
Generalizing Hylo-shift

Jorge Sousa Pinto

jsp@di.uminho.pt

Techn. Report DI-PURe-04:10:01

October 2004

PURe
Program Understanding and Re-engineering: Calculi and Applications

(Project POSI/ICHS/44304/2002)

Departamento de Informática da Universidade do Minho
Campus de Gualtar — Braga — Portugal

DI-PURe-04:10:01
Generalizing Hylo-shift by Jorge Sousa Pinto

Abstract

This note proposes a generalization of the Hylo-shift law for functional
program calculation. The generalization allows to handle transformations
involving recursive types generated by polynomials where other recursive
types occur (for instance, lists of binary trees).

1 Introduction

In the following we assume a general acquaintance with algebraic pro-
gramming and program calculation concepts [1], including the notion of
a hylomorphism [3].

Section 2 reviews the Hylo-shift law with many examples, and shows a
situation where it would be desirable (but is not possible) to apply the law
to perform a specific calculation. Section 3 then presents a generalization
of the law that solves this problem.

2 The Hylomorphism Shifting Law

Let µL, µM be the types generated by base functors L,M respectively, and
ε : L −→ M a natural transformation.

Then for any ψ : A → LA,ϕ : MB → B the following shifting law
applies, concerning hylomorphisms of type A→ B:

[[ϕ ◦ ε, ψ]]L = [[ϕ, ε ◦ ψ]]M (1)

The proof is straightforward using the definition of hylomorphism:

[[ϕ ◦ ε, ψ]]L
= {Definition of hylomorphism}

µ(λf.(ϕ ◦ ε ◦ Lf ◦ ψ))
= {ε : L −→ M}

µ(λf.(ϕ ◦Mf ◦ ε ◦ ψ))
= {Definition of hylomorphism}

[[ϕ, ε ◦ ψ]]M

This shows how a recursive function can be converted from a hylomor-
phism of intermediate type µL to a hylomorphism of some other type µM.
The intermediate data-structure, on the other hand, can be converted by
unfolding. We call ι this conversion function:

ι = bd(ε ◦ outL)ceM (2)

This conversion can also be carried out by folding over the initial
structure:

ι = (|inM ◦ ε|)L (3)

as can easily be shown:

bd(ε ◦ outL)ceM
= {Cata-refl}

(|inM|)M ◦ bd(ε ◦ outL)ceM
= {Hylo-split}

[[inM, ε ◦ outL]]M
= {Hylo-shift}

[[inM ◦ ε, outL]]L
= {Hylo-split}

(|inM ◦ ε|)L ◦ bd(outL)ceL
= {Ana-refl}

(|inM ◦ ε|)L

The following derived laws make precise what is meant by ι being a
data-structure conversion function:

(|ϕ ◦ ε|)L = (|ϕ|)M ◦ ι (4)
bd(ε ◦ ψ)ceM = ι ◦ bd(ψ)ceL (5)

We prove the former:

(|ϕ ◦ ε|)L
= {Ana-refl}

(|ϕ ◦ ε|)L ◦ bd(outL)ceL
= {Hylo-split}

[[ϕ ◦ ε, outL]]L
= {Hylo-shift}

[[ϕ, ε ◦ outL]]M
= {Hylo-split}

(|ϕ|)M ◦ bd(ε ◦ outL)ceM
= {def. ι}

(|ϕ|)M ◦ ι

From these it is easy to see that (1) can alternatively be written as
the composition of an anamorphism of type µL, the conversion function
ι, and a catamorphism of type µM.

[[ϕ ◦ ε, ψ]]L = (|ϕ|)M ◦ ι ◦ bd(ψ)ceL = [[ϕ, ε ◦ ψ]]M (6)

2.1 Examples

We give here some examples of using the Hylo-shift law. The first two
correspond to situations in which the natural transformation is an iso-
morphism; as such, the law corresponds to a change in the representation
of the intermediate data-structure, without loss of information.

Isomorphic Types Consider the factorial function:

fact :: Int -> Int
fact 0 = 1
fact n = n * fact (n-1)

Roughly, a recursive function can be seen as a hylomorphism where the
intermediate structure is a tree shaped as the recursion tree of the func-
tion, and each node of the tree contains the extra information that is
needed, apart from the results of recursive calls, to construct the result
at each recursion level.

So factorial can be seen as a hylomorphism where the intermediate
structure is a list containing all the numbers from n down to 1; to obtain
the final result it simply remains to multiply all these numbers. The base
functor defining the type of lists of integers is given on types and functions
by

L X = 1 + Int×X L f = id + id× f

The corresponding data-type is defined as

List = µL

and in Haskell:

data List = Nil | Cons (Int, List)

Then one can write
fact = [[g, f]]L

where bd(f)ceL constructs the list of all numbers from n down to 1 and (|g|)L
multiplies the numbers in this list. In Haskell:

f :: Int -> Either () (Int,Int)
f 0 = inl ()
f n = inr (n,n-1)

g :: Either () (Int,Int) -> Int
g (inl ()) = 1
g (inr (n,r)) = n * r

It is obvious that the same function can be seen as a hylomorphism of
the following isomorphic type to List:

data SList = Lin | Snoc (List, Int)

This is called a Snoc List since the constructor takes its arguments in re-
versed order with respect to Cons above. The base functor corresponding
to Snoc Lists is defined by

M X = 1 +X × Int M f = id + f × id

This equivalence can be formally stated by presenting the following nat-
ural isomorphism ε : L −→M :

ε = id + swap

where swap is an isomorphism that swaps the components of a pair. We
note that g = g′ ◦ ε with g′ defined as

g’ :: Either () (Int,Int) -> Int
g’ (inl ()) = 1
g’ (inr (r,n)) = n * r

Then Hylo-shift yields

fact = [[g′ ◦ ε, f]]L = [[g′, ε ◦ f]]M = [[g′, f ′]]M

where

f’ :: Int -> Either () (Int,Int)
f’ 0 = inl ()
f’ n = inr (n-1,n)

Finally, observe that the function allowing to convert intermediate data-
structures from type µL to type µM is as expected both a fold of the
former type and an unfold of the latter:

iota :: List -> Slist
iota Nil = Lin
iota Cons(x,xs) = Snoc(iota xs,x)

Polymorphic Data-types and Bifunctors Let us now turn to the
data-type of polymorphic lists:

data List a = Nil | Cons (a, List a)

The previous example can of course also be considered as a hylomorphism
with this intermediate type. The base functors of polymorphic data-types
are in fact bifunctors. In this particular case we have for polymorphic lists:

B (Z,X) = 1 + Z ×X B (i, f) = id + i× f

An instantiation of the type variable corresponds to a sectioning of the
base functor; for a given type A the (mono-)functor AB is defined as
follows

ABX = B (A,X) = 1 +A×X ABf = B (id, f) = id + id× f

So in fact we have
L = IntB

The polymorphic type of lists is then given as

PList A = µ(AB)

and this relates to the Integer list type as

List ∼= PList Int

Now if we define for f : A→ B

PList f = B (f,PList f)

we have that PList f : PList A→ PList B. This in fact defines a so-called
type functor, which behaves as a map function for the type PList.

A convenient alternative representation for bifunctors uses infix sym-
bols; for instance we could represent B by symbol ⊕:

Z ⊕X = 1 + Z ×X i⊕ f = id + i× f

And the sectioned functor is now called A⊕:

(A⊕)X = B (A,X) = 1 +A×X (A⊕)f = B (id, f) = id + id× f

Sectioning can also be done on the second argument of the functor. The
right-sectioning of bifunctor ⊕ (as opposed to left-sectioning, defined be-
fore) is given by

(⊕A)X = B (X,A) = 1 +X ×A (⊕A)f = B (f, id) = id + f × id

All considerations concerning Hylo-shift and natural transformations
apply as before to sectioned bifunctors. As an example of using Hylo-shift
with polymorphism, let us express factorial as a hylomorphism of lists of
a user-defined type of naturals, rather than using Haskell’s integers.

We start by defining the data-type together with a conversion function
from integers to naturals (valid for non-negative integers only).

data Nat = Zero | Succ Nat
i2n :: Int -> Nat
i2n 0 = Zero
i2n n = Succ (i2n (n-1))

Now we seek a natural transformation ε : IntB −→Nat B. This is
simply

ε = id + i2n× id

The next step is to rewrite fact as:

fact = [[g′′ ◦ ε, f]]IntB

where

g’’ :: Either () (Nat,Int) -> Int
g’’ (inl ()) = 1
g’’ (inr (n,r)) = (n2i n) * r

and n2i is the inverse of i2n (restricted to non-negative numbers). Then
Hylo-shift yields

fact = [[g′′, ε ◦ f]]NatB = [[g′′, f ′′]]NatB

and

f’’ :: Int -> Either () (Nat, Int)
f’’ 0 = inl ()
f’’ n = inr (i2n n,n-1)

Again, the function that converts intermediate data-structures is both a
fold and an unfold of lists; in fact it is in this case a map:

iota :: List Int -> List Nat
iota Nil = Nil
iota Cons(x,xs) = Cons(i2n x,iota xs)

Non-isomorphic Types Our examples so far have been straightforward
and corresponded to isomorphisms between intermediate types. The next
example is a bit more interesting.

Consider the Haskell function

bubble :: [Int] -> [int]
bubble [] = []
bubble [x] = [x]
bubble (a:b:t) | a<=b = a : bubble (b:t)

| otherwise = b : bubble (a:t)

This can be seen as a hylomorphism with a binary tree as intermediate
type, with base functor

L X = (1 + Int) + (Int× Int)× (X ×X) L f = id + id× (f × f)

The corresponding data-type is defined by

BTree = µL

and in Haskell:

data BTree = Leaf (Maybe Int) | Node ((Int, Int), (BTree, BTree))

Then one can write
bubble = [[g, f]]L

where f and g are

f :: [Int] -> Either (Maybe Int) ((Int, Int), ([Int], [Int]))
f [] = inl Nothing
f [x] = inl (Just x)
f (a:b:t) = inr ((a,b),(b:t,a:t))

g :: Either (Maybe Int) ((Int, Int), ([Int], [Int])) -> [Int]
g (inl Nothing) = []
g (inl (Just x)) = [x]
g (inr ((a,b),(r1,r2)) | a<=b = a:r1

| otherwise = b:r2

The anamorphism executed by itself would generate a tree containing
all the possible traces of execution; in the context of the hylomorphism
however (and Haskell being a lazy language), it will produce a linear
tree: a single sub-tree will be constructed for each node. Positive (resp.

negative) tests of the guard a<=b correspond to left (resp. right) branches
of the tree.

An alternative formulation of bubble as a hylomorphism uses a list
of integers as intermediate type:

M X = (1 + Int) + Int×X M f = id + id× f

data Listb = End (Maybe Int) | Cons (Int, Listb)

This alternative formulation can be obtained using the Hylo-shift law
with the following natural transformation ε : L → M:

ε = id + aux

with aux defined as the polymorphic function

aux :: ((Int, Int), a, a) -> (Int, a)
aux ((u,v),(x,y)) | u<=v = (u,x)

| otherwise = (v,y)

The rest follows naturally: bubble is rewritten as

bubble = [[g′ ◦ ε, f]]L

where

g’ :: Either (Maybe Int) (Int, [Int]) -> [Int]
g’ (inl Nothing) = []
g’ (inl (Just x)) = [x]
g’ (inr (x,r)) = x:r

Applying Hylo-shift:

bubble = [[g′, ε ◦ f]]M = [[g′, f ′]]M

and

f’ :: [Int] -> Either (Maybe Int) (Int, [Int])
f’ [] = inl Nothing
f’ [x] = inl (Just x)
f’ (a:b:t) | a<=b = inr(a,b:t)

| otherwise = inr(b,a:t)

We remark that we have in fact shifted the decision based on the
boolean test from the fold component of the hylomorphism to the un-
fold. The function ι is not invertible (ε is not an isomorphism), which
means that the intermediate data-structures can only be converted with
loss of information. The first version of the hylomorphism is thus more
informative.

Consider for instance an execution of bubble on the input [1,3,4,2].
The hylomorphism [[g′, f ′]]M produces the intermediate structure

Cons(1,Cons(3,Cons(2,End (Just 4))))

whereas [[g, f]]L produces

Node((1,3),Node((3,4),Node((4,2),...,Leaf(Just 4)),...),...)

where parts of the structure have not been computed. We finish with
the explicitly recursive definition of the intermediate structure conversion
function:

iota : BTree -> Listb
iota (Leaf z) = End z
iota (Node((x,y),(l,r))) | x<=y = Cons (x,iota l)

| otherwise = Cons (y,iota r)

2.2 When Hylo-shift Fails to Apply

From the first two examples it seems that it should always be possible
to transform any hylomorphism into an equivalent version that uses an
isomorphic intermediate data-structure. We now present an example of a
situation in which Hylo-shift does not allow to prove such an equivalence.

The example is based on the well-known isomorphism between the
type of binary trees and the type of lists of binary trees. Let us focus for
instance on node-labeled trees given by the base functor

F X = 1 + Int× (X ×X) F f = id + id× (f × f)

defining the type
BTree = µF

Each of the two spines [2] in the tree provides a way of viewing it as a
list. In any case, the underlying isomorphism is between a binary tree and
a list containing trees and base elements, as given by the functor

G X = 1 + (Int× BTree)×X G f = id + id× f

which defines the type

TList = µG

Then it is easy to see that both types are solutions to the equation X ∼=
GX, and

BTree ∼= TList

The problem here is that there is no natural isomorphism ε : F −→ G,
due to the fixpoint type BTree occurring in G. A different formulation of
the law is required to allow calculations to proceed.

3 The Generalized Hylo-shift Law

We need the following, straightforward to prove

Lemma 1. Let ⊕ be a bifunctor and f : A→ B, g : C → D. Then

(B⊕)g ◦ (⊕C)f = f ⊕ g = (⊕D)f ◦ (A⊕)g

Generalized Hylo-shift Law. Now let F,G be (mono)functors and ⊕ a bi-
functor (represented using infix notation) such that G = (µF)⊕. Moreover,
let α be a natural transformation α : F −→ H, with H defined as

H X = X ⊕X on types, and
H f = f ⊕ f on functions

The following law holds, with ψ : A→ FA and ϕ : GB → B,

[[ϕ ◦ α, ψ]]F = [[ϕ ◦ (⊕B) (|ϕ ◦ α|)F , (⊕A)bd(ψ)ceF ◦ α ◦ ψ]]G (7)

This is proved as follows:

[[ϕ ◦ α, ψ]]F
= {Def. Hylomorphism}

µ(λf.(ϕ ◦ α ◦ Ff ◦ ψ))
= {α : F −→ H}

µ(λf.(ϕ ◦ Hf ◦ α ◦ ψ))
= {def. H}

µ(λf.(ϕ ◦ (f ⊕ f) ◦ α ◦ ψ))
= {Lemma 1, f : A→ B}

µ(λf.(ϕ ◦ (⊕B)f ◦ (A⊕)f ◦ α ◦ ψ))
= {Reduction, fixpoint calculation}

µ(λf.(ϕ ◦ (⊕B)[[ϕ ◦ α, ψ]]F ◦ (A⊕)f ◦ α ◦ ψ))
= {Hylo-split}

µ(λf.(ϕ ◦ (⊕B) ((|ϕ ◦ α|)F ◦ bd(ψ)ceF) ◦ (A⊕)f ◦ α ◦ ψ))
= {Functors}

µ(λf.(ϕ ◦ (⊕B) (|ϕ ◦ α|)F ◦ (⊕B)bd(ψ)ceF ◦ (A⊕)f ◦ α ◦ ψ))
= {Lemma 1, f : A→ B, bd(ψ)ceF : A→ µF}

µ(λf.(ϕ ◦ (⊕B) (|ϕ ◦ α|)F ◦ ((µF)⊕)f ◦ (⊕A)bd(ψ)ceF ◦ α ◦ ψ))
= {Def. G}

µ(λf.(ϕ ◦ (⊕B) (|ϕ ◦ α|)F ◦ Gf ◦ (⊕A)bd(ψ)ceF ◦ α ◦ ψ))
= {Def. Hylomorphism}

[[ϕ ◦ (⊕B) (|ϕ ◦ α|)F , (⊕A)bd(ψ)ceF ◦ α ◦ ψ]]G

This new law may be written alternatively as

[[ϕ ◦ α, ψ]]F = [[ϕ ◦ (|ϕ ◦ α|)F ⊕ id, bd(ψ)ceF ⊕ id ◦ α ◦ ψ]]G (8)

Derived Laws If we define, as in (2)

ι = bd(α ◦ outF)ceG

we can derive a similar law to (4):

(|ϕ ◦ α|)F = (|ϕ ◦ (|ϕ ◦ α|)F ⊕ id|)G ◦ ι (9)

and also
[[ϕ ◦ α, ψ]]F = (|ϕ ◦ (|ϕ ◦ α|)F ⊕ id|)G ◦ ι ◦ bd(ψ)ceF (10)

We remark however that ι = (|inG ◦ α|)F does not hold in general. ι can
only be written as a catamorphism when α is an isomorphism, in which
case ι has an inverse.

To see that this is so we assume ι = (|ϕ ◦ α|)F for some ϕ; then we
may calculate

ι

= {Ana-refl}
(|ϕ ◦ α|)F ◦ bd(outF)ceF

= {Hylo-split}
[[ϕ ◦ α, outF]]F

= {law (8)}
[[ϕ ◦ (|ϕ ◦ α|)F ⊕ id, bd(outF)ceF ⊕ id ◦ α ◦ outF]]G

= {def. of ι, Ana-refl}
[[ϕ ◦ ι⊕ id, id⊕ id ◦ α ◦ outF]]G

= {Functors}
[[ϕ ◦ ι⊕ id, α ◦ outF]]G

= {Hylo-split; def. ι}
(|ϕ ◦ ι⊕ id|)G ◦ ι

This is not in general true if ϕ = inG. It is true if we let (Cata-refl)

ϕ ◦ ι⊕ id = inG

⇔ {ι invertible; Functors}
ϕ = inG ◦ ι◦ ⊕ id

this yields
ι = (|inG ◦ ι◦ ⊕ id ◦ α|)F (11)

Example. Take the “trees as lists” example. F and G are the following
base functors:

F X = 1 + Int× (X ×X) F f = id + id× (f × f)
G X = 1 + (Int× µF)×X G f = id + id× f

We now define a bifunctor ⊕ by introducing a new parameter in G, ab-
stracting from the type µF .

Z ⊕X = 1 + (Int× Z)×X i⊕ f = id + (id× i)× f

We have G = (µF)⊕, as required. This also gives us a definition for H:

H X = 1 + (Int×X)×X H f = id + (id× f)× f

and α : F −→ H is easy to find:

α = id + assocl

and assocl is the isomorphism A× (B × C) ∼= (A×B)× C.
Notice also that

f ⊕ id = id + (id× f)× id

and our law allows to write

[[ϕ ◦ (id + assocl), ψ]]F =
[[ϕ ◦ (id + (id× (|ϕ ◦ id + assocl|)F)× id), (id + (id× bd(ψ)ceF)× id) ◦ (id + assocl) ◦ ψ]]G

To be more specific, let lists and binary trees be defined in Haskell as

data BTree = Empty | Node (Int, (BTree, BTree))
data List = Nil | Cons ((Int, BTree), List)

The conversion function, written with explicit recursion, is the anamor-
phism

iota Empty = Nil
iota (Node(x,(l,r))) = Cons((x,l),iota r)

A concrete example may provide further insight; we take the standard
view of quicksort as a hylomorphism, using Haskell’s predefined list type
for the input and output.

qsort = [[g, f]]F

where

f :: [Int] -> Either () (Int, ([Int],[Int]))
f [] = inl()
f (h:t) = inr(h, split h t)

g :: Either () (Int, ([Int] ,[Int]) -> [Int]
g (inl()) = []
g (inr(x,(l,r)) = l++(x:r)

where split :: Int -> [Int] -> ([Int],[Int]) separates elements
smaller (or equal) and greater than a given value. From the above we
obtain

qsort = [[g′, f ′]]G

with

f’ :: [Int] -> Either () ((Int, BTree), [Int])
f’ [] = inl()
f’ (h:t) = inr((h, unfoldBTree F a),b) where (a,b) = split h t

g’ :: Either () ((Int, BTree) ,[Int]) -> [Int]
g’ (inl()) = []
g’ (inr((x,t),r)) = (foldBTree g t)++(x:r)

and unfoldBTree, foldBTree are the standard anamorphism and cata-
morphism recursion patterns for binary trees.

Example: Polymorphic Lists. The above result can in fact be written for
polymorphic lists. Consider the bifunctors of binary trees and lists:

F (Z,X) = 1 + Z × (X ×X) F (i, f) = id + i× (f × f)
G (Z,X) = 1 + Z ×X G (i, f) = id + i× f

and the types

PBTree A = µ(AF)

PList A = µ(AG)

We now want to explore the isomorphism

PBTree A ∼= PList (A× PBTree A)

It suffices to observe that the sectioned functors AF and (A×PBTree A)G
are the same as in the monomorphic example (with A substituting Int).

4 Further Laws

If we consider again the “trees as lists” example, since there is an iso-
morphism between the two intermediate types µF and µG, it should be
possible to apply law (8) with the roles of the two functors reversed, using
the natural transformation β = α◦. It is easy to see however, that there
is an asymmetry in the law that prevents this; the adequate law to use
here is symmetric to (8) and can be derived in the same way.

Considering the same functors of the previous section and a natural
transformation β : H −→ F, this law can be written as:

[[ϕ, β ◦ ψ]]F = [[ϕ ◦ β ◦ (|ϕ|)F ⊕ id, bd(β ◦ ψ)ceF ⊕ id ◦ ψ]]G

The reader will not have difficulty in understanding that the conver-
sion function will now be written as the catamorphism ι = (|inM ◦ ε|)L,
not as an anamorphism.

References

1. Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.

2. Oege de Moor and Jeremy Gibbons. Pointwise relational programming. In
Proceedings of AMAST’00, Lecture Notes in Computer Science. Springer-Verlag,
2000.

3. Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Proceedings of
the 5th ACM Conference on Functional Programming Languages and Computer
Architecture (FPCA’91), volume 523 of LNCS. Springer-Verlag, 1991.

