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Francisco Luı́s do Amaral Ribeiro Machado e Costa

RealROC

A Shiny based application
for ROC curve study with covariate adjustment

October 2020



Universidade do Minho
Escola de Engenharia
Departamento de Informática
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este gesto parecer radical direi preferir a comparação aos antigos, dado ser (em parte) graças
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R E S U M O

A curva ROC (Receiver operating characteristic) é uma ferramenta analı́tica eficaz para testes

clı́nicos. A análise permite visualizar a variação de sensibilidade e especificidade para uma

dada região de corte através de um simples, mas robusto gráfico bidimensional.

Num contexto biológico, testes podem ser influenciados por múltiplas variáveis externas

e como tal a analise ROC pode não ser a ideal ou gerar resultados incompletos. É então

necessário saber que variáveis afetam determinado teste clı́nico de forma a determinar os

melhores parâmetros para determinado teste ou até descartar determinada metodologia

mediante a situação. O ajuste da curva ROC a covariáveis permite a normalização do efeito

das mesmas ou diretamente ajustar a curva para os seus efeitos.

Software direcionado ao ajuste da curva ROC é, infelizmente, escasso e muitas vezes difı́cil

de manusear por utilizadores não especializados. Recentemente o pacote AROC foi lançado

para R que disponibiliza vários recursos para estes ajustamentos, no entanto a dificuldade

de utilização mantém-se.

A combinação deste pacote com a estrutura Shiny, um pacote que permite o desenvolvi-

mento de aplicações interativas, tem por objetivo a criação de um programa grátis e acessı́vel

que permita uma analise mais aprofundada disponı́vel para todos os investigadores.

RealROC foi capaz de replicar resultados de um caso de estudo que analisou a influência

do sexo no sistema de pontuação CRIB e respetiva previsão de mortalidade, demonstrando a

usabilidade e acessibilidade do programa que será disponibilizado online e potencialmente

contribuir para novos desenvolvimentos na área.

Palavras-chave: Curva ROC; AROC; Covariáveis; Shiny; Bioestatı́stica; Informática Médica;

Classificação estatı́stica; Software
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A B S T R A C T

Receiver operating characteristic (ROC) curves are a powerful analytical tool for clinical

tests. The analysis allows the visualization of varying sensitivity and specificity for a given

threshold through a simple, yet robust, two-dimensional plot.

In a biological framework, tests can be influenced by multiple external variables, as

such, standard ROC analysis may not be suitable or may provide incomplete data. It is

then necessary to know which variables influence clinical test results to determine optimal

conditions for trials or even to disregard a given method of evaluation in certain contexts.

Adjusting for covariates allows ROC analysis to normalize the effects of the variable in

question or to directly adjust the curve for its effects.

Unfortunately ROC software that is able to conduct such an adjustment is sparse and

proven difficult to use for non technical users. Recently, the AROC package for R was

released and provides a robust resource for such adjustments however with he same usability

problems previously stated.

By combining this package with the Shiny framework, an R package that allows the

creation of interactive applications, we hope to provide an accessible and free software that

allows this extra depth of analysis to be available for all researchers.

RealROC was able to mimic the results of a case study analysing the affects of sex to

the CRIB score and resulting mortality rates that proving its practicality and will be made

available online and hopefully contribute to the advancement of software in this field.

Keywords: ROC curve; AROC; Covariates; Shiny; Biostatistics; Medical Informatics;

Statistical classification; Software
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A C R O N Y M S

AUC Area Under the Curve.

c threshold.

CI Confidence Intervals.

CRIB Clinical risk index for babies.

D Diseased.

FN False Negative.

FP False Positive.

FPF False Positive Fraction.

LDV Latent Decision Variable.

MVD Max Vertical Distance.

NICUs Neonatal Intensive Care Units.

NMR Neonatal Mortality Rates.

pAUC Partial Area Under the Curve.

ROC Receiver Operating Characteristic.

SDG Sustainable Development Goals.

se Standard Error.

SNAP Score for Neonatal Acute Physiology.

TN True Negative.

TP True Positive.

TPF True Positive Fraction.

UI User interface.
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1

I N T R O D U C T I O N

1.1 context and motivation

From medical diagnosis describing an individual as sick or healthy, investment strategies

dictating secure or otherwise risky investments or simply a spam filter on email services,

there are limitless situations where one needs to set objects in belonging to a class rather

than another. In fact there are instances where more than two classes may be employed,

but in practice the dichotomy between sick/well, accept/reject, yes/no is by far the most

popular. Further, as we will see, multi class systems can often be decomposed into two class

cases.

Systems of assignment are not perfect, and errors can occur leading to false positive and

false negative results, as such systems of evaluation are necessary to assess test performance.

The Receiver Operating Characteristic (ROC) curve is a popular tool for such analysis that

allows the visualization of varying sensitivity and specificity for a given threshold through

a simple, yet robust, two-dimensional plot (x and y corresponding to [1- specificity] and

sensitivity, respectively) (Egan, 1975).

A ROC curve illustrates the diagnostic ability of a binary classifier, for which there are

four possible outcomes, True Positive (TP), False Positive (FP), True Negative (TN) and

False Negative (FN). Within a given threshold, these total number of observations allow the

sensitivity (True Positive Rate) and specificity (True Negative Rate) to be calculated and built

into the curve.

Tests can be influenced by multiple external variables and as such, standard ROC analysis

may not be suitable or may provide incomplete data. It is then necessary to know which

variables influence clinical test results to determine optimal conditions for trials or even to

2



1.2. Goals 3

disregard a given method of evaluation in certain contexts (Rodrı́guez-Álvarez et al., 2011).

Adjusting for covariates allows ROC analysis to normalize the effects of the variable in

question or to directly adjust the curve for its effects (Pepe, 1997).

With the goal to provide an accessible, free software for non-technical users, this dis-

sertation aims to develop and publish a web application using Shiny, an R extension that

integrates web development into existing R language, that incorporates known adjustment

methods to ROC curve analysis with covariates to contribute to resource building in the

field, simplifying the process and making the analysis accessible for a non technical user.

1.2 goals

The main objective of this dissertation was the development of a user friendly Shiny

application that allows building and accurate modelling ROC curves in the presence of

covariates with applicable approaches, providing an intuitive system of step by step analysis,

visualization of data, curve and summarization.

To achieve this goal theoretical principles of the ROC curve analysis and covariate ad-

justment as well as currently available software will be assessed and explored so as to

develop and publish an appealing and robust software for both user comfort and accuracy

of analysis.

1.3 document organization

Chapter 2 sees the proper theoretical concepts behind the ROC curve, it’s applications and

estimation as well as the current way to integrate covariates in the analysis.

Chapter 3 takes an in depth look into the the current R package for covariate adjusted

ROC curves and its methods - AROC, that will serve as building blocks for the Shiny web

application.

In Chapter 4 using the Shiny package in conjunction with AROC both backend and

frontend development of the application will be explored, providing an example of its use

in Chapter 5 concluding with future prospects in Chapter 6.



2

S TAT E O F T H E A RT

2.1 roc curve concept

2.1.1 ROC curve and applications

In this section we will explore the theoretical concepts of the ROC curve construction and

analysis that were mentioned briefly in the previous chapter as to provide a framework

necessary for several statistical application we will examine in the next few sections.

As mentioned, the abstract problem of classifying an object as belonging to two inde-

pendent classes, is limitless in application and the core concept behind decision statistics.

Systems of classification are flawed however, and errors in classification can occur more

often than not requiring the existence of performance classifiers such as the ROC curve.

While its name draws from its World War 2 origins for the analysis of radar signals and

its operators it has since been applied in psychology, medicine, prominently in radiology

(Obuchowski, 2003), epidemiology and diagnostic research, as well as machine learning

(Bradley, 1997).

The widespread use of the ROC curve in various fields makes nomenclature a challenge,

with notable discrepancies between major modern sources. While the focus of this section is

exploring theoretical concepts, this dissertation concerns the application of these concepts

in a biological/medical setting and will, therefore, assume these concepts being used

in a diagnostics setting rather than mathematical abstraction. In a practical sense this

means referring to Diseased (D) and Non-Diseased (D̄) populations rather than Positive

and Negative resembling notation used in Pepe (2003) while keeping to the definitions of

Krazanowski and Hand (2009).

4



2.1. ROC Curve Concept 5

The ROC curve, defined as a plot of True Positive Fraction (TPF), or sensitivity, and False

Positive Fraction (FPF), 1- specificity, pairs obtained by varying threshold (c) as (x,y) axis

respectively. Defining YD and YD̄ as continuous variables for diseased and non diseased

groups respectively with cumulative distribution functions FD and FD̄, we assume all test

outcomes greater than c belong to the diseased group, with c ∈ IR. Subsequently, each given

c will determine TPF,

TPF(c) = Pr(YD ≥ c) = 1− FD(c) (1)

and similarly FPF,

FPF(c) = Pr(YD̄ ≥ c) = 1− FD̄(c). (2)

The ROC curve is then defined as all FPF-TPF pairs,

ROC(·) = {(FPF(c), TPF(c)), c ∈ IR} (3)

(Pepe, 2003). By converting FPF at threshold c to t, such as, t = FPF(c) = 1− FD̄(c), the

ROC curve is defined as {(t, ROC(t)) : t ∈ [0, 1]} (Rodrı́guez-Álvarez et al., 2018), where

ROC(t) = P{YD > F−1
D̄ (1− t)} = 1− FD{F−1

D̄ (1− t)}, 0 ≤ t ≤ 1 (4)

2.1.2 Summary Indexes

In section 2.1.1 we saw the ROC curve can be seen as a summary of all possible FPF-TPF

pairs describing a classifiers’ performance in all possible threshold values, however this

information itself can be complicated or otherwise difficult to digest sometimes, be it in

communication, replication, or in comparing multiple classifiers. Scalar values are often

used for such a task. In this section we will explore a few of the more popular indexes.

The Area Under the Curve (AUC) is by far the most widely used summary index and a

household name in ROC curve analysis. AUC comes from a simple geometrical interpretation

of the curve that allows one to say that the perfect test, ie the prefect distinction between D

and D̄ cases, is the upper borders of the graph (area of the square of side 1) while a random
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selection of results in indicated by the chance diagonal (area of the triangle of base and

height 1) giving us the formal definition of AUC as

AUC =
∫ 1

0
y(x)dx (5)

or, by using equation 3

AUC =
∫ 1

0
ROC(t)dt. (6)

A simple and commonly used interpretation of AUC is as an average value of sensitivity

for all possible values of specificity taking values between 0 and 1. An AUC value closest

to 1 indicates a test with 100% accuracy bringing its practical lower limit to 0.5 or 50%

accuracy which we refer to as the chance diagonal indicating a test relies on luck and is,

fundamentally, not suitable (Park et al., 2004).

A more formal interpretation states the AUC is equal to the probability that tests results

from a randomly selected pair of diseased and non-diseased subjects are correctly ordered,

i.e. P[YD > YD̄].

Often times a particular TPF is of interest, this is particularly the case in medical contexts

where the FPF is particularly small (< 0.05), in these cases and for specifying a range of

threshold values Partial Area Under the Curve (pAUC) is used. Working with equation 6,

we define PAUC as,

pAUC(t0) =
∫ t0

0
ROC(t)dt. (7)

Both AUC and pAUC are used regularly, however a few others deserve mentioning. The

Youden Index (YI) is the maximum difference between TP and FP fractions,

YI = max(tp− f p) = max(tp + tn− 1), (8)

The threshold at the point on the ROC curve corresponding to YI is often taken to be

the optimal classification threshold. Another such summary index is the Max Vertical

Distance (MVD) between the chance diagonal and the ROC curve, MVD = max|y(x)− x| a
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particularly useful statistic for its equivalence to both YI and Kolmogorov-Smirnov statistic

in the ROC curve domain (Krzanowski and Hand, 2009).

2.1.3 Binormal Model

In ROC analysis, the binormal model refers to the assumption of normal distributions of

both populations. This is the cornerstone of ROC analysis and a standard by which other

specialized analysis can be judged.

Beginning with the aforementioned assumption

YD ∼ N(µD, σ2
D), YD̄ ∼ N(µD̄, σ2

D̄),

then

ROC(t) = Φ(a + bΦ−1(t)) (9)

where Φ(·) is the normal cumulative distribution function (cdf) and,

a =
µD−µD̄

σD
, b =

σD̄
σD

We see the definition of the binormal ROC curve in equation 9 where we call a the intercept

and b the slope for the curve where both values are positive if we abide by convention of

larger values being indicative of disease (Pepe, 2003).

Krzanowski and Hand (2009) further expanded this equation form

y(t) = Φ
(

µD − µD̄ + σD̄ × zt

σD

)
(10)

where,

zt = Φ−1[t(c)] =
µD̄ − c

σD̄

For the binormal ROC curve the AUC is

AUC = Φ
(

a√
1 + b2

)
, (11)

an increasing function of a and decreasing of b. Partial AUC is not derivable from the previ-

ous expression and must be calculated using numerical integration or rational polynomial

approximation.



2.1. ROC Curve Concept 8

As mentioned, the ROC curve is invariant to monotone increasing data transformations

therefore to say YD and YD̄ is to say that to for a strictly increasing transformation h, h(YD)

and h(YD̄) have normal distributions, we can further impose that this function h transforms

the data to normality. The assumption that such a function h makes both populations

normally distributed exists is a weak one however empirical testing shows that for non-

Gaussian distributions the binormal model still holds (Pepe, 2003). This emphasizes the

concept that ROC curves quantify relationships between distributions and have no link to a

particular one.

It is this standard model we will see adapted to allow covariate adjustment further ahead.

2.1.4 ROC curve for Ordinal Tests

So far, theoretical assessments have implied a numerical, continuous scale of data, however

there are many cases where tests are not just discrete variables but are non numerical all

together with subjective assessments that different assessors may ”grade” differently. This

has been an issue since the ROC curve’s infancy and is a recurring problem in Radiology

where, for instance, different categories (0-5) of assessments are given for the same image

by different radiologists (Fig. 1). A common framework to tackle this problem is the latent

variable framework.

Say, L is an unobserved latent continuous variable corresponding to the assessor’s percep-

tion of the image. Much like mathematical thresholds, this assessor has its own, subjective,

cut off points used to classify/rate the image. Y corresponds to the reported classifications,

we say,

Y = y⇐⇒ cy−1 < L < cy, y = 1, ...., P

where c0 = −∞ and cp = ∞. The reader classifies the image in the yth category if L falls

within the interval corresponding to his implicit definition for the yth category (cy−1, cy).

To model the ROC curve we use L, the latent decision variable, while not an observable

variable we are able to identify P + 1 points on the basis of Y and by interpolation the ROC

curve for L. Since,

Y ≥ y⇐⇒ L > cy−1
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Figure 1: Example of rater bias in ordinal tests where rater 2 shows a more conservative threshold
than rater 1 for c (Pepe, 2003).

We can identify TPF and FPF corresponding to the threshold cy−1 as P[Y ≥ y|D = 1] and

P[Y ≥ y|D = 0] respectively (Pepe, 2003). If we are able to identify two non-degenerate

points t1 and t2 we can apply the binormal model where a and b are given by

a = Φ−1(ROC(t1))− bΦ−1(t1)

and

b =
Φ−1(ROC(t2)−Φ−1(ROC(t1))

Φ−1(t2)−Φ−1(t1)
.

We will see this framework mentioned in the next subsection.

2.2 roc curve estimation

2.2.1 Empirical Estimation

Having explored the theoretical fundamentals of the ROC curve and its summary indexes

we now turn to statistical methodology for inferring this curve from existing data rather than

assuming the existence of sets of populations and classifiers that fit the mentioned criteria.

Three distinct approaches can be considered for this estimation:
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1. Apply non parametric empirical methods to the data to obtain the empirical ROC

curve, from which empirical summary indexes can be calculated;

2. Use statistical models for the distributions of cases and controls, parameters in these

distributions are estimated and both induced ROC curve and summary indexes are

calculated together;

3. Modeling the ROC curve, rather than the probability distributions, as a smooth

parametric function.

All three approaches have their respective strengths and drawbacks however in this

subsection we will be focusing on the empirical methods followed by the modeling option in

subsection 2.2.2 for being the most popular when working with continuous and ordinal data

respectively and for mirroring methods of covariate adjustment we will see in the following

sections.

Of course when dealing with statistical estimation, one must take into account the accuracy

and precision of these estimates, as well as estimator biases and sampling variability to

construct reliable Confidence Intervals (CI), this will be explored along with the estimation

procedure for both ROC curve and AUC.

Empirical estimation applies the ROC curve definition to the observed data thus empirical

TPF and FPF are calculated as

T̂PF(c) =
nD

∑
i=1

I[YDi ≥ c]/nD (12)

F̂PF(c) =
nD̄

∑
j=1

I[YD̄j
≥ c]/nD̄ (13)

The empirical ROC curve, R̂OCe is a plot of T̂PF(c) versus F̂PF(c) for all c ∈ [−∞, ∞]

writable as,

R̂OCe(t) = ŜD(Ŝ−1
D̄ (t)), (14)

where ŜD and ŜD̄ are the empirical survivor functions of YD and YD̄ respectively. An example

of the resulting curve can be seen in Figure 2.
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Figure 2: Example of an empirical ROC curve.

Sampling Variability and CIs

Several approaches are available for sampling variability in the empirical ROC curve ranging

from fixing threshold to fixing FP and TP fractions as well as considering the entire curve

with confidence bands. For our purposes we will consider the first and latter options.

Fixing the threshold, c, and calculating a joint confidence region using exact binomial or

asymptotic methods or, alternatively, with bootstrap resampling if the samples are dependent,

this method is particularly useful with knowledge of the threshold in advance, such as in

blood tests where standard thresholds are already defined.

Considering the entire curve using a confidence band is particularly applicable when no

assumptions can be made regarding the test and is more useful for describing the curve.

One approach to calculate these bands is to base the calculation on the distribution of

sup|ROCe(t)− ROC(t)|, which can be calculated using two independent Brownian bridges

or, alternatively, model the risk function P[D = 1|Y] with logistic regression methods (Pepe,

2003).

Empirical AUC

As mentioned empirical indexes can be applied directly to the empirical curve thus,

ÂUCe =
∫ 1

0
R̂OCe(t)dt (15)
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pÂUCe(t0) =
∫ t0

0
R̂OCe(t)dt.

The area under the empirical ROC curve is the Mann-Whitney U-statistic (Pepe, 2003).

Variability of AUCe

Calculating variability in AUCe or any other summary index is often complicated, involving

analytic expressions for asymptotic variance however in practice one simply uses bootstrap

methods to calculate CIs.

2.2.2 Modeling the ROC curve

In the beginning of this section we described using a smooth parametric function to model

the ROC curve as a popular option when working with ordinal data, however with a few

adjustments we can also work with continuous data and we will describe both methods in

the remainder of this chapter.

Ordinal Tests

For this approach we adopt the Latent Decision Variable (LDV) framework mentioned in

section 2.1.4. Let L denote the underlying decision variable for a single reader, recall the

binormal model of the ROC curve is ROC(t) = Φ(a + bΦ−1(t)) as seen in equation 9, we

assume L ∼ N(0, 1) in the non diseased population, D̄. With these conditions we imply that

in the diseased population D, L ∼ N(a/b, (1, b)2, and calculate a and b using the already

established relation of Y = y ⇐⇒ cy−1 < L < cy. We can then derive the probability of

diseased and non diseased observation YD and YD̄

P[YD̂ = y] = Φ(bcy − a)−Φ(bcy−1 − a). (16)

P[Ŷ̄D = y] = Φ(cy)−Φ(cy−1) (17)
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The log likelihood function is then constructed as

nD

∑
i=1

logP[YD = YDi] +
nD̄

∑
j=1

logP[YD̄ = YD̄j] (18)

and maximize with respect to parameters {a, b, c1....cP−1}. The resulting ROC curve is a

smooth curve that follows the binormal model replacing a and b with it’s estimators, â and

b̂. The Standard Error (se) for â + b̂Φ−1(t) is

se =
{

var(â) + (Φ−1(t))2var(b̂) + 2Φ−1(t)cov(â, b̂)
}1/2

. (19)

Corresponding confidence limits for a + bΦ−1(t) written as

â + b̂Φ−1 ±Φ−1(1− α)se, (20)

generate the confidence limits for the binormal ROC curve.

Continuous Tests

Metz et al. (1998) proposed dealing with continuous data by categorizing them into a finite

number of pre-defined categories and applying the previously explained fitting methods for

ordinal data. The asymptotic properties of the estimator require the categories to be pre-

defined, however (Metz et al., 1998) proposed defining theses categories using observable

data using vertical and horizontal jumps in the empirical ROC to define the categories.

Having defined the categories we apply the LDV framework.

This method is called LABROC and it’s most appealing feature is, by working with ranks,

being distribution free, making it invariant to monotone increasing data transformations

mirroring the ROC curve (Pepe, 2003; Metz et al., 1998).
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2.3 bayesian methods

2.3.1 Bayesian Approach and General ROC Analysis

In the previous sections we discussed what is known as the frequentist or classical framework

for statistical inference. In this framework populations are represented by probability models

whose parameters are treated as fixed but unknown quantities about which inferences are to

be made and, thus has no scope for extraneous information integration such as previous

experiments or subjective elements.

The Bayesian approach treats population parameters as random variables with probability

distributions reflecting the degree of belief the research has on the data, allowing the intro-

duction and combination of prior knowledge and subjectivity to it. These prior distributions

are combined with sample data to produce posterior distributions creating a basis for all

inferences.

Bayesian methods have been available for many years however they were hampered

by their intractability, general unattractiveness by statistics and bottlenecks in computer

processing, this however changed by the mid 90’s with the introduction of Markov-chain

Monte Carlo methods (Krzanowski and Hand, 2009).

This method generates sample values from the posterior distributions and approximates

integrals by the average of sample values of a function f (·), this features ensures each

new proposal depends on the current one, and the sequence of proposals is guaranteed to

converge to values from the desired distribution. Noticeable algorithms include Metropolis-

Hastings, which uses joint distribution of new and current proposals and Gibbs sampling

which uses a sequence of conditional distributions. We will see the latter mentioned in the

next chapter.

Bayesian methodology shines when studies have uncertainty about underlying quantities

and ROC analysis has benefited greatly for this addition to the statistical repertoire. A

notorious case of this uncertainty is in labeling as D or D̄ of subjects from which a ROC

curve is to be constructed is either fallible or not available, this is often the case in medical

studies when the true disease status of each sample member is either equivocal or unknown

and ways.
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This section will explore the fundamentals of Bayesian ROC analysis.

For continuous data very few proposals for a standard method exist, Erkanli et al. (2006)

suggests the binormal model, presented in section 2.1.3, is a poor model for analysis in

Bayesian methodology for its pretense of normal distributed populations using a mixture of

normals as a more flexible alternative.

Ignoring for the time being population distinctions (D and D̄), say C denotes the number

of components in the normal mixture and K is a random variable which indicates the

operative component for a classification score, Y. The formal Bayesian approach is then,

Y|K, θK ∼ N(µK, σ2
K) (21)

where K and θk = (µK, σ2
K) are parameters and must be assigned prior distributions. The

components of θK are assigned normal gamma baseline priors while K has an independent

C-state multinomial distribution with probabilities w1, ..., wC specified as,

w1 = R1, wk = (1− R1)(1− R2)...(1− Rk−1)Rk f or k = 2, ..., C

where Ri are independent Beta(1,α) variables and RC = 1 to ensure that the wi sum to 1.

This model is termed a mixed Dirichlet process.

With this model we can generate predicted values for Y given previous scores a density

function, however the resulting integral is difficult to compute even with a small C, as such a

Gibbs sampler is used to simulate observations and the expected value can be approximated

by the average of these samples.

Having approximated the posterior predictive density we then obtain cumulative distri-

bution function from which the posterior predicted true positive and false positive rate are

calculated, from there, varying the threshold yields the predictive ROC curve.

Krzanowski and Hand (2009) dedicate a chapter to this model and its applications where

this section was based on, for the sake of brevity some equations and proofs were excluded

however this is a fundamental companion source of information to the original material of

Erkanli et al. (2006) and should be consulted for further information.
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2.3.2 Parametric and Non-parametric Bayesian Methods

It is essential to ensure the correct labeling of samples to populations D and D̄ to conduct

ROC analysis. We mentioned previously how, in medical tests, labeling is often either

fallible or missing, this as lead to the adoption of the gold standard, a method of labeling

that always delivers the correct result. This however is an imperfect solution because gold

standards hardly exist for most diseases and even those credited as such have been shown

to be quite fallible.

Bayesian methodology as made great contributions for this problem, including an exten-

sion of the previously mentioned mixed Dirichlet process by the same author (Erkanli et al.,

2006) as well as parametric and non parametric estimations proposed by Choi et al. (2006)

and Wang et al. (2007) in parametric and non parametric estimation respectively.

The general framework, described by Erkanli et al. (2006), for this approach describes

a ”group label” variable, gL, in the presence of a gold standard this is deterministic and

assigns samples to populations D and D̄ without error, however if no gold standard exists is

a binary random variable with unknown (but defined) probability of assignment. If the test

is not dichotomous one can derive gL by dichotomizing a second continuous classifier U.

Deriving gL can also be achieved by thresholding Y, both situations derive Y from L and are

handled by the method similarly however for simplicity we will denote the two continuous

classifiers as Y1 and Y2.

Extending the framework mentioned in 2.3.1 we assume that the true group labels are

given by a latent binary variable Z that can be related to gL in two ways,

gL|Z ∼ Bernoulli(π) (22)

where, 
log( π

1−π ) = β0, Z = D̄

log( π
1−π ) = β0 + β1, Z = D,

referred to as the classical model or,

Z|gL ∼ Bernoulli(ζ) (23)
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where, similarly, 
log( ζ

1−ζ ) = β0, gL = D̄

log( ζ
1−ζ ) = β0 + β1, gL = D,

known as the Berkson model. For full specification the former model also needs Z ∼

Bernoulli(ζ) where ζ ∼ Beta(a, b). The parameters β0, β1 can be fixed or assigned prior

distributions to reflect uncertainty about the relationship between L and Z. The latent

variable Z can also be simulated from its conditional posterior distribution as an additional

step to the Gibbs sampler. The process proceeds as previously explained (Erkanli et al., 2006;

Krzanowski and Hand, 2009).

Parametric and non parametric features to this method have been established and will be

discussed in the remainder of the section.

Parametric estimation

For this method we first acknowledge the existence of a gold standard to correctly label

individuals to either populations. Let Y1iD and Y2iD be the scores observed by two classifiers

for the ith individual of a random sample of size m from population D and Y1jD̄,Y2jD̄

the scores from the same classifiers for the jth individual from a sample of size n from

population D̄. These two scores can be placed in a column vector YiD = (Y1iD, Y2iD)
T and

YjD̄ = (Y1jD̄, Y2jD̄)
T. The analysis will begin by using the binormal model discussed in

section 2.1.3 with these two vectors so that,

YiD ∼ N2(µD, ΣD), YjD̄ ∼ N2(µD̄, ΣD̄).

Given the existence of a gold standard, all the usual features of ROC analysis can again be

obtained. Since there are two classifiers there will be two possible ROC curves with their

respective summary indexes that can be calculated with similar adjustments to the binormal

model.

To move from the presence to the absence of a gold standard we, again, define Z as the

latent variable so that if Z were observable,
Zj = 1 j ∈ D

Zj = 0 j ∈ D̄,
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and let m be the number of individuals observed. Now we assume Zj ∼ Bernoulli(π)

meaning, Pr(Zj = 1) = 1− Pr(Zj = 0) = π, making the probability density for the bivariate

classification score of the jth individual p(·)Zj g(·)1−Zj where p(·), g(·) are N2(µD, ΣD) and

N2(µD̄, ΣD̄) densities respectively. The change adds only the need to estimate the prevalence

of each population and an additional parameter π, which needs a prior distribution for

which Choi et al. (2006) suggest a Beta(1,1) or a Beta(0.5,0.5) (Krzanowski and Hand, 2009).

Nonparametric estimation

For the nonparametric estimation Wang et al. (2007) assumes a K range of thresholds c,

c1 < c2 < ... < ck and that Y has been applied to a sample of data to each threshold. If

(α(i), β(i)) are the true (unknown) value of ( f p, 1− tp) values at ci for i = 1, ..., K, given the

sorted thresholds, α(1) ≥ α(2) ≥ ... ≥ α(K) and similarly, β(1) ≤ β(2) ≤ ... ≤ β(K) and defines

the boundaries values as,

α(K+1) = β(0) = 0, α(0) = β(K+1) = 0

and given the fallibility of L, the true fp and fn fractions are,

α = P(D|D̄), β = P(D̄|D)

respectively. Finally, they define θ be the true prevalence of population D so that θ is the

probability that any individual in the group being sampled actually belongs to D (and 1− θ

the probability that it belongs to D̄) completing the unknown parameters of the problem.

Turning to the data, let n represent the individuals of the sample and nD and nD̄ the

classification of L to the populations D and D̄ respectively.

Considering Y at each of the K thresholds, (xiD, xiD̄) is the number of individuals labeled D,

D̄ by L respectively, classified as D at threshold ci−1 but D̄ at threshold ci for i = 2, ..., K− 1.

By deriving the probability of each occurrence in terms of the model parameters, the

likelihood of the sample can be shown to have the ordered multinomial form. However this

model is unidentifiable for lack of degrees of freedom, Wang et al. (2007) overcomes this by

assuming different prevalences θ1, θ2, ..., θG of population D but that the behaviour of Y is

the same for each group so that if there are G groups and independent samples are obtained

in each of them then the likelihood of the full set of data is the product of all the above

expressions evaluated for each separate group making the model identifiable for G ≥ 2.
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Finally one must guarantee the monotocity of the curve by contraining all α(·), β(·) to be pos-

itive by taking a Bayesian approach with Dirichlet priors for these parameters (Krzanowski

and Hand, 2009).

2.4 roc curve and covariates

2.4.1 The Need to Adjust for Covariates

Consider that to the previously mentioned continuous marker Y and binary outcome, is

added a covariate X that affects the distribution of the marker. The traditional ROC curve

combines all case observations and all control observations together regardless of covariate

value. If this curve, describing the ability to of discrimination of a marker between cases and

controls includes a discriminatory accuracy due to a covariate X, it is then biased. In Figure

3 scenario 1 we can see a binary covariate associated with both marker and outcome, we see

that the classification accuracy for the marker is the same in the two centers, implying X is

not an effect modifier resulting in an overly optimistic ROC curve when compared to the

covariate adjusted curve due to failure in adjusting for the covariate.

The need to adjust in a broader sense, comes from the need to calibrate an evaluating

marker when such marker’s observations depend on a covariate (Janes and Pepe, 2008) and

such calibration is obtained with the covariate-adjusted ROC curve, more recently called

the AROC. Figure 3 shows that when a covariate affects the distribution of marker values

among controls, covariate adjustment is necessary to appropriately compare case and control

marker distributions (Pepe, 2003; Janes and Pepe, 2008) .

2.4.2 Adjusting the ROC curve

Incorporating covariates to the analysis follow two distinct methods, indirect adjustment,

sometimes referred as induced, where the effects of the covariate are modeled in both

diseased and non diseased populations and only afterwards is the ROC curve derived, and

direct adjustment where the effect is modeled directly on the ROC curve itself (Krzanowski

and Hand, 2009).
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Figure 3: Simulated marker, Y , and binary covariate, X = 0, 1. In scenario 1, X is associated with
the outcome: P(D = 1|X = 0) = 0.36 and P(D = 1|X = 1) = 0.83. In scenario 2, X is
independent of the outcome: P(D = 1|X = 0) = P(D = 1|X = 1) = 0.50. A) Shows the
densities of Y conditional on X = 0, and X = 1, followed by the pooled data under scenario 1,
and scenario 2. A common threshold is indicated. B) Shows the common covariate specific
ROC curve, the pooled ROC curve under scenario 1, and the pooled ROC curve under
scenario 2. The performances of the common threshold rule are indicated (Janes and Pepe,
2008).

Indirect Method

Suppose there is a set of covariates XD associated with population D and a set of covariates

XD̄ associated with population D̄, in practical applications most, if not all, of these covariates

will be common to both populations however this is not a requirement. Let αD and αD̄

be two scalars and βD βD̄ be element vectors that contain XD and XD̄. We are then able

to model the mean of results for both populations (µD(XD), µD̄(XD̄)) for given values of

covariates:

µD(XD) = αD + βT
DXD (24)

µD̄(XD̄) = αD̄ + βT
D̄XD̄ (25)
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And assuming normal distributions for D and D̄ and standard deviations σD, σD̄ respec-

tively, we obtain the equation of the ROC curve as:

y = Φ
(

µD(XD)− µD̄(XD̄) + σD̄ ×Φ−1(t)
σD

)
(0 ≤ t ≤ 1) (26)

Least-squares regression can estimate point values of αD, αD̄, βD, βD̄, and substitution of

these estimates into the above formula at given values xD , xD̄ of XD , and XD̄ grants us the

covariate-specific ROC curves (Krzanowski and Hand, 2009). This model has been criticized

over the years by a number of authors (Smith and Thompson, 1996; Faraggi, 2003), suffering

changes on the regression approach and replacing the assumption of normality with a

common scale parameters, this method however is quite restrictive due to inequalities in

population scale and that this generalization could only be done at the cost of considerable

mathematical complications. Pepe (1998) took a continuous-score analogy ordinal-score

approach, and modeled D and D̄, as coming from an arbitrary location-scale family but

with the already specified means and standard deviation. If the distribution function of the

chosen member of the location-scale family is H(·) on a standardized scale then the ROC

curve equation is given by

y = 1− H
(
(αD − αD̄) +

σD

σD̄
H−1(1− x) + cTX

)
(0 ≤ x ≤ 1) (27)

where c = 1
σD̄
(βD − βD̄) .

To obtain the AROC in a practical application, these scalars, element vectors and standard

deviations must first be estimated without a need to specify H(·) using quasi-likelihood

methods (Pepe, 1998; Krzanowski and Hand, 2009).

Direct Method

While in the previous approach we modeled covariate effect on two separate populations,

the direct method calculates covariate effect directly on the ROC curve. The main advantage

of this methodology is that it allows a direct interpretation of the covariate effect on the ROC

curve. In its core this approach requires the selection of a model that will capture the effects

of the ROC curve whilst maintaining a flexibility to preserve the monotonically increasing

ROC curve, its domain and range.
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The need for this flexibility and constraints has popularized the use of the generalized

linear models (GLM) (McCullagh and Nelder, 1989), specifically the ROC - GLM model

given by,

h(y) = b(x) + βTX (28)

where,

• b(·) is an unknown baseline function monotonic on (0, 1);

• h(·) is the link function, specified as part of the model and also monotonic on (0, 1);

• X is the vector of covariates (however this time it’s a single vector rather than associated

to a specific population);

• β are the regression parameters associated with the covariates.

Link functions, h(·), vary but the more common in GLM are

• Probit: h(y) = Φ−1(y)

• Logistic: h(y) = log y
1−y = logit(y)

• Logarithmic: h(y) = log(y)

The same methods of obtaining the mean of both populations can be as applied in

equations 24 and 25 (Pepe, 2003) by replacing the individual covariates vectors, XD and XD̄

by X as well as and respective σD, σD̄ standard deviations which speaks to the flexibility of

the approach (Krzanowski and Hand, 2009).

2.4.3 AROC and Summary Indexes

In some cases, covariate adjustment interest lies on the summary statistics rather than the

ROC curve itself where most of the theoretical attention is focused on the AUC.
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If the ROC curve was adjusted indirectly then the effects on AUC are obtained by

simply expressing AUC in terms of the model parameters and substituting estimates of the

parameters in the binormal expression for xD and xD̄ for covariates XD and XD̄ respectively:

AUC(xD, xD̄) = φ[δ(xD, xD̄)], (29)

where

δ(xD, xD̄) =
µD(xD)−µD̄(xD̄)√

σ2
D+σ2

D̄

for

µD(xD) = αD + βT
DxD

µD̄(xD̄) = αD̄ + βT
D̄xD̄.

Estimation of these parameters by ordinary least squares and substituting into these

expressions yields δ̂(xD, xD̄) and ÂUC(xD, xD̄). This modulation will generally require

strong or specific assumptions. This issue as well as specific cases where AUC values were

available but not classification scores, prompted several authors to consider direct adjustment

AUC.

Dodd and Pepe (2003) adapted an early proposed model of AAUC calculation that would

allow all types of covariates to be modeled with a binary estimation method. Once more,

suppose there is a set of cD covariates XD associated with population D and a corresponding

set cD̄ of XD̄ for population D̄ and we write X as the aggregation of all covariates. We have

the AUC regression model,

E(h[ÂUC]) = α + βTx (30)

for parameters α, β and monotone increasing link funtion h(·), with probit and logit again

as natural link functions (Krzanowski and Hand, 2009).
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S O F T WA R E A N D PA C K A G E S

3.1 introduction

A large amount of software has been developed for ROC curve building and analysis across

multiple platforms, enumerated in detail by a recent review by Obuchowski and Bullen

(2018), some notable references include ”Metz ROC Software”, developed by the University

of Chicago, ”Pepe Lab” for the Stata platform, ”Analysing ROC curves with SAS”, developed

by Mithat Gönen for SAS and the ”pROC” package for R. These packages while popular

either offer a somewhat shallow approach to covariate adjustment or are published in a non

readily available platform that can prove difficult to use for non technical users.

To fulfill our goal of creating a user friendly application and bridging the gap between

theoretical and practical application of the AROC in a widely available space the Shiny

framework was selected. Shiny uses the R language to create an interactable application

that can either be used on a local computer or online. However a framework in R requires

packages to perform ROC adjustment.

Recently, a package published by Rodrı́guez-Álvarez et al. (2018) on CRAN, the R Archive

Network, goes to great lengths to implement several regression approaches for the inclusion

of covariate information on the traditional ROC framework, however, it still suffers from a

previously mentioned problem of difficulty in usability.

By combining an interactable framework with this robust package for ROC curve adjust-

ment the feasibility of our goal becomes clearer. Additionally, to provide the user an extra

option of comparison between ROC curves to pre and post adjustment the Comp2ROC

package was employed.

24
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In this chapter we will take an indepth look at the AROC Package by Rodriguez-Alvarez

and Inacio de Carvalho (2018), the Shiny framework as well as a quick overview of the

Comp2ROC package by Braga et al. (2016).

3.2 the aroc r package

3.2.1 Package Overview

The AROC R-package developed by Rodrı́guez-Álvarez et al. (2018) implements different

methods of computing covariate information in ROC curve construction and two additional

methods of calculating marginal/polled ROC curve providing aditional tools for an un-

derdeveloped sub-field. The methods include Bayesian, Kernel and Frequentist methods

of adjustment and direct and indirect methods of regression, mentioned in the previous

chapter, we will explore in the following subsections.

3.2.2 Bayesian Methods

The first methods presented by the package are two bayesian based estimations based on

the Dirichlet process discussed in section 2.3.

The AROC.bnp function estimates the AROC curve using the Bayesian nonparametric

method. Working with equation 4 we say,

AROC(t) = Pr{YD > F−1
D̄ (1− t|XD)}

= Pr{1− FD̄(YD|XD)) ≤ t}

= Pr(UD ≤ t), 0 ≤ t ≤ 1, (31)

where UD = 1− FD̄(YD|XD), a placement value of the test outcome in the diseased popula-

tion or the the standardization of YD to the conditional distribution of YD̄ making the AROC

a cumulative distribution function of UD. This method first models the conditional distribu-

tion of test outcomes in the nondiseased group, FD̄ using a B-splines dependent Dirichlet

process mixture of normals model followed by modeling UD and it’s cumulative distribution
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using a non parametric regression model through Bayesian bootstrap (Rodrı́guez-Álvarez

et al., 2018).

The AROC.bsp method is very similar to the previous, non parametric method, in both

construction and theory, where this models FD̄ using a normal linear regression, making it

a counterpart to Janes and Pepe (2009) frequentist model and its AROC package method -

AROC.sp (Rodriguez-Alvarez and Inacio de Carvalho, 2018).

3.2.3 Kernel Methods

The AROC.kernel, an earlier proposed model by Rodriguez-Alvarez et al (Rodrı́guez-Álvarez

et al., 2011) is, as the name implies, a kernel based method. Test outcomes for the non

diseased group are modeled with a location-scale regression model where both regression

and variance functions are estimated using Nadaraa-Watson local estimators that in turn

are used to compute standardised residuals to model UD and estimate the AROC curve,̂AROC(t) (Rodrı́guez-Álvarez et al., 2018; Rodriguez-Alvarez and Inacio de Carvalho, 2018;

Rodrı́guez-Álvarez et al., 2011).

The package author notes that, for now, this method, unlike the previous, can only handle

a single continuous covariate.

3.2.4 Frequentist Method

This semiparametric frequentist method arguments and construction are fairly similar to

the previous methods but, as previously hinted, uses a semiparametric location regression

model for YD̄ to estimate FD̄ and estimates outer probability empirically (Rodriguez-Alvarez

and Inacio de Carvalho, 2018; Janes and Pepe, 2008) making it less computationally heavy, i.e

faster in comparison. Another advantage is being able to provide direct insight on covariate

influence over the test/marker with the fit model’s parameters.

The frequentist method for covariate adjustment was first implemented in rocreg from Stata

2013 complementing other Stata ROC commands such as roctab and roccomp (StataCorp,

2013). It arguably remained one of the most in depth options for covariate adjustment

available in the market until the release of the AROC package, it is however only available
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through Stata which requires an yearly licence and can prove challenging for inexperienced

users.

3.2.5 Other Methods

Posterior Predictive Checks (PPC)

All previous methods are meant to construct and analyze the AROC curve and the behavior

of the incorporated covariates, for the remainder of this section the methods focus on

posterior predictive checks and pooled ROC estimation.

Both predictive.checks.AROC.bnp and predictive.checks.AROC.bsp are implementations of

PPCs on their respective Bayesian based method. The premise behind PPCs is evaluating

the generated model on how well it is able to generate data similar to the data observed

(Gabry et al., 2019) utilizing in this case the B-splines dependent Dirichlet process and

Bayesian normal linear regression model for the AROC.bnp and AROC.bsp objects respec-

tively (Rodriguez-Alvarez and Inacio de Carvalho, 2018). To exemplify these methods we

use the previously generated objects.

While the mandatory argument is solely the AROC object, the devnew was changed from

the default TRUE argument to display all depicted graphics on the same device. These

graphics are histograms of the desired test statistics, by default minimum, maximum,

median and skewness and Kernel density estimates showing diagnostic test outcome in the

nondiseased group as well.

Pooled ROC

The package also provides two methods of polled ROC estimation, pooledROC.emp an imple-

mentation of empirical estimation proposed by Hsieh and Turnbull (Hsieh and Turnbull,

1996; Rodriguez-Alvarez and Inacio de Carvalho, 2018) and pooledROC.BB for Bayesian boot-

strap estimation proposed by Gu et al. (2008) (Rodriguez-Alvarez and Inacio de Carvalho,

2018). Both methods are similar to construct and have a similar output structure, mandatory
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arguments identify diseased and non diseased groups in the test or marker column which

can be achieved with a straightforward indexing in R.

3.3 r shiny

Shiny is an R package which provides a framework to develop interactive web-based

applications such as data summaries and queries to end users through a standard web

browser. A recent addition to the R repository, its applications have provided an excellent

resource for users to work with complex R packages or perform data analysis through a

extensible visual framework based around HTML and CSS with further JavaScript and

jQuery integration to extend the scope of possible applications.

The package is based around reactive programming, a programming paradigm that

facilitates the automatic propagation of change of dataflows. A practical understanding of

this concept is, while working with several inputs generating a specific output, be it plots,

tables or text, any modification on input will automatically generate and update the output

without requiring a new command or refresh action on the user’s side. Another user friendly

implementation is the customization of the shiny interface using widgets and code chunks

promoted by RStudio and implemented across several other apps available on their archive

The standard architecture of a shiny app is two scripts in the same directory, ui.R for the

User interface (UI) and server.R for internal calculations and app behavior. These two files

can also be joined in a single app.R however this option is best used for applications such as

data visualization (Beeley, 2013).

3.4 comp2roc

The final package required to build the RealROC app is Comp2ROC. To establish a statistical

significant confounding affect of a given covariate on the ROC curve we have explored the

possibility of using the fit model’s parameters as seen in section 3.2.4 however another well

established alternative is available in some scenarios, ROC curve comparison.

When comparing ROC curves, Area Under the Curve (AUC) is frequently used to indicate

greater performance. The Z-test, a non parametric approximation of the Wilcoxon-Mann-
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Whitney test is often used for this comparison, however performance misreadings can occur

due to curve crossing, further argued is the ROC curves inclusion of areas with very little

interest that can influence the result perchance claiming that, for instance, two ROC curves

have no statistical differences overall disregarding partial areas of interest (Braga et al., 2013).

For a more robust comparison of the two ROC curves the Braga methodology (Braga

et al., 2013) and package Comp2ROC from the same author was selected. The method uses

a collection of sampling lines similar to multi-objective distinct optimization algorithms

allowing ROC curve comparison in several regions of space evaluating statistical performance

and generating confidence intervals with non parametric bootstrap re-sampling method

Braga et al. (2013).

Due to compatibility issues we cannot use this package to compare curves with and

without accounting for a covariate affect however in instances where we can separate the

populations assigned with a given covariate value, such as in the case of a categorical

variable, this method can be used to calculate the differences between curves, inferring the

covariate affect which, if used in tandem with the AROC method, can give further credence

to the conclusions drawn when using RealROC.

This dissertation did not thoroughly explore ROC curve comparison however both the

package original article (Braga et al., 2013) and documentation (Braga et al., 2016) as well as

Krzanowski and Hand (2009) provide valuable resources on this topic.
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R E A L R O C W E B A P P L I C AT I O N

4.1 application flow

RealROC follows a linear flow intended to replicate an analysis progression from building

the standard ROC curve to adjusting it followed by a comparison of both and a report with

all relevant statistics that can be consulted at any time. The user is also able to skip or return

to any of the previous steps to change any parameters as needed.

The app is comprised of seven distinct modules that will be individually explored in the

next section.

Figure 4: RealROC flowchart.

30
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The application is available online at https://frmachadoecosta.shinyapps.io/RealROC/,

additionally it can be downloaded or run locally by downloading it at https://github.com/

frmachadoecosta/RealROC where the source code is also available.

4.2 application modules

4.2.1 Home Screen

When RealROC opens, the user is presented with an option of uploading the desired data,

in csv or xml format, or using the sample data provided by the app. The sample data,

endosim.csv, is present in another package developed by Rodriguez-Alvarez and Javier Roca-

Pardinas (2017) and used Body Mass Index (BMI) to detect patients having a higher risk of

cardiovascular problems, with age and biological sex as covariates. This data was selected

not just because BMI is a well established index, making both values and results easier to

understand but also for the presence of both a continuous and binary variables, age and sex

respectively, to allow for different approaches when adjusting the ROC curve.

Figure 5: Home Screen options flowchart.

Either option will trigger the appearance of a data-table where the user can consult their

data and adjust the options for import if necessary as can be seen in Figure 6.

https://frmachadoecosta.shinyapps.io/RealROC/
https://github.com/frmachadoecosta/RealROC
https://github.com/frmachadoecosta/RealROC
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Figure 6: Home Screen using sample data.

4.2.2 Classic ROC Analysis

Classic ROC is the first of 3 modules that present the same overall behaviour, the user intends

to perform a given analysis, selects the appropriate method and inputs the parameters

needed to display an output, a simplified option flowchart is available in Figure 7.

Figure 7: Classic ROC and AROC module options.

Classic ROC allows the user to perform the standard or classic ROC analysis with no

covariate attached, parameters are input in the lateral panel where marker and result tabs

should be specified and are dependent on the names given in the original dataset as well as

the control/healthy and case/disease tags.
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Methods included are empirical and pooled estimators present in pROC and AROC

package respectively, that generate the ROC curve after the command is given by pressing

the bottom button of the lateral screen, this will in turn collect the inputs and construct the

curve and population density plots that can be seen in Figure 8.

Figure 8: Classic ROC module output using sample data.

4.2.3 AROC

The AROC module allows the user to perform AROC analysis. This has a similar flow

to Classic ROC, seen in Figure 7, however an extra option for selection of the covariate is

present in the lateral panel. Users that began their analysis in the previous module will note

that the options selected previously are saved between modules to enhance the experience,

needing only to select their desired covariate if all remaining options are the same. As

of release this is limited to one covariate per analysis to cover the majority of cases with

no added complexity of the influence of interdependent variables, or values of different

interactions with the marker.

The AROC methods mentioned in section 3.2 with the exception of the kernel estimator

since it only allows for continuous covariates, a specification that restricts the user selection

process, that was hence dropped for the time being.

The output curve should be similar to the previous example however in the case of

population distribution a fork occurs, if the covariate selected is continuous a dotplot will

be displayed exhibiting the density distribution of cases and controls across the covariate,
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however if the covariate happens to be binary a boxplot will appear displaying the behaviour

of the marker in separate covariate values, this can be seen in Figure 9.

Figure 9: AROC module Population Distribution output using a continuous covariate - age (left) and
binary covariate - gender (right).

4.2.4 Comparing adjustment

The Comparison module is more complex than the previous modules, the user will again

note that the previous choices are again present in the selection tab however an extra option

is available once again, a method selection of comparison mentioned in Chapter 3. If the

user wishes to perform a comparison on a continuous covariate they must choose the AROC

method of comparison, however if the covariate is of a binary nature it can opt to use either

the Comp2ROC method or the AROC method, a simplified version of this selection can be

seen in Figure 10.

For output, the AROC method presents the user with a superimposed plot of pooled

empirical and frequentist AROC curves in a ggplot environment, these methods are chosen

to provide not just the most straight forward comparison but also a larger amount of

information on the covariate effect we will see in the Report section. Provided the user

selected the Comp2ROC method with a binary covariate they will be presented with two

covariate-specific ROC curves and information about their differences can be found in the

Report section. These outputs can be seen in Figure 11.
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Figure 10: Comparison module selection options.

Figure 11: Comparison module plot outputs for AROC method (left) and Comp2ROC method (right).

4.2.5 Report Screen

The report section logs all actions taken in the application and is the closest option to

an R console output however the outputs for each action are parsed to present the most

straightforward and clear information possible. This section can be accessed at any time by

the user to get extra information on the generated ROC curves, such as AUC and CI values,

in the case of covariate adjustment and the comparison module this is displayed with extra

information on the fitted regression model and Z-statistic value and p-value, that will help

the user determine not just through visual output if the covariate has add a confounding

effect on their data.
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4.2.6 Advanced Options

The Advanced section is the most sensitive section within the app. This module was

designed to allow some modification to the uploaded data, often required by analysts, to try

and avoid the need for extra modifications outside the application. These modifications can

be inverting the signal of a given variable, such as markers that do not follow the standard

ROC assumption of YD > YD̄, a simple logarithmic transformation or even fixing common

mistakes of the data such as a binary variable being recorded as a numeric value that can

have implications on output.

These small adjustments are key to circumvent some of the app’s limitations regarding

data manipulation, that would ideally not be required, however this change of data is unsafe

as it can erase input selections and modify the data in detrimental ways to the analysis.

These changes can be seen in the data table in the Home screen however they should be

limited and performed before any calculations are made so as to not compromise results.

4.2.7 Help Section

The Help section is designed to guide new users in the functionality of each module in

a structure similar to the one found throughout this chapter. This is achieved using the

Readme file generated by Github and displaying it in the app ensuring both methods of

accessing the application and reading the documentation grant the same information with

the same structure.
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C A S E S T U D Y - C R I B S C O R E A N D T H E S E X C O VA R I AT E

5.1 neonatal mortality and crib score

The following case study will show an application of RealROC comparing it with the

conventional R scripting method to show if biological sex has a confounding effect in a

neonatal mortality assessment system.

A common healthcare goal across countries is the reduction of neonatal mortality, in

fact it is a listed concern of the United Nations’ Sustainable Development Goals (SDG),

which targets Neonatal Mortality Rates (NMR) reduction to 12 per 1000 births by 2030

(Harahap et al., 2019). Preterm birth is listed as the most important factor of mortality in

developed countries that accompanied by birth weight and gestational age are significant

univariant predictors of mortality risk (Terzic and Heljić, 2012). Along with advancements

on perinatal medicine, increase support techniques in Neonatal Intensive Care Units (NICUs)

and development of adequate scoring systems for assessing mortality risk have lead to a

global 51% decrease on NMR from 1990 to 2017 (Brito et al., 2003; Hug et al., 2019).

Clinical risk index for babies (CRIB) is a risk assessment tool used in NICUs for infants

born with less than 32 week gestation or 1500g or lower birth weight. Along with the

Score for Neonatal Acute Physiology (SNAP), these scoring systems and their updates have

served as prediction tools more accurate to the previous weight or gestational age univariate

predictors (Brito et al., 2003).

CRIB score uses six different variables obtained routinely during the first 12 hours of life,

namely, birth-weight, gestational age, the presence of congenital malformation (excluding

inevitably lethal congenital malformations) and indices of physiological status (maximum
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base deficit, minimum and maximum appropriate fraction of inspired oxygen (FiO2), all

measured in the first 12 hours) resulting in a score between 0 and 24 where higher values

denote a higher risk of death. This scoring system is a staple in NICUs for both statistical

and practical reasons, being not just an overall better scoring system than most of its

contemporaries (Braga et al., 2013; Bastos et al., 1997) but also for the ease of data collection

and score calculation making the test last only 5 minutes per infant (Dorling et al., 2005).

The CRIB score was derived using data from infants admitted to UK tertiary neonatal

units from 1988 to 1990, this lead to Parry et al. (2003) raising concerns over poor calibration

to contemporary data, the inclusion of FiO2 also warranted criticism since it was considered

a subjective entry determined by the care team rather than a physiological measurement.

Similarly the addition of data up to 12h after admission also lead to concern over early

treatment bias (Parry et al., 2003). These issues eventually resulted in an updated CRIB

score, CRIB-II.

CRIB-II score system maintains a relatively low number of variables needed for calculation,

maintaining the advantage of its predecessor, gestational age, birth weight, admission

temperature and base excess are used to predict mortality. This new prediction tool was met

with some skepticism with reports of studies comparing both systems, showing no statistical

difference (Gagliardi et al., 2004; Felice et al., 2005) nevertheless CRIB-II is now a known and

recognized neonatal scoring system used in some hospitals.

5.2 dataset

The dataset used is part of the Portuguese National Registry on low weight newborns

between 2013 and 2018 and was made available for research purposes. The original data

included possible confounding observations such as repeated ids and twins that were

removed to ensure no unaccounted variable. After ensuring all id’s were unique, these

were promptly removed along with any possible identifiable features to abide by European

Union’s anonymity and data protection standards. The resulting dataset composed of 3823

unique entries registering gestational age in weeks, the mothers age, in years, biological sex

of the infant (1-Male; 2-Female), CRIB score (0-21), survival (0-Survival; 1-Death) and other

possibly relevant covariates were used for the remainder of the study. An abridged dataset
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with relevant information was published and is available for consultation (Machado E Costa,

2019).

5.3 realroc vs scripting

In both methodologies the dataset must be imported to the environment, this is achieved by

choosing a file in the application of by using the read.csv() function in R, note that server-side

RealROC is performing this same command however it simplifies the process and replaces

R syntax with simple button presses. A successful data import can be seen in Figure 12 with

a table output where the user can consult their data unlike in native R.

Figure 12: Successful data import with table output.

Moving to the Classic ROC section, we can begin selecting the parameters and ploting

several different ROC curves, in R this requires loading and potentially installing the desired

libraries however these come preloaded in the application. Once again the need to know

each package correct syntax is replaced by simple data inputs that can display the empirical

or pooled ROC curve as seen in Figure 13.
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Figure 13: Pooled empirical ROC curve for CRIB score.

Extra information is even present in the ”Population Distribution” tab displayed in Figure

14 where we can see the population densities for controls and cases, giving a broader view

of the data.

Figure 14: Population densities of mortality by CRIB score.

Moving to the AROC section, the user will see all previous selected inputs are saved in

memory and all that is needed is to correctly select the covariate, in this case ”sex”. The

curve type or method of adjustment selected is the frequentist method mentioned in section

3.2.4 for a more in depth summary on the effect of the covariate. While the AROC curve can
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be seen, the population distribution tab will not display the correct result, this is because the

data was originally submitted with the ”sex” column as numeric rather than a factor, this

however can be easily fixed in the Advanced section where the nature of the column can be

changed. Results for both outputs can be seen in Figures 15 and 16.

Figure 15: AROC curve for CRIB score adjusted for sex.

Figure 16: Boxplot of covariate specific CRIB controls and cases.
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Already we can see the behaviour of the covariate and might opt to go straight to the

Report section to get our summary however we can go further and directly compare the two

curves in the Comparison section. Given the nature of how covariate we can use both AROC

and Comp2ROC methods mentioned in Chapter 3.

In the Comparison section the gap of usability between app and script is far more

noticeable, the AROC method has no method for superimpose two curves generated by

the package so for scripting the user would require extensive knowledge of R plot syntax

to be able to manually collect each curve points and plot them. This, like other features

of the application, is achieved with simple button presses after selection of the method of

comparison, displaying a ggplot object with CI present as can be seen in Figure 17. For the

Comp2ROC method, the package requires a particular data structure to operate, and the

user would need to manually rearrange the dataset and re-import it, in RealROC however

this is seamless to the previous method and results can be seen in Figure 18.

Figure 17: AROC and ROC curve comparison.

With the data thoroughly analysed, the user can now see the summary of their findings in

the Report section that can be seen in Figure 19. This section displays several summaries for

the many operations made, and a equivalent in the script method would be several different

summary commands. The section organizes the many summaries offered by each package

in an easily digestible format containing all relevant information.
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Figure 18: Comp2ROC comparison of covariate specific ROC curves.

Figure 19: Report section for sex adjusted CRIB.

In this instance we can see that the AROC method shows a p-value > 0.05 which coupled

with the Z statistic p-value > 0.05 and the sum of global areas crossing 0 along with the CI

intersections clearly shows no statistical significance to the sex covariate in the CRIB score

system.
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5.4 final remarks

Results from both covariate adjustment and ROC curve comparison methods clearly indicate

sex is not a confounding covariate in the CRIB score meaning the sex of the infant has no

statistical relevance to the score system or the mortality outcome. These findings validate

previous research on the matter (Terzic and Heljić, 2012; Mourão et al., 2014) from more

contemporary sources but also come from a substantially larger pool of data.

RealROC displays an intuitive option selection menu and clear output which allows any

user to perform a thorough analysis without R code syntax details. It is, of course, worth

noting that all results displayed by the app can be achieved with R by an experienced user

however the time to do so would be substantially longer than using the app.



6

C O N C L U S I O N

ROC curves have aided statistical analysis and decision statistics for over half a century, their

simple classification model and straightforward summary statistics have been paramount in

the virtually limitless two-class prediction problem.

The curve’s history is filled with new coefficients, derivations, summary statistics and

interpretations for existing theory to better fit such an ubiquitous tool to specific applications.

Covariate specific and covariate adjusted ROC curves are a relatively newer addition to

the existing theory hence the lack of specific tools mentioned in section 3.1. This addition

however widens the scope for this tool even further with works like the ones from Janes and

Pepe (2008) and Rodrı́guez-Álvarez et al. (2018) only serving to expand its potential.

The goal for this dissertation was to cement these new found applications for the ROC

curve via the development of a specialize tool. RealROC was developed as a way to introduce

users to the AROC concept and apply it to their database and hopefully lead them to more

in depth conclusions about their data and the relations between variables.

While this dissertation focused on the bioinformatics and medical applications for this

tool, RealROC is built to allow the same diversity of data the classic ROC analysis is able to

compute.

The case study presented in the previous chapter demonstrated an intuitive software that

simplifies the AROC analysis and allows users to perform their intended studies in a shorter

amount of time and effort, and while undeniable that a pure R code can provide greater

freedom to an experienced user in customization and specific calculations the app greatly

reduces the know-how entry barrier.
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The application is already released and available at https://frmachadoecosta.shinyapps.io/

RealROC/ however new improvements are expected such as introducing several covariates

to the confounding study as well as specifying the relation between covariates and between

each covariate and the marker, introducing the ability to compare markers in the Comparison

module, new additions to the Advanced tab to allow smoother data manipulation inside the

app and any and all performance and bug fixes reported by users through github.

https://frmachadoecosta.shinyapps.io/RealROC/
https://frmachadoecosta.shinyapps.io/RealROC/
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