
Universidade do Minho

Escola de Engenharia

Ulisses Tiago Simões Araújo

Where@UM – Where is the classroom for my

next lecture? – The problem of the space’s

geometry

October, 2022

Universidade do Minho

Escola de Engenharia

Ulisses Tiago Simões Araújo

Where@UM – Where is the classroom for my

next lecture? – The problem of the space’s

geometry

Master Thesis

Master in Informatics Engineering

Work developed under the supervision of:

Adriano Jorge Cardoso Moreira

Filipe Miguel Lopes Meneses

October, 2022

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and good

practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.8.9) [20].

ii

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://github.com/joaomlourenco/novathesis

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do

Minho.

,
(Place) (Date)

(Ulisses Tiago Simões Araújo)

iii

Braga 26th November 2022

Abstract

Where@UM – Where is the classroom for my next lecture? –
The problem of the space’s geometry

In recent years more and more complex structures have been built. Buildings and locations which

users must navigate efficiently so they can reach their appointments in a timely fashion, such as hospitals,

universities and airports. Unfortunately technologies such as GPS are not well adapted to indoor locations

and therefore do not provide a solution to this problem. Indoor mapping has been subject to increased

amounts of research in the past few years and a plethora of different solutions have started to arise

although none completely fulfill every requirement this problem presents. This thesis is done in conjunction

with others with the final objective of creating the prototype of a mobile application and system that will be

able to precisely locate where a user is inside of an indoor location through showing them their location on

a floorplan. It will more specifically focus on the modeling aspect of the space geometry in an efficient way

that can be used by this application. The purpose of this dissertation is to document the research done

to choose the most appropriate data format, the development of a conversion method of the available

data to the chosen format, and the development of web services and mobile application components that

will provide this information to the end user. Additionally the development of a web application that, with

the results obtained throughout this investigation process, helps keep track of the progress of the radio

mapping will also be documented.

Keywords: Indoor Positioning, Floorplans Service, GeoJSON, Mobile Application, Webservices

iv

Resumo

Where@UM – Onde é a sala da minha próxima aula? – O pro-
blema da geometria do espaço

Nos últimos anos estruturas cada vez mais complexas tem sido construidas. Edificios e localizações

que devem ser eficientemente percorridos pelos utilizadores para que estes possam chegar aos seus

destinos e marcações atempadamente. Estas localizações podem incluir instituições como hospitais, uni-

versidades e até mesmo aeroportos. Infelizmente tecnologias como o GPS não funcionam corretamente

dentro destes edificios devido ao seu sinal ser bloqueado pelas paredes dos edificios. Por esta razão me-

didas alternativas de mapeamento indoor tem vindo a ser estudadas nos últimos anos e uma variedade

de diferentes soluções tem começado a surgir, no entanto, até à data nenhuma destas soluções resolve

completamente o problema em questão. A presente tese é feita em conjunto com outras com o objetivo

final de produzir o protótipo de uma aplicação móvel e sistema que sejam capazes de localizar precisa-

mente onde um utilizador se encontra dentro de uma localização interior, através do suporte de plantas

dos edificios em questão. No caso desta dissertação, o foco será, mais específicamente, o aspeto da mo-

delação da geometria do espaço tendo como seu propósito a documentação da pesquisa do formato de

dados mais apropriado para este use case, o desenvolvimento de um método de conversão de formatos

que possibilite a conversão dos dados existentes para o formato escolhido, e todo o desenvolvimento e

implementação dos web services e da aplicação móvel. Adicionalmente também é feita a documentação

do desenvolvimento de uma aplicação web que, utilizando as funcionalidades do web service das plantas,

facilita a visualização do progresso do processo de radio mapping.

Palavras-chave: Posicionamento Indoor, Serviço de Plantas, GeoJSON, Aplicação Mobile, Webservices

v

Contents

List of Figures ix

List of Tables xi

Acronyms xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Structure . 2

2 State of the art 4

2.1 Requirements . 4

2.2 Standard indoor map formats and models . 5

2.2.1 Indoor OpenStreetMap . 5

2.2.2 OGC IndoorGML . 6

2.2.3 CityGML . 8

2.2.4 IFC . 9

2.2.5 IMDF . 9

2.2.6 SVG . 10

2.2.7 Discussion and comparison . 10

2.3 Conclusion . 11

3 Floorplan Service Development 13

3.1 Process to obtain the geographically referenced GeoJSON files 13

3.2 Server interface definition . 23

3.2.1 “getByFloor“ endpoint . 24

3.2.2 “getByIds“ endpoint . 25

vi

3.2.3 “getByLocation“ endpoint . 26

3.3 Possible database systems . 28

3.3.1 Systems already implemented . 28

3.3.2 File system based floorplan storage solutions 31

3.3.3 Conclusion and chosen solution . 32

3.4 Server database model definition and description 32

3.4.1 Version 1 . 32

3.4.2 Version 2 . 34

3.4.3 Version 3 . 35

3.5 Technologies used and file structure . 35

3.6 Implemented Solution Validation . 37

4 Mobile application 38

4.1 Objective of the integration of the floorplan service 39

4.2 Components used . 40

4.3 Strategy . 41

5 Web application for collected data 43

5.1 Objectives of the web application development 43

5.2 Requirements of the web application . 44

5.3 Ways of representing the data . 44

5.3.1 Marker Clustering . 44

5.3.2 Heatmap . 46

5.3.3 Conclusions . 46

5.4 Technologies used . 47

5.5 Interface definition and description . 48

5.5.1 All samples endpoint . 49

5.5.2 Temporal endpoints . 50

5.6 Implemented Solution Validation . 51

6 Conclusions and future work 53

6.1 Future work . 54

6.1.1 Mobile application . 54

6.1.2 Web application . 54

6.1.3 Floorplans web sevice . 54

Bibliography 55

Appendices

vii

Annexes

I Annex 1 57

viii

List of Figures

1 An example of an adjacency graph as perceived by IndoorGML [18] 7

2 Example of a Multi-Layered Space Model [7] . 7

3 Different LOD levels of CityGML [8] . 8

4 Visualisation of CityGML LOD4 building model for Berlin main train station [9] 8

5 Settings to import SVG file into InkScape . 15

6 Ungrouping SVG file in InkScape . 15

7 Cleaned up and usable SVG file . 16

8 settings to correctly export to PDF . 16

9 Settings to import a PDF file into InkScape . 17

10 Settings to export a PDF as DXF to use in QGIS . 17

11 Button to create a shapefile . 18

12 Shapefile creation settings . 18

13 Four example control points in an ungeoreferenced floorplan 18

14 Four equivalent control points in the desired georeferenced location 19

15 Shapefile exportation settings . 19

16 Example of a CSV containing the Ungeoreferenced control point coordinates 19

17 AnotherDXFImport settings . 20

18 Georeferenced GeoJSON result . 21

19 Setting the appropriate Coordinate Reference System (CRS) on the GeoJSON layers . . . 21

20 Saving the layers to GeoJSON . 22

21 Settings to correctly save as GeoJSON . 22

22 Removed properties from the GeoJSON files . 23

23 Example response of the getByLocation endpoint 28

24 Version 1 of the floorplan’s server database model 33

25 Version 2 of the floorplan’s server database model 34

26 Version 3 of the floorplan’s server database model 35

ix

27 Floorplan service architecture . 36

28 Snippet of a GeoJSON file . 37

29 System architecture that supports the mobile application 38

30 Mobile application home page . 39

31 Pick Location method of crowdsourcing . 40

32 Representative Diagram of the Strategy to keep the floorplan being displayed updated . . 42

33 Example of a more clustered Marker Clustering representation of the crowdsourcing samples 45

34 Example of a less clustered Marker Clustering representation of the crowdsourcing samples 45

35 Example of an heatmap representation of the crowdsourcing samples 46

36 Web Application Architecture . 47

37 Table containing the crowdsourced samples relevant to the Web Application 48

38 Example of an all samples endpoint response . 49

39 Results of the test for 500 users 5000 requests . 51

40 Results of the test for 750 users 7500 requests . 52

41 Results of the test for 1000 users 10000 requests 52

x

List of Tables

1 Comparison between IndoorOSM, IndoorGML,IFC,CityGML,IMDF and SVG [19] 11

2 Request parameters for the getByFloor GET request 24

3 Possible errors for the getByFloor GET request . 24

4 Request parameters for the getByIds GET request 25

5 Possible errors for the getByIds GET request . 25

6 Request parameters for the getByLocation GET request 26

7 Possible errors for the getByLocation GET request 27

8 Comparison between MongoDB and PostGIS [6] . 30

9 Request parameters for all Web Application GET requests 49

10 Possible errors for the all samples GET request . 50

11 Possible errors for the temporal samples endpoints GET request 51

xi

List of Listings

I.1 Script to remove extra properties . 57

xii

xiii

Acronyms

CRS Coordinate Reference System ix, 8, 10, 11, 21, 22

LOD Level Of Detail 8, 11

OGC Open Geospatial Consortium 6, 8–10, 29

ORM Object Relational Mapper 35

xiv

1

Introduction

1.1 Motivation

The continuous growth and extension on the size and complexity of public buildings, airports, shopping

centers, hospitals and university campi has reinforced the need for an effective indoor navigation system.

However, there are very few solutions implemented for this problem in the current days. Some of the

industry giants such as Microsoft, Apple and Google have recently been investing in this market with some

products already available on the market, such as Apple Indoor Mapping [3].

The majority of the research so far has been done on indoor navigation, with studies concentrating

on the positioning technology and its viability, with several techniques such as BLE beacons and Wi-Fi

fingerprinting having been tested in several technical implementations, since the GPS technology used for

outdoor navigation is not feasible in an indoor setting. Furthermore, it is also a must to not only take into

account the growing complexity and size of the buildings in question, but also the different characteristics

that differentiate indoor from outdoor environments, such as the navigation, orientation and the constant

changes in accessibility to spaces, as well as the different landmarks, which, as a consequence, turn the

navigation task into an even bigger challenge.

A fundamental component of an indoor navigation system is a data model to accurately represent the

entirety of the information needed for the good functioning of not only the navigation system but also the

accurate presentation of data to the end-user.

Nonetheless, it is also a requirement to think about how to present this information to the user in

the application’s front-end. Commonly, the floor plans approach is used, but considering the high level

of detail that more complex buildings can have, this is not a trivial decision to make. Three-dimensional

models are also a possibility. Unfortunately, more complex interfaces are required to enable the user’s

good model manipulation. Furthermore, complications can arise with both approaches when the buildings

are complex and the navigating tasks can present a real challenge. Currently, there is no real consensus

on which approach is superior to its competitor.

1

CHAPTER 1. INTRODUCTION

1.2 Objectives

The main expectation of this project is the idealization and development of the prototype of a mobile

application and its application services intended to allow a user to, without complications and in a friendly

fashion, be able to navigate through complex indoor locations. It is essential to remember that there may

be different types of users with different permissions or accessibility needs that the application should take

into account. Therefore, the application should essentially be a Google Maps for indoor locations but still

be integrated with the outdoors if needed.

This dissertation’s main goal and theme, integrated into the Lab4U&Spaces project, are to investigate

which is the best way to represent the space and routes, as in, what is the best data model to store the

information needed and the most compatible with the current map visualization tools. This leads us to a

few objectives of this dissertation:

• Figuring out which is the best data format to represent the floorplans of the indoor buildings and

the respective meta-data.

• What is the best way to show the building’s floor plans to the end-user through a mobile application.

• What is the best way to show the routes provided by the application services to the end-user along

with the building’s floor plans.

Ultimately, the expected result of this dissertation is the prototype of an indoor navigation system that will

work inside of the University of Minho but hopefully be modular enough to be easily extrapolated to other

use cases such as airports, shopping centers, among others.

1.3 Structure

This document is divided into seven main chapters, each having a few subsections:

• The first chapter is essentially a short introduction to the dissertation, its motivation, structure and

the main objectives it seeks to achieve.

• The second chapter describes the state of the art of the space’s geometry problem in indoor map-

ping, briefly explaining 5 data models and comparing their respective upsides and downsides.

• The third chapter describes the whole process from beginning to end of how the floorplan service

was conceived and the measures that had to be taken to obtain the correct data for its healthy

functioning.

• The fourth chapter gives insight into how and why the integration between the mobile application

and the floorplan service described in the previous chapter was done.

2

1.3. STRUCTURE

• The fifth chapter explains the thought process and development process behind a web applica-

tion, based on the floorplan service, used to monitor the process of (radio) mapping the university

buildings.

• Finally, the sixth and last chapter introduces a final point to this document where conclusions are

made, some setbacks during development are exposed and possible future work is discussed.

3

2

State of the art

Good space models are fundamental when seeking an appropriate solution for indoor navigation, but

especially when the objective is to show their results to the end-user through an application. This is because

one of their main requirements will be exchanging data between systems and services. Therefore, for this

to be accomplished, there must be an excellent middle ground between expressive power and efficiency;

that is, a standard data format should express the amount of information needed for the perfect functioning

of the system and lessen the loss of information, while, on the other hand, any overheads that may happen

during transmission should also be reduced. Nonetheless, it is essential to remember that this is not

the only requirement that any standard format for indoor mapping should fulfill. Some others will be

mentioned, therefore, in the following section.

2.1 Requirements

As is always the case, whenever we wish to find a solution to a problem, we must first define the require-

ments that the desired solution must fulfill. Therefore, this section will present the minimum requirements

for an indoor map format to be a possible solution.

• Coordinate Reference System in indoor spaces: The use of an (x,y) in 2D or (x,y,z) in a 3D coordinate

reference system is fundamental in an indoor space to track the state of the user inside of an indoor

location, while latitude and longitude coordinates become relevant as a way to ease the transition

between indoor and outdoor locations.

• Structures of indoor space: While not as common in outdoor locations, indoor spaces often have

some structure or hierarchy to them, with areas often being subdivided into wings, levels, and

zones. This information is also relevant and should be kept in the indoor maps.

• Hierarchical representations of the space: Some indoor position algorithms can exploit hierarchical

representations of the space, such as with buildings, floors, corridors, rooms, etc., being then able

to provide more accurate estimates of the location of a user. Therefore, these maps should provide

4

2.2. STANDARD INDOOR MAP FORMATS AND MODELS

representations for inclusion (a space being inside another), adjacency (spaces being beside each

other), proximity, accessibility (whether it is possible to access one space from another or not), and

other properties of this nature.

• Constraints of indoor spaces: The accessibility constraints must also be considered since they vary

with the user, time and location. This is not only due to the opening hours in commercial areas,

universities, and other types of places, but also because some people possess physical limitations

that sometimes do not allow them to use stairs or go through specific locations (for example, a

wheelchair user).

• Representation of indoor features: In addition to doors, windows and stairs the model should

represent other constraints such as temporary venues or events.

• Seamless integration between outdoor and indoor locations: It is required for there to be no issue

transitioning between outdoor locations and indoor spaces in case the user wants to go from one

indoor location to another at any point, from outdoors to indoors or vice versa.

• Compatibility with maps used for visualization of routes: For an easier way for the end-user to

perceive the routes provided by the application services and understand where they must go, it is

required for there to be a smooth integration of the floor plans with the visualization libraries for

it to be possible to show the current location exactly on the floor plan provided by the indoor map

data format.

• Navigable areas: While the accessibility has been previously mentioned, it is also important to keep

in mind the trajectories that a user cannot follow due to the desired area being restricted or simply

inaccessible so this should also be adequately represented.

• Integration and compatibility with topological models: It is imperative for the model to be compatible

with topological models since these are fundamental for computing the routes required for the well-

functioning of the application.

2.2 Standard indoor map formats and models

This section will present the indoor map formats and models subject to analysis and comparison among

themselves in a later section.

2.2.1 Indoor OpenStreetMap

OpenStreetMap (OSM)[23] was idealized as a free editable map of the whole Earth created entirely by an

Open Source Community of volunteers. The maps are released under the Open Database License.

5

CHAPTER 2. STATE OF THE ART

Upon creating or modifying a map in OSM, a user tags a point, line, polygon or relation. Tags change

the semantics of the place by adding properties like the name, type of building, type of amenity and opening

hours, among other kinds of features. Although created for outdoors, it was possible to adapt it to indoors.

This suggestion for indoor environments was made in 2011 by Marcus Goetzs[13]. OSM-based indoor

maps utilize plans from architects and any floor plans in a raster (JPG) or vector (SVG) based formats.

Some important projects in indoor mapping in OSM are: OpenStationMap[22] and OpenIndoor[21], both

of which show 3D indoor building representation solutions.

The main drawback of OSM when it comes to indoor locations is the lack of a real standard and the

decreasing interest in this initiative during recent years which led to many attempts at a solution being

outdated and no longer all that relevant or extendable.

2.2.2 OGC IndoorGML

IndoorGML[18] was published as a standard for exchange format and data model of indoor map data in

2016 by the Open Geospatial Consortium (OGC). The main goals are to enrich the expressive power whilst

reducing the loss of information during the data conversion process and establish the foundations of an

indoor spatial data model.

It is called a cellular space model since it presumes that the space is represented by several non-

overlapping units called cells that aim to represent spaces such as rooms, corridors, or toilets. The union

of all cells is also a subset of the given indoor space which means there may be shadow areas not covered

by any cells, and every position does not necessarily belong to a cell. Hence IndoorGML provides a

model to describe details of these cells such as cell geometry and semantics, topology between cells, and

multi-layered space model:

• Cell Geometry: To build a map using IndoorGML, every cell must have closed geometry such as a

surface or solid and have its geometry specified as a point, 2D surface or 3D solid.

• Cell Semantics: Along with the geometry of the cell, semantics such as its properties and features

are added.

• Topology between Cells: Figure 1 is an example of an adjacency graph (topology) derived from an

indoor layout. In this case, the topology between cells is the adjacency and connectivity between

two cells since in IndoorGML there is no overlapping between cells. Therefore, if two cells share a

passable boundary (doors, for instance), it is called a connection. There are two options to represent

the graph derived from the topographic space. The first option is to include the geometries of the

node and edge as a point and curve, respectively, with this being called the geometric properties

geometric graph. And the second option is not to represent any geometric properties, thus being

called a logical graph. However, in most applications for indoor navigation, we need geometric data

to calculate indoor distance; therefore, the first approach is often used.

6

2.2. STANDARD INDOOR MAP FORMATS AND MODELS

• Multi-layer Space Model: An indoor space may be perceived differently depending on who views

it. As seen in Figure 2, Room 3 is a single cell for walking pedestrians; however, for someone

with different accessibility needs, such as a person with a wheelchair due to the step in the middle

of the room, it is no longer a single room but now divided in Room 3a and 3b. Therefore, this

leads to two different space layers consisting of two indoor layout configurations as perceived by

two different types of users. With a multi-layer space model it is possible to integrate a wide array

of space layers through an inter-layer connection. With this model, it becomes easily possible to

represent the hierarchical structure of an indoor space, for instance.

For the sake of making extensibility easier, IndoorGML possesses a modular structure as well. The core

of IndoorGML contains the data model for cell geometry, topology and the multi-layered space model,

whilst the indoor navigation extension model, which provides the semantic extension model for indoor

navigation, is so far the only extension module defined on top of the core model. However, many other

extension modules may yet be defined depending on the required applications.

Figure 1: An example of an adjacency graph as perceived by IndoorGML [18]

Figure 2: Example of a Multi-Layered Space Model [7]

7

CHAPTER 2. STATE OF THE ART

2.2.3 CityGML

City Geography Markup Language (CityGML)[10] is an open data model and XML-based format for the

storing and exchanging 3D city models, an official OGC Standard that can be used free of charge. It is

a concept for the modeling and exchanging of 3D city and landscape models while being defined as an

application XML schema of GML 3.1.1 that aims to provide an appearance model and a basic entity model

with 3D geometry representations of city objects.

It possesses different Level Of Detail (LOD)s, as seen in Figure 3, with Level 4 representing a 3D indoor

model. It provides a great level of support for the many requirements of indoor mapping, supporting rich

semantics and accommodating both geodetic and engineering CRSs.

Figure 3: Different LOD levels of CityGML [8]

A shortcoming of this format is its lack of multiple LODs for indoor spaces. There is only the singular

LOD 4 for indoor locations, which makes it an all-or-nothing approach, where LOD 4 shows everything

indoors whilst LOD3 shows the hollow shell of the building solely. The ability to provide more LODs for

indoor spaces would permit many levels of generalization, such as generalizations of rooms or entire

floors. It also includes support for using the world coordinate system, allowing outdoor and indoor spatial

information to be seamlessly integrated to route a user outdoors between buildings. It presents limited

support for fixed and movable obstacles and absolutely no support for dynamic ones.

Figure 4: Visualisation of CityGML LOD4 building model for Berlin main train station [9]

8

2.2. STANDARD INDOOR MAP FORMATS AND MODELS

While CityGML is a viable framework for generating and storing indoor maps, it does not exactly fulfill

the map visualization requirement since it is not optimized for that function. For that capability, it can

be exported to X3D and SVG formats, which work with most web browsers, or to 2D GIS web mapping

formats, with X3D being a promising display for 3D indoor representations and SVG holding some promise

for its 2D visualization.

2.2.4 IFC

IFC[15] is both a standard data exchange model for building information modeling (BIM) and a file format

used by the architecture, engineering, construction and facilities management industries. It is semantically

rich, object-oriented and possesses native 3D geometry. IFC has a large number of classes dedicated to

buildings. It keeps on being extended with more and more classes to allow this format to comprise the

complex construction management of large civil engineering projects.

It is a very suitable model to provide a precise 2D and 3D indoor map due to the high level of detail,

native 3D geometry and rich semantics. Aside from the notations for walls, slabs, connections between

different floors (such as stairs and elevators), doors and windows, these models can contain information

about spaces in rooms and furniture. There are also a few particular classes, such as ifcSpace and

ifcVirtualElement, among others, that are of particular interest to indoor positioning and location-based

services. The information related to connectivity obtained indirectly through the information about doors,

windows and stairs makes the automatic creation of a network relatively simple and straightforward. The

notion of space in this format opens up new horizons for enhancing the localization and navigation of

users and assets. Due to its high geometric resolution, IFC can also be a valuable source for map-based

localization of assets or people when kept up to date. However, BIM models only exist for newer structures

natively in BIM.

2.2.5 IMDF

Indoor Mapping Data Format (IMDF)[4] is, since 2021, an OGC Community Standard, originally developed

by Apple for use in their project Indoor Maps Program. It provides a generalized and comprehensive model

for any indoor location, giving a basis for orientation, navigation and discovery. This format is heavily based

on GeoJSON (its output partially consists of various GeoJSON files with the different data types defined).

It is a mobile-friendly, compact, human-readable, temporally aware (can express information depen-

dant on time) and highly extensible data model for any indoor space, specifically developed with this

purpose in mind. Due to this fact, various features are available to help describe indoor spaces. A few of

these that may be used as an example are the following:

• Venue: Models the presence, location and approximate extent of a place. It is a feature of the

type Polygon and can additionally have a category, restriction, name, hours of operation, phone

number, among other details.

9

CHAPTER 2. STATE OF THE ART

• Detail: A detail represents the location and extent of a physical object.

• Section: A section describes the approximate extent of an area representing a theme (such as a

duty-free store at an airport, entertainment area, etc.). It is particularly useful to establish a sort of

hierarchy among a building’s locations.

• Amenity: A feature used to describe pedestrian amenities such as elevators or stairs.

Aside from these, there are still dozens of other features provided by this format, but, obviously,

analysing and mentioning all of this is not within the scope of the present document.

2.2.5.1 GeoJSON

GeoJSON[5] is an open standard geospatial data interchange format, that provides the capability to rep-

resent simple geographic features and their nonspatial attributes. It supports the geometric types Point,

LineString, Polygon, MultiPoint, MultiLineString and MultiPolygon. It is important to note also that GeoJ-

SON features are not only used to represent entities of the physical world, but can also be used by mobile

routing and navigation apps to describe their service coverage.

While not an OGC standard, a small mention is made in this document to this standard since, as

stated above, IMDF is heavily based on and built upon it.

2.2.6 SVG

SVG is an XML-based markup language for describing 2D vector graphics viewable with web browsers. It is

a text-based open web standard for describing images that can be rendered without any size issues. Its files

are well defined in XML, thus providing the capability to be searched, indexed, scripted and compressed.

The latest version, 1.1, includes support for lines and areas (i.e., rectangle, circle, ellipse, and polygon) as

well as rasters; however, SVG currently does not support point geometry. SVG also allows the definition

of re-usable groups and links to other XML files for custom attributes, although not a native capability [1].

It natively supports engineering CRSs and has a flexible system for specifying geodetic CRSs using one

of three methods: a web-based uniform resource identifier (URI), a well-known CRS identifier, or directly

defining the CRS within the XML document.

2.2.7 Discussion and comparison

The table presented below compares the discussed standard formats, including Indoor OSM, OGC In-

doorGML, IFC, OGC CityGML LoD 4, IMDF and SVG.

While in IndoorGML the geometry has to be closed such as solids in 3D or polygons in 2D, the geometry

of the other standards consists of boundaries. Considering that except SVG and Indoor OSM every other

standard is based on well-defined data models and schema they are capable of transmitting sizeable

amounts of metadata. However, Indoor OSM uses simple-tag based representation, and its expressive

10

2.3. CONCLUSION

Indoor OSM IndoorGML IFC CityGML IMDF SVG

2D vs 3D 2D,3D 2D,3D 3D 3D 2D 2D

Modelling Scope Feature Space Feature Feature Feature -

Geometry Boundary Closed Geometry Boundary Boundary Boundary Boundary

Expressive Power Low High High High High Low

Efficiency High Low Low Low High High

Encoding Tag and XML XML (GML) Express and XML XML(GML) GeoJSON XML

Table 1: Comparison between IndoorOSM, IndoorGML,IFC,CityGML,IMDF and SVG [19]

power is relatively low compared to its peers. On the other hand, the data sizes of Indoor OSM and SVG

are relatively small and, therefore, easy to encode and decode. In contrast, the complexity of the other

standards is reasonably large, resulting in a lower efficiency when using them. Only IndoorGML of the

above options explicitly describes the topology and navigation network. CityGML, as mentioned before,

does not really provide any advanced visualization support. It must often be converted to SVG or other

formats for visualization purposes. It is important to remember that CityGML and IndoorGML can be

integrated.

2.3 Conclusion

In the current years, as the demand for indoor maps and indoor navigation systems increases, as shown

by the growing interest of prominent companies like Apple, Google and Microsoft, it is natural that several

different formats and standards are being developed and constantly evolving, with each inevitably having

their weaknesses and strengths.

To develop an indoor navigation application, we must select one that should be the most appropriate

for the intended application’s requirements. In this document, several standards were analysed, specified

their differences, benefits and downsides, and made a small comparison between them, each presenting

one of the many possible options available out there.

However, there are a few potential areas of continued development to support this effort, such as

better integration of indoor and outdoor CRSs, a more refined concept of LOD for indoors, and the use

of alternative representations for viewings for future solutions, which should be kept in mind since these

improvements could appear as new standards rise in popularity.

For this project, creating an extension of IMDF for university campi has been the chosen option for the

data format. Considering that Apple has provided guidance on using this format for Airports, Shopping

Centers and Transit stations, applying this solution to University Campi should prove to be a pretty similar

process.

Additionally, due to its usage of GeoJSON, it also presents an easy option to visualize the data on a

map due to the high availability of tools and support for GeoJSON visualizations.

Its major upside is the fact that it is a mobile-friendly and compact solution. Since the whole purpose of

11

CHAPTER 2. STATE OF THE ART

this project is to develop amobile application, its mobile-friendliness presents a major advantage compared

to its competitors.

Finally, its relatively small size, in tandem with the amount of information it can carry, contributes

towards a fast information transfer process, minimizing any possible delay during server requests and

maximising the amount of useful information to present to the end-user.

Due to the advantages presented, IMDF seemed like the best data format choice for the specific use

case of this project.

12

3

Floorplan Service Development

At the beginning of development, there was no usable information available to provide the system with the

functionality relative to its floorplan representation to the end-user. For this reason, it was necessary to

develop and utilize a procedure to gather the existing floorplan data and transform them from their current

state into usable information.

For this, a methodology was developed to obtain and convert all of the SVG floorplan files present in

the web platform https://whereis.uminho.pt, georeference them and finally convert these into an usable

GeoJSON format. It is important to remember that for this project, the decision taken in the previous chap-

ter was to utilize a simpler and Android-friendly adaptation of IMDF, which would lead to using GeoJSON

files to represent the geometrical information.

In the following sections, the whole process of developing the conversion and georeferencing method

will be explained, along with the reasoning behind the choice for the database system; afterwards, the

interface definition for the service will be introduced, and finally, the successive changes to the database

model will be presented and discussed.

3.1 Process to obtain the geographically referenced

GeoJSON files

Before proceeding to a more detailed explanation, it is important to outline the main steps required for

this process to be executed and for the desired result to be achieved, these being:

1. Extracting the SVG document from the website https://whereis.uminho.pt .

2. Opening the resulting SVG file in InkScape and ungrouping all elements.

3. Removing all unnecessary elements.

4. Using InkScape, export the clean file to PDF.

5. Still using InkScape, export the PDF file to DXF format.

13

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

6. Importing the DXF file into QGIS.

7. Creating two shapefile layers, one for ungeoreferenced control points and one for georeferenced

control points.

8. Mapping four points in the imported DXF file to their georeferenced versions, adding them to their

respective shapefile layers.

9. Exporting both shapefiles as CSV files containing the id of the points and their respective coordi-

nates.

10. Importing the DXF files using the AnotherDXFImporter plugin and mapping the four ungeorefer-

enced and georeferenced points accordingly.

11. Setting the Coordinate Reference System of the resulting layer to Pseudo-Mercator.

12. Exporting the Layer as a GeoJSON file whilst selecting the WGS 84 Coordinate Reference System.

Some important things to note before going into even further detail are that:

• This whole process is required because initially the files are in SVG, with a significant amount of

unnecessary elements that cannot be removed or even georeferenced in QGIS; therefore, they need

to be cleaned up in InkScape and converted to a CAD format that can be georeferenced in QGIS,

such as is the case of DXF.

• Unfortunately, the direct conversion between SVG and DXF in InkScape produces an erroneous

outcome. This was circumvented by using PDF as an intermediate format.

• QGIS was the final tool of choice because it was the simplest open-source option that could quickly

import a CAD file and, after a small process, export the desired georeferenced GeoJSON result.

• The shapefiles created are used to establish control points that map the SVG coordinates to latitude

and longitude pairs of coordinates. These pairs can then be imported into the AnotherDXFImporter

plugin in QGIS, which automatizes the remaining steps of the floorplan mapping and georeferencing

process.

• Ideally, especially for more complex floorplans, four control points should always be used; other-

wise, there is a higher chance for error and inconsistencies in the resulting outcome, but in simpler

geometries, three control points are sufficient.

Having said all this, it is time to go into further detail and present the settings and configurations used

for each step.

As mentioned previously, all of the SVG files were obtained through the implementation of a webscrap-

per implemented using the Beautiful Soup library of the python language. This webscrapper ran through

14

3.1. PROCESS TO OBTAIN THE GEOGRAPHICALLY REFERENCED GEOJSON FILES

all of the URLs corresponding to the buildings and floors of the Azurém and Gualtar campi, available on

the https://whereis.uminho.pt website. It extracted and downloaded the SVG files built into them that

represented the floorplans in their respective directories. A directory was created for each campus and,

inside that directory, another one was also made for each building number which would contain the given

building’s floorplan SVG files.

After obtaining all of the required SVG files, to finalize this method, it was necessary to, through the

usage of InkScape [14] and QGIS [26], produce a georeferenced GeoJSON file for each SVG image. Firstly,

the SVG file is imported into Inkscape using the settings in Figure 5:

Figure 5: Settings to import SVG file into InkScape

Following that, the SVG file elements must be ungrouped to remove the extra shapes that do not con-

tain relevant geometrical information. This is possible by selecting the image, right-clicking and selecting

the option “ungroup”, as shown in Figure 6:

Figure 6: Ungrouping SVG file in InkScape

Afterwards, all extra elements should be removed until the production of a result similar to Figure 7.

15

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

Figure 7: Cleaned up and usable SVG file

After this step, to obtain a correct DXF file representation, it is first needed to use the PDF format as

an intermediate format to correct some inaccuracies that happen from the direct conversion from SVG to

DXF, but do not exist when PDF is used as an intermediate step. Therefore, the edited SVG should be

exported to PDF with the following settings in Figure 8.

Figure 8: settings to correctly export to PDF

Afterwards, it should be imported once again into Inkscape with the required settings presented in

Figure 9.

16

3.1. PROCESS TO OBTAIN THE GEOGRAPHICALLY REFERENCED GEOJSON FILES

Figure 9: Settings to import a PDF file into InkScape

Finally, it is time to export the PDF file as a DXF file that can later be used in QGIS to complete the

georreferencing process. The settings shown in Figure 10 are used during the exportation process to

achieve this.

Figure 10: Settings to export a PDF as DXF to use in QGIS

In the next step, it is simply necessary to drag the DXF files, corresponding to the building that is

intended to be georeferenced into QGIS, and subsequently two shapefiles should be added to the project

with the steps described in Figure 11 and Figure 12, one for the ungeoreferenced points and one for the

georeferenced equivalent points:

17

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

Figure 11: Button to create a shapefile

Figure 12: Shapefile creation settings

Finally, four control points per floor should be set (if the desired control points overlap in more than one

floorplan, these can be reutilized) in both the imported floor plan and the final georeferenced destination

intended for the floorplan to move to. An example of this process is shown in Figure 13 and Figure 14.

Figure 13: Four example control points in an ungeoreferenced floorplan

18

3.1. PROCESS TO OBTAIN THE GEOGRAPHICALLY REFERENCED GEOJSON FILES

Figure 14: Four equivalent control points in the desired georeferenced location

Following the definition of the control points, both shapefile layers should be exported as CSV files that

will contain the latitude, longitude, and ids of the defined points using the settings visualized in Figure 15:

Figure 15: Shapefile exportation settings

Figure 16: Example of a CSV containing the Ungeoreferenced control point coordinates

The georeferenced and ungeoreferenced CSV file results are similar to the ones shown in Figure 16; the

ungeoreferenced one contains the X and Y coordinate pairs correspondent to the initial SVG coordinates,

while the georeferenced contains the matching Latitude and Longitude pairs in the real world location.

19

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

The QGIS Plugin called AnotherDXFImport must be used using the settings in Figure 17; the table

should be filled out with the matching ungeoreferenced and georeferenced points that were previously

saved in the exported CSV files as seen in the example mentioned above. On the same row the matching

points should be placed. The ungeoref columns for the ungeoreferenced points and the georef for the

georeferenced ones.

Figure 17: AnotherDXFImport settings

With this exportation done, the DXF file is now georeferenced with minimal error and in the required

location, as seen, for example, in Figure18. It is important, nevertheless, to mention that a vast majority of

the buildings have been georeferenced utilizing the Satellite Layer of Google Maps; this may cause a slight

misalignment when the floorplan is put over any of the other layer types provided by map visualization

tools.

20

3.1. PROCESS TO OBTAIN THE GEOGRAPHICALLY REFERENCED GEOJSON FILES

Figure 18: Georeferenced GeoJSON result

To export the layer to GeoJSON, it is first required to make sure that the layer’s CRS is defined as

the correct one. Throughout this guide, the one used has been Pseudo-Mercator since it provides a more

accessible point of view for the manual finding of control points throughout the whole process. As such,

the layer CRS should be set to this, as shown in Figure 19.

Figure 19: Setting the appropriate CRS on the GeoJSON layers

Next, the export layer option is selected as shown in Figure 20, and set to export in GeoJSON format.

21

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

Figure 20: Saving the layers to GeoJSON

In this step it, is important to remember that the exportation must be done in WGS 84 format, since

that is the CRS that most map visualization tools, such as leafletJS, use to read and represent GeoJSON.

With the settings presented in Figure 21, it is simply required to finally save the file. This final step

concludes the format conversion steps of the procedure.

Figure 21: Settings to correctly save as GeoJSON

This process was repeated for every single floor and building of the Azurém and Gualtar campi.

Additionally, after the completion of the georeferencing of both campi, it was later discovered that,

during format conversion, QGIS adds, for each feature, a large number of properties that have no use for

either the Mobile or Web Applications developed, which ultimately means it will lead to bigger files and

therefore longer request loading times without any particular benefit. To fix this detail, a short python

script was created, which is possible to see it in Annex I. This script runs through every GeoJSON file and

cleans it up, removing the unnecessary properties from each of them.

22

3.2. SERVER INTERFACE DEFINITION

Figure 22: Removed properties from the GeoJSON files

This led to a drastic reduction in the total size of the floorplan files; more specifically, the combination

of all the files went from 126MB to 50MB.

Additionally, it was perceived that each coordinate value contained had fifteen digits of precision, which

is unnecessary. With this in mind, using the library geojson-precision [16], this number was reduced to

six digits of precision, which reduced the size of the combination of all the files to only 40MB.

3.2 Server interface definition

The floorplan web service is fundamental for the healthy functioning of several services from the over-

all project. Different services required different functionalities and data and therefore needed different

endpoints for their specific use cases.

First, an endpoint that would require a specific campus id, building and floor number denominated

“getByIds” was developed to satisfy developer needs, as well as simplify some requests in the mobile

application, since it presents an easy endpoint to request to verify whether a certain floorplan is available

in the system and, if so, to obtain it.

The mobile application developed for the project needed an endpoint that, given a coordinate pair of

latitude, longitude along with a floor number, was able to evaluate whether there was a floorplan available

for that location or not, and therefore the endpoint “getByLocation” was created.

Afterwards, the web application developed to visualize the radio mapping progress of the project

required being able to receive all of the floorplans for a given floor number and campus id at once. With

this in mind, the endpoint “getByFloor” was developed, this endpoint aggregates all of the floorplans for a

given campus and a given floor number, all in a single feature collection, to then be returned to the web

application.

23

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

The mentioned mobile and web applications are discussed in later chapters of this document.

In this section the interfaces of the possible requests that can be sent to the developed server are

defined, explaining their methods, parameters, possible errors and expected responses.

3.2.1 “getByFloor“ endpoint

This endpoint can answer requests of the type GET to obtain all of the floorplans for a specific floor number.

For this, it is required that the user provides it with the request parameters listed in Table 2, respecting

their specified rules.

Field Type Nullable? Description Possible values

floorNumber Integer False
Number of the floor

for all the floorplans

The integer value of any existing floor be it negative

for underground floors or 0 and above for

surface levels.

campusId String True
Id of the campus

for all the floorplans
The string id of any existing campus.

Table 2: Request parameters for the getByFloor GET request

Possible returning values of this request: In case of success this request returns a JSON object

that contains only a GeoJSON feature collection that describes all of the features of every floorplan available

in the system with the given floor number for the relevant campus (if the campus ID is not specified it will

return all of the floorplans in the system).

In case of an error, any of the errors listed in Table 3 is a possible scenario.

Value Error code Description

No Floormap Found 404 - Not Found
Error that happens when there are no floormaps associated

with the requested floor number.

Invalid Floor Number 400 - Bad Request
Error that happens when the floor number provided is an

invalid value.

Invalid Campus Id 400 - Bad request
This error will occur whenever the user provides any value other

than “CA” or “CG” for the campus field in the request body

Badly Formatted Request Error 400 - Bad request
Error that happens when the request is not built properly,

due to parameters missing.

Table 3: Possible errors for the getByFloor GET request

Example of valid request parameters:

An example request to this endpoint would be something like:

“getByFloor?floorNumber=0&campusId=CA”.

When sucessful, this request returns a JSON object that describes the GeoJSON feature collection that

represents all of the floors numbered 0 available in the system that are located in the Azurém Campus.

24

3.2. SERVER INTERFACE DEFINITION

3.2.2 “getByIds“ endpoint

This endpoint can answer requests of the type GET to obtain a specific floormap. For this, it is required

that the user provides it with the request parameter’s listed in Table 4, respecting their specified rules.

Field Type Nullable? Description Possible values

campusId String False

Unique identifier of the

campus that the desired

building’s floor plan

belongs to

“CA” – Meaning Campus Azurém.

“CG” – Meaning Campus Gualtar.

buildingNumber String False

Identifier of the desired

building’s number,

must always be double

digit to properly specify

“01”,”02”,”03”,…,”18”,19”,

Along with any other two digit combination

that represents an existing building for the

desired campus.

floorNumber Integer False
Number of the floor

for the desired floorplan

The integer value of any existing floor

for the desired building, be it negative for

underground floors or 0 and above for

surface levels.

Table 4: Request parameters for the getByIds GET request

Possible returning values of this request: In case of success, the request returns a JSON object

that is the GeoJSON feature collection that describes the floorplan of the requested floor for the desired

building and campus.

In case of an error, any of the errors listed in Table 5 is a possible scenario.

Value Error codes Description

Invalid Campus Error 400 - Bad request

This error will occur whenever

the user provides any value other

than “CA” or “CG” for the campus

field in the request body

Invalid Building Error 400 - Bad request

This error will occur whenever

the user provides the building

number of a non existing building

or does not provide it in the

specified two digit format

Invalid Floor Number Error 400 - Bad request

This error will occur whenever

the user provides the floor

number for a floor that does

not exist

Badly Formatted Request Body Error 400 - Bad Request

This error will occur whenever

the request body object is not

properly built, be it missing

fields or wrongly named ones.

Table 5: Possible errors for the getByIds GET request

25

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

Example of valid request parameters:

An example request to this endpoint would be something like this:

“getByFloor?campusId=CA&buildingNumber=11&floorNumber=2”

This request, when successful, should return a JSON object that describes the GeoJSON feature

collection that represents the features for floor 2 of the building 11 of the Azurém Campus.

3.2.3 “getByLocation“ endpoint

This endpoint can answer requests of the type GET to obtain the floor plan of a given location. For this, it

is required that the user provides it with the following request parameters respecting their specified rules.

Field Type Nullable? Description Possible Values

Lat Double False

The latitude of the position

where we wish to get a

floor plan for.

Any valid latitude values.

Lng Double False

The longitude of the position

where we wish to get

a floor plan for.

Any valid longitude values.

Floor Integer False

The number of the floor we

wish to get the floorplan of

in the requested location.

Valid floor number for the

requested location.

Table 6: Request parameters for the getByLocation GET request

Possible returning values of this request:

In case of success, the request returns an object of the type JSON with the fields:

• “floorplan” containing the GeoJSON feature collection depicting the floorplan of the building found

at the given location and floor number.

• ”buildingNumber“ containing the ID of the building found.

• ”campusId“ containing the ID of the campus the building belongs to.

• ”floorNumber“ contains the number of the floor the floorplan belongs to.

• ”floorlist“ containing the array with the numbers of the floors that the building also has available.

• ”buildingBounds“ containing a Polygon that defines the bounding box of the building found at the

given location.

26

3.2. SERVER INTERFACE DEFINITION

In case of an error, any of the errors listed in Table 7 is a possible scenario.

Value Error codes Description

Invalid Latitude Error 400 - Bad request

This error will occur whenever

the given value is not a possible

Latitude value in the WGS84

format.

Invalid Longitude Error 400 - Bad request

This error will occur whenever

the given value is not a possible

Longitude value in the WGS84

format.

Invalid Floor Number Error 400 - Bad request

This error will occur whenever

the user provides the floor number

for a floor that does not exist in

the given location.

Not Inside Building Error 404 - Not Found

This error will occur whenever

the given location is not within

the premises of any of the

buildings with available floorplans

in the system.

Badly Formatted Request Body Error 400 - Bad Request

This error will occur whenever

the request body object is not

properly built, be it missing

fields or wrongly named ones.

Table 7: Possible errors for the getByLocation GET request

Example of valid request parameters:

A valid request for this endpoint is, for instance, the request:

“/getByLocation?lat=41.56155&lng=-8.3973202&floorNumber=0”.

These request parameters being sent to the endpoint should return an object of the type JSON with

the field “floorplan” containing the GeoJSON feature collection of the requested building, the field ”build-

ingNumber“ containing the ID 07, the field ”campusId“ containing the ID of the campus the building

belongs to, in this case CG, the field ”floorlist“ containing the array with the numbers of the floors that

the requested building also has available and the field ”buildingBounds“ containing the bounding box of

the building found. This example request contains then the information relative to the building 7 of the

Gualtar Campus.

Even though some information that is too extensive is omitted, Figure 23 represents a possible re-

sponse given by this endpoint.

27

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

Figure 23: Example response of the getByLocation endpoint

3.3 Possible database systems

In this section, four different possibilities that present an option for this server’s database system will be

discussed along with the pros, cons and viability of every one of them further explained.

Two options are open source, already implemented possibilities while the latter two are technologically

more straightforward strategies that present their value as a solution.

Ultimately the final choice will be discussed as well, along with a short explanation of why it stood

above the remaining possibilities.

3.3.1 Systems already implemented

Currently, there are a few DaaS (Data-as-a-service) options, such as Azure SQL Database and DocumentDB

which support Geometry objects and are compatible with open-source technologies that fit this type of use

28

3.3. POSSIBLE DATABASE SYSTEMS

case such as GeoServer, but for the scope of this project the solution intended is meant to be deployed on

a local server so the comparison made will be instead between PostGIS (a PostgreSQL extension made to

host GIS data) and MongoDB (a document based NoSQL database that easily supports GeoJSON objects)

as the possible geospatial database solutions.

3.3.1.1 PostGIS

Relational databases are systems extensively used to store and query large structured data sets. They

are based on the relational model, which consists of tables representing each set of objects. A variety

of different solutions have been proposed to increase their efficiency, such as the case of indexes and

partitioning.

PostGIS [25] turns PostgreSQL into a spatial database by adding support for three features: spatial

types(e.g.,Point,Polygon), spatial functions(e.g., Distance, Within, Intersects), and spatial indexes (eg. B-

trees,R-trees). It follows the Simple Features for SQL specification from the OGC and is the most used

state-of-the-art relational database system for the majority of geospatial use cases.

Additionally, it is compatible with state-of-the-art geographic information systems (GIS), such as, ArcGIS

and with map server software such as GeoServer.

Sadly, it possesses no direct support for the FeatureCollection data type, the GeoJSON type in which

the bulk of the floorplan data is stored. This would quickly become an inconvenient, and tasks that would

otherwise be simple in systems with direct support for this type, such as MongoDB, would quickly become

more complex and inefficient.

3.3.1.2 MongoDB

NoSQL databases are often used to manage unstructured data. They are designed to scale horizontally

since they have been proposed to manage big data sets using commodity servers. However, they sacri-

fice the standard ACID (Atomicity, Consistency, Isolation, Durability) properties that relational databases

possess to obtain horizontal scalability.

MongoDB [24] is an open-source NoSQL document-oriented database, based on JSON-like documents

and one of the few NoSQL systems that supports geospatial data. To perform queries and for storage

purposes on geospatial data, MongoDB requires an initial specification of the surface type to be used

when running operations on its data. It supports two surface types: Spherical (2dsphere), which involves

a calculation based on an Earth-like sphere and Flat (2d), which considers a Euclidean plane with 2d

coordinates, which are stored as pairs of longitude and latitude values. It supports a set of standard

GeoJSON data types (e.g. Point, LineString, Polygon) and implements a small amount of basic spatial

operations (inclusion, intersection, and proximity). Hence, the types of possible queries are in short supply

compared to its SQL peers such as PostGIS.

29

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

However, it supports horizontal scalability by using the previously mentioned commodity servers,

which enables the distributed execution of queries by utilizing the sharding technique. The sharding tech-

nique consists of partitioning the input data collection into chunks and storing each chunk in a different

server. Upon a query’s execution, each server executes the query on its respective slice of data, paral-

lelizing its execution. This partitioning of data depends on the value of the selected sharding attribute;

therefore, the choice of this attribute is fundamental to achieving a balanced distribution of the data in the

servers. It is important to mention that it is possible to use MongoDB’s supported geospatial attributes as

sharding attributes. The selection of the best attributes is based on the responses to the queries expected

to be done more frequently. MongoDB provides no automatic support to change the sharding attribute

after sharding a collection. Thus, a good estimation of the expected workload at design time is important

to avoid complications later on.

3.3.1.3 Comparison between PostGIS and MongoDB

Database
Supported Ge-

ometry objects

Main supported

geometry func-

tions

Supported Spa-

tial indexes

Horizontal scal-

lability

PostGIS

Point,

LineString,

Polygon,

MultiPoint,

MultiLineString,

MultiPolygon,

GeometryCollect-

ion

PostGIS supports

the Open GeoSpa-

tial Consortium

(OGC) methods

on geometry

instances

B-Tree index.

R-Tree index,

GiST index

No

MongoDB

Point,

LineString,

Polygon,

MultiPoint,

MultiLineString,

MultiPolygon,

GeometryCollect-

ion

Inclusion,

Intersection,

Distance/Proximity

2dsphere index,

2d index
Yes (sharding)

Table 8: Comparison between MongoDB and PostGIS [6]

The main difference highlighted by the information displayed in Table 8 is that the relational database

PostGIS implements more geospatial functionalities than the NoSQL one, MongoDB. It is also more tightly

integrated and supported by the GeoServer software. The plug-in that is used to connect GeoServer with

MongoDB is in the unsupported branch of the current version of GeoTools. The interoperability with the

30

3.3. POSSIBLE DATABASE SYSTEMS

GeoServer, or with similar software, is indispensable for large-scale geospatial applications that need to

visualise maps and geolocated objects with high quantities of data, especially when mobile devices are

involved. Hence, in terms of functionalities, a spatial relational database is preferable (it is a more mature

technology) because it allows the performance of complex geospatial queries and is well integrated with

geographic information systems (GIS) and with map server software such as GeoServer. On the other

hand, since this particular use case makes such a strong use of the Feature Collection type that is not

directly supported by spatial relational databases, NoSQL databases still present a strong competitor .

So far in this section, the discussion has assumed the existence of complex geospatial queries or

humongous amounts of data being transferred between systems. But after having converted the data

to GeoJSON as explained in the previous section, it is worth noting that most of the files produced do

not contain more than a meagre thousand features per file and as seen in articles such as [17] or [2]

the performance in obtaining and querying geospatial data at such a small scale even in a worst case

scenario is hardly noticeable. Therefore, this led to the question “Is there any need to implement a more

technologically complex solution, or are there simpler and equally viable solutions?”

This question leads to the next subsection of this chapter, where two more technologically simple

solutions are presented and discussed.

3.3.2 File system based floorplan storage solutions

The options involving databases with geospatial capabilities that are depicted above are only some of the

alternatives. It is still possible to manage the floor plan data using either a file system hierarchy solution or

a relational database model that can be used to store the metadata and paths to the files in the file system.

But like everything else, there are advantages and disadvantages to using each of these methodologies.

3.3.2.1 File System Hierarchy

The primary benefit of using a File System Hierarchy solution is its inherent simplicity. With a well-

structured file system hierarchy, obtaining a response for a query that desires a GeoJSON file becomes

a trivial process by specifying its Campus, Building and Floor number because it only requires accessing

the file system on the necessary directory and returning the requested file. However, suppose the query

requires a file specified by the user’s position and floor number. In that case, this is not a viable solution

since it would imply opening and then reading every single GeoJSON file until one matches the given

location, which, with the expected delays of all the file system reads, would quickly prove an inefficient

and unviable solution.

3.3.2.2 Database tables with metadata

The idea behind this solution is to mitigate the problems of the File System Hierarchy solution by storing

the metadata of both the buildings and floors in two relational database tables. With this implementation

31

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

it is possible to identify which building a given user is located in through their location since, with each row

of the buildings table containing a polygon that defines the bounding box of the specified building, when

latitude and longitude values are given to the API, applying a “within” function implemented on the server

on every row, it is possible to determine which is the building that the user is in the premises of.

The upsides of this solution are that it is a comparatively straightforward solution to implement, and

the organised storage of the necessary meta-data of the buildings and floors also can prove helpful to

meet other ends. The downsides include having to define the within function manually, which is already

defined and available in the geospatial database solutions, as well as not being as efficient speed wise

when put against the aforementioned solutions since it is not feasible to think it will be as well optimised

as the already well studied implementations in the state of the art open source options or that it will not

be slower due to the still required usage of the file system.

3.3.3 Conclusion and chosen solution

Ultimately the solution selected was to store the floorplan metadata in tables on a PostgreSQL database,

this decision provided reasonable querying times and the performance impact of using the file system was

mitigated since it is only used once per query in time-sensitive endpoints.

While the file system hierarchy proved unviable, both MongoDB and PostGIS presented good cases.

Still it was decided that this system could make good use of a technologically more straightforward solution

and did not require the added complexity of these two. In the future, if the system were to take bigger

proportions this decision would need to be revised, but with the current predicted size of the system, this

is sufficient.

In a later section, the exact layout of the database tables will be presented, and the thought process

and reasoning beyond its’ design will also be introduced.

3.4 Server database model definition and description

In this section of the present document, the several iterations of the database model will be discussed.

Throughout its subsections, all the versions, from version 1 until the final version, will be presented and

discussed along with the changes between them and their previous iteration, alongside the reason for said

changes.

3.4.1 Version 1

In the first version of the database system, only one table that was deemed as necessary. This table

stored the metadata related to the buildings of both the Gualtar and Azurém campi and the file path to

their respective floorplan data files.

32

3.4. SERVER DATABASE MODEL DEFINITION AND DESCRIPTION

A strict and specific file system hierarchy was needed in the first few iteration of this storage system.

Every building had its folder where the data of the floorplans of their respective floors was contained,

and these files followed a strict naming convention containing the Id of the campus they belonged to, the

building number and the floor number. An example would be a file named “CA_E01_P0” that would

indicate the floorplan file of Floor 0 of Building 01 of the Azurém campus, while this was contained in the

E01 folder that was contained inside of the CA folder. This was seen as a solution that was too restricting

and therefore was discarded.

Figure 24: Version 1 of the floorplan’s server database model

In the table represented in Figure 24 it was stored the building number, the campus id, the file path to

the folder of the building, the boundaries of the building represented as a polygon and an array of integers

that represented the numbers of the floors said building contained. Through this structure the path to

the desired file was then internally built in the server, following the strict naming conventions mentioned

previously.

With these inefficiencies having been found, there was the need to think of a better and more sophis-

ticated strategy. Thus the database model progressed onto version 2.

33

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

3.4.2 Version 2

For version 2, the logic was divided into two separate tables, one containing the building logic, and the

other containing the logic for each floor. The purpose of this change was to erase the file system hierarchy

and naming dependencies discussed in the last subsection. With this structure, the floorplan files can all

be contained in the same folder without specific naming conventions.

Figure 25: Version 2 of the floorplan’s server database model

In this new version, the tables in Figure 25 are then structured so that the buildings table only stores

the array of valid floor numbers, the boundaries of the building, the building number and the id of the

campus it belongs to. Whilst the floors table contains the name of the floorplan file, the floor number and

the foreign key of the building it belongs to. Nevertheless, this version still presented one last flaw: the

floor numbers array contained in the buildings table was prone to error.

This means, it was easily possible for there to be inconsistencies between this array and the floor’s

table. In scenarios where a floor number is added to the array but its’ floor is not added to the floor’s

table, or vice versa. Therefore this last flaw leads the database model to its’ third and final version.

34

3.5. TECHNOLOGIES USED AND FILE STRUCTURE

3.4.3 Version 3

The third and final version of the floorplan’s server database model, as seen in Figure 26, no longer

contains the floor numbers array on the buildings table. Through a simple join operation, it is possible to

have all of the required information of a building associated with its floors.

Figure 26: Version 3 of the floorplan’s server database model

In this final version, the buildings table stores the building number, the id of the campus it belongs

to, and the boundaries of said building, while the floors table contains the file name of the floorplan of the

said floor, the foreign key that represents the id of the building it belongs to and the number of the floor it

represents in said building.

3.5 Technologies used and file structure

For this server, the technologies of choice were the Spring Boot Framework, along with a PostGreSQL

database system while the Object Relational Mapper (ORM) used was Hibernate.

Other technologies were seen as possibilities, such as Node js and many different database systems,

SQL and NoSQL. Still, for the server framework, the choice was Spring Boot, since other project compo-

nents had already been built using this technology. The other options did not present any major advantage

that would justify introducing a new technology to the Tech stack.

As for the database system, the reasoning behind why PostgreSQL was picked has been discussed in

an earlier section of this chapter.

35

CHAPTER 3. FLOORPLAN SERVICE DEVELOPMENT

To deploy this server, a docker container produced through a docker-compose file was used for the

database system and for the server itself.

In Figure 27, it is possible to see the overall server architecture.

Figure 27: Floorplan service architecture

The file system of the server’s container is used to store the GeoJSON files that contain the floorplans

that are returned to the user. These files include a singular floorplan each and are all stored in the same

directory. In Figure 28, it is possible to see a snippet of one of these files; they are made of a GeoJSON

file that represents a feature collection which contains a plethora of LineStrings that represent the details

of a floorplan.

36

3.6. IMPLEMENTED SOLUTION VALIDATION

Figure 28: Snippet of a GeoJSON file

3.6 Implemented Solution Validation

In this section, the implemented solution will be validated through the use of load tests. These load tests

were made using the Apache JMeter tool. With this tool, thousands of requests were sent to the server

within a short period of time. Results such as transactions per second, percentage of success and average

speed of response, among others, have been collected and will therefore be analysed. The strategy used

to test all endpoints was the same, a certain amount of users were created, each sending 10 requests.

These users had a ramp-up time of 100 seconds, meaning that, in this case, a new user started his

workload every second.

It is important to note that every time this load proved too small to test the system effectively it was

adjusted to find what is the respective endpoint’s limit.

Another thing to keep in mind is that different endpoints will sometimes have significantly different

le... (14 KB restante(s))

37

4

Mobile application

The center point of the project, where every developed system converges, is a mobile application called

“Where@UM”. As mentioned in the introduction of this dissertation, this application is meant to navigate

and guide its users through complex indoor locations. Several web services, such as floorplans, data

collection, and navigation services, have been developed to support this functionality. Of the services that

support the mobile application, the ones that are the focus of this dissertation can be seen in Figure 29,

surrounded by red rectangles.

Figure 29: System architecture that supports the mobile application

38

4.1. OBJECTIVE OF THE INTEGRATION OF THE FLOORPLAN SERVICE

The conversion methodology and floorplans web service developed so far have been created to sup-

port this application’s functionality. Having this in mind, discussing the functionalities supported by this

development, the components used to achieve this goal, and the strategies implemented to succeed in

acquiring a well functioning system is fundamental.

4.1 Objective of the integration of the floorplan service

The floorplan service was devised to introduce a fundamental functionality into the mobile application:

the representation of indoor locations. Up to this point, the application differed very little from any other

mapping solution currently out on the market, since it only had the capability of representing outdoor

locations provided by third-party APIs. Integrating the floorplans service makes it possible to achieve the

representation of indoor blueprint layers on top of the current application. This allows the user to better

perceive where they are located while traversing through a mapped indoor location since the user will be

able to see their location on the map on top of the floormap.

This perception was useful for two use cases inside the mobile application “Where@UM”; one is for

the user to perceive through their location where they are on the campi, indoor or outdoor. This can be

visualized in Figure 30.

Figure 30: Mobile application home page

As shown in Figure 30 on this screen, a user can see where they are both on the map, and with

39

CHAPTER 4. MOBILE APPLICATION

the floorplan integrated into its correct geographic location. They can also perceive where exactly on the

floorplan their location is.

The second use case that required the floorplans service is, in reality, made in conjunction with another

dissertation, being part of one of the crowdsourcing metholodogies. This crowdsourcing methodology

involves the user volunteering their position by indicating it with a marker on the map. To ease this

process, since there will be some location errors due to GPS not working as well indoors, the floorplan

service will aid the user by showing them the floorplan of the building they are located in. An example of

this process can be seen in Figure 31

Figure 31: Pick Location method of crowdsourcing

4.2 Components used

To achieve the use cases presented in the previous section, it was necessary to select the right tools and

customize them appropriately so they are used in the best way possible to reach this goal.

40

4.3. STRATEGY

The choice of components needed for this specific part of the mobile application presented a challenge.

Due to other parts of the application requiring the use of NativeScript for their well-functioning, it was

necessary to constrain this project to the tools and plugins available for such a framework. Sadly the map

visualization tools for NativeScript are both scarce and still quite early in their development stages, thus

having incomplete implementations.

The first attempt at a solution was to use the Google Maps Native Script plugin. Unfortunately, this

plugin does not possess the ability to show GeoJSON layers on it, which is a must for the success of

this representation. The application intends to show the user’s indoor location on a map by seamlessly

integrating GeoJSON layers that represent the floorplan of the building the user is located in. Therefore,

since this is not a possibility with the Google Maps plugin, the plan B was to use the Mapbox plugin

implementation, and complement it with some features to better approach it to the requirements of this

application. While not up to par with its other versions available in different frameworks, the NativeScript

Mapbox plugin still can represent and manipulate GeoJSON and other such basic functionalities that make

it sufficient for the use case it has in this application.

Additionally, since map visualization was needed in multiple places of the application, it was deemed

necessary to develop a single component that would fit the map visualization needs of all of the applica-

tion and not several more specialized components; this way, it is possible to keep code duplication to a

minimum since a lot of these features still share some traits and functionalities therefore making this the

more reasonable decision.

For this purpose, a custom component was developed based on the Mapbox component, satisfying all

of the needs relating to map visualization for the entire application. Not all the said needs will be explained

in the present document since these clarifications belong in different dissertations better fit for the subject,

only the ones relating to the floorplan presentation and user location will.

To ease the transition between floors, a floor picker was added; this part of the interface shows the

user which floors are available for the building they are located in, the possible floors to display are stored

in the component as an array that is received and updated every time a request to the floorplan service

is made. Additionally a subscription and polygon are kept in the component as parts of the strategy that

keeps the displayed floorplan updated. This strategy is discussed and explained further in the next section.

4.3 Strategy

In implementing this component, a strategy was created to periodically update the state of the floorplan

being presented to the user. A subscription object is created and stored on the component’s initialisation.

This subscription runs every five seconds and is connected to the floorplan service. It causes the mobile

application to, periodically, check if there have been any significant changes in the user’s position. For this

purpose a polygon is kept and saved in the component’s data. This polygon represents the boundaries of

the building the user is currently located in, and is provided by the web service upon receiving the data of

41

CHAPTER 4. MOBILE APPLICATION

the floorplan, being used every time the subscription executes to verify whether the user is still inside the

same building or not. This verification is done through the use of a within function that calculates whether

the user is inside the boundaries of the same building, on the boundary, or outside of it. The arguments

for the within method are the user’s location and the building’s boundaries stored inside of the developed

component for the map.

Figure 32: Representative Diagram of the Strategy to keep the floorplan being displayed updated

As seen in the diagram in Figure 32, if the user is detected to be inside the same building or on its

boundary, nothing happens, and the application keeps running normally, tracking the user’s position. If

the user has moved outside of the boundaries, a request to the web service is sent with the user’s current

position and floor number to check whether they are inside a new building or simply in an outdoor location.

When the building’s boundaries variable is set to null, the user is not in an indoor location mapped in the

system.

This strategy was set in place to minimize the number of requests to the server and place some of the

processing load on the mobile application. Otherwise, the floorplan service would easily be overloaded

by the constant, and sometimes unnecessary, stream of requests from all the users. It is quite a simple

strategy, but its simplicity does not reduce its effectiveness.

Alongside this strategy an array is kept as a cache of sorts, its purpose is to further minimize the

number of requests to the service as well as help the application cope with possible connection problems.

This array has a size of three and every time a new floorplan is loaded it is added to it, and in case of it

being full the oldest floorplan is removed from the system.

This cache system helps in the case where a user selects a new floor number that they wish to

visualize; before sending a request to the service, the application verifies whether this floorplan is already

present in cache before sending a request to the service. This helps reduce the number of requests to

the service and in cases where the connection is lost, as long as the user had already loaded the desired

floorplan they are not dependent on the service to be able to visualize the desired floorplan.

42

5

Web application for collected data

In this chapter, the development of a web application created in the context of this system will be presented.

Throughout the following sections, subjects such as the reason for developing this web application for this

project, the choices made during its creation, the technologies used and the interface definition and

description of the backend service that had to be implemented for the system’s well functioning will be

approached and discussed.

5.1 Objectives of the web application development

The purpose of this web application is to provide a platform where users and administrators of the sys-

tem may be able to check and perceive which locations are mapped by the crowdsourcing process and

which require increased attention. Considering crowdsourcing is an essential foundation for this project’s

success, it is important to be able to track its progress in some way. This web application seeks to make

simple and accessible the visualization of this information.

Not only does it help track the crowdsourcing progress, it also facilitates the future implementation

of new features such as gamification mechanisms in the mobile application. For instance, if points are

assigned to each contribution towards the mapping, and contributions in areas with fewer samples reward

an individual with more points, it will be helpful for the user to be able to see which parts of the campi have

more samples and which would need more and therefore simplify the process of knowing which areas

should be mapped for a maximum amount of points, benefiting both the system and the user.

For administrative purposes, having such a view also simplifies the detection of any outlier samples

that may have been introduced into the system by ill-willed users. If samples show outside the campi or

outside any indoor spaces they might indicate malicious attempts at sabotaging the system. This way, it

is possible to keep a cleaner, safer and more accurate system implementation running.

43

CHAPTER 5. WEB APPLICATION FOR COLLECTED DATA

5.2 Requirements of the web application

To accomplish its purpose, this application must include the floorplans of the buildings, so the user can

better perceive which rooms and sections of the building are mapped, as well as give the option of which

floor they wish to see the data for. This way, the data is easier to understand since it will allow the user

to check individual floors and locations rather than just a cluster of information that includes the entirety

of a building and would, therefore, not make much sense since it would make it impossible to show the

accurate floorplan.

Additionally, through the filtering of dates and the smart processing of the crowd sourced data, the

application needs to be able to show the user the fingerprinting samples pertaining only to set time frames

with the intent of adding some flexibility to the data visualization and making possible the verifying of which

areas have been recently sampled and which have the oldest fingerprints and may need more user input

to stay relevant and updated. Example time frames would be the last year, last six months, last three

months, and so on.

In future implementations, there is also the possibility of implementing authentication, so instead of

just a view of the contributions of every user, each individual may be able to view only their own contribu-

tions; this particular feature would be a necessity if gamification mechanisms were to be implemented.

5.3 Ways of representing the data

For representing hundreds or even thousands of samples, a simple marker representation would quickly

prove to be an inefficient system, simply due to the fact that such a huge amount of markers being loaded

every time new information was needed would cause the overall application to be slow to load and use.

With this fact in mind, it was necessary to research and seek other options to solve this problem and

display the data in a way that would prove more useful and readable to the end user. Two main options

were found that would prove useful and the most appropriate for this kind of application.

5.3.1 Marker Clustering

The first option, and the most similar to the initial implementation, is known as Marker Clustering. Essen-

tially, this consists of, within a certain radius, clustering all of the nearby markers into a single cluster that

shows the user the absolute number of markers it aggregates. The difference in efficiency between this

option and several individual markers is huge, since it requires a significantly lower amount of markers to

be loaded at once. This amount varies with zoom level; the more the user zooms in, the more the markers

separate from each other and become new clusters, as seen in figures 33 and 34.

44

5.3. WAYS OF REPRESENTING THE DATA

Figure 33: Example of a more clustered Marker Clustering representation of the crowdsourcing samples

Figure 34: Example of a less clustered Marker Clustering representation of the crowdsourcing samples

This solution allows the user to perceive the exact amount of samples located in a general area and,

the more the user increases the zoom, these start spreading out to their exact locations. So it is a great

option since it allows the ability to choose which level of detail an individual wishes to see.

45

CHAPTER 5. WEB APPLICATION FOR COLLECTED DATA

5.3.2 Heatmap

The second option is to use a heatmap layer on the application’s map; this layer should hold equal weights

for each distinct crowdsource contribution. This method makes it impossible to see the exact number of

contributions within a given location; nevertheless, it is still visible how condensed or dispersed they are

among the space visible in the map due to the variable intensity of colors within the heatmap. These

colors also change with any zoom the user does to adjust themselves to the new visible area.

The main disadvantage of this option, versus the marker clustering, is that it does not represent the

absolute value of how many samples are contained within a given area. The map visualization tools do

not possess a scale to represent how many samples a given color represents because these change with

a plethora of different values and not just the number of samples. On the other hand, it is an easier and

more immediate way of perceiving where the highest concentration of samples is due to the nature of this

representation.

Figure 35: Example of an heatmap representation of the crowdsourcing samples

5.3.3 Conclusions

At the end of the day both options present their ups and downs. While the Marker Cluster allows the

visualization of the absolute number of samples on the map, and is able to give the user a notion of where

they are mostly concentrated, the heatmap on the other hand will not allow the user to know exact values

but will provide, in a more easily readable fashion, the information of where the samples are concentrated.

Ultimately, the choice made was to simply implement both options and allow the user to pick which

they want to visualize. This allows the application to have some flexibility to better fit the needs of each

individual user at no cost.

If an individual prefers a simple more immediate and without numbers associated solution they have

the heatmap available, if numbers are required and a higher level of detail, the Marker Cluster option

is available. Both are relatively simple to implement, therefore there was no need to pick only one, the

46

5.4. TECHNOLOGIES USED

research done previously seeked only to validate if either, or even both, were valid and viable options for

this use case.

5.4 Technologies used

For the development of this web application React was the technology of choice for the frontend and Spring

Boot for the backend.

The conversion server in Spring Boot was implemented to process the data available in the Data

Collection Service database, convert it into a GeoJSON feature collection of points and structure it in such

a way that it becomes more useful and easily processable for the web application frontend to consume.

The definition and description of the interfaces made available by this webservice will be discussed in the

next section, while this web application’s architecture can be seen in detail in Figure 36.

Figure 36: Web Application Architecture

The map visualization library of choice was react-mapbox-gl; this constitutes an implementation that

uses the official mapbox-gl plugin and wraps it with extra functionalities such as is the case of the heatmap

and marker clustering layers. react-mapbox-gl was developed by vis.gl[12], a part of the Urban Computing

Foundation[11], to implement some extra functionalities that the base implementation did not possess.

This whole development is available as open source and was made with the support of the official Mapbox

team as seen on the library’s official GitHub[27].

47

CHAPTER 5. WEB APPLICATION FOR COLLECTED DATA

Other libraries were added to improve the user experience, such as React router for the routing of

the application and Semantic UI React for the styling of the application. Semantic UI React is a library

consisting of a plethora of pre-defined and already styled visually appealing and lightweight components;

this leads to a huge time save which allowed for a quicker production of a prototype of the application.

5.5 Interface definition and description

This section will detail the endpoints provided by the web application’s backend and their functionalities

and possible errors. It is split into two subsections, one that details the behaviour and possible errors of

an endpoint which obtains all samples in the system, and a second subsection that details the endpoints

that handle requests that only return data within a given time frame.

It is necessary to remind that this server was introduced to obtain the data from the database that

contains the crowdsourcing data obtained by a colleague from the same project, and to then transform

and reproduce it into data that will be useful for the viewing purposes of the web application.

The schema of the database table that is useful for this particular purpose is depicted in Figure 37.

The information for the endpoints of this service is all obtained from it, processed by the server and

transformed from this original format into a GeoJSON feature collection containing points that each define

a fingerprinting sample.

Figure 37: Table containing the crowdsourced samples relevant to the Web Application

Table 9 contains the request parameters for all of the endpoints of this API. These are represented

by a single table due to the fact that they all share the same information needs to be able to provide the

48

5.5. INTERFACE DEFINITION AND DESCRIPTION

application with a response.

Field Type Nullable? Description Possible values

floorNumber Integer False

Number of the floor

for all the fingerprinting

samples

The integer value of any existing floor

be it negative for underground floors or 0 and above for

surface levels.

campusId String True

The id of the campus

for all the fingerprinting

samples

CA or CG for the respective campus.

Table 9: Request parameters for all Web Application GET requests

5.5.1 All samples endpoint

This endpoint’s purpose is to, as the name says, provide all of the samples available in the system re-

spective to the given floor number, its usage is to visualize the data alongside the floorplans in the system

through Marker Clustering or an Heatmap. It can respond only to requests of the type GET that contain

the request parameter presented at the beginning of this section.

An example request to this endpoint would be “all?floorNumber=0&campusId=CA”, in case of success,

this request should return a JSON object that contains a feature collection depicting all of the floorplans

identified by a floor number of zero for the Azurém campus. Represented in Figure 38 is a portion of

the response to this endpoint. All of the other endpoints presented in this chapter respond in this same

format.

Figure 38: Example of an all samples endpoint response

In case of an error any of the ones mentioned in the Table 10 is a viable possibility with each having

their conditions described in this table.

49

CHAPTER 5. WEB APPLICATION FOR COLLECTED DATA

Value Error code Description

No Samples Found 404 - Not Found
Error that happens when there are no fingerprinting samples

associated with the requested floor number.

Invalid Floor Number 400 - Bad Request
Error that happens when the floor number provided is an

invalid value.

Invalid Campus 400 - Bad Request
Error that happens when the campus id provided is an

invalid value.

Badly Formatted Request Error 400 - Bad request
Error that happens when the request is not built properly,

due to parameters missing.

Table 10: Possible errors for the all samples GET request

5.5.2 Temporal endpoints

In this subsection, the endpoints presented will be the temporal ones, which specify a time frame for which

the user may want to see the data. The time frames available in the system are the last year, last three

months and the last month. An example of each and every one of these endpoints will be presented. This

endpoint’s utility is to give the user, through the web application, the ability to visualize the areas of the

map with only the fingerprinting samples within the specified time frame. All of the following endpoints

can reply to requests of the type GET that contain the request parameter specified at the beginning of this

section.

5.5.2.1 Less than a year endpoint

An example request for this endpoint would be ‘’lessThanOneYear?floorNumber=0&campusId=CA”, in

case of success, this request should return a JSON object that contains a feature collection depicting all

of the fingerprinting samples identified by a floor number of zero in the Azurém campus with less than a

year of age.

5.5.2.2 Less than three months endpoint

An example request for this endpoint would be ‘’lessThanThreeMonths?floorNumber=0&campusId=CA”,

in case of success, this request should return a JSON object that contains a feature collection depicting

all of the fingerprinting samples identified by a floor number of zero in the Azurém campus with less than

three months of age.

5.5.2.3 Less than one month endpoint

An example request to this endpoint would be ‘’lessThanOneMonth?floorNumber=0&campusId=CA”, in

case of success, this request should return a feature collection depicting all of the fingerprinting samples

identified by a floor number of zero in the Azurém campus with less than one month of age.

In case of an error any of these three endpoints can return the same type of errors, all specified in

Table 11

50

5.6. IMPLEMENTED SOLUTION VALIDATION

Value Error code Description

No Samples Found 404 - Not Found
Error that happens when there are no fingerprinting samples

associated with the requested floor number.

No Samples within Timeframe Found 404 - Not Found
Error that happens when there are no samples found for the

floor number provided within the given time frame.

Invalid Floor Number 400 - Bad Request
Error that happens when the floor number provided is an

invalid value.

Invalid Campus Id 400 - Bad Request
Error that happens when the campus id provided is an

invalid value.

Badly Formatted Request Error 400 - Bad request
Error that happens when the request is not built properly,

due to parameters missing.

Table 11: Possible errors for the temporal samples endpoints GET request

5.6 Implemented Solution Validation

For this chapter, the validation is done for the conversion server developed in Spring Boot. But the load

tests will only be done for the endpoint relative to all the samples, since all of the samples available in the

data collection database are from the last month, therefore all of the temporal endpoints would return the

same. It is important to keep in mind that, at the time these tests were done, the number of fingerprinting

samples in the database was 3039.

This service includes the same gzip compression system as the floorplan web service, but does not

include a caching system. Eventually, a cache could be added, but it would need to have a reduced period

between updates to better fit the use case of this service since it is important to have the tracked progress

be as updated as possible.

The first test, similarly to the floorplan web service, was done with 500 users and 5000 requests in a

span of 100 seconds, the results can be seen in Figure 39.

Figure 39: Results of the test for 500 users 5000 requests

As can be seen in Figure 39 under this load the conversion server worked perfectly, being able to

successfully take care of all transactions with an average response time of 84ms. This means that the

service is still not at its limit, therefore an increase to 750 users and 7500 requests in the same time span

was done.

51

CHAPTER 5. WEB APPLICATION FOR COLLECTED DATA

Figure 40: Results of the test for 750 users 7500 requests

As seen in Figure 40 there was now an increase in the average response time to 2542ms and an

increase in the transactions per second to 59, which indicates that the service is reaching its load limit

for this endpoint. But for the sake of limit testing the user number was increased to 1000 and the total

requests increased to 10000.

Figure 41: Results of the test for 1000 users 10000 requests

With now an average response time of 6702ms as can be seen in Figure 41 it is clear that the service’s

limit for this endpoint has been reached, since even this much waiting time can prove frustrating to some

users. While not a time sensitive task and not an endpoint that will receive requests as frequently as some

others, it is still clear to see that the average number of requests per 100 second should be kept under

7500. This number makes sense since this endpoint is meant to be executed alongside the “getByFloor”

query and they do have similar performances. Its main limitation is the amount of processing it has to

do, converting all of the usable samples available in the database to a GeoJSON feature collection that

contains all of the points that represent the usable samples.

52

6

Conclusions and future work

The main focus of this dissertation was the development of a floorplan web service that would allow the

integration of georeferenced floorplans into the mobile application “Where@UM”, having said development

been completed with success.

This mobile application, as mentioned previously, is being developed by multiple people, and its other

supporting systems are the focus of different dissertations.

With this integration complete the problem of the space’s geometry was resolved. To achieve this

result, many challenges were faced and successfully overcome with the steps described in the several

sections and chapters of this dissertation.

One of the main challenges faced in this project was that the existing floorplans were not in a format

appropriate for our applications. Therefore, looking for the state-of-the-art solutions available was neces-

sary to find the best format possible. The identified format was IMDF, but the use of this format is only

directly supported for iOS and the intent was to build an android application. Thus, it lead to the challenge

of adapting this format in the simplest and most efficient way to this operating system.

As mentioned in previous chapters, this format heavily depends on GeoJSON; therefore, a conversion

method between the available SVG data and GeoJSON was needed and accomplished. Both were the

main challenges of this dissertation that required the most time to solve.

Afterwards, having the required GeoJSON files, it was necessary to design a web service that would

have an interface the mobile application could make requests to, to obtain these files whenever needed.

The endpoints made available by this service had to fulfill, in the most efficient and scalable way, the

needs of the mobile application, and therefore were improved several times throughout the development

process.

Finally, some slight adjustments had to be made to the web service so it could satisfy the needs of a

web application that was later developed to support the tracking of the crowdsourcing process.

Once all of the web service development was complete, it was necessary to develop the components

required for the mobile and web applications, which would seamlessly integrate the floorplans received

from the floorplans web service into their respective map components and functionalities. Some chal-

lenges were faced during this step in particular with the mobile application integration, due to a limited

53

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

availability of map visualization libraries that possessed the required functionalities. This limited availabil-

ity was derived from a need to use NativeScript as the application’s framework and this framework does

not possess many map visualization tools.

With all of the above mentioned systems and methods having been developed and implemented with

success, it is possible to say that all of the main requisites and objectives of this dissertation were fulfilled.

6.1 Future work

Although the main objectives of this dissertation have been accomplished, there is still a lot that can be

done to improve the overall system further since this was the first prototype.

6.1.1 Mobile application

About the mobile application, additional functionalities can be added. Eventually, topology graphs and an

entire navigation system that provides routes and guides the user to the desired destination, while working

in tandem with the floorplans service.

6.1.2 Web application

In relation to the web application, it is still possible to add a notion of users. Hence, each user can perceive

which data collections belong to them. This functionality helps implement gamification mechanisms that

further incentivise users to contribute to the crowdsourcing. Further administrative functionalities could

also be added eventually with the purpose of simplifying the monitoring process from an administrator’s

point of view. Additionally, the backend could be optimized by implementing a cache system that perfectly

balances having updated data as well as reducing the processing needed in case a plethora of requests

are made in a short period of time.

6.1.3 Floorplans web sevice

In relation to the floorplans web service, eventually, when the platform hits a big enough scale, it will be

necessary to scale the service horizontally to be able to efficiently provide the floorplan operations to more

users. More changes to the structure of the stored files could also be done to approximate further the

structure of these GeoJSON files to the implementation of IMDF for iOS.

54

Bibliography

[1] T. Adams. “Using SVG and XSLT to display visually geo-referenced XML”. In: Visualizing Information

Using SVG and X3D (Jan. 2005), pp. 256–265. doi: 10.1007/1-84628-084-2_12 (cit. on

p. 10).

[2] S. Agarwal and K. Rajan. “Performance analysis of MongoDB versus PostGIS/PostGreSQL databases

for line intersection and point containment spatial queries”. In: Spatial Information Research 24

(Nov. 2016). doi: 10.1007/s41324-016-0059-1 (cit. on p. 31).

[3] Apple. “Indoor Maps Program”. In: (2021). url: https://register.apple.com/indoor
(cit. on p. 1).

[4] Apple and O. G. Consortium. “Indoor Mapping Data Format”. In: (2021). url: https://docs.
ogc.org/cs/20-094/index.html (cit. on p. 9).

[5] ArcGIS. “GeoJSON”. In: (2021). url: https://doc.arcgis.com/en/arcgis-online/
reference/geojson.htm (cit. on p. 10).

[6] E. Baralis et al. “SQL versus NoSQL databases for geospatial applications”. In: Dec. 2017, pp. 3388–

3397. doi: 10.1109/BigData.2017.8258324 (cit. on p. 30).

[7] T. Becker, C. Nagel, and T. H. Kolbe. “A multilayered space-event model for navigation in indoor

spaces”. In: 3D geo-information sciences. Springer, 2009, pp. 61–77 (cit. on p. 7).

[8] F. Biljecki, H. Ledoux, and J. Stoter. “An improved LOD specification for 3D building models”.

In: Computers, Environment and Urban Systems 59 (2016), pp. 25–37. issn: 0198-9715. doi:

https://doi.org/10.1016/j.compenvurbsys.2016.04.005. url: https://www.
sciencedirect.com/science/article/pii/S0198971516300436 (cit. on p. 8).

[9] G. Brown et al. “Modelling 3D Topographic Space Against Indoor Navigation Requirements”. In:

Oct. 2013, pp.1–22. isbn: 978-3-642-29792-2. doi: 10.1007/978-3-642-29793-9_1 (cit. on

p. 8).

[10] O. G. Consortium. “CityGML”. In: (2021). url: https://www.ogc.org/standards/citygml
(cit. on p. 8).

55

https://doi.org/10.1007/1-84628-084-2_12
https://doi.org/10.1007/s41324-016-0059-1
https://register.apple.com/indoor
https://docs.ogc.org/cs/20-094/index.html
https://docs.ogc.org/cs/20-094/index.html
https://doc.arcgis.com/en/arcgis-online/reference/geojson.htm
https://doc.arcgis.com/en/arcgis-online/reference/geojson.htm
https://doi.org/10.1109/BigData.2017.8258324
https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2016.04.005
https://www.sciencedirect.com/science/article/pii/S0198971516300436
https://www.sciencedirect.com/science/article/pii/S0198971516300436
https://doi.org/10.1007/978-3-642-29793-9_1
https://www.ogc.org/standards/citygml

BIBLIOGRAPHY

[11] U. C. Foundation. “Urban Computing Foundation”. In: (2022). url: https://uc.foundation/
(cit. on p. 47).

[12] U. C. Foundation. “vis.gl”. In: (2022). url: https://vis.gl/ (cit. on p. 47).

[13] M. Goetz and A. Zipf. “Extending OpenStreetMap to indoor environments: Bringing volunteered

geographic information to the next level”. In: Sept. 2011, pp. 51–62 (cit. on p. 6).

[14] InkScape. “InkScape”. In: (2022). url: https://inkscape.org/ (cit. on p. 15).

[15] B. S. International. “IFC”. In: (2022). url: https://technical.buildingsmart.org/
standards/ifc/ (cit. on p. 9).

[16] jczaplew. “geojson-precision”. In: (2022). url: https://github.com/jczaplew/geojson-
precision (cit. on p. 23).

[17] D. Laksono. “Testing Spatial Data Deliverance in SQL and NoSQL Database Using NodeJS Fullstack

Web App”. In: 2018 4th International Conference on Science and Technology (ICST). 2018, pp. 1–

5. doi: 10.1109/ICSTC.2018.8528705 (cit. on p. 31).

[18] J. Lee et al. “OGC IndoorGML 1.1”. In: (2019). url: https://docs.ogc.org/is/19-011r4
/19-011r4.html (cit. on pp. 6, 7).

[19] K.-J. Li et al. “Survey on Indoor Map Standards and Formats”. In: 2019 International Conference

on Indoor Positioning and Indoor Navigation (IPIN). 2019, pp. 1–8. doi: 10.1109/IPIN.2019
.8911796 (cit. on p. 11).

[20] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. url:

https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
(cit. on p. ii).

[21] O. S. Maps. “Open Indoor”. In: (2022). url: https://wiki.openstreetmap.org/wiki/
OpenIndoor (cit. on p. 6).

[22] O. S. Maps. “Open Station Map”. In: (). url: https://openstationmap.org/ (cit. on p. 6).

[23] O. S. Maps. “Open Street Maps”. In: (2021). url: https://www.openstreetmap.org/ (cit.

on p. 5).

[24] MongoDB. “MongoDB”. In: (2022). url: https://www.mongodb.com/ (cit. on p. 29).

[25] PostGIS. “PostGIS”. In: (2022). url: https://postgis.net/ (cit. on p. 29).

[26] QGIS. “QGIS”. In: (2022). url: https://www.qgis.org/ (cit. on p. 15).

[27] vis.gl. “React-map-gl GitHub”. In: (2022). url: https://github.com/visgl/react-map-
gl/ (cit. on p. 47).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.8.9) [1].

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 56).

56

https://uc.foundation/
https://vis.gl/
https://inkscape.org/
https://technical.buildingsmart.org/standards/ifc/
https://technical.buildingsmart.org/standards/ifc/
https://github.com/jczaplew/geojson-precision
https://github.com/jczaplew/geojson-precision
https://doi.org/10.1109/ICSTC.2018.8528705
https://docs.ogc.org/is/19-011r4/19-011r4.html
https://docs.ogc.org/is/19-011r4/19-011r4.html
https://doi.org/10.1109/IPIN.2019.8911796
https://doi.org/10.1109/IPIN.2019.8911796
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://wiki.openstreetmap.org/wiki/OpenIndoor
https://wiki.openstreetmap.org/wiki/OpenIndoor
https://openstationmap.org/
https://www.openstreetmap.org/
https://www.mongodb.com/
https://postgis.net/
https://www.qgis.org/
https://github.com/visgl/react-map-gl/
https://github.com/visgl/react-map-gl/
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

I

Annex 1

This annex lists the python script developed to remove the properties that the georeferencing process

added to the final GeoJSON file that serve no purpose for our application.

1 import os
2 import json
3 directory = 'Insert path here where geojson files are located'
4

5 for filename in os.listdir(directory):
6 f = os.path.join(directory, filename)
7 if os.path.isfile(f):
8 file = open(f, 'r')
9 geojson = json.load(file)

10 for i in geojson['features']:
11 i['properties'] = {}
12 file.close()
13 output = open(filename, 'w')
14 json.dump(geojson, output)
15 output.close()

Listing I.1: Script to remove extra properties

57

	Front Matter
	Cover
	Front Page
	Copyright
	Statement
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure

	2 State of the art
	2.1 Requirements
	2.2 Standard indoor map formats and models
	2.2.1 Indoor OpenStreetMap
	2.2.2 OGC IndoorGML
	2.2.3 CityGML
	2.2.4 IFC
	2.2.5 IMDF
	2.2.6 SVG
	2.2.7 Discussion and comparison

	2.3 Conclusion

	3 Floorplan Service Development
	3.1 Process to obtain the geographically referenced GeoJSON files
	3.2 Server interface definition
	3.2.1 “getByFloor“ endpoint
	3.2.2 “getByIds“ endpoint
	3.2.3 “getByLocation“ endpoint

	3.3 Possible database systems
	3.3.1 Systems already implemented
	3.3.2 File system based floorplan storage solutions
	3.3.3 Conclusion and chosen solution

	3.4 Server database model definition and description
	3.4.1 Version 1
	3.4.2 Version 2
	3.4.3 Version 3

	3.5 Technologies used and file structure
	3.6 Implemented Solution Validation

	4 Mobile application
	4.1 Objective of the integration of the floorplan service
	4.2 Components used
	4.3 Strategy

	5 Web application for collected data
	5.1 Objectives of the web application development
	5.2 Requirements of the web application
	5.3 Ways of representing the data
	5.3.1 Marker Clustering
	5.3.2 Heatmap
	5.3.3 Conclusions

	5.4 Technologies used
	5.5 Interface definition and description
	5.5.1 All samples endpoint
	5.5.2 Temporal endpoints

	5.6 Implemented Solution Validation

	6 Conclusions and future work
	6.1 Future work
	6.1.1 Mobile application
	6.1.2 Web application
	6.1.3 Floorplans web sevice

	Bibliography
	I Annex 1
	Back Matter
	Back Cover

		2022-11-26T20:07:45+0000

