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Abstract. Code verification is an intricate but crucial part of numerical code development. Due to the

complexity of the partial differential equations, an analytical solution might not exist. In those situations

and aiming at proving that the code is solving appropriately the governing equations, the method of
manufactured solutions (MMS) is a powerful tool. In this method, a source term is derived to enforce

the solution to a predetermined function. By performing a mesh refinement study, one can verify if the

code is correctly solving the desired equations. In this work, a methodology that allows the automation
of the MMS within the OpenFOAM R© framework is proposed. The developed computational framework

comprises a set of tools prepared, in an open-source environment, for the symbolic computation of the

associated source term, and to generate the code required for its implementation as well as appropriate
boundary conditions and functions to calculate the error norms.

1. Introduction

Code verification is an intricate but crucial part of numerical code development [1,2]. In computational
modelling, systems of partial differential equations (PDE) equipped with appropriate boundary conditions
are used to model several physical phenomena, such as fluid dynamics, structural mechanics, conjugated
heat transfer, combustion, transport in porous media, etc. In that context, verification procedures aim
at demonstrating that the continuum governing equations are solved correctly, and that the computed
solution tends asymptotically to the exact solution as finer meshes and smaller time-step sizes, are applied.
In that regard, the convergence order of the method measures the rate at which the error decreases with
mesh and time-step refinement.

Several methodologies of verification can be employed to demonstrate that the code correctly solves
the physical model. The classical approach consists in deriving an analytical (exact) solution for the
governing equations, which is usually only feasible for problems with reduced dimension (1D or 2D)
and simple geometries. For some physical phenomena, exact solutions might not be available even for
simplified setups. This is usually known as the method of exact solutions and has been used extensively
in the context of OpenFOAM R© for solver verification [3]. However, for real-world problems, the models
to solve often contain non-linear terms, couplings, variable coefficients, and complex geometries [4], which
hinders or makes it impossible to derive analytical solutions. Moreover, depending on the mathematical
techniques employed for deriving the exact solution, the use of infinite sums, special functions or non-
trivial integrals will raise issues, such as where to truncate the summation, what integration scheme
should be used, and the possible existence of singularities in the solution [4].

The method of manufactured solutions (MMS) is an alternative methodology that is more practical and
interesting for code verification in complex problems [4–6]. The method consists in providing an analytical
solution for the unknowns of the problem as a function of space and time. Then, specific source terms
for each governing equation are determined by applying the corresponding differential operators to the
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predefined solution. Plugging the computed source terms into the original PDE(s) will result in a new
set of equations whose exact solution is the manufactured solution. The convergence order of the method
can then be assessed by performing a series of tests, through either a mesh or time-step refinement, or a
combination of both.

In most situations, the manufactured solution should be smooth and regular in space and time (for
unsteady problems), non-trivial, and allow the calculation of all derivatives comprised in the PDE(s)
(e.g. cross-derivatives). Additionally, the best type of manufactured solutions should be described with
simple functions, such as trigonometric, exponential or high degree polynomials. Detailed guidelines for
creating manufactured solutions can be found in Salari and Knupp [4].

In the context of OpenFOAM R© , the MMS has been employed to assess different solvers, covering
several areas, such as computational fluid dynamics [7–10], solid mechanics [11], fluid-structure interac-
tion [12], heat transfer [13], nuclear engineering [14], reacting flows [15], among others. However, in all
the referred works, the MMS is used to assess the developed solvers, but no details are provided to guide
users interested in extending the approach to other cases. Moreover, the manipulation of the complex
analytical expressions associated even with simple cases, and the implementation of required source terms
and boundary conditions is often a complex, labour-intensive and error-prone task.

In the present work, a semi-automatic approach to undertake code verification in OpenFOAM R©

through the MMS is proposed and illustrated. The approach allows a straightforward extension to
different case studies and solvers. It resorts to Sympy [16] v1.8, an open-source symbolic computation
module from Python programming language, and OpenFOAM R© ’v1912 fvOptions and coded function-
ality, which allows a high degree of flexibility for a swift, and automatic, computation of source terms
and boundary conditions.

The remaining paper is organized as follows. Section 2 introduces the MMS and the computation of
associated error norms and convergence orders. In Section 3, the semi-automatic approach for implement-
ing the MMS in OpenFOAM R© is presented. The subsequent section, Section 4, a number of case studies
involving the laplacianFoam [17] and simpleFoam [18] solvers are carried out, using structured meshes, to
demonstrate the application of the proposed semi-automatic approach. In Section 5, the results obtained
for the mentioned case studies are presented and discussed. Finally, in Section 6, the main conclusions
of the present work are drawn.

2. Methodology

2.1. Unsteady heat transfer problem. In the present section, the methodology of the MMS is de-
scribed in more detail and illustrated for the two-dimensional unsteady heat equation, considering only
conduction. The governing equation is solved for a spatial domain (x, y) ∈ Ω with boundary Γ = ΓD∪ΓN,
and time range t ∈

(
0, tF

]
, equipped with appropriate boundary and initial conditions, and reads:

∂T

∂t
−∇ · (DT∇T ) = ST, in Ω×

(
0, tF

]
, (1)

T = gD, in ΓD ×
(
0, tF

]
, (2)

∇T · n = gN, in ΓN ×
(
0, tF

]
, (3)

T (x, y, t = 0) = T 0, in Ω, (4)

where:

• T ≡ T (x, y, t) is the unknown temperature distribution,
• DT ≡ DT(x, y, t) is the thermal diffusivity coefficient,
• ST ≡ ST(x, y, t) is the heat source term (sinks have a negative value),
• gD ≡ gD(x, y, t) is a prescribed boundary temperature value,
• gN ≡ gN(x, y, t) is a prescribed boundary temperature gradient normal to the boundary,
• T 0 ≡ T 0(x, y) is the temperature distribution at time t = 0, and
• n ≡ n(x, y) ≡ (nx(x, y), ny(x, y)) is the unit outward vector normal to the boundary.

In the above notation, the superscripts F, D and N stand for “Final”, “Dirichlet” and “Neumann”, respec-
tively.

2.2. Method of manufactured solutions. Consider that some function Tex ≡ Tex(x, y, z, t) is the
manufactured solution of the unsteady heat transfer problem, which must be regular and smooth in space
and time. For instance, trigonometric functions, such as the sine and cosine, tend to be good choices, since
they are continuous and infinitely differentiable. Following the methodology proposed in [4], a source term
function ST(x, y, z, t) for the unsteady heat equation is determined as ST = ∂Tex/∂t−∇·(DT∇Tex). Then,
the unsteady heat equation, Equation (1), is solved, considering appropriate discretization method(s) for
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the unknown variable, T (x, y, z, t), and including the source term and boundary conditions determined
with the manufactured solution, Tex(x, y, z, t). Finally, having an approximate discrete solution for the
unknown temperature function, the corresponding errors can be computed, since the exact solution for
this specific problem was previously manufactured and, therefore, is known.

Example 1. The application of the MMS to the unsteady heat transfer problem is hereafter demonstrated
with a simple example. Assume a constant value for DT and a manufactured solution for a 2D case study
given as:

Tex (x, y, t) = 150
(
cos
(
x2 + y2 + ωt

)
+ 1.5

)
. (5)

As previously presented, the corresponding heat source term, ST (x, y, t), is obtained by replacing, in the
governing PDE (1), the unknown temperature distribution, T (x, y, t), with the manufactured counterpart,
Tex (x, y, t), which yields:

ST (x, y, t) =
∂Tex (x, y, t)

∂t
−∇ · (DT∇Tex (x, y, t))

= 600DTx
2 cos

(
ωt+ x2 + y2

)
+ 600DTy

2 cos
(
ωt+ x2 + y2

)
+ 600DT sin

(
ωt+ x2 + y2

)
− 150ω sin

(
ωt+ x2 + y2

)
.

(6)

The problem is equipped with the appropriate boundary conditions, assuming either a prescribed bound-
ary temperature (Dirichlet boundary condition) or a prescribed temperature normal gradient (Neumann
boundary condition). In any case, the corresponding functions to be imposed in Equations (2) and (3),
are computed based on the manufactured solution, Tex (x, y, t). For this example, the Dirichlet boundary
condition function is determined as:

gD (x, y, t) = Tex (x, y, t) = 150
(
cos
(
x2 + y2 + ωt

)
+ 1.5

)
, (7)

while the Neumann boundary condition function is given by:

gN (x, y, t) = ∇Tex (x, y, t) · n

=

[
−300x sin

(
ωt+ x2 + y2

)
−300y sin

(
ωt+ x2 + y2

)] · [nx
ny

]
= −300 sin

(
ωt+ x2 + y2

)
(nxx+ nyy) .

(8)

Other boundary conditions, such as the Robin boundary condition, can be prescribed following the
same procedure. The initial condition is simply set as T 0 (x, y) = Tex (x, y, t = 0). In practice, different
combinations of boundary conditions can be selected for the boundaries of the domain.

Finally, solving the governing PDE, Equation (1), using the previously determined source term (Equa-
tion (6)), boundary (Equation (7) and/or (8)), and initial values, the exact solution of the unsteady heat
transfer problem is the manufactured solution, Equation (5).

2.3. Errors and convergence orders. Having a manufactured solution for the problem under study,
the employed numerical techniques (discretization method, solution algorithm, etc.) can be verified by
determining the accuracy of the computed approximate solution. For that purpose, consider that vector
T
n

gathers the exact piece-wise solution determined from the manufactured solution, Equation (5), with
a given mesh and at a specific time t = tn. On the other side, vector T n,∗ gathers the approximate values
obtained with the numerical code in the same mesh and at the same instant of time, considering the
appropriate source term, boundary and initial conditions. In the context of the finite volume method,
the exact value for a given cell Ci at time t = tn, denoted as T

n

i , corresponds to the cell mean-value of
the manufactured solution, that is:

T
n

i =

∫∫
Ci

Tex (x, y, tn) dxdy, (9)

whereas the corresponding approximate value, denoted as Tn,∗i , is defined at the cell mass center. Then,
a global measure of the error can be calculated, where the L1-, L2- and L∞-norms are usually chosen,
for which the associated errors at time tn are denoted as E1, E2 and E∞, and are defined as:

E1 =

NC∑
i=1

∣∣∣Tni − Tn,∗i

∣∣∣Vi
NC∑
i=1

Vi

, (10)
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E2 =

√√√√√√√√√√
NC∑
i=1

(
T
n

i − T
n,∗
i

)2

Vi

NC∑
i=1

Vi

, (11)

E∞ = maxNC
i=1

∣∣∣Tni − Tn,∗i

∣∣∣ , (12)

where:

• NC is the total number of cells in the mesh, and
• Vi is the volume of cell Ci.

In the L1-norm, the absolute individual errors are scaled with the corresponding cell volumes and,
therefore, all the cells have a comparable contribution to the error norm for reasonably uniform meshes.
On the other side, in the L2-norm, also known as the Euclidean norm, the weight of the cells with
larger errors is more pronounced when compared to the L1-norm. Finally, the L∞-norm represents the
largest error magnitude in the whole mesh. The comparison of the errors in the L1- or L2-norm with the
corresponding error in the L∞-norm is also interesting as it provides an insight into the error distribution
without visualizing it. That is, if the errors in the L1- or L2-norm is comparable to the corresponding
error in the L∞-norm, then the individual errors have a relatively even distribution. On the contrary,
when the ratio between these error norms becomes more significant, larger errors do exist for specific cells
in the mesh, which indicates that a careful analysis might be necessary.

The errors of the computed approximate solution obtained with just one mesh (or time-step) are not
sufficient to conclude whether the method is correctly implemented. Indeed, provided that the method
is consistent, the approximate (numerical) solution should converge to the exact counterpart, while the
mesh characteristic or time-step sizes decrease. In that case, the rate at which the approximate solution
error decreases under mesh or time-step refinement is called convergence order. More specifically, for
steady-state problems or unsteady problems at a certain instant of time, the error in some norm is given
as:

E = ChP +H.O.T., (13)

where:

• C is a constant independent of the mesh size,
• h is the mesh characteristic size, a representative measure of the size of the elements in the mesh,

such that for the particular case of structured uniform meshes it corresponds to the length of the
edges,

• P is a constant that determines the rate at which the error changes with h, the so-called conver-
gence order, and

• H.O.T. represents the higher order terms that are not explicitly defined.

The contribution of H.O.T. can be usually neglected and, therefore, the error in some norm can be given
as E = ChP , that is, proportional to hP . In that case, as the mesh characteristic size decreases, the
error is also expected to decrease with h at a rate corresponding to P . For unsteady problems, the same
premises hold and, therefore, the error in some norm is also a function of the employed time-step size,
∆t.

In practice, for steady-state problems, the convergence order of the method can be determined by
solving the same test case under the same conditions with successively finer meshes. In that case the
ratio between the characteristic size of two consecutive meshes, rh (referred to as coarser and finer), is
given as:

rh =
hcoarser

hfiner
≈
(
Nfiner

Ncoarser

) 1

D
, (14)

where:

• hcoarser is the characteristic size of the coarser mesh,
• hfiner is the characteristic size of the finer mesh,
• Ncoarser is the number of cells in the coarser mesh,
• Nfiner is the number of cells in the finer mesh, and
• D is the problem dimension (D = 1, 2, 3 for a 1D, 2D and 3D problems, respectively).
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Finally, the convergence orders for the errors in the L1-, L2- and L∞-norms, denoted as O1, O2 and
O∞, respectively, are given as:

O1 =
ln
(
E1

coarser/E
1
finer

)
ln (rh)

, (15)

O2 =
ln
(
E2

coarser/E
2
finer

)
ln (rh)

, (16)

O∞ =
ln (E∞coarser/E

∞
finer)

ln (rh)
, (17)

where E1
coarser, E

2
coarser and E∞coarser are the the L1-, L2- and L∞-norms errors for the coarser mesh and

E1
finer, E

2
finer and E∞finer are the same error norms for the finer mesh.

The same analysis can be performed to assess the convergence order of the method under mesh refine-
ment for unsteady problems, employing the previous procedure for a fixed time-step size. However, in
that case, a sufficiently small time-step size must be carefully chosen, such that the time discretization
error does not exceed the space discretization counterpart. To determine if the chosen time-step size is
appropriate, the same simulations can be replicated with a slightly smaller time-step size, but with the
same successively finer meshes. If the computed solution error for any of the meshes is significantly differ-
ent than previously for the same mesh, the time discretization error is still predominant. In that case, the
verification procedure must be repeated until no significant changes are observed in the computed solution
errors from employing a smaller time-step size. This is accomplished by selecting the time-step below
which the reported significant digits for the error remain unchanged. It is important to notice that since
the time and space discretization errors decrease under mesh and time refinement, respectively, larger
time-step sizes can be used for coarser meshes, without affecting the obtained conclusions. Accordingly,
as smaller mesh characteristic sizes are considered, decreasing progressively the time-step size might be
required to avoid the influence of the time discretization error on the results obtained. Consequently,
identifying an appropriate time-step size for each mesh refinement level might be more difficult to employ
but can provide significant computational savings in computationally demanding test cases.

On the other side, to assess the convergence order under time-step refinement, the same procedure
can be employed, considering successively smaller time-step sizes for a fixed mesh characteristic size. In
that case, Equations (15) to (17) for the convergence order in time must consider the ratio between two
successive time-step sizes, r∆T . As before, a sufficiently small mesh characteristic size must be carefully
chosen such that the space discretization error does not exceed the time discretization error. To determine
the appropriate mesh characteristic size, the same simulations can be replicated with a finer mesh until no
significant changes are observed in the computed solution errors. Alternatively, decreasing simultaneously
both the mesh characteristic and the time-step sizes can be computationally more efficient, although it
is generally more difficult to employ.

3. Semi-automatic approach

Based on a selected manufactured solution, the implementation of the MMS approach in OpenFOAM R©

requires the calculation of: (i) the associated distributed source term, (ii) the associated Dirichlet and/or
Neumann boundary condition functions, and (iii) the coded functionObject for the computation of
the error norms. Given the arbitrary complexity of choosing a non-trivial manufactured solution, the
programming of the associated source term and boundary condition functions can become a cumbersome
and error-prone task. In that regard, a Python package (referred to as pyMMSFoam) was created to
perform the necessary mathematical differentiation based on the Sympy v1.8 module [16], a rich-featured
library for symbolic computation written in Python. The package converts the generated mathematical
expressions to C syntax so that they can be copied directly into an OpenFOAM R© case setup files. In
addition, the Sympy ’s built-in common sub-expression elimination (CSE) routine [19] is used to simplify
the mathematical expressions and, therefore, optimize the generated code.

The semi-automatic approach consists, firstly, in generating the required inputs for the implementation
of the MMS approach in OpenFOAM R© , which can be easily performed with the developed package.
Then, the test case setup is prepared in OpenFOAM R© and consecutive simulations are performed to
determine the computed solution errors and convergence orders. The flowchart of the proposed semi-
automatic approach based on the MMS in OpenFOAM R© is illustrated in Figure 1 and is described in
more detail hereafter. For the sake of simplicity, consider a 2D unsteady heat transfer equation, given
by Equation (1), with ω = 0.1 and DT = 10−3 m2/s. This will also be used for the case study of the
laplacianFoam solver in Section 4.1.
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python script

1 Define a manufactured solution(s)

2 Define the governing equation(s)

3 Compute the source term (scalar or vector)

4
Compute boundary conditions:
• Dirichlet (codedFixedValue)
• Neumann (codedMixed)

5 Create functionObject for analysis of error norms

copy contents to fvOptions

copy contents to corresponding primitive variables in 0/

copy contents to functions section in controlDict

6 Run the case

7 Collect the results

8 Refine the mesh/ reduce Δt

OpenFOAM®

9 Analyze order of convergence

Figure 1. Flow chart of the semi-automatic approach based on the MMS in OpenFOAM R© .

In Step 1 (see Figure 1), the manufactured solution has to be defined, and the user can rely on the
Sympy ’s built-in functionality, such as trigonometric and exponential functions. Listing 1 illustrates the
code used for the 2D unsteady heat transfer case (Equation (1)), with the above referred parameters.

From lines 1 to 3, the pyMMSFoam package is being loaded with the alias mms, the Cartesian space
symbolic variables x, y and z, the temporal symbolic variable t, and the cos function from Sympy are
being imported from their respective modules. Notice that the symbolic variable z is not required for this
specific manufactured solution, but it is shown for the sake of completeness and easy adaptation to other
cases. In lines 5 and 7, the value of diffusion coefficient and the manufactured solution, Equation (5), are
declared.�

1 import pyMMSFoam as mms
2 from pyMMSFoam import x,y,z,t
3 from sympy import cos
4
5 DT = 1e−3
6
7 T = 150∗(cos(x∗x + y∗y + 0.1∗t) + 1.5)
8
9 S T = mms.ddt(T) − mms.laplacian(T, DT)

10
11 mms.generateFvOptions(S T, "sourceTerm", "T")
12 mms.generateDirichletBoundaries(T, "T")
13 mms.generateNeumannBoundaries(T, "T")
14 mms.generateFunctionObject(T, "T")� �

Listing 1. laplacianFoam MMS script.

The differential operators available in pyMMSFoam are the following: time derivative (for scalar and
vector quantities), divergence (for vector and tensor quantities), gradient (for scalar and vector quantities)
and Laplacian (for scalar quantities). Moreover, pyMMSFoam interprets a symbolic expression as a scalar
quantity, a matrix of shape (3 x 1) as a vector and a matrix of shape (3 x 3) as a tensor.
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For Steps 2 to 5 (see Figure 1), the generation of the input codes for the the MMS implementation
in OpenFOAM R© is performed. In the second part of Listing 1, the source term, Dirichlet and Neumann
boundary conditions are symbolically created. Moreover, a coded functionObject is also generated to
compute the approximate solution error using different norms (Equations 10, 11 and 12) .

In line 9 of Listing 1, the associated source term is computed from the governing equation for the
unsteady heat transfer problem, Equation (1), that includes the time derivative and Laplacian differential
operators. The command presented in line 11 generates a fvOptions dictionary, by running the function
generateFvOptions, whose arguments are the computed source term and two strings, the names of the
source term and the field where the source term should be applied (T for the present problem). The
implemented function will check whether the source term is a scalar or a vector quantity and write a
scalarCodedSource or a vectorCodedSource fvOptions dictionary, respectively. The output for this
example is presented in Listing 2.�

1 sourceTerm
2 {
3 type scalarCodedSource;
4 selectionMode all;
5 fields (T);
6 name sourceTerm 2;
7
8 codeInclude
9 #{

10 #};
11 codeCorrect
12 #{
13 #};
14 codeConstrain
15 #{
16 #};
17 codeAddSup
18 #{
19 const scalarField& V = mesh .V();
20 const volVectorField& C = mesh().C();
21 scalarField& TSource= eqn.source();
22
23 const Time& time = mesh().time();
24 const scalar t = time.value();
25
26 forAll(TSource, cellI)
27 {
28 const scalar x = C[cellI].x();
29 const scalar y = C[cellI].y();
30
31 const scalar tmp0 = x∗x;
32 const scalar tmp1 = y∗y;
33 const scalar tmp2 = 0.10∗t + tmp0 + tmp1;
34 const scalar tmp3 = 0.6∗Foam::cos(tmp2);
35 const scalar solution T = tmp0∗tmp3 + tmp1∗tmp3 −
36 14.4∗Foam::sin(tmp2);
37
38 TSource[cellI] −= V[cellI]∗(solution T);
39 };
40 #};
41 }� �

Listing 2. fvOptions dictionary generated for the 2D unsteady heat transfer equation
(laplacianFoam solver).

In lines 12 and 13 of Listing 1 Dirichlet and Neumann boundary conditions are generated using a
codedFixedValue and codedMixed boundary condition, respectively. The arguments of these functions
are the symbolic variable that represents the manufactured solution and a string with the field name.
Analogously to what was described for function generateFvOptions, the tool will check whether the



A SEMI-AUTOMATIC APPROACH TO ASSESS THE CONVERGENCE ORDER IN OPENFOAM 155

input is a scalar or vector quantity, and generate the output accordingly. For this example, the output
for each type of boundary condition is illustrated in Listings 3 and 4. Notice that the name of the
patches should be changed afterwards from "(patch1|patch2|patch3)" to the ones defined in the test
case setup.�

1 "(patch1|patch2|patch3)"

2 {
3 type codedFixedValue;
4 value uniform 0;
5
6 name T dirichlet;
7
8 code
9 #{

10 const fvPatch& boundaryPatch = patch();
11
12 const vectorField& Cf = boundaryPatch.Cf();
13
14 scalarField& field = ∗this;
15
16 const scalar t = this−>db().time().value();
17
18 forAll(Cf, faceI)
19 {
20 const scalar x = Cf[faceI].x();
21 const scalar y = Cf[faceI].y();
22 const scalar T = 225.0 + 150∗Foam::cos(0.10∗t + x∗x + y∗y);
23
24 field[faceI] = T ;
25 }
26 #};
27 }� �

Listing 3. Dirichlet boundary condition generated for the 2D unsteady heat transfer
equation (laplacianFoam solver).

Finally, in line 14 of Listing 1, a coded functionObject is created to calculate the computed solution
error using the norms previously defined (Equations 10, 11 and 12). The function arguments are the
variable that represents the manufactured solution and a string with the field variable name. The output
of this function for this illustrative example is provided in Listing 5.

Following the procedure flow chart, Figure 1, the outputs of performing Steps 3-5 in pyMMSFoam are
illustrated in Listings 3, 4, 5 and 6, respectively. The generated codes must be copied into the fvOptions

file, the corresponding variable file in the “0” folder and the function section of the controlDict file,
respectively.

After defining the manufactured solution and computing the source term, the appropriate boundary
condition functions and the coded functionObject to monitor the computed solution error, a set of
OpenFOAM R© test cases must be prepared to determine the solver convergence order. For this purpose,
successively finer meshes or time-steps should be used for each of those test cases, following the procedure
described in Section 2.3. For each of the test cases, the output errors as well and the associated mesh
characteristic sizes (or the number of cells) or time-steps should be collected. After computing the ratio
between the characteristic sizes of two successively finer meshes (or time-steps) according to Equation (14),
the solver convergence order can be determined as in Equations (15) to (17).

4. Case studies

In this section, some test case studies are presented to illustrate the application of the proposed semi-
automatic approach in OpenFOAM R© for the verification of the laplacianFoam and simpleFoam solvers.
For all the cases, a two-dimensional unitary square domain Ω = [0, 1]

2
m, on the x−y plane, is considered,

as shown in Figure 2.
On the top, bottom, left and right patches of the domain, Dirichlet and/or Neumann boundary

conditions are prescribed. On the patches normal to the z-axis, referred to as front and back, a boundary



156 B. RAMOA1,∗, R. COSTA1, F. CHINESTA2, AND J.M. NÓBREGA1�
1 "(patch1|patch2|patch3)"

2 {
3 type codedMixed;
4 refValue uniform 0;
5 refGradient uniform 0;
6 valueFraction uniform 0;
7
8 name T Neumann;
9

10 code
11 #{
12 const fvPatch& boundaryPatch = patch();
13 const vectorField& Cf = boundaryPatch.Cf();
14 const vectorField nf = patch().nf();
15 const scalar t = this−>db().time().value();
16
17 forAll(this−>patch(), faceI)
18 {
19 const scalar x = Cf[faceI].x();
20 const scalar y = Cf[faceI].y();
21
22 const scalar tmp0 = 300∗Foam::sin(0.10∗t + x∗x + y∗y);
23 const scalar dT dx = −tmp0∗x;
24 const scalar dT dy = −tmp0∗y;
25 const scalar dT dz = 0;
26
27 const vector gradT (dT dx, dT dy, dT dz);
28
29 const scalar normalGradient = gradT & nf[faceI] ;
30 this−>refGrad()[faceI] = normalGradient;
31 this−>valueFraction()[faceI] = scalar(0);
32 }
33 #};
34 }� �

Listing 4. Neumann boundary condition generated for the 2D unsteady heat transfer
equation (laplacianFoam solver).

condition of type empty is prescribed to reduce the dimensionallity of the problem to 2D. In that regard, as
is standard practice in OpenFOAM R© , the generated meshes have a single cells layer along the z-direction.

The solver spatial convergence order is assessed with 5 grids, the coarser one having 32 elements along
the x- and y-directions, and doubling the number of the cells in each direction for each successively finer
grid.

4.1. laplacianFoam test case studies . The laplacianFoam solver implements an unsteady/steady-
state heat transfer model governed by Equation (1). Three test case studies are presented to verify the
solver: a 2D steady-state test case and a 2D and a 1D unsteady test cases. For all, the manufactured
solution for the temperature corresponds to Equation (5) and the associated source term is given in
Equation (6). For the sake of simplicity only Dirichlet boundary conditions, Equation (7), are prescribed.

The fvOptions for the source term, the codedFixedValue for the boundary conditions, and the coded
functionObject for the computation of the error norms, all generated with pyMMSFoam, are provided
in Listings 2 to 5. Notice that ω = 0 is set for the 2D steady-state test case study. Moreover, for the 1D
unsteady test case study, only cells along the x-direction are generated and the y-coordinate dependence
is removed from the manufactured solution, Equation (5). Finally, a thermal diffusivity coefficient of
DT = 10−3 m2s−1 is considered for all case studies. The resulting temperature field for the three test
case studies is depicted in Figure 3.

For the three test case studies, the temporal and spatial discretization schemes employed for the
laplacianFoam solver are provided in Table 1. Moreover, the resulting system of linear equations is solved
with a preconditioned conjugate gradient (PCG) method using a diagonal-based incomplete Cholesky
(DIC) preconditioner. The associated parameters are given in Table 2.
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1 functions
2 {
3 errorNorm T
4 {
5 type coded;
6 libs (utilityFunctionObjects);
7 writeControl writeTime;
8 name analyticalSolution T;
9 codeWrite

10 #{
11 const volScalarField& T find = mesh().lookupObject<volScalarField>("T");
12 const volVectorField& C = mesh().C();
13 const scalarField& V = mesh().V();
14
15 volScalarField MMS diff T
16 (
17 IOobject
18 (
19 "MMS_diff_T",
20 mesh().time().timeName(),
21 mesh(),
22 IOobject::NO READ,
23 IOobject::AUTO WRITE
24 ),
25 mesh(),
26 dimensionedScalar ("MMS_diff_T_", dimless, 0.0)
27 );
28
29 const Time& time = mesh().time();
30 const scalar t = time.value();
31
32 forAll(MMS diff T, cellI)
33 {
34 const scalar x = C[cellI].x();
35 const scalar y = C[cellI].y();
36 const scalar solution = 225.0 + 150∗Foam::cos(0.10∗t + x∗x + y∗y);
37
38 MMS diff T[cellI] = mag(solution − T find[cellI]);
39 }
40
41 Info<< "L1 norm is: " << gSum(MMS diff T∗V)/gSum(V) << endl;
42
43 Info<< "L2 norm is: "

44 << sqrt(gSum(MMS diff T∗MMS diff T∗V)/gSum(V))<< endl;
45
46 Info<< "Linf norm is: " << gMax(MMS diff T) << endl;
47
48 MMS diff T.write();
49 #};
50 }
51 }� �

Listing 5. coded functionObject generated for the 2D unsteady heat transfer equa-
tion (laplacianFoam solver).

4.2. simpleFoam test case study. The governing equations solved in the simpleFoam solver corre-
spond to the Navier-Stokes equations for a steady-state and incompressible flow [18], given as:

∇ ·U = 0, (18)

∇ · (U ⊗U)−∇ ·R = −∇p+ SU. (19)

Equations (18) and (19) represent the mass conservation and the momentum balance, respectively, where
for a 2D case:
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top

bottom

rightleft

Figure 2. 2D domain with representation of the corresponding patches (dimensions in
meters).

Table 1. Temporal and spatial discretization schemes for the verification of the lapla-
cianFoam solver (fvSchemes dictionary).

Parameter Steady-state Unsteady

ddtSchemes steadyState Euler
gradSchemes Gauss linear Gauss linear
divSchemes none none
laplacianSchemes Gauss linear uncorrected Gauss linear uncorrected
interpolationSchemes linear linear
snGradSchemes none none

Table 2. Solution methods for the verification of the laplacianFoam solver (fvSolution
dictionary).

Parameter

solver PCG
preconditioner DIC
tolerance 10−12

relTol 0.0

• U ≡ (u, v) ≡ (u (x, y) , v (x, y)) is the velocity vector,
• R ≡ R (x, y) is the deviatoric stress tensor divided by the density,
• p ≡ p (x, y) is the kinematic pressure (pressure divided by the density), and
• SU ≡ SU (x, y) is the source term.

In the scope of the present study, the deviatoric stress tensor is defined as:

R = ν
[
∇U + (∇U)

T
]
, (20)

where ν is the kinematic viscosity (dynamic viscosity divided by the density).
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(a) 2D steady-state test case study. (b) 2D unsteady test case study at t = 3s.
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(c) 1D unsteady test case study at t = 3s.

Figure 3. Manufactured solutions for the verification of the laplacianFoam solver.

The manufactured solution chosen for this case study is known in the literature as the Kovasznay
Flow [20], given by:

u (x, y) = 1− eλx cos (2πy) ,

v (x, y) =
λ

2π
eλx sin (2πy) ,

p (x, y) =
1

2

(
1− e2λx

)
,

λ =
Re

2
−
√
Re2

4
+ 4π2,

(21)

where Re is the flow Reynolds number.
For this test case study, kinematic viscosity of ν = 0.01 m2s−1 is assumed. In this flow, the velocity

satisfies the null divergence condition and, for Re = 5, the resulting velocity and kinematic pressure fields
are depicted in Figure 4.

The code used to generate the source term, the boundary conditions and the coded functionObjects

for the computation of the error norms, is shown in Listing 6.
From lines 6 to 11, the Reynolds number and the manufactured solution for the velocity components

and pressure fields are defined. In lines 13 and 18, the velocity vector and stress tensor are calculated,
respectively, and, in line 20, the momentum source term is computed. The advantages of using the
pyMMSFoam package are clearly evidenced in such a convoluted manufactured solution, since it allows
to avoid lengthy handmade and error-prone calculations. Finally, from lines 23 to 36, the fvOptions

dictionary, boundary condition functions and coded functionObject are generated the OpenFOAM R©

test case study.
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Figure 4. Manufactured solutions for the verification of the simpleFoam solver.

For this test case study, Dirichlet boundary conditions are prescribed for the velocity on the left,
top and bottom patches of the domain, and for the pressure on the right patch. Moreover, Neumann
boundary conditions are prescribed for the velocity on the right patch of the domain and for the pressure
on left, top and bottom patches. The code required to setup these features in this case study are
automatically generated by pyMMSFoam.

The temporal and spatial discretization schemes considered in this case study are presented in Table 3.

Table 3. Temporal and spatial discretization schemes for the verification of the sim-
pleFoam solver (fvSchemes dictionary).

Parameter Discretization scheme

ddtSchemes steadyState
gradSchemes Gauss linear
divSchemes Gauss linear
laplacianSchemes Gauss linear uncorrected
interpolationSchemes linear
snGradSchemes uncorrected

Is this test case the system of PDEs (18) and (19) is solved with the consistent version of the SIMPLE
algorithm (SIMPLEC) [21]. For the resulting system of linear equations, a geometric algebraic multigrid
method (GAMG) and a smooth solver were used to compute the approximate pressure and velocity fields,
respectively. Table 4 reports the solution methods considered and their respective parameters, and Table 5
provides the SIMPLE sub-dictionary parameters. Additionally, a relaxation factor of 0.9 was employed for
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1 import sympy as sym
2 from sympy import sin, cos, exp, pi, sqrt
3 import pyMMSFoam as mms
4 from pyMMSFoam import x,y,z,t
5
6 Re = 5
7 Lambda = (Re/2) − sqrt( (Re∗∗2/4) + 4∗pi∗∗2 )
8 u = 1 − exp(Lambda∗x)∗cos(2∗pi∗y)
9 v = (Lambda/(2∗pi))∗exp(Lambda∗x)∗sin(2∗pi∗y)

10 w = 0
11 p = 0.5∗(1−exp(2∗Lambda∗x))
12
13 U = sym.Matrix([u,v,w])
14
15 # Momentum balance equation
16 nu = 0.01
17
18 R = nu∗(mms.grad(U) + mms.grad(U).T)
19
20 S = mms.div(U∗U.T) − mms.div(R) + mms.grad(p)
21
22 # Generate fvOptions
23 mms.generateFvOptions(S, "momentumSource", "U")
24
25 # Generate boundary conditions
26 # Velocity
27 mms.generateDirichletBoundaries(U, "U")
28 mms.generateNeumannBoundaries(U, "U")
29
30 # Pressure
31 mms.generateDirichletBoundaries(p, "p")
32 mms.generateNeumannBoundaries(p, "p")
33
34 # Generate functionObjects
35 mms.generateFunctionObject(U, "U")
36 mms.generateFunctionObject(p, "p")� �

Listing 6. simpleFoam MMS script.

the momentum balance equation, to assure appropriate calculation stability. For the solution stopping
criterion, a tolerance of 10−9 for the initial residual of both the velocity and pressure is considered. Notice
that such tolerance must be sufficiently small to guarantee that the obtained computed solution errors
correspond only to discretization errors.

Table 4. Solution methods for the verification of the simpleFoam solver (fvSolution
dictionary).

Parameter p U

solver GAMG smoothSolver
smoother DICGaussSeidel symGaussSeidel
tolerance 10−11 10−11

relTol 0.01 0.1

5. Results and Discussion

The results obtained from the test case studies presented in Section 4 to obtain the convergence order
of the laplacianFoam and simpleFoam solvers are reported and discussed in the following subsections.

5.1. laplacianFoam test case studies.
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Table 5. Parameters for the SIMPLEC calculation procedure of the simpleFoam solver
(SIMPLE sub-dictionary from fvSolution dictionary).

Parameter Value

momentumPredictor yes
consistent yes

residualControl
p 10−9

U 10−9

5.1.1. 2D steady-state test case study. For this 2D steady-state case study, the errors in the L1-, L2- and
L∞-norms, obtained for successively finer meshes are reported in Table 6. The associated convergence
orders between two consecutive finer meshes are given in Table 7. An overall second-order of spatial
convergence is obtained for the laplacianFoam solver, regardless of the error norm. Moreover, these
results are in accordance with the theoretical convergence orders for the spatial discretization schemes
employed, which supports that the numerical code is correctly implemented for the meshes employed.

Table 6. Error norms obtained in the 2D steady-state test case study for the
laplacianFoam solver.

Mesh NC h E1 E2 E∞

Mesh 1 1,024 3.13× 10−2 3.33× 10−2 3.84× 10−2 6.66× 10−2

Mesh 2 4,096 1.56× 10−2 8.33× 10−3 9.59× 10−3 1.70× 10−2

Mesh 3 16,384 7.81× 10−3 2.08× 10−3 2.40× 10−3 4.31× 10−3

Mesh 4 65,536 3.91× 10−3 5.21× 10−4 6.00× 10−4 1.09× 10−3

Mesh 5 262,144 1.95× 10−3 1.30× 10−4 1.50× 10−4 2.73× 10−4

Table 7. Convergence orders obtained in the 2D steady-state test case study for the
laplacianFoam solver.

Mesh O1 O2 O∞

Mesh 1 → Mesh 2 2.00 2.00 1.97
Mesh 2 → Mesh 3 2.00 2.00 1.98
Mesh 3 → Mesh 4 2.00 2.00 1.99
Mesh 4 → Mesh 5 2.00 2.00 1.99

5.1.2. 2D unsteady test case study. For the 2D unsteady test case study, the computed solution error
increases at every time-step due to the discretization in time, but the same theoretical convergence
orders are expected regardless of the last simulated time. Therefore, for the solver verification and to
assess the convergence order under mesh refinement, an appropriate time-step size should be determined
to avoid the computed solution error stagnating due to the temporal discretization error, as described
in Section 2. Moreover, notice that the Euler discretization scheme [22] employed to discretize the time
derivative is first-order accurate, whereas the spatial discretization schemes considered have a theoretical
second-order of accuracy. Therefore, without a careful choice of the time-step size, the verification of the
spatial convergence order in this unsteady test case might be inappropriate. Accordingly, for this test
case, the value of the time-step size was iteratively decreased until observing that the computed solution
error (considering only the reported significant digits) remain unchanged for all the employed meshes. In
that regard, a time-step size of ∆t = 10−7 s was chosen and a final time of tF = 3 s was considered for
the simulations.

The errors in the L1-, L2- and L∞-norms obtained for successively finer meshes, just for the last
calculated instant of time, are reported in Table 8, while the associated convergence orders between two
consecutive finer meshes are given in Table 9. As observed, the laplacianFoam solver provides an overall
second-order spatial convergence, regardless of the error norm. As in the previous case study, these
results are in accordance with the theoretical convergence orders for the considered spatial discretization
schemes. Moreover, the procedure employed for the choice of the time-step size was shown to be effective
for the correct assessment of the spatial convergence order of the laplacianFoam solver.
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Table 8. Error norms obtained in the 2D unsteady test case study for the
laplacianFoam solver.

Mesh NC h E1 E2 E∞

Mesh 1 1,024 3.13× 10−2 6.98× 10−3 1.26× 10−2 4.90× 10−2

Mesh 2 4,096 1.56× 10−2 1.76× 10−3 3.18× 10−3 1.30× 10−2

Mesh 3 16,384 7.81× 10−3 4.42× 10−4 7.97× 10−4 3.34× 10−3

Mesh 4 65,536 3.91× 10−3 1.11× 10−4 1.99× 10−4 8.44× 10−4

Mesh 5 262,144 1.95× 10−3 3.09× 10−5 5.04× 10−5 2.12× 10−4

Table 9. Convergence orders obtained in the 2D unsteady test case study for the
laplacianFoam solver.

Mesh O1 O2 O∞

Mesh 1 → Mesh 2 1.98 1.99 1.91
Mesh 2 → Mesh 3 2.00 2.00 1.96
Mesh 3 → Mesh 4 2.00 2.00 1.98
Mesh 4 → Mesh 5 1.84 1.98 1.99

5.1.3. 1D unsteady test case study. Contrary to the previous, successively smaller time-step sizes, and
a fixed mesh characteristic size, are considered in this test case study, to assess the temporal conver-
gence order of the laplacianFoam solver. For that purpose, an appropriate mesh characteristic size was
iteratively determined following the procedure described in Section 2, to avoid the computed solution
error stagnating due to the spatial discretization error. The chosen mesh consists of 8, 192 cells along the
x-direction.

The errors in the L1-, L2- and L∞-norms obtained for successively smaller time-step sizes, for the last
calculated instant of time, are reported in Table 10, while the associated convergence orders between two
consecutive smaller time-step sizes are given in Table 11. As expected, the first-order of convergence is
generally achieved, for all error norms. This emphasizes the simplicity and practicality of the proposed
semi-automatic approach to assess the convergence order of a solver in OpenFOAM R© and to detect
possible numerical issues or implementation inconsistencies.

Table 10. Errors obtained in the 1D unsteady test case study for the laplacianFoam solver.

NC ∆t [s] E1 E2 E∞

8,192

5× 10−3 8.82× 10−3 9.17× 10−3 1.10× 10−2

5× 10−4 8.82× 10−4 9.17× 10−4 1.10× 10−3

5× 10−5 8.81× 10−5 9.17× 10−5 1.10× 10−4

5× 10−6 8.76× 10−6 9.15× 10−6 1.10× 10−5

Table 11. Convergence orders obtained in the 1D unsteady test case study for the
laplacianFoam solver.

∆t [s] O1 O2 O∞

5× 10−3 → 5× 10−4 1.00 1.00 1.00
5× 10−4 → 5× 10−5 1.00 1.00 1.00
5× 10−5 → 5× 10−6 1.00 1.00 1.00

5.2. simpleFoam test case study. For the sake of simplicity, only the errors in the L2-norm are
presented in this test case study, to verify the convergence order of the simpleFoam solver for both velocity
vector components and pressure fields. In that regard, the errors in the L2-norm obtained for successively
finer meshes are reported in Table 12, while the associated convergence orders between two consecutive
finer meshes are given in Table 13. For the velocity, the second-order of convergence is achieved for
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both components, although more consistently for v, whereas for u the convergence order is slightly
below with coarser grids. For the pressure, the second-order of convergence is obtained but it seems
to slightly deteriorate as finer grids are considered. Indeed, due to the pressure-velocity coupling in the
incompressible Navier-Stokes equations, discretization techniques might provide convergence orders below
the theoretical values, which is in accordance with the information provided in the literature [4, 23, 24].
Therefore, it is important to identify the theoretically expected convergence orders, not only according
to the employed discretization schemes but also considering the equations being solved. However, such
a detailed analysis is out of the scope of the present work. Nevertheless, it can be easily analyzed with
the support of the proposed semi-automatic approach.

Table 12. Error norms obtained for u, v, and p in the 2D steady-state test case study
for the simpleFoam solver.

Mesh NC h u v p

Mesh 1 1,024 3.13× 10−2 6.04× 10−2 5.43× 10−3 2.29× 10−2

Mesh 2 4,096 1.56× 10−2 1.68× 10−2 1.34× 10−3 5.81× 10−3

Mesh 3 16,384 7.81× 10−3 4.48× 10−3 3.37× 10−4 1.55× 10−3

Mesh 4 65,536 3.91× 10−3 1.16× 10−3 8.43× 10−5 4.38× 10−4

Mesh 5 262,144 1.95× 10−3 2.97× 10−4 2.11× 10−5 1.31× 10−4

Table 13. Convergence orders obtained for u, v, and p in the 2D steady-state test case
study for the simpleFoam solver.

Mesh u v p

Mesh 1 → Mesh 2 1.85 2.01 1.98
Mesh 2 → Mesh 3 1.90 2.00 1.90
Mesh 3 → Mesh 4 1.95 2.00 1.82
Mesh 4 → Mesh 5 1.97 2.00 1.74

6. Conclusions

The verification of a numerical method and the associated implementation is an essential step in any
solver development, to ensure that the implemented code is correctly solving the prescribed mathemati-
cal model. In that regard, assessing that the computed solution error converges with some order to the
underlying exact solution, as the mesh characteristic size and/or time-step size decreases, is a necessary
condition. In the general case, finding analytic solutions for such a verification process can be a cum-
bersome task, especially for complex geometries and/or mathematical models. For the more demanding
cases, the method of manufactured solutions provides a practical, simple and versatile framework for
the verification procedure of numerical codes (discretization schemes, solution methods, boundary con-
ditions, material models, etc.). In the present work, a semi-automatic approach was proposed based on
the method of manufactured solutions for the verification of solvers in OpenFOAM R© .

For this aim, a Python package, pyMMSFoam, was developed to support the calculation of source
terms, boundary conditions and functions to calculate the errors associated with the numerical method
implemented to solve a prescribed mathematical model. Moreover, pyMMSFoam automatically generates
the associated C code and case setup dictionaries, as well as coded functionObjects to compute the
errors in different norms, allowing a less invasive, less error-prone and more flexible methodology for
code verification. The application of the proposed approach was illustrated for the verification of the
laplacianFoam and simpleFoam solvers of OpenFOAM R© , with different test case studies, consisting of
1D and 2D, steady-state and unsteady problems, employing structured meshes. The approach proved to
be very practical to apply and provides a simple and versatile means to assess the convergence orders
of a numerical code. It is important to notice that consecutive lower residual tolerances for the solution
method should be used in the calculations until confirming that the computed solution is influenced only
by the discretization schemes, and not by the algorithm that solves the system of linear equations.

Finally, pyMMSFoam is open to the community and the authors welcome suggestions and improve-
ments.
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