
Universidade do Minho
Escola de Engenharia

Vasco António Lopes Ramos

Monitoring Architecture for Services and
Servers in Healthcare Environment

September, 2022

Va
sc
o
Ra

m
os

M
on
ito

ri
ng

Ar
ch
ite

ct
ur
e
fo
r
Se

rv
ic
es

an
d

Se
rv
er
s
in
H
ea
lth

ca
re

En
vi
ro
nm

en
t

U
M
in
ho

|
20

22

Universidade do Minho
Escola de Engenharia

Vasco António Lopes Ramos

Monitoring Architecture for Services and
Servers in Healthcare Environment

Master’s Dissertation
Master in Informatics Engineering

Work developed under the supervision of:
Doctor Hugo Daniel Abreu Peixoto

September, 2022

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and good

practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

ii

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Acknowledgements

I would like to thank the ALGORITMI Center and the Portuguese Foundation for Science and Technology

(FCT) for financial support through national funds and, when applicable, co-financed by the FEDER, within

the scope of the project “Integrated and Innovative Solutions for the well-being of people in complex urban

centers” (UIDB/00319/2020).

To Hugo Peixoto, I am grateful for all the opportunities, advice and guidance provided during my

academic career which lead to the development of this project. Thank you also for your availability to

accompany me regularly and for all your attention.

To my friend and colleague, Carolina Marques, who, besides supporting me unconditionally and being

an excellent peer work partner, in parallel to this work, developed the web application that allows the result

of this dissertation to be used more interactively and visually by its users.

I also thank those who, not having contributed directly to this work, have shown their support during

my academic experience:

To those who accompany me and are my friends since my first year of university, Daniel Nunes and

Pedro Ferreira, because they were not only colleagues of study or academic ventures, but also showed me

their unconditional friendship in the ups and downs of this path and long after we followed different paths

in our lives.

To João Vasconcelos, my colleague of choice in academic work and adventures, from whom I learned

a lot and who always encouraged me to give the best of myself, inside and outside the classroom. Also,

to Raquel Ramos and Margarida Silva, for teaching me so much in areas I never expected to learn and for

putting up with me whenever I needed it.

To more recent friends, Maria Araújo and Constança Elias, who in the last two years have walked

the path with me in the master’s degree that ends with this work, for making me feel so welcomed and

integrated in this different stage of my life and for always contributing to a more optimistic perspective of

life’s adversities.

To Maria Soeiro, Daniela Pais and Mariana Pinto, my long-time friends, always there to offer me good

advice and celebrate new milestones.

And last, but certainly never least, to my parents, as it is undeniable that it would be impossible to get

here without your love and support. I thank you for your encouragement to academic excellence from an

early age.

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used pla-

giarism or any form of undue use of information or falsification of results along the process leading to its

elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do

Minho.

iv

“Software is a great combination between artistry and

engineering.” (Bill Gates)

v

Abstract

Monitoring Architecture for Services and Servers in Healthcare
Environment
Information systems are continuously evolving in nature and complexity. Infrastructure concerns such as

availability, efficiency, and disaster recovery have been some of the most important drivers regarding how

infrastructure is planned and executed. As these mechanisms evolved, so did the underlying foundation

for their functioning — Information Technology (IT) infrastructure monitoring.

Inside the healthcare environment, it is important to discuss IT infrastructure monitoring and disas-

ter prevention and recovery since availability and communication are vital for the proper functioning of

healthcare units, whether acting in isolation or on a network. When acting on a network, it is especially

important to be able to easily monitor and observe each unit from a single point of access so that actions

can be swiftly taken when there is a problem.

Considering the wide range of available solutions and heterogeneous nature of IT infrastructure, even

within the healthcare industry, the majority of the solutions either focus too much on a particular problem of

some industry, healthcare or not, or are too generic and can’t fulfill the needs of an increasingly connected

and interdependent healthcare industry.

This Dissertation proposes a web and microservices-based IT infrastructure monitoring backend so-

lution with a multi-site and multi-organization scheme at its core that is designed to be scalable, easily

deployed and integrated with existing tools, and simple to further extend and improve. This solution has

two main components, one server which is the central point of the solution, the guardian server, and the

other one, which is the local client to be installed on each organization’s infrastructure.

The produced backend solution was tested and validated in two healthcare organizations which pro-

vided useful feedback and a positive answer to the usefulness of a monitoring solution, such as the one

developed in this Dissertation, in improving the efficiency and reliability of the organizations’ IT infrastruc-

ture and, therefore, their healthcare services. A formal evaluation of the solution was also carried out with

a combination of a Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis and a risk assess-

ment report, both mechanisms providing useful insights on the strengths and limitations of the solution,

as well as possible improvement points.

Keywords: IT Infrastructure Monitoring, Microservices, Healthcare, Backend Architecture,

Containerization

vi

Resumo

Arquitetura de Monitorização para Serviços e Servidores em
Ambiente Hospitalar
Os sistemas de informação estão em constante evolução tanto em índole, como complexidade. Questões

como disponibilidade, eficiência e recuperação de falhas têm sido alguns dos fatores mais importantes

no que diz respeito ao planeamento e execução de infraestruturas. À medida que esses mecanismos

evoluíram, o mesmo aconteceu com a base subjacente para o seu funcionamento — a monitorização de

infraestruturas de Tecnologia de Informação (TI).

O ambiente hospitalar é particularmente relevante quando se discute monitorização de infraestruturas

de TI e a prevenção e recuperação de desastres, uma vez que a disponibilidade e a comunicação com

terceiros são vitais para o bom funcionamento das unidades de cuidados de saúde, quer estas atuem

isoladamente ou em rede. Ao atuar em rede, é especialmente importante ser capaz de facilmente moni-

torizar e observar cada unidade de saúde a partir de um único ponto de acesso, de modo a que, quando

houver um problema, se possa agir de forma rápida e integrada.

Tendo em conta a vasta gama de soluções de monitorização disponíveis e a heterogeneidade das

infraestruturas de TI, a maioria das soluções ou se concentra demasiado num problema específico de uma

dada indústria ou setor, de cuidados de saúde ou não, ou é demasiado genérica e não consegue satisfazer

as necessidades de uma indústria de cuidados de saúde cada vez mais conexa e interdependente.

Esta Dissertação propõe uma solução backend de monitorização de infraestruturas de TI baseada em

microserviços web, com um esquema multi-local e multi-organização na sua fundação, que foi concebida

para ser escalável, facilmente instalada e integrada com ferramentas já existentes, e simples de expandir

e melhorar. Esta solução tem dois principais componentes, um servidor que é o ponto central da solução,

o guardian server, e o outro que é o cliente local a ser instalado na infraestrutura de cada organização.

A solução backend produzida foi testada e validada em duas organizações de cuidados de saúde que

forneceram opiniões úteis e construtivas, bem como uma resposta positiva à utilidade de uma solução

de monitorização, como a desenvolvida nesta Dissertação, para melhorar a eficiência e fiabilidade da

infraestrutura de TI das organizações e, consequentemente, dos cuidados de saúde que estas prestam.

Foi também realizada uma avaliação formal da solução através da combinação de uma análise SWOT e

de um relatório de avaliação de risco, em que ambos forneceram informação útil sobre os pontos fortes

e limitações da solução, bem como possíveis pontos de melhoria.

Palavras-chave: Monitorização de Infraestruturas IT, Micro-serviços, Ambiente Hospitalar,

Arquitetura de Backend, Containerização

vii

Contents

List of Figures xi

List of Tables xiii

Acronyms xv

1 Introduction 1

1.1 Motivation . 2

1.2 Goals and Expected Results . 3

1.3 Document Outline . 4

2 State of the Art 6

2.1 Monitoring Architectures: Pull vs. Push . 6

2.2 Monitoring Tools and Solutions . 7

2.2.1 ELK Stack . 8

2.2.2 TICK Stack . 9

2.2.3 Nagios . 11

2.2.4 Prometheus . 12

2.2.5 Monitoring Tools Comparison . 13

2.3 Monolithic vs. Microservices Architectures . 16

2.3.1 Monolithic Architecture . 16

2.3.2 Microservices Architecture . 16

2.3.3 Architectures Comparison . 17

2.4 Web (API) Security . 18

2.5 Discussion . 19

2.6 Summary . 21

3 Research Methodology and Technologies 22

3.1 Design Science Research Methodology . 22

3.2 Questionnaires . 23

3.3 Implementation Technologies . 24

viii

CONTENTS

3.3.1 Authentication . 24

3.3.2 Web Servers and Services . 24

3.3.3 Databases . 25

3.3.4 API Gateway . 26

3.4 Summary . 27

4 Proposal 28

4.1 Technical Questionnaire . 28

4.2 Requirements . 31

4.2.1 Functional Requirements . 31

4.2.2 Non-Functional Requirements . 33

4.3 Domain Model . 34

4.4 Architecture . 35

4.4.1 Guardian Server . 36

4.4.2 Local Server . 37

4.4.3 Deployment . 38

4.5 Discussion . 39

4.6 Summary . 40

5 Implementation and Results 41

5.1 Data Models . 41

5.1.1 Monitoring Data . 41

5.1.2 Entities’ Data . 42

5.2 API Gateway . 44

5.3 Guardian Server . 46

5.3.1 Authentication . 46

5.3.2 Core Business Logic . 48

5.3.3 Alerting . 49

5.3.4 Data Exporting . 50

5.4 Local Server . 50

5.4.1 Push-based Data Collection . 50

5.4.2 Pull-based Data Collection . 51

5.5 API Documentation . 51

5.6 Deployment . 54

5.7 Core Features Examples . 56

5.8 External Results . 58

5.9 Summary . 60

ix

CONTENTS

6 Validation and Discussion 62

6.1 Usefulness and Acceptance Validation . 62

6.2 Formal Evaluation . 66

6.2.1 SWOT Analysis . 66

6.2.2 Risk Assessment . 68

6.3 Summary . 71

7 Conclusion 72

7.1 Final Remarks . 72

7.2 Contributions . 73

7.3 Future Work . 74

Bibliography 76

Appendices

A Initial Questionnaire 81

B Final Questionnaire 83

C Reference Examples 86

C.1 GitHub Action to Create and Publish Docker Image 86

C.2 Guardian Server’s Partial Docker Compose . 87

C.3 Local Server’s Docker Compose . 88

D Publications 89

D.1 Pervasive Monitoring System for Services and Servers in Healthcare Environment . . 89

D.2 Information Technology Monitoring in Healthcare: A Case Study 90

x

List of Figures

1 ELK stack architecture . 8

2 TICK stack architecture . 10

3 Nagios architecture . 11

4 Prometheus architecture . 13

5 Monolithic architecture . 16

6 Microservices architecture . 17

7 DSRM process model . 23

8 Distribution of IT administrators who use a monitoring solution in their organization . . . 29

9 Distribution of responses to the statements of the questionnaire’s second closed question

(see appendix A) . 30

10 Domain model diagram of the proposed monitoring solution 34

11 High-level architecture of the proposed monitoring solution 35

12 Guardian server — internal architecture . 37

13 Local monitoring server — internal architecture . 38

14 Global deployment architecture . 39

15 Sequence diagram of the interactions between the client and the solution to obtain a JSON

Web Token (JWT) token . 47

16 Sequence diagram of the interactions between the client and the solution when performing

a request . 47

17 Class diagram depicting the use strategy to represent the monitoring agents’ configurations 48

18 API documentation: PostgreSQL agent . 52

19 API documentation: NGINX agent . 52

20 Core service API documentation page - monitoring agent creation 53

21 Core service API documentation page - organizations querying 54

22 Alert service API documentation page - alert creation 54

23 OracleSQL agent creation API call . 56

24 NGINX agent creation API call . 57

25 Deadman agent creation API call . 57

xi

LIST OF FIGURES

26 Email alert creation API call . 57

27 Slack alert creation API call . 58

28 Monitoring data query API call . 58

29 Agent creation page . 59

30 Agents overview page . 59

31 Agent page . 59

32 Agent alerts page . 60

33 Agent’s metrics visualization page . 60

34 Distribution of the devices/services from which the solution was used and tested 63

35 Distribution of the regularity with which the solution was accessed and used 63

36 Distribution of responses to the third, fourth and fifth closed questions (see appendix B) 64

37 Distribution of responses to the statements of the questionnaire’s sixth closed question (see

appendix B) . 65

38 SWOT matrix . 66

xii

List of Tables

1 Comparison between monitoring solutions . 15

2 Likert scale used in the statements’ analysis . 30

3 SWOT analysis - results summary matrix . 68

4 Risk assessment results . 69

xiii

List of Examples

1 Organization’s data structure . 43

2 Group’s data structure . 43

3 User’s data structure . 43

4 Agent’s data structure . 44

5 Alert’s data structure - Email . 45

6 Kong configuration of the core service . 45

7 Logical condition based on “AND” and “OR” operations 49

8 Logical condition based on an “OR” operation 49

9 YAML-based decorator used to specify the creation endpoint of a monitoring agent . 53

10 Dockerfile - Core service . 55

11 GitHub action workflow to create and publish Docker image 86

12 Docker Compose - Guardian server . 87

13 Docker Compose - Loval server . 88

xiv

Acronyms

API Application Programming Interface 4, 8, 10, 15, 16, 18, 19, 20, 25, 26, 27, 31, 36, 38,

39, 40, 41, 44, 45, 48, 51, 53, 54, 56, 57, 58, 60, 72, 74

B2B Business-to-Business 19, 31

CD Continuous Delivery 55

CHTS Tâmega e Sousa Hospital Center 2, 28, 62, 71, 73

CI Continuous Integration 55

CORS Cross-Origin Resource Sharing 44

CSV Comma-Separated Values 50

DoS Denial-of-Service 18

DSRM Design Science Research Methodology 22, 23, 27

EADT European Association for Digital Transition 1

EHR Electronic Health Record 1

ELK Elasticsearch, Logstash, Kibana 7, 8, 9, 10, 13, 14, 15, 20

EU European Union 1

HTTP Hypertext Transfer Protocol 4, 10, 11, 12, 15, 18, 19, 24, 25, 31, 33, 35, 37, 41, 42, 43,

48, 50, 60, 67

HTTPS Hypertext Transfer Protocol Secure 44

IP Internet Protocol 36

IT Information Technology vi, vii, 2, 3, 4, 6, 7, 8, 9, 11, 18, 19, 21, 29, 31, 32, 40, 58, 62,

66, 67, 68, 71, 72, 73, 74, 75

JSON JavaScript Object Notation 8, 18, 25, 26, 44, 45, 49, 50

xv

ACRONYMS

JWT JSON Web Token xi, 18, 19, 24, 46, 47

NoSQL Not only SQL 19, 25, 32

OOP Object-Oriented Programming 25, 48

RAM Random-Access Memory 14

REST Representational State Transfer 8, 25

SaaS Software as a Service 15

SMS Short Message Service 11, 75

SMTP Simple Mail Transfer Protocol 11

SQL Structured Query Language 10, 14, 19, 32

SSD Solid State Drive 14

SSL Secure Sockets Layer 36

SWOT Strengths, Weaknesses, Opportunities and Threats vi, 5, 62, 66, 67, 68, 71, 73

TICK Telegraf, InfluxDB, Chronograf, Kapacitor 7, 8, 9, 10, 11, 13, 14, 15, 20

TLS Transport Layer Security 18

TSDB Time Series Database 10, 12, 15, 21, 25, 26, 36

USLGuarda Hospital Sousa Martins - Local Health Unit of Guarda 2, 28, 62, 71, 73

YAML Yet Another Markup Language 26, 45, 51, 56

xvi

C
h
a
p
te

r

1
Introduction

“Digitisation and the development of technologies must serve to strengthen healthcare ser-

vices, improving citizens’ access to these services, aiding better clinical practice, and en-

abling a healthcare plan that seeks to protect the health of persons and of society as a

whole.”

—European Association for Digital Transition (EADT) in [1]

The digital transition has been, for many years, a priority in the European Union (EU) in all sectors

of society and with a particular focus on healthcare. This transition from analog systems to digital ones

in healthcare was introduced and justified as a way to improve healthcare quality, efficiency and safety,

as well as to reduce costs and create new service innovations [2]. In this spirit, new and more complex

information systems and digital standards have arisen, such as the Electronic Health Record (EHR) and

alternative frameworks surrounding their usage and implementation (e.g openEHR1 and FHIR2). Thus,

healthcare is becoming more and more digital, with the hope of increasing the quality and efficiency of

healthcare services and, therefore, improving the lives of the citizens who need them and everyone around

them.

According to the World Health Organization in [3], health information systems have four key functions:

data generation, compilation and analysis, data synthesis, data communication, and data use. By this

definition, an ideal health information system collects data from the healthcare sector and other relevant

sectors, analyses and ensures the overall quality, significance and opportuneness of the data, converts

that data into information and knowledge for health-related decision-making and, finally, shares that data

with other, third-party, health information systems, enabling interoperability within the healthcare sector.

1https://www.openehr.org
2https://www.hl7.org/fhir

1

https://www.openehr.org
https://www.hl7.org/fhir

CHAPTER 1. INTRODUCTION

Being such systems so important and central to the proper functioning of the healthcare sector, it is

essential to guarantee that these do not fail or, at the very least, fail as little as possible. This effort can

only be achieved with a comprehensive and effective IT monitoring system. Insofar as health information

systems are a tool that supports the decision-making process in the management of patient’s health,

IT monitoring systems, not just in the healthcare sector, are the tool that supports the decision-making

process related to the management of the infrastructure that hosts the services and systems in question,

that is, the health information systems.

Thereby, this Dissertation intends to provide an answer to what a comprehensive IT monitoring solu-

tion with a particular focus on multi-organization and multi-site healthcare environments, where different

healthcare units work as a network to provide their services, should comprise and whether this architecture

topology would benefit the healthcare organizations, both in the simplification and maintainability of their

IT monitoring efforts and the availability and reliability of their systems. The study, evaluation and under-

standing of such concepts and possibilities is paramount to the advancement of the healthcare industry

since quality and efficient health information systems help healthcare organizations to achieve and expand

their main and ultimate goal, which is to provide their patients with the best care and services possible.

This Dissertation’s work is part of a larger project within the ALGORITMI Center tasked with the devel-

opment of a fully-functional IT monitoring solution for the healthcare sector. One of this initiative’s other

projects is the development of a web application by a colleague, Carolina Marques, in the scope of her

own master’s Dissertation. This web application’s core goal is to integrate with the monitoring backend

system developed in this Dissertation and serve as an interactive interface of the available monitoring

management and consumption capabilities. Furthermore, it is worth noting this Dissertation also had the

cooperation of two healthcare organizations, Tâmega e Sousa Hospital Center (CHTS) and Hospital Sousa

Martins - Local Health Unit of Guarda (USLGuarda), both in the early understanding of the problem and

the requirements for a solution to overcome them, as well as to test and validate the developed solution

within their systems, allowing for two real-life case studies regarding the application of this Dissertation’s

work.

In this chapter, it will be introduced the motivation for this work, followed by a specification of the goals

to be achieved and, finally, the outline of the document, summarising the main contents of each chapter.

1.1 Motivation

As stated above, the push of transitioning from the analog to the digital, within the healthcare indus-

try, originated environments that rely more and more on technology and information systems to provide

efficient and quality healthcare services to patients. However, it is important to ensure that technology

does not fail when it is needed most [4]. In this context, IT infrastructure monitoring systems are essential,

as they allow the analysis of the status of the provided services, as well as various metrics related to the

servers and infrastructure on which they are hosted [5].

2

1.2. GOALS AND EXPECTED RESULTS

Moreover, the healthcare industry has evolved over the years into an interconnected reality where

different healthcare units, whether belonging to a parent healthcare organization or not, work as part of

a larger network of healthcare facilities, available to all patients. This flexibility and cooperation was built

using interoperability technology and has allowed patients to quickly access healthcare services inside and

outside their residential areas and even across countries. It has also been observed that the use of similar

systems and services between different healthcare entities, whether they belong to the same organization

or not, has increased. Hence, the importance of being able to create and analyze monitoring engines in

an integrated way between different health units.

The motivation for this Dissertation came from realizing the difficulty and repetitive process of creating

and replicating monitoring structures in healthcare facilities that belong to the same health organization or

use the same information systems. This process is usually manual and not very efficient, which can lead

to inconsistencies and failures in the ability to observe the state of the infrastructure at any given moment.

Therefore, to support these specificities, emerged the need to evaluate the current context of IT infras-

tructure monitoring solutions and design an architecture that, on one hand, supports a multi-organization

and multi-site reality and, on the other hand, allows a dynamic configuration and management of the

enforced monitoring mechanisms. Also important for this type of architecture is the decoupling of respon-

sibilities and interoperability with third-party solutions, meaning it is essential that the designed architecture

can export the monitoring data so that it can be used by a wide variety of information visualization systems

and dashboards.

1.2 Goals and Expected Results

This Dissertation had as its origin a guiding research objective that transposes into the following ques-

tion: “Can a multi-site and multi-organization monitoring solution improve the availability of the highly

heterogeneous IT infrastructures of the healthcare industry?”.

With this guiding question in mind, the central goal of this work is to create a robust and replicable

backend monitoring architecture suitable for a multi-site and multi-organization healthcare environment

and to carry out its validation. In turn, this goal can be broken down into several intermediate goals:

• Explore the different aspects (advantages and disadvantages) between monolithic and microser-

vices architectures.

• Explore deployment and containerization concepts such as Docker and/or Kubernetes.

• Design the backend architecture for a multi-site and multi-organization monitoring backend archi-

tecture.

• Create and design a solution prototype artifact, which should include the following features:

3

CHAPTER 1. INTRODUCTION

– Creation and management of various monitoring mechanisms (ping, Hypertext Transfer Pro-

tocol (HTTP), databases, etc.).

– Real-time and scheduled multi-channel alerting.

– User management, with data privacy and security mechanisms.

– Storage data structure that can handle both local and global data (to support multi-site and

multi-organization environments).

– Production and consumption of monitoring data that can be interpreted by external clients,

such as a frontend layer, via Application Programming Interface (API)s that comply with cur-

rent web and data export standards.

– Simple and reliable multi-environment deployment.

• Implement the solution’s prototype as the Dissertation’s final artifact.

• Test, validate and evaluate the system, using both subjective and formal analysis methods.

1.3 Document Outline

The content of this Dissertation Report is organized into seven chapters.

Chapter 1 (Introduction), describes the overall context and motivation of this work, presents the goals

to be achieved and expected results and, finally, outlines the document’s structure and its main contents.

Chapter 2 (State of the Art) introduces the necessary background context and state-of-the-art related

to the topics of this Dissertation. The purpose and relevance of IT infrastructure monitoring are described

and an analysis and comparison of the various existing IT infrastructure monitoring solutions, architectural

options and web security concerns are provided. The chapter concludes with a proposal on how this

Dissertation can contribute to this topic and overcome the current issues and shortcomings of the available

commercial and open-source solutions.

In chapter 3 (Research Methodology and Technologies), it is presented the selected methodologies,

mechanisms and technologies that were used in the research, design and implementation of this Disser-

tation.

Chapter 4 (Proposal) specifies the system modeling and architectural artifacts used to design this Dis-

sertation’s work. First, there is a description of the conducted technical questionnaire and a presentation

of its results. Then, a detailed enumeration and explanation of the system requirements, followed by an

explanation of the solution’s domain model. Finally, the system architecture, both application and deploy-

ment, is presented. The chapter is concluded with a discussion of the proposed architectural design in

light of the specified requirements.

In chapter 5 (Implementation and Results), a detailed description of the solution’s implementation

is presented. First, are addressed the selected data models, followed by a description of the internal

4

1.3. DOCUMENT OUTLINE

components of each server, i.e., guardian and local servers. Then, are presented the documentation and

deployment mechanisms. Finally, are showcased examples of the solution’s core features and results

external to this Dissertation which demonstrate its functionality and integration capabilities.

Chapter 6 (Validation and Discussion) describes the validation and evaluation of the implemented

solution, with a parallel discussion of its results. First, the results from the validation via real-life case

studies are presented, followed by a formal evaluation comprised of a SWOT analysis and a risk assessment

report. This chapter is concluded with some observations on the solution’s quality and effectiveness as

well as a brief discussion regarding the overall outcome of this Dissertation and whether it was successful

or not.

Finally, in chapter 7 (Conclusion), it is summarised the developed work and some final remarks on

the accomplished results are made. It is also presented a compact enumeration of this Dissertation’s

technical and scientific contributions, as well as some future work suggestions.

5

C
h
a
p
te

r

2
State of the Art

This chapter presents the current state of the art related to this work. First, the purpose and relevance

of IT infrastructure monitoring solutions are described. Then, a description and subsequent comparison of

the different existing monitoring solutions and a categorical architecture difference in terms of data collec-

tion mechanisms are presented. There is also a discussion on the various existing software architectures,

with particular emphasis on the monolithic architecture and the microservices one, as well as the current

concerns regarding web security and the mechanisms to overcome them. The chapter is concluded with

a discussion of the solutions and approaches presented and how this Dissertation can contribute to this

topic.

2.1 Monitoring Architectures: Pull vs. Push

A monitoring solution that is intended to be useful and provide accurate information about the moni-

tored infrastructure must have data. To analyze the system’s performance and reliability history as well as

its current status in order to better understand possible future problems and constraints in the infrastruc-

ture, the monitoring solution must have large amounts of data. As such, it is clear that collecting data is

an important part of any monitoring solution, whether simple or complex. Therefore, data collection is one

of the most important aspects of IT infrastructure monitoring and one of the most controversial, as the

chosen paradigm to accomplish this task is a subject of great discussion and debate [6], [7]. From a data

collection perspective, there are two main monitoring architectures: Pull and Push, the main difference

being the location of the data collection component [8], [9].

In the Pull architecture, the data collection component is the active part, which means that the agent

requests a remote node to send data about itself [10]. These requests to collect metrics from the monitored

targets occur at regular intervals and there is a central service responsible for this scheduling. This

6

2.2. MONITORING TOOLS AND SOLUTIONS

paradigm is satisfactory in scenarios such as network monitoring, although some authors argue that

pull-based data collection is always a bad idea [8], [10]. The negative observation is due to perceived

inefficiencies in IT fields such as server and application monitoring and scalability issues (since centralized

systems are required to keep track of all known clients, handle scheduling, and parse returned data) [8].

Despite this line of thinking, there are important monitoring systems that follow a pull-based architecture,

such as Prometheus and Nagios.

In the Push architecture, the data collection component is passive, and the metrics and events are

sent by the client, i.e., the client (a server, an application, a metrics aggregator agent) sends data to the

data collection component. The client can do this at regular intervals or when events occur. The collection

of metrics and events is distributed to clients, eliminating the need for a central server to coordinate and

manage monitored targets and polling schedules. Therefore, it is horizontally scalable and can have better

redundancy and high availability. An excellent example of a push-based architecture that operates on a

regular schedule is collectd1.

To create a more comprehensive and dynamic paradigm, He Huang et. al., in [12], explored and

developed a hybrid Push/Pull model that combines the positive aspects of both approaches and mitigates

their weaknesses. The authors concluded that with this type of hybrid approach, it is possible to achieve

the high efficiency of a pull-based model and the high scalability of a push-based model. Other hybrid

models and integrations have also been developed in commercial and open-source monitoring systems,

such as the Telegraf, InfluxDB, Chronograf, Kapacitor (TICK) stack or the Elasticsearch, Logstash, Kibana

(ELK) stack. Although these solutions are push-based monitoring solutions at their core, they have an

optional metrics collector/aggregator that leverages some of the features of a pull-based architecture to

facilitate and streamline metrics standardization.

2.2 Monitoring Tools and Solutions

Infrastructure problems are inevitable, and all infrastructure fails at some point. When it does fail,

IT monitoring tools are essential to mitigate the impact of the incident. IT monitoring tools, also known

as observability solutions, include a broad class of products that analysts and IT support teams can

use to determine whether IT infrastructure is online and meets the expected service levels. These tools,

in conjunction with infrastructure automation and provisioning, also play a large role in optimizing the

available IT infrastructure to meet expected service levels at the lowest possible cost. Being such an

important asset for any business and IT service, there is a significant market of IT infrastructure monitoring

solutions, which brings the need to define objective evaluation and comparison aspects to perform more

accurate and efficient analysis and ultimately decide which of the available solutions to choose. The

aspects to be evaluated in any monitoring system are data collection, data storage, visualization, alerting,

and data extraction [8]. These aspects are going to be taken into account in the following analysis. The

1A daemon, which collects system and application performance metrics at regular intervals [11].

7

CHAPTER 2. STATE OF THE ART

monitoring solutions that are going to be analysed and compared are: ELK stack2, TICK stack3, Nagios4,

and Prometheus5. The main reasons for choosing these tools over others are primarily their modular and

somewhat decoupled architectures and their open-source nature.

2.2.1 ELK Stack

The ELK stack, also known as Elastic Stack, is a comprehensive monitoring and log analysis solution

built on a foundation of three open-source projects: Elasticsearch6, Logstash7, and Kibana8. ELK uses

Elasticsearch for deep search and data analytics; Logstash for centralized logging management and finally,

Kibana for powerful and insightful data visualisation [13].

Figure 1 shows the overall architecture of ELK stack with the referred three components and, as

mentioned in section 2.1, the push paradigm on which ELK stack is based.

Figure 1: ELK stack architecture. Source: [14]

Elasticsearch is a distributed, document-oriented search and analytics engine that provides its func-

tions with a sophisticated Representational State Transfer (REST) API, through JavaScript Object Notation

(JSON). It provides horizontal scalability, reliability and multi-tenancy fulfilling current IT standards for high

availability and performance.

Logstash is a data pipeline that enables the collection, parsing, and analysis of a rich class of structured

and unstructured data. It is also capable of processing events that originate from a variety of systems. It

provides plugins to connect to various input sources and platforms, such as logs, events, and metrics. In
2https://www.elastic.co/what-is/elk-stack
3https://www.influxdata.com/time-series-platform
4https://www.nagios.org
5https://prometheus.io
6https://www.elastic.co/elasticsearch
7https://www.elastic.co/logstash
8https://www.elastic.co/kibana

8

https://www.elastic.co/what-is/elk-stack
https://www.influxdata.com/time-series-platform
https://www.nagios.org
https://prometheus.io
https://www.elastic.co/elasticsearch
https://www.elastic.co/logstash
https://www.elastic.co/kibana

2.2. MONITORING TOOLS AND SOLUTIONS

addition to the existing plugins, it is also possible to develop and publish custom plugins, contributing to

an already large variety of custom plugins.

Kibana is a data visualization platform that simplifies visualizing all data (structured or unstructured)

stored in Elasticsearch. It provides flexible real-time analytics and reports with highly customizable settings.

Although the three tools described above (Elasticsearch, Logstash, and Kibana) are the main founda-

tions of the ELK stack, there is a fourth module, introduced more recently, that has significantly streamlined

the process of gathering monitoring information, especially related to system and application metrics —

Beats9. Beats is a collection of data shippers installed as agents on servers, containers, or deployed as

functions. From there, those agents can send data directly to Elasticsearch or forward it to Logstash for

further processing. Beats is capable of collecting various data, such as audit data (Auditbeat10), log files

(Filebeat11), availability (Heartbeat12), metrics (Metricbeat13), among others.

The ELK stack has a strong foothold in the healthcare industry, according to their website. It is used

mostly in the analysis of services’ and systems’ logs of healthcare organizations to aid the monitoring,

troubleshooting and recovering of their IT infrastructures. Pfizer Digital and UCLA Health are some of their

healthcare highest profile clients. Outside of healthcare, companies like Walmart, Adobe and Audi also

take advantage of ELK stack capabilities to monitor their infrastructures [15].

2.2.2 TICK Stack

The TICK stack, also known as InfluxData Platform, is a widely-used general-purpose monitoring plat-

form. It is a loosely coupled but tightly integrated set of four open-source projects — Telegraf14, InfluxDB15,

Chronograf16 and Kapacitor17 — designed to collect and store massive amounts of timestamped data,

with data processing, real-time monitoring and alerting capabilities. TICK uses Telegraf to collect and re-

port metrics from various systems, applications, and environments, through the usage of plugin agents;

InfluxDB for high-performance time-series storage and querying; Chronograf for an easy-to-setup admin-

istrative user interface and visualization engine and finally, Kapacitor for native data processing and data

streaming [16].

Figure 2 shows the TICK stack architecture with the referred four components and, as mentioned in

section 2.1, the predominantly push-based paradigm on which TICK stack is built. The component that is

a hybrid between the pull and push paradigms is Telegraf, which first retrieves the data from the monitored

targets and only then formats the metrics into InfluxDB Line Protocol and sends them to InfluxDB [17].

9https://www.elastic.co/beats
10https://www.elastic.co/beats/auditbeat
11https://www.elastic.co/beats/filebeat
12https://www.elastic.co/beats/heartbeat
13https://www.elastic.co/beats/metricbeat
14https://www.influxdata.com/time-series-platform/telegraf
15https://www.influxdata.com/products/influxdb
16https://www.influxdata.com/time-series-platform/chronograf
17https://www.influxdata.com/time-series-platform/kapacitor

9

https://www.elastic.co/beats
https://www.elastic.co/beats/auditbeat
https://www.elastic.co/beats/filebeat
https://www.elastic.co/beats/heartbeat
https://www.elastic.co/beats/metricbeat
https://www.influxdata.com/time-series-platform/telegraf
https://www.influxdata.com/products/influxdb
https://www.influxdata.com/time-series-platform/chronograf
https://www.influxdata.com/time-series-platform/kapacitor

CHAPTER 2. STATE OF THE ART

Figure 2: TICK stack architecture. Source: [18]

Telegraf is the module responsible for data collection within the TICK stack. It is designed with a

plugin-based architecture with five different classes of plugins: Inputs, Outputs, Aggregators, Processors,

and External [19]. As with Beats, from the ELK stack, Telegraf allows custom plugins to be developed and

published, enabling a rapidly growing plugin ecosystem.

InfluxDB is a Time Series Database (TSDB) designed for high-speed data queries and writes and is

a core component of the TICK stack. As part of a generic monitoring stack, InfluxDB is intended as a

storage mechanism for all use cases dealing with large amounts of timestamped data, such as application

metrics, real-time analytics, and DevOps monitoring [20]. Queries are done through HTTP APIs with a

Structured Query Language (SQL)-like query language called “InfluxQL”18 or a recently developed, more

specialised query language called “Flux”19 [9].

Chronograf is the visualization and administrative configuration tool component of the TICK stack.

It is a web application that uses templates and libraries to effortlessly create dashboards with real-time

visualizations. One of the most important and notable features is the support for multiple organizations

and users through OAuth 2.020.

Kapacitor is a native data processing framework that facilitates alert creation, ETL job execution, and

anomaly detection. It is designed to process batch and stream data. Streamed data is analyzed and pro-

cessed in real-time using the TICKscript programming language. It integrates with multiple communication

and alerting platforms, such as OpsGenie21, Alerta22, and Slack23.

18https://docs.influxdata.com/influxdb/v2.0/query-data/influxql
19https://docs.influxdata.com/influxdb/v2.0/query-data/flux
20https://oauth.net/2
21https://www.atlassian.com/software/opsgenie
22https://alerta.io
23https://slack.com

10

https://docs.influxdata.com/influxdb/v2.0/query-data/influxql
https://docs.influxdata.com/influxdb/v2.0/query-data/flux
https://oauth.net/2
https://www.atlassian.com/software/opsgenie
https://alerta.io
https://slack.com

2.2. MONITORING TOOLS AND SOLUTIONS

Finally, being such a generic tool, the TICK stack doesn’t have a special product or plugins that target

specifically the healthcare industry. However, this is not a particularly relevant drawback since there

were already case studies that show how simple and practical it is to use the stack to monitor everything

healthcare-related, by using community plugins as identified in the healthcare company Allscripts case

study of using the TICK stack to monitor their IT infrastructure [21]. Outside of the healthcare industry,

the TICK stack is used by companies such as Trivago, MuleSoft, and Indeed, among others [22].

2.2.3 Nagios

Nagios is an agent-based monitoring framework focused on application, system, service and network

monitoring [23]. It offers diverse commercial solutions — Nagios XI24, Nagios Log Server25, Nagios Fu-

sion26, and Nagios Network Analyzer27 —, all based on the available open-source solution — Nagios Core28.

Nagios Core, being the free version of the Nagios ecosystem, has a limited set of features for monitoring

critical IT infrastructure. Some of the available features are: network monitoring (HTTP, Simple Mail

Transfer Protocol (SMTP), etc.), systems resource monitoring, application monitoring, reporting (via a very

limited web interface), and alerting (via email, Short Message Service (SMS) or custom scripts) [23], [24].

Nagios’ paid plan targets the healthcare industry by having specific monitoring configurations as well

as performance indicators, through a custom product version and dedicated support to the organizations of

this sector. However, none of these capabilities are included in the core, free version of the software [25].

Outside of the healthcare industry multiple companies, big and small, use mostly the paid version of

Nagios’ software, e.g. Uber, Twitch, Dropbox [26].

Figure 3 shows Nagios architecture with the referred components and, as mentioned in section 2.1,

the pull-based paradigm on which Nagios is based.

Figure 3: Nagios architecture. Source: [27]

24https://www.nagios.com/products/nagios-xi
25https://www.nagios.com/products/nagios-log-server
26https://www.nagios.com/products/nagios-fusion
27https://www.nagios.com/products/nagios-network-analyzer
28https://www.nagios.com/products/nagios-core

11

https://www.nagios.com/products/nagios-xi
https://www.nagios.com/products/nagios-log-server
https://www.nagios.com/products/nagios-fusion
https://www.nagios.com/products/nagios-network-analyzer
https://www.nagios.com/products/nagios-core

CHAPTER 2. STATE OF THE ART

2.2.4 Prometheus

Prometheus is an open-source, metrics-based monitoring system with an alerting toolkit. It collects

and stores metrics as timestamped data in a TSDB. It uses its own query language, “PromQL”29, which

was designed to be flexible enough to handle multi-dimensional data models [28]. Prometheus has a

highly capable architecture that consists of several components [29]:

• The main server30, which collects and stores time-series data.

• Exporters31 to easily collect metrics from known services and systems.

• Client libraries32 to develop custom monitoring agents.

• A push-gateway33 to allow ephemeral batch jobs to submit their metrics to Prometheus.

• A service discovery tool to allow Prometheus to know what to monitor and notice when something

that should be monitored is not responding.

• A simple web-based visualization tool, Expression Browser34, used mainly for ad-hoc queries and

debugging.

• An alerting tool35 for creating, managing, grouping, forwarding, and inhibiting alerts.

Figure 4 shows the Prometheus architecture with the components mentioned above and, as described

in section 2.1, the pull-based monitoring architecture on which Prometheus is built. Recently, the push-

gateway component has been added to the overall architecture, introducing a more flexible approach and

allowing external jobs to report their metrics to Prometheus via this new gateway.

As stated above, Prometheus provides two different possibilities for data collection: Client Libraries

and Exporters. Client libraries lead to the production of highly custom metrics, as it allows the insertion

of monitoring data collection actions and rules into the application code. On the other hand, as not all

executed code is self-owned and self-controlled, Exporters represent an alternative for collecting metrics

through communication protocols and interfaces, such as HTTP. Prometheus uses exporters to collect

metrics at regular intervals and consumes that information in a standard exposition format called Open-

Metrics36 [9], [29].

29https://prometheus.io/docs/prometheus/latest/querying/basics
30https://github.com/prometheus/prometheus
31https://prometheus.io/docs/instrumenting/exporters
32https://prometheus.io/docs/instrumenting/clientlibs
33https://github.com/prometheus/pushgateway
34https://prometheus.io/docs/visualisation/browser
35https://github.com/prometheus/alertmanager
36https://github.com/OpenObservability/OpenMetrics

12

https://prometheus.io/docs/prometheus/latest/querying/basics
https://github.com/prometheus/prometheus
https://prometheus.io/docs/instrumenting/exporters
https://prometheus.io/docs/instrumenting/clientlibs
https://github.com/prometheus/pushgateway
https://prometheus.io/docs/visualisation/browser
https://github.com/prometheus/alertmanager
https://github.com/OpenObservability/OpenMetrics

2.2. MONITORING TOOLS AND SOLUTIONS

Figure 4: Prometheus architecture. Source: [28]

Prometheus is a very focused ecosystem. As such, its visualization tool is not that powerful and ulti-

mately not suitable for monitoring data visualization. Hence, Prometheus allows integration with Grafana37,

an open-source visualization tool, to create, manage and customize visualization dashboards.

The alerts manager focuses on grouping, classifying, and forwarding alerts via the supported commu-

nication channels.

Finally, like TICK stack, Prometheus does not focus particularly on the healthcare industry. Outside the

healthcare industry, Prometheus is used by many companies, such as DigitalOcean, Docker, Robinhood,

and many others [30].

2.2.5 Monitoring Tools Comparison

While comparing the four monitoring solutions, it will be taken into account its core features — data

collection, data storage, visualization, alerting, and data extraction — and aspects such as learning curve

and deployment requirements.

Of the four monitoring solutions, Nagios (Core) is the most limited stack since most of Nagios’ features

are only available in commercial (paid) options. One of the major features accessible exclusively in com-

mercial editions of Nagios is an integrated database, meaning that long-term storage is not available in the

Nagios platform’s “free tier”. On the other hand, Nagios’ main server is written in C, which translates into

a highly efficient and cost-effective system. Nagios also has an evolved plugin ecosystem and an active

community of developers.

ELK is the analyzed monitoring tool that is most different from the others when it comes to its purpose.

It was designed as a search engine, providing fast and efficient deep search and log analysis in real-time,

37https://grafana.com

13

https://grafana.com

CHAPTER 2. STATE OF THE ART

while the other solutions focus primarily on monitoring metrics and alerts. It is a completely free and open-

source monitoring stack, meaning high market adoption and widespread deployment. As it is not focused

on metrics, ELK stack can be expensive and resource-consuming when optimizing for metrics processing

and analytics. Despite allowing its users to scale horizontally for free, which is a useful capability in real-life

deployments, ELK stack has substantial resource requirements such as the availability of at least 3.5GB

of Random-Access Memory (RAM) and the recommended usage of Solid State Drive (SSD). Also, apart

from Beans, all components are written in Java, leading to high resource consumption in some usage

scenarios. Conforming to all those hardware and performance requirements can be a significant problem

in more resource-limited environments [31].

Prometheus and TICK stack are both entirely written in GO. This leads to a straightforward installation

and deployment since all that is needed is the static lightweight GO binaries. The fact that these two

monitoring solutions are written in GO does not mean they are anything alike, starting with the data col-

lection architecture where Prometheus is pull-based, and the TICK stack is push-based, which completely

differentiates the overall architecture of these two tools.

Prometheus benefits from a wide ecosystem with low deployment requirements with multiple data

source plugins and extensive community support. On the other hand, it has strong limitations regarding

the data that can be stored, and it needs to be integrated with an external visualization tool, such as

Grafana, leading to higher installation complexity. Prometheus also has a powerful and efficient query

language, PromQL, but it is also a complex language that has a high learning curve, which makes it

difficult to use and increases the adoption effort [31].

TICK stack uses columnar storage with high compression rates, providing adequate metric support,

and stores different data types natively, such as int, float, text, and boolean. Furthermore, it offers a

“SQL-inspired” query language that is simple to get started with, providing a smaller learning curve. To

more experienced users, it has a highly efficient processing language, Flux, that is more complicated to

learn but offers more flexibility and performance. On the other hand, despite storing and processing event

logs, it is less efficient in this use case to the extent that text search may need to be executed with a

brute-force full-column scan. As a final note, TICK stack only provides the option for horizontal scaling with

a commercial license.

Table 1 shows a structured comparison that, in addition to the aspects already mentioned above,

introduces more detailed comparative information about each tool, such as the availability of alerts and

data extraction capability.

14

2.2. MONITORING TOOLS AND SOLUTIONS

Table 1: Comparison between monitoring solutions

ELK Stack TICK Stack Nagios Prometheus

Source Open-source Open-source Mostly

open-source

Open-source

Licensing Free Mostly free Free/optional

paid38
Free

Design/purpose Search engine

and log analytics

Monitoring and

alerting

Monitoring and

alerting

Monitoring and

alerting

Data collection

architecture

Push-based Push-based Pull-based Pull-based

Data collection

sources

Few/not many39 Many. Allows to

develop new

Many. Possible,

but not easy to

develop new

Many. Easy to

develop new

Integrated database ElasticSearch

(document-based)

InfluxDB (TSDB) Paid Internal TSDB

Alerting Possible, but not

powerful

Possible, with

Kapacitor

Possible Possible, with

Alert Manager

Data analytics and

visualization

Kibana Chronograf Integrated

Management UI

Possible to

integrate with

Grafana

Data extraction CSV or Log format Line protocol, via

HTTP API or Flux

CSV PromQL

Deployment

requirements

High Moderate Moderate/low Low

Scalability Clustering Clustering, paid Paid40 Prometheus

Federation41

Main development

language

Java Go C Go

Unique feature(s) Highly efficient

search engine

Software as a

Service (SaaS),

cloud deployment

Active community

of developers and

users

Multiple plugins,

wide community

support

38Only Nagios Core is free.
39Beats allows a more comprehensive list of sources, but it is not part of the original stack.
40Deployment architecture varies according the chosen commercial solution.
41Prometheus Federation is a Prometheus server that can scrape data from other Prometheus servers [32].

15

CHAPTER 2. STATE OF THE ART

2.3 Monolithic vs. Microservices Architectures

Nowadays, the world demands high-speed, efficient, and reliable application and information sys-

tems [33]. These high standards can only be met by choosing an appropriate software architecture. The

choice of which software architecture to apply has an impact on the entire resulting system, reflecting on

its efficiency, scalability, deployability, and other aspects. Hence, the choice of the appropriate software

architecture being such an important aspect in the early phases of software design and development.

Although there are multiple options when it comes to software architectures, the most relevant and

popular ones are the Monolithic and Microservices architectures.

2.3.1 Monolithic Architecture

Of the two architectures, Monolithic architecture is the most traditional one. Its core approach is to

package and deploy software as a single application that includes all components, such as the presentation

layer, business logic, authentication and authorization, database access, integrations, and others. Despite

allowing internal modularity and responsibility separation, the application is offered as a single package

that can be installed and replicated as much as needed.

Figure 5 shows a model example of a monolithic architecture.

Figure 5: Monolithic architecture. Adapted from: [34]

2.3.2 Microservices Architecture

The microservices architecture consists of structuring the application as a collection of service-oriented

APIs — microservices. Each microservice is a small application that encapsulates a core business function-

ality as well as the underlying implementation [35]. The different microservices that work independently

but in a structured and organized way are not usually served directly to the clients. Instead, they are served

through an API gateway (or a reverse proxy) responsible for tasks such as load balancing, access control,

and caching [36].

Figure 6 shows a model example of a microservices architecture, with five different independent ser-

vices, the API gateway, the presentation layer, and, finally, the clients.

16

2.3. MONOLITHIC VS. MICROSERVICES ARCHITECTURES

Figure 6: Microservices architecture. Adapted from: [34]

2.3.3 Architectures Comparison

As is comprehensible, each architecture has its advantages and disadvantages, meaning no option

can be applied to every scenario or specification. The right architecture depends on the application’s

specificities and purposes. It is possible, however, to evaluate and compare each approach to make a

more informed and thoughtful decision.

A monolithic-based application is simple to develop, test and deploy since it only needs to install

the packaged application on the desired host. It is also simple to scale horizontally by launching multiple

instances of the application on the available infrastructure and organizing them under a load balancer [36].

This simplicity, although desirable, has a cost: flexibility. Monolithic applications need to be redeployed on

each update difficulting continuous deployment and availability. Over time this problem intensifies because

as these applications evolve, they usually grow in size, which affects the startup time. Moreover, monolithic

applications have reliability issues because one fault can bring down the entire application and disrupt

all provided functionalities [33]. Finally, it was also found that even with multiple instances, monolithic

applications can experience performance bottlenecks with heavy usage and extreme workloads [37].

On the other hand, the microservices approach is easier to maintain since each service constricts a

core functionality that is the responsibility of a team of developers. When it comes to scalability, microser-

vices are just as easy to scale as a monolithic application but much more reliable because the failure of

one microservice does not affect the whole system. Microservices also present availability advantages over

monolithic applications since each microservice can be redeployed on its own and requires little downtime

for that service [33]. One thing where microservices applications are undeniably different is the overall

complexity of the resulting system. Microservices applications are, in its essence, distributed systems,

meaning there are a group of issues, mainly communication-related, that need to be addressed. These

issues and concerns, typical of a distributed system, make this kind of architecture inherently more com-

plex than the monolithic counterpart. Microservices applications are also more complex to deploy since

each microservice has multiple instances, and each instance needs to be configured, scaled, and mon-

itored [36]. Finally, there is also a conceptual detail that can lead to a potential complexity problem —

17

CHAPTER 2. STATE OF THE ART

the granularity of each microservice. If not properly designed, a microservices application can have too

many microservices because the granularity by which the system functionality was divided was too fine,

making the system more complex than it could and should be. This particular problem is common when

transitioning from a monolithic architecture to a microservices one [38].

2.4 Web (API) Security

As stated in section 2.2, IT monitoring tools usually have different components that communicate

through HTTP APIs. This communication must be done in a secure way, especially communication that

originates from the end-user, i.e., all actions done through web interfaces and dashboards [39].

There are widely-known best practices and common ways to strengthen the security of an API, such

as access tokens, encryption, signatures, quotas, throttling and the use of an API gateway. Access tokens

are a mechanism for controlling access to services and resources by assigning tokens to trusted entities,

with specific access permissions, within the system. Encryption and signatures are used in protocols such

as Transport Layer Security (TLS) to increase API security by providing data integrity and data secrecy

and also ensuring only the intended recipients can see the private information being transmitted. Placing

quotas on how often a client can make requests to an API and creating throttling rules are effective ways

to protect APIs from usage spikes and Denial-of-Service (DoS) attacks. API gateways authenticate traffic

and analyse how the APIs are used [40].

Since security is not the main focus of this Dissertation, the most focused security topic, both dur-

ing research and development, was user authentication. The most commonly used web authentication

mechanisms are basic authentication and token-based authentication.

Basic authentication is the most straightforward authentication mechanism and consists of sending the

user’s credentials in every API call. Despite being a simple approach, it has some considerable drawbacks

when applied in modern web applications and systems. Since each API call must include the user’s

credentials, there is a considerable chance of accidentally exposing those credentials in one of the API

calls because credentials are sent in plain text. Moreover, this approach has significant performance costs

as password validation is an expensive process that would be executed in every API call, thus seriously

limiting API throughput.

Token-based authentication solves the problems enunciated above, albeit being a more complex mech-

anism than basic authentication. In token-based authentication, the user’s credentials are provided once

to a dedicated login endpoint which issues a limited-time access token that is given to the client and used

in place of its credentials in subsequent API calls until the token expires. There are different types of

token-based authentication, the most recognised of which being traditional session cookies,modern

token-based authentication (without session cookies), and self-contained tokens (JWTs42) [42].

42JWT is an open standard (RFC 7519) for compact and self-contained security tokens. A JWT consists of a set of claims
related to a specific user in the format of a JSON object, with a format descriptor as the header. JWT’s information can be
trusted and verified against tampering because it is digitally signed [41].

18

https://datatracker.ietf.org/doc/html/rfc7519

2.5. DISCUSSION

Session cookies are the most traditional and simplistic implementation of token-based authentication.

It is an adequate implementation for browser-based clients hosted on the same physical site of the API.

After the user provides the authentication credentials, the login endpoint returns a Set-Cookie header

on the response instructing the web browser to store the session token in the cookie storage. Subsequent

requests to the same domain will include the token as a Cookie header. To validate session cookie

requests, the server can look up the cookie token in the cookie data store, typically a database, to see

which user, if any, is associated with that token [42].

As technology evolved, new computing devices appeared, particularly mobile devices and native mo-

bile applications. Though cookies work great for web browser clients, they are less natural for native

applications as the client needs to explicitly manage them. Thus, the need to find a more broad and flexi-

ble implementation of token-based authentication increased. It is in this context that modern token-based

authentication appears. This implementation follows a similar approach to session cookies since both

clients and servers still need to store the generated token but with some major differences. In this ap-

proach, the storage method is independent of session modules meaning the tokens are going to be stored

on mechanisms such as local storage on the client-side and databases (SQL or Not only SQL (NoSQL))

on the server-side. After the token is issued, the client establishes the authentication using the standard

Bearer authentication scheme for HTTP. The major improvement over session cookies is the possibility

to use this authentication mechanism not only on browser clients but also on mobile applications, and

Business-to-Business (B2B) communications [42].

Although the two previous solutions are adequate, each in its context, both suffer from the same

problem: the need to store the access tokens and their state on the server-side. When the user base

increases, the server-side token databases start to be a source of performance bottlenecks. Self-contained

tokens, also known as stateless tokens, solve this problem by removing the need to have a token database.

Thus, becoming quite popular since the standardization of JWTs, their most popular implementation. The

idea behind this implementation is based on encoding the token state directly into the token and sending it

to the client rather than storing it in the database. Even though not having a token data store is a big benefit

in terms of scalability, it has a downside: token revocation. If there is no token database, there will be no

database from which to delete the revoked or invalid token. There is, however, a solution to this concern

since it is possible to revoke stateless JWTs by keeping an allow-list or block-list of tokens in a database [42].

Of course, this reintroduces the problem of keeping server-side state for token management; however, this

state is still much simpler to maintain than the previous alternatives.

2.5 Discussion

This chapter has addressed various issues related to infrastructure monitoring. As a first conclusion,

it can be said that IT monitoring solutions are a complex and broad but interesting topic. Its relevance

becomes even more evident in healthcare when considering how critical the IT services used in this context

19

CHAPTER 2. STATE OF THE ART

are, both in terms of availability and performance. The positive impact is undeniable when it comes to

managing and, more importantly, preventing disasters or critical outage situations.

Looking at all the solutions and approaches presented, especially those related to data collection (pull-

based and push-based) and software architectures (monolithic and microservices), we can draw some

conclusions. The first is that none of these architectures is perfect, nor the only possible answer to

every problem. Nevertheless, some of these options are more flexible and open to future changes and

modifications. For example, since push-based architectures do not take a centralized approach to metrics

collection, i.e., who manages the monitoring process and sends the respective metrics are the clients,

creating a more decoupled and distributed system instead of a centralized one. However, pull-based

architectures offer a more manageable design that provides good performance and low complexity, which

is suitable for a monitoring solution that is more focused on specific metrics and targets, while push-

based architectures are more suitable for generic-purpose monitoring solutions without specific targets or

metrics. For software architectures, the same dilemma arises: a more centralized system or a distributed

system. And the arguments are much the same. A monolithic architecture allows for a less complex and

more coherent approach while making it more difficult to make structural changes or introduce disruptive

functionality in some internal modules. On the other hand, microservices architectures are more complex

and modular systems that thrive in the most difficult scenarios for monoliths, although sometimes they

are too complex for the requirements and goals at hand. As such, the choice of an architecture, be it

software, data collection, or another nature is always a complex decision that has to consider multiple

factors. These factors include the inherent complexity of the system so that the chosen architecture does

not introduce unnecessary complexity to the solution, the maintainability, deployability, and replicability

of each component, and the performance that the solution needs and each architecture allow to achieve,

among other factors. A better architectural decision is based on the combination and consideration of these

various factors, prioritizing the most relevant ones for the specific solution and its usage and application

goals. In the specific case of this Dissertation, the most important factors to consider when choosing a

software architecture and a data collection architecture are solution performance, reliability, deployability,

and scalability, as will be made clearer in the next chapter.

The analyzed solutions were mostly metric-oriented, with the ELK stack being the exception. For

this work, this is a positive aspect, as most monitoring events in healthcare involve metrics rather than

free text content. However, none of the solutions simultaneously supported multi-organization and multi-

site schemas and full API-based monitoring management. For example, the TICK stack supports multi-

organization and multi-site schemas but enforces file-based configuration for monitoring agents and does

not allow this type of configuration or management via APIs. Prometheus, on the other hand, allows

API-based monitoring management and configuration but does not provide full support for a system with

multiple organizations and sites. This limitation of the currently available solutions is one of the main

reasons for developing a new system instead of using the previously mentioned ones.

Considering these conclusions, this work will focus on the implementation of a full-fledged solution that

builds on the work and solutions studied but also addresses the problems and shortcomings mentioned

20

2.6. SUMMARY

above. Nevertheless, since these systems are mostly composed of different modules that are relatively

independent of each other, if it is possible to integrate some of the components from these solutions,

it is advisable to do just that instead of re-implementing already developed and widely tested and used

components.

The knowledge and insights gained from studying existing solutions can and will be applied to the de-

sign of the IT monitoring solution being developed in this Dissertation. The system should be modular and

separate the concerns of each module, namely the TSDB, the metrics receiving and parsing component,

the data exporter, the alerting tool, and the authentication server.

2.6 Summary

In this chapter, it was confirmed that IT infrastructure monitoring solutions are an important part of any

IT infrastructure, especially in healthcare. First, the different architectures for data collection are explained,

followed by a description of existing commercial and open-source solutions, as well as related work and

documentation on this topic. Then, an analysis on two other topics is presented: Software Architectures,

with a distinction and comparison between monolithic architecture and microservices architecture, and

Web Security, focusing mainly on authentication. Finally, all the previous topics are discussed and it

is noted that all the solutions, although solid and widely used, have their weaknesses and none of them

supports all the features required for the scope of this Dissertation. The chapter concludes with a proposal

for implementing a solution that addresses these missing features and shortcomings.

21

C
h
a
p
te

r

3
Research Methodology and Technologies

This chapter describes the methodologies and technologies used throughout the research development

and validation of this Dissertation. First, it is introduced the applied research methodology – Design

Science Research Methodology (DSRM). Next, it is explained the use of questionnaires in the research and

validation phases of the Dissertation. And, finally, all the chosen technologies are presented, as well as

the respective selection process and justification.

3.1 Design Science Research Methodology

This Dissertation arose from the identification of the insufficiency of the existing monitoring solutions

when applied to the healthcare environment and requires the development of a final artifact that should be

later tested and evaluated in a real environment. As such, considering this is the exact execution path of the

DSRM, this methodology was considered the most appropriate for the development of this Dissertation’s

work.

As can be seen in figure 7, the DSRM consists of six different phases: problem and motivation

identification, goals definition, design and development, demonstration, evaluation and, fi-

nally, communication [43].

The first phase focuses on defining the issues and concerns that need to be addressed and explain-

ing the importance and merit of developing a solution. Justifying the value of a solution has significant

advantages, such as motivating the researcher and target audience to develop the solution and accept

consequent results and expediting the researcher’s understanding of the problem [43].

In the second phase, the solution’s objectives are inferred from the problems previously characterized,

taking into account what is feasible. The objectives can be both quantitative (e.g. description of how the

solution to be developed would be superior to the existing ones) and qualitative (e.g. how the developed

22

3.2. QUESTIONNAIRES

solution can support new components to address problems that were not originally identified) [43].

The third phase encapsulates the artifact creation, which includes the specification of the desired

functionality and architecture, followed by the actual implementation [43].

The fourth phase consists of demonstrating the produced artifact as a solution to the identified prob-

lems. This demonstration can take many forms, such as scientific experiments, simulations, and case

studies, to name a few [43].

The fifth phase serves to evaluate the extent to which the artifact solves the problems found. This

evaluation is accomplished by comparing the previously defined goals of a solution to the obtained results

from the developed artefact [43].

The sixth and final phase is to communicate the problem and its importance, as well as the artifact and

its usefulness. This communication is carried out through research and professional publications [43].

Figure 7: DSRM process model. Source: [43]

Figure 7 also shows that the DSRM can be applied in multiple ways, depending on how the process

is initiated. If the methodology is applied with a problem-centered approach, then the process initiates

in phase one. If the objectives are the focus of the research, then the process initiates in the second

phase. If the approach focuses on the solution design and implementation, the process initiates in the

third phase. Finally, if the approach is based on analyzing a practical solution that already exists, then the

process initiates in the fourth phase.

As already mentioned, this Dissertation started with the identification of a problem and the lack of

functionalities in the existing monitoring solutions. Thereby, it is logical to conclude that the DSRM will be

applied with a problem-centered approach, therefore executing the six phases of the methodology.

3.2 Questionnaires

Questionnaires are a type of research instrument that consists of a series of questions designed to

collect information from respondents via face-to-face, telephone, computer, online forms, or the mail.

23

CHAPTER 3. RESEARCH METHODOLOGY AND TECHNOLOGIES

Questionnaires are commonly used to assess the behavior, attitudes, preferences, views and intentions

of a large number of people. However, when conducted in person or through a recognizable protocol of

communication, there is a typical problem with respondents lying owing to social desirability, as most

individuals want to portray a favorable picture of themselves and would lie or bend the truth to make

themselves appear good. This difficulty is frequently solved by conducting anonymous questionnaires in

which the responders cannot be identified [44].

In this Dissertation, questionnaires were carried out via anonymous online forms as a means to collect

useful information from possible users and stakeholders regarding important topics, both from the point

of view of modeling and design, as well as validation of results.

During the development of this Dissertation, two different questionnaires were carried out. One dis-

tributed at an early stage of the requirements gathering and systemmodeling process, to better understand

the problem and understand the needs of professionals and teams that identified with it. The other to as-

sess whether the developed system served to solve or, at least, fill the identified problem, as well as the

associated needs.

3.3 Implementation Technologies

The technological domain of each project varies greatly depending on its purpose and usage. In this

work, it is necessary to evaluate and choose technologies regarding two different layers: business logic,

and data. Thereby, it is first discussed the chosen technologies regarding the web services and server

(business logic), followed by a discussion regarding what technologies were chosen to store and retrieve

data in the scope of this work.

3.3.1 Authentication

To guarantee that the system is only accessed and used by the intended users that have proper creden-

tials, the system needs an authentication module. As analyzed in section 2.4, token-based authentication,

namely using self-contained tokens (JWT) is the current standard and one of the most effective ways to

accomplish web services authentication. As such, this is the technology that is going to be used and

implemented to generate and validate authentication credentials.

3.3.2 Web Servers and Services

To expose the solution functionalities through HTTP requests is necessary to encapsulate these in

web servers and services. As such, it was decided to use JavaScript as this work’s main programming

language. JavaScript is a prominent programming language in the web context. This prominence is

due to various factors. The most important ones are an ongoing attempt to make JavaScript, and all its

24

3.3. IMPLEMENTATION TECHNOLOGIES

frameworks, the standard tool for full-stack web development and its technological capabilities, such as

object-oriented and event-based functionalities [45].

When it comes to backend technology, the core focus of this work, JavaScript has a plethora of tools

and frameworks available, being the combination of Node.js1 and Express.js2 the most recognized

approach.

Node.js is a powerful open-source backend tool that allows the development of JavaScript-based

asynchronous HTTP web servers. Formally, Node.js is an asynchronous event-driven JavaScript runtime

designed to build scalable network applications [46]. Its lightweight and asynchronous nature is particularly

important and advantageous when assembling a microservices architecture [47].

Express.js is an unopinionated and low-scope web framework, meaning that it is very flexible re-

garding the project structure and internal module architecture. It allows the creation of all sorts of web

artifacts, such as web applications and REST APIs, and inserts little computational overhead because it

deeply integrates with Node.js APIs, which results in highly performant applications [47].

Thus, at the software architecture level, it was chosen to use this combination of Node.js and Express.js

based on its asynchronous and event-based nature, allowing it to handle multiple requests at once, without

system blocking. Other factors that were taken into consideration were the high performance and scalability

that this combination of technologies enables.

Finally, there was a last tool applied together with the ones already mentioned — TypeScript3. Type-

Script is an extension of JavaScript and offers useful additions to the stack, such as type safety, reducing

the number of runtime errors and bugs associated with mixing data and variables of different data types; a

larger set of Object-Oriented Programming (OOP) features, such as interfaces, generics, inheritance, and

method access modifiers [48]. These extra functionalities and capabilities were the main reasons to adopt

this technology that ultimately will help develop a more reliable and resilient solution.

3.3.3 Databases

To store all generated data, this work is going to need two databases: one to store the system’s con-

figurations (monitoring agents, alerts, etc) and the other to store the actual monitoring metrics. Therefore,

to store the system’s configuration, it is useful to use a document-based database since even in the same

configuration category (e.g. monitoring agents), the fields and information to be stored can be quite varied

and dynamic. To store the actual monitoring metrics, it is necessary a TSDB as previously seen during

the state-of-the-art research documented in section 2.2.

MongoDB4 is a NoSQL, document-based database that uses a JSON-based format to store data. It

has a scale-out architecture, meaning it is designed to scale horizontally and has high query performance,

making it a good choice to store the system configurations [49]. Its dynamic JSON schema was also a very

1https://nodejs.org
2https://expressjs.com
3https://www.typescriptlang.org
4https://www.mongodb.com

25

https://nodejs.org
https://expressjs.com
https://www.typescriptlang.org
https://www.mongodb.com

CHAPTER 3. RESEARCH METHODOLOGY AND TECHNOLOGIES

important factor when deciding what database to use since the entities that are going to be stored, such as

monitoring agents and notification channels configurations, have very different fields depending on their

internal type (e.g. a database monitoring agent has different configuration fields than a ping monitoring

agent).

Regarding the TSDB, it was decided to use InfluxDB. During the state-of-the-art research and compar-

ison of monitoring solutions, it was possible to identify three potential candidates: InfluxDB, ElasticSearch,

and the Prometheus internal TSDB. The first one to be ruled out was the Prometheus TSDB since it was

necessary to use all the tools in Prometheus’ stack to use TSDB, which did not satisfy the requirements

of this work, as explained in section 2.5. After that, it was a matter of choosing between InfluxDB and

ElasticSearch. ElasticSearch is a document-based database that allows to index documents using times-

tamps. However, as already discussed in section 2.5, it is more focused and optimized for logs and full-text

entries. Since this work is more focused on monitoring metrics, as opposed to logs, and InfluxDB is, at

its core, a TSDB focused on metrics, it was decided to use InfluxDB instead of ElasticSearch. It was also

taken into account that InfluxDB’s companion stack is mostly API-based and can be used as a starting

point to the implementation of some components of this work, which was considered a positive surplus of

the decision.

3.3.4 API Gateway

To encapsulate and secure all the solution’s infrastructure and services, it is needed an API gateway.

As stated in sections 2.3.2 and 2.4, API gateways are useful when there is the need to authenticate traffic,

distribute effort load (via load balancing) while taking advantage of caching and usage analytics, which

were the main reasons to apply this pattern in the solution to be implemented. As such, the following

API gateway technologies, which are current leaders in this field [43], were analysed: NGINX5, Tyk6 and

Kong7.

The first to be dropped was NGINX due to only making its API gateway product available in the paid

version (NGINX Plus), which was an insurmountable setback for not being an open-source option nor

without associated costs.

The second to be discarded was Tyk because despite making available many of the most used features

in the open-source version, it only supports scalable and fault-tolerant multi-tenant deployments in the paid

licensing version.

Finally, Kong was selected as the tool to implement the API gateway. In addition to supporting all the

most used features, as well as redundancy and fault tolerance in the open-source version, it also allows

all its configuration to be done declaratively through a JSON or Yet Another Markup Language (YAML)

specification.

5https://www.nginx.com/products/nginx/api-gateway
6https://tyk.io
7https://konghq.com/kong

26

https://www.nginx.com/products/nginx/api-gateway
https://tyk.io
https://konghq.com/kong

3.4. SUMMARY

3.4 Summary

This chapter presented and discussed the selected methodology, solution design and architecture, and

the underlying technology stack of this Dissertation. First, there is an analysis of the selected research

methodology, DSRM, and the approach of its application, by using a problem-based strategy. Then,

it is described what is the use of questionnaires in research processes and explained how they were

particularly used in the context of this Dissertation’s research and validation. Finally, there is a discussion

and justification of the selected technologies, which were Node.js, Express.js and TypeScript for the

web servers, MongoDB and InfluxDB for the databases, and Kong for the API gateway.

27

C
h
a
p
te

r

4
Proposal

This chapter presents the solution proposal, as well as the context and details of the solution’s modeling

and architectural design. First, there is an explanation of the technical questionnaire execution and its

results. Then, are presented the solution’s requirements, both functional and non-functional, followed

by an overview of the solution’s domain model. Finally, the solution architecture is presented, including

both high-level and low-level architectural views as well as the solution’s global deployment architecture.

The chapter is concluded with a discussion of the proposed architectural design in light of the specified

requirements.

4.1 Technical Questionnaire

The first step to better understand the problem and its associated needs was to undertake an anony-

mous online survey, the questions of which are available in appendix A. This questionnaire was distributed

in a Google form and was directed to system administrators of Portuguese hospitals in the northern and

central regions, namely the CHTS, in Penafiel, and the USLGuarda, with a final result of 18 answers. The

questionnaire is divided into two sections: one with closed questions on the respondent’s history, context,

and perspective to gain a more objective understanding of their ideas, and the other with open questions

to gather requirements and functionality suggestions.

The questionnaires were treated through organization and data interpretation tools, namely Google

Sheets1. The data from the closed questions were treated as being of the nominal type, allowing a statistical

representation of the data, followed by the respective analysis and interpretation. On the other hand, the

answers to the open questions were treated individually, manually extracting the topics and suggestions

1https://www.google.com/sheets/about

28

https://www.google.com/sheets/about

4.1. TECHNICAL QUESTIONNAIRE

considered most important and relevant for the development of the Dissertation, given the context of its

execution.

The first important figure noticed was that most IT administrators, roughly 94% of the respondents,

already use some type of monitoring system or solution in their organizations, regardless of its sophisti-

cation or utility, corroborating that the study of monitoring systems and its applicability in the healthcare

environment is an important and relevant topic. The distribution between respondents that use and don’t

use a monitoring solution in their organizations is available in the figure 8.

Figure 8: Distribution of IT administrators who use a monitoring solution in their organization

The next step in analyzing the responses was to understand how this work’s assumptions were ef-

fectively valid for the target audience. This analysis was carried out by studying the statistics associated

with the answers to the six statements of the second closed question, which aimed to understand the

respondents’ perception regarding the use of monitoring solutions and their impact on the management

and availability of the systems. The statements present in the questionnaire are as follows (further detail

on appendix A):

1. Currently, whether there is a failure or not, you can observe and control the state of your system.

2. When there is a failure in the system, that failure is noticeable.

3. When a failure in a system is detected, you can determine what the implications are and what other

services are impacted.

4. A monitoring system is important for systems management.

5. A good monitoring system makes it possible to improve the availability of systems.

29

CHAPTER 4. PROPOSAL

6. A monitoring system capable of analyzing and displaying, in an integrated way, the status of different

targets and organizations, streamlines the systems management process.

The mean and median values of the answers to each statement of the second closed question were

calculated, and it is possible to see a representation of this analysis in the figure 9. These values represent

the degree of agreement (or not) with the presented statements that are directly mappable on the Likert

scale presented in table 2, which is the same as the one presented in the questionnaire.

The interpretation of these results led to the conclusion that it is a common opinion on the part of

IT administrators that monitoring solutions are, in fact, necessary and useful for the management and

availability of systems. Furthermore, and with a particular focus on the last statement, it was also possible

to perceive that there is a high level of agreement for the need to have a system that is capable of analyzing

and displaying, in an integrated platform, different monitoring targets and organizations to simplify and

streamline the systems’ management process.

Figure 9: Distribution of responses to the statements of the questionnaire’s second closed question (see
appendix A)

Table 2: Likert scale used in the statements’ analysis. Adapted from [50]

Strongly Disagree Disagree Neutral Agree Strongly Agree

Numeric Value 0 1 2 3 4

30

4.2. REQUIREMENTS

Finally, the answers to the open questions were analyzed individually. These, once again, continued

the trend of agreement with what had been defined as the problem and a possible solution similar to what

is being proposed.

All this, meaning, both the answers to the closed and open questions and the respective trends and

conclusions, strengthen and corroborate the motivations, premises, and objectives of this work.

4.2 Requirements

After understanding that the problem was real and the respective assumptions and objectives were

indeed aligned with the stakeholders’ needs, we moved on to thoroughly defining the requirements this

solution needs to fulfill. This Dissertation aims to build a full-fledged and fully integrated backend monitor-

ing solution, focused on meeting the needs of the healthcare environment, but comprehensive enough to

support a wide range of use cases and scenarios. Thus, the following requirements were divided into two

logical sets: functional and non-functional, considering their nature and purpose in the system.

4.2.1 Functional Requirements

Functional requirements focus more deeply on the capabilities the system needs to offer to the end-

user or B2B client, as well as the respective modeling processes. Hence, this section presents the core

functional requirements for the backend monitoring solution.

Data collection

Data collection is a cornerstone functionality when it comes to IT monitoring. As referenced in section

2.1, there are two distinct approaches to data collection agents: pull-based and push-based and, as was

also seen in that same section, a hybrid approach where the solution supports the two data collection

paradigms has been the most common harmonization approach. Therefore, the proposed backend IT

monitoring solution must support the two most common types of data collection and monitoring agents

as possible metric data sources.

Furthermore, as far as pull-based monitoring agents are concerned, the solution must allow the full

creation and management of metric collecting agents of various types and targets, whether more generic,

such as database monitoring, health checks through ping, HTTP requests, or hardware-focused, such as

disk and network information. Monitoring agents types that were found to be core needs of the healthcare

environments and organizations where the solution was deployed and validated are as follows:

• HTTP Endpoint: Since so many services and applications are exposed through HTTP APIs and

endpoints, it is important to be able to monitor the availability and performance of these endpoints.

31

CHAPTER 4. PROPOSAL

• Ping: Among an infrastructure of servers and services, it is important to be able to monitor the

availability of these services and servers. A ping mechanism is a simple and effective way to do

this.

• Databases: Efficient and available data storing and access is paramount in every information

system. Therefore, it is important to be able to monitor the availability and performance of the

databases that are part of the systems’ infrastructure. The databases, SQL or NoSQL, that must

be supported by the solution are:

– MySQL

– PostgreSQL

– OracleSQL

– Redis

– MongoDB

• NGINX: Many web services and applications use this piece of software as their web serving layer,

since it is a popular and widely used web server, load balancer and reverse proxy. As such, it

is important to be able to monitor it and guarantee its well functioning within every service or

application using it.

Although the list of monitoring agents’ types is representative of the implementation prioritization in

this Dissertation’s work, it is important to note that, in the future, more monitoring agent types can and

will be added.

Finally, it must be possible to specify the various status or health levels of the respective agents

throughout the creation process, i.e., provide the criteria and logic that govern whether a particular agent

is in an OK, critical, or warning condition. Given that the most worrying condition for each monitored

service is the critical one, which must be resolved as soon as possible, the critical state conditions must

be defined at the creation of any monitoring agent.

Data storage

Since the goal of this Dissertation is to propose an architecture that can handle multi-site and multi-

organization IT monitoring, it is necessary to specify how data should be handled and stored. Thus, the

proposed solution needs to be able to collect all metrics from organizations or healthcare facilities and store

them taking into account the security, independence, separation, and isolation of data from each of the

source organizations. The storage mechanism must also take into account that all monitoring data should

be accessible inside and outside the organization and healthcare facility, without forgetting, of course, that

only authorized users can do so.

32

4.2. REQUIREMENTS

Data extraction/export

All the collected metrics and data are important themselves but can only be truly useful if it is possible

to access, analyze and interpret them. As such, the monitoring backend solution must allow extraction and

export of all the generated data in a standard format, or formats, to allow data consumption via external

solutions, such as web applications and visualization engines or dashboards.

Alerting

Alerting is particularly useful when systems fail or go into bottlenecks. Thus, the solution must be

able to create, manage and send alerts of different nature, whether via email, Slack, Discord, and HTTP

endpoints that allow integration with third-party services for the most diverse uses (alerting, status visual-

ization, export of information, and notification of external services, among others).

Alerts will be sent whenever the status of the monitored service changes to a more problematic con-

dition according to the health levels defined in the monitoring agent configuration, that is, the sending of

alerts associated with a given agent will be triggered when it transitions from:

• an OK status to a warning one;

• an OK status to a critical one;

• a warning status to a critical one.

Configuration and customization

All the aforementioned requirements focus on monitoring and data consumption functionality. How-

ever, when configuring monitoring agents, health level definitions, and alerting rules, these processes

quickly become repetitive, exhausting, and time-consuming. As a result, the system must support high-

level configuration and customization capabilities where standard entities, such as notification channels,

i.e., commonly used mailing lists or sets of mails, slack or discord webhooks, or HTTP services, can be

defined and used as templates when creating new alerts by simply selecting these previously created

settings and configurations.

4.2.2 Non-Functional Requirements

Non-functional requirements specify the quality attribute of a software system by judging the system

based on a set of standards that are critical to the system’s success [51]. The most prominent non-

functional requirements for the system are:

• Information security: Since the architecture must support multiple organizations and deploy-

ment sites, it is important to ensure that only allowed users access the respective monitoring infor-

mation, that is, user authentication and data isolation;

33

CHAPTER 4. PROPOSAL

• Reliability: Considering the periodic execution of monitor agents (to collect data), it is important

to ensure that each execution is configured, started, and concluded properly. When a critical error

occurs during a data collection execution or any other task, the system must be able to handle the

error and successfully recover from it;

• Scalability: A monitoring solution deals with a multitude of different monitoring agents and large

volumes of data. As such, this solution must correctly handle a substantial number of active moni-

toring agents, as well as vast amounts of data, while keeping good performance and short response

times;

• Deployability: Since this solution aims to be deployed in various healthcare facilities, the deploy-

ment must be a straightforward, low-risk, self-contained and automated process.

4.3 Domain Model

Once the requirements were identified, it was useful to create a high-level representation of the system’s

core logical entities and how they connect, using a domain model diagram. By definition, a domain

model diagram aims to provide a visual representation of the problem context through the definition and

relationship between the various conceptual classes, that is, key entities. This visual representation is

useful to help understand and more clearly specify the system’s core logic and business rules, as well as

how it is built [52]. Figure 10 presents the referred solution’s domain model diagram.

Figure 10: Domain model diagram of the proposed monitoring solution

34

4.4. ARCHITECTURE

The top-level entity, as figure 10 suggests, is the “Organization” which represents each healthcare

unit or facility. Each organization can be accessed by multiple users and each user can access various

organizations, each of which must be associated with at least one organization.

Moreover, each organization has many groups, each with its own set of monitoring agents. Using

groups as an aggregate entity, monitoring agents may be grouped or classified. Each organization can

also have multiple notification channels, which are organization-wide templates that can subsequently be

used as a full copy, i.e., a replication, on the alerts’ setup.

Finally, each “Monitoring Agent” is composed of various alert settings, with each alert belonging to

a specific monitoring agent, as well as multiple health/state level settings, e.g. “ok”, “critical”, and

“warning” status.

4.4 Architecture

To satisfy the specified requirements and business logic represented in the domain model diagram,

it was designed a high-level architecture that can be seen in figure 11, comprising two different servers:

the local server, which will be deployed in each healthcare facility and is responsible for all monitoring

operations and tasks of the facility, and the guardian server, which is deployed in an off-site location and

provides aggregated monitoring information and management regarding each and all healthcare facilities.

Each local server communicates its monitoring information to the guardian server over HTTP requests.

Figure 11: High-level architecture of the proposed monitoring solution

35

CHAPTER 4. PROPOSAL

Each server, i.e., the local server and the guardian server, encloses several components, modules

and/or storage mechanisms that satisfy the requirements proposed in section 4.2, which are succinctly

described in the subsections below. Moreover, since the solution as a whole has a considerable dimension

and each module has a very specific responsibility, it is important to ensure that each service runs and

scales independently. As such, it was decided that both the local server and the guardian server should be

designed following a microservices approach, i.e., each server being composed of small, self-contained,

and autonomous units.

Thus, and taking into account the advantages of microservices architecture already mentioned in

section 2.3, this architecture design is the most suitable for the work of this Dissertation.

4.4.1 Guardian Server

The guardian server has four main services: authentication service, core service, alert ser-

vice, and data export service. All these services are virtually aggregated, safeguarded and carefully

exposed to outside communication through an API gateway, which enables load balancing, if necessary,

protection from attacks since the actual services’ Internet Protocol (IP) addresses are never revealed,

caching and Secure Sockets Layer (SSL) encryption [53], [54] and credential validation (authentication

and authorization).

The authentication service is responsible for user authentication and authorization. It is also

responsible for the creation and management of users. This service is used by the API gateway to authen-

ticate requests based on the provided credentials.

The core service contains all the logic related to the creation and management of organizations,

groups and monitoring agents. It is also responsible for the creation and management of the monitoring

agents’ health/status level settings.

The alert service handles the creation and management of the notification channels and the alerts’

configurations. It is also responsible for the scheduling and execution of the tasks associated with the

alerts’ events, that is, understanding when and to whom an alert must be sent and sending it.

The data export service exposes all the monitoring information in standard formats so each client,

whatever it may be, can interpret the data. It also provides information on the current status, as well as the

status history, of each monitoring agent, taking into account the registered metrics and their health/status

level settings.

To support the four services, and as detailed in section 3.3.3, there are two databases: a TSDB,

InfluxDB, to store and consume the monitoring information, and a document-based database, MongoDB,

to store and manage all the remaining information (users, organizations, groups, monitoring agents,

health/status levels, notification channels and alerts).

Figure 12 presents a diagram that illustrates the described architecture.

36

4.4. ARCHITECTURE

Figure 12: Guardian server — internal architecture

4.4.2 Local Server

The local server has two services: push-based service, also known as “receiver”, and pull-based

service, also known as “executor”. These services communicate with the guardian server over HTTP

requests using access tokens provided to each organization.

This architecture with two services exists due to the need to support the two aforementioned data

collection paradigms — pull-based and push-based —, as the services’ names indicate.

The push-based service, or “receiver”, is the one responsible to handle all monitoring agents that

are of the “deadman” type, i.e., those that do not need a service to be querying some target for metrics

or information. Instead, the monitoring services are the ones that report its state to the “receiver”. The

“receiver” then sends the information to the guardian server to be stored, analyzed and acted on (if there

is a need to notify any problems, i.e., send alerts).

On the other hand, the pull-based service, or “executor”, handles the other types of monitoring

agents, that is, the pull-based ones. This service is responsible for frequently contacting the guarding

server to update its internal information on what pull-based monitoring agents its organization has. Based

on each monitoring agent repetition configuration, it schedules the pull-based monitoring agent’s execution

and for each execution reports the obtained data to the guardian server to, as was the case in the previous

service, be stored, analyzed and acted on.

Figure 13 presents a diagram that illustrates the described architecture.

37

CHAPTER 4. PROPOSAL

Figure 13: Local monitoring server — internal architecture

4.4.3 Deployment

One of the core non-functional requirements, as detailed in section 4.2.2, is the deployability of the

solution. To ensure this, it was designed a modular and efficient deployment architecture. The core basis

of the architecture is Docker2 which is an open-source containerization platform that enables developers

to package applications into lightweight and easy to use containers [55]. As such, all services and infras-

tructure components, i.e., API gateway and databases, are packaged into Docker containers, which are

then deployed on each targeted server. To summarize, the components of the guardian server are Docker

containers installed on its off-site server and the local servers’ components are Docker containers installed

on each organization’s on-site server. Figure 14 presents a diagram that illustrates the global deployment

architecture.

As is possible to see in figure 14, every component is a Docker container and only the containers that

are supposed to be reached outside the Docker network have external ports, that is, the API gateway in the

guardian server (so that external clients and services can communicate with it) and the push-based service

in the local servers (so that the push-based services that are being monitored can push their monitoring

information to the service). Otherwise, the containers only have an internal port that is only accessible by

other containers through the Docker’s internal network.

2https://www.docker.com

38

https://www.docker.com

4.5. DISCUSSION

Figure 14: Global deployment architecture

4.5 Discussion

This chapter started with the analysis of the stakeholders’ input and perspective followed by a de-

scription of the solution’s requirements. This section will discuss how those requirements are effectively

addressed by the presented architecture.

Data collection is handled by the local server, either via the pull-based service or the push-based

service, depending on the monitoring agent’s type. This data can be accessed via the guardian server’s

data export service, encapsulated in the API gateway.

Multi-site and multi-organization support is also provided since each organization can be added and

consulted independently and each monitoring site, i.e., each monitoring facility, has its own local server

and access token.

Alerting and configuration are also ensured since the guardian server has services that handle these

requirements, alert service and core service, respectively.

Furthermore, all core logic management operations specified in the requirements and domain model,

that is, monitoring agents’ and health/status level settings’ configuration, are handled by the guardian

server’s core service.

39

CHAPTER 4. PROPOSAL

Regarding non-functional requirements, the guardian server’s authentication service and API gate-

way security methods (namely, SSL certificate and throttling rules) solve all information security issues

as thoroughly as feasible within the scope of this Dissertation. The selection of a microservices-based

architecture, as well as technological options and deployment architecture and strategies, address the

mentioned reliability, scalability and deployability concerns. The latter, i.e., the deployment strategies, will

be covered in greater depth in the following chapter.

Overall, the proposed architecture is capable of meeting the presented requirements through the

components that comprise it, meaning it is ready to be implemented, tested and validated.

4.6 Summary

This chapter presented all the exploration and modeling of the proposed IT monitoring solution for

the healthcare environment. First, the technical questionnaires’ results were outlined, followed by the

description of the different requirements, functional and non-functional. Then, it is presented the do-

main modal to better understand the system’s core logic and, finally, the architecture design, which is

microservices-based, with both high-level and low-level architectural views. As such, through the proposed

solution a user can create, manage and consume the monitoring agents and all related entities, as well

as the produced/collected monitoring information and health status. These functionalities are leveraged

by two different servers: the guardian server and the local server. The guardian server accumulates the

responsibilities of all its services, namely, the authentication and authorization of the users, the creation

and management of the organizations, groups, monitoring agents, health/status level settings, notification

channels and alerts’ configurations. On the other hand, the local server is responsible for collecting the

monitoring information of each monitoring agent and sending it to the guardian server.

40

C
h
a
p
te

r

5
Implementation and Results

In this chapter, it is described the implementation of the solution proposed and presented in the

previous chapter, followed by the presentation of the subsequent results.

First, the data models used to store all the required information are presented, followed by details

regarding the implementation of the API gateway, as well as the solution’s two comprising servers, the

guardian server and the local server. Next, it is described how every microservice is documented through

market-standard API documentation, as well as the implementation of the solution’s deployment using

containerization techniques. Finally, are showcased some examples of the system’s core features and

some results regarding an external web application outside of the scope of this Dissertation that integrates

with the implemented solution to provide visual examples of the solution’s capabilities.

5.1 Data Models

The developed solution handles different data with different formats and purposes in different storage

mechanisms/solutions. All the handled data can be grouped by the storage solution in which they are

stored: monitoring data, which is stored in InfluxDB, and entities’ configuration data, which is stored in

MongoDB.

5.1.1 Monitoring Data

The data in InfluxDB is stored in a particular format in lines, each line containing three types of in-

formation: the measurement, which specifies a namespace for each type of data being recorded, the

fields, which are the primary information for each measurement, and the tags, which are complemen-

tary information for each measurement. As an example, this is the information structure for the HTTP’s

41

CHAPTER 5. IMPLEMENTATION AND RESULTS

monitoring data:

• measurement: http

• tags - list of tags associated with the measurement

– id - the unique identifier of the monitoring agent

– name - the name of the monitoring agent

– group - the group in which the monitoring agent belongs

– org - the group’s parent organization in which the monitoring agent belongs

• fields - list of fields associated with the measurement

– url - the URL of the HTTP service being monitored

– method - the method of the HTTP request

– status_code - the status code of the HTTP request

– response_time - the response time of the the HTTP request, in seconds

– result_code - an integer value, 0 or 1, representing a boolean condition if the target being

monitored is approachable and compliant

All other monitoring agent metrics have a similar data structure, in which the tags are always identical

and the fields are different for each agent except for the result_code, which is a generic metric to

standardize status output across all agent types.

5.1.2 Entities’ Data

The data stored in MongoDB is representative of the entities’ configuration data, namely every or-

ganization, group, user, agent and alert configured in the system. The data is stored in a particular

document-based format in which each entity is represented by a MongoDB collection.

The organizations and groups are both used to represent the system’s hierarchy and have very similar

information which includes their unique identifier, name and creation and last update timestamps, as

can be seen in examples 1 and 2. This hierarchy representation is not based on a fixed tree structure,

but a dynamic aggregation tree structure that is refreshed every time needed since the necessary logical

information is stored in the user’s and agent’s configurations, as can be seen in examples 3 and 4. This

means that rather than having a structure that defines which groups each organization has and which

users have access to which organizations, this information is stored in the agents’ and users’ documents,

respectively.

42

5.1. DATA MODELS

1 {
2 "id": "623f22355286eedbede51619",
3 "name": "CHTS",
4 "createdAt": 1648304693,
5 "updatedAt": 1655196089
6 }

Example 1: Organization’s data structure

1 {
2 "id": "623f222a5286eedbede51613",
3 "name": "AIDA_Database",
4 "createdAt": 1648304693,
5 "updatedAt": 1655196089
6 }

Example 2: Group’s data structure

The user’s collection stores all information related to the system’s users, including their unique iden-

tifier, name (first and last names), email, password, and creation and last update timestamps. The

password is stored as a hash of the original password and an additional salt. The user’s collection also

stores the user’s access to the system’s organizations, which is represented by a list of the organizations’

unique identifiers and a flag that represents if the user is currently active or not. An example of the user’s

data structure can be seen in example 3.

1 {
2 "id": "6240a0901f445e549b378f0a",
3 "firstName": "Joe",
4 "lastName": "Smith",
5 "email": "joesmith@example.com",
6 "organizations": [
7 "623f22355286eedbede51619",
8 "..."
9],

10 "password": "$2b$10$4UIK6NzXwi0YBaWnJvq1zOlvJv5WrAyYB8awdMopaBQRht5ePKPt2",
11 "isActive": true,
12 "createdAt": 1648398976,
13 "updatedAt": 1649154966
14 }

Example 3: User’s data structure

The agent’s collection stores the information related to which organization and group it belongs to

and all configuration details. This includes the agent’s unique identifier, kind (an agent to OracleSQL,

HTTP endpoint, push-based external service, i.e., deadman, among others), name, configuration details,

creation and last update timestamps, a flag that represents if the agent is currently active or not and the

agent’s health/level status. The configuration details structure has a common base to every agent’s kind,

which is the repetition’s definition and all the remaining specifications vary according to each kind and its

requirements.

The example 4 shows the configuration of an active agent that monitors an OracleSQL target with a

repetition window of five minutes and that has the mandatory critical health level defined. It is worth noting

that for each agent it is also possible to define the optional “warning” and “ok” health levels and that the

43

CHAPTER 5. IMPLEMENTATION AND RESULTS

definition of these health levels follows the representation of a logical statement in JSON as specified in

the JsonLogic format1, which is going to be more detailed in the subsection 5.3.2.

1 {
2 "id": "b25d2c86-c278-4d75-bcef-546ed9dba788",
3 "kind": "oraclesql",
4 "org": "623f22355286eedbede51619",
5 "group": "623f222a5286eedbede51613",
6 "name": "AIDA BD",
7 "is_active": true,
8 "config": {
9 "repetition": {

10 "value": 5,
11 "unit": "min"
12 },
13 "conn_string": "192.168.237.78:1666/dba",
14 "username": "user_dummy",
15 "password": "user_dummy_password"
16 },
17 "levels": {
18 "critical": {
19 "==": ["result_code", 1]
20 }
21 },
22 "createdAt": 1648304693,
23 "updatedAt": 1658259856
24 }

Example 4: Agent’s data structure

Finally, the alert’s collection encloses all the information related to the alert’s configuration. This

includes the alert’s unique identifier, name, type, i.e., Email, Slack, Discord, among others, creation and

last update timestamps, the associated agent, the repetition window of execution and all the necessary

settings of each alert type. An example of an email alert data structure can be found in example 5, which

clearly defines all of the aforementioned information as well as the specific information to the email alert,

that is, the required mailing list to which the alert should be sent.

5.2 API Gateway

The API gateway is the entry point from which all clients interact with the solution. As such, it needs

to be able to route and forward requests to each service depending on the context and information of

the request, handling Cross-Origin Resource Sharing (CORS) permissions, ensuring authentication and

authorization of the requesting entity of each communication, providing an SSL certificate, and enforcing

communication over Hypertext Transfer Protocol Secure (HTTPS) to maximize security.

1https://jsonlogic.com/operations.html

44

https://jsonlogic.com/operations.html

5.2. API GATEWAY

1 {
2 "id": "09ba9537-7077-4a4b-bc78-b5626e14116c",
3 "name": "Email Alert 09ba9537-7077-4a4b-bc78-b5626e14116c",
4 "type": "email",
5 "every": "1m",
6 "agentId": "b25d2c86-c278-4d75-bcef-546ed9dba788",
7 "mailingList": [
8 "joesmith@example.com",
9 "..."

10],
11 "createdAt": 1648306162,
12 "updatedAt": 1657642634
13 }
14

Example 5: Alert’s data structure - Email

By using Kong it was possible to integrate all these features into a single, secure, and well-defined

component that is completely configurable in a declarative manner, using JSON or YAML. Example 6

contains a portion of the Kong API gateway’s YAML specification, namely the core service’s configuration.

17 - name: core
18 host: core
19 port: 3000
20 protocol: http
21 routes:
22 - name: core-docs
23 paths:
24 - /core
25 - /core/api
26 - /core/api/docs
27 strip_path: false
28 - name: core
29 paths:
30 - /core/api/agents
31 - /core/api/groups
32 - /core/api/organizations
33 strip_path: false
34 plugins:
35 - name: custom-auth
36 config:
37 authentication_endpoint: auth:3000/api/auth/validate
38 token_header: Authorization

Example 6: Kong configuration of the core service

45

CHAPTER 5. IMPLEMENTATION AND RESULTS

5.3 Guardian Server

The guardian server, as already stated, is the centralized component of the solution. It is where all

the management, storage and consumption components of the solution are located and made available.

As specified in previous chapters, more precisely, 3.3 and 4.4, the guardian server is comprised of four

core components, all designed following a microservices-based architecture. The technologies used in

their implementation were a combination of Express.js with Typescript and efforts were made so that all

components, which, for simplicity, are going to be called services from now on, would have a similar

structure, both in terms of folders, files and code organization.

Furthermore, each service needs some configurations to be set, which followed a standardized struc-

ture to maintain coherence and reusability across all services. These configurations are stored in a “.env”,

which is a simple text file that contains key-value pairs, used by the “dotenv” package2 to load the envi-

ronment variables to the application.

Finally, so the solution would be observable and possible to monitor and debug, all services have a

logging mechanism, implemented using the “winston” package3, that automatically saves all logs to a file

and outputs those same logs to a console if one is attached.

5.3.1 Authentication

The authentication service handles the creation and validation of system credentials. As stated in

section 3.3.1, the technology used to implement authentication in the system is token-based authentication

using JWTs. This service exposes endpoints that allow the user to login into the system, i.e., generate

token-based credentials to communicate with the system and validate authentication credentials (JWTs)

to use the other services of the solution.

To implement this functionality, this service has access to the users’ collection in order to validate

login information and it uses a node package called “jsonwebtoken”4 to generate the JWT token-based

credentials.

The sequence diagrams illustrated in the figures 15 and 16 summarise the client authentication pro-

cess carried out for each request on the system. Figure 15 illustrates the sequence of actions that are

performed when a client tries to log in to the system to receive his authentication token, and figure 16 the

sequence of actions undertaken to authenticate each request.

Figure 15 illustrates the actions that are executed if a client does not already have a stored token or

when the token is no longer valid, i.e., the 24-hour period has expired. When a client receives the token,

it is expected to save it for future usage in new requests; otherwise, the client will have to log in again.

When a client already has a valid token stored, the processes portrayed in figure 16 are followed for each

request.

2https://www.npmjs.com/package/dotenv
3https://www.npmjs.com/package/winston
4https://www.npmjs.com/package/jsonwebtoken

46

https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/winston
https://www.npmjs.com/package/jsonwebtoken

5.3. GUARDIAN SERVER

Figure 15: Sequence diagram of the interactions between the client and the solution to obtain a JWT token

Figure 16: Sequence diagram of the interactions between the client and the solution when performing a
request

47

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 16 depicts the series of events that occur in response to each HTTP request. The diagram

exemplifies a request to list all organizations, but it may be used for any other request. Each request’s

HTTP Authorization header contains the token, which is verified by the API gateway using the authen-

tication service. If the token is invalid, the client receives an error message with response code 401,

which is the HTTP response status code that indicates a request was not processed because the provided

authentication credentials were invalid or insufficient to acquire the desired resource.

5.3.2 Core Business Logic

The core service is the biggest component of the solution. As already stated in section 4.4.1, it is the

one that manages all entities except the alerts, that is, the organizations, groups, users, and monitoring

agents, including the respective health/level status definitions.

The logic regarding organizations, groups and users is really simple since these three entities always

have the same type of information and their operations are of creation and management alone. As such,

it is not necessary for any further detailing on their implementation.

On the other hand, the monitoring agents and respective health level definitions are more complex.

Since the system must be ready to support a large variety of types of monitoring agents, these need to

be programmatically defined in a way that enables the addition of new monitoring agents and even the

extension of previously defined ones. To accomplish this, it was decided that the monitoring agents would

be defined using OOP concepts such as abstraction and inheritance, which, again, was one of the main

reasons to use Typescript instead of Vanilla JavaScript for the microservices’ implementation.

Figure 17 illustrates the applied strategy. The monitoring agent base definition is represented by the

abstract class Monitoring Agent which includes the common information all monitoring agents should

contain, despite their kind. Then, all the actual monitoring agents extend the abstract class, each one

being a subclass with its custom configuration properties.

Figure 17: Class diagram depicting the use strategy to represent the monitoring agents’ configurations

48

5.3. GUARDIAN SERVER

The health level definitions, as figure 17 further illustrates, are always associated with a monitoring

agent and have two core properties: the health/status level, which is a simple string field, and the logical

condition that must be met to fall under that level. As stated in section 5.1.2, the logical condition is

represented as a JSON object that follows the JsonLogic format which is a simple way to define logical

conditions with the possibility of logical validation using a JSON logical parser. Examples 7 and 8 illustrate

the use of the JsonLogic format.

1 {
2 "and": [
3 {
4 "==": ["result_code", 1]
5 },
6 {
7 "or": [
8 {
9 "<=": ["status_code", 400]

10 },
11 {
12 ">=": ["resp_time", 500]
13 }
14]
15 }
16]
17 }

Example 7: Logical condition based on “AND” and
“OR” operations

1 {
2 "or": [
3 {
4 "!=": ["result_code", 0]
5 },
6 {
7 ">=": ["status_code", 400]
8 },
9 {

10 ">=": ["resp_time", 500]
11 }
12]
13 }
14

15

16

17

Example 8: Logical condition based on an “OR”
operation

5.3.3 Alerting

The alert service, as stated in section 4.4.1, is responsible for creating and managing the alerts

configured or to be configured in the system. Furthermore, it also has the responsibility of crunching

the metrics data stored in the InfluxDB database, determining the health/status level of the monitoring

agents by comparing the crunched data with the health status definitions and sending the respective

alerts, if applicable, according to the existing configurations associated with each monitoring agent. This

mechanism was implemented by using and extending the underlying InfluxDB components, namely the

Kapacitor5 component.

Furthermore, in addition to the service allowing the dispatch of every alert type available in the system,

it also allows an additional dispatch configuration that is associated by default with each monitoring agent

to allow real-time alerting consumption of external applications. This is accomplished using an event-

driven library, called Socket.io6, that enables real-time, bi-directional communication between web clients

5https://www.influxdata.com/time-series-platform/kapacitor
6https://socket.io

49

https://www.influxdata.com/time-series-platform/kapacitor
https://socket.io

CHAPTER 5. IMPLEMENTATION AND RESULTS

and servers. This functionality is provided by exposing a consumption endpoint connection to which each

client application can connect and communicate with the alert service.

5.3.4 Data Exporting

Finally, the last component of the guardian server, the data export service, is responsible for the

exporting of data to external clients, whether raw metrics related to monitoring agents or their current and

past health status. This service is intended to be used as a data source for other applications, such as

dashboards, that need to display the monitoring and health status data. All the data is possible to be

exported by using a total of three provided HTTP endpoints in the form of an array of JSON objects or

as a Comma-Separated Values (CSV). One for the consumption of metrics data of each monitoring agent

with multiple filtering and manipulation mechanisms (such as start and end time, data aggregation and

others), the other for the consumption of the historic health status levels of a monitoring agent, and the

last one for the consumption of the current health status level of each monitoring agent.

5.4 Local Server

The local server is the software that runs in each healthcare facility or organization. Although it is

called a server, it runs as a multi-part client responsible for the data collection of an organization. As

stated in section 4.4.2, the local server is composed of two different services, one for each data collection

paradigm, that is, pull-based and push-based data collection.

Moreover, as in the guardian server, these services were implemented using a combination of Ex-

press.js with Typescript while maintaining a similar structure to the guardian server’s microservices, both

in terms of folders, files and code organization. The strategies of configuration management, logging and

observability used in the guardian server were applied to the local server as well.

5.4.1 Push-based Data Collection

The push-based data collection service is responsible to report to the guardian service all the data

received from all the services that are being monitored via a push-based data collection paradigm. It was

implemented via a web server that has specific endpoints that handle the data communication from the

monitored services and every time new data is received from those monitored services, first, it is validated

if the monitored service exists and is indeed valid in that organization, to avoid attempts of fake services

intrusion and then, relays that information to the guardian server to be processed, analyzed, stored and

made available for later inspection and consumption.

50

5.5. API DOCUMENTATION

5.4.2 Pull-based Data Collection

On the other hand, the pull-based data collection service handles all the monitoring agents that were

defined with the pull-based data collection paradigm, which are executed using cronjobs7. This service is

a script client that has a periodical sync/update procedure. The periodicity is defined by the monitoring

agent’s configuration and has a default value of two and a half minutes. In addition, this client has also an

initial mechanism to recover and reschedule the agents if the service crashes or is restarted. Algorithm 1

has a pseudo-code specification of the overall service implementation. As it can be seen, every time the

service restarts, the first thing it does is recover (create and schedule) the monitoring agents configured

in the system. After that, it begins the cycle of sync and updates with the guardian server in three stages:

first, it unschedules and removes the monitoring agents that no longer exist in the system, then it creates

and schedules the monitoring agents that were configured and created since the last sync cycle, and

finally, it updates, if necessary, the monitoring agents that are already scheduled.

5.5 API Documentation

Since the developed monitoring solution was designed with external integration, communication and

consumption in mind, it was essential that the entire solution was documented and that this same docu-

mentation was freely accessible on the web. As such, every service and endpoint is documented through

standard API documentation. The documentation was accomplished by using an open-source API doc-

umentation engine called Redocly8. While analyzing the API documentation technological possibilities

were found two main ones: Swagger and Redocly, both supporting the OpenAPI specification9. The main

reason for choosing Redocly over Swagger was Redocly’s ability to visually represent different property

definitions of an object depending on the choice of the value of a given attribute, which is essential to this

solution since each monitoring agent has different configuration properties depending on the agent type.

Figures 18 and 19 exemplify the aforementioned pretended behavior which changes the configuration’s

parameters list depending on the selected value of the “kind” parameter.

The documentation definition was implemented using two complementary node packages: swagger-

jsdoc10 and redoc-express11. The swagger-jsdoc package was used to initialize the OpenAPI specification

and the redoc-express package, which builds on the OpenAPI definition created with the swagger-jsdoc

package, was used to generate and serve the documentation by applying YAML-based comment decorators

to the endpoints with a similar approach to the one in example 9.

7A cron job is a Linux command that is used to schedule tasks to be run in the future. This is often used to schedule a
job to be run on a routine basis, such as sending an HTTP request to an external web service every two hours [56].

8https://redocly.com/reference
9https://swagger.io/specification

10https://www.npmjs.com/package/swagger-jsdoc
11https://www.npmjs.com/package/redoc-express

51

https://redocly.com/reference
https://swagger.io/specification
https://www.npmjs.com/package/swagger-jsdoc
https://www.npmjs.com/package/redoc-express

CHAPTER 5. IMPLEMENTATION AND RESULTS

Algorithm 1: Local pull-based service agents’ sync/update algorithm
𝑎𝑔𝑒𝑛𝑡𝑠 ← 𝑔𝑒𝑡𝑃𝑢𝑙𝑙𝐵𝑎𝑠𝑒𝑑𝐴𝑔𝑒𝑛𝑡𝑠 () // pull-based monitoring agents in the system
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑔𝑒𝑛𝑡𝑠 ← 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑔𝑒𝑛𝑡𝑠𝐹𝑟𝑜𝑚𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒 ()

// Recover/recreate agents if service went down
foreach agent in agents do

if 𝑎𝑔𝑒𝑛𝑡 not in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑔𝑒𝑛𝑡𝑠 then
createAndSchedule(𝑎𝑔𝑒𝑛𝑡)

end
end

// Sync/update agents execution/scheduling with the system
while true do

𝑎𝑔𝑒𝑛𝑡𝑠 ← 𝑔𝑒𝑡𝑃𝑢𝑙𝑙𝐵𝑎𝑠𝑒𝑑𝐴𝑔𝑒𝑛𝑡𝑠 () // update agents' list
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑔𝑒𝑛𝑡𝑠 ← 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑔𝑒𝑛𝑡𝑠𝐹𝑟𝑜𝑚𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒 ()

// Delete agents that no longer exist in the system
foreach currentAgent in currentAgents do

if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑔𝑒𝑛𝑡 not in 𝑎𝑔𝑒𝑛𝑡𝑠 then
unscheduleAndDelete(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑔𝑒𝑛𝑡)

end
end

// Create agents that do not yet exist locally
foreach agent in agents do

if 𝑎𝑔𝑒𝑛𝑡 not in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑔𝑒𝑛𝑡𝑠 then
createAndSchedule(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑔𝑒𝑛𝑡)

end
end

// Update, if necessary, the remaining agents
foreach agent in agents do

if 𝑎𝑔𝑒𝑛𝑡 in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑔𝑒𝑛𝑡𝑠 then
if 𝑎𝑔𝑒𝑛𝑡 updated then

updateAndReschedule(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑔𝑒𝑛𝑡)
end

end
end

sleep(2.5) // Sleep 2 minutes and 30 seconds between each sync/update cycle
end

Figure 18: API documentation: PostgreSQL agent Figure 19: API documentation: NGINX agent

52

5.5. API DOCUMENTATION

1 /**
2 * @swagger
3 * /api/agents:
4 * post:
5 * operationId: CreateAgent
6 * tags:
7 * - Agents
8 * summary: Create a monitoring agent
9 * requestBody:

10 * content:
11 * application/json:
12 * schema: $ref: "#/components/schemas/NewMonitor"
13 * description: Monitoring agent to create
14 * required: true
15 * responses:
16 * 201:
17 * description: Monitoring agent created
18 * content:
19 * application/json:
20 * schema: $ref: "#/components/schemas/Monitor"
21 * 400:
22 * description: Bad request
23 * */
24 router.post("/", (request, response) => { ... });

Example 9: YAML-based decorator used to specify the creation endpoint of a monitoring agent

Finally, every microservice has its own API documentation page, all built with the tool and strategies

described above. Figures 20, 21 and 22 showcase some examples of the aforementioned documentation

pages.

Figure 20: Core service API documentation page - monitoring agent creation

53

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 21: Core service API documentation page - organizations querying

Figure 22: Alert service API documentation page - alert creation

5.6 Deployment

The solution’s deployment, as mentioned and detailed in section 4.4.3, follows the microservices

architecture and deploys that architecture using Docker containers, one container to each service and

infrastructure components, i.e., API gateway and databases. To accomplish this, every one of these com-

ponents has a Dockerfile, which is the file used to build and create the Docker image for that component.

Since all the services are structured and organized similarly and use the same technology stack, the con-

tent of each Dockerfile is similar to the one present in example 10. The only exceptions to this strategy

are the API gateway and the databases which have official Docker images built and made available at the

54

5.6. DEPLOYMENT

official Docker registry12 and are, therefore, not documented in this document.

1 FROM node:lts-alpine3.14 as ts-build
2

3 # Setup Node app
4 WORKDIR /usr/src/app
5

6 # Install app dependencies
7 COPY --chown=node:node ./package*.json ./
8 COPY --chown=node:node ./tsconfig*.json ./
9 RUN npm install

10

11 # Bundle app source
12 COPY . ./
13

14 # Build dist
15 RUN npm run build
16

17 ###
18 FROM node:lts-alpine3.14
19 LABEL org.opencontainers.image.authors="Vasco Ramos"
20

21 # Setup Node app
22 WORKDIR /usr/src/app
23

24 # Install app dependencies
25 COPY --chown=node:node ./package*.json ./
26 RUN npm ci --production
27

28 # Bundle app source
29 COPY --chown=node:node --from=ts-build /usr/src/app/dist ./dist
30

31 CMD ["npm", "start"]

Example 10: Dockerfile - Core service

As it can be seen in the above example, each Dockerfile is composed of a multi-stage build layout

which is useful to optimize and improve the security of Dockerfiles (and the subsequent Docker images)

while keeping them easy to read and maintain [57]. This works by creating a temporary image to install

any necessary software and dependencies, as well as to create and build the application source. After

this, the definitive image build uses only the necessary files from the temporary image to create the final

image, keeping the final image lightweight and without unnecessary software and dependencies, which

reduces the build’s vulnerability risk.

Moreover, so the services’ Docker images can be used to create and execute the actual Docker con-

tainers, the images need first to be built using the Dockerfiles and made available on a public registry. As

such, were created Continuous Integration (CI)/Continuous Delivery (CD) pipelines using the integrated

GitHub CI/CD platform, called GitHub Actions13 to build a Docker image based on a provided Dockerfile
12https://hub.docker.com
13https://docs.github.com/en/actions

55

https://hub.docker.com
https://docs.github.com/en/actions

CHAPTER 5. IMPLEMENTATION AND RESULTS

and publish it to the GitHub Packages Container Registry14 every time a new git tag is pushed to the git

repository. The base structure and implementation of this pipeline, or workflow, as is called in the GitHub

Actions platform, is available in appendix C.1.

Finally, to deploy or redeploy the solution’s servers were created two Docker Compose15 files, one

for the guardian server and the other for the local server, with all the required services for each server,

which simplify the task of defining and running multi-container Docker applications through a YAML-based

configuration file [58]. Both Guardian Server’s and Local Server’s Docker Compose files are available in

appendixes C.2 and C.3, respectively.

5.7 Core Features Examples

The overall solution has several components, as already explained throughout the document. This

section includes some examples of the system’s API endpoints to some of the most important features,

such as agent creation, alerts creation and monitoring data querying. The examples were executed using

an API client named Postman16. Figures 23, 24 and 25 show examples of the API calls necessary to the

creation of monitoring agents for the OracleSQL, NGINX and Deadman services, respectively.

Figure 23: OracleSQL agent creation API call

14https://docs.github.com/en/packages
15https://docs.docker.com/compose
16https://www.postman.com

56

https://docs.github.com/en/packages
https://docs.docker.com/compose
https://www.postman.com

5.7. CORE FEATURES EXAMPLES

Figure 24: NGINX agent creation API call

Figure 25: Deadman agent creation API call

Figures 26 and 27 show examples of the API calls necessary to the creation of email and slack alerts,

respectively.

Figure 26: Email alert creation API call

57

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 27: Slack alert creation API call

And, finally, figure 28 shows an example of an API call to query the monitoring data for a specific

agent.

Figure 28: Monitoring data query API call

5.8 External Results

As stated in chapter 1, this Dissertation is part of a larger project in which was also developed a IT

monitoring management and visualization web application that integrates and uses the solution developed

in this Dissertation. Thus, although the author of this Dissertation did not develop the web application,

it was considered relevant to show some of the referred web application interactions, i.e., portions of the

application, as a way of also presenting the results of the backend architecture solution and infrastructure

developed in this Dissertation since the web application serves as an interaction and visualization tool to

simplify the usage of the developed monitoring solution and help end users more easily take advantage of

its full potential. Figures 29, 30, 31, 32 and 33 show some screenshots of the web application displaying

functionalities such as overview page with the existing monitoring agents, agents’ creation and detail

pages, as well as the visualization dashboard functionality that takes advantage of the guardian’s server

data export service.

58

5.8. EXTERNAL RESULTS

Figure 29: Agent creation page

Figure 30: Agents overview page

Figure 31: Agent page

59

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 32: Agent alerts page

Figure 33: Agent’s metrics visualization page

5.9 Summary

The base features of the architecture proposed in chapter 4 were successfully implemented. With the

current solution, it is possible to monitor and visualize systems’ and services’ performance and health in

a centralized platform that supports multiple target sites and organizations.

The end users and external applications can communicate with the system through HTTP requests

to the guardian server, given valid authentication or credentials. Through these requests, it is possible to

create and manage monitoring agents as well as its health status levels and alerts, customize the solution

with pre-configured notification channels to serve as alerts’ base configurations and consume monitoring

metrics and information to actively monitor and inspect the monitored services’ current and past status

and performance. All the available requests are documented and exemplified through openly accessible

API documentation.

60

5.9. SUMMARY

Each and every service is packaged in a Docker image, which allows and streamlines the distribution

and installation of a production environment as well as its maintenance. Finally, the monitoring solution is

integrated with an external web application, demonstrating the functionality and potential of the developed

monitoring backend and infrastructure solution.

61

C
h
a
p
te

r

6
Validation and Discussion

After the platform has been developed, it was necessary to validate it in a real-world context and envi-

ronment. Subjective and formal assessment and validation processes were used to demonstrate that the

produced technology is capable of adoption and usage in the IT departments of healthcare organizations,

as initially planned.

To that effect, first, it was conducted a user acceptance and validation questionnaire that focused on

the participants’ experience and perspectives regarding the solution’s quality and usefulness. Then, it was

carried out a two-part formal validation process by conducting a SWOT analysis of the project followed by

a systematic process of risk assessment and mitigation.

6.1 Usefulness and Acceptance Validation

The system’s testing and validation were carried out through real case studies that were developed

in cooperation with the same two healthcare institutions of the initial questionnaire, i.e., CHTS and USL-

Guarda. This evaluation focused on whether the target audience, after a familiarization period, accepted

and embraced the new system and whether it was useful and had a positive impact on their daily moni-

toring duties. Thus, a second questionnaire was developed which, like the first one, was directed to the

IT and systems administrators and distributed in the form of an anonymous Google form, the questions

of which are available in appendix B. The number of participants was inferior when compared to the first

questionnaire, with a final result set of 13 responses.

Moreover, as in the first questionnaire, this one is also constituted of two sections: the first section with

closed questions and a second with more open ones. The first section focuses on gathering a perspective

regarding the usage context (in which platforms, with what regularity, etc) and the responder’s perception

of the platform’s quality (if there was any bug, issue, wrong/unexpected interaction/behavior, etc). On

62

6.1. USEFULNESS AND ACCEPTANCE VALIDATION

the other hand, the second section focuses on the responder’s perception of the system’s usefulness,

effectiveness and applicability.

Regarding the data preparation and analysis, the same strategies and techniques from the first ques-

tionnaire were used. The data from the closed questions were treated as being of the nominal type,

allowing a statistical representation of the data, followed by the respective analysis and interpretation. The

answers to the open questions were treated individually, manually extracting the topics and suggestions

considered most important and relevant for the evaluation and validation of the developed solution.

The first two closed questions are aimed at providing a behavioral and usage context for the system.

Figure 34 presents the usage context of the system, that is, the software used to access and interact with

the developed system, showing that more than half of the participants engaged with the system through

the web application developed by Carolina Marques in the scope of the overall project and that almost 20

percent interacted with the system using terminal calls or programmatic clients (such as Python scripts or

Java programs). On the other hand, the second question focuses on how often the participants used the

system. As figure 35 shows, a large majority of the participants used the system at least once a day, with

a second-highest frequency of usage several times a day, which most possibly means the system was well

accepted and perceived by the participants.

Figure 34: Distribution of the devices/services from
which the solution was used and tested

Figure 35: Distribution of the regularity with which
the solution was accessed and used

The questionnaire’s next three questions focused on quality control and system performance by gather-

ing information on whether the participants had encountered any kind of unexpected or troubling behavior

while testing the platform. Figure 36 presents the answers’ distribution to the three questions which reveal

the system is indeed working as expected, that is, respecting the data isolation policies and the privacy

of each organization, while operating consistently and without any kind of error or wrong behavior. Fur-

thermore, the system’s performance and responsiveness are more than satisfactory, since from all the

participants only one reported having once experienced delays or lags while using the platform. As such,

from a quality and performance perspective, it is possible to conclude the system is capable, reliable and

meets end-user usage demand and privacy concerns.

63

CHAPTER 6. VALIDATION AND DISCUSSION

Figure 36: Distribution of responses to the third, fourth and fifth closed questions (see appendix B)

The remaining closed question focused on the system’s functionality, whether the system met the

participant’s expectations and needs and whether was better or more useful than the monitoring solution

previously used. This question uses the method of providing statements and measuring the participants’

level of agreement, as was in the first questionnaire. The statements presented in the questionnaire are

as follows (further detail on appendix B):

1. The monitoring agents’ variety is appropriate/sufficient for your organization’s monitoring needs.

2. Every time a monitored service failed you were warned per the configurations you specified.

3. The alerting delivery mechanisms are appropriate/sufficient for your organization’s setup and

needs.

4. The notification alerts provided enough context and information to successfully inform you of the

problem at hand.

5. The deployment of the local server (i.e., the data collection clients) was simple and straightforward

and occurred with zero or minor installation problems.

6. The monitoring platform, as a whole, simplified the monitoring management and consumption in

your organization.

7. The monitoring platform, as a whole, fulfilled your organization’s needs better than the previously

used monitoring solution.

64

6.1. USEFULNESS AND ACCEPTANCE VALIDATION

Figure 37 presents the answers’ distribution to this question statements. The responses were treated

with the same labeling and scoring mechanism used in the first questionnaire, represented in table 2.

The overall results indicate that the system presented a satisfiable set of functionalities with some

shortcomings, namely the diversity of the monitoring agents’ types available (statement one). According to

the participant’s responses, the system’s current strongest advantages are the deployment simplicity and

good alerting capabilities (statements three, four and five). Finally, given the good scores on statements

six and seven, which referred to the system’s capability of meeting the needs of users and outperforming

previous solutions, it is possible to conclude that the system successfully addresses the problems and

necessities that were central to this Dissertation and because feedback on its capabilities and performance,

when compared to other monitoring solutions, was also positive, it is also possible to conclude that the

system has a good chance of being adopted by more healthcare facilities which is also a good indicator of

its usefulness and quality.

Figure 37: Distribution of responses to the statements of the questionnaire’s sixth closed question (see
appendix B)

The final two questions, which are open-ended, were focused on understanding which functionalities

the participants think the system is missing and also how the current functionalities can be improved

and expanded. Most of the answers were related to increasing the diversity of the monitoring agents and

alerting delivery mechanisms available. This was already expected and planned to be improved in future

work outside of this Dissertation scope and execution, as it is going to be detailed in the next chapter.

The feedback from the participants was generally very positive, as all of the indicators resulting from the

questionnaire’s responses pointed to the system’s success, both in terms of its ability to meet the problems

65

CHAPTER 6. VALIDATION AND DISCUSSION

and concerns that originated this Dissertation, as well as the ability to meet the needs and expectations

of the IT administrators who tested it, and also in terms of its positive behavior when compared to other

solutions already on the market.

As a final observation, these results allow an important conclusion, which is the answer to the guid-

ing research question that originated this Dissertation’s work. The question intended to understand if a

multi-device/site and multi-organization monitoring solution would help improve the availability and, con-

sequently, quality of the highly heterogeneous IT infrastructures of the healthcare industry. All results

indicate a positive answer and, as such, corroborate this Dissertation’s initial hypotheses as well as the

success of this solution’s architectural design and implementation.

6.2 Formal Evaluation

While validation by assessing the feedback of participants on real case studies is very insightful and

helpful in assessing the project’s outcome and success, it is also important to conduct a formal evaluation

of the project and developed system using standard and well-tested project evaluation and analysis frame-

works. This section presents the results of the two formal evaluation frameworks used: SWOT Analysis

and Risk Assessment.

6.2.1 SWOT Analysis

The SWOT analysis is a strategic planning framework used when performing a critical evaluation of an

organization, a project, a system or a business activity. SWOT analysis has two dimensions: internal and

external. The internal dimension is concerned with internal and organizational factors, i.e., the system’s

Strengths and Weaknesses, and the external dimension is concerned with the environmental factors,

i.e., the market’s Opportunities and possible Threats [59]. This framework is frequently represented

as a 2-by-2 matrix similar to the one in figure 38.

Figure 38: SWOT Matrix. Adapted from: [60]

66

6.2. FORMAL EVALUATION

It is clear, then, that each SWOT analysis is composed of these four categories:

• Strengths is what an organization or system excels at and what separates it from the competition.

• Weaknesses is what stops an organization or system from achieving its full potential and, there-

fore, are the areas that need to be worked on and improved.

• Opportunities are beneficial external factors that could give an organization or system a compet-

itive advantage.

• Threats are external factors that have a negative impact and the potential to harm or prejudicate

a system or an organization.

Regarding the case study at hand, taking into account the theoretical and practical components of this

evaluation framework and also using the information obtained from the platform’s usage in the cooperating

healthcare facilities, it was carried out a SWOT analysis of the developed monitoring platform. The results

of this analysis are listed below.

Strengths

• High scalability and availability of the platform as well as simple deployment process;

• Information security through authentication and data isolation mechanisms;

• Support for multi-site/facility and multi-organization monitoring with a unified and centralized man-

agement system as well as the possibility to have a unified view (through external dashboard clients)

of everything related to monitoring (agents and alerts’ configuration, services’ status, notifications,

visualization dashboards, etc);

• Modular system, which can be continuously improved, based on the structure initially created.

Weaknesses

• The current variety in terms of agent types and/or alerting delivery mechanisms available may be

limited or insufficient for certain usage scenarios;

• The platform’s use is entirely dependent on a network/internet connection;

Opportunities

• The demand in healthcare to have a simpler but capable and efficient monitoring system, possible

to be configured and managed entirely over a web page or HTTP requests;

• The democratization of monitoring systems in healthcare can lead to broader and extensive adoption

of monitoring techniques, improving the organizations’ IT systems and healthcare services’ quality,

resulting in a better experience for both the patients and the healthcare professionals.

67

CHAPTER 6. VALIDATION AND DISCUSSION

Threats

• Although the user validation questionnaire results showed a good acceptance and understanding of

the platform, when expanding to other healthcare facilities new problems and unexpected reactions

from users can lead to unforeseen problems or complications;

• Healthcare organizations, as well as its IT teams, may be hesitant to adopt a newer platform to detri-

ment of their current IT monitoring platform or even other monitoring tools more well-established

in the market, leading to an adoption problem.

Table 3 presents a summary of the aforementioned results in the format of a SWOT matrix.

Table 3: SWOT analysis - results summary matrix

Strengths
- Scalability and availability

- Simple deployment

- Information security

- Multi-site and multi-organization support

- Modularity

Weaknesses
- Limited variety of agent types

- Limited variety of alerting delivery mechanisms

- Network connection

Opportunities
- Product demand

- Improve healthcare services’ quality

Threats
- Acceptance/usability problems

- Lack of adoption

6.2.2 Risk Assessment

A risk assessment analysis is a systematic procedure for finding, assessing, and controlling hazards

and risks. This systematic process has a set of phases. First, enumerate all possible risks and problems

that may occur. Second, when the risks are identified, evaluate each risk according to the likelihood of

occurrence, its potential impact and the severity of the risk, which is the product of the two previous

indicators, i.e., likelihood and consequence. And finally, prepare a mitigation action plan to minimize the

impact of each risk [61].

To simplify the risk assessment process, the three evaluation indicators will be represented with a

number scale system. For the likelihood of occurrence, the following scale will be used:

1. Rare: it’s possible to occur, although extremely unlikely;

2. Unlikely: it could occur, but it is unlikely;

3. Possible: there is a real possibility of the risk happening;

4. Probable: a risk occurrence is likely to occur more than once;

68

6.2. FORMAL EVALUATION

5. Almost certain: a risk occurrence is very (maybe extremely) likely to occur;

For the consequence of the risk, the following scale will be used:

1. Insignificant: none or near-zero impact;

2. Minor: short-term disruption;

3. Moderate: significant (mid-term) disruption;

4. Major: highly disruptive (mid to long-term);

5. Catastrophic: possibly irreversible (long-term);

Since the severity indicator is the product of the previous two, it can take values from one (1) to

twenty-five (25).

The results of this assessment are represented in the table 4. The likelihood indicator of each risk

is represented by the column L, the consequence indicator by the column C and the severity one by the

column S. There is also an extra column indicating if each risk has indeed occurred during the course of

this work.

Table 4: Risk assessment results

Risk L C S Occurred? Mitigation Action Plan

Lack of responses to the

research questionnaire.

4 4 16 No If possible, ask friends and colleagues to

answer them. Otherwise, try to find other

people who can fill the role and confirm their

availability.

The obtained results were

unsatisfactory.

3 5 15 No Understand why this happened and try to fix

it. If extra time is needed, ask to postpone the

artifact’s expected delivery date.

Lack of experience or

knowledge with the research

topics.

4 3 12 Yes Research documentation, articles, tutorials,

books and other learning materials that could

aid in understanding and improving the

overall development. Ask for suggestions

from the advisor and/or colleagues.

69

CHAPTER 6. VALIDATION AND DISCUSSION

Table 4: Risk assessment results (continued)

Risk L C S Occurred? Mitigation Action Plan

Issues or bugs with the

solution.

4 3 12 Yes Issues or bugs on a production installation

although undesired, are very common.

Identify the problem and analyze its impact. If

needed, roll back to a previous stable version

while the problem is being fixed.

The findings and/or

questionnaire results did not

support the user feedback.

3 3 9 No Hypotheses are sometimes proposed but they

are not always proven. This is still a result, so

why it didn’t work should be discussed.

The research topics are

extremely complex or have

not been comprehensively

studied.

3 3 9 No Divide a complex topic into less complicated

subtopics. Investigate them and try to

connect them at the end.

The chosen methodologies

and/or technologies were

inadequate.

2 4 8 No Look for other available

methodologies/technologies and select one

that is appropriate for the project. Consult

with the advisor.

The deployment provisioning

was insufficient.

3 2 6 No Try to understand what are the current

bottlenecks and address them by updating

the underlying infrastructure.

Difficulties communicating

with the adviser.

1 4 4 No Encourage weekly meetings with the advisor

and make use of appropriate communication

channels.

Inadequate planning. 1 4 4 No Rethink a more realistic plan to ensure it

meets expectations.

70

6.3. SUMMARY

6.3 Summary

This chapter explored the evaluation and validation of the system as well as a subsequent discussion

of the acquired results. The case study had the collaboration of the healthcare organizations, CHTS

and USLGuarda, and aimed to understand how the developed solution was perceived and used by IT

administrators in real healthcare environments to validate whether the system successfully addresses the

problems, concerns and requirements discussed in the early phases of this Dissertation.

The system was validated and evaluated through two types of analysis, formal and subjective. The

subjective analysis consisted of an anonymous online questionnaire. And the formal evaluation consisted of

a SWOT analysis followed by a risk assessment and mitigation analysis. Both the questionnaire and formal

methods produced positive results with a big emphasis on the system’s ability to overcome the problems

and difficulties related to multi-organization and multi-site IT monitoring that were at the center of this

Dissertation’s exploration topics and the overall participant’s acceptance of the system and willingness to

use it in detriment of the organizations’ previously adopted monitoring solutions.

While the feedback and subsequent evaluation results were positive, some shortcomings and limita-

tions were identified, mainly related to the limited variety of types of monitoring agents and alert delivery

mechanisms available. These limitations were already known by the author of this Dissertation and are

addressed through future work planning discussed in more detail in the next chapter.

71

C
h
a
p
te

r

7
Conclusion

This Dissertation is concluded with some closing notes on the work presented throughout this docu-

ment. A summary of this Dissertation’s key technical and scientific contributions is also presented, followed

by a highlight of suggestions for future improvements.

7.1 Final Remarks

This Dissertation introduced a novel IT monitoring backend solution tailored specifically for the health-

care industry. Based on the existing solutions explored, four main limitations were found:

• Only a small number of the solutions simultaneously support the two existing data collection

paradigms (pull-based and push-based);

• Most solutions do not support API-based monitoring management;

• Only one of the analyzed solutions supported multi-organization and multi-site monitoring schemas,

albeit not fully;

• All the explored solutions had at least one of the three aforementioned limitations and, therefore,

none of them completely suppressed the capabilities needed to overcome the problem addressed

in this Dissertation.

The solution, and respective architecture, that was designed and validated in this work overcomes

those limitations and offers full API-based IT monitoring management and consumption, with a fully com-

pliant multi-site and multi-organization integration schema and a hybrid data collection mechanism that

supports both paradigms. To accomplish this, it was selected a microservices-based approach where

72

7.2. CONTRIBUTIONS

the main components of the solution are made available from an off-site installation, named guardian

server, and an on-site local server responsible for the organization’s monitoring data collection. The final

approach and design were heavily influenced by the first questionnaire’s results and suggestions, which

was a fundamental instrument of technical and conceptual feedback.

To validate the solution, different validation and evaluation strategies were applied. First, the solution

was tested in real-life scenarios, namely two regional hospitals, CHTS and USLGuarda. Following the

testing period, the IT administrators that participated in the testing were allowed to evaluate the solution

through an anonymous online form. The results of the evaluation were positive and the solution was

accepted as a viable monitoring option that overcomes the referred limitations found in existing solutions.

One relevant finding was that the majority of participants, when asked, stated that the developed solution

simplified their day-to-day monitoring tasks and better fulfilled their organization’s monitoring needs than

their previous monitoring solution, which means this Dissertation’s work is an improvement both in terms

of functionality and simplicity when compared to the solutions each organization was using. In addition,

were also conducted two formal evaluations, a SWOT analysis and a systematic process of risk assessment

and mitigation. Both were useful to understand more pragmatically the solution’s positive aspects and

limitations, as well as identify possible risks and a plan to mitigate them.

Some challenges had to be overcome during this Dissertation to arrive at this final architecture. The

overall architecture design took several iterations to arrive at the presented one mainly due to network

and security constrictions that needed to be overcome so the solution could be used in real-life healthcare

organizations. Also, the deployment and documentation efforts were surmountable, since the goal was

to make the installation, adoption and usage processes as simple and seamless as possible. Because of

this, and also the concern to make the solution’s implementation as clean and understandable as possible,

much time was dedicated to refactoring and refining details and achieving the current result.

It is also important to note that, although the solution was designed to focus on the healthcare sector,

its architecture and implementation are generic enough to allow the system to be used by other industries

that experience the same problems and difficulties explored and addressed by this work.

Overall, it can be concluded that it was possible to address and overcome the limitations and problems

discussed in chapters 1 and 2. It was also possible to understand, from the validation process and results,

that a multi-device/site and multi-organization monitoring solution can, indeed, improve the availability and

quality of healthcare IT infrastructure and, consequently, their healthcare service’s quality, which was this

Dissertation’s guiding research question.

7.2 Contributions

This Dissertation’s work contributes with:

• A literary and state-of-the-art review of IT monitoring solutions with application to the healthcare

sector and its landscape regarding support for multi-site and multi-organization functionalities.

73

CHAPTER 7. CONCLUSION

• A microservices-based IT monitoring backend that fully supports all the defined and specified func-

tional and non-functional requirements with particular emphasis on multi-site and multi-organization

functionalities, as well as web and API-based monitoring and real-time alerts configuration and con-

sumption.

• The implementation of the designed IT monitoring backend architecture using open-source tech-

nologies and frameworks.

• The backend solution’s full documentation, including usage examples, and deployment guides, so

it can be easily extended, improved and deployed in countless healthcare organizations, no matter

their size, complexity and production environment.

Additionally, this Dissertation’s work also has scientific outcomes, namely a conference publication and

the submission of a detailed implementation and case study results article to an International Conference

on Information Technology & Systems with the following references, respectively:

• C. Marques, V. Ramos, H. Peixoto, and J. Machado, “Pervasive Monitoring System for Services and

Servers in Healthcare Environment”, Procedia Computer Science, vol. 201, pp. 720–725, 2022,

The 5th International Conference on Emerging Data and Industry 4.0 (EDI40). More details on

appendix D.1.

• V. Ramos, C. Marques, H. Peixoto, and J. Machado, “Information Technology Monitoring in Health-

care: A Case Study”, in The 6th International Conference on Information Technology & Systems

(ICITS23), Springer International Publishing (under review). More details on appendix D.2.

7.3 Future Work

Since this work had to address significantly different challenges to develop an integrated solution, there

was no opportunity to further refine and improve all elements, resulting in implementation prioritization.

The resulting solution may and should be used to leverage additional functionalities that this Dissertation

could not cover. Thus, taking into consideration the ideas that were regarded interesting but not a pri-

ority, as well as the results and comments from the validation questionnaire, the following features and

improvements were considered relevant for future work:

1. Extend monitoring agents support. The implemented solution makes available a core set of moni-

toring agent types. To enable the solution to serve a larger variety of organizations, healthcare or

not, it would be interesting to explore and implement additional monitoring agent types, as well as

improve the current agent type model to further simplify the process of adding new agent types to

the solution.

74

7.3. FUTURE WORK

2. Extend alerting delivery mechanisms support. Every organization has a different set of communi-

cation and technological tool stacks. Thus, although the current solution already provides a large

option set of alerting delivery mechanisms, it would be interesting to further expand it and allow

even more integrations, such as SMS, PagerDuty, WhatsApp, Telegram, and Signal, among others.

3. Extend data export standards support. The solution’s data export functionality is aimed at simplify-

ing the integration of this system with other external monitoring systems or visualization dashboards.

Since integration and interoperability is key in healthcare, it should be interesting to understand how

this functionality could be expanded to support additional data metrics standards, namely Open-

Metrics and OpenTelemetry, which are the two fastest-growing projects in this area of expertise [62].

4. Improve real-time alerting. Real-time alerting is an existing functionality of the developed solution.

However, its implementation was based on a Socket.IO web server configuration, which, despite

allowing quick implementation of this type of mechanism, is not the most reliable, fault-tolerant

or efficient option. As such, it should be investigated the possibility to replace the Socket.IO im-

plementation with a combination of a message queue, e.g. RabbitMQ, ZeroMQ, and others, with

WebSocket clients [63], [64].

5. Improve deployability and scalability. Considerable efforts were put into developing a production

installation process that would be simple and reliable enough to follow without major operational

issues. Nevertheless, since more and more companies are migrating to the cloud and focusing on

cloud-native solutions, it would be interesting to explore cloud and container-based orchestration

tools such as Kubernetes and Helm1.

6. Include troubleshooting/recovery support. Integrated troubleshooting or recovering suggestions is

a major asset to every monitoring solution since it allows the IT administrators to easily understand

what is the problem, by looking into the monitoring metrics, while also being given some insight

on what might be needed to do to troubleshoot the problem or, how to recover the system from

the problem occurrence. This could be implemented by starting with generic insights or command

executions via a command-like experience, either by web interface or chat-based (e.g. WhatsApp,

Slack, etc) integrations, that enables actions like restarting or resetting the service and, afterward,

evolve this functionality into a fully functional troubleshooting and recovery mechanism.

1Helm is a Kubernetes deployment tool that helps automate the design, packaging, configuration, and deployment of
Kubernetes applications and services [65].

75

Bibliography

[1] E. A. for Digital Transition, The Digital Transition in Healthcare: An Urgent Need - Manifesto, [Ac-

cessed 14. Dec. 2021]. [Online]. Available: https://digitalforeurope.eu/the-digita
l-transition-in-healthcare-an-urgent-need (cit. on p. 1).

[2] J. Øvretveit, T. Scott, T. G. Rundall, S. M. Shortell, and M. Brommels, “Improving quality through

effective implementation of information technology in healthcare”, International Journal for Quality

in Health Care, vol. 19, no. 5, pp. 259–266, Aug. 2007, issn: 1353-4505. doi: 10.1093/intqhc/
mzm031. [Online]. Available: https://doi.org/10.1093/intqhc/mzm031 (cit. on p. 1).

[3] W. H. Organization, Toolkit on monitoring health systems strengthening, [Accessed 14. Dec. 2021],

2008. [Online]. Available: https://www.who.int/healthinfo/statistics/toolkit_
hss/EN_PDF_Toolkit_HSS_InformationSystems.pdf (cit. on p. 1).

[4] 5 reasons to build a health monitoring system for a hospital, https://cprimestudios.com/
blog/5-reasons-build-health-monitoring-system-hospital, [Accessed 8. Oct.

2021] (cit. on p. 2).

[5] A. Olson, Avi Systems – Why Health Care Organizations Need a Monitoring and Reporting System,

https://www.avisystems.com/blog/why-health-care-organizations-need-
a-monitoring-and-reporting-system, [Accessed 8. Oct. 2021] (cit. on p. 2).

[6] E. Pettersson, “A Comparison of Pull- and Push- based Network Monitoring Solutions: Examining

Bandwidth and System Resource Usage”, M.S. thesis, KTH, School of Electrical Engineering and

Computer Science (EECS), 2021 (cit. on p. 6).

[7] G. Statkeviius, Push Vs. Pull In Monitoring Systems, https://giedrius.blog/2019/05/
11/push-vs-pull-in-monitoring-systems, [Accessed 19. Oct. 2021] (cit. on p. 6).

[8] M. Julian, Practical Monitoring: Effective Strategies for the Real World. O’Reilly Media, 2018, isbn:

978-1-491-95735-6 (cit. on pp. 6, 7).

[9] Y. I. Binev, “Centralised Monitoring and Alerting Solution for Complex Information Management

Infrastructure”, M.S. thesis, NOVA Information Management School (NIMS), Jan. 2020 (cit. on

pp. 6, 10, 12).

[10] J. Turnbull, The Art of Monitoring. James Turnbull & Turnbull Press, 2016, isbn: 978-0988820241

(cit. on pp. 6, 7).

76

https://digitalforeurope.eu/the-digital-transition-in-healthcare-an-urgent-need
https://digitalforeurope.eu/the-digital-transition-in-healthcare-an-urgent-need
https://doi.org/10.1093/intqhc/mzm031
https://doi.org/10.1093/intqhc/mzm031
https://doi.org/10.1093/intqhc/mzm031
https://www.who.int/healthinfo/statistics/toolkit_hss/EN_PDF_Toolkit_HSS_InformationSystems.pdf
https://www.who.int/healthinfo/statistics/toolkit_hss/EN_PDF_Toolkit_HSS_InformationSystems.pdf
https://cprimestudios.com/blog/5-reasons-build-health-monitoring-system-hospital
https://cprimestudios.com/blog/5-reasons-build-health-monitoring-system-hospital
https://www.avisystems.com/blog/why-health-care-organizations-need-a-monitoring-and-reporting-system
https://www.avisystems.com/blog/why-health-care-organizations-need-a-monitoring-and-reporting-system
https://giedrius.blog/2019/05/11/push-vs-pull-in-monitoring-systems
https://giedrius.blog/2019/05/11/push-vs-pull-in-monitoring-systems

BIBLIOGRAPHY

[11] Start page – collectd – The system statistics collection daemon, [Accessed 20. Oct. 2021]. [Online].

Available: https://collectd.org (cit. on p. 7).

[12] H. Huang and L. Wang, “P&P: A Combined Push-Pull Model for Resource Monitoring in Cloud

Computing Environment”, in 2010 IEEE 3rd International Conference on Cloud Computing, 2010,

pp. 260–267. doi: 10.1109/CLOUD.2010.85 (cit. on p. 7).

[13] A. Srivastava, Elasticsearch 7 quick start guide: get up and running with the distributed search and

analytics capabilities of Elasticsearch. Packt Publishing, 2019, isbn: 9781789803327 (cit. on p. 8).

[14] What are Beats? | Beats Platform Reference | Elastic, [Accessed 20. Oct. 2021]. [Online]. Available:

https://www.elastic.co/guide/en/beats/libbeat/current/beats-referenc
e.html (cit. on p. 8).

[15] Elastic Sack Customers and Success Stories, [Accessed 1. Dec. 2021]. [Online]. Available: https:
//www.elastic.co/customers (cit. on p. 9).

[16] TICK Stack | Technology Radar | Thoughtworks, [Accessed 20. Oct. 2021]. [Online]. Available:

https://www.thoughtworks.com/radar/platforms/tick-stack (cit. on p. 9).

[17] P. Dix, Monitoring with Push vs. Pull: InfluxDB Adds Pull Support with Kapacitor, https://www.
influxdata.com/blog/monitoring-with-push-vs-pull-influxdb-adds-pull-
support-with-kapacitor, [Accessed 20. Oct. 2021] (cit. on p. 9).

[18] Open Source Time Series Platform - The TICK Stack, [Accessed 20. Oct. 2021]. [Online]. Available:

https://www.influxdata.com/time-series-platform (cit. on p. 10).

[19] Telegraf plugins | Telegraf 1.20 Documentation, [Accessed 21. Oct. 2021]. [Online]. Available: ht
tps://docs.influxdata.com/telegraf/v1.20/plugins (cit. on p. 10).

[20] InfluxDB OSS 1.8 Documentation, [Accessed 21. Oct. 2021]. [Online]. Available: https://docs.
influxdata.com/influxdb/v1.8 (cit. on p. 10).

[21] I. Data, An InfluxData Case Study: How Allscripts Uses InfluxDB to Monitor Its Healthcare IT Plat-

form, [Accessed 12. Dec. 2021], 2021. [Online]. Available: https://get.influxdata.com/
rs/972-GDU-533/images/Customer_Case_Study_Allscripts.pdf (cit. on p. 11).

[22] Who uses TICK Stack?, [Accessed 28. Nov. 2021]. [Online]. Available: https://stackshare.
io/influxdb (cit. on p. 11).

[23] Ł. Kugel, “Tools for distributed systems monitoring”, Foundations of Computing and Decision Sci-

ences, vol. 41, Dec. 2016. doi: 10.1515/fcds-2016-0014 (cit. on p. 11).

[24] A. Castanheira, “Implementação de Sistema de Monitorização e Controlo de Interoperabilidade

Clínica”, M.S. thesis, University of Minho (UM), Mar. 2020 (cit. on p. 11).

[25] Nagios Solutions For Healthcare and Medicine, [Accessed 1. Nov. 2021]. [Online]. Available: htt
ps://www.nagios.com/solutions/healthcare-medicine (cit. on p. 11).

77

https://collectd.org
https://doi.org/10.1109/CLOUD.2010.85
https://www.elastic.co/guide/en/beats/libbeat/current/beats-reference.html
https://www.elastic.co/guide/en/beats/libbeat/current/beats-reference.html
https://www.elastic.co/customers
https://www.elastic.co/customers
https://www.thoughtworks.com/radar/platforms/tick-stack
https://www.influxdata.com/blog/monitoring-with-push-vs-pull-influxdb-adds-pull-support-with-kapacitor
https://www.influxdata.com/blog/monitoring-with-push-vs-pull-influxdb-adds-pull-support-with-kapacitor
https://www.influxdata.com/blog/monitoring-with-push-vs-pull-influxdb-adds-pull-support-with-kapacitor
https://www.influxdata.com/time-series-platform
https://docs.influxdata.com/telegraf/v1.20/plugins
https://docs.influxdata.com/telegraf/v1.20/plugins
https://docs.influxdata.com/influxdb/v1.8
https://docs.influxdata.com/influxdb/v1.8
https://get.influxdata.com/rs/972-GDU-533/images/Customer_Case_Study_Allscripts.pdf
https://get.influxdata.com/rs/972-GDU-533/images/Customer_Case_Study_Allscripts.pdf
https://stackshare.io/influxdb
https://stackshare.io/influxdb
https://doi.org/10.1515/fcds-2016-0014
https://www.nagios.com/solutions/healthcare-medicine
https://www.nagios.com/solutions/healthcare-medicine

BIBLIOGRAPHY

[26] Who uses Nagios?, [Accessed 2. Dec. 2021]. [Online]. Available: https://stackshare.io/
nagios (cit. on p. 11).

[27] Nagios — Architecture, [Accessed 26. Oct. 2021]. [Online]. Available: https://www.tutorial
spoint.com/nagios/nagios_architecture.htm (cit. on p. 11).

[28] Overview | Prometheus, [Accessed 21. Oct. 2021]. [Online]. Available: https://prometheus.
io/docs/introduction/overview (cit. on pp. 12, 13).

[29] B. Brazil, Prometheus: Up & Running: Infrastructure and Application Performance Monitoring, First

edition. O’Reilly Media, 2018, isbn: 9781492034148 (cit. on p. 12).

[30] Who uses Prometheus?, [Accessed 4. Dec. 2021]. [Online]. Available: https://stackshare.
io/prometheus (cit. on p. 13).

[31] U. o. O. Network Startup Resource Center, Scalable monitoring tools – a mile-high view, https:
//nsrc.org/workshops/2019/btnog6/nmm/netmgmt/en/futures/scalable-
monitoring-tools.pdf, [Accessed 20. Oct. 2021], 2019 (cit. on p. 14).

[32] Monitoring a multi-cluster environment using Prometheus federation and Grafana, [Accessed 26.

Oct. 2021]. [Online]. Available: https://mattermost.com/blog/monitoring-a-mult
i-cluster-environment-using-prometheus-federation-and-grafana (cit. on

p. 15).

[33] K. Gos and W. Zabierowski, “The Comparison of Microservice and Monolithic Architecture”, Apr.

2020, pp. 150–153. doi: 10.1109/MEMSTECH49584.2020.9109514 (cit. on pp. 16, 17).

[34] G. F. F. da Cunha, “Data Analysis and Recommender System Architecture for E-Commerce Plat-

forms”, M.S. thesis, University of Minho (UM), Jan. 2021 (cit. on pp. 16, 17).

[35] Microservices vs Monolithic architecture | MuleSoft, [Accessed 28. Oct. 2021]. [Online]. Available:

https://www.mulesoft.com/resources/api/microservices-vs-monolithic
(cit. on p. 16).

[36] A. Kharenko, Monolithic vs. Microservices Architecture, [Accessed 28. Oct. 2021]. [Online]. Avail-

able: http://www.antonkharenko.com/2015/09/monolithic-vs-microservices
-architecture.html (cit. on pp. 16, 17).

[37] O. Al-Debagy and P. Martinek, “A Comparative Review of Microservices and Monolithic Architec-

tures”, in 2018 IEEE 18th International Symposium on Computational Intelligence and Informatics

(CINTI), 2018, pp. 000 149–000 154. doi: 10.1109/CINTI.2018.8928192 (cit. on p. 17).

[38] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice transition and its granularity problem: A

systematic mapping study”, Software: Practice and Experience, vol. 50, no. 9, pp. 1651–1681,

2020. doi: 10.1002/spe.2869 (cit. on p. 18).

[39] P. Siriwardena and N. Dias,Microservices Security in Action. Manning, 2020, isbn: 9781617295959

(cit. on p. 18).

78

https://stackshare.io/nagios
https://stackshare.io/nagios
https://www.tutorialspoint.com/nagios/nagios_architecture.htm
https://www.tutorialspoint.com/nagios/nagios_architecture.htm
https://prometheus.io/docs/introduction/overview
https://prometheus.io/docs/introduction/overview
https://stackshare.io/prometheus
https://stackshare.io/prometheus
https://nsrc.org/workshops/2019/btnog6/nmm/netmgmt/en/futures/scalable-monitoring-tools.pdf
https://nsrc.org/workshops/2019/btnog6/nmm/netmgmt/en/futures/scalable-monitoring-tools.pdf
https://nsrc.org/workshops/2019/btnog6/nmm/netmgmt/en/futures/scalable-monitoring-tools.pdf
https://mattermost.com/blog/monitoring-a-multi-cluster-environment-using-prometheus-federation-and-grafana
https://mattermost.com/blog/monitoring-a-multi-cluster-environment-using-prometheus-federation-and-grafana
https://doi.org/10.1109/MEMSTECH49584.2020.9109514
https://www.mulesoft.com/resources/api/microservices-vs-monolithic
http://www.antonkharenko.com/2015/09/monolithic-vs-microservices-architecture.html
http://www.antonkharenko.com/2015/09/monolithic-vs-microservices-architecture.html
https://doi.org/10.1109/CINTI.2018.8928192
https://doi.org/10.1002/spe.2869

BIBLIOGRAPHY

[40] What is API security?, [Accessed 2. Nov. 2021]. [Online]. Available: https://www.redhat.
com/en/topics/security/api-security (cit. on p. 18).

[41] JSON Web Tokens —Intro, [Accessed 3. Nov. 2021]. [Online]. Available: https://jwt.io/
introduction (cit. on p. 18).

[42] N. Madden, API Security in Action. Manning, 2020, isbn: 9781617296024 (cit. on pp. 18, 19).

[43] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A Design Science Research

Methodology for Information Systems Research”, Journal of Management Information Systems,

vol. 24, no. 3, pp. 45–77, 2007. doi: 10.2753/MIS0742-1222240302 (cit. on pp. 22, 23, 26).

[44] S. Mcleod, Questionnaire: : Definition, Examples, Design and Types, [Accessed 9. Jun. 2022], Feb.

2018. [Online]. Available: https://www.simplypsychology.org/questionnaires.
html (cit. on p. 24).

[45] S. Khan, What Makes JavaScript So Popular, [Accessed 1. Dec. 2021]. [Online]. Available: https:
//generalassemb.ly/blog/what-makes-javascript-so-popular (cit. on p. 25).

[46] About | Node.js, [Accessed 1. Dec. 2021]. [Online]. Available: https://nodejs.org/en/
about (cit. on p. 25).

[47] E. Brown, Web development with Node and Express. Sebastopol, CA: O’Reilly Media, 2014, isbn:

978-1491949306 (cit. on p. 25).

[48] A. Sharma, Why You Should Use TypeScript for Developing Web Applications, [Accessed 1. Dec.

2021]. [Online]. Available: https://dzone.com/articles/what- is- typescript-
and-why-use-it (cit. on p. 25).

[49] Why Use MongoDB and When to Use It?, [Accessed 2. Dec. 2021]. [Online]. Available: https:
//www.mongodb.com/why-use-mongodb (cit. on p. 25).

[50] S. McLeod, Likert Scale Definition, Examples and Analysis, [Accessed 26. Dec. 2021], 2019. [On-

line]. Available: https://www.simplypsychology.org/likert-scale.html (cit. on

p. 30).

[51] What is Non-Functional Requirement in Software Engineering? Types and Examples, [Accessed

29. Nov. 2021]. [Online]. Available: https : / / www . guru99 . com / non - functional -
requirement-type-example.html (cit. on p. 33).

[52] M. Monsalve, Lecture notes in Object-Oriented Software Develpment: The Domain Model, [Accessed

6. Jul. 2022], Apr. 2015. [Online]. Available: https://homepage.cs.uiowa.edu/~tinell
i/classes/022/Spring15/Notes/chap9.pdf (cit. on p. 34).

[53] C. Richardson, Microservices patterns: with examples in Java. Shelter Island, New York: Manning

Publications, 2019, isbn: 9781617294549 (cit. on p. 36).

79

https://www.redhat.com/en/topics/security/api-security
https://www.redhat.com/en/topics/security/api-security
https://jwt.io/introduction
https://jwt.io/introduction
https://doi.org/10.2753/MIS0742-1222240302
https://www.simplypsychology.org/questionnaires.html
https://www.simplypsychology.org/questionnaires.html
https://generalassemb.ly/blog/what-makes-javascript-so-popular
https://generalassemb.ly/blog/what-makes-javascript-so-popular
https://nodejs.org/en/about
https://nodejs.org/en/about
https://dzone.com/articles/what-is-typescript-and-why-use-it
https://dzone.com/articles/what-is-typescript-and-why-use-it
https://www.mongodb.com/why-use-mongodb
https://www.mongodb.com/why-use-mongodb
https://www.simplypsychology.org/likert-scale.html
https://www.guru99.com/non-functional-requirement-type-example.html
https://www.guru99.com/non-functional-requirement-type-example.html
https://homepage.cs.uiowa.edu/~tinelli/classes/022/Spring15/Notes/chap9.pdf
https://homepage.cs.uiowa.edu/~tinelli/classes/022/Spring15/Notes/chap9.pdf

BIBLIOGRAPHY

[54] What is a reverse proxy? | Proxy servers explained, [Accessed 29. Nov. 2021]. [Online]. Available:

https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy (cit. on

p. 36).

[55] What is Docker? | IBM, [Accessed 13. Aug. 2022]. [Online]. Available: https://www.ibm.com/
ae-en/cloud/learn/docker (cit. on p. 38).

[56] What is Cron Job? - Cron Jobs and Scheduled Tasks - Hivelocity Hosting, [Accessed 11. Aug. 2022].

[Online]. Available: https://www.hivelocity.net/kb/what-is-cron-job (cit. on

p. 51).

[57] Use multi-stage builds, [Accessed 13. Aug. 2022]. [Online]. Available: https://docs.docker.
com/develop/develop-images/multistage-build (cit. on p. 55).

[58] Overview of Docker Compose, [Accessed 13. Aug. 2022]. [Online]. Available: https://docs.
docker.com/compose (cit. on p. 56).

[59] E. Gürel, “SWOT Analysis: A Therotical Review”, Journal of International Social Research, vol. 10,

pp. 994–1006, Aug. 2017. doi: 10.17719/jisr.2017.1832 (cit. on p. 66).

[60] L. G. Fine, The SWOT Analysis: Using your Strength to overcome Weaknesses, Using Opportuni-

ties to overcome Threats. CreateSpace Independent Publishing Platform, Oct. 2009, isbn: 978-1-

44954675-5 (cit. on p. 66).

[61] M. Mayernik, K. Breseman, R. Downs, R. Duerr, A. Garretson, and C.-Y. Hou, “Risk Assessment

for Scientific Data”, Data Science Journal, vol. 19, Mar. 2020. doi: 10.5334/dsj-2020-010
(cit. on p. 68).

[62] B. Varshney, OpenMetrics vs OpenTelemetry - A guide on understanding these two specifications

| SigNoz, [Accessed 19. Aug. 2022], May 2022. [Online]. Available: https://signoz.io/
blog/openmetrics-vs-opentelemetry (cit. on p. 75).

[63] M. O’Riordan, “Message queues: the right way to process and transform realtime messages”, Ably

Blog, Jul. 2022, [Accessed 19. Aug. 2022]. [Online]. Available: https://ably.com/blog/
message-queues-the-right-way (cit. on p. 75).

[64] R. Tandon, “System Design: Lessons From Netflix’s Notification Service Design”, Ravi’s System

Design Newsletter, Nov. 2021, [Accessed 19. Aug. 2022]. [Online]. Available: https://ravis
ystemdesign.substack.com/p/system-design-lessons-from-netflixs (cit. on

p. 75).

[65] What is Helm | Helm Documentation, [Accessed 19. Aug. 2022]. [Online]. Available: https :
//helm.sh/docs (cit. on p. 75).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço, The NOVAthesis LATEX Template User’s Manual, NOVA University Lisbon, 2021. [Online]. Available: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 80).

80

https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy
https://www.ibm.com/ae-en/cloud/learn/docker
https://www.ibm.com/ae-en/cloud/learn/docker
https://www.hivelocity.net/kb/what-is-cron-job
https://docs.docker.com/develop/develop-images/multistage-build
https://docs.docker.com/develop/develop-images/multistage-build
https://docs.docker.com/compose
https://docs.docker.com/compose
https://doi.org/10.17719/jisr.2017.1832
https://doi.org/10.5334/dsj-2020-010
https://signoz.io/blog/openmetrics-vs-opentelemetry
https://signoz.io/blog/openmetrics-vs-opentelemetry
https://ably.com/blog/message-queues-the-right-way
https://ably.com/blog/message-queues-the-right-way
https://ravisystemdesign.substack.com/p/system-design-lessons-from-netflixs
https://ravisystemdesign.substack.com/p/system-design-lessons-from-netflixs
https://helm.sh/docs
https://helm.sh/docs
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

Monitoring System for Services and Servers in Healthcare
Environment - Survey

This survey comes in the course of research work in the context of a master's dissertation related to
monitoring of services and infrastructures in healthcare.

Its objective is to try to understand the current status of monitoring services and their use, particularly in
the healthcare environment, as well as to understand to what extent monitoring services can simplify
systems/infrastructure management processes and also in what way can this happen.

* Required

1. Do you, or your IT department, actively use monitoring systems for your services? *

2. Please, classify the following statements. Number each statement according to your perspective on
it, from 0 to 4. * [0 - Strongly Disagree 1 - Disagree 2 - Neutral 3 - Agree 4 - Strongly Agree]

a. Currently, whether there is a failure or not, you can observe and control the state of your system.

0 1 2 3 4
Strongly Disagree Strongly Agree

b. When there is a failure in the system, that failure is noticeable.

0 1 2 3 4
Strongly Disagree Strongly Agree

c. When a failure in a system is detected, you can determine what the implications are and what
other services are impacted.

0 1 2 3 4
Strongly Disagree Strongly Agree

d. A monitoring system is important for systems management.

0 1 2 3 4
Strongly Disagree Strongly Agree

A
p
p
e
n
d
ix

A
Initial Questionnaire

81

e. A good monitoring system makes it possible to improve the availability of systems.

0 1 2 3 4
Strongly Disagree Strongly Agree

f. A monitoring system capable of analyzing and displaying, in an integrated way, the status of
different targets and organizations, streamlines the systems management process.

0 1 2 3 4
Strongly Disagree Strongly Agree

3. Are you familiar with the detection time in the event of a failure? * (If yes, proceed to the next two
questions; otherwise, skip ahead to question 6.)

4. In your current infrastructure, what is the average failure detection time, in minutes?

5. In your current infrastructure, what is the average response time to a detected failure, in minutes?

6. In your opinion, what constitutes a good monitoring system? *

Thank you.

APPENDIX A. INITIAL QUESTIONNAIRE

82

Monitoring System for Services and Servers in Healthcare
Environment - User Validation

The objective of this questionnaire is to validate and assess if the developed platform was indeed used to
great extent by the professionals it was designed for and if it was useful for the task of IT monitoring
management and visualization. It is requested the collaboration of all professionals approached in order to
allow future improvement and evolution of the developed platform.

* Required

1. From which devices and/or services did you use the platform the most? *
Web Browser (via the Web Application)
Mobile Device (via the Web Application)
Terminal or Programmatic Clients (via the REST APIs)
Postman, Insomnia, or other API Client (via the REST APIs)
Other

2. How often did you use the monitoring solution?

Several times a day
Once or twice a day
Rarely
Other

3. Were you ever able to access information regarding monitoring facilities or organizations you didn’t
have access to?

Yes
No

4. Did you ever experience some type of delay or lag while interacting with the system?

Yes
No

a. If yes, please elaborate on which occasion/situation(s) it happened.

A
p
p
e
n
d
ix

B
Final Questionnaire

83

5. Did you ever experience any type of inconsistency while interacting with the system (e.g. incorrect
monitoring data, miss-labelled health status, failures in alerts triggering, …)?

Yes
No

a. If yes, please elaborate on which occasion/situation(s) it happened.

6. Please, classify the following statements. Number each statement according to your perspective on
it, from 0 to 4. * [0 - Strongly Disagree 1 - Disagree 2 - Neutral 3 - Agree 4 - Strongly Agree]

a. The monitoring agents’ variety is appropriate/sufficient for your organization’s monitoring needs.

0 1 2 3 4
Strongly Disagree Strongly Agree

b. Every time a monitored service failed you were warned in accordance with the configurations you
specified.

0 1 2 3 4
Strongly Disagree Strongly Agree

c. The alerting delivery mechanisms are appropriate/sufficient for your organization’s setup and
needs.

0 1 2 3 4
Strongly Disagree Strongly Agree

d. The notification alerts provided enough context and information to successfully inform you of the
problem at hand.

0 1 2 3 4
Strongly Disagree Strongly Agree

APPENDIX B. FINAL QUESTIONNAIRE

84

e. The deployment of the local server (i.e. the data collection clients) was simple and
straightforward and occurred with zero or minor installation problems.

0 1 2 3 4
Strongly Disagree Strongly Agree

f. The monitoring platform, as a whole, simplified the monitoring management and consumption in
your organization.

0 1 2 3 4
Strongly Disagree

g. The monitoring platform, as a whole, fulfilled your organization's needs better than the previously
used monitoring solution.

0 1 2 3 4
Strongly Disagree Strongly Agree

7. In your opinion, what are the functionalities that should be added to the solution? *

8. In your opinion, is there any current functionality that could be improved and/or expanded? If so,
please elaborate on the improvement. *

Thank you.

85

A
p
p
e
n
d
ix

C
Reference Examples

C.1 GitHub Action to Create and Publish Docker Image

1 name: Create and publish a Docker image
2

3 on:
4 push:
5 tags:
6 - '*'
7

8 jobs:
9 build-and-push-image:

10 runs-on: ubuntu-latest
11 steps:
12 - name: Checkout repository
13 uses: actions/checkout@v2
14

15 - name: Log in to the Container registry
16 uses: docker/login-action@v1
17 with:
18 registry: ghcr.io
19 username: ${{ github.actor }}
20 password: ${{ secrets.GITHUB_TOKEN }}
21

22 - name: Build and push Docker image
23 uses: docker/build-push-action@v2
24 with:
25 context: .
26 push: true

Example 11: GitHub action workflow to create and publish Docker image

86

C.2. GUARDIAN SERVER’S PARTIAL DOCKER COMPOSE

C.2 Guardian Server’s Partial Docker Compose

1 version: "3.8"
2 services:
3 kong:
4 image: ghcr.io/aida-monitor/kong:latest
5 restart: always
6 ports:
7 - "80:8000"
8 - "443:8443"
9 environment:

10 ...
11 influxdb:
12 image: influxdb:2.1
13 restart: always
14 ports:
15 - "8086"
16 environment:
17 ...
18 volumes:
19 ...
20 mongodb:
21 image: mongo:5.0
22 restart: always
23 ports:
24 - "27017"
25 environment:
26 ...
27 volumes:
28 ...
29 auth:
30 image: ghcr.io/aida-monitor/auth:latest
31 restart: always
32 environment:
33 ...
34 core:
35 image: ghcr.io/aida-monitor/core:latest
36 restart: always
37 environment:
38 ...
39 alert-manager:
40 image: ghcr.io/aida-monitor/alert-manager:latest
41 restart: always
42 environment:
43 ...
44 data-exporter:
45 image: ghcr.io/aida-monitor/data-exporter:latest
46 restart: always
47 environment:
48 ...

Example 12: Docker Compose - Guardian server

87

APPENDIX C. REFERENCE EXAMPLES

C.3 Local Server’s Docker Compose

1 version: "2"
2

3 services:
4 local-pull-executor:
5 image: ghcr.io/aida-monitor/local-pull-executor:latest
6 restart: always
7 container_name: local-pull-executor
8 network_mode: bridge
9 environment:

10 ORGANIZATION_NAME: ${ORGANIZATION_NAME}
11 CORE_URL: ${CORE_URL}
12 INFLUXDB_URL: ${INFLUXDB_URL}
13 INFLUXDB_ORG: ${INFLUXDB_ORG}
14 INFLUXDB_BUCKET: ${INFLUXDB_BUCKET}
15 INFLUXDB_TOKEN: ${INFLUXDB_TOKEN}
16 AUTH_TOKEN: ${AUTH_TOKEN}
17 NODE_ENV: ${NODE_ENV}
18 HTTP_PROXY: ${HTTP_PROXY}
19 HTTPS_PROXY: ${HTTPS_PROXY}
20 http_proxy: ${HTTP_PROXY}
21 https_proxy: ${HTTPS_PROXY}
22

23 local-push-receiver:
24 image: ghcr.io/aida-monitor/local-push-receiver:latest
25 restart: always
26 container_name: local-push-receiver
27 network_mode: bridge
28 ports:
29 - "6000:3000"
30 environment:
31 CORE_URL: ${CORE_URL}
32 INFLUXDB_URL: ${INFLUXDB_URL}
33 INFLUXDB_ORG: ${INFLUXDB_ORG}
34 INFLUXDB_BUCKET: ${INFLUXDB_BUCKET}
35 INFLUXDB_TOKEN: ${INFLUXDB_TOKEN}
36 AUTH_TOKEN: ${AUTH_TOKEN}
37 NODE_ENV: ${NODE_ENV}
38 HTTP_PROXY: ${HTTP_PROXY}
39 HTTPS_PROXY: ${HTTPS_PROXY}
40 http_proxy: ${HTTP_PROXY}
41 https_proxy: ${HTTPS_PROXY}

Example 13: Docker Compose - Loval server

88

A
p
p
e
n
d
ix

D
Publications

D.1 Pervasive Monitoring System for Services and Servers in

Healthcare Environment

Authors: Carolina Marques, Vasco Ramos, Hugo Peixoto, and José Machado

Title: Pervasive Monitoring System for Services and Servers in Healthcare Environment

Conference: The 5th International Conference on Emerging Data and Industry 4.0

Year of Publication: 2022

Abstract: Information systems are continuously evolving in nature and complexity. In the health-

care environment, information and information exchange are critical for providing health care at all levels.

Hence, the healthcare environment is particularly relevant when discussing IT infrastructure monitoring

and disaster prevention since availability and communication are vital for the proper functioning of health-

care units, whether acting in isolation or on a network.

This work focuses on understanding what comprises a good monitoring solution, analyzing the mon-

itoring solutions currently available in the optics of a multi-location healthcare environment, and, finally,

proposing a pervasive and comprehensive conceptual architecture for a monitoring system that is capable

of handling such environments.

Keywords: Health Information Systems, IT Monitoring, Systems Microservices

State of Publication: Published

89

APPENDIX D. PUBLICATIONS

D.2 Information Technology Monitoring in Healthcare: A

Case Study

Authors: Vasco Ramos, Carolina Marques, Hugo Peixoto, and José Machado

Title: Information Technology Monitoring in Healthcare: A Case Study

Conference: The 6th International Conference on Information Technology & Systems

Year of Publication: 2023 (estimated)

Abstract: The healthcare environment is particularly relevant when discussing information technol-

ogy infrastructure monitoring since availability and communication are vital for the proper functioning of

healthcare units. It is important to be able to easily monitor and observe each unit from a single point of

access so that actions can be swiftly taken when there is a problem.

This paper proposes a multi-site and multi-organization web and microservices-based information

technology infrastructure monitoring solution. In addition to exploring the developed system and its archi-

tecture, it presents a case study resulting from the system’s implementation in an organization and holds a

discussion about the obtained results to determine whether a multi-platform monitoring system improves

information technology availability in the healthcare industry.

Keywords: IT Infrastructure Monitoring, Microservices, Health Information Systems, Healthcare

State of Publication: Under Review

90

	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Statement
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Examples
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Goals and Expected Results
	1.3 Document Outline

	2 State of the Art
	2.1 Monitoring Architectures: Pull vs. Push
	2.2 Monitoring Tools and Solutions
	2.2.1 ELK Stack
	2.2.2 TICK Stack
	2.2.3 Nagios
	2.2.4 Prometheus
	2.2.5 Monitoring Tools Comparison

	2.3 Monolithic vs. Microservices Architectures
	2.3.1 Monolithic Architecture
	2.3.2 Microservices Architecture
	2.3.3 Architectures Comparison

	2.4 Web (API) Security
	2.5 Discussion
	2.6 Summary

	3 Research Methodology and Technologies
	3.1 Design Science Research Methodology
	3.2 Questionnaires
	3.3 Implementation Technologies
	3.3.1 Authentication
	3.3.2 Web Servers and Services
	3.3.3 Databases
	3.3.4 API Gateway

	3.4 Summary

	4 Proposal
	4.1 Technical Questionnaire
	4.2 Requirements
	4.2.1 Functional Requirements
	4.2.2 Non-Functional Requirements

	4.3 Domain Model
	4.4 Architecture
	4.4.1 Guardian Server
	4.4.2 Local Server
	4.4.3 Deployment

	4.5 Discussion
	4.6 Summary

	5 Implementation and Results
	5.1 Data Models
	5.1.1 Monitoring Data
	5.1.2 Entities' Data

	5.2 API Gateway
	5.3 Guardian Server
	5.3.1 Authentication
	5.3.2 Core Business Logic
	5.3.3 Alerting
	5.3.4 Data Exporting

	5.4 Local Server
	5.4.1 Push-based Data Collection
	5.4.2 Pull-based Data Collection

	5.5 API Documentation
	5.6 Deployment
	5.7 Core Features Examples
	5.8 External Results
	5.9 Summary

	6 Validation and Discussion
	6.1 Usefulness and Acceptance Validation
	6.2 Formal Evaluation
	6.2.1 SWOT Analysis
	6.2.2 Risk Assessment

	6.3 Summary

	7 Conclusion
	7.1 Final Remarks
	7.2 Contributions
	7.3 Future Work

	Bibliography
	A Initial Questionnaire
	B Final Questionnaire
	C Reference Examples
	C.1 GitHub Action to Create and Publish Docker Image
	C.2 Guardian Server's Partial Docker Compose
	C.3 Local Server's Docker Compose

	D Publications
	D.1 Pervasive Monitoring System for Services and Servers in Healthcare Environment
	D.2 Information Technology Monitoring in Healthcare: A Case Study

