96 M_RX_BUFFER_SIZE) != NULL){
97 /* Set event flag to alert URC received. */
98 tx_event_flags_set(&m_eventflags , socket_state_ef , TX_OR);
99 }
100 #endif
101 else if(circStrstr((const char*)m_rx_au8,"QPING", begin_i_u32 ,
102 M_RX_BUFFER_SIZE) != NULL){
103 /* Set event flag to alert URC received. */
104 tx_event_flags_set(&m_eventflags , ping_ef, TX_OR);
105 }
106 else if(circStrstr((const char*)m_rx_au8,"QIOPEN", begin_i_u32 ,
107 M_RX_BUFFER_SIZE) != NULL){
108 /* Answer example: +QIOPEN: 0,0 */
109 /* Set event flag to alert Open Socket received. */
110 tx_event_flags_set(&m_eventflags , socket_open_ef , TX_OR);
111 }
112 else if(circStrstr((const char*)m_rx_au8, "IP", begin_i_u32 ,
113 M_RX_BUFFER_SIZE) != NULL){
114 /* Set event flag to alert that is connected to the network. */
115 tx_event_flags_set(&m_eventflags , m_connected_ef , TX_OR);
116 }
117 else if (circStrstr((const char*)m_rx_au8, "CPIN", begin_i_u32 ,
118 M_RX_BUFFER_SIZE) != NULL){
119 if(circStrstr((const char*)m_rx_au8, "NOT",
120 begin_i_u32+(token_pc -(char*)&m_rx_au8[begin_i_u32]),

191

A.2. OTA Result Code Changes

121 M_RX_BUFFER_SIZE) == NULL){
122 tx_event_flags_set(&m_eventflags , sim_rdy_ef , TX_OR);
123 }
124 }
125 }
126 else{
127 /* there is no string terminated in ':' */
128 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8,
129 sizeof(nb_iot.last_msg),
130 begin_i_u32 , M_RX_BUFFER_SIZE);
131 /* gets the informative message */
132 }
133 }
134 if (circStrstr((const char*)m_rx_au8,"RDY", begin_i_u32 ,
135 M_RX_BUFFER_SIZE) != 0){
136 tx_event_flags_set(&m_eventflags , rdy_ef, TX_OR);
137 }
138 }
139 #ifdef M_RX_BUFFER_AND_MASK
140 begin_i_u32 = (end_i_u32 + 1) & (M_RX_BUFFER_SIZE -1);
141 #else
142 begin_i_u32 = (end_i_u32 + 1) % M_RX_BUFFER_SIZE;
143 #endif
144 }

Code A.42: Old modem parse UART messages thread code.

1 uint32_t end_i_u32;
2 uint32_t begin_i_u32 = 2;
3 char* token_pc = NULL; /* useful for parsing */
4 uint32_t total_u32 = 0;
5 uint32_t index_u32;
6
7 startRx_IT(MODEM);
8
9 while(1){
10 /* Retrieve a message from the queue. */
11 tx_queue_receive(&m_rx_queue , &end_i_u32 , TX_WAIT_FOREVER);
12
13 index_u32 = begin_i_u32;
14 total_u32 = 0;
15
16 while(m_rx_au8[index_u32] != '\0' && m_rx_au8[index_u32] != ':') {
17 if(m_rx_au8[index_u32] != '\n' && m_rx_au8[index_u32] != '\r') {
18 /* Sum every byte in order to have a unique "key" so it can
19 be parsed accordingly */
20 total_u32 += m_rx_au8[index_u32];
21 }
22 index_u32 += 1;
23 index_u32 &= (M_RX_BUFFER_SIZE - 1);
24 }
25
26 /* Parse the command received */
27 switch(total_u32) {
28 case OK_CMD:
29 if (circStrstr((const char*)m_rx_au8,"OK", begin_i_u32 ,
30 M_RX_BUFFER_SIZE) != NULL){
31 tx_event_flags_set(&m_eventflags , ok_ef, TX_OR);
32 }
33 break;
34 case QIRD_CMD:
35 if (circStrstr((const char*)m_rx_au8,"QIRD", begin_i_u32 ,
36 M_RX_BUFFER_SIZE) != NULL){
37 char *ptr_pc;
38 token_pc = (char*)&m_rx_au8[index_u32 + 1];

192

Appendix A. Appendix

39
40 uint16_t len_rcv_u16 = TO_UINT16(
41 circStrtoul(CHAR_PTR(m_rx_au8), &ptr_pc, 10,
42 begin_i_u32+(token_pc-CHAR_PTR(&m_rx_au8[begin_i_u32])),
43 M_RX_BUFFER_SIZE));
44
45 circStrtoul(CHAR_PTR(m_rx_au8), &ptr_pc, 10,
46 begin_i_u32+(&ptr_pc[1]-CHAR_PTR(&m_rx_au8[begin_i_u32])),
47 M_RX_BUFFER_SIZE);
48
49 if(ptr_pc[0] == ',') {
50 circMemcpy(nb_iot.cloud_dest_pau8 + nb_iot.data_rcv_u16 ,
51 m_rx_au8, len_rcv_u16 ,
52 begin_i_u32+(&ptr_pc[1]-CHAR_PTR(&m_rx_au8[begin_i_u32])),
53 M_RX_BUFFER_SIZE);
54
55 nb_iot.data_rcv_u16 += len_rcv_u16;
56
57 /* Set event flag to alert URC received. */
58 tx_event_flags_set(&m_eventflags , rcv_data_ef , TX_OR);
59 }
60 }
61 break;
62
63 case DATA_MODE_CMD:
64 if (circStrstr((const char*)m_rx_au8,">", begin_i_u32 ,
65 M_RX_BUFFER_SIZE) != NULL){
66 tx_event_flags_set(&m_eventflags , data_mode_ef , TX_OR);
67 }
68 break;
69
70 case ERROR_CMD:
71 case CME_ERROR_CMD:
72 if (circStrstr((const char*)m_rx_au8,"ERROR", begin_i_u32 ,
73 M_RX_BUFFER_SIZE) != NULL){
74 if(m_rx_au8[index_u32] == ':') {
75 token_pc = (char*)&m_rx_au8[index_u32 + 1];
76
77 /* Gets the informative message wether it was an error or
78 a simple response */
79 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8,
80 sizeof(nb_iot.last_msg), begin_i_u32+(token_pc -
81 (char*)&m_rx_au8[begin_i_u32]),
82 M_RX_BUFFER_SIZE);
83 }
84 tx_event_flags_set(&m_eventflags , error_ef, TX_OR);
85 }
86 break;
87
88 case QENG_CMD:
89 if (circStrstr((const char*)m_rx_au8,"QENG", begin_i_u32 ,
90 M_RX_BUFFER_SIZE) != NULL){
91 token_pc = (char*)&m_rx_au8[index_u32 + 1];
92 token_pc+1 == (char*) &m_rx_au8[M_RX_BUFFER_SIZE] ?
93 token_pc = (char*)m_rx_au8 : token_pc++;
94
95 if (token_pc[0] != '1'){
96 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8,
97 sizeof(nb_iot.last_msg),
98 begin_i_u32+(token_pc -(char*)&m_rx_au8[begin_i_u32]),
99 M_RX_BUFFER_SIZE);
100 }
101 }
102 break;
103

193

A.2. OTA Result Code Changes

104 case QPING_CMD:
105 if (circStrstr((const char*)m_rx_au8,"QPING", begin_i_u32 ,
106 M_RX_BUFFER_SIZE) != NULL){
107 token_pc = (char*)&m_rx_au8[index_u32 + 1];
108
109 /* Gets the informative message wether it was an error or
110 a simple response */
111 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8,
112 sizeof(nb_iot.last_msg),
113 begin_i_u32+(token_pc -(char*)&m_rx_au8[begin_i_u32]),
114 M_RX_BUFFER_SIZE);
115
116 /* Set event flag to alert URC received. */
117 tx_event_flags_set(&m_eventflags , ping_ef, TX_OR);
118 }
119 break;
120
121 case QIURC_CMD:
122 if (circStrstr((const char*)m_rx_au8,"QIURC", begin_i_u32 ,
123 M_RX_BUFFER_SIZE) != NULL){
124 token_pc = (char*)&m_rx_au8[index_u32 + 1];
125
126 /* Gets the informative message wether it was an error or
127 a simple response */
128 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8,
129 sizeof(nb_iot.last_msg),
130 begin_i_u32+(token_pc -(char*)&m_rx_au8[begin_i_u32]),
131 M_RX_BUFFER_SIZE);
132
133 memcpy(nb_iot.cloud_urc_au8 , nb_iot.last_msg , CLOUD_URC_BUFFER_SIZE);
134
135 /* Set event flag to alert URC received. */
136 tx_event_flags_set(&m_eventflags , urc_ef, TX_OR);
137 }
138 break;
139
140 #ifdef USE_TCP
141 case QISTATE_CMD:
142 if (circStrstr((const char*)m_rx_au8,"QISTATE", begin_i_u32 ,
143 M_RX_BUFFER_SIZE) != NULL){
144 token_pc = (char*)&m_rx_au8[index_u32 + 1];
145
146 /* Gets the informative message wether it was an error or
147 a simple response */
148 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8,
149 sizeof(nb_iot.last_msg),
150 begin_i_u32+(token_pc -(char*)&m_rx_au8[begin_i_u32]),
151 M_RX_BUFFER_SIZE);
152
153 /* Set event flag to alert URC received. */
154 tx_event_flags_set(&m_eventflags , socket_state_ef , TX_OR);
155 }
156 break;
157 #endif
158
159 case QIOPEN_CMD:
160 if (circStrstr((const char*)m_rx_au8,"QIOPEN", begin_i_u32 ,
161 M_RX_BUFFER_SIZE) != NULL){
162 token_pc = (char*)&m_rx_au8[index_u32 + 1];
163
164 /* Gets the informative message wether it was an error or a simple

response */
165 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8, sizeof(

nb_iot.last_msg),
166 begin_i_u32+(token_pc -(char*)&m_rx_au8[begin_i_u32]),

194

Appendix A. Appendix

M_RX_BUFFER_SIZE);
167
168 /* Answer example: +QIOPEN: 0,0 */
169 /* Set event flag to alert Open Socket received. */
170 tx_event_flags_set(&m_eventflags , socket_open_ef , TX_OR);
171 }
172 break;
173
174 case IP_CMD:
175 if (circStrstr((const char*)m_rx_au8,"IP", begin_i_u32 ,
176 M_RX_BUFFER_SIZE) != NULL){
177 token_pc = (char*)&m_rx_au8[index_u32 + 1];
178
179 /* Gets the informative message wether it was an error
180 or a simple response */
181 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8,
182 sizeof(nb_iot.last_msg),
183 begin_i_u32+(token_pc -(char*)&m_rx_au8[begin_i_u32]),
184 M_RX_BUFFER_SIZE);
185
186 /* Set event flag to alert that is connected to the network. */
187 tx_event_flags_set(&m_eventflags , m_connected_ef , TX_OR);
188 }
189 break;
190
191 case CPIN_CMD:
192 if (circStrstr((const char*)m_rx_au8,"CPIN", begin_i_u32 ,
193 M_RX_BUFFER_SIZE) != NULL){
194 token_pc = (char*)&m_rx_au8[index_u32 + 1];
195
196 if(circStrstr((const char*)m_rx_au8, "NOT", begin_i_u32+
197 (token_pc -(char*)&m_rx_au8[begin_i_u32]), M_RX_BUFFER_SIZE)==NULL){
198 tx_event_flags_set(&m_eventflags , sim_rdy_ef , TX_OR);
199 }
200 }
201 break;
202
203 case RDY_CMD:
204 if (circStrstr((const char*)m_rx_au8,"RDY", begin_i_u32 ,
205 M_RX_BUFFER_SIZE) != NULL){
206 token_pc = (char*)&m_rx_au8[index_u32 + 1];
207
208 /* Gets the informative message wether it was an error
209 or a simple response */
210 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8,
211 sizeof(nb_iot.last_msg),
212 begin_i_u32+(token_pc -(char*)&m_rx_au8[begin_i_u32]),
213 M_RX_BUFFER_SIZE);
214
215 tx_event_flags_set(&m_eventflags , rdy_ef, TX_OR);
216 }
217 break;
218
219 case SEND_OK_CMD:
220 if (circStrstr((const char*)m_rx_au8,"SEND OK", begin_i_u32 ,
221 M_RX_BUFFER_SIZE) != NULL){
222 tx_event_flags_set(&m_eventflags , send_ok_ef , TX_OR);
223 }
224 break;
225
226 case SEND_FAIL_CMD:
227 if (circStrstr((const char*)m_rx_au8,"SEND FAIL", begin_i_u32 ,
228 M_RX_BUFFER_SIZE) != NULL){
229 tx_event_flags_set(&m_eventflags , error_ef, TX_OR);
230 }

195

A.3. Code

231 break;
232 case CLOSE_OK_CMD:
233 if (circStrstr((const char*)m_rx_au8,"CLOSE OK", begin_i_u32 ,
234 M_RX_BUFFER_SIZE) != NULL){
235 tx_event_flags_set(&m_eventflags , close_ok_ef , TX_OR);
236 }
237 break;
238
239 default:
240 if(m_rx_au8[index_u32] == ':') {
241 token_pc = (char*)&m_rx_au8[index_u32 + 1];
242
243 /* Gets the informative message wether it was an error
244 or a simple response */
245 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8,
246 sizeof(nb_iot.last_msg),
247 begin_i_u32+(token_pc -(char*)&m_rx_au8[begin_i_u32]),
248 M_RX_BUFFER_SIZE);
249 }
250 else {
251 /* Gets the informative message */
252 circStrlcpy((char*)nb_iot.last_msg ,(const char*)m_rx_au8,
253 sizeof(nb_iot.last_msg),
254 begin_i_u32 , M_RX_BUFFER_SIZE);
255 }
256 break;
257 }
258
259 #ifdef M_RX_BUFFER_AND_MASK
260 begin_i_u32 = (end_i_u32 + 1) & (M_RX_BUFFER_SIZE -1);
261 #else
262 begin_i_u32 = (end_i_u32 + 1) % M_RX_BUFFER_SIZE;
263 #endif
264 }

Code A.43: New modem parse UART messages thread code.

A.3 Code

A.3.1 Cryptography

1 #include "cryptography.h"
2

3 #ifdef CRYPTO_EN
4 /* ThreadX Variables Declaration. */
5 static TX_SEMAPHORE crypto_bsem;
6

7 #ifdef USE_ST_AES_ACC_HW
8 __align(8) static const uint8_t _key[16] = {...};
9 __align(8) static const uint8_t _iv[16] = {...};
10 #endif
11

12 typedef struct aes_data{
13 #ifdef USE_ATE
14 uint8_t key[16];
15 uint8_t iv[16];
16 #endif

196

Appendix A. Appendix

17 #ifdef USE_ST_AES_ACC_HW
18 const uint8_t *key_pu8c;
19 const uint8_t *iv_pu8c;
20 AccHw_AESECBctx_stt ctx;
21 #endif
22 }aes_t;
23

24 #if !defined(USE_STATIC_CRYPTO)
25 typedef struct rsa_data{
26 #if defined(USE_ST_RSA_SW)
27 #ifdef RSA_ENCRYPTION
28 RSApubKey_stt PubKey_st;
29 #endif
30 #ifdef RSA_DECRYPTION
31 RSAprivKey_stt PrivKey_st;
32 uint8_t PrivateExponent[RSA_SIZE/8];
33 #endif
34 #endif
35 #ifdef RSA_ENCRYPTION
36 #if defined(USE_ST_RSA_ACC_HW)
37 AccHw_RSApubKey_stt PubKey_st;
38 #endif
39 uint8_t Modulus[RSA_SIZE/8];
40 #endif
41 }rsa_t;
42

43

44 #if defined(USE_ST_RSA_SW)
45 uint8_t entropy_data[32] = { ... };
46 #endif
47

48 #if defined(USE_ST_RSA_SW) || defined(USE_ST_RSA_ACC_HW)
49 const uint8_t PublicExponent[] =
50 {
51 0x01, 0x00, 0x01
52 };
53 static rsa_t rsa;
54 #endif
55

56 /* buffer required for internal allocation of memory */
57 #if defined(USE_ST_RSA_SW) || defined(USE_ST_RSA_ACC_HW)
58 uint8_t preallocated_buffer[4096];
59 #endif
60

61 #endif
62

63 aes_t aes = {0};
64

197

A.3. Code

65 #ifdef USE_ST_AES_ACC_HW
66 static inline int32_t aesSTEnc(uint8_t * plaintext_pu8 , uint32_t

size_plaintext_u32 , uint8_t * ciphertext_pu8 , int32_t* output_msg_size);
67 static inline int32_t aesSTDec(uint8_t * ciphertext_pu8 , uint32_t

size_cyphertext_u32 , uint8_t * plaintext_pu8 ,int32_t* output_msg_size);
68 #endif
69

70

71 #if !defined(USE_STATIC_CRYPTO)
72 /**
73 * @brief Initialises RSA Encryption with PKCS#1v1.5
74 * @retval error status: SUCCESS in case of success and
75 * FAILURE in case of failure
76 */
77 status_et RSA_Init(void){
78

79 /* Enable CRC clock */
80 __CRC_CLK_ENABLE();
81

82 #ifdef RSA_ENCRYPTION
83 #if defined(USE_ST_RSA_SW) || defined(USE_ST_RSA_ACC_HW)
84 /* Preparing for Encryption */
85 rsa.PubKey_st.mExponentSize = sizeof(PublicExponent);
86 rsa.PubKey_st.mModulusSize = sizeof(rsa.Modulus);
87 rsa.PubKey_st.pmExponent = (uint8_t *) PublicExponent;
88 rsa.PubKey_st.pmModulus = (uint8_t *)rsa.Modulus;
89 #endif
90 #endif
91

92 #ifdef RSA_DECRYPTION
93 #if defined(USE_ST_RSA_SW) || defined(USE_ST_RSA_ACC_HW)
94 /* Preparing for Decryption */
95 rsa.PrivKey_st.mExponentSize = sizeof(PrivateExponent);
96 rsa.PrivKey_st.mModulusSize = sizeof(rsa.Modulus);
97 rsa.PrivKey_st.pmExponent = (uint8_t *) PrivateExponent;
98 rsa.PrivKey_st.pmModulus = (uint8_t *) rsa.Modulus;
99 #endif
100 #endif
101 return success;
102 }
103

104 /**
105 * @brief Refresh the modulus with the modulus received in @ref rsa_t

structure
106 * @retval None
107 */
108 void RSA_setModulus(const uint8_t *new_modulus){
109 uint16_t i;

198

Appendix A. Appendix

110

111 for(i=0; i<RSA_SIZE/8; i++){
112 rsa.Modulus[i] = new_modulus[i];
113 }
114

115 return;
116 }
117

118 #ifdef RSA_ENCRYPTION
119 /**
120 * @brief RSA Encryption with PKCS#1v1.5
121 * @param P_pPubKey The RSA public key structure , already initialized
122 * @param P_pInputMessage Input Message to be signed
123 * @param P_MessageSize Size of input message
124 * @param P_pOutput Pointer to output buffer
125 * @retval error status: can be RSA_SUCCESS if success or one of
126 * RSA_ERR_BAD_PARAMETER , RSA_ERR_MESSAGE_TOO_LONG , RSA_ERR_BAD_OPERATION
127 */
128 status_et RSA_Encrypt(const uint8_t *P_pInputMessage ,
129 int32_t P_InputSize ,
130 uint8_t *P_pOutput)
131 {
132 int32_t status = RNG_SUCCESS ;
133 #ifdef USE_ST_RSA_SW
134 RNGstate_stt RNGstate;
135 RNGinitInput_stt RNGinit_st;
136 RNGinit_st.pmEntropyData = entropy_data;
137 RNGinit_st.mEntropyDataSize = sizeof(entropy_data);
138 RNGinit_st.mPersDataSize = 0;
139 RNGinit_st.mNonceSize = 0;
140

141 status = RNGinit(&RNGinit_st , &RNGstate);
142 if (status == RNG_SUCCESS){
143 RSAinOut_stt inOut_st;
144 membuf_stt mb;
145

146 mb.mSize = sizeof(preallocated_buffer);
147 mb.mUsed = 0;
148 mb.pmBuf = preallocated_buffer;
149

150 /* Fill the RSAinOut_stt */
151 inOut_st.pmInput = P_pInputMessage;
152 inOut_st.mInputSize = P_InputSize;
153 inOut_st.pmOutput = P_pOutput;
154

155 /* Encrypt the message, this function will write sizeof(modulus) data
*/

156 status = RSA_PKCS1v15_Encrypt(&rsa.PubKey_st , &inOut_st, &RNGstate, &mb

199

A.3. Code

);
157 }
158 #endif
159 #ifdef USE_ST_RSA_ACC_HW
160

161 AccHw_RSAinOut_stt inOut_st;
162 membuf_stt mb;
163

164 mb.mSize = sizeof(preallocated_buffer);
165 mb.mUsed = 0;
166 mb.pmBuf = preallocated_buffer;
167

168 /* Fill the RSAinOut_stt */
169 inOut_st.pmInput = P_pInputMessage;
170 inOut_st.mInputSize = P_InputSize;
171 inOut_st.pmOutput = P_pOutput;
172

173 /* Encrypt the message, this function will write sizeof(modulus) data */
174 status = AccHw_RSA_PKCS1v15_Encrypt(&rsa.PubKey_st , &inOut_st, &mb);
175 #endif
176 if(status == RNG_SUCCESS){
177 return success;
178 }
179

180 return failure;
181 }
182 #endif
183

184 #ifdef RSA_DECRYPTION
185 /**
186 * @brief RSA Decryption with PKCS#1v1.5
187 * @param P_pPrivKey The RSA private key structure , already initialized
188 * @param P_pInputMessage Input Message to be signed
189 * @param P_MessageSize Size of input message
190 * @param P_pOutput Pointer to output buffer
191 * @retval error status: can be RSA_SUCCESS if success or RSA_ERR_GENERIC

in case of fail
192 */
193 status_et RSA_Decrypt(const uint8_t * P_pInputMessage ,
194 uint8_t *P_pOutput ,
195 int32_t *P_OutputSize)
196 {
197 int32_t status = RSA_SUCCESS ;
198 #ifdef USE_ST_RSA_SW
199 RSAinOut_stt inOut_st;
200 membuf_stt mb;
201

202 mb.mSize = sizeof(preallocated_buffer);

200

Appendix A. Appendix

203 mb.mUsed = 0;
204 mb.pmBuf = preallocated_buffer;
205

206 /* Fill the RSAinOut_stt */
207 inOut_st.pmInput = P_pInputMessage;
208 inOut_st.mInputSize = rsa.PrivKey_st.mModulusSize;
209 inOut_st.pmOutput = P_pOutput;
210

211 /* Encrypt the message, this function will write sizeof(modulus) data */
212 status = RSA_PKCS1v15_Decrypt(&rsa.PrivKey_st , &inOut_st, P_OutputSize , &

mb);
213 #endif
214 #ifdef USE_ST_RSA_ACC_HW
215 AccHw_RSAinOut_stt inOut_st;
216 membuf_stt mb;
217

218 mb.mSize = sizeof(preallocated_buffer);
219 mb.mUsed = 0;
220 mb.pmBuf = preallocated_buffer;
221

222 /* Fill the RSAinOut_stt */
223 inOut_st.pmInput = P_pInputMessage;
224 inOut_st.mInputSize = rsa.PrivKey_st.mModulusSize;
225 inOut_st.pmOutput = P_pOutput;
226

227 /* Encrypt the message, this function will write sizeof(modulus) data */
228 status = AccHw_RSA_PKCS1v15_Decrypt(&rsa.PrivKey_st , &inOut_st,

P_OutputSize , &mb);
229 #endif
230 if(status == RSA_SUCCESS){
231 return success;
232 }
233 return failure;
234 }
235 #endif
236

237 #endif
238

239 /**
240 * @brief Initialises the EAS128 encrypton
241 * @retval error status: success in case of success and
242 * failure in case of failure
243 */
244 status_et AES_Init(void){
245 status_et status_e = failure;
246

247 tx_bin_semaphore_get(&crypto_bsem , TX_WAIT_FOREVER); /* Locks the crypto
binary mutex*/

201

A.3. Code

248 #ifdef USE_ATE
249 uint8_t iv_aux[32];
250

251 if(atecc608a_init_config() == success){
252 atecc608a_random(iv_aux);
253 memcpy(aes.iv, iv_aux, 16);
254

255 status_e = (
256 status_et)atecc608a_aes_key(iv_aux);
257 memcpy(aes.key, iv_aux, 16);
258 tx_bin_semaphore_put(&crypto_bsem); /* Releases the crypto binary

semaphore */
259 }
260 #endif
261 #ifdef USE_ST_AES_ACC_HW
262 aes.iv_pu8c = _iv;
263 aes.key_pu8c = _key;
264

265 /* Set flag field to default value */
266 aes.ctx.mFlags = AccHw_E_SK_DEFAULT;
267

268 /* Set key size to 16 (corresponding to AES-128) */
269 aes.ctx.mKeySize = 16;
270

271 /* Set iv size field to IvLength*/
272 aes.ctx.mIvSize = 16;
273 #endif
274 tx_bin_semaphore_put(&crypto_bsem); /* Releases the crypto binary

semaphore */
275 return status_e;
276 }
277

278

279 /**
280 * @brief Copies the AES key to the received pointer
281 * @param kdf_gen_AES_key is where the key will be copied
282 * @retval error status: success in case of success and
283 * failure in case of failure
284 */
285 status_et AES_getKey(uint8_t* dest_key , uint8_t offset, uint8_t size){
286 #ifdef USE_ATE
287 memcpy(dest_key , aes.key+offset, 16-offset);
288 #endif
289 #ifdef USE_ST_AES_ACC_HW
290 memcpy(dest_key , aes.key_pu8c+offset, 16-offset);
291 #endif
292 return success;
293 }

202

Appendix A. Appendix

294

295 /**
296 * @brief Copies the IV array to the received pointer
297 * @param dest_iv is where the IV will be copied
298 * @retval error status: success in case of success and
299 * failure in case of failure
300 */
301 status_et AES_getIV(uint8_t* dest_iv, uint8_t offset, uint8_t size){
302

303 #ifdef USE_ATE
304 memcpy(dest_iv, aes.iv+offset, size);
305 #endif
306 #ifdef USE_ST_AES_ACC_HW
307 memcpy(dest_iv, aes.iv_pu8c+offset, 16-offset);
308 #endif
309 return success;
310 }
311

312

313 /**
314 * @brief Receives the plain text to be encrypted and it IV and encrypts

it
315 * @param kdf_gen_AES_key plain text to be encrypted
316 * @param size_plaintext length of the plain text
317 * @param ciphertext output plain text encrypted
318 * @param iv_16bytes initialization vector used in AES encryption
319 * @retval error status: success in case of success and
320 * failure in case of failure
321 */
322 status_et AES_Encrypt(uint8_t * plaintext_pu8 , uint32_t size_plaintext_u32 ,

uint8_t * ciphertext_pu8){
323 status_et status_e = failure;
324 tx_bin_semaphore_get(&crypto_bsem , TX_WAIT_FOREVER); /* Locks the crypto

binary mutex*/
325 #ifdef USE_ATE
326 status_e = (status_et)atecc608a_enc(plaintext_pu8 , size_plaintext_u32 ,

ciphertext_pu8 , aes.iv);
327 #endif
328 #ifdef USE_ST_AES_ACC_HW
329 int32_t output_msg_size_s16;
330 if(aesSTEnc(plaintext_pu8 , size_plaintext_u32 , ciphertext_pu8 , &

output_msg_size_s16) != AES_SUCCESS){
331 status_e = success;
332 }
333 #endif
334 tx_bin_semaphore_put(&crypto_bsem); /* Releases the crypto binary

semaphore */
335 return status_e;

203

A.3. Code

336 }
337

338

339 /**
340 * @brief Receives the cypher test to be decrypted and it IV and decrypts

it
341 * @param kdf_gen_AES_key plain text to be encrypted
342 * @param size_plaintext length of the plain text
343 * @param ciphertext output plain text encrypted
344 * @param iv_16bytes initialization vector used in AES encryption
345 * @retval error status: success in case of success and
346 * failure in case of failure
347 */
348 status_et AES_Decrypt(uint8_t * ciphertext_pu8 , uint32_t

size_cyphertext_u32 ,
349 uint8_t * plaintext_pu8){
350 status_et status_e = failure;
351

352 tx_bin_semaphore_get(&crypto_bsem , TX_WAIT_FOREVER);
353 #ifdef USE_ATE
354 status_e = (status_et)atecc608a_dec(ciphertext_pu8 , size_cyphertext_u32 ,
355 plaintext_pu8 , aes.iv);
356 #endif
357 #ifdef USE_ST_AES_ACC_HW
358 int32_t output_msg_size_s16;
359 if(aesSTDec(ciphertext_pu8 , size_cyphertext_u32 , plaintext_pu8 ,
360 &output_msg_size_s16) == AES_SUCCESS){
361 status_e = success;
362 }
363 #endif
364 tx_bin_semaphore_put(&crypto_bsem);
365 return status_e;
366 }
367

368

369 void cryptographyTXAppDefine_v(void){
370 /* Create the mutex to Modem mutex. */
371 tx_semaphore_create(&crypto_bsem , "Crypto BSEM", 1);
372

373 return;
374 }
375

376 #ifdef USE_ST_AES_ACC_HW
377 static inline int32_t aesSTEnc(uint8_t * plaintext_pu8 , uint32_t

size_plaintext_u32 ,
378 uint8_t * ciphertext_pu8 , int32_t*

output_msg_size){
379 int32_t out_lengtth_s32 = 0;

204

Appendix A. Appendix

380 uint32_t error_status = AES_SUCCESS;
381

382

383 /* Initialize the operation , by passing the key.*/
384 error_status = AccHw_AES_CFB_Encrypt_Init(&aes.ctx, aes.key_pu8c, aes.

iv_pu8c);
385

386 /* check for initialization errors */
387 if (error_status == AES_SUCCESS){
388 /* Encrypt Data */
389 error_status = AccHw_AES_CFB_Encrypt_Append(&aes.ctx,
390 plaintext_pu8 ,
391 size_plaintext_u32 ,
392 ciphertext_pu8 ,
393 &out_lengtth_s32);
394

395 if (error_status == AES_SUCCESS){
396 /* Write the number of data written*/
397 *output_msg_size = out_lengtth_s32;
398 /* Do the Finalization */
399 error_status = AccHw_AES_CFB_Encrypt_Finish(&aes.ctx, ciphertext_pu8

+
400 *output_msg_size , &

out_lengtth_s32);
401 /* Add data written to the information to be returned */
402 *output_msg_size += out_lengtth_s32;
403 }
404 }
405

406 return error_status;
407 }
408

409 static inline int32_t aesSTDec(uint8_t * ciphertext_pu8 , uint32_t
size_cyphertext_u32 ,

410 uint8_t * plaintext_pu8 , int32_t*
output_msg_size){

411 uint32_t error_status = AES_SUCCESS;
412 int32_t outputLength;
413

414 /* Initialize the operation , by passing the key. */
415 error_status = AccHw_AES_CFB_Decrypt_Init(&aes.ctx, aes.key_pu8c, aes.

iv_pu8c);
416

417 /* check for initialization errors */
418 if (error_status == AES_SUCCESS){
419 /* Decrypt Data */
420 error_status = AccHw_AES_CFB_Decrypt_Append(&aes.ctx,
421 ciphertext_pu8 ,

205

A.3. Code

422 size_cyphertext_u32 ,
423 plaintext_pu8 ,
424 &outputLength);
425 if (error_status == AES_SUCCESS){
426 /* Write the number of data written*/
427 *output_msg_size = outputLength;
428 /* Do the Finalization */
429 error_status = AccHw_AES_CFB_Decrypt_Finish(&aes.ctx, plaintext_pu8 +

*output_msg_size ,
430 &outputLength);
431 /* Add data written to the information to be returned */
432 *output_msg_size += outputLength;
433 }
434 }
435 return error_status;
436 }
437

438 #endif
439 #endif
440

441 #if defined(USE_MD5) && defined(USE_ST_MD5)
442 /**
443 * @brief MD5 HASH digest compute example.
444 * @param in_msg_pu8: pointer to input message to be hashed.
445 * @param in_msg_len_u32: input data message length in byte.
446 * @param digest_pu8: pointer to output parameter that will handle

message digest
447 * @param digest_len_ps32: pointer to output digest length.
448 * @retval success or failure according to @ref status_et
449 */
450 status_et md5(uint8_t* in_msg_pu8 , uint32_t in_msg_len_u32 , uint8_t *

digest_pu8)
451 {
452 MD5ctx_stt P_pMD5ctx;
453 uint32_t error_status = HASH_SUCCESS;
454 int32_t digest_len_s32;
455

456 /* Set the size of the desired hash digest */
457 P_pMD5ctx.mTagSize = CRL_MD5_SIZE;
458

459 /* Set flag field to default value */
460 P_pMD5ctx.mFlags = E_HASH_DEFAULT;
461

462 error_status = MD5_Init(&P_pMD5ctx);
463

464 /* check for initialization errors */
465 if (error_status == HASH_SUCCESS)
466 {

206

Appendix A. Appendix

467 /* Add data to be hashed */
468 error_status = MD5_Append(&P_pMD5ctx ,
469 in_msg_pu8 ,
470 in_msg_len_u32);
471

472 if (error_status == HASH_SUCCESS)
473 {
474 /* retrieve */
475 error_status = MD5_Finish(&P_pMD5ctx , digest_pu8 , &digest_len_s32);
476 return success;
477 }
478 }
479

480 return failure;
481 }
482 #endif

207

	Resumo
	Abstract
	Introduction
	Contextualization and Motivation
	Objectives
	Document Structure

	State-of-the-Art
	iot
	Traditional Architecture
	Wireless Technologies

	fota
	rtos
	Rate Monotonic Algorithm
	rtos Overview
	Bare-metal to RTOS
	Azure RTOS ThreadX Thread States
	Azure RTOS ThreadX Timers

	Microservices Architecture
	Cryptography

	System Specification
	Functional and Non-Functional Requirements
	Hardware
	Sensors
	Transceiver
	mcu
	Encryption
	Power Supply

	Software
	Low-Level Portable Layer
	Application Layer

	Improvement Opportunities
	Architectural Improvements
	End-device
	Cloud

	Use Cases

	Design
	Use Cases
	fota Algorithm
	End-device
	Code guidelines
	Software Stack
	Azure RTOS ThreadX Low-power mode
	System Control
	Sensors
	Cryptography
	Communication
	Commands
	Trace
	ota
	Bootloader
	Application

	Cloud
	Microservices
	Commands
	Database
	ota

	Implementation
	fota Delta
	End-device
	Azure rtos ThreadX Low-power mode
	Bootloader
	Helper Scripts
	Testing
	Code Size

	Cloud
	Microservices
	Command Response
	Commands
	Check Lost Packages
	Regular Transmissions Data Exportation

	Results
	Modular Power Consumption
	Encryption
	Full System
	Emergencies
	Command Response
	OTA

	Power Consumption Estimation

	Conclusion
	Future Work

	References
	Appendix
	End-device Implementation
	System Control
	Sensors
	Cryptography
	Communication
	Commands
	Trace
	ota
	Application

	OTA Result Code Changes
	Code
	Cryptography

