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Resumo

Concepção e Avaliação de técnicas de Data Augmentation para
Dados Tabulares

O desbalanceamento dos dados, juntamente com datasets de tamanho reduzido, estão presentes em

muitos problemas deMachine Learning, apesar do aumento de recolha de dados atuais por consequência

do desenvolvimento tecnológico. O desbalanceamento de dados é definido por uma diferença significativa

na distribuição das suas classes dentro de um conjunto de dados. Desta forma, a performance de um

modelo pode diminuir drasticamente para certas classes com uma quantidade inferior de instâncias. Isto

deve-se ao modelo não aprender a distribuição dos atributos dos dados e apresenta uma performance

demasiado focada na classe em maioria. Este fenómeno compromete a performance dos modelos em

problemas como por exemplo deteção de cancro em pacientes, uma vez que o modelo identifica pou-

cos pacientes não saudáveis. Assim, as técnicas de Data Augmentation podem colmatar este problema

ao gerarem dados sintéticos similares aos reais, podendo simular um ambiente de aprendizagem sem

escassez de dados para os modelos. Com a aplicação destas técnicas, o número de dados disponíveis

aumenta pelo que se consegue obter distribuições de classes mais equilibradas. Contudo, não existe uma

técnica comum de Data Augmentation que possa ser aplicada em qualquer domínio com bons resulta-

dos. Desta forma, com esta dissertação pretende-se identificar quais características de um certo tipo de

dataset beneficiam as diferentes técnicas para uma melhor performance na criação de dados sintéticos

e, consequentemente, uma melhor performance dos modelos de Machine Learning. Os resultados ob-

tidos nesta dissertação demonstram que a adição de dados sintéticos a datasets, cujos atributos sejam

na sua maioria categóricos, está associada a uma acrescida dificuldade em melhorar a performance dos

classificadores. No entanto, a técnica que melhor se adaptava a estas características foi o SMOTE, uma

das técnicas mais clássicas de Data Augmentation. Por outro lado, as variações do Variational Autoen-

coder, nomeadamente a que conjuga um decaimento na loss e o uso de K-means, e a GAN geraram

dados sintéticos capazes de melhorar a performance dos classificadores. Para além disto, esta disserta-

ção comprovou que a adição de mais 25% de dados sintéticos a um dataset maioritariamente categórico

permitiria melhores resultados, enquanto num dataset com maior presença de atributos contínuos era

beneficiada pela adição de apenas instâncias minoritárias.

Palavras-chave: Dados Desbalanceados, Data Augmentation, Machine Learning
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Abstract

Conception and Evaluation of Data Augmentation techniques
for Tabular Data

Imbalanced learning and small-sized datasets are present in Machine Learning problems, even with

the increased data availability provided by recent developments. The performance of learning algorithms

in the presence of unbalanced data and significant class distribution skews is known as the imbalanced

learning problem. The models’ performance on such problems can drastically decrease for certain classes

with an uneven distribution, because the models do not learn the distributive features of the data and

present accuracy too favorable for a specific set of classes of data. This can have negative consequences

when talking about cancer detection, for example, since the model may identify poorly unhealthy patients.

Hence, Data Augmentation techniques are usually conceived to evaluate how models would behave in non-

data-scarce environments, generating synthetic data similar to real data. By applying those techniques,

the amount of available data can be increased, balancing the class distributions. However, there is no

standardized Data Augmentation process that can be applied to every domain of tabular data. Therefore,

this dissertation aims to identify which characteristics of a dataset provide a better performance when

synthesizing samples by a data augmentation technique in a tabular data environment. Moreover, if the

data augmentation algorithm synthesizes more real samples, it is expected to increase the classifier’s

performance as well. Our results demonstrate that datasets whose features are mainly categorical have

an associated difficulty in increasing the classifier results by adding new samples. Furthermore, the

technique that adapted best to those kinds of datasets was the more classical one, SMOTE. As for the

datasets with more continuous features, the variations of Variational Autoencoder, principally the VAE with

K-means and decay, as well as GAN, demonstrated an increased capability when augmenting those kinds of

datasets. This dissertation demonstrated that more categorical datasets could achieve better performance

by including 25% synthetic samples, whereas continuous datasets could only do so by including minority

samples.

Keywords: Data Augmentation, Imbalanced Data, Machine Learning
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1
Introduction

In this chapter, the context and motivation of this dissertation will be discussed, as well as the main

objectives and expected results. Finally, the structure of this document will be presented.

1.1 Context and Motivation

Nowadays, developments in technology have increased the availability of data for various problems.

Data engineering produces new information from raw data for a variety of purposes, including governmen-

tal decision-making support systems, medical research, and many more, ranging from microscale data

analysis to macroscale knowledge discovery [1]. However, even with a huge amount of data collection,

small-sized datasets still exist, and so do imbalanced ones. Moreover, imbalanced learning problems

represent a recurring problem of exceptional relevance, with far-reaching repercussions that require more

investigation because it may pose a problem for ML models due to the fact that most standard algorithms

expect the training data to have balanced class distributions. Hence, DA techniques are usually conceived

to evaluate how models would behave in non-data-scarce environments [2, 3]. The application of these

techniques is helpful in problems such as fraudulent transactions where the data is clearly imbalanced

[4]. DA is the practice of synthesizing new data from the data at hand. This could be applied to almost

any form of data, from images to numbers, but the main focus of this research is on tabular data. Usually,

synthetic data is very similar to real data. However, there is no standardized DA process that can be ap-

plied to every domain. Instead, DA refers to a process that is highly dependent on the domain where it is to

be implemented. Multiple DA techniques and models have been described in the literature for computer

vision, time series, and even tabular data [5–9]. Some DA methods are frequently used, such as SMOTE

[10], ADASYN [11], while others, such as clustering, have few applicational examples [12]. Furthermore,

GANs are popular for images and can be used for tabular data too [13], as well as VAEs [9].

1



CHAPTER 1. INTRODUCTION

1.2 The Problem and its Challenges

Themain problem in this research is which DA techniques benefit the model’s performance on different

kinds of datasets, particularly tabular data. Therefore, it is required to collect multiple imbalanced datasets,

as well as small datasets, and develop not only DA techniques but also multiple classifiers in order to

analyze their performance on each problem. Moreover, knowing what kind of DA algorithm provides better

performance in each dataset offers an increased capture of minority cases on an imbalanced dataset

or a more capable model than one trained on a small dataset without DA. The better identification of

minority cases with DA techniques is important for domains such as disease detection and fraud detection,

where identifying such cases is extremely crucial [14]. DA has been shown to outperform in data-scarce

environments, increasing model performance by a small margin [8]. Although is not the only way to the

small and imbalanced data problems, is one that is gaining a lot of interest by the research community

throughout the recent years.

The challenges can differ from collecting imbalanced datasets to the development of DA techniques.

First, it is necessary to possess sets of data with different characteristics and from multiple domains.

Small datasets and imbalanced ones are fundamental. Therefore, a good dataset collection is the first

step to obtaining results that provide enough information for a final conclusion. This requirement provides

the analyses of the DA techniques with a unique situation that could help come to a conclusion in regards

to which technique is better for each dataset. Second, the data treatment can be viewed as a challenge

because the research is going to use multiple datasets, each with their own kind of preprocessing due to

different features. Although the ML models will be the same for each problem/dataset, they still have to be

trained and fitted to acquire the best performance possible. Third, the computational cost and resources

need to be taken into account when developing the algorithms. Even if the size of the data is not huge,

the benchmarking of models associated with DA algorithms will be time-consuming when run locally. To

overcome that, platforms such as Kaggle and Google Colab might be useful. Even though these platforms

help to surpass the computational cost, they have some constraints related to the use of GPU by day or

week1. This constraint will hinder the development of models inserted into the deep learning branch since

they are more complex models that would benefit from the computational offer that GPUs provide.

1Google Colab has a limit of GPU use by day, whereas Kaggle limits its use by week.

2



1.3. MAIN OBJECTIVES

1.3 Main Objectives

The main objective of this study is to research and evaluate different kinds of DA techniques for tabular

data. Therefore, we expect to:

1. Collect datasets from multiple fields that contain imbalanced class distributions or datasets that

are small-sized;

2. Develop standard techniques such as VAE, SMOTE, ADASYN, GAN, and clustering;

3. Benchmark the performance of ML models on multiple sets of data;

4. Determine which dataset properties indicate improved performance from one or more DA tech-

niques.

The study and development of the multiple DA techniques is going to represent a major part of the work

that is complemented with benchmarking on multiple sets of data. The performance of the DA methods

could be measured by a comparison between synthetic and real data, in addition to the results acquired

by the ML models.

1.4 Research Hypothesis

First, the research should verify that the use of augmented datasets increases themodels’ performance

when predicting, as seen in [15]. This increasing performance goes from all target classes when the

problem is from a small-sized dataset to the minority class from an imbalanced dataset. In order to do so,

multiple DA techniques will be used with ML models on different datasets. The synthetic data should be

very similar to the real data, having the same distribution and properties as the real data. Furthermore, the

data should provide a similar performance when the model is trained only with synthetic data compared

to when it is trained with real data.

Second, it is expected to identify which kinds of techniques provide better results when synthesizing

data in a certain domain’s dataset. Therefore, it is anticipated that this study can improve the choice of the

DA technique for certain domains or certain characteristics of a dataset. Furthermore, the research could

reveal which type of algorithm can synthesize samples that are more similar to real data, such as whether

a deep learning algorithm, like GAN, can synthesize samples that are more similar to real data than a

traditional ML algorithm, such as SMOTE. Moreover, algorithms proposed in new studies can evaluate and

compare their new techniques’ performance with the supposed best technique (stated in this document)

for that problem’s context.

Third, by performing statistical tests, we should be able to compare real and synthetic data distribu-

tions. Better quality synthetic data ought to have very similar properties to the real data and, therefore,

statistical tests can analyze how the DA methods perform.

3



CHAPTER 1. INTRODUCTION

Finally, the number of samples to be generated is also important information that could be gained

from this study. Since there is no standard number of synthetic samples to be generated, as it depends

on the data and context of a certain dataset, it is also fundamental to have an idea of how the different

numbers of synthetic samples generated affect the ML classifiers’ performance.

In essence, the dissertation aims to answer four specific research questions (RQ) in regard to the use

of DA in tabular data, mainly:

RQ1) Does DA improves the performance of ML classifiers?

RQ2) Does the dataset properties influence the quality of generated synthetic samples?

RQ3) How many samples should a DA technique generate for a certain problem?

RQ4) Which DA technique provides better quality in terms of synthetic tabular data?

1.5 Document Structure

The structure of this document is defined by the following main sections: Introduction, State of the

Art, Experimental Setup, Results and Discussion, and Conclusion.

First, the Introduction will provide enough information about the context and motivation of the study,

as well as its main goals and achievements. Also, it will be explained the research hypothesis that this

study purports to achieve. Furthermore, the problems and challenges will be explained so it can be seen

some of the main issues that might arise in future work.

Second, the State of Art describes in detail the concepts that the reader must have for a comprehensive

reading of this study. Understanding concepts like ML, Imbalanced Data, and DA are fundamental because

they are the main focus of this work. ML is the subject of this paper, whereas Imbalanced Data is the

main problem that DA tries to solve. Also, some DA techniques are described to provide an understanding

of how they work with a brief comparison of their differences and how their performance is going to be

compared when applied to datasets.

Third, the Experimental Setup of this study pretends to detail the approaches of the study and its

experiments. It is described which methodology is applied to each problem and how the synthetic data

generated is analyzed to evaluate which method produces better quality data. Moreover, the experiments

section details how the DA techniques were implemented and notes some important decisions during their

implementation, mainly on methods such as VAE and GAN. Furthermore, it also describes the datasets

used in this study.

Next, the Results and Discussion focus on describing in great detail all the analyses done during this

study and the following conclusions that came from them.

Finally, the Conclusion chapter summarizes the main results obtained during the experiments, de-

scribes the future work, and offers some final thoughts.

4
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2
State of the Art

2.1 Machine Learning

In the past decades, there has been an explosion of data. All of this data could be wasted if there

was no easy way to analyze it and find patterns within it. ML techniques are used to automatically find

the valuable underlying patterns within complex data that we would struggle to discover [16, 17]. As seen

in Figure 1, ML is a branch of AI, and its algorithms can process large quantities of data that are way too

large and too complex to humans [18]. The increased interest in ML follows the falling cost of large data

storage devices, the increasing ease of collecting data, and the development of robust and efficient ML

algorithms to process this data, as well as the falling cost of computational power [19]. Nowadays, ML

is used in various fields such as bioinformatics, information retrieval, game playing, marketing, malware

detection, object detection and so on [20–23].

ML algorithms are usually divided in three paradigms: Supervised, Unsupervised and Reinforcement

learning [24].

2.1.1 Supervised Learning

Supervised ML algorithms are trained with labeled datasets. This allows the models to learn and

become more accurate over time [24, 26]. These kinds of algorithms need external assistance with the

input dataset divided into train and test. For example, a supervised ML algorithm would be trained with

pictures of dogs and cats, all labeled by humans, and the model would learn how to classify each picture.

Another kind of supervised learning problem is the regression problem, which happens when a discrete

variable, for example, the price of a car, has to be predicted by the algorithm. To train the model, it would

require many examples of cars, including their predictors and their labels (i.e., their prices) [27]. The
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Figure 1: Difference between Machine Learning, Deep Learning and Artificial Intelligence [Adapted from
[25]]

features taken into account, in this example, could be the age of the car, model, brand, etc. Some of the

more famous supervised learning models are the Decision Tree, Linear Regression, and SVM.

2.1.2 Unsupervised Learning

On the other hand, in unsupervised learning, the algorithm searches for patterns in unlabeled data

[26]. This paradigm has no teacher telling the correct answers, so the algorithms are left to their own

methods to find the interesting structure in the data [24]. When new data is introduced to the algorithm, it

uses the previously learned patterns/features to predict its class. Furthermore, the algorithms inserted into

this paradigm can be divided into clustering, visualization, dimensionality reduction, and association rule

learning. Clustering will be mentioned in detail in Section 2.4.3, as will some of its algorithms. Through

visualization and dimensionality reduction, it can be analyzed how the data is organized (visualization)

and which inputs better reflect the general dataset, decreasing the complexity of the data without losing

information. This type of algorithm could be referred to as PCA. Finally, association rule learning involves

discovering interesting relations between variables in a dataset. Apriori and Eclat, two well-known associa-

tion rules algorithms (as seen in [27]), are known to provide these rules between variables. Unsupervised

learning is demonstrated by an algorithm that analyzes online sales data to identify distinct types of clients
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purchasing based on their characteristics [26].

There is a combination of these two paradigms called semi-supervised learning. This paradigm uses

a small amount of labeled data with a large amount of unlabeled data. It can be useful in areas of ML

where there is unlabeled data and the process of getting labeled data is complicated [24, 27]. Generative

models are an example of semi-supervised learning techniques.

2.1.3 Reinforcement Learning

Finally, Reinforcement ML trains machines through trial and error to take the best set of actions

through a system of rewards, trying to maximize it [24, 26]. Furthermore, it must learn on its own what

the best strategy, known as a “policy,” is for reaping the greatest rewards over time [27]. As a result, these

algorithms are appropriate for playing games or training autonomous vehicles to drive by informing the

machine when it makes the correct decisions, rewarding it, and penalizing it when mistakes are made.

Some of the most popular reinforcement learning algorithms are Q-Learning and SARSA. The SARSA

algorithm is a variant of the Q-Learning algorithm. The Q-learning technique is an off-policy technique that

learns the Q-value, which shows the potential reward for a specific action in a particular state, using a

greedy approach. With the off-policy, the algorithm learns the value function according to the action of

another policy. On the other hand, SARSA is a on-policy technique that uses the action performed by the

current policy to learn the Q-value.

One famous example of using this paradigm is AlphaGo, which used reinforcement learning to learn

how to play the game of Go by playing games against itself, which allowed the program to defeat the world

champion [28]. Note that the algorithm disabled the learning during the games against the champion,

applying only the policy it had learned.

2.2 Imbalanced Data

In recent years, the imbalanced learning problem has become a highly frequent topic among academia,

industry, and government funding agencies. The fundamental issue with the imbalanced learning problem

is the ability of imbalanced data to significantly decrease the performance of the ML algorithms [1]. These

algorithms, when faced with imbalanced data, do not learn the distributive features of the data and present

accuracies too favorable to a specific set of classes of data, in this case, the majority classes, compromis-

ing the performance of the other classes (the minority classes) because of that bias. In fairness, a dataset

is considered imbalanced when it exhibits an unequal distribution between its classes. Nevertheless, the

community usually considers that imbalanced data corresponds to a large unequal distribution and, in

some cases, extremes. Some cases of imbalanced data are described with multiple class imbalance or-

ders, such as 100:1, 1000:1, and 10000:1 [29, 30]. In [10], they also mention that an imbalance on the

order of 100 to 1 is prevalent in fraud detection.
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In some specific cases, like the medical industry, the ramifications of a ML being biased towards

the majority class, for example on a mammography dataset, can be overwhelmingly costly, more so than

labeling a noncancerous patient as cancerous [31]. In the presence of skewed data, additional mean-

ingful assessment measures, such as precision-recall curves and cost curves, are required for decisive

performance evaluations [1].

When the imbalance is a direct result of the nature of dataspace, it is referred to as an intrinsic

imbalance. Biomedical applications, fraud detection, network intrusion, and oil-spill detection problems

are all inserted into this kind of imbalanced data [4, 14, 32]. However, some data is unrelated to the

intrinsic imbalance because the imbalance is caused by factors other than dataspace, such as time and

storage. This kind of imbalanced data is called as extrinsic imbalanced data. Extrinsic imbalances are

equally as interesting as their intrinsic counterparts, as stated in [1], because the dataspace may not be

imbalanced at all. For example, when a dataset is generated from a continuous data stream of balanced

data over a defined interval of time, and the transmission has occasional interruptions where data is lost

(the data is not transmitted), the acquired dataset can become imbalanced. This means that the dataset

is extrinsic imbalanced with a balanced dataspace.

Besides the intrinsic and extrinsic imbalances, there is one important difference between relative

imbalance and imbalance due to rare instances. The first one occurs frequently in real-world problems

and is often the focus of many knowledge discovery and data engineering research studies. When the

minority class is not necessarily rare, but rather relative to the majority class, a relative imbalance occurs.

On the other hand, imbalances due to rare instances take place when the minority class examples are

very limited, i.e., they are rare. Hence, the learning will be more difficult due to the lack of representative

data.

2.3 Data Augmentation

At a ML problem, the predicted results can be improved by adjusting the data treatment, tuning the

algorithm’s hyper-parameters, using cross-validation, changing or stacking models, and so on. However, in

an imbalanced data problem (e.g., fraud detection), the real problem can’t be solved with data treatment

and/or model changes since the limitation is in the data itself. The same goes for a small-sized dataset,

since the model cannot learn enough features to classify the problem in a real-time situation.

Therefore, DA appears as a way to surpass that limitation. DA refers to methods for constructing

iterative optimization or sampling algorithms via the introduction of unobserved data or latent variables

[33]. With these techniques, we can increase the amount of data, thus balancing the target variable in

an imbalanced dataset. DA can be applied to images or tabular data, the focus of this thesis. If the

DA is applied to images, techniques tend to apply transformations to samples of datasets like geometric

transformations, flipping, color modification, cropping, etc. One other way is to introduce new synthetic

images created by ML models, for example, GANs. Instead, if we are dealing with tabular data, we cannot
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apply simple transformations to samples, but instead synthesize samples (new or duplicated) based on

the class distributions and features. Throughout the years, many DA techniques have been developed or

even adapted for this purpose on images or tabular data. Since the focus of this thesis is the application

of DA techniques on tabular data, those techniques are going to be studied in more detail in section 2.4.

In [30], DA is utilized to surpass the data limitations of the minority class, in this case, fraudulent

transactions. The classification performance improved considerably and overfitting was alleviated, demon-

strating the benefits of using a DA technique. DA can also be applied to automated skin lesion analysis by

applying traditional color and geometric transformations, and more unusual augmentations such as elastic

transformations, random erasing, and a novel augmentation that mixes different lesions, as stated in [5].

They prove the importance of DA techniques in both training and testing, leading to more performance

gains than simply obtaining new images. Face recognition datasets can be aided by introducing images

from DA techniques, enlarging the training dataset, which alleviates pose variance, illumination changes,

and partial occlusions, as well as the overfitting during training [6]. Image segmentation of magnetic

resonance images of brain tumors, in [7], also used DA to increase the dataset and the robustness of a

ML model. Moreover, emotion classification is another example of a problem that DA algorithms can help

to improve the quality of data, as demonstrated by the authors of [8]. Emotion classification is usually a

problem with imbalanced data because classes (i.e. emotions) like “disgusted” are relatively more scarce

than other classes like “happy” or “sad”. The authors used GANs as a DA technique that increased the

classification model performance from 5% to 10%. At [9] DA expanded the size of crash events regarding

a crash dataset where there existed only 625 crash events to 6.5 million non-crash events.

2.4 Data Augmentation techniques

In this section, some of the most popular DA techniques are going to be described in detail. The algo-

rithms discussed are: SMOTE, ADASYN, GMM, VAE, and GAN. These techniques are present in multiple

DA researches and are going to be developed and evaluated in order to augment data.

2.4.1 SMOTE

SMOTE is a DA technique that oversamples the minority class by creating synthetic samples [10].

One way to solve the imbalance problem is to duplicate minority samples. However, this does not provide

any new information to the ML algorithm training on the data. Therefore, instead of duplicating minority

samples, SMOTE synthesizes new examples from that class.

SMOTE synthesizes the minority class by operating in the feature space. It selects examples that are

close in the feature space and introduces synthetic samples along the line drawn from these examples.

Specifically, SMOTE synthesizes in the following steps, as seen in Figure 2:

1. Selects a random example from the minority class;
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Figure 2: SMOTE algorithm

2. Then, 𝑘 of the nearest neighbors (in the feature space) for that example are found1;

3. A random neighbor is chosen, and it creates a synthetic sample at a random point between the two

examples.

The technique is effective because the new synthetic samples from the minority class are somewhat

close in feature space to real samples from that same class. This makes the created samples plausible.

In [10], the authors suggested undersampling the majority class and then applying SMOTE to the

minority class to balance the class distributions. Undersampling could be done by erasing random samples

from the majority class.

2.4.2 ADASYN

Unlike SMOTE, ADASYN approach does not focus on balancing the classes distributions, but rather

on synthesizing minority samples that force the learning algorithm to focus on those difficult to learn

samples, according to [11]. The objective of this technique is similar to those in SMOTEBoost [34] and

DataBoost-IM [35] algorithms, compensating for the uneven distributions by giving different weights for

different examples. However, the ADASYN’s approach differs from the two previous algorithms because

there is no hypothesis evaluation to synthesize data samples.

The algorithm only works if the dataset class distribution ratio is below the preset threshold. If so, it

calculates the number of synthetic data samples that need to be created for the minority class with the

following formula, with𝑚𝑠 and𝑚𝑙 being the number of minority and majority, respectively:

𝐺 = (𝑚𝑙 −𝑚𝑠) · 𝛽 (2.1)

1In the [10] paper, the authors use five nearest neighbors.
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𝛽 is a parameter used to specify the desired balance ratio after the synthetization. 𝛽 ∈ [0, 1], so if 𝛽

= 1 it means that the dataset is fully balanced. Then, based on the Euclidean distance, find the 𝑘 nearest

neighbors and calculate the ratio 𝑟𝑖 :

𝑟𝑖 = △𝑖/𝑘, 𝑖 = 1, ...,𝑚𝑠 (2.2)

where △𝑖 denotes the number of samples in the 𝑘 nearest neighbors of 𝑥𝑖 that belong to the majority

class, so 𝑟𝑖 ∈ [0, 1]. In order to have a density distribution2, 𝑟𝑖 , we normalize 𝑟𝑖

𝑟𝑖 = 𝑟𝑖/
𝑚𝑠∑
𝑖=1

𝑟𝑖 (2.3)

The number of synthetic data that need to be synthesized for each 𝑥𝑖 in the minority class is given by

𝑔𝑖 = 𝑟𝑖 ·𝐺 (2.4)

For each minority class data sample 𝑥𝑖 , generate 𝑔𝑖 synthetic data by:

1. Choose randomly one minority data sample, 𝑥 𝑗 from the 𝑘 nearest neighbors for data 𝑥𝑖

2. Generate the synthetic data sample:

𝑠𝑖 = 𝑥𝑖 + (𝑥 𝑗 − 𝑥𝑖) · 𝜆 (2.5)

where (𝑥 𝑗−𝑥𝑖 ) is the difference vector in𝑛 dimensional spaces, and 𝜆 is a random number between

zero and one.

With this procedure the ADASYN algorithm uses a density distribution, 𝑟𝑖 as a criterion to decide the

number of samples synthesized for each minority data automatically. 𝑟𝑖 is a metric of the distribution of

weights for different minority class samples in accordance with their level of difficulty in learning.

The resulting dataset after the application of the technique ADASYN is not a balanced representation of

the classes distributions3, because the technique forces the learning algorithm to focus on those difficult

samples to learn.

2.4.3 Clustering

Contrarily to the other mentioned DA techniques, clustering is a type of unsupervised learning. Clus-

tering algorithms divides the data into a number of clusters (groups or categories) [36].

The division of data into clusters is based on similarity and dissimilarity between them. Therefore, the

definition of these two terms is extremely important. Once a proximity measure is determined, clustering

2A density distribution implies
∑𝑚𝑠

𝑖=1 𝑟𝑖 = 1.
3Even with the desired balance level stated in 𝛽 .
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can be constructed as an optimization problem. Therefore, the samples of data inside a cluster have a

resemblance between them and a dissimilarity to the samples of other clusters. Typically, some of the

most frequently used metrics to define the similarity between clusters are:

• Euclidean distance, and Manhattan distance for continuous variables;

• The Jaccard index is used to represent discrete or binary variables.

Similarity metrics

The Euclidean distance is the most common distance measure, and it can be explained as the length

of a segment connecting two points. It is calculated from the coordinates of the two points using the

Pythagorean theorem.

𝐷 (𝑥,𝑦) =

√√
𝑛∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 (2.6)

With Euclidean distance, it is common to normalize the data. Furthermore, this metric does not perform

well with data that has a high dimensionality because higher-dimensional space does not behave as we

would expect from two or three dimensional space. The most common use case for this measure is when

you have low-dimensional data and the magnitude of the vectors is important to be measured.

On the other hand, Manhattan distance calculates the distance between real-valued vectors. The

diagonal movement is not taken into account when calculating the distance.

𝐷 (𝑥,𝑦) =
𝑘∑
𝑖=1

|𝑥𝑖 − 𝑦𝑖 | (2.7)

Although Manhattan distance seems to perform better for high-dimensional data, it is a metric that is

less intuitive than the previous one. Manhattan seems to perform quite well with discrete and/or binary

attributes since it takes into account the paths that realistically could be taken within the values of those

attributes.

Finally, the Jaccard index (or Intersection over Union) is a metric to calculate the similarity and diversity

of samples. Its formula is given by dividing the intersection and the union of sample sets4.

𝐷 (𝑥,𝑦) = 1 − |𝑥 ∩ 𝑦 |
|𝑦 ∪ 𝑥 | (2.8)

Its major disadvantage is that it is highly influenced by the size of the data, since large datasets increase

the union significantly whilst keeping the intersection identical.

The process used by clustering algorithms to partition data into separate groups can be understood

using the similarity metrics presented. However, there are a variety of algorithms that can be used for this

purpose, as we will discuss.

4If we have one sample in common in two sets, and there are five different entities in total, the Jaccard index is 1/5.
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Clustering models

There are four methods for clustering data:

• Partitioning Methods: It does partitions on the data, forming 𝑘 clusters, making 𝑘 different

clusters. This method optimizes an objective criterion-similarity function (e.g., K-means);

• Hierarchical Based Methods: The clusters in this method form a tree structure based on

hierarchy (e.g., CURE). New clusters are formed based on the previously formed ones, dividing

them into two new categories. This method can be agglomerative (from the bottom-up approach)

or divisive (from the top-down approach).

• Density-Based Methods: The density-based methods consider the clusters as dense regions

that have some kind of similarity and differences from the lower dense region of the data space

(e.g., DBSCAN).

• Grid-based Methods: In the grid-based methods, the data space is defined as a finite number

of cells that form a grid-like structure (e.g., STING).

Of the multiple clustering algorithms from the different methods, K-means is one of the most widely

used in the community. The K-means is compared to the GMM in the clustering data in [12]. Moreover, the

GMM’s generative nature provides an opportunity to explore its performance as a DA technique contrarily

to K-means. K-means uses a pre-defined number of clusters (𝑘) within an unlabeled multidimensional

dataset. The cluster center is the arithmetic mean of all points in the cluster, making each point closer

to the center of its cluster than to other cluster centers. The 𝑘 cluster centers start at random positions

and then iterate in phases, where, in each phase, it assigns certain points to each cluster center. The

center is re-computed, forming an arithmetic mean of those points, where the closest center to each point

is calculated with the chosen metric (Euclidean distance, Manhattan distance, etc.). Since the center of

the cluster is not a data point from the dataset, but a mean from all points, the k-medoids algorithm was

suggested. It behaves exactly as k-means with the expectation of the center that is a real data point (the

closest to the calculated mean).

The use of a simple radial distance metric by k-means to assign cluster membership results in poor

performance and a typical circular form for the clusters. This algorithm has no built-in way of accounting

for non-circular clusters (oblong or elliptical), which do not represent the true shape of the data points

sometimes. Moreover, this algorithm does not have a probabilistic nature when forming clusters.

Therefore, GMMs are an extension of the ideas behind k-means. This algorithm aims to model the

data as a combination of multiple multi-dimensional Gaussian probability distributions. It works on the

basis of the EM algorithm. The EM algorithm has two main steps: an estimation of the missing variables in

the dataset (E-step) and the maximization of the parameters of the model in the presence of data (M-step)

[37]. Because of this, the EM algorithm finds the maximum likelihood, i.e., finds a set of parameters that

results in the best fit for the joint probability of the data sample [38].
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Figure 3: Differences applying GMM and K-means algorithms

GMM finds clusters in the same manner as k-means. However, it performs flawlessly for non-circular

data forms. It can fit the Gaussian distribution parameters, such as the mean and standard deviation,

to shape the data. The difference of clusters formations can be seen in Figure 3. Due to the generative

nature of GMM, it can generate synthetic data close to the distribution of the fitted data [12]. After the

algorithm fits the data and learns its distribution, it can generate an arbitrary number of samples from the

learned distribution.

2.4.4 Variational Autoencoders

Nowadays, deep learning has gained a lot of interest and has made some amazing improvements

regarding its performance. From the deep learning models, the family of generative models have also

increased in popularity, showing a magnificent ability to produce highly realistic samples of various kinds,

such as images, text, and sounds. These families of models, like all deep learning models, rely on huge

amounts of data, well-structured architectures, and smart training techniques. Some popular deep learning

generating models are VAEs and GANs.

In short, a VAE is an autoencoder whose encoding distribution is regularized during the training in

order to ensure that its latent space5 has good properties, allowing us to generate some new data [39].

Autoencoders are neural network architectures that have three parts in a stream: an encoder, latent

space or bottleneck, and a decoder [9]. The encoder compresses the data into a lower-dimensional latent

space. The decoder then tries to recreate the original/input data from the latent space. As a result, the

autoencoder’s goal is to optimize the iterative process in order to learn the ideal encoding-decoding scheme.

5Latent space is a representation of compressed data in which similar data points are closer together in space. It is useful
to learn the features.
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Moreover, by learning to encode and decode the input data, the autoencoder acquires knowledge of the

data features and reduces noise. This is due to the algorithm’s tendency to keep the most information

possible while encoding and to minimize the reconstruction error when decoding. Figure 4 shows an

example of the autoencoder algorithm when working with an image.

Figure 4: Autoencoder algorithm [Adapted from [40]]

A VAE consists of an encoder and a decoder, just like an autoencoder, but the loss term and the

encoded layers of the autoencoder are altered in order for the model to be used as a generative model

[9]. Its training is adjusted to avoid overfitting making sure that the latent space has good properties that

enable the generative process. On the other hand, an autoencoder is trained to encode and decode with

as few losses as possible, making no difference how the latent space is organized. The main distinction

between the two encoding layers algorithms is that they encode an input as a distribution throughout the

latent space rather than a single point [39]. With this in mind, the VAE avoids having some points in the

latent space that would provide meaningless information once decoded.

Figure 5: Variational Autoencoder algorithm [Adapted from [39]]
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VAE’s training process first encodes the input as a distribution over the latent space, as described in

Figure 5. Next, a point from the latent space is sampled from that distribution, it is decoded, and the recon-

struction error is calculated. Lastly, the weights of the network are changed based by the backpropagation

of that error.

Finally, to make possible the generative process of the VAE, it is necessary for the latent space to have

two properties. First, the latent space should have continuity, i.e., two close points in the latent space

should not give completely different contents when decoded. Second, if a sampled point provides mean-

ingful information once decoded, then the chosen distribution of the latent space has completeness. With

these two properties, the latent space obtains regularization, i.e., the latent space distribution converges

to the standard normal distribution. This regularization term prevents the model from encoding data that

is far apart in the latent space and encourages returned distributions to “overlap” as much as possible6.

Moreover, the two properties tend to create a gradient over the information encoded in the latent space

[39].

Figure 6: Overlaping classes in the latent space created by regularization [Adapted from [39]]

2.4.5 Generative Adversarial Networks

GANs, along side VAEs, are a famous deep learning generative model and were proposed in [41].

The GAN model architecture involves two neural networks: a generator and a discriminator. The

generator is a model that generates new plausible samples for the problem, while the discriminator is a

model that classifies examples as real (from the domain) or fake (generated) [42]. Therefore, GANs are
6There is an overlap between classes of data, Figure 6.
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based on a game-theoretic scenario in which the generator network must compete against an adversary,

the discriminator [41].

The Generator model takes a random vector, drawn from a Gaussian distribution, as input and gen-

erates a sample in the domain. This vector serves as a seed for the generative process. After its training,

points in the latent space will correspond to points in the problem domain. This implies that the latent

space is a compressed representation of the data distribution, much like the encoder from VAE, presented

at 2.4.4. In the case of GANs, the Generator model applies sense to points in the specified latent space

in such a way that new points drawn from the latent space can be fed into the Generator model as input

and utilized to produce new and distinct output examples (see [42]). When the training is complete, the

generator model is kept and used to generate new samples.

The Discriminator model receives as input an example that can be real or generated and predicts

whether it is real or fake (generated). Therefore, the real inputs are received from the dataset, whereas

the generated examples are output by the Generator model. Moreover, the Discriminator is a normal

classification model and it is discarded as we are interested in the final Generator.

Figure 7: GAN algorithm

The Discriminator is updated to get better at discriminating between real and fake samples, and

more importantly, the Generator is updated based on how well, or not, the generated samples fooled the

Discriminator, demonstrated in Figure 7. Therefore, since the two models are competing against each

other, they are opponents in their game. When the Discriminator identifies correctly, it is rewarded by not

having to change its parameters, whereas the Generator is penalized with large updates to its parameters,

and vice versa. Ideally, the Generator generates perfect samples so that the Discriminator cannot tell the

difference in every case.
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2.5 Comparison of Techniques

The previously mentioned ML algorithms are all specified to oversample and increase the size of data,

e.g., by synthesizing the minority class of a dataset and balancing the class distributions. However, they

are, in general, somewhat different DA techniques, as shown in Table 1. While techniques like GAN and

VAE are inserted into the Deep Learning algorithms, others are based on more traditional ML algorithms.

GMM stands out as the only unsupervised learning algorithm, not needing any kind of labeling on the data

to train the model and find the structure of the clusters that best define the data. On the contrary, the

other DA techniques need the labeled data to train the models, i.e., they are supervised learning models.

Moreover, GMM, GAN, and VAE are part of the generative models family, i.e., they are models capable of

producing new samples. Its goal is to reduce the dimensionality of data to a latent space and, through

that latent space, generate samples that follow the same distribution of real data. Differences between

the DA techniques are summarized in the Table 1.

Table 1: A comparison between Data Augmentation algorithms

Algorithms SMOTE ADASYN GMM VAE GAN

Deep Learning 5 5 5 3 3

Unsupervised Learning 5 5 3 5 5

Supervised Learning 3 3 5 3 3

Oversampling Technique 3 3 3 3 3

Generative Model 5 5 3 3 3

These algorithms have been used as DA techniques throughout multiple studies, having their perfor-

mance evaluated. In [9], DA techniques were developed and their performance compared to combat the

imbalanced dataset of traffic crashes, where only a minority of events are labeled as “crash”. Therefore,

techniques such as VAE improved specificity7(obtained by 𝑇𝑁 /(𝑇𝑁 + 𝐹𝑃), where 𝑇𝑁 and 𝐹𝑃 are de-

fined in Table 2) for the Logistic Regression model when classifying data, about 2%, than both ADASYN

and SMOTE while sensitivity (given by the metric recall, described in the next section) was lower by 4%. As

for the SVM model, VAE generated better data with increased sensitivity and specificity that is comparable

to the other two DA techniques. Finally, the authors concluded that DCGAN, a version of GAN, had worse

results than VAE for the multiple classifiers. Overall, for this specific problem, the suggested algorithm

(VAE) provided better results than the other techniques.

On the datasets used in [11], the authors proposed a new algorithm, ADASYN, motivated by the suc-

cess of SMOTE. Therefore, the authors compared the algorithms’ performance on five different datasets.

The chosen datasets were: vehicle (classifying the instance as one of four types of vehicles), Pima Indian

Diabetes (predicting positive diabetes cases), vowel recognition (classifying different vowels), Ionosphere

(classifying good or bad radar returns), and the Abalone dataset (predicting the age of abalone from phys-

ical measurements). The proposed algorithm performed competitively with SMOTE.
7Specificity is defined as the proportion of actual negatives that were correctly predicted as negatives.
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An adopted version of GAN had better performance than oversampling with duplicated values, under-

sampling, SMOTE, and ADASYN in all datasets analyzed in [30]. The paper used three binary datasets for

evaluation, whereas the main dataset utilized was the European credit card dataset.

Lastly, in [15], GMM synthesized data very similar to the real one, improving the ML model results in

a dataset of the density of woods.

2.6 Assessment Metrics for Imbalanced Data

In order to compare the performances of all the DA techniques, it is required to define how their per-

formances can be compared. Therefore, we need to define which ML metrics fit better into an imbalanced

data problem. Traditionally, the most often used metrics are accuracy and error rate. Considering a basic

two-class classification problem with positive and negative classes labels, it can be formulated a confusion

matrix, as illustrated in Table 2.

Table 2: Confusion Matrix

Real Positive Real Negative

Predicted Positive True Positive (TP) False Positive (FP)
Predicted Negative False Negative (FN) True Negative (TN)

This metrics can be obtained by the following formulas:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +𝑇𝑁 (2.9)

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 = 1 −𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (2.10)

Although accuracy provides an easy way to describe the model’s performance, it can mislead in certain

situations. Imbalanced data problems are examples of that kind of deceiving, because if a minority class

has 5 percent of examples and the majority has the rest of the data classes, a model that classifies all

instances as being in the majority class has 95 percent accuracy. At first glance, this value appears to

be an excellent classifier for the problem at hand, but it fails to identify any of the minority examples.

Therefore, accuracy and error rate do not provide enough information about a classifier’s functionality in

terms of the sort of classification required.

In order to provide comprehensive assessments of imbalanced learning problems, the research com-

munity adopted other evaluation metrics, such as precision, recall, F-measure, and G-mean, defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2.11)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.12)
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𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = (1 + 𝛽)2 · 𝑅𝑒𝑐𝑎𝑙𝑙 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝛽2 · 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (2.13)

where 𝛽 is a coefficient that adjusts the relevance of precision versus recall8.

𝐺 −𝑀𝑒𝑎𝑛 =

√
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 · 𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (2.14)

First, precision is a metric that measures how many correct positive predictions the model makes (a

measure of exactness)9. Therefore, precision calculates the accuracy of the positive class and is sensitive

to data distribution. Second, recall is a metric that measures how many correct positive predictions were

produced out of all possible positive predictions. Unlike precision, which only gives information on the

correct positive predictions of all positive predictions, recall indicates the missed positive predictions and

it is not sensitive to data distributions. Moreover, recall is also known as sensitivity.

When used correctly, recall and precision can evaluate an imbalanced learning problem adequately.

Nevertheless, the F-measure metric combines the two previous metrics as a weighted focus on either

recall or precision (given by the coefficient 𝛽). Finally, the G-mean (Geometric mean) metric evaluates

the balance of classification between the majority and minority classes. Even if the negative cases are

accurately identified, a low G-Mean suggests poor performance in the classification of positive cases.

To conclude, with these metrics, it is possible to evaluate the performance of the classifiers on an

imbalanced data problem. Therefore, we can compare the model’s results with different kinds of DA

techniques. These metrics provide a specific evaluation on the prediction of the positive class (the minority

class), providing more insight into a classifier’s functionality than the accuracy metric.

2.7 Other Ways to Combat Imbalanced Data

While DA attempts to balance the classes distributions in a dataset, there are other ways to surpass

the challenges of imbalanced data problems, e.g., Cost-Sensitive, Kernel-Based methods, and One-class

learning [1].

Cost-sensitive learning methods consider the costs associated with misclassifying examples [43].

Rather than using several sampling procedures to achieve balanced data distributions, Cost-sensitive learn-

ing uses multiple cost matrices to represent the costs of misclassifying every single data example to target

the unbalanced learning problem. The cost matrix can be viewed as a numerical representation of the

penalty associated with classifying examples into different classes. In most cases, there is no cost for cor-

rectly identifying either class, and the cost of misclassifying minority examples is higher than the cost of

correctly classifying majority examples. Cost-sensitive learning’s goal is to minimize the overall cost of the

8Usually, the community uses 𝛽 = 1, which weights precision and recall equally, and the metric is called F1-measure or
F1-score.

9In this case, the positive class is considered the minority.
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training data set. Some studies have shown that cost-sensitive learning is superior to sampling methods

(DA) in some imbalanced data domains.

Although DA by sampling methods and cost-sensitive learning methods appear to dominate current

research efforts in imbalanced learning, the community has also investigated a variety of additional ap-

proaches. Kernel-Based methods, such as GSVM-RU in [44], were created to deal with imbalanced data

problems because they provide state-of-the-art methodologies for many of today’s data engineering appli-

cations.

Finally, rather than distinguishing between instances of both positive and negative classes as in tradi-

tional learning methodologies (i.e., discrimination-based inductive methodology), one-class learning aims

to recognize instances of a concept by using mostly, or only, a single class of examples (i.e., recognition-

based methodology) [1].

2.8 Summary

As a result of the increased amount of data available, ML has been the target of a great deal of interest

recently, being used in various and diverse fields of work. It is divided into three categories: supervised

learning, unsupervised learning, and reinforcement learning. Supervised learning algorithms receive la-

beled data in the training process, whereas unsupervised algorithms search for patterns in unlabeled

data. Furthermore, reinforcement learning trains machines through trial and error, providing them with

the means to learn for themselves the best strategy for the problem at hand.

Even though the amount of data collected with recent technology is increasing, imbalanced datasets

are still present. These datasets have an unequal distribution between their classes, which decreases the

performance of the ML models. Therefore, DA appears as a way to surpass that limitation, increasing

the amount of data. It can balance the classes distributions or increase the size of the dataset through

oversampling techniques. Some of the most popular DA techniques are: SMOTE, ADASYN, GMM, VAE,

and GAN. All of them are supervised models, except the GMM, which is unsupervised. Furthermore, VAE

and GAN are from the generative models family and deep learning models, whereas the rest are not based

on generative nor neural network models.

In order to analyze and compare which DA technique synthesizes better data, it is required to define

how their performances can be compared. Since traditional metrics, such as accuracy and error rate,

mislead the ML models’ performance on an imbalanced learning problem, it is important to research

better fitted metrics. Therefore, precision, recall, and g-mean were taken into account. These metrics

provide a specific evaluation on the prediction of the positive class (the minority class), providing more

insight into a classifier’s functionality than the accuracy metric.

Finally, DA is not the only way to combat imbalanced learning problems. Other ways, such as cost-

sensitive, kernel-based methods or one-class learning, are also alternatives without oversampling samples

of the dataset.
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3
Experimental Setup

This chapter will go over the key stages of the project, detailing the methodologies and the setup of

the experiments realized, which will be described in further detail in the next chapter.

3.1 Methodology

This study can be divided into two phases. The first one is data collection, treatment, and initial clas-

sifiers development. This will be done with public data from platforms such as Kaggle, Google Dataset

Search, and the UCI Machine Learning Repository. Therefore, it was possible to solve imbalanced learning

problems with ML models. These datasets underwent a data treatment that is typical to extract information

and be ready to be learned by a classifier. After the data treatment, different ML models were developed,

from the traditional ML models to deep learning, in order to classify and evaluate their performance on

imbalanced data. Each problem (i.e., each prediction from the multiple datasets) throughout the research

followed the CRISP-DM methodology when processing data and developing the ML models, which is a

standard process model that describes the most prevalent data mining approaches [45]. Its major phases

are Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deploy-

ment (as demonstrated in Figure 8). In order to evaluate their performance, the metrics stated in Section

2.6 were also used.

The second phase had the objective of developing DA techniques. These methods, previously dis-

cussed in Section 2.4, generated synthetic data, balancing classes distributions or incrementing the

dataset size.

The benchmark performed in this study involved multiple analyses of the implemented DA methods

throughout various datasets with multiple classifiers, such as Decision Trees, Random Forests, and MLPs.
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Figure 8: CRISP-DM major phases

These machine learning algorithms were chosen based on their current scientific popularity and the typi-

cally good performance associated with them.

Regarding the synthetic data generated by all DA techniques, the experiments will focus on many

analyses in order to answer the previously proposed research questions. These analyses consist, mainly,

of:

1. Comparing each feature’s distribution throughout statistical methods;

2. Training the classifiers only with synthetic data;

3. Contrasting the number of generated samples added to the real data;

4. Training the classifiers with real and synthetic data.

Finally, the data treatment, the ML models, and DA methods were developed with the help of the

Python programming language and its available libraries. For data treatment, libraries like Pandas [46]

and Numpy [47] offered multiple tools to process the data. As for the ML and deep learning algorithms

(i.e., classifiers and DA methods), Scikit-Learn [48], Keras [49], and Tensorflow [50] provided easy ways

to develop and implement the algorithms.
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3.2 Experiments

With regard to the classifiers benchmark, the ML algorithms were implemented and their results eval-

uated with the application of random seeds1 in order to be able to replicate the results. In an effort to

avoid overfitting the classifiers to the training data, we focused mainly on the MLP, since it was the model

most susceptible to it. Therefore, to handle that, it was used as a callback to stop the training process

when the performance on the validation data2 would not increase for multiple epochs. However, the use

of dropout layers was also intended to help avoid overfit.

Despite the fact that some DA methods were already implemented by Python packages, the VAE

and GAN needed to be fully developed, particularly their architecture. The package Scikit-Learn already

had implementations of SMOTE, ADASYN, and GMM, but more complex techniques (VAE and GAN) were

developed in Tensorflow and Keras. Therefore, for this dissertation, both of these techniques followed an

architecture of multiple dense layers with some intermediary dropouts and batch normalizations. While

it is usual to use convolution layers in an image-based problem for DA techniques that are based on DL

algorithms, in tabular data it is not (but could have been done by the 1D convolution layer, named Conv1D in

Tensorflow). Note that for each problem, the DA methods’ architecture did not change, although fine-tuning

(hyperparameters optimization) could benefit the performance of the algorithms when generating synthetic

samples for very specific domains. The reason for that decision was based on time and computational

cost issues, since the fine-tuning of the hyperparameters of each DA technique implied complex and time-

demanding solutions, such as the use of a genetic algorithm for the optimization of those hyperparameters

for each domain [51].

Furthermore, during the experiments and implementation of the DA techniques, there were some ob-

stacles with regard to the performance of some techniques, mainly the VAE and the GAN. The implemented

VAE suffered from the phenomenon called posterior collapse [52], as well as the GAN suffered from mode

collapse [53]. The posterior collapse happens when the information contained in the learned latent space

is rendered useless. As for GAN, its generator only learns to generate a small set of outputs, making the

generator over-optimizing for a particular discriminator. As a result, the minority class was unable to be

synthesized. Therefore, it was crucial to find a way to surpass this limitation. The solution passed through

adding noise to the discriminator’s inputs and incrementing the latent space dimension.

Moreover, we explored a bit more of the possible solutions for the VAE. The first solution was to add a

weighted decay to its loss. The VAE loss is composed of two factors. The first forces the decoded samples

to resemble the input by penalizing the latent representation with a reconstruction loss (𝑅𝐶𝑙𝑜𝑠𝑠 ) [54, 55].

Consequently, the 𝑅𝐶𝑙𝑜𝑠𝑠 can be explained as:

𝑅𝐶𝑙𝑜𝑠𝑠 = −
𝐵𝑆∑
𝑏𝑠=1

𝑁∑
𝑖=1

𝑥𝑏𝑠,𝑖 · 𝑙𝑜𝑔(𝑥′𝑏𝑠,𝑖) (3.1)

1The same value, 42, was used as the random seed across the entire code.
2The available data for each problem was divided into training, validation, and test datasets.
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where 𝑥 is the input data, N the dimensions of the input data, 𝐵𝑆 the batch size, and 𝑥′ the reconstructed

input. Keep in mind that this loss is predicated on the probability of the Binary Cross-Entropy.

The second loss is the Kullback-Leibler divergence term (𝐾𝐿𝑙𝑜𝑠𝑠 ), which serves as a regularization

term to aid the model’s learning of well-formed latent spaces:

𝐾𝐿𝑙𝑜𝑠𝑠 =
𝐵𝑆∑
𝑏𝑠=1

𝑁∑
𝑖=1

𝜎2
𝑏𝑠,𝑖

+ 𝜇2
𝑏𝑠,𝑖

− 1 − 2𝑙𝑜𝑔(𝜎𝑏𝑠,𝑖)
2

(3.2)

where 𝜇, 𝜎 are the mean and standard deviation of a Gaussian distribution, respectively, 𝐵𝑆 is the batch

size, 𝑁 the dimensions of the input data [54, 55]. The network weights are controlled by the weight decay

(𝑊𝑑𝑒𝑐𝑎𝑦), which penalizes the 𝐾𝐿𝑙𝑜𝑠𝑠 more as the number of training epochs increases3 and causes the

model to become more regular. The VAE network is thus prevented from overfitting the training data, which

is typically towards the majority class, by this weight decay. In essence, the VAE loss function is:

VAE𝑙𝑜𝑠𝑠 = 𝑅𝐶𝑙𝑜𝑠𝑠 + 𝐾𝐿𝑙𝑜𝑠𝑠 ·𝑊𝑑𝑒𝑐𝑎𝑦 (3.3)

As for the other solution, we explored the latent space properties, adding a k-means algorithm to be

applied to the latent space. This cluster algorithm would be fitted after the VAE training in order to identify

the minority and majority clusters. Therefore, before the VAE generated samples, the cluster algorithm

would readjust the points of the latent space4, making them closer to the centroid of the minority class

cluster. An example of the application of this cluster algorithm to the process of synthesizing by the VAE

can be seen in Section 4 by the Figure 9. Finally, the last version of VAE implemented in regards to

surpassing the posterior collapse was the combination of the weight decay and the k-means.

Furthermore, the use of more computationally demanding DA methods, such as VAE and GAN, demon-

strated a greater importance for each dataset preprocessing, particularly for continuous features. These

continuous features were an issue during the training of these techniques because of the calculated loss.

Another occurring phenomenon was that the loss had NaN values during the training due to high compu-

tations when faced by continuous features. As a result, a simple solution to this problem was to perform

a normalization on each continuous feature.

3The weight decay has a proportional inverse behavior in regards to the number of training epochs.
4In this case, the latent space is the input vector that the decoder uses to generate samples.
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3.3 Data

In this experiment, multiple datasets were chosen to perform a good comparison of these DA methods

in generating new data. Additionally, these datasets are unbalanced5 and inserted into many domains,

including fraud detection and health. The chosen datasets were the following:

• Adult. The adult dataset was extracted from the census bureau and has information about multiple

adults [56]. This dataset serves as a binary classification, predicting if a certain adult has an income

superior to fifty thousand in a year. Regarding its features, it has seven categorical features and

one continuous. Furthermore, the target class is clearly imbalanced, as the majority class (income

superior to fifty thousand) is three times more frequent than the minority class. The dataset has

over 30𝐾 instances.

• Breast Cancer. Another health domain analyzed in this experiment was breast cancer prediction

[57]. This dataset was obtained from the University of Wisconsin Hospitals, Madison by Dr. William

H. Wolberg and contains samples of clinical cases gathered periodically. The dataset contains a

target class imbalanced with 66% of the instances belonging to benign cases and the rest being

malignant. This dataset, beyond being imbalanced, is also small in size, since it only has 569

instances. Its features are all continuous.

• Credit Card Fraud. Fraud detection is also a recurrent domain where imbalanced data is present

[58]. Therefore, in this dataset, transactions made by credit cards in September 2013 by European

cardholders are analyzed. This dataset originally had more than 280𝐾 instances but was reduced

(while maintaining the target class ratio) to 85𝐾 due to computational reasons. Moreover, this

dataset contains only continuous attributes.

• Cerebral Stroke. This dataset contains features regarding individuals that may or may not suffer

a cerebral stroke [59]. A cerebral stroke is when part of the brain loses its blood supply and the

part of the body that the blood-deprived brain cells control stops working. Therefore, it is very useful

to predict if a person may or may not suffer a stroke. This dataset is highly imbalanced, having

only 2% of strokes and more categorical features than continuous. The dataset has more than 40𝐾

instances.

The characteristics of the datasets gathered for this dissertation are summarized in Table 3. Take into

account that the column “Target Class Ratio” is obtained through a ratio of the number of samples in the

minority class against those on the majority class. Since all chosen datasets have a binary target class,

this ratio is between 0 and 100. Therefore, when the value is closer to zero, it means that the dataset is

extremely imbalanced. On the other hand, with a value of 100%, the dataset is completely balanced.

5Note that the chosen datasets have a binary target.
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Table 3: Datasets properties

Dataset Number of Instances Type of data Target Class Ratio [%]1

Adult 32561 Mostly Categorical 31.7
Breast Cancer 569 Mostly Continuous 59.4

Credit Card Fraud 85442 Mostly Continuous 0.2
Cerebral Stroke 43400 Mostly Categorical 1.8

1 Target Class Ratio is obtained through a ratio of the number of samples in the minority class against those on the majority
class.

In essence, the datasets examined in this study consist of two datasets with predominantly continuous

characteristics and other two with mainly categorical features. Moreover, one of the datasets has a small

size while the rest have a lot more instances. Therefore, we can analyze how the synthetic data generated

performs on datasets with these characteristics.
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3.4 Summary

The study of this dissertation is composed of the collection of datasets, their treatment, and the training

of the classifiers. When classifying the data for each problem, the CRISP-DM methodology will be used,

and the DA techniques that generated synthetic data quality will be evaluated in the second phase. This

will be done by either increasing the minority class representation, balancing both class distributions, or

increasing the size of a dataset. Moreover, the classifiers (Decision Tree, Random Forest, and MLP) will

be implemented by packages such as Scikit-Learn, Keras, and TensorFlow.

The experiments will evaluate the synthetic data in multiple ways. First, by comparing each feature’s

distribution throughout statistical tests and training the classifiers only with synthetic data. Second, by

contrasting the number of generated samples to the real data. Finally, the classifiers will be trained

with real and synthetic data in order to evaluate if the addition of synthetic data increases the classifiers’

performance.

The implementation of VAE and GAN suffered from the phenomenon called posterior collapse and

mode collapse, respectively. The posterior collapse happens when the information contained in the la-

tent space is rendered useless, while the mode collapse makes the GAN’s generator over-optimizing for a

particular discriminator, synthesizing only the majority class. To surpass this limitation, we implemented

a decay on the VAE loss and applied the K-means to its latent space in order to approximate the feature

space points for the minority class. Aiming to evaluate these two posterior collapse solutions, we per-

formed multiple combinations of the VAE during the experiments. As for the GAN, we added noise to the

discriminator’s inputs and incremented the latent space dimension.

Furthermore, the more complex DA techniques (VAE and GAN) also suffered loss of computation

errors due to the existence of continuous features that were not normalized. As a result, it emphasized

the importance of preprocessing for each dataset, particularly for continuous features.

Finally, we chose four different datasets for the experiments, inserted in many domains, including

fraud detection and health. Of the four datasets, two of them had mainly continuous features, while the

rest had more categorical features. Moreover, one of the datasets was considered a small-sized dataset.
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4
Results and Discussion

In this chapter, we will go through all the results obtained by the experiments mentioned in the previous

chapter. Therefore, we will answer all the research questions stated at the beginning of this dissertation

and provide some insights about our findings.

4.1 Statistical Tests

First, in order to compare the quality of the synthetic data generated by each augmentation technique,

we performed statistical analyses on both real and synthetic data, i.e., to determine if they came from

the same distribution. Ideally, and when talking about the same number of samples, the synthetic data

should have properties very similar to the real one. Therefore, we implemented some statistical methods

to compare each feature distribution on the real and synthetic datasets. However, due to the different

behavior of continuous and categorical features, it was necessary to apply different statistical tests. On

that account, the categorical features distributions were analyzed by the chi-square test and the continuous

features by the Kolmogorov-Smirnov test.

These statistical tests showed that the DA techniques generally had difficulties representing the original

continuous features distributions in the generated data. SMOTE was the technique with better represen-

tation, followed by ADASYN and the variations of VAE, namely VAE with K-means and VAE with K-means

and decay on its loss. However, representing the categorical feature distributions was something easier

for the DA methods. Although SMOTE had a good capability to represent continuous features, it was the

worst technique in regards to representing categorical features. As for the other techniques, ADASYN and

the VAE with K-means and weighted decay on its loss were the ones more capable of producing similar

distributions. The detailed results of these statistical tests are present in Appendix A.
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4.2 Results of the application of K-means on VAE

Before analyzing the classifiers’ performance with synthetic data, it was observed how using a k-means

to alter the latent space on a VAE could affect the synthesized samples, and if, as expected, the number

of minority samples generated would be higher. Figure 9 demonstrates that the VAE with K-means, as

expected, can produce way more minority samples through a 2D visualization of the target variable on

the Breast Cancer dataset. Note that this dataset was chosen to analyze the effects of the utilization of

K-means on the latent space of a VAE due to the lower number of samples on this dataset, which facilitates

the visualization. One important fact to take in mind is that since the K-means process is unsupervised,

the minority class is defined by the cluster with less feature space points. However, if the VAE enconder

does not do its job properly, for example has a weak architecture, it can chose wrongly the minority class

and, therefore, benefit even more the majority class.

Figure 9: Application of the K-means on the process of generating samples of VAE

4.3 Synthetic Data Ratio Analysis

Although the DA choice is extremely important, the number of samples to generate is a crucial factor

too. Therefore, we analyzed which ratio of synthesized samples provided the best results for the classifier

performance. As a basis of comparison, we compared the various ratios to the classifiers’ performance
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with no addition of synthetic data. The DA ratios are percentages of the size of the dataset for each

problem, so when comparing a ratio of zero to one, we are comparing the classifier’s mean performance

when training with the original dataset versus a dataset with the same original data plus the same number

of synthetic samples. Another fact to take into account is that the metric values on the following plots are

averages of the various classifiers used.

As seen in Figure 10, the adult dataset showed the best results with the SMOTE technique. The clas-

sifiers’ performance, with the addition of synthetic data, tended to maintain or decrease a little throughout

all DA techniques. However, SMOTE has the technique with better performance, making the minority class

performance increase more with the addition of 25% of synthetic samples. As for the rest of the techniques,

most of them showed difficulties in improving the classifiers’ performance, except for the GAN.

Figure 10: Ratio of data added at the Adult dataset by SMOTE

On the contrary to the adult dataset, the addition of synthetic data to the Breast cancer dataset im-

proved both classes classification performances as described at the Figure 11. Although the addition of

25% of synthetic samples increased by a lot the performance, the experiments showed that adding only

minority samples was the best choice. The techniques that demonstrated better performance were the

GAN and VAE with K-means.

As for the Credit Card Fraud dataset, the ratio performance, seen in Figure 12, increased more when

adding only minority samples. The VAE with K-means was the technique that improved the training data

for the classifiers, followed by the other VAE variations and the GAN. The overall results were a lot similar

to the Breast dataset, since the ratio and techniques that achieved better performance were, in essence,

the same ones. This could be explained by the properties of the two datasets that are very similar since

they are only composed of continuous features.

Finally, for the Cerebral Stroke dataset, the results were also almost identical to the dataset with similar

properties (Adult dataset), as the best ratio of synthetic samples to add was 25% too, and the technique
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Figure 11: Ratio of data added at the Breast dataset by GAN

Figure 12: Ratio of data added at the Credit Card Fraud dataset by VAE with K-means
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that resulted in a better performance by the classifiers was SMOTE. The results may be observed at Figure

13.

Figure 13: Ratio of data added at the Cerebral Stroke dataset by SMOTE

In essence, this experiment showed that more categorical datasets could achieve greater performance

by adding 25% of samples. As for the continuous datasets, the best ratio was to add only minority samples.

The chosen techniques seemed to indicate a certain pattern. The detailed results of all DA methods for

all datasets are seen at Appendix B.

4.4 Synthetic Data Performance Analysis

We can still perform two additional crucial analyses to determine how reliable the generated data

is after the analysis of the synthetic data properties. First, we are going to train the machine learning

classifiers with real data and then compare the results with training with only synthetic data.

Synthetic data can achieve very similar results when replacing the real data in the classifier training.

This experiment is described in Table 4 which represents the best DA techniques for each dataset on the

Random Forest Classifier1. The main classifier chosen to analyze the synthetic data quality was due to the

more consistent performance throughout all the techniques, as techniques such as VAE and GAN showed

more volatility in the MLP and worse results on the simpler machine learning classifier, the Decision Tree.

In regards to the Adult dataset, the technique that, throughout all classifiers, performed better was the

SMOTE, followed by ADASYN. This implies that these techniques may generate synthetic data with more

quality than the rest of the techniques for this dataset, with more categorical features than continuous.

One other important fact to take into account was the visible difference in the performance of one variation

1In order to abbreviate the document, the full results will be present in the Appendix section C.
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of the VAE when its generated data was trained by the MLP classifier, which can be observed at Table 9.

This classifier produced worse results than the other two more classical machine learning classifiers, and

it was seen multiple times for the other datasets as well.

The Breast Cancer dataset had the VAE with K-means as the technique that generated the best quality

of data, surpassing even the real data performance, described at Table 10. The Random Forest classifier

attained a higher performance score, although it couldn’t classify any minority classes correctly with GAN’s

synthetic data. This can be explained by the classifier overfitting when trained with those samples.

As for the Credit Card Fraud dataset, the SMOTE’s synthetic data achieved superior results across all

classifiers as can be seen at Table 11. It also surpassed the performance of the classifier with real data on

both classes. Moreover, this dataset’s classifiers were more susceptible to overfitting towards the majority

class, principally with VAE variations and GAN.

Finally, in the Cerebral Stroke dataset, the clustering technique, GMM, and SMOTE were the techniques

that had the closest results to the real data. GMM had a higher recall, capturing more minority samples

than SMOTE, who had a superior performance in the majority class. This dataset suffered, like the previous

ones, from the overfitting phenomenon in some of the generative DA techniques (VAE and GAN). Its results

are described at Table 12.

These experiments demonstrated that most of the DA techniques can synthesize data in order to

replace the real data in a somewhat efficient way. Note that in some cases, the use of only synthetic data

as training data for the classifiers provided better results than with real data. Therefore, the use of only

synthetic data could be very interesting in datasets where some data is sensitive and privacy matters.

Table 4: Classifiers performance comparison on only synthetic or real data training on the datasets

Minority Class Majority Class

Dataset
DA

Technique
Precision Recall

F1
Score

Precision Recall
F1

Score
G-Mean

Adult No technique 0.705 0.6301 0.6655 0.8865 0.9164 0.9012 0.7599

SMOTE 0.5373 0.7781 0.6356 0.918 0.7875 0.8478 0.7828

Breast Cancer No technique 1.0 0.9063 0.9508 0.9474 1.0 0.973 0.9520

VAE

with K-means
1.0 0.9375 0.9677 0.9643 1.0 0.9818 0.9682

Credit Card No technique 0.8824 0.6818 0.7692 0.9995 0.9998 0.9996 0.8257

SMOTE 0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.8790

Cerebral Stroke No technique 0.2 0.0085 0.0163 0.982 0.9994 0.9901 0.0920

GMM 0.0375 0.9576 0.0722 0.9986 0.5462 0.7062 0.7232
Note: The results are from the classifier Random Forest and the DA technique chosen was the technique that achieved the
best scores.
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4.4. SYNTHETIC DATA PERFORMANCE ANALYSIS

With those results in mind, the following analyses focus on training the classifiers with an increased

amount of data throughout multiple datasets, described in Table 5, Table 6, and Table 7. In regards to the

Random Forest classifier, its results demonstrated two important points.

First, the choice of the number of samples to generate is crucial, as the classifier’s performance may

decrease if the final dataset has too many synthetic samples with less quality than the real data. Therefore,

for each problem, it was necessary to evaluate the number of samples to synthesize. In these experiments,

the adult dataset had better behavior by adding 25% more samples to the original dataset, while the rest

of the datasets had higher performance by adding only minority samples. Note that while the best ratio

when using only synthetic data (described in Figure 13) was 25%, this was not the same when combining

real and synthetic data for the Cerebral Stroke dataset, which achieved a higher score when adding only

minority samples.

Second, the combination of real and synthetic data improved the classifiers’ performance. In the adult

dataset, SMOTE and GAN were the techniques that incremented most of the metrics for the minority class

while not decreasing the majority class performance. In the Breast Cancer dataset, the results were even

more satisfactory, with an increase of 5% in the minority class f1-score. The VAE with K-means and decay

did a remarkable job since it refined the performance for each class to a round 100%. The Credit Card

Fraud dataset had similar results as the previous one, with a boost in the f1-score minority class by 8% in

the VAE with K-means. Finally, in the Cerebral Stroke dataset, the minority results increased 8 times the

initial results with no synthetic samples on the f1-score as well as by the technique SMOTE.

Moreover, these experiments permitted us to confirm some interesting facts that were mentioned

previously. Datasets that contained mainly categorical features were usually associated with a difficulty in

increasing the classifier results by adding new samples. Plus, the technique that adapted best to those

kinds of datasets was the more classical one, SMOTE. On the other hand, for the datasets with more

continuous features, the variations of the VAE, mainly VAE with K-means and VAE with K-means and

decay, had very good performances.

On the other hand, the results obtained by the Decision Tree classifier, seen in Table 6. The Decision

Tree classifier showed slightly worse results in comparison with the Table 5, as expected since the classifier

Random Forest typically provides a more accurate performance. However, the techniques’ synthetic data

demonstrated similar properties. In the adult dataset GAN, followed by VAE with K-means and decay,

and SMOTE were the methods that generated better quality data, increasing the classifier performance

when classifying both classes. Moreover, SMOTE was the method that increased the minority class recall,

capturing 62.33% of the instances (an improvement of more than 1% in comparison with the classifiers’

performance when no technique is applied). As for the Breast Cancer dataset, contrarily to the Random

Forest classifier results, the Decision Tree showed that GAN was the DA technique with better quality data

generated. Furthermore, when compared to the non-use of DA techniques, the previous better method

on Table 5, VAE with K-means and decay, demonstrated a decreasing performance. Moreover, the Credit

Card Fraud dataset continued to have a variation of the VAE technique as the best generator of data.

However, the SMOTE method showed a decreased performance with a much lower minority recall. Finally,
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Table 5: Random Forest performance throughout the multiple DA techniques

Minority Class Majority Class

Datasets
DA

Technique
Precision Recall

F1
Score

Precision Recall
F1

Score
G-Mean

Adult1

No technique 0.705 0.6301 0.6655 0.8865 0.9164 0.9012 0.7599
SMOTE 0.6801 0.6582 0.669 0.8927 0.9019 0.8973 0.7704
ADASYN 0.6709 0.6259 0.6476 0.8838 0.90267 0.8932 0.7516
GMM 0.7067 0.625 0.6634 0.8853 0.9178 0.9012 0.7574

VAE with Decay 0.7003 0.6318 0.6643 0.8868 0.9143 0.9003 0.76
VAE with K-means 0.7013 0.631 0.6643 0.8866 0.9148 0.9005 0.7597
VAE with K-means

and Decay
0.6999 0.6327 0.6646 0.887 0.914 0.9003 0.7604

GAN 0.7018 0.6403 0.6696 0.889 0.9137 0.9012 0.7649

Breast
Cancer2

No technique 1.0 0.9063 0.9508 0.9474 1.0 0.973 0.9520
SMOTE 1.0 0.9688 0.9841 0.9818 1.0 0.9908 0.9843
ADASYN 1.0 0.9688 0.9841 0.9818 1.0 0.9908 0.9843
GMM 1.0 0.9375 0.9677 0.9643 1.0 0.9818 0.9682

VAE with Decay 1.0 0.9375 0.9677 0.9643 1.0 0.9818 0.9682
VAE with K-means 1.0 0.9375 0.9677 0.9643 1.0 0.9818 0.9682
VAE with K-means

and Decay
1.0 1.0 1.0 1.0 1.0 1.0 1.0

GAN 1.0 0.9688 0.9841 0.9843 1.0 0.9908 0.9843

Credit
Card
Fraud2

No technique 0.8823 0.6818 0.7692 0.9995 0.9998 0.9996 0.8257
SMOTE 0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.879
ADASYN 0.9412 0.7273 0.8205 0.9995 0.9999 0.9997 0.8528
GMM 0.9412 0.7273 0.8205 0.9995 0.9999 0.9997 0.8528

VAE with Decay 0.85 0.7727 0.8095 0.9996 0.9998 0.9997 0.8789
VAE with K-means 0.9444 0.7727 0.85 0.9996 0.9999 0.9998 0.879
VAE with K-means

and Decay
0.8824 0.6818 0.7692 0.9995 0.9998 0.9996 0.8257

GAN 0.8824 0.6818 0.7692 0.9995 0.9998 0.9996 0.8257

Cerebral
Stroke2

No technique 0.2 0.0085 0.0163 0.982 0.9994 0.9906 0.092
SMOTE 0.0486 0.2373 0.0807 0.9848 0.9143 0.9482 0.4658
ADASYN 0.0531 0.1441 0.0776 0.9837 0.9526 0.9679 0.3705
GMM 0.0333 0.0085 0.0135 0.9819 0.9955 0.9887 0.0918

VAE with Decay 0.1014 0.0593 0.0749 0.9828 0.9903 0.9865 0.2424
VAE with K-means 0.0986 0.0593 0.0741 0.9828 0.99 0.9864 0.2423
VAE with K-means

and Decay
0.125 0.0085 0.0159 0.982 0.9989 0.9904 0.092

GAN 0.2 0.0085 0.0163 0.982 0.9994 0.9906 0.092
1 The DA techniques added 25% more synthetic samples to the dataset.
2 The DA techniques added only minority samples to the dataset.
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the Cerebral Stroke Dataset shifted the best DA technique from the SMOTE to the ADASYN, while SMOTE

still captured most of the minority instances.

Fundamentally, the decision tree classifier results also demonstrated the capability of augmentated

data to increase the performance when classifying data and generating quality data. Moreover, it also

showed the pattern of SMOTE having an increased performance with datasets with more categorical fea-

tures, while the DL methods had a great performance on datasets whose features were mainly continuous.

Table 6: Decision Tree performance throughout the multiple Data Augmentation techniques

Minority Class Majority Class

Datasets
DA

Technique
Precision Recall

F1
Score

Precision Recall
F1

Score
G-Mean

Adult1

No Technique 0.6492 0.6122 0.6302 0.8792 0.8951 0.8871 0.7403
SMOTE 0.6402 0.6233 0.6316 0.8816 0.8889 0.8852 0.7444
ADASYN 0.6238 0.6063 0.6149 0.8763 0.8841 0.8802 0.7321
GMM 0.6520 0.6054 0.6279 0.8777 0.8975 0.8875 0.7372

VAE with Decay 0.6571 0.6012 0.6279 0.8769 0.9005 0.8885 0.7358
VAE with K-means 0.6553 0.6063 0.6299 0.8781 0.8989 0.8884 0.7382
VAE with K-means

and Decay
0.6551 0.6122 0.6330 0.8796 0.8978 0.8886 0.7414

GAN 0.6585 0.6148 0.6359 0.8804 0.8989 0.8895 0.7434

Breast
Cancer

2

No Technique 0.8750 0.8750 0.8750 0.9259 0.9259 0.9259 0.9001
SMOTE 0.8788 0.9062 0.8923 0.9434 0.9259 0.9346 0.9160
ADASYN 0.9375 0.9375 0.9375 0.9630 0.9630 0.9630 0.9501
GMM 0.9000 0.8438 0.8710 0.9107 0.9444 0.9273 0.8927

VAE with Decay 0.9062 0.9062 0.9062 0.9444 0.9444 0.9444 0.9252
VAE with K-means 0.8611 0.9688 0.9118 0.9800 0.9074 0.9423 0.9376
VAE with K-means

and Decay
0.8235 0.8750 0.8485 0.9231 0.8889 0.9057 0.8819

GAN 0.9677 0.9375 0.9524 0.9636 0.9815 0.9725 0.9592

Credit
Card
Fraud

2

No Technique 0.6400 0.7273 0.6809 0.9995 0.9993 0.9994 0.8525
SMOTE 0.4000 0.7273 0.5161 0.9995 0.9981 0.9988 0.8520
ADASYN 0.6364 0.6364 0.6364 0.9994 0.9994 0.9994 0.7975
GMM 0.4848 0.7273 0.5818 0.9995 0.9987 0.9991 0.8522

VAE with Decay 0.7083 0.7727 0.7391 0.9996 0.9995 0.9995 0.8788
VAE with K-means 0.6842 0.5909 0.6341 0.9993 0.9995 0.9994 0.7685
VAE with K-means

and Decay
0.6400 0.7273 0.6809 0.9995 0.9993 0.9994 0.8525

GAN 0.6400 0.7273 0.6809 0.9995 0.9993 0.9994 0.8525

Cerebral
Stroke

2

No Technique 0.0321 0.0424 0.0365 0.9822 0.9764 0.9793 0.2034
SMOTE 0.0396 0.2627 0.0689 0.9848 0.8825 0.9309 0.4815
ADASYN 0.0449 0.1864 0.0724 0.9841 0.9268 0.9546 0.4157
GMM 0.0449 0.0593 0.0511 0.9825 0.9767 0.9796 0.2407

VAE with Decay 0.0440 0.1017 0.0614 0.9830 0.9592 0.9709 0.3123
VAE with K-means 0.0484 0.1017 0.0656 0.9831 0.9631 0.9730 0.3130
VAE with K-means

and Decay
0.0533 0.0763 0.0627 0.9828 0.9750 0.9789 0.2727

GAN 0.0321 0.0424 0.0365 0.9822 0.9764 0.9793 0.2034
1 The DA techniques added 25% more synthetic samples to the dataset.
2 The DA techniques added only minority samples to the dataset.
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As for the MLP classifier, the results were more inconsistent, as can be seen in Table 7, mainly in the

Cerebral Stroke dataset. This classifier was more susceptible to overfitting on datasets whose features

were continuous, since the model focused on only classifying accurately the majority class. In the Adult

dataset SMOTE demonstrated to be the method more capable when generating data. Furthermore, Breast

Cancer had very good results when classifying both classes, even without augmented data. As a result, the

techniques that could not maintain 100% accuracy can be labeled as producing poor data for this classifier

and only this classifier, since the better DA method in the Table 5 was VAE with K-means and decay. Thirdly,

the Credit Card Fraud dataset maintained the best DA method, VAE with K-means, followed by the other

variations of VAE and GAN. Lastly, the Cerebral Stroke dataset DA technique with the best performance

was SMOTE, with an increasing performance of 9.74% f1-score and a recall of 54.24%. Note that the

classifier MLP for this dataset overfitted drastically towards the majority class, since the performance on

the minority class was 0%.

As it can be seen from the previous tables, the main reasons for focusing mainly on the classifier

Random Forest were the slightly better performances when compared with the Decision Tree and the

overfit seen by the MLP.
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Table 7: MLP performance throughout the multiple Data Augmentation techniques

Minority Class Majority Class

Datasets
DA

Technique
Precision Recall

F1
Score

Precision Recall
F1

Score
G-Mean

Adult1

No Technique 0.7120 0.6012 0.6519 0.8795 0.9229 0.9007 0.7449
SMOTE 0.6532 0.6726 0.6628 0.8952 0.8868 0.8910 0.7723
ADASYN 0.6741 0.6207 0.6463 0.8827 0.9048 0.8936 0.7494
GMM 0.6895 0.5400 0.6056 0.8635 0.9229 0.8922 0.7059

VAE with Decay 0.6758 0.6114 0.6420 0.8804 0.9070 0.8935 0.7447
VAE with K-means 0.6802 0.5969 0.6359 0.8770 0.9110 0.8937 0.7374
VAE with K-means

and Decay
0.6785 0.5867 0.6293 0.8744 0.9118 0.8927 0.7314

GAN 0.7133 0.5944 0.6484 0.8778 0.9242 0.9004 0.7412

Breast
Cancer

2

No Technique 1.000 1.0000 1.0000 1.000 1.0000 1.0000 1.0000
SMOTE 0.9697 1.0000 0.9846 1.000 0.9815 0.9907 0.9907
ADASYN 0.9143 1.0000 0.9552 1.000 0.9444 0.9714 0.9718
GMM 1.000 1.0000 1.0000 1.000 1.0000 1.0000 1.0000

VAE with Decay 0.9412 1.0000 0.9697 1.000 0.9630 0.9811 0.9813
VAE with K-means 0.9375 0.9375 0.9375 0.963 0.9630 0.9630 0.9501
VAE with K-means

and Decay
0.9697 1.0000 0.9846 1.000 0.9815 0.9907 0.9907

GAN 1.000 1.0000 1.0000 1.000 1.0000 1.0000 1.0000

Credit
Card
Fraud

2

No Technique 0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.8790
SMOTE 0.6000 0.8182 0.6923 0.9997 0.9991 0.9994 0.9041
ADASYN 0.6364 0.6364 0.6364 0.9994 0.9994 0.9994 0.7975
GMM 0.0031 0.9545 0.0062 0.9998 0.4773 0.6461 0.6750

VAE with Decay 0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.8790
VAE with K-means 0.9444 0.7727 0.8500 0.9996 0.9999 0.9998 0.8790
VAE with K-means

and Decay
0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.8790

GAN 0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.8790

Cerebral
Stroke

2

No Technique 0.0000 0.0000 0.0000 0.9819 1.0000 0.9909 0.0000
SMOTE 0.0535 0.5424 0.0974 0.9898 0.8229 0.8987 0.6681
ADASYN 0.0484 0.4153 0.0867 0.9875 0.8494 0.9132 0.5939
GMM 0.0000 0.0000 0.0000 0.9817 0.9876 0.9846 0.0000

VAE with Decay 0.0482 0.0339 0.0398 0.9823 0.9876 0.9849 0.1830
VAE with K-means 0.0645 0.0169 0.0268 0.9821 0.9955 0.9887 0.1299
VAE with K-means

and Decay
0.0000 0.0000 0.0000 0.9818 0.9970 0.9894 0.0000

GAN 0.0000 0.0000 0.0000 0.9819 1.0000 0.9909 0.0000
1 The DA techniques added 25% more synthetic samples to the dataset.
2 The DA techniques added only minority samples to the dataset.
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Conclusion

This chapter will be centered around a summary of the results obtained during this study experiments,

the future work and some final thoughts.

5.1 Experiments

In this study, we went through a benchmark of different DA techniques in multiple datasets of vari-

ous domains. With the results obtained during the experiments, we can now answer the main research

questions previously stated in this dissertation.

First, we found that DA could improve the results of imbalanced data problems, generating samples

of the minority class or both classes (RQ1). This was observed in all datasets with multiple DA techniques.

Furthermore, with the results found during the development of this study, it was also seen that some

dataset properties could influence the quality of the synthetic data generated (RQ2). Datasets that con-

tained more categorical features were usually associated with an increased difficulty in increasing the

classifiers’ performance or even a decrease in the minority class classification when adding synthetic data

to the original dataset. This phenomenon is visible in problems such as the Adult and Cerebral Stroke

datasets, in which DA techniques such as the VAE variations and GANs had difficulties when generating

synthetic data. On the other hand, other techniques (SMOTE, ADASYN, and, in some cases, GMM) gen-

erated quality synthetic samples easily. However, datasets whose features were mainly continuous had

very good performances for techniques such as VAE and GAN, while maintaining good performances for

SMOTE and ADASYN (even if lower than the other more complex techniques)

Relatively to the number of samples to be generated, the dataset properties also impact how to choose

that parameter (RQ3). As described before, more categorical datasets achieved a greater performance

40



5.1. EXPERIMENTS

when adding 25% more samples to the original dataset, while datasets whose major features are continu-

ous should opt to add only minority samples.

Finally, these experiments helped us to determine which DA techniques provide a better quality of

synthetic tabular data (RQ4). The implementation of the VAE with K-means had very good results, mainly

in the minority class, as expected. Therefore, it could be chosen as a good candidate to be used as a

DA technique in a dataset whose features are mostly categorical. In essence, GAN and VAE can achieve

amazing results when explored and tuned for specific domains, which is one of the principal characteristics

of these kinds of algorithms. Moreover, the results demonstrated that, in general, SMOTE had very good

performance when generating synthetic data. As a result, SMOTE seems to be the ideal technique when

the dataset properties are not taken into account, since it is very consistent in its generated samples. The

GMM, the more unusual technique, showed some promise for further investigation, despite appearing to

have a higher volatility in sample quality.

Although this study helped us to use DA with a lot more knowledge of how to do it and which techniques

to choose, there were some obstacles during its development. The main complication was the strange

overfit seen with synthetic data from techniques such as VAE and GAN. The VAE with K-means could

suffer a loss in its process since the unsupervised algorithm could choose incorrectly the minority case,

focusing the VAE on generating the majority class. As for the GAN, some results suggest that the noise

added to the discriminator network was too high. Therefore, for that specific problem, adjusting that value

could surpass the quality of data generated. Moreover, the results also suggest that the ML classifiers are

susceptible to a greater or lower type of overfit depending on the quality of the data.

In regards to the development of the multiple DA techniques, the VAE and GAN proved to be some-

what challenging due to the few examples of code in a tabular data problem, especially with TensorFlow.

Furthermore, the implementation of the loss function for both DA methods took the most time because it

presented a number of challenges, which the use of a decay and the K-means (on the VAE) aid in resolving,

as described in Section 3.2.

This dissertation’s work provided two publications. The first was accepted for publication by the con-

ference IDEAL2022 with the title of “Benchmarking Data Augmentations Techniques for Tabular Data” I.1.

In this paper, we focused only on the first results of the techniques SMOTE, GMM, and a simpler version of

the VAE. Following the work of the first paper, we submitted for publication an extension of those ideas to

the journal Machine Learning by the title “Data Augmentation Methods for Tabular Data” I.2. In this exten-

sion work, we increased the number of datasets analyzed as well as the DA techniques, adding ADASYN,

VAE with decay, VAE with K-means, VAE with K-means and decay, and GAN.
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5.2 Future Work

The realization of this study answered multiple questions, which can be very useful when using DA

techniques to generate synthetic data on a tabular data problem. Furthermore, this study could be followed

by another one by using more datasets and other DA methods in order to gain more knowledge of how

each algorithm performs under different dataset properties. Moreover, other variations of VAE and GAN

could be developed since the field of generative algorithms has much interest and research behind it in

the scientific community. The benchmark done could also be improved by increasing the number ML

classifiers, which would result in increased computational cost and time, which were very limited during

this study.

Moreover, the implementation of more and newer statistical tests, as well as other analyses, could

end up providing better ways to compare real and synthetic data.

5.3 Final Thoughts

The ML field is gaining more and more attention nowadays, due to the availability of data. Therefore,

the possibility of a future where synthetic data plays a huge role in decision-making is getting progressively

closer.

This thesis can be viewed as one more step in that direction, since it explores multiple DA techniques

and obtains very interesting results in regards to generating synthetic data in datasets with different prop-

erties and how many samples to generate.

To finish, we expect that this thesis can prove to be useful to future works on the DA field.
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APPENDIX A. DETAILED STATISTICAL TESTS

Table 8: Statistical Tests for each dataset

Dataset DA Technique
Number of Continuous
Features Rejected1

Number of Categorical
Features Rejected1

Adult

SMOTE 1 out of 1 2 out of 7
ADASYN 1 out of 1 0 out of 7
GMM 1 out of 1 0 out of 7

VAE with Decay 1 out of 1 1 out of 7
VAE with K-means 1 out of 1 1 out of 7

VAE with K-means and Decay 1 out of 1 0 out of 7
GAN 1 out of 1 1 out of 7

Breast Cancer

SMOTE 17 out of 30 0 out of 0
ADASYN 27 out of 30 0 out of 0
GMM 30 out of 30 0 out of 0

VAE with Decay 30 out of 30 0 out of 0
VAE with K-means 29 out of 30 0 out of 0

VAE with K-means and Decay 29 out of 30 0 out of 0
GAN 30 out of 30 0 out of 0

Credit Card Fraud

SMOTE 30 out of 30 0 out of 0
ADASYN 30 out of 30 0 out of 0
GMM 30 out of 30 0 out of 0

VAE with Decay 30 out of 30 0 out of 0
VAE with K-means 30 out of 30 0 out of 0

VAE with K-means and Decay 30 out of 30 0 out of 0
GAN 30 out of 30 0 out of 0

Cerebral Stroke

SMOTE 3 out of 3 2 out of 7
ADASYN 3 out of 3 0 out of 7
GMM 3 out of 3 1 out of 7

VAE with Decay 3 out of 3 0 out of 7
VAE with K-means 3 out of 3 0 out of 7

VAE with K-means and Decay 3 out of 3 0 out of 7
GAN 3 out of 3 0 out of 7

1 Rejection results based on a 0.05 level of significance.
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Figure 14: Ratio of data added at the Adult dataset by SMOTE
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APPENDIX B. DETAILED RATIO OF GENERATED DATA RESULTS

Figure 15: Ratio of data added at the Adult dataset by ADASYN

Figure 16: Ratio of data added at the Adult dataset by GMM

Figure 17: Ratio of data added at the Adult dataset by VAE with Decay
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Figure 18: Ratio of data added at the Adult dataset by VAE with K-Means

Figure 19: Ratio of data added at the Adult dataset by VAE with K-Means and Decay

Figure 20: Ratio of data added at the Adult dataset by GAN
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APPENDIX B. DETAILED RATIO OF GENERATED DATA RESULTS

Figure 21: Ratio of data added at the Breast dataset by SMOTE

Figure 22: Ratio of data added at the Breast dataset by ADASYN

Figure 23: Ratio of data added at the Breast dataset by GMM
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Figure 24: Ratio of data added at the Breast dataset by VAE with Decay

Figure 25: Ratio of data added at the Breast dataset by VAE with K-Means

Figure 26: Ratio of data added at the Breast dataset by VAE with K-Means and Decay
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APPENDIX B. DETAILED RATIO OF GENERATED DATA RESULTS

Figure 27: Ratio of data added at the Breast dataset by GAN

Figure 28: Ratio of data added at the Credit Card Fraud dataset by SMOTE

Figure 29: Ratio of data added at the Credit Card Fraud dataset by ADASYN
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Figure 30: Ratio of data added at the Credit Card Fraud dataset by GMM

Figure 31: Ratio of data added at the Credit Card Fraud dataset by VAE with Decay

Figure 32: Ratio of data added at the Credit Card Fraud dataset by VAE with K-Means
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APPENDIX B. DETAILED RATIO OF GENERATED DATA RESULTS

Figure 33: Ratio of data added at the Credit Card Fraud dataset by VAE with K-Means and Decay

Figure 34: Ratio of data added at the Credit Card Fraud dataset by GAN

Figure 35: Ratio of data added at the Cerebral Stroke dataset by SMOTE
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Figure 36: Ratio of data added at the Cerebral Stroke dataset by ADASYN

Figure 37: Ratio of data added at the Cerebral Stroke dataset by GMM

Figure 38: Ratio of data added at the Cerebral Stroke dataset by VAE with Decay
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APPENDIX B. DETAILED RATIO OF GENERATED DATA RESULTS

Figure 39: Ratio of data added at the Cerebral Stroke dataset by VAE with K-Means

Figure 40: Ratio of data added at the Cerebral Stroke dataset by VAE with K-Means and Decay

Figure 41: Ratio of data added at the Cerebral Stroke dataset by GAN
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APPENDIX C. DETAILED RESULTS ON THE CLASSIFIERS PERFORMANCE

Table 9: Classifiers performance comparison on only synthetic or real data training throughout different
DA techniques on the Adult dataset

Minority Class Majority Class

Classifiers
DA

Technique
Precision Recall

F1
Score

Precision Recall
F1

Score
G-Mean

Decision
Tree

No Technique 0.6492 0.6122 0.6302 0.8792 0.8951 0.8871 0.7403
SMOTE 0.4928 0.7032 0.5795 0.8912 0.7706 0.8265 0.7361
ADASYN 0.3726 0.5595 0.4473 0.8339 0.7013 0.7619 0.6264
GMM 0.2729 0.4456 0.3385 0.7801 0.6236 0.6931 0.5271

VAE with Decay 0.2453 0.7815 0.3734 0.7744 0.2378 0.3639 0.4311
VAE with K-means 0.3168 0.2389 0.2724 0.7761 0.8366 0.8052 0.4471
VAE with K-means

and Decay
0.4845 0.2398 0.3208 0.7922 0.9191 0.851 0.4695

GAN 0.2461 0.9974 0.3948 0.9748 0.03128 0.0606 0.1766

Random
Forest

No Technique 0.705 0.6301 0.6655 0.8865 0.9164 0.9012 0.7599
SMOTE 0.5373 0.7781 0.6356 0.918 0.7875 0.8478 0.7828
ADASYN 0.4554 0.5298 0.4898 0.8428 0.7991 0.8204 0.6507
GMM 0.2724 0.4515 0.34 0.7803 0.6177 0.6895 0.5281

VAE with Decay 0.4101 0.227 0.2923 0.7853 0.8965 0.8372 0.4511
VAE with K-means 0.5205 0.216 0.3053 0.7903 0.9369 0.8574 0.4498
VAE with K-means

and Decay
0.5932 0.2083 0.3084 0.7918 0.9547 0.8657 0.4460

GAN 0.2472 0.9949 0.396 0.9605 0.0394 0.0756 0.1979

MLP

No Technique 0.712 0.6012 0.6519 0.8795 0.9229 0.9007 0.7449
SMOTE 0.5098 0.8376 0.6338 0.9353 0.7447 0.8292 0.7898
ADASYN 0.4846 0.7211 0.5796 0.8954 0.7568 0.8203 0.7387
GMM 0.2708 0.449 0.3378 0.7792 0.6166 0.6884 0.5262

VAE with Decay 0.2623 0.9014 0.4063 0.8624 0.196 0.3194 0.4203
VAE with K-means 0.9539 0.1233 0.2184 0.7822 0.9981 0.877 0.3508
VAE with K-means

and Decay
0.0 0.0 0.0 0.7593 1.0 0.8632 0.0

GAN 0.2553 0.9845 0.4055 0.9484 0.0892 0.1631 0.2964
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Table 10: Classifiers performance comparison on only synthetic or real data training throughout different
DA techniques on the Breast Cancer dataset

Minority Class Majority Class
DA

Technique
Precision Recall

F1
Score

Precision Recall
F1

Score
G-Mean

Decision
Tree

No Technique 0.875 0.875 0.875 0.9259 0.9259 0.9259 0.9001
SMOTE 0.8611 0.9688 0.9118 0.98 0.9074 0.9423 0.9376
ADASYN 0.8823 0.9375 0.9091 0.9615 0.9259 0.9434 0.9317
GMM 1.0 0.1875 0.3158 0.675 1.0 0.806 0.4330

VAE with Decay 0.6571 0.7188 0.6866 0.8235 0.7778 0.8 0.7477
VAE with K-means 0.6512 0.875 0.7467 0.907 0.7222 0.8041 0.7949
VAE with K-means

and Decay
0.8846 0.8519 0.8679 0.7647 0.8125 0.7879 0.8319

GAN 0.0 0.0 0.0 0.6279 1.0 0.7714 0.0

Random
Forest

No Technique 1.0 0.9063 0.9508 0.9474 1.0 0.973 0.952
SMOTE 0.9677 0.9375 0.9523 0.9636 0.9815 0.9725 0.9592
ADASYN 1.0 0.9063 0.9508 0.9474 1.0 0.973 0.9520
GMM 1.0 0.2813 0.439 0.7013 1.0 0.8244 0.5303

VAE with Decay 0.7561 0.9688 0.8493 0.9778 0.8148 0.8889 0.8885
VAE with K-means 1.0 0.9375 0.9677 0.9643 1.0 0.9818 0.9682
VAE with K-means

and Decay
0.8857 0.9688 0.9254 0.9804 0.9259 0.9524 0.9471

GAN 0.0 0.0 0.0 0.6279 1.0 0.7714 0.0

MLP

No Technique 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SMOTE 0.9412 1.0 0.9697 1.0 0.963 0.9811 0.9813
ADASYN 0.9063 0.9063 0.9063 0.9444 0.9444 0.9444 0.9252
GMM 0.0 0.0 0.0 0.6279 1.0 0.7714 0.0

VAE with Decay 0.871 0.8438 0.8571 0.9091 0.9259 0.9174 0.8839
VAE with K-means 0.9355 0.9063 0.9206 0.9455 0.963 0.9541 0.9342
VAE with K-means

and Decay
0.8529 0.9063 0.8788 0.9423 0.9074 0.9245 0.9068

GAN 0.7879 0.8125 0.8 0.887 0.8704 0.8785 0.8409
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APPENDIX C. DETAILED RESULTS ON THE CLASSIFIERS PERFORMANCE

Table 11: Classifiers performance comparison on only synthetic or real data training throughout different
DA techniques on the Credit Card Fraud dataset

Minority Class Majority Class
DA

Technique
Precision Recall

F1
Score

Precision Recall
F1

Score
G-Mean

Decision
Tree

No Technique 0.64 0.7273 0.6809 0.9995 0.9993 0.9994 0.8525
SMOTE 0.3137 0.7273 0.4384 0.9995 0.9973 0.9984 0.8516
ADASYN 0.0068 0.8182 0.0134 0.9996 0.7937 0.8849 0.8059
GMM 0.0031 0.8636 0.0061 0.9995 0.515 0.6798 0.6669

VAE with Decay 0.2727 0.4091 0.3273 0.999 0.9981 0.9986 0.639
VAE with K-means 0.8333 0.2273 0.3571 0.9987 0.9999 0.9993 0.4767
VAE with K-means

and Decay
0.0 0.0 0.0 0.9983 1.0 0.9991 0.0

GAN 0.0 0.0 0.0 0.9983 1.0 0.9991 0.0

Random
Forest

No Technique 0.8824 0.6818 0.7692 0.9995 0.9998 0.9996 0.8257
SMOTE 0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.879
ADASYN 0.0215 0.9091 0.042 0.9998 0.9288 0.963 0.9189
GMM 0.0026 0.8636 0.0052 0.9995 0.4335 0.6047 0.6119

VAE with Decay 0.8 0.3636 0.5 0.9989 0.9998 0.9994 0.603
VAE with K-means 0.0 0.0 0.0 0.9983 1.0 0.9991 0.0
VAE with K-means

and Decay
0.0 0.0 0.0 0.9983 1.0 0.9991 0.0

GAN 0.0 0.0 0.0 0.9983 1.0 0.9991 0.0

MLP

No Technique 0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.879
SMOTE 0.9998 0.9971 0.9984 0.3393 0.8636 0.4872 0.928
ADASYN 0.0111 0.7727 0.022 0.9996 0.882 0.9371 0.8256
GMM 0.0025 0.7727 0.005 0.9992 0.4717 0.6408 0.6037

VAE with Decay 0.9 0.4091 0.5625 0.999 0.9999 0.9995 0.6396
VAE with K-means 0.0 0.0 0.0 0.9983 1.0 0.9991 0.0
VAE with K-means

and Decay
0.0 0.0 0.0 0.9983 1.0 0.9991 0.0

GAN 0.0 0.0 0.0 0.9983 1.0 0.9991 0.0
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Table 12: Classifiers performance comparison on only synthetic or real data training throughout different
DA techniques on the Cerebral Stroke dataset

Minority Class Majority Class
DA

Technique
Precision Recall

F1
Score

Precision Recall
F1

Score
G-Mean

Decision
Tree

No Technique 0.0321 0.0424 0.0365 0.9822 0.9764 0.9793 0.2034
SMOTE 0.0426 0.3136 0.075 0.9856 0.8699 0.9241 0.5223
ADASYN 0.0127 0.3644 0.0245 0.976 0.4761 0.64 0.4165
GMM 0.0379 0.9322 0.0728 0.9978 0.5631 0.7199 0.7245

VAE with Decay 0.0217 0.178 0.0386 0.9825 0.8517 0.9124 0.3893
VAE with K-means 0.0208 0.0085 0.012 0.9819 0.9926 0.9872 0.0917
VAE with K-means

and Decay
0.0159 0.0085 0.0111 0.9819 0.9903 0.9861 0.0916

GAN 0.0 0.0 0.0 0.9819 1.0 0.9909 0.0

Random
Forest

No Technique 0.2 0.0085 0.0163 0.982 0.9994 0.9906 0.092
SMOTE 0.0461 0.2627 0.0784 0.9851 0.8996 0.9404 0.4861
ADASYN 0.0129 0.339 0.0248 0.9771 0.5199 0.6787 0.4198
GMM 0.0375 0.9576 0.0722 0.9986 0.5462 0.7062 0.7232

VAE with Decay 0.0 0.0 0.0 0.9819 0.9986 0.9902 0.0
VAE with K-means 0.0 0.0 0.0 0.9819 0.9986 0.9902 0.0
VAE with K-means

and Decay
0.0 0.0 0.0 0.9819 0.9986 0.9902 0.0

GAN 0.0 0.0 0.0 0.9819 0.9986 0.9902 0.0

MLP

No Technique 0.0 0.0 0.0 0.9819 1.0 0.9909 0.0
SMOTE 0.0518 0.5508 0.0948 0.9899 0.814 0.8934 0.6696
ADASYN 0.0166 0.3475 0.0318 0.981 0.621 0.7605 0.4645
GMM 0.0361 0.9915 0.0696 0.9997 0.5107 0.6761 0.7116

VAE with Decay 0.0 0.0 0.0 0.9819 1.0 0.9909 0.0
VAE with K-means 0.0 0.0 0.0 0.9819 1.0 0.9909 0.0
VAE with K-means

and Decay
0.0 0.0 0.0 0.9819 1.0 0.9909 0.0

GAN 0.0 0.0 0.0 0.9819 1.0 0.9909 0.0
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Abstract. Imbalanced learning and small-sized datasets are usual in
machine learning problems, even with the increased data availability pro-
vided by recent developments. The performance of learning algorithms in
the presence of unbalanced data and significant class distribution skews
is known as the “imbalanced learning problem”. The models’ perfor-
mance on such problems can drastically decrease for certain classes with
an uneven distribution because the models do not learn the distributive
features of the data and present accuracy too favorable for a specific set
of classes of data. As an example, this can have negative consequences
when talking about cancer detection since the model may poorly iden-
tify unhealthy patients. Hence, data augmentation techniques are usually
conceived to evaluate how models would behave in non-data-scarce en-
vironments, generating synthetic data that mimics the characteristics of
real data. By applying those techniques, the amount of available data
can be increased, balancing the class distributions. However, there are
no standardized data augmentation processes that can be applied to ev-
ery domain of tabular data. Therefore, this study aims to identify which
characteristics of a dataset provide a better performance when synthe-
sizing samples by a data augmentation technique in a tabular data en-
vironment.

Keywords: data augmentation · imbalanced data · machine learning

1 Introduction

In recent years, the imbalanced learning problem has become a highly frequent
topic among academia, industry, and government funding agencies. The funda-
mental issue with the imbalanced learning problem is the ability of imbalanced
data to significantly decrease the performance of machine learning algorithms
[4]. These algorithms, when faced with imbalanced data, do not learn the dis-
tributive features of the data and present accuracies too favorable to a specific
set of classes of data, in this case, the majority classes, compromising the perfor-
mance of the other classes (the minority classes) because of that bias. In fairness,
a dataset is considered imbalanced when it exhibits an unequal distribution be-
tween its classes. Nevertheless, the community usually considers that imbalanced
data corresponds to a large unequal distribution and, in some cases, extremes.
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In an imbalanced data problem, the real problem can’t be solved with data
treatment and/or model changes since the limitation is in the data itself. The
same goes for a small-sized dataset, since the model cannot learn enough features
to classify the problem in a real-time situation. Therefore, data augmentation
appears as a way to surpass that limitation [3].

The present article, by identifying more favorable properties in a dataset
when synthesizing samples, aims to conceive and benchmark several candidate
models to overcome the imbalanced learning problem as well as increase the
amount of available data without a loss in quality. With this in mind, we used
classical techniques, such as SMOTE, a very uncommon clustering technique like
Gaussian Mixture Model (GMM), and deep learning ones, such as Variational
Autoencoder (VAE). Finally, this manuscript is structured as follows: the next
section describes the literature review on the addressed domains; the third sec-
tion presents the conducted experiments as well as the achieved results for this
benchmark; the last section summarizes the obtained conclusions and outlines
future work.

2 State of Art

Data Augmentation refers to methods for constructing iterative optimization or
sampling algorithms via the introduction of unobserved data or latent variables
[2]. With these techniques, we can increase the amount of data, thus balancing
the target variable in an imbalanced dataset. Data augmentation can be ap-
plied to images or tabular data, but this article will focus on the latter. When
used alongside images, techniques tend to apply transformations to samples of
datasets like geometric transformations, flipping, color modification, cropping,
etc. One other way is to introduce new synthetic images created by machine
learning algorithms, for example, VAEs. Instead, if we are dealing with tabular
data, we cannot apply simple transformations to samples, but instead synthesize
samples (new or duplicated) based on the class distributions and features.

In [11], Data Augmentation is utilized to surpass the data limitations of
the minority class, in this case, fraudulent transactions. The classification per-
formance improved considerably and overfitting was alleviated, demonstrating
the benefits of using a these techniques. These techniques can also be applied
to automated skin lesion analysis by applying traditional color and geometric
transformations, and more unusual augmentations such as elastic transforma-
tions, random erasing, and a novel augmentation that mixes different lesions,
as stated in [8]. They prove the importance of data augmentation techniques
in both training and testing, leading to more performance gains than simply
obtaining new images.

In this study, we focused on some of the most popular data augmentation
techniques, namely, SMOTE, GMM, and VAE. These techniques are present in
multiple data augmentation studies and are going to be developed and evaluated
in order to augment the used datasets.
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SMOTE. One of the classic data augmentation techniques is SMOTE. It over-
samples the minority class by creating synthetic samples [1]. One way to solve
the imbalance problem is to duplicate minority samples. However, this does not
provide any new information to the machine learning algorithm training on the
data. Therefore, instead of duplicating minority samples, SMOTE synthesizes
new examples from that class.

This technique synthesizes the minority class by operating in the feature
space. It selects examples that are close in the feature space and introduces
synthetic samples along the line drawn from these examples. SMOTE is effective
because the new synthetic samples from the minority class are somewhat close
in feature space to real samples from that same class. This makes the created
samples plausible.

Gaussian Mixture Model The GMM’s generative nature provides an oppor-
tunity to explore its performance as a data augmentation technique, contrarily to
other clustering algorithms, such as K-means. The use of a simple radial distance
metric by k-means to assign cluster membership results in poor performance and
a typical circular form for the clusters. This algorithm has no built-in way of
accounting for non-circular clusters (oblong or elliptical), which do not represent
the true shape of the data points sometimes. Moreover, this algorithm does not
have a probabilistic nature when forming clusters.

Therefore, GMMs are an extension of the ideas behind k-means. This algo-
rithm aims to model the data as a combination of multiple multi-dimensional
Gaussian probability distributions and it works on the basis of the Expectation-
Maximization algorithm. Because of this, the EM algorithm finds the maximum
likelihood, i.e., finds a set of parameters that results in the best fit for the joint
probability of the data sample [7]. Due to the generative nature of GMM, it can
generate synthetic data close to the distribution of the fitted data [10]. After the
algorithm fits the data and learns its distribution, it can generate an arbitrary
number of samples from the learned distribution.

Variational Autoencoder. Nowadays, deep learning has gained a lot of inter-
est and has made some amazing improvements regarding its performance. From
the deep learning models, the family of generative models has also increased
in popularity, showing a magnificent ability to produce highly realistic samples
of various kinds, such as images, text, and sounds. These families of models,
like all deep learning models, rely on huge amounts of data, well-structured ar-
chitectures, and smart training techniques. One of these popular deep learning
generative models is the Variational Autoencoder. In short, a VAE is an autoen-
coder whose encoding distribution is regularized during the training in order to
ensure that its latent space1 has good properties, allowing us to generate some
new data [9].

1 Latent space is a representation of compressed data in which similar data points are
closer together in space. It is useful to learn the features.
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A VAE consists of an encoder and a decoder, just like an autoencoder, but
the loss term and the encoded layers of the autoencoder are altered in order for
the model to be used as a generative model [5]. Its training is adjusted to avoid
overfitting, making sure that the latent space has good properties that enable the
generative process. On the other hand, an autoencoder is trained to encode and
decode with as few losses as possible, making no difference how the latent space
is organized. The main distinction between the two encoding layer algorithms is
that they encode an input as a distribution throughout the latent space rather
than a single point [9]. With this in mind, the VAE avoids having some points
in the latent space that would provide meaningless information once decoded.

3 Experiments

The data generated was used in two different ways in order to evaluate the data
augmentation techniques. First, it was added to the original training data that
trained the classifiers and then evaluated based on the test data. The second
approach is to train the classifiers only with synthetic data and evaluate them
with the test data. Note that all the test data is real.

3.1 Data

In this experiment, multiple datasets were chosen to perform a good comparison
of these data augmentation techniques in generating new data. Moreover, these
datasets are inserted into different domains, such as health and fraud detection,
and are imbalanced. Furthermore, these datasets were also chosen due to being
mainly composed by continuous or categorical features. The chosen datasets were
the following:

– Adult. The adult dataset was extracted from the census bureau and has
information about multiple adults. This dataset serves as a binary classifica-
tion, predicting if a certain adult has an income superior to fifty thousand in
a year. The target class is clearly imbalanced, as the majority class (income
superior to fifty thousand) is three times more frequent than the minority
class. The dataset has over 30K instances.

– Breast Cancer. Another health domain analyzed in this experiment was
breast cancer prediction. This dataset was obtained from the University
of Wisconsin Hospitals, Madison by Dr. William H. Wolberg and contains
samples of clinical cases gathered periodically. The dataset contains a target
class imbalanced with 66% of the instances belonging to benign cases and
the rest being malignant. This dataset, beyond being imbalanced, is also
small in size, since it only has 570 instances.

– Credit Card Fraud. Fraud detection is also a recurrent domain where
imbalanced data is present. Therefore, in this dataset, transactions made by
credit cards in September 2013 by European cardholders are analyzed. This
dataset originally had more than 280K instances but was reduced (while
maintaining the target class ratio) to 85K due to computational reasons.
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3.2 Assessment Metrics

In order to compare the performances of all the data augmentation techniques, it
is required to define how their performances can be compared. Therefore, we need
to define which metrics fit better into an imbalanced data problem. Traditionally,
the most often used metrics are accuracy and error rate. Although accuracy
provides an easy way to describe the model’s performance, it can mislead in
certain situations. Therefore, accuracy and error rate do not provide enough
information about a classifier’s functionality in terms of the sort of classification
required.

As a means to provide comprehensive assessments of imbalanced learning
problems, the research community adopted other evaluation metrics, such as
precision, recall, F-measure2, and G-mean.

First, precision is a metric that measures how many correct positive predic-
tions the model makes (a measure of exactness)3. Therefore, precision calculates
the accuracy of the positive class and is sensitive to data distribution. Second,
recall is a metric that measures how many correct positive predictions were pro-
duced out of all possible positive predictions. Unlike precision, which only gives
information on the correct positive predictions of all positive predictions, recall
indicates the missed positive predictions and it is not sensitive to data distribu-
tions. Moreover, recall is also known as sensitivity. When used correctly, recall
and precision can evaluate an imbalanced learning problem adequately. Never-
theless, the F-measure metric combines the two previous metrics as a weighted
focus on either recall or precision. Finally, the G-mean (Geometric mean) metric
evaluates the balance of classification between the majority and minority classes.
Even if the negative cases are accurately identified, a low G-Mean suggests poor
performance in the classification of positive cases.

3.3 Experimental Results

Regarding the synthetic data generated by all data augmentation techniques, the
experiments have produced a variety of findings. These analyses consist, mainly,
of:

1. Comparing each feature’s distribution throughout statistical methods;
2. Training the classifiers only with synthetic data;
3. Training the classifiers with real and synthetic data.

In all cases, all the techniques implemented generated the same amount of
synthetic data. In this case, this amount is the size of the training dataset (i.e.,
seventy percent of the entire dataset). As a result, all the synthetic data gener-
ated can be compared to one another and to the original data.

In order to compare the synthetic data of each data augmentation technique,
we first compared how each feature of the real and synthetic datasets behaves,

2 It is also known as F-score.
3 In this case, the positive class is considered the minority.
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i.e., if they possess the same distribution. Ideally, a synthetic dataset should have
properties very similar to the original one. Therefore, we implemented some sta-
tistical methods to compare each feature distribution on the real and synthetic
datasets. However, due to the very different behavior of continuous and categor-
ical features, it was necessary to apply different statistical tests. The categorical
feature distributions were analyzed by the chi-square test and the continuous
features by the Kolmogorov-Smirnov test.

In the adult dataset, most of the features are categorical, with only one con-
tinuous feature. The statistical tests showed that the data augmentation tech-
niques had almost no difficulty representing the original categorical features in
the synthetic data. However, the techniques couldn’t represent the continuous
feature distributions since all of the techniques failed the test. In regards to the
Breast Cancer dataset, all features are continuous since they are medical mea-
sures. SMOTE showed as the best technique to represent the feature distribu-
tions as the other techniques couldn’t. Finally, the credit card fraud dataset had
similar properties to the previous dataset, containing only continuous features.
However, all the data augmentation techniques had difficulties representing sim-
ilar continuous feature distributions.

The results of the data augmentation techniques throughout all datasets
indicated the increased difficulty in representing continuous feature distributions,
with SMOTE being the technique with the best representations. However, the
categorical feature distributions were much easier to represent, with GMM and
VAE being the ones with better results.

Moreover, one important factor noticed during the training of more complex
and computationally resource-demanding techniques, such as VAE, was the fact
that continuous features should be normalized in order to reduce computational
cost and avoid crashes during training. These kinds of crashes are detectable
when the loss is NaN during training.

In regards to the data distribution of one of the datasets, as we can see in
Figure 1, most data augmentation techniques can represent the entirety of the
data distribution. Also, VAE seems to be the technique with the most difficulty
in separating what seems to be the two target classes, but it doesn’t appear to
affect the classifier’s performance as we will observe.

We can still perform two additional crucial analyses to determine how reliable
the generated data is after the analysis of the synthetic data properties. First,
we are going to train the machine learning classifiers with real data and then
compare the results with training with only synthetic data. Note that there were
multiple classification models, but we only represented the best model for each
case.

During the experiments and implementation of the data augmentation tech-
niques, there were some obstacles with regard to the performance of some tech-
niques, mainly the Variational Autoencoder. The implemented VAE suffered
from the phenomenon called posterior collapse [6]. As a result, the minority
class was unable to be synthesized, and the solution was to add a weight decay
on the loss function as well as change the latent space dimension.



Benchmarking Data Augmentation Techniques for Tabular Data 7

(a) Real Data (b) SMOTE (c) GMM (d) VAE

Fig. 1: Comparison of two dimension data throughout all data augmentation
techniques on the Breast Cancer Dataset.

As observed in Table 1, synthetic data can achieve similar training scores in
comparison with training with real data. SMOTE and VAE demonstrated better
performance in generating samples on the three datasets. In this experiment,
the VAE showed better performance for datasets with fewer categorical features
(in this experiment, the Breast Cancer and Credit Card fraud datasets), while
GMM indicated difficulties in generating good synthetic data. These experiments
demonstrated that data augmentation techniques such as SMOTE or VAE can
synthesize data in order to replace the real data in an efficient way. This could
be very interesting in datasets where some data is sensitive and privacy matters.

Table 1: Best classifier performance on different kinds of training data.

Dataset
DA

Technique

Minority Class Majority Class

G-Mean
Precision Recall

F1

Score
Precision Recall

F1

Score

Adult

— 0.6957 0.6327 0.6626 0.8868 0.9123 0.8993 0.7597

SMOTE 0.6088 0.6173 0.6130 0.8781 0.8742 0.8762 0.7643

GMM 0.2352 0.6033 0.3385 0.7504 0.3780 0.5028 0.4776

VAE 0.4565 0.2742 0.3427 0.7958 0.8965 0.8431 0.4958

Breast

Cancer

— 1.0 0.9524 0.9756 0.9737 1.0 0.9867 0.9759

SMOTE 1.0 0.8095 0.8947 0.9024 1.0 0.9487 0.8997

GMM 0.6111 0.5238 0.5641 0.7500 0.8108 0.7792 0.6517

VAE 0.9090 0.9524 0.9302 0.9722 0.9459 0.9589 0.9492

Credit

Card

Fraud

— 1.0 0.8667 0.9286 0.9998 1.0 0.9999 0.9309

SMOTE 0.9286 0.8667 0.8966 0.9998 0.9998 0.9998 0.9309

GMM 0.0027 0.8667 0.0054 0.9995 0.4411 0.6121 0.6005

VAE 0.9286 0.8667 0.8967 0.9998 0.9999 0.9999 0.9309

With those results in mind, the following analyses focus on training the clas-
sifiers with an increased amount of data (in this case, twice the original data
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size). At Table 2, we get to see that the data augmentation techniques that
achieved better results in Table 1 got the best results with the addition of real
data into the classifier’s training. We can also observe that these techniques in-
crease or maintain the classifier’s performance in both major and minor classes.
One example of that is the dataset Breast Cancer, where the application of a
Variational Autoencoder made the classifier’s performance go up in both classes’
f1-score and g-mean metrics. This implies that the data augmentation can in-
crease not only the minority class’s performance but all classes’ performances
as well. Another interesting finding was the performance gained by the GMM
technique when joining its synthetic and real data. This may be explained by the
variety of generated samples that, in this case, benefited the classifier training.

Table 2: Best classifier performance while training with real and synthetic data.

Dataset
DA

Technique

Minority Class Majority Class

G-Mean
Precision Recall

F1

Score
Precision Recall

F1

Score

Adult

SMOTE 0.6935 0.6263 0.6583 0.8850 0.9123 0.8884 0.7559

GMM 0.7149 0.6301 0.6698 0.8870 0.9203 0.9034 0.7615

VAE 0.7032 0.6199 0.6589 0.8839 0.9171 0.9002 0.7540

Breast

Cancer

SMOTE 1.0 0.9048 0.9500 0.9487 1.0 0.9737 0.9512

GMM 1.0 0.9048 0.9500 0.9487 1.0 0.9734 0.9512

VAE 0.9545 1.0 0.9767 1.0 0.9730 0.9863 0.9864

Credit

Card

Fraud

SMOTE 1.0 0.8000 0.8889 0.9996 1.0 0.9998 0.8944

GMM 1.0 0.7333 0.8462 0.9996 1.0 0.9998 0.8563

VAE 1.0 0.8667 0.9286 0.9998 1.0 0.9999 0.9308

4 Conclusion

In this study, we went through a benchmark of different data augmentation
techniques in multiple datasets of various domains. We observed that classi-
cal techniques such as SMOTE are competitive with more recent and powerful
techniques like VAE. Also, the introduction of a not so frequent technique like
GMM gave a new look to cluster models as a possibility to generate samples.
Even though the Variational Autoencoder is more complex and susceptible to
training problems such as the posterior collapse, it is a very powerful technique.

Furthermore, VAE was shown to be a better solution for a dataset with more
continuous features. On the contrary, SMOTE had a better performance in a
dataset with more categorical features. One other important factor to take into
account is the normalization of continuous features during the preprocessing of
the data. This avoids higher losses that may stall the training process.
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Regarding the obtained results, the data augmentation techniques showed a
great capability to create almost identical datasets to the real ones and have
very similar scores. Moreover, these techniques can combat the imbalanced data
problem by increasing the performance of the minority class, and they can also
increase the size of a dataset without a classifier’s performance loss. Future work
will focus on further benchmarking techniques and new analyses of the classifier’s
performances.
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Abstract

Despite the increasing data availability brought by recent breakthroughs,
machine learning difficulties frequently involve imbalanced learning and
small datasets. The ”imbalanced learning problem“ refers to how learning
algorithms perform when there are significant skewed class distributions
and unbalanced data. Due to the fact that the models do not learn the
distributive characteristics of the data and present accuracy that is overly
advantageous for a specific set of classes, their performance on such issues
can substantially decrease for some classes with an uneven distribution.
Hence, data augmentation methods are usually developed to examine
how models behave in non-data-scarce contexts, providing synthetic data
that resembles the features of real data. By applying those techniques,
the amount of available data can be increased, balancing the class distri-
butions. However, there are no standardized data augmentation processes
that can be applied to every domain of tabular data. Our results show
the ability of SMOTE to properly augment tabular data throughout all
domains of datasets, while our combination of the Variational Autoen-
coder with K-means, as well as GAN, demonstrated an increased capa-
bility when augmenting datasets whose features are mainly continuous.

Keywords: Data Augmentation, Generative Models, Imbalanced Data,
Machine Learning
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1 Introduction

The issue of imbalanced learning has recently gained significant attention from
the industry, academic community, and government funding organizations. The
ability of imbalanced data to dramatically reduce the performance of machine
learning algorithms is the underlying problem with the imbalanced learning
problem (He & Garcia, 2009). These algorithms, when presented with imbal-
anced data, fail to learn the distributive characteristics of the data and present
accuracy that is overly favorable to one group of data classes, in this case, the
majority classes. As a result of this bias, the performance of the other classes
(the minority classes), which are less well represented in the data, is negatively
impacted. In fairness, a dataset is labeled as imbalanced when the distribution
of its classes is uneven. However, the general consensus is that imbalanced data
corresponds to a significant unequal distribution and, occasionally, extremes.

Since the limitation in an imbalanced data problem is within the data itself,
the real problem cannot be resolved through data treatment and/or model
adjustments. The same holds true for short datasets, as the model cannot
learn enough features to accurately categorize the issue in a real-time setting.
Therefore, data augmentation (DA) seems to be a means to get around that
limit (Fernandes et al., 2019).

The present article aims to conceive and benchmark several candidate
models to overcome the imbalanced learning problem as well as increase the
amount of available data without a loss in quality, extending previous work
of the authors in this domain (Machado, Fernandes, & Novais, 2022). With
this in mind, we use classical techniques, such as SMOTE and ADASYN, a
very uncommon clustering technique like Gaussian Mixture Model (GMM),
and deep learning ones, such as Variational Autoencoder (VAE) and Genera-
tive Adversarial Network (GAN). Furthermore, this study aims to answer four
specific research questions (RQ) in regard to the use of DA in tabular settings,
mainly:
RQ1) Does data augmentation improves the performance of machine learning

classifiers?
RQ2) Does the dataset properties influence the quality of generated synthetic

samples?
RQ3) How many samples should a DA technique generate for a certain

problem?
RQ4) Which DA technique provides better quality in terms of synthetic

tabular data?
Finally, the organization of this document is as follows: the next section

discusses the state of the art on the subject areas; the third section presents
the conducted experiments; the fourth section presents the obtained results;
and, finally, the last section summarizes the obtained conclusions.
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2 State of Art

DA refers to techniques for building iterative optimization or sampling algo-
rithms with the addition of latent variables or unobserved data (van Dyk &
Meng, 2001). These methods allow us to add more data, balancing the target
variable in an imbalanced dataset. Images or tabular data can be subject to
DA. However, this article will concentrate on the latter. Techniques typically
apply transformations to samples of datasets like geometric transformations,
flipping, color modification, cropping, etc. when employed alongside images.
Adding fresh synthetic images made by machine learning algorithms, such as
VAEs and GANs, is another option. Instead, when working with tabular data,
we are unable to simply apply simple transformations; rather, we must create
new or duplicate samples based on the class distributions and features.

In Shao, Gu, and Zhang (2020), DA is used to overcome the data constraints
of the minority class, in this case, fraudulent transactions. The effectiveness
of these strategies was demonstrated by the significant improvement in clas-
sification performance and the reduction of overfitting. As stated in Perez,
Vasconcelos, Avila, and Valle (2018), these techniques can also be used for
automated skin lesion analysis by applying conventional color and geometric
transformations, as well as more unusual augmentations like elastic transfor-
mations, random erasing, and a novel augmentation that combines various
lesions. They demonstrate the value of DA methods in both testing and
training, resulting in greater performance gains than merely acquiring new
images.

Moreover, by expanding the training dataset and including images from DA
approaches, it is possible to improve face recognition datasets by reducing over-
fitting, posture variation, lighting changes, and partial occlusions (Lv, Shao,
Huang, Zhou, & Zhou, 2017). Finally, in Nalepa, Marcinkiewicz, and Kawulok
(2019), image segmentation of magnetic resonance images of brain tumors also
applied DA to expand the dataset and strengthen a machine learning model.

In this study, we focused on some of the most popular DA techniques,
namely, SMOTE, ADASYN, GMM, VAE, and GAN. These techniques are
present in multiple DA studies and are going to be developed and evaluated
in order to augment the used datasets.

2.1 SMOTE

One of the classic DA techniques is SMOTE. It oversamples the minority class
by creating synthetic samples (Chawla, Bowyer, Hall, & Kegelmeyer, 2002).
One way to solve the imbalance problem is to duplicate minority samples.
However, this does not provide any new information to the machine learning
algorithm training on the data. Therefore, SMOTE synthesizes new examples
from that class rather than reproducing minority samples.

As shown in Figure 1, this method operates in the feature space to synthe-
size the minority class. In order to introduce synthetic samples along the line
inferred from these examples, it chooses instances that are reasonably similar
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in the feature space. SMOTE works well because the new synthetic samples
from the minority class are somewhat similar to the real samples from the
same class in terms of feature space. This makes the created samples plausible.

Fig. 1 SMOTE algorithm

2.2 ADASYN

According to (He, Bai, Garcia, & Li, 2008), the ADASYN strategy, in contrast
to SMOTE, focuses on synthesizing minority samples that drive the learning
algorithm to concentrate on those harder to learn samples. Therefore, the
resulting dataset after the application of the technique ADASYN is not a
balanced representation of the class distributions because the technique forces
the learning algorithm to focus on those difficult samples to learn.

2.3 Gaussian Mixture Model

In contrast to other clustering algorithms like K-means, the generative aspect
of the GMM offers a possibility to investigate its performance as a DA
approach. Oblong or elliptical clusters, which occasionally represent the true
geometry of the data points, are automatically taken into consideration by
GMM. This approach, which is based on the Expectation-Maximization algo-
rithm, seeks to describe the data as a combination of many multidimensional
Gaussian probability distributions.

Because of this, the EM algorithm finds the maximum likelihood, i.e., finds
a set of parameters that results in the best fit for the joint probability of the
data sample (McLachlan & Krishnan, 2007). Due to the generative nature of
GMM, it can generate synthetic data close to the distribution of the fitted data
(Sarkar, 2019). After the algorithm fits the data and learns its distribution, it
can generate an arbitrary number of samples from the learned distribution.

2.4 Variational Autoencoder

Nowadays, deep learning has gained a lot of interest and has made some
amazing improvements regarding its performance.
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The family of generative models, which derive from deep learning models,
has gained popularity due to its amazing capacity to create samples of many
kinds, including images, text, and sounds, that are incredibly realistic. These
families of models, like all deep learning models, rely on huge amounts of data,
well-structured architectures, and smart training techniques. The Variational
Autoencoder is one of these well-liked deep learning generative models and it
is described in Figure 2. In short, a VAE is an autoencoder whose encoding
distribution is regularized during the training in order to ensure that its latent
space1 has good properties, allowing us to generate some new data (Rocca,
2021).

Fig. 2 Variational Autoencoder algorithm [Adapted from (Rocca, 2021)]

2.5 Generative Adversarial Network

GANs, along side VAEs, are a famous deep learning generative model and were
proposed in (Goodfellow et al., 2014). The GAN model architecture involves
two neural networks: a generator and a discriminator. The generator is a model
that generates new plausible samples for the problem, while the discriminator
is a model that classifies examples as real (from the domain) or fake (gen-
erated) (Brownlee, 2019). Therefore, GANs are based on a game-theoretic
scenario in which the generator network must compete against an adversary,
the discriminator (Goodfellow et al., 2014), as can be observed in Figure 3.

On one hand, the Generator model takes a random vector, drawn from a
Gaussian distribution, as input and generates a sample in the domain. This

1Latent space is a representation of compressed data in which similar data points are closer
together in space.
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vector serves as a seed for the generative process. When the training is com-
plete, the generator model is kept and used to generate new samples. On the
other hand, the Discriminator model receives as input an example that can be
real or generated and predicts whether it is real or fake (generated). Therefore,
the real inputs are received from the dataset, whereas the generated examples
are output by the Generator model. Moreover, the Discriminator is a normal
classification model and, after the training, it is discarded as we are interested
in the final Generator.

Fig. 3 Generative Adversarial Network algorithm

3 Experiments

The data generated was used in two different ways in order to evaluate the DA
techniques. First, we train the classifiers only with synthetic data and evaluate
them with the test data, which is composed only of real data not used in the
training. The second approach is to add the generated data to the original
training data to train the classifiers and then evaluate them.

Furthermore, during the experiments and implementation of the DA tech-
niques, there were some obstacles with regard to the performance of some
techniques, mainly the Variational Autoencoder and the Generative Adver-
sarial Network. The implemented VAE suffered from the phenomenon called
posterior collapse (Lucas, Tucker, Grosse, & Norouzi, 2019), as well as the
GAN suffered from mode collapse, (Li, Fan, Wang, Ma, & Cui, 2021). The pos-
terior collapse happens when the information contained in the learned latent
space is rendered useless. As for GAN, its generator only learns to generate
a small set of outputs, making the generator over-optimizing for a particular
discriminator. As a result, the minority class was unable to be synthesized.
Therefore, it was crucial to find a way to surpass this limitation. As for the
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GAN, the solution passed through adding noise to the discriminator’s inputs
and incrementing the latent space dimension.

Moreover, we explored a bit more of the possible solutions for the VAE.
The first solution was to add a weighted decay to its loss. The VAE loss is
composed of two factors. The first forces the decoded samples to resemble
the input by penalizing the latent representation with a reconstruction loss
(RCloss), (Kingma & Welling, 2019; Singh & Ogunfunmi, 2021). Consequently,
the RCloss can be explained as:

RCloss = −
BS∑
bs=1

N∑
i=1

xbs,i · log(x′
bs,i) (1)

where x is the input data, N the dimensions of the input data, BS the batch
size, and x′ the reconstructed input. Keep in mind that this loss is predicated
on the probability of the Binary Cross-Entropy.

The second loss is the Kullback-Leibler divergence term (KLloss), which
serves as a regularization term to aid the model’s learning of well-formed latent
spaces:

KLloss =

BS∑
bs=1

N∑
i=1

σ2
bs,i + µ2

bs,i − 1− 2log(σbs,i)

2
(2)

where µ, σ are the mean and standard deviation of a Gaussian distribution,
respectively, BS is the batch size,N the dimensions of the input data, (Kingma
& Welling, 2019; Singh & Ogunfunmi, 2021). The network weights are con-
trolled by the weight decay (Wdecay), which penalizes the KLloss more as the
number of training epochs increases2 and causes the model to become more
regular. The VAE network is thus prevented from overfitting the training data,
which is typically towards the majority class, by this weight decay. In essence,
the VAE loss function is:

VAEloss = RCloss +KLloss ·Wdecay (3)
As for the other solution, we explored the latent space properties, adding

a k-means algorithm to be applied to the latent space. This cluster algorithm
would be fitted after the VAE training in order to identify the minority and
majority clusters. Therefore, before the VAE generated samples, the cluster
algorithm would readjust the points of the latent space3, making them closer
to the centroid of the minority class cluster. An example of the application of
this cluster algorithm to the process of synthesizing by the VAE can be seen in
the section 4 by the Figure 4. Finally, the last version of VAE implemented in
regards to surpassing the posterior collapse was the combination of the weight
decay and the k-means.

Furthermore, the use of more computationally demanding DA techniques,
such as VAE and GAN, demonstrated a greater importance for each dataset

2The weight decay has a proportional inverse behavior in regards to the number of training
epochs.

3In this case, the latent space is the input vector that the decoder uses to generate samples.
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preprocessing, particularly for continuous features. These continuous features
were an issue during the training of these techniques because of the calculated
loss. Another occurring phenomenon was that the loss had NaN values during
the training due to high computations when faced by continuous features. As
a result, a simple solution to this problem was to perform a normalization on
each continuous feature.

3.1 Data

In this experiment, multiple datasets were chosen to perform a good compari-
son of these DA techniques in generating new data. Additionally, these datasets
are unbalanced4 and inserted into many domains, including fraud detection
and health. The chosen datasets were the following:

• Adult. The adult dataset was extracted from the census bureau and
has information about multiple adults, (Kohavi & Becker, 1994). This
dataset serves as a binary classification, predicting if a certain adult has
an income superior to fifty thousand in a year. Regarding its features,
it has seven categorical features and one continuous. Furthermore, the
target class is clearly imbalanced, as the majority class (income superior
to fifty thousand) is three times more frequent than the minority class.
The dataset has over 30K instances.

• Breast Cancer. Another health domain analyzed in this experiment was
breast cancer prediction, (Wolberg, Street, & Mangasarian, 1998). This
dataset was obtained from the University of Wisconsin Hospitals, Madison
by Dr. William H. Wolberg and contains samples of clinical cases gathered
periodically. The dataset contains a target class imbalanced with 66% of
the instances belonging to benign cases and the rest being malignant.
This dataset, beyond being imbalanced, is also small in size, since it only
has 570 instances. Its features are all continuous.

• Credit Card Fraud. Fraud detection is also a recurrent domain where
imbalanced data is present, (ULB, 2018). Therefore, in this dataset, trans-
actions made by credit cards in September 2013 by European cardholders
are analyzed. This dataset originally had more than 280K instances but
was reduced (while maintaining the target class ratio) to 85K due to
computational reasons. Moreover, this dataset contains only continuous
attributes.

• Cerebral Stroke. This dataset contains features regarding individuals
that may or may not suffer a cerebral stroke, (Liu, Fan, & Wu, 2019). A
cerebral stroke is when part of the brain loses its blood supply and the
part of the body that the blood-deprived brain cells control stops working.
Therefore, it is very useful to predict if a person may or may not suffer a
stroke. This dataset is highly imbalanced, having only 2% of strokes and
more categorical features than continuous. The dataset has more than
40K instances.

4Note that the chosen datasets have a binary target.
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3.2 Assessment Metrics

In order to compare the performances of all the DA techniques, it is required to
define how their performances can be compared. Therefore, we need to define
which metrics fit better into an imbalanced data problem. Traditionally, the
most often used metrics are accuracy and error rate. Although accuracy pro-
vides an easy way to describe the model’s performance, it can mislead in certain
situations. Therefore, accuracy and error rate do not provide enough infor-
mation about a classifier’s functionality in terms of the sort of classification
required.

Imbalanced data problems are examples of that kind of deceiving, because
if a minority class has 5 percent of examples and the majority has the rest of
the data classes, a model that classifies all instances as being in the major-
ity class has 95 percent accuracy. At first glance, this value appears to be
an excellent classifier for the problem at hand, but it fails to identify any
of the minority examples. Therefore, accuracy and error rate do not provide
enough information about a classifier’s functionality in terms of the sort of
classification required.

As a means to provide comprehensive assessments of imbalanced learning
problems, the research community adopted other evaluation metrics, such as
precision, recall, F-measure5, and G-mean.

First, precision is a metric that measures how many correct positive pre-
dictions the model makes (a measure of exactness)6. Therefore, precision
calculates the accuracy of the positive class and is sensitive to data distri-
bution. Second, recall is a metric that measures how many correct positive
predictions were produced out of all possible positive predictions. Unlike pre-
cision, which only gives information on the correct positive predictions of all
positive predictions, recall indicates the missed positive predictions and it is
not sensitive to data distributions. Moreover, recall is also known as sensi-
tivity. When used correctly, recall and precision can evaluate an imbalanced
learning problem adequately. Nevertheless, the F-measure metric combines the
two previous metrics as a weighted focus on either recall or precision. Finally,
the G-mean (Geometric mean) metric evaluates the balance of classification
between the majority and minority classes. Even if the negative cases are accu-
rately identified, a low G-Mean suggests poor performance in the classification
of positive cases.

4 Results and Discussion

This benchmark involved multiple analyses of the implemented DA techniques
throughout various datasets with various classifiers, such as Decision Trees,
Random Forests, and MLPs (Multilayer Perceptrons). These machine learning
algorithms were chosen based on their current scientific popularity and the
typically good performance associated with them.

5It is also known as F-score.
6In this case, the positive class is considered the minority.
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Regarding the synthetic data generated by all DA techniques, the exper-
iments have produced a variety of findings. These analyses consist, mainly,
of:
1. Comparing each feature’s distribution throughout statistical methods;
2. Training the classifiers only with synthetic data;
3. Comparing different number of generated samples added to the real data;
4. Training the classifiers with real and synthetic data.
First, in order to compare the quality of the synthetic data generated by

each augmentation technique, we performed statistical analyses on both real
and synthetic data, i.e., to determine if they possess the same distribution.
Ideally, and when talking about the same number of samples, the synthetic
data should have properties very similar to the real one. Therefore, we imple-
mented some statistical methods to compare each feature distribution on the
real and synthetic datasets. However, due to the different behavior of continu-
ous and categorical features, it was necessary to apply different statistical tests.
On that account, the categorical features distributions were analyzed by the
chi-square test and the continuous features by the Kolmogorov-Smirnov test.

These statistical tests showed that the DA techniques generally had difficul-
ties representing the original continuous features distributions in the generated
data. SMOTE was the technique with better representation, followed by
ADASYN and the variations of VAE, namely VAE with K-means and VAE
with K-means and decay on its loss. However, representing the categorical
feature distributions was something easier for the DA techniques. Although
SMOTE had a good capability to represent continuous features, it was the
worst technique in regards to representing categorical features. As for the other
techniques, ADASYN and the VAE with K-means and weighted decay on its
loss were the ones more capable of producing similar distributions.

Before analyzing the classifiers’ performance with synthetic data, it was
observed how using a k-means to alter the latent space on a VAE could affect
the synthesized samples, and if, as expected, the number of minority sam-
ples generated would be higher. Figure 4 demonstrates that the VAE with
K-means, as expected, can produce way more minority samples through a 2D
visualization of the target variable on the Breast Cancer dataset. Note that
this dataset was chosen to analyze the effects of the utilization of K-means on
the latent space of a VAE due to the lower number of samples on this dataset,
which facilitates the visualization.

Although the DA choice is extremely important, the number of samples
to generate is a crucial factor too. Therefore, we analyzed which ratio of syn-
thesized samples provided the best results for the classifier performance. As a
basis of comparison, we compared the various ratios to the classifiers’ perfor-
mance with no addition of synthetic data. The DA ratios are percentages of the
size of the dataset for each problem, so when comparing a ratio of zero to one,
we are comparing the classifier’s performance when training with the original
dataset versus a dataset with the same original data plus the same number of
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Fig. 4 Application of the K-means on the process of generating samples of VAE

synthetic samples. Another fact to take into account is that the metric values
on the following plots are averages of the various classifiers used.

As seen in Figure 5, the adult dataset showed the best results with the
SMOTE technique. The classifiers’ performance, with the addition of synthetic
data, tended to maintain or decrease a little throughout all DA techniques.
However, SMOTE has the technique with better performance, making the
minority class performance increase more with the addition of 25% of synthetic
samples. As for the rest of the techniques, most of them showed difficulties in
improving the classifiers’ performance, except for the GAN.

Fig. 5 Ratio of data added at the Adult dataset by SMOTE

On the contrary to the adult dataset, the addition of synthetic data to
the Breast cancer dataset improved both classes classification performances as
described at the Figure 6. Although the addition of 25% of synthetic samples
increased by a lot the performance, the experiments showed that adding only



Springer Nature 2021 LATEX template

12 Data Augmentation Methods for Tabular Data

minority samples was the best choice. The techniques that demonstrated better
performance were the GAN and VAE with K-means.

Fig. 6 Ratio of data added at the Breast dataset by GAN

As for the Credit Card Fraud dataset, the ratio performance, seen in Figure
7, increased more when adding only minority samples. The VAE with K-means
was the technique that improved the training data for the classifiers, followed
by the other VAE variations and the GAN. The overall results were a lot
similar to the Breast dataset, since the ratio and techniques that achieved
better performance were, in essence, the same ones. This could be explained
by the properties of the two datasets that are very similar since they are only
composed of continuous features.

Fig. 7 Ratio of data added at the Credit Card Fraud dataset by VAE with K-means

Finally, for the Cerebral Stroke dataset, the results were also almost identi-
cal to the dataset with similar properties (Adult), as the best ratio of synthetic
samples to add was 25% too, and the technique that resulted in a better per-
formance by the classifiers was SMOTE. The results may be observed at Table
8.
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Fig. 8 Ratio of data added at the Cerebral Stroke dataset by SMOTE

In essence, this experiment showed that more categorical datasets could
achieve greater performance by adding 25% of samples. As for the continu-
ous datasets, the best ratio was to add only minority samples. The chosen
techniques seemed to indicate a certain pattern.

We can still perform two additional crucial analyses to determine how
reliable the generated data is after the analysis of the synthetic data properties.
First, we are going to train the machine learning classifiers with real data and
then compare the results with training with only synthetic data.

Synthetic data can achieve very similar results when replacing the real
data in the classifier training. This experiment is described in Table 1 which
represents the best DA techniques for each dataset on the Random Forest
Classifier7. The main classifier chosen to analyze the synthetic data quality
was due to the more consistent performance throughout all the techniques,
as techniques such as VAE and GAN showed more volatility in the MLP and
worse results on the simpler machine learning classifier, the Decision Tree.

In regards to the Adult dataset, the technique that, throughout all classi-
fiers, performed better was the SMOTE, followed by ADASYN. This implies
that these techniques may generate synthetic data with more quality than the
rest of the techniques for this dataset, with more categorical features than
continuous. One other important fact to take into account was the visible dif-
ference in the performance of one variation of the VAE when its generated
data was trained by the MLP classifier, which can be observed at Table A1
in the appendix A. This classifier produced worse results than the other two
more classical machine learning classifiers, and it was seen multiple times for
the other datasets as well.

The Breast Cancer dataset had the VAE with K-means as the technique
that generated the best quality of data, surpassing even the real data perfor-
mance, described at Table A2. The Random Forest classifier attained a higher
performance score, although it couldn’t classify any minority classes correctly
with GAN’s synthetic data. This can be explained by the classifier overfitting
when trained with those samples.

7In order to abbreviate the document, the full results will be present in the Appendix section A.
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As for the Credit Card Fraud dataset, the SMOTE’s synthetic data
achieved superior results across all classifiers as can be seen at Table A3. It
also surpassed the performance of the classifier with real data on both classes.
Moreover, this dataset’s classifiers were more susceptible to overfitting towards
the majority class, principally with VAE variations and GAN.

Finally, in the Cerebral Stroke dataset, the clustering technique, GMM,
and SMOTE were the techniques that had the closest results to the real data.
GMM had a higher recall, capturing more minority samples than SMOTE, who
had a superior performance in the majority class. This dataset suffered, like
the previous ones, from the overfitting phenomenon in some of the generative
DA techniques (VAE and GAN). Its results are described at Table A4.

These experiments demonstrated that most of the DA techniques can syn-
thesize data in order to replace the real data in a somewhat efficient way.
Note that in some cases, the use of only synthetic data as training data for
the classifiers provided better results than with real data. Therefore, the use
of only synthetic data could be very interesting in datasets where some data
is sensitive and privacy matters.

Table 1 Classifiers performance comparison on only synthetic or real data training on the
datasets

Minority Class Majority Class

Dataset
DA

Technique
Precision Recall

F1
Score

Precision Recall
F1

Score
G-Mean

Adult
No technique 0.705 0.6301 0.6655 0.8865 0.9164 0.9012 0.7599

SMOTE 0.5373 0.7781 0.6356 0.918 0.7875 0.8478 0.7828
Breast
Cancer

No technique 1.0 0.9063 0.9508 0.9474 1.0 0.973 0.9520
VAE

with K-means
1.0 0.9375 0.9677 0.9643 1.0 0.9818 0.9682

Credit Card
Fraud

No technique 0.8824 0.6818 0.7692 0.9995 0.9998 0.9996 0.8257
SMOTE 0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.8790

Cerebral
Stroke

No technique 0.2 0.0085 0.0163 0.982 0.9994 0.9901 0.0920
GMM 0.0375 0.9576 0.0722 0.9986 0.5462 0.7062 0.7232

Note: The results are from the classifier Random Forest and the DA technique chosen was
the technique that achieved the best scores.

With those results in mind, the following analyses focus on training the
classifiers with an increased amount of data throughout multiple datasets8,
described in Table 2. These results demonstrated two important points.

First, the choice of the number of samples to generate is crucial, as the clas-
sifier’s performance may decrease if the final dataset has too many synthetic
samples with less quality than the real data. Therefore, for each problem, it
was necessary to evaluate the number of samples to synthesize. In these exper-
iments, the adult dataset had better behavior by adding 25% more samples
to the original dataset, while the rest of the datasets had higher performance
by adding only minority samples. Note that while the best ratio when using
only synthetic data (described in Figure 8) was 25%, this was not the same

8For the same reason as was previously indicated in Table 1, take note that the results in Table
2 are just for the Random Forest classifier.
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when combining real and synthetic data for the Cerebral Stroke dataset, which
achieved a higher score when adding only minority samples.

Second, the combination of real and synthetic data improved the classifiers’
performance. In the adult dataset, SMOTE and GAN were the techniques that
incremented most of the metrics for the minority class while not decreasing the
majority class performance. In the Breast Cancer dataset, the results were even
more satisfactory, with an increase of 5% in the minority class f1-score. The
Variational Autoencoder with K-means and decay did a remarkable job since
it refined the performance for each class to a round 100%. The Credit Card
Fraud dataset had similar results as the previous one, with a boost in the f1-
score minority class by 8% in the VAE with K-means. Finally, in the Cerebral
Stroke dataset, the minority results increased 8 times the initial results with
no synthetic samples on the f1-score as well as by the technique SMOTE.

Moreover, these experiments permitted us to confirm some interesting facts
that were mentioned previously. Datasets that contained mainly categorical
features were usually associated with a difficulty in increasing the classifier
results by adding new samples. Plus, the technique that adapted best to those
kinds of datasets was the more classical one, SMOTE. On the other hand, for
the datasets with more continuous features, the variations of the Variational
Autoencoder, mainly VAE with K-means and VAE with K-means and decay,
had very good performances.

5 Conclusion

In this study, we went through a benchmark of different DA techniques in
multiple datasets of various domains. With the results obtained during the
experiments, we can now answer the main questions previously stated in this
paper.

First, we found that DA could improve the results of imbalanced data
problems, generating samples of the minority class or both classes (RQ1). This
was observed in all datasets with multiple DA techniques.

Furthermore, with the results found during the development of this study,
it was also seen that some dataset properties could influence the quality of
the synthetic data generated (RQ2). Datasets that contained more categori-
cal features were usually associated with an increased difficulty in increasing
the classifiers’ performance or even a decrease in the minority class classifica-
tion when adding synthetic data to the original dataset. This phenomenon is
visible in problems such as the Adult and Cerebral Stroke datasets, in which
DA techniques such as the VAE variations and GANs had difficulties when
generating synthetic data. On the other hand, other techniques (SMOTE,
ADASYN, and, in some cases, GMM) generated quality synthetic samples eas-
ily. However, datasets whose features were mainly continuous had very good
performances for techniques such as VAE and GAN, while maintaining good
performances for SMOTE and ADASYN (even if lower than the other more
complex techniques)
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Table 2 Random Forest performance throughout the multiple DA techniques

Minority Class Majority Class

Datasets
DA

Technique
Precision Recall

F1
Score

Precision Recall
F1

Score
G-Mean

Adult1

No technique 0.705 0.6301 0.6655 0.8865 0.9164 0.9012 0.7599
SMOTE 0.6801 0.6582 0.669 0.8927 0.9019 0.8973 0.7704
ADASYN 0.6709 0.6259 0.6476 0.8838 0.90267 0.8932 0.7516
GMM 0.7067 0.625 0.6634 0.8853 0.9178 0.9012 0.7574

VAE with Decay 0.7003 0.6318 0.6643 0.8868 0.9143 0.9003 0.76
VAE with K-means 0.7013 0.631 0.6643 0.8866 0.9148 0.9005 0.7597
VAE with K-means

and Decay
0.6999 0.6327 0.6646 0.887 0.914 0.9003 0.7604

GAN 0.7018 0.6403 0.6696 0.889 0.9137 0.9012 0.7649

Breast
Cancer2

No technique 1.0 0.9063 0.9508 0.9474 1.0 0.973 0.9520
SMOTE 1.0 0.9688 0.9841 0.9818 1.0 0.9908 0.9843
ADASYN 1.0 0.9688 0.9841 0.9818 1.0 0.9908 0.9843
GMM 1.0 0.9375 0.9677 0.9643 1.0 0.9818 0.9682

VAE with Decay 1.0 0.9375 0.9677 0.9643 1.0 0.9818 0.9682
VAE with K-means 1.0 0.9375 0.9677 0.9643 1.0 0.9818 0.9682
VAE with K-means

and Decay
1.0 1.0 1.0 1.0 1.0 1.0 1.0

GAN 1.0 0.9688 0.9841 0.9843 1.0 0.9908 0.9843

Credit
Card
Fraud2

No technique 0.8823 0.6818 0.7692 0.9995 0.9998 0.9996 0.8257
SMOTE 0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.879
ADASYN 0.9412 0.7273 0.8205 0.9995 0.9999 0.9997 0.8528
GMM 0.9412 0.7273 0.8205 0.9995 0.9999 0.9997 0.8528

VAE with Decay 0.85 0.7727 0.8095 0.9996 0.9998 0.9997 0.8789
VAE with K-means 0.9444 0.7727 0.85 0.9996 0.9999 0.9998 0.879
VAE with K-means

and Decay
0.8824 0.6818 0.7692 0.9995 0.9998 0.9996 0.8257

GAN 0.8824 0.6818 0.7692 0.9995 0.9998 0.9996 0.8257

Cerebral
Stroke2

No technique 0.2 0.0085 0.0163 0.982 0.9994 0.9906 0.092
SMOTE 0.0486 0.2373 0.0807 0.9848 0.9143 0.9482 0.4658
ADASYN 0.0531 0.1441 0.0776 0.9837 0.9526 0.9679 0.3705
GMM 0.0333 0.0085 0.0135 0.9819 0.9955 0.9887 0.0918

VAE with Decay 0.1014 0.0593 0.0749 0.9828 0.9903 0.9865 0.2424
VAE with K-means 0.0986 0.0593 0.0741 0.9828 0.99 0.9864 0.2423
VAE with K-means

and Decay
0.125 0.0085 0.0159 0.982 0.9989 0.9904 0.092

GAN 0.2 0.0085 0.0163 0.982 0.9994 0.9906 0.092

1The DA techniques added 25% more synthetic samples to the dataset.
2The DA techniques added only minority samples to the dataset.

Relatively to the number of samples to be generated, the dataset proper-
ties also impact how to choose that parameter (RQ3). As described before,
more categorical datasets achieved a greater performance when adding 25%
more samples to the original dataset, while datasets whose major features are
continuous should opt to add only minority samples.

Finally, these experiments helped us to determine which DA techniques
provide a better quality of synthetic tabular data (RQ4). The implementation
of the VAE with K-means had very good results, mainly in the minority class,
as expected. Therefore, it could be chosen as a good candidate to be used as
a DA technique in a dataset whose features are mostly categorical. In essence,
GAN and VAE can achieve amazing results when explored and tuned for spe-
cific domains, which is one of the principal characteristics of these kinds of
algorithms. Moreover, the results demonstrated that, in general, SMOTE had
very good performance when generating synthetic data. As a result, SMOTE
seems to be the ideal technique when the dataset properties are not taken
into account, since it is very consistent in its generated samples. The GMM,
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the more unusual technique, showed some promise for further investigation,
despite appearing to have a higher volatility in sample quality.

Although this study helped us to use DA with a lot more knowledge of how
to do it and which techniques to choose, there were some obstacles during its
development. The main complication was the strange overfit seen with syn-
thetic data from techniques such as VAE and GAN. The VAE with K-means
could suffer a loss in its process since the unsupervised algorithm could choose
incorrectly the minority case, focusing the VAE on generating the majority
class. As for the GAN, some results suggest that the noise added to the discrim-
inator network was too high. Therefore, for that specific problem, adjusting
that value could surpass the quality of data generated. Moreover, the results
also suggest that the machine learning classifiers are susceptible to a greater
or lower type of overfit depending on the quality of the data.
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Appendix A Supplementary results

Table A1 Classifiers performance comparison on only synthetic or real data training
throughout different DA techniques on the Adult dataset

Minority Class Majority Class

Classifiers
DA

Technique
Precision Recall

F1
Score

Precision Recall
F1

Score
G-Mean

Decision
Tree

No technique 0.6492 0.6122 0.6302 0.8792 0.8951 0.8871 0.7403
SMOTE 0.4928 0.7032 0.5795 0.8912 0.7706 0.8265 0.7361
ADASYN 0.3726 0.5595 0.4473 0.8339 0.7013 0.7619 0.6264
GMM 0.2729 0.4456 0.3385 0.7801 0.6236 0.6931 0.5271

VAE with Decay 0.2453 0.7815 0.3734 0.7744 0.2378 0.3639 0.4311
VAE with K-means 0.3168 0.2389 0.2724 0.7761 0.8366 0.8052 0.4471
VAE with K-means

and Decay
0.4845 0.2398 0.3208 0.7922 0.9191 0.851 0.4695

GAN 0.2461 0.9974 0.3948 0.9748 0.03128 0.0606 0.1766

Random
Forest

No technique 0.705 0.6301 0.6655 0.8865 0.9164 0.9012 0.7599
SMOTE 0.5373 0.7781 0.6356 0.918 0.7875 0.8478 0.7828
ADASYN 0.4554 0.5298 0.4898 0.8428 0.7991 0.8204 0.6507
GMM 0.2724 0.4515 0.34 0.7803 0.6177 0.6895 0.5281

VAE with Decay 0.4101 0.227 0.2923 0.7853 0.8965 0.8372 0.4511
VAE with K-means 0.5205 0.216 0.3053 0.7903 0.9369 0.8574 0.4498
VAE with K-means

and Decay
0.5932 0.2083 0.3084 0.7918 0.9547 0.8657 0.4460

GAN 0.2472 0.9949 0.396 0.9605 0.0394 0.0756 0.1979

MLP

No technique 0.712 0.6012 0.6519 0.8795 0.9229 0.9007 0.7449
SMOTE 0.5098 0.8376 0.6338 0.9353 0.7447 0.8292 0.7898
ADASYN 0.4846 0.7211 0.5796 0.8954 0.7568 0.8203 0.7387
GMM 0.2708 0.449 0.3378 0.7792 0.6166 0.6884 0.5262

VAE with Decay 0.2623 0.9014 0.4063 0.8624 0.196 0.3194 0.4203
VAE with K-means 0.9539 0.1233 0.2184 0.7822 0.9981 0.877 0.3508
VAE with K-means

and Decay
0.0 0.0 0.0 0.7593 1.0 0.8632 0.0

GAN 0.2553 0.9845 0.4055 0.9484 0.0892 0.1631 0.2964
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Table A2 Classifiers performance comparison on only synthetic or real data training
throughout different DA techniques on the Breast Cancer dataset

Minority Class Majority Class

DA
Technique

Precision Recall
F1

Score
Precision Recall

F1
Score

G-Mean

Decision
Tree

No technique 0.875 0.875 0.875 0.9259 0.9259 0.9259 0.9001
SMOTE 0.8611 0.9688 0.9118 0.98 0.9074 0.9423 0.9376
ADASYN 0.8823 0.9375 0.9091 0.9615 0.9259 0.9434 0.9317
GMM 1.0 0.1875 0.3158 0.675 1.0 0.806 0.4330

VAE with Decay 0.6571 0.7188 0.6866 0.8235 0.7778 0.8 0.7477
VAE with K-means 0.6512 0.875 0.7467 0.907 0.7222 0.8041 0.7949
VAE with K-means

and Decay
0.8846 0.8519 0.8679 0.7647 0.8125 0.7879 0.8319

GAN 0.0 0.0 0.0 0.6279 1.0 0.7714 0.0

Random
Forest

No technique 1.0 0.9063 0.9508 0.9474 1.0 0.973 0.952
SMOTE 0.9677 0.9375 0.9523 0.9636 0.9815 0.9725 0.9592
ADASYN 1.0 0.9063 0.9508 0.9474 1.0 0.973 0.9520
GMM 1.0 0.2813 0.439 0.7013 1.0 0.8244 0.5303

VAE with Decay 0.7561 0.9688 0.8493 0.9778 0.8148 0.8889 0.8885
VAE with K-means 1.0 0.9375 0.9677 0.9643 1.0 0.9818 0.9682
VAE with K-means

and Decay
0.8857 0.9688 0.9254 0.9804 0.9259 0.9524 0.9471

GAN 0.0 0.0 0.0 0.6279 1.0 0.7714 0.0

MLP

No technique 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SMOTE 0.9412 1.0 0.9697 1.0 0.963 0.9811 0.9813
ADASYN 0.9063 0.9063 0.9063 0.9444 0.9444 0.9444 0.9252
GMM 0.0 0.0 0.0 0.6279 1.0 0.7714 0.0

VAE with Decay 0.871 0.8438 0.8571 0.9091 0.9259 0.9174 0.8839
VAE with K-means 0.9355 0.9063 0.9206 0.9455 0.963 0.9541 0.9342
VAE with K-means

and Decay
0.8529 0.9063 0.8788 0.9423 0.9074 0.9245 0.9068

GAN 0.7879 0.8125 0.8 0.887 0.8704 0.8785 0.8409

Table A3 Classifiers performance comparison on only synthetic or real data training
throughout different DA techniques on the Credit Card Fraud dataset

Minority Class Majority Class

DA
Technique

Precision Recall
F1

Score
Precision Recall

F1
Score

G-Mean

Decision
Tree

No technique 0.64 0.7273 0.6809 0.9995 0.9993 0.9994 0.8525
SMOTE 0.3137 0.7273 0.4384 0.9995 0.9973 0.9984 0.8516
ADASYN 0.0068 0.8182 0.0134 0.9996 0.7937 0.8849 0.8059
GMM 0.0031 0.8636 0.0061 0.9995 0.515 0.6798 0.6669

VAE with Decay 0.2727 0.4091 0.3273 0.999 0.9981 0.9986 0.639
VAE with K-means 0.8333 0.2273 0.3571 0.9987 0.9999 0.9993 0.4767
VAE with K-means

and Decay
0.0 0.0 0.0 0.9983 1.0 0.9991 0.0

GAN 0.0 0.0 0.0 0.9983 1.0 0.9991 0.0

Random
Forest

No technique 0.8824 0.6818 0.7692 0.9995 0.9998 0.9996 0.8257
SMOTE 0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.879
ADASYN 0.0215 0.9091 0.042 0.9998 0.9288 0.963 0.9189
GMM 0.0026 0.8636 0.0052 0.9995 0.4335 0.6047 0.6119

VAE with Decay 0.8 0.3636 0.5 0.9989 0.9998 0.9994 0.603
VAE with K-means 0.0 0.0 0.0 0.9983 1.0 0.9991 0.0
VAE with K-means

and Decay
0.0 0.0 0.0 0.9983 1.0 0.9991 0.0

GAN 0.0 0.0 0.0 0.9983 1.0 0.9991 0.0

MLP

No technique 0.8947 0.7727 0.8293 0.9996 0.9998 0.9997 0.879
SMOTE 0.9998 0.9971 0.9984 0.3393 0.8636 0.4872 0.928
ADASYN 0.0111 0.7727 0.022 0.9996 0.882 0.9371 0.8256
GMM 0.0025 0.7727 0.005 0.9992 0.4717 0.6408 0.6037

VAE with Decay 0.9 0.4091 0.5625 0.999 0.9999 0.9995 0.6396
VAE with K-means 0.0 0.0 0.0 0.9983 1.0 0.9991 0.0
VAE with K-means

and Decay
0.0 0.0 0.0 0.9983 1.0 0.9991 0.0

GAN 0.0 0.0 0.0 0.9983 1.0 0.9991 0.0
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Table A4 Classifiers performance comparison on only synthetic or real data training
throughout different DA techniques on the Cerebral Stroke dataset

Minority Class Majority Class

DA
Technique

Precision Recall
F1

Score
Precision Recall

F1
Score

G-Mean

Decision
Tree

No technique 0.0321 0.0424 0.0365 0.9822 0.9764 0.9793 0.2034
SMOTE 0.0426 0.3136 0.075 0.9856 0.8699 0.9241 0.5223
ADASYN 0.0127 0.3644 0.0245 0.976 0.4761 0.64 0.4165
GMM 0.0379 0.9322 0.0728 0.9978 0.5631 0.7199 0.7245

VAE with Decay 0.0217 0.178 0.0386 0.9825 0.8517 0.9124 0.3893
VAE with K-means 0.0208 0.0085 0.012 0.9819 0.9926 0.9872 0.0917
VAE with K-means

and Decay
0.0159 0.0085 0.0111 0.9819 0.9903 0.9861 0.0916

GAN 0.0 0.0 0.0 0.9819 1.0 0.9909 0.0

Random
Forest

No technique 0.2 0.0085 0.0163 0.982 0.9994 0.9906 0.092
SMOTE 0.0461 0.2627 0.0784 0.9851 0.8996 0.9404 0.4861
ADASYN 0.0129 0.339 0.0248 0.9771 0.5199 0.6787 0.4198
GMM 0.0375 0.9576 0.0722 0.9986 0.5462 0.7062 0.7232

VAE with Decay 0.0 0.0 0.0 0.9819 0.9986 0.9902 0.0
VAE with K-means 0.0 0.0 0.0 0.9819 0.9986 0.9902 0.0
VAE with K-means

and Decay
0.0 0.0 0.0 0.9819 0.9986 0.9902 0.0

GAN 0.0 0.0 0.0 0.9819 0.9986 0.9902 0.0

MLP

No technique 0.0 0.0 0.0 0.9819 1.0 0.9909 0.0
SMOTE 0.0518 0.5508 0.0948 0.9899 0.814 0.8934 0.6696
ADASYN 0.0166 0.3475 0.0318 0.981 0.621 0.7605 0.4645
GMM 0.0361 0.9915 0.0696 0.9997 0.5107 0.6761 0.7116

VAE with Decay 0.0 0.0 0.0 0.9819 1.0 0.9909 0.0
VAE with K-means 0.0 0.0 0.0 0.9819 1.0 0.9909 0.0
VAE with K-means

and Decay
0.0 0.0 0.0 0.9819 1.0 0.9909 0.0

GAN 0.0 0.0 0.0 0.9819 1.0 0.9909 0.0
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