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TERCEIROS
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A B S T R A C T

In the last decades, the scientific community has produced huge amounts of publications about

the most varied biomedical topics, making the search for relevant information a really difficult

task for every researcher. Some approaches have been followed to develop tools that can

facilitate this process. For instance, PubMed implemented in 2017 a Machine Learning model to

sort documents by their relevance. Nevertheless, even the authors consider that their system

would benefit from the implementation of a Deep Learning model, which for now needs more

studies.

In this context, a package called BioTMPy1 was developed in this work, to perform document

classification of biomedical literature using the Python programming language. The package

is divided into different modules to provide to the user functions to read documents in different

formats, perform preprocessing and data analysis and to train, optimize and evaluate Machine

and Deep learning models. Our package also provides intuitive pipelines that can be easily

adapted for the user needs, illustrating how to implement complex deep learning models.

The developed package was applied to a dataset from a challenge of the BioCreative forum,

from 2019, about protein-protein interactions altered by mutations, an important topic for the

advances related to precision medicine. Using this dataset, it was possible to observe a slightly

better performance of BioWordVec pre-trained embeddings over GloVe, ”pubmed pmc” and

”pubmed ncbi” embeddings. Also, with the evaluation of the developed models on the test set,

we managed to overcome the challenge’s best submission, by using a model with BioBERT and

a bidirectional LSTM on top, resulting in a difference of 7.25% for average precision, 3.22% for

precision, 2.99% for recall and 3.15% for the f1-score.

Also, a web server was developed to provide access to the best Deep Learning model

trained in this work. The overall pipeline here developed can be applied to other case studies in

different topics, provided there is a set of documents annotated as relevant and non-relevant,

allowing to train the models.

Keywords: Deep Learning; Machine Learning; Document Classification; Text Mining.

1 https://gitlab.bio.di.uminho.pt/biotextminingpy/biotmpy
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R E S U M O

Nas últimas décadas, a comunidade cientı́fica tem produzido uma enorme quantidade de

publicações sobre os mais variados tópicos biomédicos, tornando a procura de informação

relevante num processo complicado para qualquer investigador. Algumas abordagens têm sido

seguidas para desenvolver ferramentas que possam facilitar este processo. Por exemplo, o

PubMed implementou em 2017 um modelo de aprendizagem máquina para ordenar documentos

pela sua relevância. Contudo, os autores consideram que o seu sistema pode beneficiar com a

implementação de um modelo de Deep Learning, o que para já necessita de mais estudos.

Neste projeto, foi desenvolvida um package chamado BioTMPy para classificar documentos

da literatura biomédica através da linguagem de programação Python. Este package é dividido

em diferentes módulos para fornecer ao utilizador funções para ler documentos de formatos

diferentes, realizar pré-processamento e análise de dados, e para treinar, otimizar e avaliar

modelos de aprendizagem máquina. A plataforma também fornece pipelines intuitivas que

podem ser facilmente adaptadas de acordo com as necessidades do utilizador, demonstrando

como implementar modelos complexos de Deep Learning.

O package desenvolvido foi aplicado a um conjunto de dados de um desafio do fórum

BioCreative, de 2019, acerca de interações proteı́na-proteı́na alteradas por mutações, um tópico

importante para a área da medicina de precisão. Usando este conjunto de dados, consegue-se

observar um melhor desempenho dos BioWordVec embeddings pré-treinados em relação a

embeddings como GloVe, ”pubmed pmc” e ”pubmed ncbi”. Com os modelos desenvolvidos,

foi possı́vel ultrapassar a melhor submissão do challenge, usando um modelo com BioBERT e

uma LSTM bidirecional acima, obtendo-se diferenças de 7.25% na precisão média, 3.22% na

precisão, 2.99% no recall e 3.15% para o f1-score.

Foi ainda desenvolvido um servidor web de forma a fornecer acesso ao nosso melhor

modelo. A plataforma desenvolvida neste trabalho poderá ser aplicável a outros casos de

estudo em diferentes tópicos, desde que exista um conjunto de documentos anotado como

relevante ou não relevante, que permita treinar os modelos.

Palavras-Chave: Deep Learning; Aprendizagem Máquina, Classificação de Documentos;

Mineração de Texto
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I N T R O D U C T I O N

1.1 CONTEXT AND MOTIVATION

Over the last decades, due to the continuous growth of science and technology, there has been

a consecutive increase in the number of per-year published articles [1, 2]. Considering the large

quantity of available documents, it is almost an impossible task for a single researcher to read

and organize all the information about a certain topic. To ease this time consuming process, a

field named Biomedical Text Mining (BioTM) has emerged [3].

The main goal of BioTM is developing Text Mining tools in a biomedical context. BioTM

approaches different tasks, from Information Extraction to Information Retrieval and Document

Classification. These tasks have the potential to support different processes, for instance, the

identification of new drugs and new disease treatments [2, 4].

Document Classification, a task in BioTM, aims to classify documents based on their con-

tent, assigning them different predefined labels. For binary classification, a common approach is

labelling documents as relevant or non-relevant regarding a chosen topic. Document Classifica-

tion can be done in an automated way using both rule-based approaches or Machine Learning

algorithms, the latter being more adequate for pattern identification. Explicitly, Supervised Learn-

ing, a sub-field of Machine Learning, contains a variety of successful algorithms as Support

Vector Machine (SVM), Naı̈ve Bayes, Logistic Regression, Neural Networks, etc. [5, 6].

In recent years, Deep Learning, another sub-field of Machine Learning, has gained popular-

ity within the scientific community. Deep Learning presents several advantages over conventional

Machine Learning approaches. Besides an overall improvement in performance, it also presents

1



1.2. Objectives 2

better data representation and it does not rely on feature engineering, a key step on traditional

Machine Learning algorithms [7].

When applied to texts, deep learning models can learn features directly from complex and

abstract representations of raw data. For Document Classification, Word Embeddings (e.g.

GloVe and FastText) are commonly implemented due to their semantic text representation [7].

Algorithms such as the Convolutional Neural Network (CNN), Recurrent Neural Network (RNN)

and RNN variations as the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit

(GRU) have been showing improvements in different text related tasks [8–10].

Despite recent breakthroughs, BioTM and Document Classification for biomedical literature

would still benefit from further improvements [11, 12]. For instance, PubMed, a widely used

search engine for biomedical documents containing more than 28 million publications, has

implemented their machine learning system only in 2017. Nevertheless, as far as we know,

there is still no Deep Learning tool able to manage such amount of documents and subjects

[13]. The current project focuses precisely on these challenges, attempting to overcome them

through Deep Learning algorithms.

1.2 OBJECTIVES

Keeping the above context in mind, this project aims to create a Deep Learning package,

enabling to develop pipelines capable of classifying a set of documents according to their

relevance to a topic of interest.

The following scientific and technological objectives will be pursued:

• Literature Review on Deep Learning concepts, methods and tools, as well as its applica-

tions on text mining, namely on a biomedical context;

• Development of tools capable of converting unstructured articles into a standard structure

for further use in Deep Learning models;

• Development a package in Python, allowing to develop pipelines to train Deep Learning

models and predict document relevance on a given topic based on them, supporting the

use of distinct models and architectures;



1.3. Thesis Organization 3

• Validation of the created package in a selected case study from a challenge related to

precision medicine;

• Development of a RESTful API allowing to apply the trained models to simplify and facilitate

its open use by the community.

1.3 THESIS ORGANIZATION

Chapter 2 will be addressing general subjects as Biomedical Text Mining, document classi-

fication and Machine Learning. For Machine learning, different models for both supervised

and unsupervised learning will be also explained, with a big focus on Deep Learning models.

Additionally, Machine Learning concepts as vectorization (highlighting available pre-trained

embeddings), regularization, transfer learning and hyperparameter optimization will also be

described.

Chapter 3 will explain the main fundamentals of the package developed in this work.

Additionally, it will be described some of the main features of the package as well as the

approaches used to implement them. At the end, the package will be discussed, together with

some possible improvements for the future.

Chapter 4 will exhibit all the results obtained in the different steps of this work, since a data

analysis performed on a BioCreative’s dataset, to a comparison between several pre-trained

embeddings and scores of the application of some Deep Learning models on that same dataset.

Throughout this chapter, some discussion will be presented along with possible improvements.

Chapter 5 will describe some of the final conclusions of the entire project, together with

some future work.
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S TAT E O F T H E A R T

2.1 BIOMEDICAL TEXT MINING

Currently, the amount of published scientific articles is increasing at an incredibly fast rate,

leaving the scientific community with a huge amount of available documents. This makes

the search for relevant information a really hard work for researchers, requiring from them an

excessive amount of reading time. Consequently, researchers have been using computers’

abilities, such as the high capacity of data processing and storage to speed up the process [1,

14]. However, the content interpretation of articles is not a straightforward task for a computer,

since these documents are normally written as unstructured free text [5]. BioTM emerged

to create and provide tools capable of identifying and extracting significant information from

structured written biomedical texts [3]. BioTM is a branch of a more generic field named Text

Mining, which aims to do the same task for general-purpose texts.

Text Mining can be defined as a group of technologies and tools with the scope to process,

analyse and, consequently, discover relevant information in semi-structured and unstructured

text [15, 16]. Some of the Text Mining achievements include the ability to generate database

annotations, share information between fields and help companies with decision-making [4].

Since Text Mining overlaps the use of different tools for distinct tasks, its sub-division is not

always clear. Given such fact, the present work will follow the division made by [16], which

divides Text Mining into seven different groups:

1. Information Retrieval (IR): Commonly used by search engines like Google, Yahoo, Bing,

etc. The main goal of this task is to return, from a database of documents, a list of indexed

documents, which match a certain query including a logical combination of keywords,

introduced by the user.

4



2.1. Biomedical Text Mining 5

2. Document Clustering: It uses clustering algorithms (e.g Hierarchical clustering, k-means,

Latent Semantic Indexing) to group documents into clusters using their content similarities.

Depending on the method used, the number of clusters can be set by the user beforehand.

Sometimes, Document Clustering is used by search engines as a preprocessing tool to IR.

3. Document Classification: Document Classification uses different algorithms for the

specific task of assigning a label from a set of classes to each document of a given

document set. This task will be explained in detail in subsection 2.1.1, as it plays a major

role to accomplish the goal of this project.

4. Web Mining: With the increasing use of Internet and social media, an abundance of

text-based data has emerged. Due to its dimensionality, a necessity to create a new

branch oriented to the World Wide Web arose, giving rise to the field of Web Mining.

5. Information Extraction: Information Extraction is one of the most developed groups in

Text Mining. It is the process of converting unstructured text to structured data by identifying

and extracting the most relevant information and relations between topics. Information

Extraction is not a trivial process to implement, since it requires complex systems with

specific algorithms and software.

6. Natural Language Processing (NLP): NLP contains a wide range of tools (e.g., Tok-

enization, Part-of-speech Tagging, Lemmatization) capable of manipulating text. NLP has

been increasingly used in Text Mining, also due to recent statistical techniques such as

Word Embeddings. Some of these tools will be explained with more detail in subsection

2.1.4.

7. Concept Extraction: Concept Extraction, as its name suggests, aims to extract concepts

from text. It attempts to group words and/or phrases by their meaning. It also contains

tools aiming to retrieve any text interpretations, even though this is a challenging task for a

machine.

Considering that the mentioned tasks are usually oriented to a specific case, existing general-

purpose tools/software (e.g. predicting the stock market by twitter mood [17] or predicting a

public protest based on big public data [18]), either loose their efficiency when applied to the

Biomedical field or cannot be applied at all. To solve this problem, a new sub-field of text mining

appeared: BioTM) [1, 19].
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BioTM is a relatively recent field, at the 30 years old mark [20] that aims to use Text

Mining tools in a biological context. Some tasks of BioTM aim to help biomedical researchers

identifying biological entities and information about phenotypes, pathways, genes, proteins,

disease relationship, etc., in an easier and faster way [1, 4]. Such information is searched in

the different topics of biomedical literature, including Biology, Medicine, and Chemistry [21].

A second use of BioTM is the discovery of relationships between topics by gathering and

connecting vasts amounts of information. These relationships go sometimes unnoticed by

researchers due to their complexity and multidisciplinarity [21] (this phenomenon was named as

”unseen public knowledge” by Swanson [22]). These BioTM techniques create a wide range of

new opportunities and applications, such as drug discovery, study of disease emergence and

improvement of diagnosis technologies [2, 23].

2.1.1 DOCUMENT CLASSIFICATION

Document Classification (sometimes also called as Text Classification or Text Categorization)

pursues the identification of specific information or subjects within text in order to classify

them into a label from a pre-defined set [24]. This is not to be confused with Document

Clustering, which simply arranges documents into groups in an unsupervised way [25]. Sarkar

[26] considers that the term ”document” covers all the formats that can be classified by a

Document Classification system, such as images, drawings, videos, recorded speech, writing,

and so on.

If there are exclusively two label possibilities in a classification problem, the problem is

referred to as a binary classification. If, on the other hand, there are more than two possibilities, it

is referred as a multi-class classification [27]. Document Classification can also classify different

levels of text such as document level, paragraph level, sentence level and sub-sentence level [6].

Document Classification is one of the main techniques of text mining with varied applications,

for instance spam filtering of emails, text indexing, web pages categorization, document sorting,

text filtering, sentiment analysis, support in text summarization, etc. [5, 6, 16, 28]. For instance,

regarding spam filtering, good indicators of a spam email can be simple patterns as the presence

of a dollar sign (”$”) or a high number of exclamation points (”!!!!”) [29].
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Fig. 1 – The most common Document Classification pipeline [6]
.

Initially, the task of Document Classification was done manually, having an associated high

accuracy. However, due to scalability problems, a need for better techniques arose and rule-

based techniques were implemented. This technique used manually created rules to categorize

documents with certain words - a document with the words ”money” and ”bank” in it, should be

categorized as a financial document. Yet, once again, a problem with scalability was still present

since, despite having an equally substantial accuracy, the construction of lists with words related

to a specific topic was a time consuming task [25].

In the last few years, Artificial Intelligence (AI) methodologies like Machine Learning (ML)

models have been developed and used in Document Classification. Normally, in Supervised

ML, a model learns the existing connections between features of documents with different

labels to predict new instances of documents with unknown labels [24]. More recently, Deep

Learning (DL), a sub-field of ML, has become increasingly important to improve the existent

tools for the Document Classification task. Some AI models will be further discussed (section

2.3).

After gathering the textual data (generating the corpus), the common pipeline of a Document

Classification system follows the following 4 main steps: Feature Extraction, Dimensionality

Reduction (considered as an optional step), Model Selection and Evaluation (Fig. 1) [6].

2.1.2 PUBMED

PubMed is one of the most used scientific literature databases (with more than 28 million

publications - many of them with free access - and an average of 3 million searches per day in
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the year 2018 [13]). The document triage system of this repository has been evolving during the

past years. Initially, it simply matched terms searched by the user to documents in the database.

As result, it was possible to retrieve a list of documents, ordered from the most recently published

to the oldest one. This system was efficient in organizing the newest information, but it was not

appropriate in selecting the most relevant documents for a given query.

In 2013, a new technique was implemented in the PubMed system, Term Frequency -

Inverse Document Frequency (TF-IDF) [30, 31], which is a feature extraction technique that

takes into consideration not only the number of occurrences of the matched words (w) within a

specific document (d), but also their frequency in all the collection of documents retrieved (D)

(Equation 1).

TF-IDFw,d =
frequencyw,d

Number of words in d
× log

D
Document frequencyw

(1)

Despite an improved performance over the first implemented method, and mainly due to

ML methodologies showing good results in the research community, a ML model was then

implemented in PubMed in 2017. Named ”Best Match”, the ML algorithm uses characteristics of

articles such as the publication rate, history of usage, article type and an associated relevance

score. This algorithm showed a more promising performance over previous ones. However,

”Best Match” has its limitations. As an example, the algorithm considers that an article can be

classified as more relevant if an user opens it on PubMed, which is not always an appropriate

assumption. For instance, articles appearing on the front page are naturally more likely to be

opened, inducing a bias in the system [13]. Recently, ”Best Match” became the default sorting

tool with the release of the new PubMed.

Despite the developers’ intention in improving the current system by moving to a DL model,

it is considered that more studies are still needed [13].

2.1.3 CORPORA AND IMBALANCED DATA SETS

Several methodologies and techniques have been used to get the best possible outcomes in

BioTM tasks. BioCreAtIvE [32], BioNLP [33] and i2b2 [34] are some of the evaluation fora that
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were created to provide a more generalized and standard evaluation of the different approaches

used, providing a better overall perspective of the current BioTM community applied strategies.

These competitions give access to different resources, as evaluation corpora (i.e. a set of

documents manually annotated), curated dictionaries, stop words lists, among others.

For Document Triage (i.e. the process of classifying documents as relevant and non-relevant

documents), the available corpora are often highly imbalanced, containing a reduced number

of relevant documents [35]. When this happens, two main techniques are used to reduce the

imbalance: the majority class reduction (under-sampling) or augmentation of the minority class

(over-sampling). Over-sampling is achieved by replicating the existing examples or computing

new ones by using ML models [36–38]. Jiang et al. got an F1-score of 0.75 for Document

Classification when using under-sampling through the use of clustering methods [39].

2.1.4 PREPROCESSING

Since ML models work exclusively with numerical vectors, text data has to be initially converted

into vectors with a process called vectorization. However, before vectorization, some preprocess-

ing steps are normally taken. A sentence splitter can be applied to break text into sentences, and

also word tokenization, to split those sentences into words (also called as tokens). Sometimes,

other types of tokens are used, such as characters and n-grams (overlapping combinations of n

words organized by its order of appearance in text) [7].

Besides sentence splitting and word tokenization, Text Mining researchers sometimes

complement this preprocessing phase with stop words removal (e.g., removing common words

like ’the’, ’for’, ’of’), punctuation removal, stemming and lemmatization [40]. Tools with the

capability of running these tasks can be found, for instance, in the Natural Language Processing

Toolkit (NLTK) [41]. For traditional ML models (e.g. Naı̈ve Bayes, SVMs, Logistic Regression),

bag-of-words can be employed to make feature engineering, a process considered unnecessary

for DL models [7].

Regarding the vectorization step, it can be achieved by using one-hot encoding. This

method converts a previously given index for each word into resulting vectors with the size of the

vocabulary used. Each vector will then contain a 1 in the respective word’s index and zeros for
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Fig. 2 – Vectorization process with One-hot encoding. One-hot encoding converts each word with an
associated index from a vocabulary of size V into different vectors. Those vectors contain a 1 in
the respective word’s index and zeros in the remaining positions [7]

the remaining indices (Fig. 2). Due to the sparsity and high-dimensionality of these vectors, and

considering that this method ignores the words’ order and semantics, alternatives to one-hot

encoding have emerged (e.g. token embeddings, section 2.1.5) [7, 42].

2.1.5 EMBEDDINGS

Token Embeddings (normally called Word Embeddings) are highly efficient distributed word

representations created through a more complex word vectorization process, which results in

low-dimensional dense vectors [7]. Despite the current popularity of Word Embeddings, the idea

of low-dimensional word representations is more than 15 years old [43].

These vectors contain information about semantic and syntactic properties of words, mean-

ing that semantically close words will have associated close vectors in the embedding space

[42, 44]. This way, we can assume that the subtraction of the vector Spain to the vector Madrid

and later sum of the vector England should give the vector London, or at least one very similar

to it [45].

Word Embeddings can be trained with documents for document classification or used in

their pre-trained versions to be introduced as input for a DL (or traditional ML) architecture.

Furthermore, it should be noted that a Word Embedding pre-trained on a specific subject should

be used for the classification of documents of similar subjects [42].
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Fig. 3 – Architecture of two Word2vec’s models (CBOW and Skip-gram). While CBOW outputs the
center word (wt) using context words (w(t−2), w(t− 1), w(t + 1), w(t + 2)), Skip-gram makes the
opposite, outputting the context words using a center word. Adapted from [46].

Word2vec

Word2vec is a group of neural network (section 2.3) based models such as the Continuous

Bag-of-words (CBOW) and the Skip-gram, which are applied to generate Word Embeddings

capable of recognizing linguistic patterns. Even though both models have an associated window

with a certain size (s) encompassing a number of words (where a larger size window gives

better results but worse efficiency), these two models act differently [46]). While CBOW predicts

a target word (also referred to as center word) through context words, Skip-gram makes the

opposite, predicting the probability of the adjacent context words, using a center word (wt) [46,

47] (Fig. 3). These models also have a Negative Sampling version that increases efficiency

by turning the models into a binary classification system. As a result of these two models, a

weighting matrix located between the input and the projection layers is returned. This weighting

matrix can be later used in ML models to compute word vectors.

Both these models have similar architectures, the latter showing better results in tasks such

as word similarity [48]. Thus, the current project will focus on the Skip-gram model.

For each word within an input sequence (t = {w1, w2, ..., wT}), the objective of the Skip-

gram model is to maximize the average log probability (Objective function - Equation (2a) - with

θ representing the model’s parameters) of a context word, given the occurrence of a center word
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as input (Equation (2b)), where each word (w), from the vocabulary with size V, has an input

vector (uw) and an output vector (vw) representation [45, 47].

J(θ) =
1
T

T

∑
t=1

∑
−s≤j≤s,j 6=0

log p(wt+j | wt) (2a)

p(wi | wj) =
exp (uT

wi
vwj )

∑V
w=1 exp (uT

wvwj )
(2b)

GloVe

In addition to the local range window of Word2vec, GloVe implemented a global matrix (M)

containing the co-occurrence of word pairs (target word wi - context word wj) to take advantage

of the input text as a whole [49]. GloVe uses a weighted least squares model to generate vectors

with a correlation between its space distance and its semantic distance [50]. The model is based

on different equations, such as the constraint equation (3a) (each word, wi and wj, have an

associated bias, biasi and biasj, which are parameters of the model), and an objective function

(3b). The objective function encompasses a weighted function ( f (Mi,j)) used to give different

levels of importance to word pairs with different co-occurrence frequencies. In addition, it should

be noted that GloVe can also be used for Named Entity Recognition (NER) tasks [49].

log(Mi,j) = wT
i · wj + biasi + biasj (3a)

J(θ) =
V

∑
i,j=1

f (Mi,j)(wT
i · wj + biasi + biasj − log(Mi,j))

2 (3b)

Contextualized Word Representations

Recently, a new type of Embeddings appeared: Contextualized Word Representations. Previ-

ous Word Embeddings, also called static embeddings, assigned only a vector for each word,

being then unable to distinguish different possible meanings for the same word. These recent

representations attempt to overcome such limitation through the use of Deep Neural Language

models (such as ELMo [51] and BERT [52]). These models consider the context in which each
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word appears through the allocation of a function for each word that takes into consideration the

entire input sequence. These Deep Neural Language models have shown better results when

compared to static Embeddings, with BERT overcoming ELMo in some tasks, through use of a

Masked Language Model (MLM) that brings bidirectionality for the sequence [51, 52]. However,

the training of such models can be computationally expensive, presenting a strong disadvantage

to their implementation [9].

Table 1 – Some of the currently available Embeddings

Embedding Description

Word2vec [46] Contains well-known models as Skip-gram and CBOW

GloVe [49] Embeddings based on a global co-occurrence matrix

ProtVec [53] Representation of protein sequences for proteomics and genomics

Dis2vec [54] Embeddings for disease characterization based on Word2vec

Pubmed Vectors
[55]

Word2vec based embeddings trained on PubMed documents

Doc2vec [56] Extension of the Word2vec algorithm for variable length documents

fastText [57] Facebooks’ algorithm with focus on unseen words

BioWordVec [58] Uses subword information and MeSH terms to create embeddings on the
biomedical context

”Pubmed-NCBI”
[59]

Word2vec based embeddings trained on all existing PubMed abstracts in
2016

Context2vec
[60]

Uses a Bidirectional LSTM to produce context-dependent representations

ELMo [51] Generation of representations as functions of the input sentences

BERT [52] Context word representations computed with a Bidirectional model

BioBERT [61] BERT applied on PubMed Documents

SciBERT [62] BERT applied on Documents from the Semantic Scholar database

BlueBERT [63] BERT applied on PubMed Abstracts and clinical notes

2.1.6 NAMED ENTITY RECOGNITION

Beyond Embeddings, other features can also be extracted, including NER. In BioTM, NER is

normally used to retrieve different entities such as genes, proteins, species, chemicals, etc. [64,

https://pubmed.ncbi.nlm.nih.gov/
https://www.semanticscholar.org/
https://pubmed.ncbi.nlm.nih.gov/
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65]. This process can be done in 3 different ways: using dictionaries and ontologies, which are

used to support search and matching algorithms; using expression rules, which are used to fill

the absence of some named entity variants by identifying possible bio-entities; and using ML

(including DL [66]) models that learn how to predict certain entities [67].

For this task, we can use developed tools as @Note [68] and Pubtator [69]. For instance,

Luo et al. [70] concatenated NER and Part-of-speech features with a Word Embedding, using it

as input for a DL architecture to perform document triage. Slight improvements were observed

in the models’ scores presenting a higher influence of the NER features when compared to

Part-of-speech. It is worth noting, however, that these improvements were not generally present

in all models.

2.2 MACHINE LEARNING

ML is a sub-field of a bigger and well-known field called AI. AI was the first attempt to make

computational algorithms capable of performing tasks traditionally exclusive to humans and

which required a certain level of reasoning. AI initiated around the 1950’s and it has since

been an active field. ML is a more recent field, becoming more established around the 1990s.

Recently, ML became the most popular sub-field of Artificial Intelligence, largely due to newer

and improved hardware, together with higher amounts of available data. Despite the relation

with the field of statistics, ML presents some disparities, being the data dimension one of those

[7]. The popularity of ML is justified by its advantages, such as scalability and efficiency in

managing demanding tasks (e.g. NLP, Document Classification, Image Classification, Speech

Recognition) [71, 72]. It is to be noted that ML also presents limitations, the main one being its

significant dependence on training data.

ML is normally subdivided into 4 different groups: Supervised Learning, Unsupervised

Learning, Semi-Supervised Learning and Reinforcement Learning. Supervised Learning has the

main goal of learning feature patterns associated with each label. On the contrary, Unsupervised

Learning uses unlabeled data to perform tasks such as clustering, dimensionality reduction

and data visualisation. Semi-Supervised Learning combines labeled examples with unlabeled

examples on the training process with the aim of making a better model. Reinforcement Learning
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includes models with different states containing associated actions. Depending on the actions, a

reward can be assigned, being the final goal of these models the maximization of those rewards

[73].

2.2.1 UNSUPERVISED LEARNING

The main characteristic in this class of ML is the use of unlabeled data sets. This class

encompasses processes that aim to retrieve relevant data aspects. These processes can be

divided into 3 groups: clustering (e.g. Document Clustering by different topics), dimensionality

reduction (e.g. PCA and t-SNE) and outlier detection [71, 72]. These methodologies are normally

used in data visualization, data dimensionality reduction, noise removal and interpretation of

possible data correlation. Such correlations may ease the understanding of the entire data set.

Considering the various existing applications, Unsupervised ML can be used as a previous step

to a Supervised ML model [7].

Since Dimensionality Reduction has the capacity to represent data in fewer dimensions, the

current project will make use of these functionalities to visualise and interpret data. Principal

Component Analysis (PCA), non-negative matrix factorization, and recent approaches such

as t-Distributed Stochastic Neighbor Embedding (t-SNE) and autoencoders, are some of the

preferred dimensionality reduction approaches [6]. For generic data visualisation, Dimension-

ality Reduction aims to reduce the number of the data set dimensions to either two or three

dimensions, while simultaneously maximizing relevant information. These new dimensions ease

data visualization with, for instance, a scatter plot.

Principal Component Analysis (PCA)

PCA was initially created by Pearson in 1901 [74] and later developed by Hotelling [75]. Using

data transformations through singular value decomposition (SVD) or the eigenvectors of covari-

ance, PCA creates orthogonal variables (Principal Components), which represent the existing

correlations between variables [76]. These Principal Components vary from highest to lowest

variance explained in the data (PC1 will explain a higher proportion of the variance than PC2,

which will explain in turn a higher variance than PC3, and so on) [73]. Moreover, one Principal
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Component (e.g. PC2) will explain data variance that will not be present in the previous Principal

Component (e.g. PC1). Some significant limitations of PCA include its dependence on data and

immutability for the user, the latter making it impossible to tune with a priori knowledge [76].

t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE [77, 78] is an improved Dimensionality Reduction version of an older algorithm called

Stochastic Neighbor Embedding (SNE) [79]. SNE gives a spatial location to dataset points

into a two or three dimensional map. Secondly, it calculates Euclidean Distances which are

then converted to conditional probabilities using a Gaussian Distribution. These conditional

probabilities are a representation of the similarities between points (i.e. similar points will have a

higher conditional probability). Despite satisfactory results, this algorithm presented limitations.

A prime example is the optimization process and what Maaten and Hinton [77] call a ”crowding

problem”, referring to points overlay due to high proximity. To solve this particular limitation,

t-SNE implemented the Student-t distribution on a low-dimensional map and changed the cost

function used. t-SNE then presented an improved data visualization. Still, the major limitation

of t-SNE is its inability to transform data into more than three dimensions. Yet, this is not

significantly problematic, since t-SNE is mostly used for low-dimension data visualization [78].

Autoencoders

Autoencoders were implemented using neural networks (section 2.3.1) for dimensionality reduc-

tion. The fundamental idea of Autoencoders is the use of a hidden layer with fewer neurons

between same-length input and output layers [80]. This step forces the algorithm to learn a

low-dimensional input representation. Even though the output has equal length as the input, it is

expected to solely keep the most relevant features of the input [81]. Autoencoders were firstly

implemented by Rumelhart et al. in 1985 [82], and a significant progress was made by 2006

when compared to PCA [83]. Recently, beyond Dimensionality Reduction and Feature Learning,

Autoencoders have been used to improve and accelerate the data processing step [6]. The main

limitation of Autoencoders still remains on their reliance on vasts amounts of available data [6].



2.2. Machine Learning 17

2.2.2 SUPERVISED LEARNING

In contrast to Unsupervised Learning, Supervised Learning relies on a labeled data set. The

used data sets should contain a set of feature vectors with associated annotations. Upon

completion of the training process, a new instance on the form of a feature vector can be

introduced to predict its result. Depending on the final label type, supervised learning models

can be categorized, for instance, as a classification (i.e. discrete variables) or a regression

(i.e. continuous variables) model, the two most frequent tasks of Supervised Learning [7,

84]. Examples of algorithms used in Document Classification include Naı̈ve Bayes, Logistic

Regression, Decision Trees, Support Vector Machines, Ensembles (e.g. Bagging and Boosting),

k-nearest Neighbors, Random Forests and Neural Networks (mainly for DL) [5, 6].

2.2.3 EVALUATION OF MACHINE LEARNING MODELS

Supervised ML classifiers can be evaluated by a comparison between the models’ predictions

and the real values. For binary classification problems, this leads to values for True Positives (TP),

True Negatives (TN), False Positives (FP) (Type I error) and False Negatives (FN) (Type II error).

In this project, relevant documents and non-relevant documents will be positive and negative

instances, respectively. Those instances are considered True when the model hits a prediction.

Based on these values, frequently seen as a confusion matrix, one can compute different

metrics such as Accuracy (Equation (4a)), Recall (Equation (4b)), Precision (Equation (4c)),

F1-score (Equation (4d)) [85] and Matthews correlation coefficient (MCC) (Equation (4e)). All

these metrics range between 0 and 1 (a score of 1 meaning the best result possible), with

exception of MCC which ranges between negative and positive unity and is often applied to

imbalanced data sets [39].

Accuracy =
TP + TN

TP + TN + FP + FN
(4a)

Recall =
TP

TP + FN
(4b)
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Precision =
TP

TP + FP
(4c)

F1 = 2× (Precision× Recall)
(Precision + Recall)

(4d)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4e)

In the case of document ranking, a metric commonly used is Average Precision (Equation

(5)), which calculates the average precision of documents classified as relevant ordered by their

confidence score, with n representing all the classified documents [73]. Thus, this metric is able

to harshly penalize FP on the top of the retrieved rank and highly reward TP on those same

positions.

Average Precision =
∑n

k=1(Precision(k)× relevance(k))

|{relevant documents}| (5)

Frequently, in binary classification systems, these metrics may be complemented with

Receiver Operating Characteristic (ROC) curves [86], Precision-Recall (PR) curves and their

associated Area Under the Curve (AUC) measure [87, 88]. ROC plots True Positive Rate (TPR)

(also known as Recall) against False Positive Rate (FPR) (FPR = FP
FP+TN = 1− speci f icity),

whereas PR plots Precision against Recall. In cases of data imbalance containing few positive

documents (relevant documents), ROC curves may give misleading results, once ROC curves

do not consider FN instances. Because of that, in those cases, PR curves should be used

instead [84]. Both ROC and PR curves have an associated AUC measure that is frequently

used to compare distinct classifiers. This measure can range from 0 to 1 with a score of 1 being

the best possible classifier.

All these metrics are used to compute both training and generalization errors of the models.

To that end, the data set has to be previously divided into a larger set and a smaller set for

training and test purposes, respectively. To provide an unbiased score of the model, the test

set may never be used in its training process. For the hyperparameter optimization, a small

training sub-set may also be used as validation set [81]. Commonly, a validation technique

named k-fold cross-validation is applied to provide a more realistic and robust model evaluation.
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This technique splits the training set into k non-overlapping sub-sets. Subsequently, for each

interaction in a total of k interactions, cross-validation technique uses one sub-set as test set and

the remaining as training set, computing for each interaction the resultant evaluation metrics.

2.3 DEEP LEARNING

DL, a sub-field of ML (Fig. 4), has recently achieved impressive results, becoming the sub-field

of ML with most significant progress in the past years [7]. Through the implementation of Deep

Neural Network (DNN)s, improved solutions were found to classical Artificial Intelligence prob-

lems, such as image classification, speech recognition, handwriting transcription, autonomous

driving and search results [7, 89].

Artificial
Intelligence

Machine
Learning

Deep
Learning

Fig. 4 – Deep Learning’s location in the field of Artificial Intelligence. Adapted from [7]

Unlike traditional ML algorithms, DL does not need the extensive and time-consuming

process of feature engineering, since architectures of DL have the capacity to learn data

representations [7]. In addition, those data representations may even contain hidden interactions,

which could pass unnoticed with handcrafted features. Moreover, DL even provides scalability,

complexity, architecture adaptability and most importantly, improved performance in diverse

tasks [6]. Nevertheless, DL also has downsides, for instance, its requirement of large amounts

of available data. Besides, the use of large quantities of data makes the models’ training process

computationally expensive and consequently time-consuming (Table 2).
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Table 2 – Deep Learning’s Advantages and Limitations [6, 7]

Advantages Limitations

- No need for extensive

feature engineering
- Requirement of large amounts of data

- Architecture adaptability - Long training process

- Scalability - Difficulty to choose structure and architecture

- High complexity

and abstraction
- Uninterpretable hidden layers’ output (in most cases)

2.3.1 NEURAL NETWORKS

Despite the recent DL popularity, the first article related to an Artificial Nerual Network (ANN) is

now more than 70 years old [90]. Not long after that publication, in 1957, an artificial neuron,

Perceptron, was created [91]. Perceptrons would be of enormous importance, as they are one

of the basis of the currently used complex ANNs.

The Perceptron (Fig. 5) first receives an input vector (x1, x2, ..., xn) and an weight vector

(w1, w2, ..., wn). The weights are present on the connections between the inputs and the node

of the perceptron. The node then sums the weighted inputs Z = (w1x1 + w2x2 + ... + wnxn),

which will become the input to the step function ( f ). Initially, two step functions were normally

used for the Perceptron: Heaviside step function and sign function (Equation (6) and Equation

(7), respectively). The result of the step function represents the output of the Perceptron:

hw(x) = step(xTw).

heaviside(z) =


0, if z < 0

1, if z > 0
(6) sgn(z) =


−1, if z < 0

0, if z = 0

+1, if z > 0

(7)

Perceptrons, however, presented substantial limitations in solving certain types of nonlinear

problems (e.g. XOR problem). It was later discovered that such limitations could be surpassed

by stacking multiple Perceptrons, giving rise to the Multilayer Perceptron (MLP) [84].

MLPs are ANNs which can present one or more layers between the input and output layers.

These layers, named hidden layers, produce outputs which are normally not seen/used by the
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Fig. 5 – Diagram of the perceptron architecture (with f representing the step/activation function). Adapted
from [92]

user, a characteristic that gives ANNs their known ”black box” nature. With exception for the

output layer, all the remaining layers of an ANN (hidden layers and input layer) present an

additional bias neuron (normally x0 = 1) with an associated weight [84]. Those weights and

bias values are the parameters of the ANN which are after adjusted in the training process [7].

Once step functions of Perceptrons did not have the required gradients for the training process,

MLPs had to replace those step functions with activation functions, such as sigmoid function

(σ(z) = 1
1+e−z ) and hyperbolic tangent function (tanh(z) = 2σ(2z)− 1)) (Fig. 6). In addition,

those activation functions provide non-linearity to models, resulting in a significant increase of

complexity and abstraction of models. This fact facilitates the approximation of DL models to

real life problems [84, 89].

In 1986, a well-known training algorithm emerged, named Back-Propagation [93]. Back-

propagation is divided in two main steps: the forward pass and the backward pass. Firstly, the

forward pass computes an output value. Then, through a cost function (e.g. Mean Squared Error

(MSE)), Back-propagation measures the error obtained on the output’s prediction by comparing

it with the desired output. After that, the algorithm goes from the ANN’s output layer to the input

layer (backward pass), through a chain rule process, to measure the connections’ influence on

the previously measured error. In the end, Back-propagation relies on an optimization algorithm

(e.g. gradient descent) to adjust the model’s parameters according to their previously measured

influence, in order to minimize the difference between the predicted and real values [7, 84].

Despite the successful implementation of Back-Propagation, ANNs were not as popular

as they are now. This may be explained by the appearance of successful SVMs in the field
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of ML. The current popularity of ANNs is heavily influenced by recent works [94] that used

deeper architectures, named DNNs. For instance, Krizhevsky et al. [95] got an improvement

of more than 10 percentage points of accuracy, using a CNN, which is a type of DNN, for

image classification on the ImageNet competition. With the DNN’s emergence, other activation

functions appeared, such as Rectified Linear Unit (ReLU) (ReLU(z) = max(0, z)) (Fig. 6),

becoming the most popular function used in the last years [89]. Likewise, other alternatives

regarding Back-propagation functions appeared. For example, loss functions such as cross-

entropy and hinge [42]) and optimization algorithms such as Stochastic Gradient Descent and

Adam Optimizer [96]).

σ(z) =
1

1 + e−z tanh(z) = 2σ(2z)− 1 ReLU(z) = max(0, z)

Fig. 6 – Representation of the most commonly used activation functions.

The selection of both loss and activation functions for the output layer depend directly on

the task [7], being the most common choices presented in Table 3.

Table 3 – Selection of last-layer activation and loss functions. Source: [7]

Problem Type Last-layer activation Loss Funtion

Binary classification sigmoid binary crossentropy

Multiclass, single-label classification softmax categorical crossentropy

Multiclass, multilabel classification sigmoid binary crossentropy

Regression to arbitrary values None MSE

Regression to values between 0 and 1 sigmoid MSE or binary crossentropy
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Since, in this work, we will be dealing with a binary classification problem, we will then

have to use a sigmoid function as activation for the output layer and binary crossentropy as

loss function. This function is commonly computed with the following Equation (8), where N

represents the total number of training examples and yi pred represents the predicted probability

for a certain instance (i).

J = − 1
N

N

∑
i=1

yi real × log(yi pred) + (1− yi real)× log(1− yi pred) (8)

2.3.2 TRAINING PROCESS

Training a Deep Neural Network is a complex and computationally expensive process that

consists in 3 main steps:

1. Send the input examples through the network to get the predictions;

2. Compute the loss function by comparing predictions with their real values;

3. Adjust weights of the model in order to minimize the difference between the predicted and

real values.

When this training loop goes through all the training examples it finishes an epoch (the

number of epochs is a hyperparameter of the model that must be fine-tuned) [7]. Moreover, on

the first epoch, model weights are commonly randomly initialized, following certain distributions.

Furthermore, and as previously mentioned, the adjustment of weights/parameters can be done

by using distinct optimization algorithms. These algorithms can be used to either minimize a

function f (x) or maximize it by minimizing − f (x).

In addition, these algorithms have different associated parameters that change their be-

haviour, with the most important one being learning rate η, which determines the step size of the

update performed on weights. The learning rate is a really important parameter when training

models since a too small η may result in a really slow learning process, while a too large η may

not converge to a minimum. Some of the currently available algorithms are [81, 97, 98]:

• Batch/Vanilla Gradient Descent: Updates model parameters (θ) by computing gradients

for the entire training set (θ = θ − η × ∇θ J(θ)). This optimizer has the advantage of
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ensuring the convergence to a global minimum in a convex error surface or local minimum

in the case of a non-convex error surface. This process is normally slow, since it needs

to compute gradients on the entire dataset to make only one update. Additionally, this

algorithm does not work on large datasets that cannot fit in memory. For these reasons,

other alternatives emerged to optimize this implementation.

• Stochastic Gradient Descent (SGD): Algorithm that optimizes Batch Gradient Descent

by computing gradients for each training example, instead of using the entire dataset at

once (θ = θ − η ×∇θ J(θ; x(i); y(i))). Despite being more efficient, this algorithm may not

converge to a minimum since it keeps overshooting, which introduces instability to the

model. Nevertheless, this can be countered by using a smaller learning rate that will

approximates SGD to the Batch Gradient Descent behaviour.

• Mini-batch Gradient Descent: An optimizer that aims to get a balance between the two

optimizers above by using mini-batches of the training set (i.e. non-overlapping sub-sets

of n training examples) (θ = θ − η ×∇θ J(θ; x(i:i+n); y(i:i+n))). When using mini-batches

of small size, instability can also be introduced in the model, which can be countered by

fine-tuning the mini-batches size. In this way, it is possible to achieve the best balance

between quality and efficiency. When using mini-batches, an epoch is divided in k iterations,

calculated by k = number of training examples / batch size. Fundamentally, k represents

the number of times that parameters are updated. This means that for SGD, once it

updates parameters for each training example, the number of iterations will be equal to

the number of training examples. Moreover, and since Mini-batch Gradient Descent and

SGD can still be a little slow and have high fluctuation when training a model, momentum

would be posteriorly introduced in these algorithms to accelerate and smooth the training

process. Basically, momentum consists of using the history of previous gradients and an

associated hyperparameter v with the latter determining the influence of those previous

gradients when computing new ones.

• Adaptive Gradient Algorithm (AdaGrad): Contrarily to the above optimizers, where the

learning rate is practically fixed, AdaGrad learning rate η is adjusted based on the existing

parameters (i.e. sets a larger learning rate for parameters that are distant from the optimum

and a smaller learning rate for parameters that are near to the optimum). Thus, AdaGrad is

highly recommended when handling sparse data. AdaGrad updates model parameters by
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using Equation (9), where θi represents each parameter at a certain time-step t. To adjust

the learning rate, this algorithm uses the computed gradients on the previous time-step

and a constant ε that prevents a division by zero.

θt+1,i = θt,i −
η√

Gt,ii + ε
×∇θt J(θt,i) (9)

This automated process of adjusting learning rate eliminates the need to fine-tune this

hyperparameter, when using this algorithm. However, due to the tendency of the denomi-

nator to increase with each time-step, the learning rate can evolve to a overly small value,

which can make the model to stop learning sooner than expected.

• Root Mean Square Propagation (RMSprop): this optimizer aims to eliminate the problem

of AdaGrad learning rate becoming extremely small by using a different equation to

adjust the learning rate (Equation (10), where gt represents ∇θt J(θt)), with 0.9 being the

recommended value for the hyperparameter γ.

θt+1 = θt −
η√

(γE[g2]t−1 + 0.1g2
t ) + ε

× gt (10)

• Adaptive Momentum Estimation (Adam): a more recent optimizer that combines the

learning rate adjustment technique from RMSprop with momentum. This way, this algo-

rithm provides a faster convergence to an optimum and an automated adjustment of the

learning rate throughout the model training. To use Adam, two more hyperparameters are

needed: β1 and β2, with the recommended values being 0.9 and 0.999, respectively. The

equations used by Adam are (11), where the numerator of v̂t represents the exponentially

decaying average of previous squared gradients and the numerator of m̂t represents the

same but for ”non-squared” gradients.

m̂t =
β1mt−1 + (1− β1)gt

1− βt
1

(11a)

v̂t =
β2υt−1 + (1− β2)g2

t
1− βt

2
(11b)

θt+1 = θt −
η√

v̂t + ε
× m̂t (11c)
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• AdamW: a variation of the Adam algorithm that allows the implementation of weight decay,

a regularization technique that will be explained in subsection 2.3.3. The authors of this

algorithm argue that, contrarily to SGD, the common weight decay does not perform as it

is supposed to, when using Adam. For that reason, they implemented a variation called

”decoupled weight decay” (λθt), which can be seen in Equation (12).

θt+1 = θt − η × (
m̂t√

v̂t + ε
+ λθt) (12)

2.3.3 REGULARIZATION

Fig. 7 – Graph representation of underfit-
ting vs. overfitting. Adapted from
[81]

Two important concepts when training a ML model are

underfitting and overfitting. Underfitting refers to the

stage where a model is still learning the patterns of

interest to make predictions on unseen data. While,

on the opposite, overfitting refers to the stage where a

model starts to learn too specific patterns (noise) from

the training data that are not relevant for the prediction

of new instances. When training a model, it is then

important to find the best trade-off between these two

phenomena (Fig. 7). The model capacity to predict

new instances correctly is also called generalization. In

general, ML models tend to overfit after some training,

which in the case of complex DL models, can be even more preponderant. So, it is of importance

to control overfitting in those cases, which can be done with different regularization techniques,

with the most simple one being the reduction of model complexity [7].

L1 and L2

Another option to reduce overfitting is by making weight regularization. This can be done with

both L1 regularization and L2 regularization, the latter being sometimes called as weight decay.

These techniques apply a regularization term to the loss function with the purpose of decreasing
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the weights’ scale. While L1 regularization uses the absolute value of the weight coefficients

proportionally as regularization term, L2 regularization uses as regularization term the square

value of those same coefficients [7, 81].

Dropout

Dropout is a really popular regularization technique that tries to prevent a model from learning

too specific patterns from the training data by randomly removing a fraction of neurons in a

specific layer (Fig. 8). This is commonly done by converting a set fraction of outputs of a specific

layer to zero. However, since dropout is only applied while training a model, when testing the

model the inputs of layers trained with dropout need to be scaled using the same fraction used

when training these layers. A huge advantage of dropout, beyond its commonly high positive

impact, is the fact of being a computationally inexpensive technique [7, 81].

Fig. 8 – Dropout representation using different fractions.

Early Stopping

Another commonly used technique to prevent overfitting is the application of early stopping during

model training. Basically, early stopping consists on the use of a validation set to evaluate the

model generalization capacity after each epoch. Early stopping acts on the model by stopping

training when the evaluation metric used (commonly the cost function) is declining on the

validation set for a certain number of epochs (this number of epochs has to be previously set and

is commonly know as patience). This technique is also usually combined with ModelCheckpoint

that can be used to either save the model weights after each epoch or to only save model

weights after the epoch that got the best result on the validation set [7].
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2.3.4 CONVOLUTIONAL NEURAL NETWORKS

CNNs are a specific type of Feedforward Neural Networks with the significant advantage of

reducing the number of train parameters over a common DNN. Current CNNs were first

introduced in 1990 by Lecun et al. [99], with the development of a CNN capable of classifying

images of handwritten digits. Relying on the Back-Propagation algorithm to adjust the model

parameters, this CNN obtained a low error rate of 1.1% for the image classification task. Most

recently, CNNs have been similarly shown satisfactory results regarding Text Mining tasks [100],

such as semantic parsing, search query retrieval, and especially, text classification.

Traditionally, a Convolutional Neural Network (CNN) comprises convolution layers, pooling

layers and one, or several, dense layers. Convolution and dense layers rely on associated

activation functions (commonly ReLU for convolution layers and ReLU, sigmoid or softmax

(so f tmax(z)i = exp(zi)

∑K
j=1 exp(zj)

) for dense layers). Later on, combinations of these layers resulted in

well-known architectures, including LeNet-5 [101], AlexNet [102], GoogLeNet [103], VGGNet

[104], and ResNet [105].

Convolution Layer:

Contrarily to a Dense layer, Convolution searches for local rather than global patterns. With this

strategy, a convolution layer has a higher capacity to recognize, in arbitrary locations, a pattern

found elsewhere. These layers contain a convolution operation (∗), which converts the input

tensor (I) into an output tensor (O). To achieve that, convolution uses a Filter (F), referred to as

Kernel, containing a set of weights, which will be adjusted during the model training process. In

a CNN, the weight matrix, or parameters, which can include an additional bias, is always smaller

than the input tensor. In a 2D convolution, the output with a size of (x, y) is obtained with the

Equation (13) [81].

O(x, y) = (I∗F)(x, y) = ∑
i

∑
j

I(i, j)F(x− i, y− j) (13)
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In Document Classification, 1D Convolutions are commonly applied. Although the input

tensor is conventionally a 2D vector (e.g a matrix with n words and a Word Embedding of size j

(Equation (14))), the filter is solely applied to the word related variable (Fig. 9) [106, 107].

O(x) = (I∗F)(x) =
∞

∑
a=−∞

I(a)F(x− a) (14)

Applying an activation function (Activation) and a filter (F) with a certain window size (w)

to an input sequence (I), and then adding a bias (bias), we obtain the following Equation (15)

which is computed for every input window [70].

C = Activation(F•In:n+w−1 + bias) (15)

Beyond filter size, convolution layers have other parameters, including padding and stride.

Padding refers to values that can be added around the input tensor with the purpose of getting

an output with the same size of the input. A common example is the zero padding, where all the

added values are zero. Stride refers to the step that the filter takes when it goes through the

input tensor. In a 2D convolution, stride may have different values for width and height [7].

Convolution layers contribute advantageously to CNNs, once these layers contain sparse

weights by using a small filter. This causes the convolution layers to reduce the output dimensions

but, at the same time, maintain the most important features. A second advantage is parameter

sharing, which results from the use of the same filter across all the input tensor. This eases the

training process as the number of learning parameters has lowered. It is also worth mentioning

equivariant representations, which causes that a shift on an input be reflected on the respective

output [7]. Lastly, it is important to note the major disadvantage of convolution layers, namely

their difficulty in determining filter dimensions [108].

Pooling Layer:

Currently, several pooling operations are available, including max pooling, average pooling,

L2 norm, weighted average pooling, among others.

Max pooling and average pooling are two commonly used poolings. Similarly to a convolu-

tion operation, pooling may present different sized dimensions, and a stride option, which acts

in the exact same way. Max pooling (normally, the most successful pooling [7]) computes a
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mathematical operation for each window with a predefined size, outputting the highest value

within that window (Fig 9).

Pooling can be interesting when we are more interested in the presence of certain features

rather then their location. This is possible due to the representation invariance of pooling, i.e.

the learned function is flexible to variations in small translations [81].

Moreover, pooling has further advantages including dimensionality reduction, ”dimension

standardizer” (i.e. it can limit the size of different sized inputs), and improved training process

efficiency, since this layer does not rely on learning parameters [81]. Examples of pooling

disadvantages include the tendency to lose relevant information and the fact that invariance

is not always desired [84]. In Document Classification, max pooling can be useful in the

identification of semantic keywords by the DL model [109].

Fig. 9 – CNN operations such as 1D Convolution on a Word Embedding matrix and 1D Max pooling on
the resulting feature maps from the Convolution step. Adapted from [110]

2.3.5 RECURRENT NEURAL NETWORKS

One problem with CNN and DNN models is that they receive the input as a whole, not taking

into account the order of appearance of the input elements [7]. For sequential problems, such as

text (i.e. a sequence of words/characters), these models can result in loss of information which
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would, otherwise, be obtained through the words’ order [73]. Therefore, RNNs have been used,

often together with CNNs [9], to overcome this obstacle.

RNNs make use of a loop which iterates over its different hidden states (Fig. 10). In a

simple RNN, for each given state, an output can be computed using the previous state. After,

the same state is updated with the resulting output. This mechanism simulates a memory, where

each output is calculated with information that was previously seen by the model [7]. RNNs have

different applications such as sequence labeling, classification and generation [73].

Fig. 10 – RNN model’s architecture (A) and its unfolded version (B). f represent the activation functions
and W the different weight matrices of the model. Adapted from [7] and [111], respectively.

RNNs can be divided into different types of architectures, regarding the number of input-

s/outputs (e.g., one-to-many, many-to-one and many-to-many). The architecture is selected

according to the desired task. In a many-to-many case, three matrices are used: firstly, one

between the input and the hidden state (W1); secondly, one between the hidden states (W2); and

thirdly, one between the hidden state and the output (W3). These matrices, coupled with two bias

vectors (bias1, bias2), are the parameters that will then be learned by the model (often using the

Back-Propagation Through Time algorithm [112]). The forward propagation of a many-to-many

model, starts with the hidden state at time-step 0 (s(0)) with a zero value. For consequent

time-steps, the following equations are applied (16) using activation functions (e.g. tanh, softmax

(Activation)) and an input for each time-step (it) [81]:

z(t) = W1 × i(t) + W2 × s(t−1) + bias1 (16a)

s(t) = Activation(z(t)) (16b)

o(t) = W3 × s(t) + bias2 (16c)
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ŷ(t) = Activation(o(t)) (16d)

RNNs present several positive characteristics including its elasticity to different sized inputs

and different data types [111]. However, it was found that RNNs struggle to store long-term

sequences, due to a vanishing and exploding gradient problem [113, 114] when training the

model. RNN variations, such as LSTM and GRU were later developed to tackle this problem.

Bidirectional RNNs [115] also emerged to enable the processing of the input sequence in

both directions. This property is particularly relevant in different scenarios such as Document

Classification [9]).

2.3.6 LONG SHORT-TERM MEMORY

LSTMs [116] are a type of gated RNNs, with improved efficiency over standard RNNs [81].

Such improvement results from the implementation of memory blocks (Fig. 11) containing

multiplicative gates and one or more memory cells, each with an associated recurrent self-loop.

This technique solves the vanishing gradient problem in RNNs [111].

Fig. 11 – Representation of a memory block with a single memory cell from a LSTM model. This memory
block contains an input gate, a forget gate and an output gate. The circles with the X represent
the multiplication operations that occur within the memory block. Peephole connections are not
present for simplicity purposes. Adapted from [111]

Initially, LSTMs comprised merely two nonlinear gates: the input gate and the output gate.

Later on, some other improvements were implemented, such as the nonlinear forget gates [117]
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and the peephole connections [118]. All these gates allow the use of data inputs from previous

states of the model, as information for later states. Due to the absence of the vanishing gradient

problem, LSTMs reached the ability to carry information for a larger number of states, when

compared to RNNs [7, 111].

Similarly to RNNs, LSTMs have an initial state with a zero value. For the following states,

different equations are recurrently applied to each memory block [111]. Despite having particular

values for the model parameters (as weight matrices (W1, W2, W3) and bias vectors bias), all the

3 gates (input (g1), forget (g2) and output (g3) gates) are computed for each memory block n and

time-step t, using the same formula (Equation (17)).

g(t)
n = Activation(∑

j
W1

g
n,ji

(t)
j + ∑

j
W2

g
n,js

(t−1)
j + biasg

n) (17)

Regarding the cell memory (c(t)
i ), Equation (18) is used to update its state.

c(t)
n = g2

(
nt)c(t−1)

n + g(t)
1 Activation(∑

j
W1n,ji

(t)
j + ∑

j
W2n,js

(t−1)
j + biasn) (18)

The cell output (s(t)
n ) is computed by Equation (19), where (g3) refers to the output gate.

s(t)
n = Activation((c(t)

n )g3
(t)
n ) (19)

Frequently, the activation function (Activation) applied to the gates is the logistic sigmoid,

where a result of 0 represents a closed gate and 1 an opened gate. For the cell input and output,

beyond logistic sigmoid, Tanh can also be applied [111]. Although LSTMs can have an equal

number of inputs/outputs of an RNN, due to necessary weight matrices and bias for each gate,

the total number of parameters in the model is consequently higher [81].

Variations of standard LSTMs have also been used, including Deeper LSTMs [119, 120]

and Bidirectional Long Short-Term Memory (Bi-LSTM) [121, 122]. For instance, Zhou et al. [123]
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implemented a feature selection algorithm for relation classification using a Bi-LSTM with an

attention mechanism.

2.3.7 GATED RECURRENT UNITS

Due to the complexity and high number of parameters, LSTMs can be challenging to train. GRUs

[124], with its lower number of multiplicative gates, are simpler alternatives to such models [125].

Despite their simplicity, GRUs can compute similar results when compared to LSTMs [126–128].

Furthermore, GRUs can also show a better detection of long-term dependencies than LSTMs

[129].

GRUs rely solely on two gates: an update gate (g4) and a reset gate (g5). Similarly to

LSTMs, these gates have their own values for the model parameters (W1, W2, bias) and are

computed with the Equation (20).

g(t)
n = Activation(∑

j
W1

g
n,ji

(t)
j + ∑

j
W2

g
n,js

(t−1)
j + biasg

n) (20)

These gates can select information for the next states, i.e. an update gate of 1 means

that information of the previous states stays preserved, while for a value of 0, the target state

information is the one prevailing. A reset gate selects, by non-linearity, which information of the

current state is kept to the next state [81]. The output (s(t)
n ) is computed by Equation (21). As for

the LSTMs, activation functions (Act) can be for instance logistic sigmoid or tanh.

s(t)
n = g(t−1)

4n
s(t−1)

n + (1− g(t−1)
4n

)Act(∑
j

W1n,j i
(t−1)
j + ∑

j
W2n,j g

(t−1)
5j

s(t−1)
j + biasn) (21)

GRUs also have their variations, including Bidirectional Gated Recurrent Unit (Bi-GRU) and

Minimal Gated Recurrent Unit (M-GRU) [130], where the reset gate is removed from the model

leaving only the update gate. Fergadis et al. [40], developed a pipeline with two Bi-GRUs with

attention layers, acting as sentence encoder and document encoder, and a final fully connected

layer to make the binary classification.



2.3. Deep Learning 35

2.3.8 ATTENTION MECHANISM

Attention mechanisms/attention layers are a recent approach developed by Bahdanau et al. in

2014 [131]. Firstly introduced within an encoder-decoder model for neural machine translation,

this mechanism relies on the computation of weights that determine how much attention is given

to certain inputs when producing outputs. By reducing the long distance dependencies, this

mechanism is capable of reducing the impact of the short-term memory limitation of RNNs [132].

Yet, RNNs and attention layers are in many cases combined in a same model.

Later on, this mechanism would be successfully applied in several other tasks, such as

computer vision, text summarization, information extraction, or document classification. [133].

Commonly in document classification, this mechanism is applied to capture the most impor-

tant words/sentences that are used to produce a sentence and a document vector, respectively.

For those cases, the common implementation uses the following equations (22), which in this

particular case are used to produce a sentence vector senti (Equation (22c)) [8]. In this regard,

the authors used a word annotation hi,t that goes through an one-layer MLP, which returns a

hidden representation ui,t of this same word annotation. This hidden representation is then used

in Equation (22b), where the authors manage to get the importance weight αi,t by comparing

the similarity between the the word representation ui,t and a context vector uw, a fixed-size

vector that is updated throughout the model training process. Finally, this computed similarity is

normalized with a softmax function. The final sentence vector is then computed with a sum of all

word annotations weighted by the resultant attention weights [8].

ui,t = tanh(Wwhi,t + bw) (22a)

αi,t =
exp(u>i,tuw)

∑t exp(u>i,tuw)
(22b)

senti = ∑
t

αi,thi,t (22c)

One advantage of attention mechanisms is their interpretability. For instance, Yang et al.

[8] discovered that words as delicious and amazing had a huge impact when predicting the

sentiment of a review from the Yelp 2013 dataset.
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2.3.9 BERT

Over the years, other attention mechanisms appeared, such as the dot product attention, the

scaled dot product attention, self-attention and multi-head self-attention [132, 134]. Together

with these new attention mechanisms, a new model named Transformer emerged [134]. Once it

does not use any recurrent models, transformers allow the parallelization of the training process,

making it more efficient when compared to those recurrent models.

Transformers [134] follow an encoder-decoder structure, which was mainly developed to

perform neural machine translation. Here, we will be only briefly explaining the encoder structure

since it is the one that we will be using in our work. The encoder is composed of 4 main parts

[132, 134]:

• Positional Embeddings: used to introduce the order information into the model. Since

transformers do not use any recurrent or convolutional models, the authors felt the need

to introduce this information through positional embeddings. The positional embeddings

are used before the stack of encoders. Basically, each positional embedding consists in a

vector with dmodel dimensions that captures the words positions in a certain sentence. To

do that, the authors used two Equations (23), with pos representing the words position and

i the encoding dimension.

PE(pos, 2i) = sin(pos/100002i/dmodel ) (23a)

PE(pos, 2i + 1) = cos(pos/100002i/dmodel ) (23b)

• Multi-head self-attention: based on the scaled dot product attention (Equation (24)),

which uses 3 matrices: one for queries Q, one for keys K and one for values V, with

dk representing the keys dimensions. This mechanism can, in this way, get knowledge,

for instance if a word is a verb or to which subject the word ”it” refers. The multi-head

nomenclature results from the projection of these matrices in a certain number of times n.

Each matrix goes later through an activation function, with its results being concatenated

and projected another time to produce the final values (Equation (25) - WQ
i , WK

i , WV
i , WO

are all parameters learned during the model training process). Lastly, the self-attention

part results from the fact that each sentence pays attention to itself. With all this, the
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encoder is able to go through all the positions in a sentence and give focus to different

words.

Attention(Q, K, V) = so f tmax(
QK>√

dk
)V (24)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (25a)

MultiHead(Q, K, V) = Concat(head1, ..., headn)WO (25b)

• Layer norm and residuals: residuals are used to add the input vectors of a certain

layer to the resultant output vectors of that same layer. After joining them, those grouped

vectors are introduced in the normalization layer. Layer norm is used to normalize the

outputs of either the multi-head self-attention layer or the feed-forward layer by using

LayerNorm(x + Layer(x)).

• Feed-forward network: fully connected feed-forward network applied to each word input

independently and is given by:

FFN = max(0, xW1 + b1)W2 + b2 (26)

Transformers use a stack of N1 transformer blocks/layers as the encoder and N2 layers as

the decoder. In the case of Vaswani et al., both N1 and N2 were set to 6. However, this number

can vary as in the case of Bidirectional Encoder Representations from Transformers (BERT).

BERT [52] consists on the use of the encoder part of transformers and it is available in two

main versions: BERT-BASE and BERT-LARGE with 12 and 24 transformer blocks respectively.

Moreover, BERT-BASE contains 12 self-attention heads and a hidden-size of 768, giving a total

of 110M parameters, approximately, while BERT-LARGE contains 16 self-attention heads and a

hidden-size of 1024, which gives around 340M parameters.

As briefly mentioned in subsection 2.1.5, BERT can be used to produce contextualized

word representations. Also, due to the possibility of pre-training this model with unlabeled

text, one can simply use it with one output layer on top to make predictions. Additionally,

and by introducing bidirectionality in language models through a masked language model, the
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authors were able to overcome different previously developed language models with either

unidirectionality (e.g. OpenAI GPT) or independent bidirectionality. Basically, the MLM pre-

training consists in randomly converting words to a defined mask, which will be used to predict

those same initial words by using the words around them. Apart from the MLM pre-training,

BERT also offers a task for next sentence prediction, which mainly predicts if a sentence comes

after another.

2.4 TRANSFER LEARNING

Transfer learning [135] is a technique commonly used in DL, with a vast number of approaches

implemented for NLP. This technique consists on the transfer of knowledge acquired in a certain

task and domain by a certain model (named source model), to another model (named target

model), which also has an associated task and domain. Additionally, transfer learning offers the

possibility to use knowledge regardless of both source and target models having the same task

and/or domain.

For document classification, pre-trained embeddings are widely used within DL models.

These pre-trained embeddings consist of word representations learned by another model

(knowledge) that are posteriorly transferred to the target model. This technique is an example of

a commonly used type of transfer learning called feature-representation transfer.

With BERT models emerging, other versions pre-trained on specific domains appeared, as

in the case of BioBERT and SciBERT, which were pre-trained with biomedical literature. These

models can be used in 3 different ways:

1. Use of the entire model structure, but training it from scratch (no transfer learning involved).

2. Use of the pre-trained version within the target model and freeze the source weights when

training (feature-representation transfer).

3. Use of a pre-trained version within the target model and fine-tune its weights throughout

the training of the target model (parameter transfer).

One important advantage of transfer learning is that it allows knowledge acquired in large

datasets to be applied on tasks with smaller datasets. This reduces significantly the time
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needed for the training process of those models while incorporates a more complete knowledge,

frequently resulting in improved performances [135].

2.5 HYPERPARAMETER OPTIMIZATION

Hyperparameters are defined as all the ML models’ parameters that are not adjusted during

the training process (e.g.dropout rate, learning rate, optimizer, layer units, etc.). Since these

parameters are static and have an high impact on models, it is of extreme importance to tune

them in advance. This will consequently result in a improved adjustment of the ML model to

the specific problem used, which will accordingly enhance the obtained results. Due to the vast

number of existing hyperparameters and the different possible values that they can take, the

process of hyperpameter optimization should always be performed automatically. If performed

manually, this process can easily become overwhelming to a researcher and subsequently result

in sub-optimal models [7].

Currently, there are many distinct algorithms available for the community, which implement

the hyperparameter optimization process by following different approaches [136]:

• Grid Search: as it name suggests, it creates a grid with the provided hyperparameters.

Then, it iterates through each point on that grid to train a model and consequently evaluate

it. Because it trains models independently, this algorithm can be easily parallelized.

Nevertheless, it is recommended to use this algorithm with only few hyperparameters,

once the number of hyperparameters increase exponentially its computational cost.

• Random Search: variation of grid search, where instead of iterating over each point on

the grid, it generates random points within search space. Therefore, this model needs also

a parameter (commonly called maximum number of trials) to stop the generation of new

points. In most cases, random search is able to return better results when compared to

grid search. As well as grid search, this algorithm can also be easily parallelized.

• Bayesian Optimization: it focuses on the minimization of the maximum number of trials

needed to find a global optimum. For that, it attempts to find the best trade-off between

searching for new information (called exploration) with the use of the already collected data

(called exploitation). The objective of minimizing the maximum number of trials removes
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the need for a user to previously set this parameter. This fact is one of the reasons

why Bayesian optimization outperforms both random and grid search, besides being also

more efficient. However, vanilla Bayesian Optimization cannot be parallelized due to its

sequential process (i.e. one iteration is based on a previous iteration). Also, this algorithm

is highly dependent on computational resources, which makes its application in DL models

a really time-consuming process.

• Hyperband: based on random search for the generation of combinations of hyperparame-

ters, complemented with both early stopping and a better resource allocation to improve

efficiency. This algorithm starts by training different combinations of hyperparameters (the

number of combinations can be set by the user) that are evaluated after a previously set

budget (e.g. number of iterations). After the evaluation, the algorithm discards some of

the worst models. The number of discarded models after the evaluation are also set by

the user. This process occurs until the algorithm reaches a maximum number of epochs,

which once again, should be set by the user.

For shallow ML models, grid and random search are two commonly used algorithms.

However, since DL models have habitually a lot more hyperparameters, grid search is often

not used. Instead, researchers tend to choose one of the other 3 algorithms (Random Search,

Bayesian optimization or Hyperband).

To evaluate models on a certain combination of hyperparameters, a researcher commonly

use either a validation set or cross-validation. Cross-validation tends to give more realistic

scores, although at the expense of taking more time to compute.

2.6 RELATED WORK

Over the years, distinct approaches have been made towards the Document Classification task.

Comparing articles that used traditional ML algorithms for that purpose (Table 4), it is possible

to observe a prevalence of the SVM algorithm over the remaining algorithms (e.g. Logistic

Regression (LR), Random Forest, Naı̈ve Bayes (NB)). Regarding the Feature extraction process,

all articles used term weighting with an high frequency of the TF-IDF method.
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Table 4 – Different ML approaches used to perform Document Classification tasks.
(prec - precision; rec - recall; acc - accuracy)

Author(s) Feature Extraction Models Evaluation Metrics

Chen et al. [137]

Term lists, BOW,

TF-IDF

LR, SVM,

Random Forest

F1, prec, AUC

Seymour et al. [138]

TF-IDF,

Information Gain

SVM, NB, Hierarchical SVM AUC, acc

Genkin et al. [139] TF-IDF SVM, LR F1

Kim et al. [140] Term Weighting NB F1

Chen et al. [141] TF, TF-IDF, TF-IGM KNN, SVM F1

Recently, DL alternatives have been applied for the same task of Document Classification

(Table 5). However, in these cases, all articles relied on Word Embeddings for feature extraction,

instead of term weighting. Furthermore, several articles coupled Word Embeddings with other

feature extraction methods, such as TF-IDF, NER and Part-of-speech tagging (POS). For

instance, Luo, L. et al. [70] obtained improvements in some models when using NER and POS.

For the Deep Learning architectures, models as CNNs, RNNs, LSTMs, CNNs, and their

variations (e.g. Bi-LSTM, Bi-GRU) are some of the models used in these articles. Moreover,

several articles implemented attention layers and a Hierarchical architecture. Hierarchical

architectures allow stacking of DL models, each one being applied in different text levels. For

instance, Yang [8] implemented Hierarchical Attention Networks using two Bi-GRUs as word

and sentence encoders. Inside each encoder, an attention layer was applied to select the

most important words and sentences in the word encoder and sentence encoder, respectively.

This model obtained improvements in distinct data sets when comparing to CNNs, LSTMs

and traditional ML models. Recently, an ensemble named Random Multimodel Deep Learning

(RMDL) was created. This ensemble, which couples a CNN, a DNN and a RNN, attempts

to solve the challenging task of choosing an architecture by turning the task into a learning

parameter of the model. Kowsari et al. [142] achieved improvements over DL and ML models

using the RMDL ensemble in the Web of Science data set.
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Table 5 – Different DL approaches used to perform Document Classification tasks.
(prec - precision; rec - recall; acc - accuracy)

Author(s) Feature Extraction Architechtures Attention Layer Evaluation Metrics

Fergadis et al. [40] Word2vec Hierarchical B-RNN, B-GRU • prec, rec, F1

Dollah et al. [143]

POS, NER,

Word2vec

CNN

acc, prec,

rec, F1

Burns et al. [9] GloVe, fasText

CNN, LSTM, CNN

B-LSTM

• acc

Yan et al. [108]
Document word

sequence embedding

Boltzmann CNN,

CNN+DNB
F1

Abdulkadhar

et al. [109]
Word2vec RCNN prec, rec, F1

Luo et al. [70]
fastText, NER,

POS

LSTM, CNN, LSTM-CNN,

RNN, HieLSTM, Ensemble
• prec, rec, F1

Yang et al. [8] Word2vec
Hierarchical Attention

Networks
• acc

Kowsari et al. [142] TF-IDF, GloVe
RMDL (ensemble of

CNN, DNN and RNN)
acc

Kowsari et al. [144] TF-IDF, GloVe Hierarchical DNN acc



3

D E V E L O P M E N T

In this section, the the overall structure of the developed package (BioTMPy - Biomedical Text

Mining with Python) will be explained. The package can be found on the following link: https:

//gitlab.bio.di.uminho.pt/biotextminingpy/biotmpy together with the relevant documentation.

The package was developed using the Python programming language (version 3.8), which was

chosen for its access to many different available packages that allow an easy implementation of

deep learning models, being Keras and Tensorflow the two main ones used in this work.

3.1 PYTHON PACKAGES

BioTMPy was developed using several free open-source Python packages, which are frequently

used when applying Machine Learning models on NLP. The main ones used in this work were:

• NLTK [145]: package developed to deal with textual data, providing methods to perform

tokenization, stemming, parsing and semantic reasoning;

• Numpy [146]: provides efficient methods to create and process multi-dimensional arrays

using central processing units (CPUs);

• Pandas [147]: developed to manage labeled arrays in two main types of data structures:

Series and DataFrame. Additionally, it offers functions to load data in different file formats

as .csv, and to transform DataFrames into for instance, HTML code;

• Scikit-learn [148]: the main objective of this package is to provide methods to easily

and efficiently implement ML models for supervised and unsupervised tasks. Auxiliary
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functions to perform feature selection, normalization, cross-validation, grid/random search,

and data split are some of the other options available in this package.

• Matplotlib [149]: used to generate graphs that allow data visualization. It provides various

options as barplots, heatmaps, boxplots, scatter plots, etc..

• Keras/Tensorflow [7]: a framework that allows an easy implementation of several Deep

Learning models, complemented with several functions running over those models, allowing

to train, save, load, make predictions, among others. Furthermore, it offers the possibility

to run these models on both CPUs and Graphics Processing Unit (GPU)s. Commonly, this

package is used with Tensorflow as backend, which allows Keras to deal with tensors in

an efficient way.

• HuggingFace’s Transformers [150]: facilitates the use of pre-trained transformers, con-

taining also interoperability for both PyTorch and Tensorflow frameworks.

• Flask [151]: facilitates web development for Python. Some of the main features of this

package are URL routing, template rendering, session management, and HTTP request

parsing.

3.2 BIOTMPY - PACKAGE DESCRIPTION

The main aim of this package is to allow an easy implementation of complex deep learning

models and some shallow machine learning models to perform document classification on

biomedical literature. Moreover, this package offers a module that allows the deployment of

the implemented machine learning models on the form of a web service to rank biomedical

documents. The main users of this package would be people that are either starting to contact

with the world of NLP and/or Machine/Deep Learning, or people that have some scientific

literature that they would like to rank by relevance using an easy-to-use pipeline.

The package is divided in the following modules: wrappers, data structures, preprocessing,

mlearning, pipelines and web (Fig. 12).
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Fig. 12 – Diagram of the overall package structure developed (BioTMPy).

3.3 WRAPPERS AND DATA STRUCTURES

The wrappers module provides a set of alternatives for converting different input files into Docu-

ment objects. Thus, it includes a set of different wrappers for distinct input file formats, namely:

a bioc wrapper, a csv wrapper, a dictionary wrapper and a pandas wrapper. bioc wrapper,

csv wrapper and dictionary wrapper, which are responsible for converting different input files

(bioc.xml, .csv and dictionary.txt formats, respectively (Fig 13)). For that, these wrappers start by

splitting text into sentences with the help of the sent tokenize function from the NLTK package.

Those sentences are then split into tokens using the word tokenize function, again from the

NLTK package. Then, each sentence and token is converted into different instances that are

later saved inside a Document object. Furthermore, this Document object can save attributes

such as document id and title/abstract/full text on both string format and list of token instances.

While creating the Document objects, the user can also select different options to process

his text:

• lower: set to True to remove cased words;

• stop words: set of words (such as ’a’, ’the’, ’of’, ’how’, etc.) to remove from text;

• remove punctuation: set to True to remove punctuation;
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Fig. 13 – Different examples of input files accepted by the distinct developed wrappers.

• split by hyphen: set to True to split compound words by hyphen (e.g. ”membrane-bound”

is split into 2 different words: ”membrane” and ”bound”);

• stems: set to True to perform stemming on words (e.g. ”activities” becomes ”activ”). For

stemming, the package uses the PorterStemmer function from the NLTK package;

• lemmatization: set to True to perform lemmatization on words (e.g. ”activities” become

”activity”). For lemmatization, WordNetLemmatizer from the NLTK package was the one

chosen for this work.

Afterwards, these Document objects can be converted into a dataframe with the pan-

das wrapper, which relies on the pandas package. This will result in a dataframe with 2 columns:

one column with the Document objects, and another column with the associated relevance

(Table 14). The relevance can be used to create an instance of the class Relevance from our

data structures module. Moreover, this class can save the following 4 attributes: label, docu-

ment id, confidence score, which can be saved when a label is predicted, and a description that

indicates the topic of the dataset used on the model training process.
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Fig. 14 – Diagram of the developed pipeline with wrappers and data structures.

3.4 PREPROCESSING

The preprocessing module has the main objective of converting the dataframe produced on

the previous wrappers module into input formats for both shallow machine learning and deep

learning models (Fig. 15). In this way, we can generate the numerical inputs that these models

require to work.

For the shallow machine learning models, this module allows one to generate features on two

levels: sentence level and token level. For the sentence level, it generates some statistics like sen-

tence size (for title, abstract and full text) and number of matches between words in a pre-defined

terms list against summarized text. For the text summarization method, we adapted code from

the following repository: https://gist.github.com/edubey/cc41dbdec508a051675daf8e8bba62c5.

Regarding the word level, different features can be produced too, such as the number of tokens,

number of distinct words after performing stemming, number of stop words, POS tagging, token

size, NER, etc. Furthermore, it is also possible to produce features by computing TF-IDF on all

documents. The creation of all these features will then result in a final dataframe that can be

used on distinct machine learning models.

For the deep learning models, 3 types of inputs can be created: one for common deep

learning models (e.g. CNN, LSTM, GRU), one for hierarchical attention networks and one for

BERT models. For the common deep learning models, and by using the tokenizer selected by

the user to convert words into indexes, a 2D array can be created. This 2D array is composed of

documents on the vertical axis, and words on the horizontal axis. Since all these inputs should

have the same length, 3 parameters need to be selected in order to perform the conversion:

maximum number of words, padding and truncating. The maximum number of words will

https://gist.github.com/edubey/cc41dbdec508a051675daf8e8bba62c5
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determine the length of the horizontal axis, while padding and truncating will be used to equalize

the length of all documents. While padding is used to fill documents containing less than the

set maximum number of words with the value 0, truncating is used for the opposite (i.e. cutting

documents with more than the set maximum number of words). When performing either padding

or truncating, it is necessary to choose where these methods will operate, having for that two

possible options: ’pre’ and ’post’, meaning that these methods will either act at the start or at the

end of the document text, respectively.

Regarding Hierarchical Attention Networks, one additional parameter is needed: maximum

number of sentences. With this parameter, instead of a 2D array, our module will create a

3D array as output. This 3D array is composed of a dimension with documents, another with

sentences and another with words. In this case, the maximum number of words is set for each

individual sentence, instead of the maximum number of words per document. This means that,

for each document, a 2D array will be used as input for the model.

Finally, for Bert models, a list is created containing 3 arrays with 2 dimensions each,

being these arrays equal to the first example (documents × maximum number of words). The

difference in this case - when compared to the first one - is that 2 more arrays are created: one

array to distinguish if the index on the first array is a word index or a padding value (i.e. ’1’ for

a word index and ’0’ for a padding value) and another array to assign each word index to the

associated sentence (i.e. ’0’ if it belongs to the first sentence and ’1’ if it belongs to the second

sentence) (Fig 15). In the case of Bert models, before creating these arrays, two special tokens

need to be added to text: ”[CLS]” and ”[SEP]” tokens. While the ”[CLS]” token is always added at

the start of the text, the ”[SEP]” token depends on the choice of the user regarding the number of

sentences to be used. If the user chooses to use only one sentence, the ”[SEP]” token is added

at the end of the text. However, if the user chooses to use two sentences, the ”[SEP]” token will

be added not only at the end of text, but also between the title and the abstract. This means that,

in this way, the title will be considered as one sentence and the abstract as another sentence.

In addition, and in order to use pre-trained word embeddings, this module offers functions to

convert files containing word vectors into an embedding matrix, which can be later used inside

deep learning models. For that, the user has to pass 5 parameters: embedding path, word index

from the trained tokenizer, embedding dimension, maximum number of words and embedding

format - which can be either GloVe, Word2Vec or fastText formats. For both Word2Vec and
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Fig. 15 – Diagram demonstrating the different types of inputs that can be produced with the preprocessing
pipeline.

fastText models, the function load word2vec format from the gensim package is used to load the

file.

All the parameters such as the ones used for preprocessing text, the ones used to produce

inputs for the models, as well as instances like tokenizers, can be saved as attributes of a Config

object (MLConfig for shallow machine learning models and DLConfig for deep learning models).

Those Configs can later be saved in order to not only evaluate the model afterwards, but to also

ease the process of replicating a certain model. In addition, these Configs have functions for

both saving inputs/features and writing all the results on a .txt file, in case of shallow machine

learning, or a .csv file, when using deep learning models.
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Lastly, this module also provides functions to perform data analysis on the dataset. This

allows not only a comparison between train and test sets, but also between their labels. The

possible comparisons implemented are: top number of words (for every existent n-grams), word

count, number of sentences per document, number of words per sentence, balance of labels,

and Latent Semantic Analysis. It is also possible to perform t-SNE and UMAP using two different

feature extractors: TF-IDF and bag-of-words. For these plots, 3 main packages were used:

Yellowbrick, scikit-learn and matplotlib. Regarding pre-trained embeddings, it is also possible

to visualize the location of the closest word vectors to a chosen word vector as reference.

3.5 MACHINE LEARNING

The developed Machine Learning module is responsible for providing distinct models for both

shallow machine learning and deep learning.

On the case of shallow machine learning, the module also provides functions to train, make

predictions and evaluate the model. The available models can be seen on Table 6. For the

implementation of these models, the scikit-learn package was used, since it offers an easy

integration of those models.

Regarding Deep Learning models (Table 6), the BioTMPy package uses the Keras package

with the Tensorflow backend for the majority of the models, with exception of transformers, where

it uses additionally the Transformers library. All the Deep Learning models were implemented

using the Functional API from the Keras package, allowing the use of several Keras functions,

such as fit, evaluate, predict, save, load, etc..

Table 6 – Distinct available models for both shallow Machine Learning and Deep Learning

Machine Learning Deep Learning

- SVM - DNN / CNN / LSTM / GRU

- Naı̈ve Bayes - CNN-BiLSTM

- Random Forest - Hierarchical Attention Networks

- Nearest Neighbors - Bert / BertForSequenceClassification

- Logistic Regression - SciBert

- Decision Tree - BioBert
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Concerning the implementation of Hierarchical Attention Networks, two attention layers were

created: AttentionLayer and AttentionWithContext. These layers were adapted respectively

from two different sources1,2.

It is also important to mention that for SciBert3 and BioBert4 models, BioTMPy package

uses the transformers-cli function from the Transformers library that can convert a Tensorflow

checkpoint to a Pytorch file. This Pytorch file, coupled with the config.txt file from Bert, can

then be used as a custom layer in the Deep Learning model. This layer is created using the

TFBertModel from Transformers and it can be later used to perform fine-tuning (an optional step

that can be performed by setting the hyperparameter static bert to True). Fine-tuning is optional

since the BioTMPy package offers different versions of models containing BERT with and without

the pre-trained weights being frozen. Additionally, this package has also implemented a specific

model of BERT (also from the Transformers library) named TFBertForSequenceClassification,

which is basically a Bert model with a linear layer on top of the pooled output.

3.6 PIPELINES

On this module, one can access different Jupyter notebook files, which contain examples for the

implementation of all types of models implemented in our package. The main objective of this

module is to give intuitive and step-by-step examples on how to implement pipelines that are

can be used to classify text documents. For that, these pipelines make use of all the previously

mentioned modules: wrappers,data structures, preprocessing and mlearning.

All of these Jupyter notebooks follow a similar structure with some variations depending on

the model used. Also, in these pipelines, it is possible to divide the available data into training

and validation sets by giving the desired percentage for the validation set. This allows a posterior

observation of the training history on the training set and scores obtained on the validation set.

Also, it allows to perform the consequent plots of the resulting scores obtained on those sets after

the training process. Regarding the test set, it is also possible to plot ROC and Precision-Recall

Curves, after performing predictions.

1 https://gist.github.com/cbaziotis/7ef97ccf71cbc14366835198c09809d2

2 https://humboldt-wi.github.io/blog/research/information systems 1819/group5 han/
3 https://github.com/allenai/scibert
4 https://github.com/dmis-lab/biobert

https://gist.github.com/cbaziotis/7ef97ccf71cbc14366835198c09809d2
https://humboldt-wi.github.io/blog/research/information_systems_1819/group5_han/
https://github.com/allenai/scibert
https://github.com/dmis-lab/biobert
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Each run of a model pipeline can be saved within the models folder, which will contain a

.xlsx file named results model name. This file will then contain all the hyperparameters used on

the model and the final results obtained on both training and test sets. In the same folder, other

files can also be saved to ease the replication process. More precisely, a user can save a file

containing weights, a config file and a yaml file describing the model’s structure.

Additionally, all the results achieved during this work can be easily reproduced by using the

same hyperparameters and seed values. This is possible since the developed pipelines contain

a seed option that can be set on the distinct functions that rely on random values. For instance,

when using the preprocessing module, the seed value assures that a user can reuse the same

split of training and validation sets by removing the randomness during data splitting. This will

consequently allow a better comparison of several hyperparameters and/or algorithms.

Regarding the models, setting a seed value provides a control over their weight initialization

by recreating the same initial weights for each training process. Also, the seed is capable of

controlling the behaviour of layers that rely on the use of random values (e.g. dropout layers).

However, it is worth to mention that this same control cannot be applied when using a the

pre-trained BERT models from the Transformers package, since this package does not offer an

option to control the randomness present on the layers of those models (e.g. dropout layers),

For that reason, models containing these custom layers may present some variation associated,

even with a fixed seed value.

Reducing the training time is also a factor of importance accounted during the creation of

these pipelines. In fact, an option to choose multiple GPUs to accelerate the training process

was added, which is available with the MirroredStrategy function from Tensorflow. Thus, this

function offers the possibility to use multiple GPUs that will reduce considerably the training time

of complex Deep Learning models.

Finally, these pipelines also include modules to optimize and evaluate different ML algo-

rithms. For the optimization process, one can easily select different optimization algorithms (Grid

Search/Random Search for shallow ML and Random Search/Hyperband for DL). In addition,

the user can also evaluate the different models by performing cross-validation. Some examples

on how to implement hyperparameter optimization or cross-validation can be found on files

containing either hp or cv within their names, respectively (e.g. cv bert.py and hp bert.py). For

the hyperparameter optimization, an additional file is saved inside the hp results folder containing
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the best hyperparameters obtained with the hyperparameter optimization algorithm selected.

For cross-validation, a .xlsx file is saved inside the models folder containing the hyperparam-

eters used for model training and the respective results obtained on the different folds of the

cross-validation.

3.7 WEB

Lastly, BioTMPy offers the possibility to be deployed as a Web Service using this web module.

The main aim of this module is to create an easy-to-use, interactive and freely accessible

interface that allows a user to rank biomedical documents with our best model developed in this

work. The Web Server can be found on the following link: https://biotmpyppi.bio.di.uminho.pt

This module is composed by the following components:

• app

• templates

• static

• best model

• pubmed reader

• DockerFile

The app file starts by creating a Flask application using the Flask package. Then, the

app starts by rendering the template home.html from the templates folder by using the ren-

der templates function from Flask. In order to style the HTML pages, there is also a styles.css file

written in CSS language that is accessed on the static folder. Also, in order to make the home

page interactive, the static folder contains two other files written in Javascript, which use the

JQuery package. With this, the home page is able to offer different options for the user to input

text documents, such as PubMed IDs, Search Term and PDF files (Fig 16).

All the inputs are converted into text with functions from the pubmed reader.py file. Regard-

ing PubMed IDs, text data is retrieved using the effetch function from the Biopython package.

This function is able to retrieve both title and abstract, given a PubMed ID and email. In the

case of the Search Term, the user has to introduce a search term and the maximum number

https://biotmpyppi.bio.di.uminho.pt
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Fig. 16 – Home page of the BioTMPy Web Service. On this example, the input type selected is the
PubMed IDs.

of documents to retrieve. Subsequently, these inputs are used on the function esearch, equally

from the Biopython package, which returns PubMed IDs from the search results of the PubMed

database. Following that, the retrieved Pubmed IDs are converted into text data by making

use of the first function mentioned. Regarding PDF files, BioTMPy starts by using the function

get title from io from the pdftitle package. This function returns, when available, the title found

on a PDF file. Consequently, this title is used to search the PubMed ID by using the esearch

function, which, in turn, is again used on the first function.

All the retrieved data, which resulted from the inserted inputs, is then converted into a

dictionary. This dictionary is next converted into Document objects using the dictionary wrapper.

Thereafter, those Document objects go through the necessary preprocessing steps in order to

make the final predictions with the best model selected.

In the end, the predicted documents are ranked by the confidence score associated to

each prediction, which are returned as a pandas dataframe. However, before ranking, the

confidence scores of documents predicted as non-relevant have to be converted to negative

values. This way, the returned ranked documents will contain the documents classified as

relevant with the highest confidence score at the top of the table and the opposite at the bottom

(i.e. non-relevant documents with the highest confidence score associated). Lastly, the final
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dataframe is converted to HTML code using the to HTML function from the pandas package.

Thus, the final result can be easily sent to the result.html that is rendered by our app (Fig 17).

Fig. 17 – Results page of the BioTMPy Web Service. This page shows the ranked documents as a table
with hyperlinks of the documents on the PubMed database.

Additionally, this module contains a DockerFile that allows the creation of a container for

the developed app. This way, we can assure the functionality of the app on practically every

machine.

3.8 DISCUSSION

The package developed in this work is divided in different modules in order to make a clear

division of the different steps needed to perform document classification. This also allows a user

to easily adapt code from different modules and use it independently in a different context.

Despite the focus on biomedical documents, this package can also be easily used with

documents from topics not related to the biomedical field since it contains, beyond the biomedical

specific methods, generic methods such as functions to read .csv and .txt files, general feature

extractors (e.g. POS tagging, NER, GloVe) and ML models (e.g SVM, BERT, Hierarchical

Attention Networks, etc.).
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Additionally, and despite our use of a binary classification problem, our package offers the

possibility to be applied on multi-classification problems. Also, we consider that a really positive

feature of this package is the given pipeline examples for the implementation of complex DL

models, which can be a really overwhelming process for someone with little experienced on

those models. Furthermore, this package offers the possibility to make data analysis on text

documents that can give important insights to both select hyperparameters and understand

the models’ results. Finally, it is worth mentioning that the production of different reports of ML

models can really facilitate the comparison between models and also their reproducibility, once

all their hyperparameters are also reported.

One limitation of this package is the implemented hyperparameter optimization process.

Since DL models have a vast number of hyperparameters and structure possibilities (e.g. number

of layers, number of dropouts, dropout rate for each dropout layer, etc.), we faced some difficulties

when making this process simple to use. Because of that, the actual implementation may force

the user to do some manual implementation of the different possibilities that he may want to test.

So, in the next steps of this work, it would be interesting to make this process simpler and more

intuitive, without losing the complexity involved needed. Also, in the future, it may be interesting

to add a configuration file where the user can select all the necessary options for each step (e.g.

feature selector, ML model, optimizer, metrics) and allow to just run a pipeline on the terminal

with that configuration associated. This would possibly facilitate users that may want to classify

documents without going into much detail on the ML models implementation, having only to

create two sets of documents for that (one for model training and one with documents to be

classified).

This package offers the possibility to implement a web server that allows the classification

of documents in a fast and practical way. The web server module is also divided in different

folders, which allows a user to easily adapt it for its needs. However, the developed web server

has also a limitation regarding the uploading of PDF files. This process starts after the upload

of these files by the user, which consequently goes to the web server. There, the web server

attempts to find the title of the documents present in those files. However, the package used to

find titles on PDF files (pdftitle) has some difficulties in doing so in several documents. Hence, it

would be also interesting to improve this process in the future, since it is a highly practical way to
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classify documents. Moreover, one possible improvement is the expansion of the web server to

other scientific databases, rather than using only the PubMed database.

In the future, this package can also be extended to include other BioTM tasks such as

information extraction.
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R E S U LT S A N D D I S C U S S I O N

4.1 DATASET DESCRIPTION AND CHALLENGE OVERVIEW

The first step of this work was the selection of a dataset to perform document classification. For

that, we decided to use a dataset from the track 4 (”Mining protein interactions and mutations for

precision medicine”) of the Task VI from the BioCreative forum1. The topic of Protein-protein

Interactions (PPI) had already been approached by the BioCreative forum in previous tasks,

more precisely, in task III, where teams had to extract articles with PPI mentions. Understanding

PPI has big importance regarding the study of cellular structure and functionality. Because of

that, in this most recent track, they decided to couple this knowledge with information about

mutations, which can alter the behaviour of those PPI. This knowledge has high relevance for

precision medicine, which attempts to improve disease treatment and prevention by adapting

the existing approaches for each individual patient.

For this more recent track, BioCreative decided to challenge different text mining teams of

the biomedical community to compete in 2 distinct sub-tasks regarding this topic: Document

Triage and Relation Extraction. In this work, we chose to only develop the Document Triage

Task that consists on a binary classification problem to identify relevant documents about PPI

altered by genetic mutations. The available data is composed of a training set and a test set with

4082 and 1464 documents, respectively (Table 7). Those documents are composed of id, title

and abstract and were manually curated by curators from the BioGRID database [152]. These

datasets are also available in two formats: json and xml, with the latter being the one chosen for

this work.

1 https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-4/
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Table 7 – Content of the two Datasets from the track 4 of the Task VI from the BioCreative forum.

Dataset Documents Relevant Non-Relevant

Training 4082 1729 (≈42,4%) 2353 (≈57,6%)

Test 1464 730 (≈49.9%) 734 (≈50.1%)

It is important to mention that despite the use of this dataset, the challenge itself already

ended, resulting in a publication in 2019 with all the results submitted by 10 different teams [152].

The BioCreative team allowed each team to submit up to 3 runs, which resulted in a total of 22

submissions. Additionally, it is noteworthy that we already did a previous work using this same

dataset, but applying only shallow machine learning models with a focus on feature engineering

(i.e. implementation of distinct methods to extract features from text). In Table 8, it is possible to

see the best results submitted on the challenge by the participating BioTM teams, together with

the baseline set by the BioCreative team and the best score we got in our previously developed

work. Despite managing to get an f1-score relatively close to the best one submitted, we still

wanted to improve our results by implementing the most recent Deep Leaning models. So, in

this work, we will be using our ML model result as baseline for new implementations.

The team that got the best f1-score and precision metrics used a Hierarchical Attention

Network with 2 Bi-GRUs - one Bi-GRU as sentence encoder and another as document encoder

[40]. An interesting part of this work is the fact that the authors’ implementation did not pass

the title sentence vector, which results from the sentence encoder, into the document encoder.

Instead, the title vector is passed directly from the sentence encoder to the final layer, where it is

consequently concatenated with the abstract vector outputted from the document encoder. The

main objective behind this decision was to keep the title integrity and representation, since the

authors consider that, most of the times, the title has within itself the most important information

of the entire text regarding the document relevance.
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Table 8 – Best results submitted on the challenge by the different teams and best score from a previously
developed Machine Learning model by the author. The values from the submissions marked in
bold represent the best result for that specific metric of all teams.

Avg Prec Precision Recall F1

Submissions
421 0.7253 0.6073 0.7997 0.6904

418 0.7158 0.6289 0.7656 0.6906

414 0.5077 0.5022 0.9801 0.6641

Baseline 0.6515 0.6122 0.6435 0.6274

Previous Model LR 0.6379 0.5736 0.7912 0.6651

4.2 PREPROCESSING

All documents were split by sentence and each sentence subsequently split by token. Further-

more, and beyond the string with the full text, it is possible to access the title and abstract strings

separately. This happened when trying BERT models with sentence pairs (title was defined as

one sentence and abstract as another sentence). In most cases, we also lowered all text, with

exception for BioBERT once it was pre-trained on words containing capital letters. Stemming

and Lemmatization were not performed in order to keep the integrity of all words. Additionally, all

stop words were removed from text using the set of English stop words from the NLTK package.

Stop words removal was only not performed in BERT models since we believe that their vast

number of attention layers is capable of automatically remove that noise.

Finally, words were also split by hyphen, resulting in two separate words. Once again, this

last step was not performed on BERT models, since their tokenizers are also able to divide those

same words into sub-words, which may have impact on the model’s learning process. More

precisely, BERT tokenizers are able to divide a word not present in its vocabulary until it gets

sub-words present in the vocabulary used (e.g. [”phosphorylation”] may become [’p’, ’##hos’,

’##ph’, ’##ory’, ’##lation’]). Contrarily to BERT tokenizers, when using static pre-trained

word embeddings, which do not have the capacity to split words into sub-words, we had to set

and index to all the unknown tokens found. In our case, this was performed by using the ’OOV’

token.
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4.3 DATA ANALYSIS

To analyse our data, we performed the methods developed on the Data Analysis pipeline, which

compares different properties of the documents used. This allowed us to have a picture of the

composition of our data and to choose some hyperparameters for distinct models (e.g. maximum

number of words per sentence for the Hierarchical Attention Networks).
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Fig. 18 – Top number of words (without stop words) for the two different labels, for both training and test
sets. White bars represent the words that do not match between the two labels on a dataset.

Firstly, the top number of words according to their frequency (after removing stop words), in

both relevant and non-relevant documents, considering both training and test datasets, were

identified. From the results shown in Fig. 18, it can be concluded that from the 20 words that

appear more often, only 5 (25%) differ in the different labels (represented by the white bars on

the figure) on both training and test sets. This shows a high similarity between the content of
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documents from the different labels, which might indicate that distinguishing these labels might

be an hard task for the models.

On the other hand, some words such as ”mutation”, ”interaction” and ”mutant” (words

directly related to our topic of interest) are only present on the top 20 words of the relevant sets.

Moreover, both training and test sets contain many words in common (e.g. ”binding”, ”cells”,

”protein”, ”phosphorylation”), which might be an indicator of a similar distribution between the

training set and test set. This is important since models should be tested in similar data to which

the model was trained on.

Additionally, the same comparison was performed, but now for the top 100 words, and the

results are provided on Supplementary Material (Figures 28 and 29). In this comparison, one can

observe that only 13% and 20% of the words differ between relevant and irrelevant documents,

on the training and test set, respectively, which supports the high similarity between documents

from the two labels. Finally, when observing the frequency of the previously mentioned words

(”mutation”, ”interaction” and ”mutant”) more related to our topic, in this set of top 100 words, we

can see that this time they are present on both labels, although with a lower frequency on the

non-relevant documents.

Another comparison performed was related to the total number of words per document (title

and abstract), considering the two labels (Fig. 19). The results seem to show, as expected that

there is no obvious relation between the number of words and the respective label. Of note only

the fact that there is a higher frequency of longer documents on the test set when compared to

the training set.

Fig. 19 – Total number of words per document on both training and test set.
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Next, the t-SNE method (from the Yellowbrick package) was performed, using 50 com-

ponents on both training and test sets (Fig. 20). To perform this analysis, we used features

produced by the TF-IDF method from the scikit-learn library. On both sets, it is possible to

notice the formation of some clusters, which are grouping the most similar documents together.

However, and at least in these 2 dimensions created, it is not possible to see a clear division of

the two labels of interest (non-relevant, relevant). This, once again, is in line with the previous

observations. However, and despite the fact that we removed stop words before performing

t-SNE, these results may still contain some noise that can be interfering with the analysis.

Training Set
non-relevant
relevant

Test Set
non-relevant
relevant

Fig. 20 – t-SNE results of both sets using features produced by TF-IDF, which were decomposed in 50
components.
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4.4 DEEP LEARNING RESULTS

4.4.1 COMPUTATIONAL RESOURCES

Since complex Deep Learning models are computationally expensive, their training process

can be sometimes a really time-consuming operation. Nevertheless, the time spent on both the

training process and hyperparameter optimization of these models can be highly reduced by the

use of powerful hardware. For that reason, all models were trained on 4 Tesla T4 GPUs, which

we managed to do by using the Mirrored Strategy function from the Tensorflow package. These

GPUs were launched by NVIDIA in September 2018 and each one possesses 16 GB GDDR6 of

memory and 320 tensor cores. These tensor cores were introduced by NVIDIA with the main

purpose of improving the GPU performance on the training of ML models.

4.4.2 EMBEDDINGS

For the feature extraction process, we decided to firstly compare 4 different pre-trained embed-

dings: GloVe, [49] BioWordVec [58], PubMed Vectors (”pubmed pmc”) [55] and word vectors

trained on PubMed in 2016 (”pubmed ncbi”) [59]. With the exception of Glove, the other 3

embeddings were pre-trained on scientific documents:

• GloVe: pre-trained on text from Wikipedia available in 2014 and Gigaword fifth edition

archive. It was pre-trained on uncased text (i.e. lowered text) and provides vectors in 4

different dimensions: 50, 100, 200 and 300.

• BioWordVec: ”bio embedding extrinsic” version published in 2018 recommended for text

classification tasks. It is available in a binary format and contains more than 2M lowered

words, which are converted into 200-dimensional vectors. These vectors result from words

of both PubMed documents and Medical Subject Headings (MeSH). Two interesting parts

of the implementation of these embeddings are the use of MeSH words to complement the

biomedical literature and the use of a fastText model to incorporate sub-word information

for the creation of a more complete vocabulary.
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• PubMed PMC: word2vec model - more precisely, the skip-gram version - pre-trained on

PubMed and PMC documents available in 2013, which resulted in a set of 200-dimensional

word vectors.

• PubMed NCBI: Similarly to PubMed PMC, the authors of these embeddings used the

word2vec model to produce word vectors, which are available also in a binary format.

However, in this case, the model was trained on PubMed abstracts from 2016. Also, these

pre-trained embeddings are only available in vectors of 100 dimensions.

In order to compare these embeddings, the first step was to visualize the 9 most similar

vectors to the ”protein” vector for each pre-trained embedding. To accomplish that, the cosine

similarity was computed between all the vectors present in each pre-trained embeddings against

the ”protein” vector, selecting at the end the top 9 most similar ones. The results can be seen

in Fig. 21. As it was expected, all embeddings were able to group words with very similar

meanings.

In the case of BioWordVec, it is also possible to see that it contains many variants of the

word ”protein” (e.g. proteins, protein8, protein2) highly close the protein vector. This might be

a consequence of their focus on the integration of sub-word information into their model. On

the contrary, the same does not happen when observing vectors from GloVe, which does not

seem to have such a complete vocabulary, with some more distant words appearing close to

the protein vector, such as carbohydrates and sodium. This is perhaps due to the use of more

general purpose documents by these pre-trained embeddings, instead of the high focus on

biomedical documents given by the rest of the pre-trained embeddings tested in this work.

Before deciding which pre-trained embeddings will be used, a comparison of their perfor-

mance was done. For that, a k-fold cross validation process, with 10 folds, was run for 2 different

Deep Learning models (a CNN-BiLSTM with attention, which was adapted from Burns et al.

[9], and a Hierarchical Attention Network with 2 Bi-LSTMs). Using a seed value (123123), it

was assured that the same folds were used across the different cross validations performed.

Also, inside each model, a comparison was performed to assess the impact of splitting words by

hyphen. Besides that, all the other parameters were kept the same, in order to only measure the

impact of using different embeddings and word splitting. Embedding dimensions were another

parameter controlled to make a fair comparison. For this, we chose the pre-trained embeddings’
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Fig. 21 – t-SNE 2D plots of the closest vectors to the protein vector using different Pre-trained Embed-
dings.

versions that produce vectors with 200 dimensions, with the exception of ”pubmed ncbi” which

was only available with 100 dimensions.

The results from the performed cross-validations can be seen in Fig. 22. Results were

grouped by embedding type and by word splitting. A Wilcoxon test was performed on these

results, which allowed to see that only GloVe embeddings showed to be significantly different

from the other pre-trained embeddings, presenting a lower mean when compared to the rest.

The other 3 types of embeddings (BioWordVec, ”pubmed pmc” and ”pubmed ncbi”) did not show

any differences between each other.

Nevertheless, BioWordVec embeddings were chosen for the rest of the work, since it

showed the best mean on the cross validation results over all the tested embeddings. Also,

regarding word splitting, no significant differences were observed. However, once again, the

choice was to split words since it showed a higher mean when compared to non-split words.

Finally, by performing these comparisons, it is easy to observe an overall better performance of

the Hierarchical Attention Network over the CNN-Bi-LSTM model.
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As expected, for the reasons mentioned above, GloVe got the worst results of all embeddings.

However, that difference was relatively small, possibly indicating that the data used to pre-train

these embeddings was quite extensive. Moreover, BioWordVec showed the best results of all of

the tested embeddings with an extremely small advantage over ”pubmed ncbi”. This might be

explained by two reasons: firstly, since it was the most recently developed approach, it allowed

the authors to access and consequently use updated and more complete data, which was also

complemented with MeSH information. Secondly, this approach also uses the fastText model

that gives a big focus on unknown words through the incorporation of sub-word information.

Finally, we were also able to find an almost direct correlation between these results with the

number of words of our training set not present in the vocabularies of these embeddings. More

precisely, the percentage of unknown words on these embeddings were: 50.96% for GloVe,

10.07% for BioWordVec, 36.61% for ”pubmed pmc” and 8.85% for ”pubmed ncbi”.
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Fig. 22 – Accuracy results from a 10 fold cross validation using different pre-trained Embeddings. (a)
Comparison between two different preprocessing options (split and non-split words by hyphen)
on a Hierarchical Attention Network (HAN) with two Bi-LSTMs. (b) Same comparison for a
CNN-Bi-LSTM model.
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4.4.3 HYPERPARAMETER OPTIMIZATION

One important part of Machine Learning is the optimization of the different models’ hyperparam-

eters. In the case of Deep Learning, due to its vast number of possibilities, that process can be

really overwhelming and also computationally expensive. For that reason, the option was to use

the Hyperband tuner from the Keras Tuner package. This tuner optimizes the RandomSearch

method by using early stopping (subsection 2.3.3) and adaptive resource allocation.

To perform optimization, the training set was split into a 90% training set a 10% validation

set, randomly generated with a random seed (123123). Since it is a computationally expensive

process, a validation set was used instead of the common cross-validation approach. For all

optimizations, the factor parameter from the Hyperband algorithm was set to its default value (3).

This means that after each evaluation performed by the algorithm at a certain number of epochs,

only 1/3 of those models are kept for training until the next evaluation occurs. This process will

then happen punctually until it reaches the maximum number of epochs previously set by the

use. Additionally, the seed on the Hyperband algorithm was set to ensure reproducible results.

However, it is noteworthy that BERT models might show some variance due to the randomness

existent within the used package (HuggingFace).

The first model being optimized was the Hierarchical Attention Network, where the search

space presented in Table 9 was used. For this model, the hyperband iterations was set to

two, meaning that this optimization process ran two times over the same search space. The

maximum number of epochs was set to 40, since it was observed that the model would take

around 38 epochs to converge when using a learning rate of 1e−4. Moreover, it is recommended

to give a small margin of epochs to guarantee convergence when using Hyperband.

Afterwards, the models containing BERT architectures were also optimized. However, since

BERT models take longer to train, the option was to restrict the optimization process for a

BERT model pre-trained specifically on the biomedical context, more precisely using BioBERT.

Also, due to efficiency reasons, the Base version of these models was selected (which has

approximately 1/3 of the parameters of the Large version) to perform optimization. Moreover,

and contrarily to Hierarchical Attention Networks, the number of hyperband iterations was set to

only one, again, due to the high complexity of these models.
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Table 9 – Search space used to optimize the Hierarchical Attention Network. In bold are marked the
hyperparameters which were returned as the best hyperparameters for this model by the
Hyperband Tuner after 2 iterations.

Hyperparameter Values

Dropout 1 [0, 0.1, 0.2, 0.3, 0.4, 0.5]

Layer 1 [’LSTM’, ’GRU’]

Layer 1 Units [64, 128, 256, 512]

Dropout 2 [0, 0.1, 0.2, 0.3, 0.4, 0.5]

Layer 2 [’LSTM’, ’GRU’]

Layer 2 Units [64, 128, 256, 512]

Optimizer [’Adagrad’, ’RMSprop’, ’Adam’, ’SGD’]

Learning Rate [1e−2, 1e−3, 1e−4]

Epochs [ 40 ]

The first model with BioBERT being optimized contained also a Dense layer on top of

BioBERT, with BioBERT parameters being further fine-tuned in the course of the training

process. The search space used for this optimization process can be seen in Table 10. For this

optimization, the decision was to try different options, such as the use of batch normalization,

distinct dropout rates and the number of dense units. Also, for these models, two optimizers

were used: Adam and AdamW, with the latter having also an associated weight decay of 0.01.

The maximum number of epochs was set to 5 with a batch size of 16. The chosen batch size

and learning rates had as basis the recommended values by Devlin et. al [52] for the fine-tuning

of a BERT model.

Then, hyperparameter optimization of a model containing BioBERT was performed, but this

time with a Bi-LSTM on top of it. In this case, the optimization process was performed for two

different versions of this model: one with BioBERT static (i.e. pre-trained BioBERT weights are

frozen in this model) and another model with BioBERT being fine-tuned. Since BioBERT static

represents less parameters to train, the number of values used for the learning rate parameter

was decreased, and consequently increased the number of epochs used. Additionally, the batch

size of the model with static BioBERT was set to 32 once it fit in the available memory, contrarily

to the BioBERT fine-tuning, where there was the need to set a batch size of 16. The entire

search space used can be seen in Table 11.
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Table 10 – Search space used to optimize the BioBERT model with a Dense layer on top. The best
hyperparameters, returned by the Hyperband algorithm after 1 iteration, are marked in bold.

Hyperparameters BioBERT Dense

Batch Normalization [True, False]

Dropout [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

Dense Units [64, 128, 256]

Optimizer [’Adam’, ’AdamW’]

Learning Rate [2e-5, 3e-5, 5e-5]

Weight Decay [ 0.01 ]

Epochs [ 5 ]

Batch Size [ 16 ]

Finally, another model containing BioBERT was optimized, but using only the [CLS] token

retrieved from it. This is a token introduced specifically on BERT models that allows its use in

classification tasks as a compressed representation of the entire sequence. This can be done,

since in theory, BERT models have the capacity to concentrate the most important information

in that single token [52]. For the optimization process of these models, and similarly for the

optimization of the model with BioBERT + Bi-LSTM, the same 2 versions were performed: static

and fine-tuned, with a batch-size of 32 and 16, respectively. The search space used for the

optimization of these two models can be seen in Table 12

After optimizing all hyperparameters, one can see some patterns when comparing the

obtained results. For instance, it is possible to observe a negative impact of batch normalization,

with all the models where it was tested providing worse results. This may be a consequence of

the normalization techniques used within BERT models which may be possibly eliminating the

need to use this approach. Additionally, it is possible to see that the best optimizer retrieved by

the Hyperband algorithm was Adam in all the tested models. Still, this could have given different

results if the weight decay parameter of the AdamW optimizer was tuned. Other than that, when

comparing the results from the models BioBERT + Bi-LSTM with the models BioBERT + CLS

token, it is possible to see a quite interesting pattern, although not easy to explain, with models

containing BioBERT static getting the lowest values for the number of dense units while, on the

contrary, fine-tuned versions got the highest values.
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Table 11 – Search space used to optimize the BioBert model with a Bi-LSTM for two different versions:
BioBERT static and BioBERT fine-tuned. In bold are marked the best parameters resultant
from the Hyperband algorithm after 1 iteration.

Hyperparameters BioBERT LSTM (static) BioBERT LSTM (tuned)

LSTM units [64, 128, 256] [64, 128, 256]

Dropout 1 [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

Dense units [64, 128, 256] [64, 128, 256]

Dropout 2 [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

Optimizer [’Adam’, ’AdamW’] [’Adam’, ’AdamW’]

Learning Rate [1e-2, 1e-3, 1e-4] [2e-5, 3e-5, 5e-5]

Weight Decay [ 0.01 ] [ 0.01 ]

Epochs [ 11 ] [ 5 ]

Batch Size [ 32 ] [ 16 ]

Finally, it is important to notice that despite having an optimized performance, the used

optimization algorithm (Hyperband) has also its downsides. In fact, the Hyperband’s methodol-

ogy of discarding models throughout the training process based on their evaluation may cause

the loss of some good models that may need more epochs to converge to a good solution. So,

in an attempt to counter this phenomenon, it was decided to also fine tune the learning rate

values to provide different rates of convergence to the models. However, it may be interesting in

the future to compare this optimization process with other commonly used alternatives for DL

models, such as the Random Search and Bayesian optimization algorithms.

4.4.4 MODELS

The first model used in this work was adapted from Burns et al. [9] and it consists of a CNN

with a Bi-LSTM, and an attention layer on top. In the middle of these layers, the authors also

added 3 dropout layers with a 0.4 probability each. In the end, there is also a dense layer with a

sigmoid function to make the final prediction. For the embeddings, the BioWordVec pre-trained

embeddings were used. The maximum number of words was set to 300 (based on Figure 24

from the Supplementary Material A) and a vocabulary size equal to the number of unique words

found on the training set by the used tokenizer (around 30k words).
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Table 12 – Search space used to optimize a model containing BioBERT with the selection of the CLS
token on top. Optimization was done for two different versions: BioBERT static and BioBERT
fine-tuned. In bold are marked the best parameters resultant from the Hyperband algorithm
after 1 iteration.

Hyperparameters BioBERT CLS (static) BioBERT CLS (tuned)

Batch Normalization [True, False] [True, False]

Dropout 1 - [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

Dense units [64, 128, 256, 512] [64, 128, 256, 512]

Dropout 2 [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

Optimizer [’Adam’, ’AdamW’] [’Adam’, ’AdamW’]

Learning Rate [1e-2, 1e-3, 1e-4] [2e-5, 3e-5, 5e-5]

Weight Decay [ 0.01 ] [ 0.01 ]

Epochs [ 11 ] [ 5 ]

Batch Size [ 32 ] [ 16 ]

The second model used is a Hierarchical Attention Network with a word encoder and a

sentence encoder. Both encoders contain a Bi-LSTM and an attention layer with a spatial

dropout at the bottom. This model starts by converting words into word embeddings by using the

BioWordVec pre-trained embeddings. At the bottom of the model, once again, a dense layer with

a sigmoid function is used to make the final prediction. For this model, the maximum number

of words per sentence is set to 50 and a maximum number of sentences per document to 15.

These values were based on Figures 25 and 26 from the Supplementary Material A, respectively.

For both CNN + Bi-LSTM and Hierarchical Attention Network, a token (’OOV’) was added to

give an index to the unknown words (i.e. words not found on the vocabulary of the pre-trained

embeddings).

The third model uses BERT with some layers on top, which can vary as already explained

on the subsection 4.4.3. So, this model results in 3 main versions: one model with BERT and

two dense layers on top, one with BERT and a Bi-LSTM with also two dense layers on top, and

a final version, similar to the first one, but using the CLS token instead of the embeddings of

all tokens resulting from the BERT model. All models have also dropout layers, with the first

two versions of this third model (BERT + Dense and BERT + CLS) containing also a 1D global

average pooling to convert the embeddings into a 1D vector. For these models, the maximum

number of words was set to 512 since it is the maximum value allowed on BERT models. The
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number of sentences was set to only one - meaning that title and abstract are grouped together

as a single sentence. It was also tested to set this number to two, with the title used as one

sentence and the abstract as another sentence, but no improvements were observed. Moreover,

beyond the 3 mentioned versions, the use of either static (i.e. frozen) and non-static weights

were also tried from pre-trained BERT models. For these pre-trained BERT models, 3 different

options were tried :

• BERT-base-uncased: pre-trained on lower-cased English texts from Wikipedia and Book-

Corpus using a MLM objective. The structure of this model was previously explained on

subsection 2.3.9.

• SciBERT-base-uncased: based on the BERT model and pre-trained on more than 1

million lower-cased full text documents from the Semantic Scholar database. This model

also offers a custom vocabulary (around 30000 words) named scivocab, with the aim of

improving tokenization of words related to the biomedical context.

• BioBERT-base-cased: version 1.1 was selected, which is based on the BERT model

and pre-trained on more than 1 million PubMed documents. In this model, the provided

vocabulary is similar to the one used in the BERT model (around 30000 words), but

containing also cased words. The authors decided to not create a new vocabulary for

two reasons: they wanted to used Google’s pre-trained BERT which needs the same

vocabulary and for believing that the sub-word technique of BERT is capable of retrieving

similar information by splitting unknown words.

All these pre-trained BERT models follow a similar structure with a hidden size of 768,

12 attention heads, 12 hidden layers and a dropout probability of 0.1 for both attention and

hidden layers. Moreover, as activation function for the hidden layers, all these pre-trained models

use a function called Gaussian Error Linear Unit (GELU), which was recently proposed as an

alternative to ReLU and ELU.

For all models, truncating and padding were set to post. The main reasons for this choice

were: firstly, to assure that words belonging to the title were not removed when performing

truncation, and secondly, to keep the title always in the starting positions of the input, when

performing padding.
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Then, a 10-fold cross validation was performed on these models to see how they would

perform on our training set. When comparing the results obtained (Fig. 23), it is possible to

observe that BioBERT static + CLS and CNN-Bi-LSTM were the two models with the worst

results of all. On the contrary, BERT models got the best results, with BERT models pre-trained

on scientific literature (SciBERT and BioBERT) getting a slightly better performance when

compared to BERT. Also, when comparing SciBERT with BioBERT (SciBERT+Dense(tuned) vs

BioBERT+Dense(tuned) and SciBERT+CLS(tuned) vs BioBERT+CLS(tuned)), it is possible to

see that BioBERT managed to slightly overcome models with SciBERT, with a better average

precision and f1-score means, which in fact, were the best results of all models. Finally, and

despite our dataset being relatively small, one can also observe a positive impact of fine-tuning

BERT models, showing better scores when compared to the static versions.
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Fig. 23 – 10 fold cross-validation results (mean and standard deviation for each metric) performed on the
training set using different DL architectures

As expected, due to their high complexity and for being state-of-the-art models in many

NLP tasks, BERT models (BERT, SciBERT and BioBERT) managed to outperform all the

other models, with SciBERT and BioBERT outperforming BERT. SciBERT and BioBERT

outperforming BERT was also expected since these 2 models were pre-trained specifically on

scientific documents. Also, in general, models with BioBERT outperformed models containing

SciBERT. This might have happened since BioBERT was pre-trained on documents from the

PubMed database, the same database used to create the dataset used in this work.
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Nevertheless, it is important to mention that these slightly better results of BioBERT over

SciBERT can also be a consequence of the followed approach for the models’ hyperparameters

optimization, where only the top layers of these models were optimized using the BioBERT

pre-trained model, due to their highly time-consuming training process. In any case, this decision

was based on a previous evaluation of these models with some manual tuning, where BioBERT

already had presented better scores over the other 2 models. However, it would be valuable

to compare these models after optimizing hyperparameters specifically for each one of them.

Another difference between the BioBERT and SciBERT versions used in this work is the use

of capital letters on BioBERT’s vocabulary. Nonetheless, we suspect this had no impact on

the results, since it showed also no impact when tested in other models (CNN-Bi-LSTM and

Hierarchical.

Regarding the two worst models (CNN-Bi-LSTM and BioBERT + CLS (static)), there

are also some possible reasons that may explain the obtained results. For instance, the

worst performance of the CNN-Bi-LSTM model may be related to the non application of the

hyperparameter optimization process on this model. The main motivation to use this model with

the exact same parameters used by Burns et. al [9] was the intention to use this model as a

basis to the other DL implementations. Nevertheless, it is still possible to affirm that this model

obtained relatively good results, considering the fact that it has a much lower complexity when

compared to the other models used (containing almost 2k less trainable parameters than for

instance models with BERT).

Regarding BioBERT + CLS (static) model, there is a likely reason that may explain its results

related with the use of the CLS token. The use of this token means that the model will use a

representation that attempts to incorporate, in a compressed way, all the important information

of a single document. So, the obtained results might mean that the static version of this model

is not able to capture, and consequently integrate, that important information into that token if

not trained on the new data. In fact, since BioBERT with CLS (tuned) showed better results, it

seems that tuning this model is almost mandatory when using CLS, to allow the model to learn

how to properly capture the relevant information into that token.
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4.4.5 EVALUATION

Afterwards, these models were evaluated on our test set. For the the final training of CNN +

Bi-LSTM and Hierarchical attention network, the early-stopping callback was used (with a

patience of 5) to control the validation loss. This callback is highly recommended to be used

after performing the hyperparameter optimization with the Hyperband algorithm. Additionally,

this callback was combined with the ModelCheckpoint callback, that in our case was used to

save model weights from the epoch with the best validation loss. However, early-stopping

was not used when fine-tuning BERT models once these models take only a few epochs to

converge (around 2-4). Instead, we evaluated them using different number of epochs on the

training process, which were as well saved with the Modelcheckpoing callback. For all models, a

randomly generated validation set with 10% of the training set was used to either allow the use

of early-stopping or visualize training history. The results obtained on the test set can be seen in

Table 13.

Observing the results obtained on the test set, it is possible to see that they were quite

satisfactory, with almost every model containing BERT models pre-trained on scientific text

(BioBERT and SciBERT - with exception for BD2 and SC2) getting better scores for all the

metrics when compared to the challenge’s best submission. Additionally, we can see that our

best Hierarchical model managed to get a slightly better f1-score and more 2.67 percentage

points on the average precision metric in comparison to the best submission, which also used a

Hierarchical network. There are some reasons which may have caused this slight improvement,

such as a better hyperparameter optimization, the use of LSTMs instead of GRUs, distinct

preprocessing steps, or the use of title together with the abstract throughout the entire model,

contrarily to the approach used by the authors of the best submission, where title was passed

directly from the sentence encoder to the final dense layer. Also, this little improvement can be

associated with the use of BioWordVec as feature extractor, which showed slightly better results

over the pre-trained embeddings used by that same team (”pubmed pmc”).

Furthermore, one can see that the two best models were BioL1 and BioL2 with the two

best values of f1-score. In spite of BioL2 getting the best f1-score result of all, we consider

that our best model is BioL1. This is because, despite the slightly worst f1-score, BioL1 has a

better average precision (an important metric for document relevance) with an higher difference
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Table 13 – Results obtained on the test set using different models. In bold are marked the values that
beat the best submission result on that metric, while in red are marked the best values that we
got for each metric.

ID Model Avg Prec Precision Recall F1-score

CLB CNN-BiLSTM 0.6756 0.5980 0.7670 0.6721

H1 Hierarchical Bi-LSTM 0.7560 0.6614 0.7102 0.6849

H2 Hierarchical Bi-LSTM 0.7437 0.6404 0.7415 0.6873

H3 Hierarchical Bi-LSTM 0.7425 0.6145 0.8040 0.6966

BD1 BERT (tuned) + Dense 0.7141 0.6141 0.8182 0.7016

BD2 BERT (tuned) + Dense 0.7145 0.6400 0.7628 0.6960

BioD1 BioBERT (tuned) + Dense 0.7763 0.6376 0.7997 0.7095

BioD2 BioBERT (tuned) + Dense 0.7709 0.6245 0.8267 0.7115

BioD3 BioBERT (tuned) + Dense 0.7727 0.6755 0.7599 0.7152

BioD4 BioBERT (tuned) + Dense 0.7798 0.6331 0.8239 0.7160

SD1 SciBERT (tuned) + Dense 0.7599 0.6459 0.7798 0.7066

SD2 SciBERT (tuned) + Dense 0.7678 0.6548 0.7813 0.7124

BioC1 BioBERT (tuned) + CLS 0.7675 0.6402 0.7784 0.7026

BioC2 BioBERT (tuned) + CLS 0.7727 0.6439 0.8040 0.7151

BioC3 BioBERT (tuned) + CLS 0.7828 0.6471 0.7969 0.7104

SC1 SciBERT (tuned) + CLS 0.7370 0.6298 0.7926 0.7019

SC2 SciBERT (tuned) + CLS 0.7672 0.6927 0.6918 0.6923

BioL1 BioBERT (tuned) + LSTM 0.7883 0.6611 0.7955 0.7221

BioL2 BioBERT (tuned) + LSTM 0.7787 0.6635 0.7955 0.7235

SL1 SciBERT (tuned) + LSTM 0.7455 0.6414 0.7798 0.7038

SL2 SciBERT (tuned) + LSTM 0.7343 0.6311 0.7898 0.7016

Challenge’s Best Submission 0.7158 0.6289 0.7656 0.6906
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between the two models. Nevertheless, it is worth mentioning that the difference observed on

the results of these two models is only a cause of the variation associated with the fine-tuning

process of BERT models, once they resulted from a same training process with 2 epochs. When

comparing our best model with the challenge’s best submission, we can see that our model

managed to improve results in all metrics with a significant difference of 7.25% for average

precision, 3.22% for precision, 2.99% for recall and 3.15% for f1-score.

After the evaluation of our models, the next step was to understand some of the possible

reasons behind the wrong predictions. In order to do so, 4 subsets were created of the test set

based on the confusion matrix results (FP, FN, TP and TN) and plotted the top 20 words for

each one of them. The results can be seen in Supplementary Material A - Fig. 30. Interestingly,

documents classified as relevant (positives) contained in their top 20 words, words related to our

topic (”mutation”, ”alpha” and ”interaction”) that are not present in the top 20 words of documents

classified as non-relevant (negatives). Oppositely, documents classified as non-relevant contain

words as ”dependent”, ”induced” and ”p53”, which are not present in the top 20 words of the

other class. By comparing words present on the top 20 words of all subsets, it is also possible to

see an higher frequency of words such as ”binding” and ”receptor”, which are also related to our

topic, in the positive class over the negative class.

Despite these curious patterns, it should be noted that this analysis only considers one

aspect used in the model, and that other variables may have an equal or even higher impact

on the final prediction, such as words’ position and order in a sentence. Finally, it should be

also noted that when creating the dataset used in this work, curators defined some documents

that did not have any mentions to the interacting proteins on both title and abstract as relevant

documents (i.e. documents that had information on title/abstract suggesting that the relevant

parts about the topic would be on the full text, curators would consider this fact enough to

consider that document as relevant) [152]. Yet, this brings a problem to the dataset, since it only

provides title + abstract. Consequently, this may produce some FN in our predictions, once the

model cannot find those mentions in the used text.

By looking into our evaluation scores, it is also possible to see that models got slightly worst

results on the test set when compared to the cross-validation results, which was performed

in subsection 4.4.4. This phenomenon might indicate that our test set has a slightly different

distribution from our training set, turning its prediction a more difficult task for our models.
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Finally, and despite outperforming the challenge’s best submissions, there might still be

space to enhance our results by changing some of the approaches used in the distinct steps of

this work:

• Dataset: possibly complement title and abstract with other information/text about the

documents. For instance, Burns et. al [9] observed that using captions of documents

benefited the document triage on their dataset.

• Preprocessing: BERT models have a limit of 512 words per document. So, in this work,

documents were truncated with more than 512 by removing the last words of the abstract.

However, this can remove some important words that could possibly have an impact on

the final prediction. In any case, we believe this did not happen on this dataset, since

BioBERT managed to overcome SciBERT, even with the latter being able to produce

less tokens. The reason SciBERT produces less tokens is related to its available custom

vocabulary, specifically designed for biomedical documents (Supplementary Material - Fig.

27). Nevertheless,it would be interesting to implement in the future some alternatives

to the used truncation process. Some of the known alternatives used are chunking and

text summarization. Recently, Sun et. al [153], in a article focused on the fine-tuning of

BERT for text classification, found that a different method of truncation might be enough to

improve results (”head+tail” - where they used the first 129 tokens together with the last

389).

• Hyperparameter Optimization: for this process it would be important to both increase

the number of iterations used, and to fine-tune the parameter search based on the

hyperparameters obtained on the already done optimization process. Also, it would be

interesting to test other possibilities not used in our optimization process such as other

activation functions or L2 regularization. It would also be possible to optimize the structure

and/or some of the hyperparameters of BERT models (e.g dropout rate of self-attention

layers).

• Validation set: in this work, a randomly generated validation set was used for two different

steps: hyperparameter optimization and training process. In ML models, it is important

to make sure that the validation set follows a similar distribution as the test, which was

not possible since there was a pre-defined held-out test set. One of the impacts of this
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is, for instance, the overfit of the hyperparameters, from the hyperparameter optimization

process, to the used validation set. A possible alternative is the use of the cross-validation

technique in this process, not used since it would take a very long time to run cross-

validation on models with BERT layers. Furthermore, the randomly generated validation

set may introduce another problem related to the use of an imbalanced dataset.

• Models: possibly test in the future a recently developed model called SPECTER [154].

This model uses transformer language models such as SciBERT with a new objective

function called ”Citation-Based Pretraining Objective”. The intuition behind this objective

function is the use of cited documents of a certain document to approximate their document

embeddings. Also, it would be possible to implement an ensemble of our final models.

• Early-stopping: for early-stopping validation loss was used. However, it could be interest-

ing to try the approach of Fergadis et. al [40], where they used a metric that was being

evaluated by the challenge (f1-score). In this work, the option was to not do it since the

common implementation of this metric on the training process of Keras gives a result that

consists on the mean of all the f1-scores obtained on each batch for a certain epoch, which

might be misleading.

In case a user needs to classify documents not related to PPI altered by mutations, one can

always use our developed package to train his dataset and consequently make new predictions.



5

C O N C L U S I O N

One of the main objectives of this thesis was the development of a package (BioTMPy) to provide

an easy-to-use and intuitive tool to perform document classification on biomedical literature.

BioTMPy is divided into different modules that allows its use on independent tasks. These

modules provide methods to read datasets in different formats, create document objects, prepro-

cess text data, generate features, perform data analysis (e.g. t-SNE, label balance, top number

of words) and implement both shallow ML (e.g. SVM, Random Forest, Logistic Regression)

and DL models (e.g. Hiearchical Attention Networks, SciBERT, BioBERT). Furthermore, it

offers step-by-step pipelines with examples on how to perform the document classification task

from start to finish. BioTMPy also offers pipelines to perform hyperparameter optimization and

cross-validation. At the end, a user can as well deploy the developed models in a web server

to the community using the web server module. The package can also be used in other types

of documents not related to the biomedical field and be easily adapted to be used in other

tasks that rely on the power of NLP, such as the prediction of compound-protein interactions.

In the future it would be interesting to also extend this package to other BioTM tasks such as

information extraction and implement some other features/modules with the aim of simplifying

its use.

The package was then applied on a dataset from the BioCreative’s track 4 from task VI

about PPI altered by mutations. Analysing the dataset, it was possible to observe the presence

of an high similarity between documents from the two existent labels and that cluster algorithms

had difficulties in making a clear division of documents based on their relevance, which indicates

that classifying documents by relevance is an hard task on this dataset. With a comparison

made between different pre-trained embeddings we were able to conclude that BioWordVec was
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able to obtain a slightly better performance over GloVe and two other embeddings pre-trained

with pubmed documents (”pubmed pmc” and ”pubmed ncbi”).

Afterwards, the package was used to perform hyperparameter optimization, cross-validation

and evaluation of different DL models. The results confirmed that BERT models, state-of-the-art

in many NLP tasks, performed better also on the document triage of the used dataset. Also,

this work confirms a better performance of BERT models pre-trained on scientific text (BioBERT

and SciBERT) when fine-tuned on biomedical documents, with a slight advantage of BioBERT

over SciBERT. One of the possible reasons to this advantage of BioBERT is the fact that it was

pre-trained on documents from PubMed, the same database used for the generation of the

dataset used in this work. As a result, a model with BioBERT with a Bi-LSTM on top would

give the best results on the test set with a difference of 7.25% for average precision, 3.22%

for precision, 2.99% for recall and 3.15% for f1-score when compared the the challenge’s best

submission. Nevertheless, further application of different approaches may still improve the

obtained results, such as improving the truncating process, hyperparameter optimization (e.g.

by fine-tuning the search space), creation of the validation set, and try new DL models such as

SPECTER. To the best of our knowledge, this was the first implementation of BERT models on

this specific dataset.

In a future work, it would then be extremely important to extend the approach used to

other topics and to try this same pipeline on an independent biomedical dataset. Nevertheless,

the web server can be really helpful to rank documents about PPI altered by mutations since,

beyond the model’s good results, the search term system works over documents retrieved by

the relevance system of PubMed, functioning as a second filter of those results. To the best

of our knowledge, this is the first tool available to rank biomedical documents relying on Deep

Learning models.
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