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ABSTRACT 

Development of chemically defined medium for biopharmaceuticals production using 

mammalian cell lines guided through metabolic modelling tools and metabolomics 

measurements 

Systems biology and metabolic engineering tools hold a tremendous promise in improving 

biomanufacturing attributes. The emergence of omics tools and computational modeling potentiated the 

development of new approaches to optimize several expression platforms, in particular mammalian cell 

lines of which Chinese hamster ovary (CHO) cells, the most used platform for recombinant proteins 

production. This optimization envisions not only growth parameters of CHO, but also the final product 

titers.  

In this context, a CHO genome scale metabolic model (iCHO1766) and flux balance analysis (FBA) were 

used to study metabolic mechanisms in response to variations in environmental constraints (e.g., 

amino acids levels) aiming at optimizing cell culture medium formulations. Hence, iCHO1766, 

combined with an in-house developed algorithm (OptiModels) was first used to determine the minimal 

medium formulation able to sustain growth of both naïve and recombinant CHO cells lines. 

Subsequently, based on the prediction results, α-ketoglutarate (AKG) was determined as a potential 

media supplement and its effect on culture was investigated experimentally. Further, spent media 

analyses were performed to understand the influence of AKG on CHO metabolism and media 

formulation was optimized based on balancing the levels of non-essential amino acids together with 

supplementing AKG and ammonium.  

As a result of adding AKG to the media, growth parameters were improved, and ammonia accumulation 

during the process was reduced. In addition, recombinant protein titers were increased by 1.9-fold. 

Following, specific productivities were improved when rebalancing nutrient levels in the media, together 

with supplementing AKG, leading to more efficient metabolic features of CHO. 

In conclusion, in silico-based approaches for medium optimization are powerful tools for predicting the 

metabolic interconnexions within a cell and hold great potential in improving media design and 

bioprocess optimization. 

Key words: CHO cells, GSMM, media optimization, α-ketoglutarate (AKG).  
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RESUMO 

Desenvolvimento de meio definido para produção de biofármacos usando células de 

mamíferos guiado por modelos metabólicos e metabolómica 

As ferramentas de biologia de sistemas e engenharia metabólica constituem uma grande promessa na 

melhoria do desempenho da bio-manufactura. As ferramentas “ómicas” e bioinformáticas 

potencializaram o desenvolvimento de novas abordagens para otimizar os parâmetros de crescimento e 

o rendimento do produto final em diversas plataformas de expressão, em particular linhas de células de 

mamíferos, sendo as células de ovário de Hamster Chinês (“CHO”) uma das linhas celulares mais 

utilizadas para a produção de proteínas recombinantes.  

Neste contexto, o modelo metabólico à escala do genoma (GSMM) de células CHO iCHO1766 foi 

utilizado com o objetivo de estudar o comportamento metabólico das células em resposta a variações 

nas restrições ambientais, por exemplo, níveis de aminoácidos, visando a otimização da formulação do 

meio de cultura para células CHO. Para estudar essa influência, o modelo, combinado com um 

algoritmo desenvolvido internamente, foi usado para determinar a formulação de meio mínima para 

sustentar o crescimento de CHO não recombinantes, bem como de células recombinantes.  Portanto, 

com base nos resultados da previsão, a suplementação de diferentes níveis de α-cetoglutarato (AKG) à 

composição do meio padrão foi estudada experimentalmente, e foi realizada uma análise do meio 

resultante para avaliar os efeitos de AKG sobre o metabolismo de CHO. Por fim, a formulação do meio 

de cultura foi otimizada com base no equilíbrio dos níveis de aminoácidos não essenciais em conjunto 

com a suplementação de AKG e amónio. A suplementação com diferentes níveis de AKG permitiu 

melhorar os parâmetros de crescimento e reduzir a acumulação de amónia. Foi ainda observado um 

aumento nas concentrações e produtividades específicas das células produtoras, sendo que esta foi 

melhorada em 1,9 vezes. Por conseguinte, ao utilizar a formulação de meio otimizado, observou-se um 

aumento da produtividade específica das células, bem como características metabólicas mais 

eficientes. As abordagens in silico para otimização de meio são, assim, ferramentas poderosas para 

prever a interconexão metabólica na célula e possuem um grande potencial para melhorar o desenho e 

otimização do meio de culturas. 

Palavras-chave: células CHO, GSMM, otimização do meio de cultura, α-cetoglutarato (AKG). 
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1. CHAPTER 1  

Motivation and outline of the thesis 

_____________________________________________________________ 

 

Biopharmaceuticals or biologics are large molecules derived from living organisms that, in the correct 

structure, can be very effective for preventing or treating a wide range of conditions such as infectious 

diseases and cancer. Examples of such biologics are vaccines, recombinant proteins and growth factors 

[1]. Along the years, there has been a continuous demand for developing complex biopharmaceuticals 

and the corresponding manufacturing processes, due to their therapeutic potential and global need in 

case of epidemics to control potential outbreaks that can be induced by continuously mutating 

pathogens (e.g., Influenza viruses or SARS-CoV) [2]. Indeed, the increased adoption of bio-based 

products holds a tremendous promise in improving current prevention and therapeutic procedures, 

especially in the field of vaccinology, gene therapy and cancer treatment [3].  

Long time prior to the emergence of recombinant DNA technology, biotherapeutics were isolated from 

animals (e.g., Insulin being isolated from cows and pigs) or produced in animal tissues [4,5]. Following 

the revolutionary discovery of DNA recombination, biologics shifted to be produced in microbes, in vitro. 

The insertion of the insulin gene into a bacterial genome was an important stepping stone that drove 

the large scale manufacturing of human-insulin precursors in alternative producers already in the late 

1970s, with the major production cell factories being Escherichia coli (E.coli) and Saccharomyces 

cerevisiae [6,7]. These efforts resulted in the approval of the first biopharmaceutical product by the 

regulatory bodies in the early 80s, Humulin® produced by DNA recombination technology using 

bacterial cells [8,9]. Due to its rapid growth to high cell densities in cheap and simple media 

formulations and the ease with which it can be genetically manipulated, E. coli remains a prime 

production host in the biopharmaceutical and biotechnological industries [10–13]. 

Bacterial systems are not the only hosts that have been used for insulin production. Other cell factories 

such as yeast systems have been explored as a result of advancement in genetic engineering [14,15]. 

For peptides/proteins that require the formation of disulfide bonds, including insulin as the best-known 

example, several yeast species have been explored and now have well established platform 

technologies available [16]. However, for the production of high value biotherapeutics that require 

human-like glycosylation or other types of complex post-translational modifications (PTMs), complex 

organisms, such as mammalian cells are required [17,18]. 
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As a result of these breakthrough technologies over the last 25 years, the pharmaceutical industry 

invested a great deal of resources into research and development (R&D) [19], aiming at generating 

groundbreaking complex biologics using heterologous expression in mammalian platforms, mainly the 

Chinese hamster ovary cells (CHO) due to its potential in producing high-quality biopharmaceuticals 

[20,21].  

Since then, innovation in the biopharmaceutical field triggered the development of various novel 

compounds that demonstrated great therapeutic potential towards the treatment of both existing and 

emerging diseases [22]. The spectrum of produced biologics broadened along the years and the focus 

shifted towards even more sophisticated bio-based therapies, that are unable to be produced by 

microbial systems. Ergo, mammalian cell factories became one of the most important systems for the 

manufacturing of complex biopharmaceuticals such as monoclonal antibodies and recombinant 

therapeutic proteins. Since the introduction of human tissue plasminogen activator (tPA) to the market, 

the first bio-based therapy generated by mammalian cells, the biopharmaceutical industry continues to 

generate thumping profits overtime [23].  

Currently, 316 biopharmaceuticals are on the market [24]. In fact, about 51% of the total produced 

biotherapeutic proteins are generated using mammalian cell lines, including 95% of the total produced 

therapeutic monoclonal antibodies (mAbs) and 83% of the total recombinant blood factors [25].  

Emphasizing on monoclonal antibodies-based therapies, the number of commercialized treatments 

sextupled between 2012 and 2018 [26,27]. A total of 13 mAbs-based drugs were approved in 2018 

along with 5 other potential therapies undergoing clinical trials. As an example, Humira® is the most 

selling drug in the United States, with a profit close to 18 billion dollars in 2017. The latter is a tumor 

necrosis factor (TNF)-inhibiting and anti-inflammatory drug used for the treatment of many conditions 

(e.g. plaque psoriasis, rheumatoid arthritis and Crohn’s disease) [28]. As a matter of fact, in 2018, the 

food and drug administration (FDA) approved 59 novel treatments, especially for cancer and infectious 

diseases. This is considered a 20 years record of approved biopharmaceuticals after 1996, where FDA 

authorized 53 novel treatments for various conditions [29,30]. As a consequence of this trend, the 

market size of the biopharmaceutical sector has greatly expanded overtime, with a total of US$ 228 

billion in global sales in 2016 [31]. Simultaneously, the global bioprocess technology market is also 

expected to achieve 71 billion dollars by 2022 [32]. This indicates the market value of the total material 

needed for producing biopharmaceuticals (e.g., bioreactors, raw materials, chemicals, etc.).  

Breakthroughs in the biopharmaceutical R&D technologies allowed the large-scale production of various 

bio-based therapies and made the manufacturing of these products easier and more profitable. 
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Parameters such as process yield and productivity are fundamental for the economic value and 

profitability of bioprocesses. Due to the importance of biotherapeutics and the large competition 

between manufacturers, several attempts have been made to “modernize” the process optimization 

strategies throughout designing innovative engineering approaches, relying for instance on using 

different omics data sets to boost process titer, product quality and to decrease the production cost of 

biopharmaceuticals.  

In the post-genomic era, it became easier to study the genome of several species. Relying on modern 

sequencing techniques, depicting the genetic information of several organisms became faster and less 

expensive. Lately, sequencing became affordable and optimized to high-throughput [33] and is evolving 

to be the base for studying specific traits of industrially important cell lines. Due to the easiness of 

sequencing, it became more straightforward to think about combining genomics data with several other 

omics datasets for instance, transcriptomics, proteomics, fluxomics and especially metabolomics, 

referred to as high‐dimensional biology [34]. The analysis of these data represents the core of 

computational systems biology, enabling understanding and optimizing cellular machineries, by guiding, 

simultaneously, the modification of its genetic information and the rewiring of its metabolic flux 

distribution towards expressing phenotypes of interest.  

Along with this progress, there is still a need for improving production pipelines and room for further 

studying the cell at “omics” levels. In this era of big data, mathematical modeling has the potential to 

integrate multi-omics data sets into a single model and to correlate the observed changes in one 

dataset to observed changes in another [35]. Systems biology, which uses mathematical modeling to 

integrate current knowledge in a holistic manner, is a promising approach to optimize the time and 

resources required in biopharmaceutical production and to improve the industrial phenotypes of 

interest. 

While mathematical modeling in the context of systems biology is leading to many great advances in 

bioprocessing, it is still not fully translated to industry due to lack of expertise in the field [36].  

1.1. Context and motivation 

While optimizing heterologous protein expression of important biopharmaceuticals, it is necessary to 

focus on studying the cellular metabolism in order to determine the metabolic bottlenecks of the cell 

and to optimize its machinery. The latter is controlled by multiple genes and interconnected metabolic 

pathways.  
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Cell culture medium contains the most important components for CHO cell lines growth, as well as the 

main fuel for production of recombinant proteins. Several efforts have been performed to optimize the 

nutrient levels in these formulations and customize them to the cell’s need. This approach can help 

improving growth parameters of the cells as well as boosting the production of high titers of 

recombinant proteins, improving also its glycosylation patterns [37,38].  

Glucose, amino acids and vitamins are the most important nutrients of cell culture medium. These 

metabolites are the main providers of carbon, nitrogen and other elements, crucial for proteins 

synthesis and essential for various biochemical reactions in the cell. Therefore, several media 

formulations have already been tested by various manufacturers and research groups to evaluate their 

production potential, especially by employing CHO cells [39]. These formulations have been improved 

over the years (e.g., the current use of protein-free chemically defined media) but are nowhere close to 

optimal.  

In the past, time-consuming, laborious and relatively inaccurate methodologies have been used for 

media optimization (e.g., strategies based on varying one factor at a time) [40]. However, modern 

approaches based on the use of high-throughput strategies together with deterministic and mechanistic 

modeling approaches, for instance relying on the use of genome scale reconstructs and various omics 

data, improved the robustness of medium design and provided a solid base to overcome the use of the 

classical optimization methodologies [41,42]. Refining cell culture media formulation to the metabolic 

requirements of the cells can solve several bioprocessing problems, for instance, decreasing by-

products levels during production. These improvements can be made by assessing metabolic 

requirements through studying, for instance, nutrient uptake rates and transporters capacity. Tools such 

as constraint-based modeling are very important to study the metabolic behavior of the cells in answer 

to variation in environmental conditions, in silico. In general, using in silico-based strategies and 

genome-scale metabolic models for studying CHO metabolism is a powerful approach to optimize 

growth parameters of CHO. These models not only provide a holistic overview about CHO metabolic 

network, but also can define robust strategies for predicting the cellular phenotypic changes in response 

to environmental adjustments [43], which in long term will reduce R&D time and costs.  

Subsequently, developing a refined formulation of cell culture media based on CHO cells specific needs, 

based on studying the effects of different nutrients such as amino acids on the metabolism of CHO cells 

is a groundbreaking ambition that will subdue many biomanufacturing problems such as low cell 

growth, low cell densities, low product yields and the accumulation of cell culture by-products. 
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1.2. Research aims 

The present PhD thesis focuses on optimizing the growth parameters of 3 different CHO strains 

(producer and nonproducer strains) as well as their production capabilities of an Immunoglobulin G 

(Trastuzumab) antibody (in case of producer cells). To achieve this target, we recurred to employ a 

combination of robust in silico-based approaches that have the potential to underline the metabolic 

bottlenecks of CHO and to design an optimized cell culture medium formulation. Respectively, we used 

a genome-scale metabolic model of CHO cells to predict the effect of balancing amino acids levels in 

the medium and its influence on cell growth and productivity of recombinant proteins. Subsequently, we 

validated the in silico results experimentally by studying the effect of supplementation of AKG (predicted 

as a potential additive to the cell culture medium) as an alternative source for both glutamine and 

glutamate. This experimental study aimed at understanding the different metabolic fluxes of CHO 

involved when the cells adapt to the new culture environment, underlying its production capacities 

under these constraints. 

In detail, the use of in silico approaches allowed a faster prediction of not only the metabolic behavior of 

the cells in response to the variation of amino acids levels in the medium, but also possible additives 

that can be supplemented to the culture. The process was characterized from the point of view of 

monitoring the specific growth rate values, the maximal cell densities, the specific productivities of the 

cells, the final titer of Trastuzumab, as well as the levels of toxic by-products (e.g., lactate and 

ammonia). Predictions were based on the use of CHO genome scale metabolic model published by 

Hefzi et al., 2016 [44] together with Optflux, relying on the use of constraint-based approaches, for 

instance parsimonious flux balance analysis (pFBA). In addition, following the experimental validation 

and to better understand the metabolic differences among the tested conditions, metabolomics studies 

were performed to highlight the flow of amino acids and other metabolites in different experimental 

conditions by determining the uptake and secretion rates of key amino acids. The optimization results 

were compared to a positive control, where CHO cells were grown in standard culture conditions using 

CD CHO® cell culture media. 

The thesis aims therefore at: 

 Using the universal genome scale metabolic model of CHO (iCHO1766) [44] combined with an 

in-house evolutionary algorithm to: 

o Determine a possible minimum medium formulation that promotes CHO growth. 
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o Test different media candidates in silico (through modifying the original model 

environmental constraints) to portray CHO metabolic flux distributions under these 

conditions. 

o Determine the growth rate together with the consumption/production rate values of 

extracellular metabolites based on pFBA. 

o Determine the influence of medium optimization on by-products secretion (e.g., 

ammonium). 

 Test the optimal in silico results experimentally by: 

o Studying the influence of supplementing different concentrations of AKG to the cell 

culture medium, on 3 different CHO strains. Growth, viability, cell characteristics, 

maximal cell density, production rate of Trastuzumab and secretion of by-products 

were assessed. 

o Varying the levels of non-essential amino acids in the culture and studying the effect of 

these changes on the metabolic network, with and without supplementation of AKG. 

o Studying the effect of supplementing ammonium to the cultures as a possible nitrogen 

source together with balancing the amino acids levels in the medium. 

1.3. Outline of the thesis 

The research performed for this thesis is contained in six chapters. The first chapter comprises a 

general introduction about the importance of bio-based therapies and a brief highlight about economic 

aspects of the biopharmaceutical industry and its evolution overtime. Furthermore, an introduction and 

contextualization of the problems addressed in this thesis are presented. Chapters 2 to 5 contain a 

description of the state of the art, the experiments performed, and the results obtained. Chapter 6 

encompasses the final research conclusions and recommends future approaches in the field. 

The three chapters exploring the research aims are organized as follows: 

 In chapter 2, a comprehensive review on the state of the art of the extensive areas of expertise 

addressed in this thesis is performed. An overview about the importance of mammalian cell 

lines, mainly CHO, is provided. In addition, a comparison of CHO production platforms to other 

cell factories is highlighted, focusing on the complexity of CHO compared with other production 

platforms (e.g., bacteria, yeast). Modern engineering strategies, as well as various topics 

addressing optimization efforts towards improving mammalian cell factories are also described. 



CHAPTER 1 

7 

Chapter 2 was partially adapted from the following publication: Key Challenges in Designing 

CHO Chassis Platforms. Hamdi et al., 2020. 

 In chapter 3, the determination of minimal medium composition for CHO, based on the use of 

the corresponding universal genome scale metabolic model, iCHO1766, is described. We 

highlight the use of a python-based evolutionary algorithm developed at the center of biological 

engineering, University of Minho and its potential in determining the optimal minimal set of 

reactions that constitute the medium formulation for CHO when applying specific constraints. 

Further, evaluating potential additives that can support a specific objective function, for 

instance, maximizing either growth or maximizing both growth and production of IgG is 

described. Further, Optflux is the main framework used to study the effect of balancing amino 

acids levels in the medium from an in silico standpoint. 

 In chapter 4, an experimental validation based on the aforementioned in silico results is 

highlighted. The effect of supplementing different AKG concentrations on CHO metabolism 

through evaluating the different growth parameters and production of Trastuzumab is studied. 

In addition, the exchange of amino acids under the different studied experimental conditions is 

explored.  

 In chapter 5, the effect of balancing the non-essential amino acids levels on growth and 

productivity and metabolism of CHO producer cells is examined. Strategies such as evaluating 

the supplementation of ammonium when balancing amino acids in the medium is also studied 

experimentally. 

 Chapter 6 summarizes the main research conclusions and discusses future perspectives.
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A. Hamdi, D. Széliová, D.E. Ruckerbauer, I. Rocha, N. Borth, J. Zanghellini, Key challenges in designing 

CHO chassis platforms, Processes. (2020). https://doi.org/10.3390/PR8060643. 

------------------------------------------------------------------------------------------------- 

2.1. Mammalian cell factories 

Biopharmaceuticals are mainly produced using heterologous expression in recombinant cells or 

microorganisms [1]. Mammalian cell factories are successful platforms for the production of 

recombinant proteins, especially monoclonal antibodies (mAbs), where Chinese hamster ovary (CHO) 

are predominant hosts [2]. This success is not only linked to their production capacity, but also to their 

history of safety, regarding the low susceptibility to viral infections [3]. These cells hold various unique 

features, namely, their adaptation capacity to high density suspension cultures, their easy scale-up and 

also effortless compliance to serum-free medium conditions, the most preferred formulations for 

biomanufacturing nowadays [4]. Alongside, one of the main features of mammalian platforms is linked 

to their ability to perform complex human-like Post-Translational Modifications (PTMs) [5]. Among these, 

glycosylation represents one of the most important attributes [6,7] and the most common structurally 

diversified modification in secreted proteins [8]. Correct glycosylation is required to sustain optimal 

pharmacokinetic and pharmacodynamic properties of biopharmaceuticals, since it affects the efficacy 

and in vivo turnover rate of therapeutics, and prevents immune responses triggered by non-human 

glycans [9,10].  

2.2. CHO cells lines: Pioneering the production of recombinant proteins 

Within mammalian platforms, CHO cell factories dominate the production of recombinant proteins in 

today’s biopharmaceutical industry. CHO cells, as indicated by their name, were derived from the ovary 

of the Chinese hamster. They are in fact mainly of epithelial phenotype [11]. Originally, CHO cells were 

established in the late 1950s by Theodore T. Puck [12]. Since then, the family of CHO cells has 

expanded, giving rise to various new lineages such as CHO-K1, CHO-S, CHO-GS-, CHO-DG44, etc. 



CHAPTER 2 

14 

These lineages were developed to fulfill specific industrial requirements, such as suspension culture or 

specific gene deficiencies that enabled selection, and are the result of genetic modifications via 

chemical and radiation mutagenesis [13], targeted gene knockouts and adaptation to new culture 

conditions [14,15].  

Thereupon, due to their comparatively simple handling, CHO cell lines have proven to be crucial for the 

industrial manufacturing of recombinant proteins [16]. However, despite several decades of research 

and process design, the productivity remains low compared to the theoretical maximum productivity 

predicted in silico by a genome-scale metabolic model of CHO [17]. Hence, along with the increasing 

demand for biopharmaceutical products, there is a growing need to optimize CHO’s production yield 

and to fast track the development of newly optimized production cell lines, in order to satisfy the large 

demands for complex biotherapeutics nowadays. 

In view of the many different aspects of mammalian platforms, several engineering approaches have 

been developed to address, typically individually, the many challenges encountered during cell line 

development and manufacturing of highly complex biotherapeutics. Medium optimization and high-

throughput screening for good producers were previously described [18,19]. Alternative optimization 

strategies based on modular design, synthetic biology and systems metabolic engineering, hold also 

tremendous promise to study the metabolic network of the cells and further improve productivity, yield, 

product quality and to reduce the time and cost of cell line development. Nonetheless, applying such 

rational engineering tools to mammalian cells is more difficult compared to other platforms, due to the 

complexity of the system. Many important aspects need to be considered, namely, the large genome, 

sophisticated regulatory, signaling, and metabolic networks, genome instability and epigenetic 

regulation [20].  

2.3. CHO compared to other industrially relevant platforms 

From a genetic perspective, mammalian cells are considered more complex than microbial systems as 

their genome is by far larger than that of E. coli and S. cerevisiae. The assembly of the sequenced CHO-

K1 genome comprises 2.45 Gb with 24,383 predicted genes [3], while microbial cells used in the 

biotechnological industry have a smaller genome size by one to two orders of magnitude. A comparison 

of E. coli, S. cerevisiae and CHO platforms is summarized in Table 1. Even though having a larger 

genome does not necessarily relate to the cell’s morphological complexity, it can be an indication of the 

intricacy of its proteome, fluxome, transcriptome and metabolome and, in particular, of its regulatory 
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capacities. Even from the viewpoint of the proteins that are encoded in these genomes, the proteins 

constituting prokaryotic cells are considered less complex than those of eukaryotic cells. The latter idea 

was claimed by different researchers such as Zhang et al and Wang et al [21,22] stating that the 

organism’s protein structural complexity (e.g., length) can directly affect the growth performance of 

cells. It was demonstrated that, when optimizing for growth, a higher growth rate was observed for cell 

types containing smaller proteins. This is due to the cell tendency to increase its mass-normalized 

kinetic efficiencies during growth [23]. 

Table 2.1 Comparison of the three major platforms for biopharmaceuticals production. 

Characteristic E. coli S. cerevisiae CHO References 

Genome size (Mbp) 4.6 12.1 2450 [3], [24], [25] 

Cell size (µm) <1 3-5 12-24 [26–28] 

Cell volume (µm3) 0.3-3 30-100 900-7200 [27–29] 

Doubling time (h) Fast (0.5-4) Fast (1.5-6) Slow (18-48) [30–33] 

N-Linked Glycosylation No High mannose Complex [34] 

Gene length (bp) ~1000 ~1000 ~1300/18000 † [29,35] 

Promoter length (bp) ~100 ~1000 ~104-105 * [29,36] 

Number of protein coding 

genes 

~4300 ~5300-5400 ~24000 [35,37,38] 

Proteins per cell ~106 ~108 ~1010 [29,33] 

Cell culture medium 

complexity 

Low Low High [34] 

Cost of cell culture medium Low Low High [34] 

†Coding/transcript; * HeLa cell line 

In addition, cultivating mammalian cells is considered more demanding compared to microbial 

organisms, especially when focusing on their bioprocessing requirements. Due to the lack of a cell wall, 

there is significantly higher shear sensitivity and the cell culture medium must contain a higher number 

of essential nutrients compared to microbial systems. Bacteria (e.g., E. coli) and yeast (e.g., S. 

cerevisiae) can grow in a simple medium containing solely basic elements (e.g., glucose and salts) and 

usually only in specific cases a few amino acids (AA) or vitamins are added. In contrast, mammalian 

cells require a larger and more complex set of nutrients, including amino acids, organic acids, vitamins, 
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cofactors, carbohydrates and salts. This complexity of the growth medium reveals the strict nutritional 

demand of mammalian cells. 

A major difference between microbial and mammalian cells is the fact that the genome of the latter 

actually encodes many different types of cells and developmental stages, namely more than 100 

different types of tissues that are part of a mammalian body. To ensure correct expression of the 

required genes at the necessary level in each of these different tissue types, a much more complex 

regulatory network is required that includes highly sophisticated mechanisms such as epigenetics and 

chromatin remodeling that simply are not necessary for microbial cells and therefore are not present or 

are only at immature levels of development [39]. Apart from these chromatin state and epigenetic 

mechanisms, other regulatory factors are abundant in mammalian cells, such as microRNAs or long-

non-coding RNAs (lncRNAs), which are transcribed in large numbers [40,41]. 

Over the last years, scientists are moving forward to employ optimization strategies that have been 

successfully used to study simpler organisms to other less explored systems. For that, synthetic biology, 

systems biology and metabolic engineering have been employed towards this goal. The use of these 

tools is facilitated by the availability of the genetic information [42] of different organisms.  

While many of these tools are already widely applied in the field of recombinant protein production or 

strain engineering in microbial research, up to the level of design of chassis strains, its application to 

mammalian production hosts is still fragmentary and lagging far behind. 

2.4. Cell culture media and its importance in bioprocessing 

Cell culture media is a complex mixture of nutrients, energy sources and trace elements, essential for 

the growth and maintenance of the cells ex-vivo (figure 1). This concept was first described in the 

groundbreaking work of Eagle Dulbecco and Freeman, in the early fifties, stating that amino acids 

combined with other nutrients such as vitamins, are the core base of cell line cultivation, especially in 

adherent mode [43].  

Nowadays due to regulatory guidelines, using animal derived serum poses various problems from 

bioprocessing standpoint (lot-to-lot variation), safety (contamination with viruses, mycoplasma, prions, 

etc.) and also from ethical point of view [44–46]. To overcome the use of serum in bioproduction, 

hydrolysates were employed in various processes to improve growth and productivity of the cells by 

developing cell culture media containing animal free components. Both plant and yeast hydrolysates 
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were tested with mammalian cells, especially using CHO cell lines [47,48]. However, hydrolysates also 

contain undefined concentrations of components, which can impair the consistency of both upstream 

processing (USP) and also downstream processing (DSP) [49]. 

 

Figure 2.1 Mammalian cell culture media components. 

Currently, industry is trying to veer the attention towards the use of chemically defined media (CDM) 

deprived from animal components to design solid processes with consistent product titers among 

batches, together with producing potent and clinically safe biopharmaceuticals. In culture, additives 

such as Pluronic F68 is very useful for CDM, since it can reduce the shear generated by the 

hydrodynamic motion during mixing [50]. 

2.5. Highlighting CHO metabolism 

For growth, CHO cells require different nutrients (Nitrogen and carbon sources), energy carrying 

molecules (Adenosine Triphosphate ((ATP)), and other cofactors (e.g., adenine dinucleotide NAD+). 

These molecules are fundamental for sustaining the basic metabolic functions of mammalian cells [51]. 

Among the most important nutrients, glucose and glutamine represent a prime energy sources to the 

cell [52]. They are usually provided in vitro throughout the cell culture medium delivering carbon and 

nitrogen atoms to the cells in order to support its basic mechanisms such as proliferation [53].  

In cell culture media, a balance between glucose and glutamine levels is essential, not only for 

maintaining optimal cell growth but also for sustaining the glycosylation of the produced recombinant 

proteins [54]. Tight regulation between glucose and glutamine metabolism was previously discussed by 
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Zeng and Deker [55]. That being said, glycolysis, as part of the central carbon metabolism and 

glutaminolysis are the major metabolic pathways for mammalian cells [56].  

2.5.1. Glycolysis 

The central carbon metabolism in mammalian cells is a complex set of biochemical reactions, 

transforming glucose into different metabolites, generating cell’s biomass and various metabolic 

precursors, essential for various metabolic reactions [57]. This system is composed of three main 

pathways, including glycolysis, pentose phosphate pathway (PPP) and tricarboxylic acid cycle (TCA 

cycle) [52]. Glucose is the major player in the central metabolism since it is the main carbon and 

energy source in mammalian cells. Glycolysis is one of the most important pathways in the cell, where 

glucose is phosphorylated to glucose-6-phosphate and finally oxidized to 2 molecules of pyruvate, that 

are channeled into the mitochondria in order to enter the TCA cycle [58] (Figure 2). 

2.5.2. Glutaminolysis   

Glutamine represents a versatile donor and the main provider of nitrogen to the cells, together with 

several other amino acids. It is also the main substrate of the glutaminolytic pathway in mammalian 

cells (Figure 2). Glutamine degradation fuels the TCA cycle, generating cellular energy and boosting the 

biosynthetic pathways [59,60].  

 

Figure 2.2 Representation of the glycolysis and glutaminolysis in CHO metabolism. 
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Legend: GLC (Glucose); GLC6P (Glucose-6-Phosphate); FRU6P (Fructose-6-Phosphate); DHAP (Dihydroxyacetone 

phosphate); GLC3P (Glucose-3-Phosphate); 1,3BP6 (1,3 bisphosphoglycerate); 3PG (3-Phosphoglyceric acid); 2PG (2-

Phosphoglyceric acid); PEP (Phosphoenolpyruvate); PYR (Pyruvate); LAC (Lactate); AcCoA (AcetylCoA); CIT (Citrate); AKG (

α-ketoglutarate); MAL (Malate); OAA (Oxaloacetate); ASP (Aspartate); ALA (Alanine); GLN (Glutamine); GLU (Glutamate). 

 

On the one hand, glutamine degrades to glutamate via phosphate-dependent glutaminase and then to 

α-ketoglutarate via enzymatic reactions involving glutamate dehydrogenase (GDH). Following this 

metabolic path, the carbon backbone of glutamine is oxidized to CO2 and malate that will be converted 

to pyruvate molecules [61,62]. On the other hand, the conversion of glutamate to α-ketoglutarate via 

aspartate/alanine transaminase is usually activated to overcome the overproduction of ammonium by 

the cells involving either pyruvate or oxaloacetate molecules [63]. The latter mechanism is important to 

overcome the overproduction of the toxic ammonium during glutaminolysis. 

2.5.3. Amino acids and mammalian cell culture 

Amino acids are vital for mammalian cells cultivated in vitro. They are divided into two categories: 

essential and non-essential. Essential amino acids (EAAs) cannot be synthesized de novo by the cells 

and have to be provided in the cell culture media. On the other hand, non-essential amino acids 

(NEAAs) can be synthesized by the cells in order to sustain and support growth. The latter are produced 

relying on several metabolites such as TCA cycle intermediates or others generated through the 

glycolytic pathway. A list of different essential and non-essential amino acids for mammalian cell culture 

are described in Table 2 and the work published by Salazar et al., 2016 [64]. 

Table 2.2 Essential and non-essential amino acids for mammalian cells. Adapted from [64]. 

Essential amino acids Non-essential amino acids 

Arginine, histidine, isoleucine, 

leucine, lysine, methionine, 

phenylalanine, threonine 

Tryptophan and valine 

Alanine, asparagine, aspartate, 

cysteine, glutamate, glutamine, 

hydroxyproline, proline, serine 

and tyrosine 

 

The chemical and biological attributes of these metabolites are crucial for cell growth and they 

constitute the building blocks for naïve/recombinant proteins synthesis. They are precursors for 

important metabolic pathways and source of nitrogen and carbon atoms [65]. The catabolism of several 



CHAPTER 2 

20 

amino acids is performed either via transamination (e.g., glutamate) or direct deamination (e.g., serine 

and threonine) [66].  

Several studies aimed at adjusting the levels of several amino acids in the media due to their 

importance for obtaining high growth and yield of recombinant proteins simultaneously [67]. The levels 

are adjusted according to the metabolic requirements of cells [64]. A lack of specific amino acids can 

starve the cells; however, an excess of other amino acids, for instance lysine can hamper cell growth 

[68]. In fact, the consumption of amino acids during culture is directly dependent on many factors such 

as the culture environment or the cell cycle [69,70]. Furthermore, amino acids transporters play a role 

in sensing the different levels of amino acids outside of the cell. As a consequence, any change in the 

levels of amino acids in the extracellular environment is able to influence the activity of AA transporters 

within the cell [71]. 

Finally, it is important to highlight that the combination of the essential and non-essential amino acids in 

the cell culture medium is important for triggering various reactions and complexes in the cell, as for 

example the mechanistic target of rapamycin (mTOR), being mTORC1 one of the most studied 

pathways [72,73]. The latter is strongly dependent on amino acids presence, especially leucine [74]. It 

represents the penstock of cellular growth and metabolism [72]. Activating this sophisticated signaling 

network is the basis for cell proliferation, lipid synthesis, protein synthesis and also mitochondrial 

metabolism and biogenesis [75]. 

2.5.4. Metabolic flow path in CHO culture: By-products accumulation 

The metabolism of mammalian cells, especially CHO is very complex and far away from being 

optimized for bioprocessing [20,58,66]. In order to achieve healthy proliferation of the cells and 

generate high yields of biotherapeutics with correct PTMs, it is important to control the cell culture 

environmental conditions to limit the secretion of toxic by-products that can hamper cell growth and 

alter product quality attributes [76]. In the cell, metabolic pathways are interconnected, for instance, 

glucose and amino acids metabolism. Any variation regarding the consumption rate of one of these 

metabolites during culture, can influence the metabolic homeostasis and can lead to accumulation of 

unwanted products. 

As a matter of fact, the central carbon metabolism changes depending on the culture phase, cells 

metabolic need and the availability of nutrients in the cell culture media. In experimental conditions, 
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glucose and glutamine are quickly consumed by the cells [77]. During growth, CHO cells take up 

glucose at a very high rates, generating significant amounts of pyruvate. As a consequence of the 

inefficient metabolism of CHO, a drift to lactate production by the action of lactate dehydrogenase is 

usually observed, despite sufficient oxygen supply to the cells [66]. This phenomenon is the so called 

“Warburg effect” [78]. Lactate accumulation can be responsible for decreasing cellular growth rate, 

halting product formation and dramatically changing the osmolality of the culture medium when its 

concentration is above  toxicity levels [79–81]. In the stationary phase (non-growth phase), on the other 

hand, most of the carbon consumed by the cells is channeled through the PPP pathway, instead of 

glycolysis, together with an increased consumption of several key amino acids. As a result, the 

production rate of lactate from pyruvate decreases significantly and most of the produced pyruvate fuels 

the TCA cycle, jointly with a metabolic switch based on lactate consumption that might occur [82]. The 

biological mechanisms underlying the lactate switch phenomena are not yet fully understood. On the 

other hand, glutamine directly supports mitochondrial oxidative pathways [83], playing a key role in 

triggering initial growth of CHO cells [84]. When glutamine is lacking in the medium, the glycolytic 

pathway is upregulated, and the secretion rates of lactate and other key metabolites of the glycolytic 

pathways are higher comparing to the cultures supplemented with glutamine [84]. In the presence of 

glutamine in the cell culture medium, glutaminolysis (previously described) is upregulated. Thereupon, 

ammonia is secreted since it is known to be mainly the product of glutaminolysis and represents one of 

the major byproducts of amino acids metabolism. The latter can strongly hamper growth, specific 

productivity and also impact the sialyation of recombinant proteins [66,85]. Ammonia builds-up in the 

cell cytoplasm, then it diffuses throughout the cell membrane and generates an intense perturbation of 

the intracellular pH and its electrochemical gradients. Its accumulation during culture with a 

concentration close to the range of 4-6 mM is proven to be inhibitory for growth [76].  

Summarizing, high secretion of lactate and ammonium during mammalian cell cultures is undesirable 

[54,66]. When accumulated, these two metabolites are considered the main source of metabolic stress 

of mammalian cells, which comes out with a fast decrease in cell’s growth rate, leading to apoptosis 

[86]. In fact, a major part of carbon and nitrogen consumed by the cells is not completely used to 

produce neither biomass nor recombinant proteins [87]. According to previously published reports, 

between 35 % [51] and 70 % [88] of the absorbed glucose is converted to toxic by-products. These facts 

reflect the ineffective metabolism of CHO. 
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2.5.5. Accumulation of other potential toxic metabolites 

Apart from lactate and ammonia, further studies determined that accumulation of several other 

metabolites can hamper process attributes and final titers. Subsequently, a number of metabolites 

(besides glucose and glutamine), were proven to be quickly depleted in culture, for instance, asparagine 

and serine [89]. Asparagine is highly consumed by the cells and its catabolism involves several 

pathways such as alanine, aspartate and pyruvate metabolism. In these reactions, asparagine synthase 

converts asparagine to glutamate and the latter is converted to alanine via alanine aminotransferase 

(ALAAT). Additionally, alanine can be secreted to the extracellular milieu after being converted from 

pyruvate via alanine transaminase (ALT) enzyme. Previous studies highlighted that levels of alanine 

above 3 mM in culture can impair cell growth since high alanine concentrations can block proline 

uptake [90,91]. 

On the other hand, serine is directly responsible for the production of formate and glycine. 

Concentrations of formate between 4-10 mM was proven to be inhibitory for growth [66]. On the other 

hand, glycine accumulation has a positive effect on CHO culture [81], but its concentration is 

recommended to not exceed 1mM due to growth inhibitory effects [92]. Previous studies highlighted the 

interconnexion of metabolic reactions of serine and asparagine even with different metabolic functions 

[93].  

In the culture medium, the starting concentrations of nutrients has to be rigorously controlled. Higher 

amounts of some amino acids, for instance in the formulation of CHO medium, can negatively impact 

cell growth. In previous studies, it was mentioned that concentrations above 1 mM of leucine, 

methionine, phenylalanine, serine, tryptophan, tyrosine and threonine in fed batch cell cultures can 

interrupt cell growth [66]. Likewise, several by-products of amino acid metabolism (e.g., homocysteine 

and indolelactate) as well as metabolites derived from lipid metabolism were determined to be 

detrimental to CHO growth [66], [92]. Moreover, a set of amino acids derivatives can impair growth. 

Metabolites such as dimethylarginine accumulate in the cell culture medium when arginine is 

oversupplied [94]. The accumulation of dimethylarginine can promote apoptosis through stimulating the 

production of intracellular reactive oxygen species [95]. Another example is methylglyoxal which can be 

generated throughout the metabolism of various amino acids for instance serine, glycine and threonine 

[96]. Previous reports demonstrated that methylglyoxal is noxious to the cells since lactate is the end 

product of its metabolism. Following, nucleotide metabolism also play a role in inducing cells apoptosis. 

The metabolism of some nucleotides such as adenosine monophosphate (AMP) can alter growth and 
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induce apoptosis, when its concentration is above 2 mM in the cell culture medium [97]. In 

bioprocesses, overconsuming amino acids by the cells is economically and biologically unfavorable. 

Depending on the cell line in use, it is important to adjust the levels of amino acids in the culture 

medium in order to avoid the negative outcomes of their accumulation in culture and to boost cell 

growth and improve the final process yield. Therefore, the importance of using CDM for production 

emerges, since the latter can open various windows for media optimization and process improvement. 

For that, it is necessary to employ additional tools for depicting the metabolic features of CHO, and to 

engineer it for a better performance. 

2.6. Engineering CHO Bioprocess for a better performance 

2.6.1. Reducing by-products accumulation 

Along the years, several strategies have been used to control the levels of toxic metabolites during 

culture. However, until now, it has not been fully understood how to regulate lactate 

consumption/secretion and what are the cellular pathways that directly modulate this phenomenon. In 

this regard, expressing anti-apoptotic genes was used not only to extend the viability of CHO cells but 

also to manipulate the central carbon metabolism to efficiently guide pyruvate to mitochondrial 

oxidation instead of lactate production [98,99]. In addition, downregulating the expression of genes 

controlling the activity of important kinases (e.g. lactate dehydrogenase) was previously studied using 

different methodologies, for instance, using small interfering RNAs (siRNAs) vectors that showed a 

promise in reducing the levels of lactate in the culture without influencing the process productivity 

[100–103].  

Alongside, efforts have been done to control ammonium secretion during the process. Several studies 

showed that CHO cells can grow independently from glutamine presence [15,104]. Since glutamine is 

considered as the main source of cellular glutamate, its lack in the cell culture medium could influence 

cell behavior towards growth. Indeed, the metabolic profiles of glutamine-supplemented and deprived 

cells were previously studied [33]. At first, glutamine depletion in culture alter the synthesis of important 

metabolites, for instance, glutathione (GSH) [105]. GSH is composed of cysteine, glutamate and 

glycine, and plays a very important role in protecting the cells from oxidative stress [106]. Furthermore, 

previous studies showed that glucose uptake rate, lactate production rate and also the amount of 

lactate produced per glucose consumed were not varied in case of limited glutamine levels in cell 

culture medium [15]. Hence, one of the most important features of CHO cultured in glutamine-free 
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medium, is the increase in the integral viable cell density (IVCD). The latter is considered as one of the 

main important aspect of product yield [15]. 

The degradation rate of glutamine in culture is high, outside of cooling conditions, compared to other 

amino acids, which explains its low stability in the medium. From a bioprocessing standpoint, removing 

or replacing glutamine by other nutrients in the medium is a rational optimization strategy. More stable 

metabolites were used to replace glutamine in culture. Di-peptides, for instance, l-alanyl-l-glutamine 

(AlaGln) were previously used [107]. These metabolites are more stable compared to glutamine, since 

their degradation rate is lower. In this case, glutamine availability in culture is entirely dependent on 

peptidases activity [63]. In addition, TCA cycle intermediates (e.g., α-ketoglutarate (AKG)) were also 

used to replace glutamine [108]. Cells cultured with AKG in the culture medium generated a decrease 

in growth rate and also a decrease in ammonium levels, but on the other hand, improved titers and 

specific productivity of the cells [67,86,108].  

2.6.2. Increasing productivity and improving process performance 

It is already known that CHO cells are auxotrophic for several amino acids and therefore need to take 

them up from the medium to support growth and recombinant protein production. However, the uptake 

of these amino acids is quite low, despite the fact that their amount in the medium is high [33], which 

might be due to insufficient capacity of the transporters. Increasing the transport capacity of essential 

amino acids or inserting the complete pathways for their synthesis might be favorable for cell growth 

and protein production. Geoghegan et al identified amino acid transporters that are likely upregulated in 

producer cell lines and suggested that overexpression of one or more amino acid transporters might 

improve growth and productivity of the cells [109]. 

Besides, several studies demonstrated that overexpressing anti-apoptotic genes may improve the 

productivity of the cells through extending their lifespan [110,111]. It also results in a lower release of 

proteins from lysed cells, which were shown to make up a considerable amount of the total protein in 

culture supernatants [112,113]. Here, Fukuda et al recently described a novel approach based on the 

development of anxa2- and ctsd-knockout CHO cell lines aiming at minimizing the release of host cell 

proteins (HCPs) into culture supernatants during production of biotherapeutics [114]. Subsequently, Kol 

et al described a novel model-based approach to predict the effect of decreasing the secretion of HCPs 

on CHO and its impact on the cell productivity. These predictions helped directing the design of “clean” 

cells by knocking-out 14 genes (using multiplex CRISPR-Cas9) that were proven to be responsible for 
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the production of HCPs [115]. The main outcomes of this study were the improvement of recombinant 

proteins production, in part due to the release of resources, and the reduction of impurities at the end 

of the culture. More targeted approaches were directed against specific HCPs that are known to pose 

problems in downstream processing [116]. An excellent summary of the different engineering 

approaches that have been applied to CHO so far is provided by Fischer et al [117].  

In order to tackle different challenges of biopharmaceuticals production, omics technologies emerged 

as important tools for process optimization. From an omics standpoint, studies were mainly focusing on 

identifying limiting pathways and genes. together with determining strategies to engineer them either by 

overexpression or knock-out [118,119]. Most of these addressed the endoplasmic reticulum and the 

unfolded protein response, as cells producing high amounts of a “foreign” protein tend to have 

problems in processing and assembling such large cargos. Here, approaches to either overexpress 

specific helper proteins such as protein disulfide isomerase or to upregulate the entire ER were 

reported, as shown for example in [120–122].  

The success of many of these studies was hampered by the fact that the differential regulation of a 

single gene is not likely to completely change the behavior or phenotype of a cell line [123]. Very little 

overlap in specific genes was observed in all of these studies, although frequently similar pathways 

were identified [124,125]. This led to the search for global engineering approaches where multiple 

genes and entire pathways could be controlled in a single step. One option that was extensively 

investigated, was the engineering of microRNAs (miRNAs), which globally regulate post-transcriptional 

processing of messenger RNAs (mRNAs) and protein translation. With the annotation of miRNAs [126–

128], their potential towards enhancing protein productivity by influencing various cellular pathways 

(e.g., cell cycle, apoptosis, metabolism, protein expression, etc.) was taken advantage of [129–133]. 

2.6.3. Maintaining the balance between growth and productivity 

Growth-coupled production is a common design principle employed for the generation of several 

compounds using microbial cell factories. However, this approach is limited to simple metabolites 

which can be stoichiometrically coupled to growth, and cannot be applied to protein production, since it 

is competitive to growth. Hence, a contrasting solution is usually applied for the production of 

recombinant proteins in CHO cells, where growth and production phases are separated [134]. The 

switch from high-proliferation to high-production is commonly triggered by a reduction in cultivation 

temperature [135–137] or by treating the cells with certain chemicals, such as sodium butyrate, which 
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promotes gene expression and growth suppression [138]. In addition, cell cycle arrest in the G1 phase 

was achieved by controlling the activity of cyclin-dependent kinase inhibitors (cdkis) and resulted in an 

increase in the specific productivity of the cells [139,140]. 

Various approaches have already been employed to control the proliferation of cells during cultivation. 

So far, mathematical modeling, although of great promise, has not been fully exploited to simulate 

bioprocesses and design better control of the switch from cell proliferation to increased heterologous 

protein production. One of the few examples is a study by Klamt et al, who computationally compared 

the volumetric productivities of two-stage fermentation strategies against the conventional one-stage 

production system [141]. 

2.6.4. Ensuring product quality 

An additional area of focus, apart from improving growth and final titers, is controlling the PTMs, 

especially glycosylation. Not only focusing on improving productivity is essential, but also producing high 

quality complex biopharmaceuticals is a must.  

While all mammalian cells are natively able to generate proteins with desired glycosylation patterns, 

there are some variants which may give rise to immunogenic reactions. This has been observed, for 

instance, in therapeutics produced in cell lines of mouse origin [142]. Indeed, glycosylation patterns are 

often heterogeneous and they are heavily influenced by the culture status [2,143]. It has been 

described that glycosylation patterns within CHO platforms can be modulated by varying the culture 

conditions (e.g., culture medium supplements) [144]. Identifying the role of the individual glycosylation 

enzymes as well as the limiting steps of glycosylation would help to engineer CHO cells to consistently 

produce completely glycosylated proteins with desired glycosylation patterns. In particular, for 

monoclonal antibodies, the specific glycan structure plays an important role in the immunoactivity of the 

product [145] which led to the development of production cell lines that lack, for instance, 

fucosyltransferase FUT8, or that overexpress enzymes to generate more complex glycan structures 

[146,147]. Coats et al showed that with increased productivity, the quality of N-glycosylation of EpoFc 

decreases [148]. The next step would be to identify the rate limiting step(s) and overexpress the 

necessary glycosylation enzymes or pathways for precursor synthesis. Fisher et al described several 

approaches for modulating post-translational modifications of recombinant proteins by genome editing 

in CHO [117]. 
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Steps towards developing custom and consistent glycosylation profiles have already been taken. For 

example, a panel of cell lines expressing custom glycosylation patterns was created with the use of 

CRISPR/Cas9 technology [149]. In another study, the level of galactosylation was manipulated based 

on predictions from a kinetic model, leading to a reduction in glycan heterogeneity [150]. While for 

monoclonal antibodies, with their relatively simple glycosylation pattern, work on detailed control has 

already been initiated, the field is still open for more complex proteins bearing multiple glycosylation 

structures with high prevalence of tetra-antennary structure and the need for full terminal sialylation 

[151].  

2.7. Systems biology for studying and improving CHO 

The need for developing new methodologies for process optimization drove scientists to combine novel 

omics technologies with bioinformatics to understand biological systems [152]. Due to the high 

complexity of cells, mainly mammalian cells, it is mandatory to focus on developing robust models that, 

combined with omics data, can mathematically describe the metabolism of the cell, allowing the 

prediction of the effect of different culture conditions, as well as the determination of optimization 

strategies, which are particularly relevant for industrially valuable platforms such as microbial and 

mammalian cell factories. 

Systems biology and metabolic engineering represent some of the most promising tools for process 

improvement. These technologies target the amelioration of cellular phenotypes via the manipulation of 

their biochemical pathways, for instance, through metabolic flux optimization. Optimization goals 

include increasing cell specific productivity by maintaining the balance between the competing interests 

of growth and productivity, generating an efficient and targeted metabolism to enhance product quality, 

and decreasing the level of process by-products [153]. Subsequently, following the success of using 

metabolic modeling strategies in microbial cells, it is promising to apply these tools to metabolically 

optimize mammalian cells [154]. Designing rational engineering approaches to enhance CHO-based 

bioprocesses via modulating cell metabolism is a promising strategy [17].  

2.7.1. Omics picture of CHO 

The CHO-K1 genome sequence, published in 2011 [3], was an important stepping stone towards the 

application of systems biology methods to CHO. However, in contrast to microbial systems, the genome 

of CHO cells often contains various chromosomal abnormalities caused by its genetic instability 
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[155,156]. Thus, cells belonging to the same lineage within a CHO family can have distinct genetic 

information and phenotypes. Differences in phenotype can even be observed among cells that normally 

belong to the same lineage but were grown in different laboratories and under various culture 

conditions. This can in part be explained by the structural variations in the genome and the 

accumulated genetic changes such as single nucleotide polymorphisms (SNPs), transgene copy 

number variations and chromosomal rearrangements [157–160]. Vcelar et al showed that 

chromosomal rearrangements within the genome of a population are observed during subcloning, 

adaptation of the cells to a new medium or simply during long-term cultivation [161,162]. On top of 

this, variations in phenotypes that cannot be explained by genomic diversity and variation alone, are 

frequently observed, even in subclones of subclones [163]. These facts suggested that the genetic 

information of the CHO-K1 cells sequenced in 2011 [3] are not representative of all CHO cell lines and 

subclones, so a reliable and stable reference genome was needed. This was addressed by the 

generation of a common reference genome of the Chinese hamster Cricetulus griseus [5,164], which 

was further improved by a more complete genome assembly in 2018 [35]. These, along with the 

genomes of other cell lines sequenced in the meantime [5,159,160] serve as basic datasets for in silico 

studies of CHO via integrative analyses of omics data relying, for example, on the use of genome scale 

metabolic models (GSMMs) which can support genetic and metabolic engineering studies. 

2.7.2. Genome scale metabolic models 

Genome scale metabolic models (GSMMs) are novel tools for systems biology that carry information 

regarding different genes, proteins, and reactions (GPR) being an integral representation of the cellular 

metabolism. The availability of full genomic sequences, as well as omics data of various organisms 

enabled researchers to reconstruct cellular metabolism in silico, linking different level of information to 

calculate metabolic fluxes [165]. Indeed, GSMMs are powerful tools in systems biology and can help 

predicting the changes in metabolic behavior of the studied organisms, not only in response to changes 

in environmental constraints (e.g., medium formulation) but also to genetic manipulation of the cells 

(e.g., gene knockouts) [166–168]. These strategies allow to mechanistically link organism’s genetic 

information and phenotype [92, 93] and can be very useful for rational identification of engineering 

targets [167,171]. 

GSMMs are emerging as a common practice in metabolic engineering. Therefore, several reports are 

available nowadays describing, in a detailed manner, the protocol for reconstructing GSMMs 
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[165,172,173]. This process relies heavily on the information regarding genes, metabolites and 

enzymes activity of the specific organism being investigated. In fact, following the development of the 

genome scale model for H. influenzae [174], various genome scale reconstructions were made 

available to the scientific community [175]. Due to the importance of CHO cells in the biopharma 

industry, scientists joined efforts to develop a CHO genome scale metabolic model [17]. Therefore, 

researchers are veering the attention towards implementing computational models for cell culture 

improvement, but still few successful studies were focused on employing CHO GSMM to improve 

growth and productivity of the cells [176,177]. The universal metabolic model iCHO1766 was built 

jointly with various research groups and comprises the most complete representation of CHO so far. 

The metabolic network was reconstructed and associated with over 1700 genes, 2300 metabolites and 

over 6000 reactions in the Cricetulus griseus genome. The model was built based on the information 

described in the global human metabolic network (Recon 1) [178], knowledge from the updated version 

Recon 2 [179] and a curated version of the Recon 2 model [180]. Combining these reconstructions, 

Cricetulus griseus homologs were determined. Further details are described in Hefzi et al, 2016 [17]. 

Accordingly, CHO model represents a powerful tool for untangling the complexity of CHO, investigating 

bioprocess capabilities and improving cell line development strategies [17], which can be further 

improved by integrating additional biochemical information to understand cellular processes beyond 

metabolism [181].  

Recently, several efforts were performed to curate GSMMs and to improve its prediction accuracy via 

modifying it [177]. These efforts generated, for instance, the updated models iCHO2101 [182] and 

iCHO2291 [183]. Clearly, refining our knowledge about the metabolism of CHO cells allows scientists to 

continue optimizing the available genome scale metabolic models by complementing genetic and 

metabolic information of CHO [177].  

Prediction tools based on metabolic modeling have only recently started to be applied to the design of 

engineering strategies in mammalian cells, mainly CHO cells (Table 2). One of the first examples where 

the GSMM of CHO was applied to an industrial process, is the work performed by Calmels et al, where 

the genome-scale metabolic model [17] was curated and tailored to a CHO-DG44 producer cell line. 

They performed corrections, such as modifying 601 reactions (for example silencing of 537 amino 

acids transporters), which led to an improvement of the growth rate and exometabolome predictions in 

silico [177]. 
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In addition, the secretory pathway was integrated into the GSMM of CHO by Gutierrez et al, to enable 

predictions of energetic and machinery demands of secreted proteins [184], which might lead to better 

predictions of engineering targets that aim at improving protein production, as shown for example in the 

work of Kol et al [115]. On the other hand, many studies based on mapping the intracellular fluxes 

throughout metabolomics studies can improve cell culture parameters [185]. 

New perspectives aiming at overcoming the redundancy of the large scale metabolic models and 

decreasing the computational time are moving towards the reconstruction of minimal metabolic 

networks that contain the most essential genetic and metabolic information needed for predictions 

[186].  

Table 2.3 Recent studies focusing on the use of GSMMs for CHO bioprocess optimization in the last 4 years. 

Publication Aim of the study Reference 

Calmels et al., 2018 Curation of genome scale metabolic model to construct 

CHO-DG44 specific model. 

[177] 

Szeliova et al., 2020 Determination of CHO biomass variations among different 

strains 

[33] 

Szeliova et al., 2020 (2) Experimental measurement errors and its impact on in 

silico-based predictions 

[154] 

Huang et al., 2020 Improvement of cell’s productivity relying on the use of CHO 

GSMM. 

[187] 

Gutierrez et al., 2020 Generation of CHO species-specific secretory pathway 

reconstructions. 

[184] 

Schinn et al., 2021 Prediction of amino acid concentrations in cultures and 

predict nutrient feeding strategy. 

[188] 

Pérez‐Fernández et al., 2021 Media optimization for continuous CHO-K1 cultures. [189] 

Szeliova et al., 2021 Inclusion of maintenance energy improves the intracellular 

flux predictions of CHO 

[190] 

 

As a matter of fact, due to the size and complexity of the metabolic models, mainly mammalian cells 

models, computational support is necessary in order to predict optimal intervention strategies from the 

combinatorial universe of possible modifications. Computational strain design methods, many of which 

are based on constraint-based analysis of cellular metabolism [168,191–193] are available towards this 

end [194] and are continuously being refined. Combined with bioinformatics, GSMMs are very effective 
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in studying metabolic responses of different stimuli and in determining the metabolic bottlenecks of the 

cells. In fact, mathematical modeling strategies emerged as a very promising advancement to analyze 

different biochemical complex networks reflecting a complete picture that draws the different reactions 

in the studied organism and the specific genes that encode for them [192].  

The mathematical representation of these metabolic reactions considering steady state forms a system 

of linear equations [192]. Tools such as flux balance analysis (FBA), play an important role in solving 

these equations and help in quantifying the level of contribution of different reactions to a specific target 

phenotype in response to environmental and genetic changes [195]. 

2.7.3. Flux Balance Analysis 

Flux Balance Analysis (FBA) is a widely used mathematical tool to study metabolic networks and to 

predict phenotypes [196] which can be easily applied to genome-scale metabolic networks. FBA helps 

understanding the metabolic distribution inside of a complex network, relying on the use of linear 

optimization, assuming steady state conditions. FBA targets the maximization of a specific objective 

function, usually defined as biomass formation [197]. One of the advantages of FBA is to calculate 

different metabolic flux distributions when varying environmental constraints (e.g., medium 

formulations) or when performing gene knockouts. 

Prediction assuming steady state means to consider that the sum of the rates of formation of all internal 

metabolites is equal to the sum of their production rates. In general, the modeling approach consists of 

deducing a stochiometric matrix (S). Within this matrix, the rows and columns represent respectively, 

the metabolites and the reactions. Assuming the steady state conditions is explained by (S.v = 0), where 

(v) represents the flux vector indicating the specific rates for each reaction, and where every mass 

balance in the system is represented by a linear equation. This computational approach is considered 

very useful in systems biology and its prediction accuracy can increase when feeding these models with 

experimental omics data, for example by means of specifying the flux boundaries. The upper and lower 

limits of fluxes can be used for every reaction inside of the model where (vlower ≤ v ≤ vupper). From a 

bioprocessing standpoint, this mathematical tool can be employed for studying metabolic pathways in 

the cell targeting either maximizing growth or maximizing product formation in industrial cell lines 

[192]. Inserting experimental data and calculating fluxes taking into consideration the thermodynamic 

capability of some pathways can improve the prediction accuracy. In addition, other factors such as 

experimental data quality can imperatively influence the prediction results since the analytical error can 
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propagate through FBA. Therefore, it is important to establish solid experimental protocols to overcome 

possible prediction inaccuracies [154]. 

Another mathematical tool is parsimonious flux balance analysis (pFBA). The latter is a variant of FBA, 

and assumes the usage of the minimal amount of metabolic fluxes within a metabolic network in order 

to sustain an objective (e.g., maximal growth), always taking into consideration steady state assumption 

[177,186,198]. The latter is considered as an improved version of standard FBA, since in 2 prediction 

steps, this optimization method predicts the most adequate pathways reflecting, in a different 

mathematical representation, the idea of “maximum biomass per number of fluxes” described by 

Schuetz et al [198,199]. In a nutshell, this tool minimizes the total sum of fluxes in the network by 

removing futile loops [198].  

2.7.4. Defining the objective function: The biomass function 

The biomass function is a very important parameter for in silico-based predictions using genome scale 

metabolic models. When maximizing for growth, the biomass function is usually described as the 

objective function [197]. In this case, it describes the rate at which the different metabolic components 

are converted to biomass elements. 

The biomass function can be formulated at different levels of detail. Typically, it contains information 

regarding different components in the cell such as proteins, RNA, DNA and lipids. It can be further 

detailed by adding different layers of information (e.g., cofactors, vitamins and elements) [200].  

The biomass equation is described as following, where 𝐶𝑖  represents the coefficient of each biomass 

component 𝑋𝑖 : 

∑ 𝐶𝑖𝑋𝑖 

𝑛

𝑖=1

→ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 

As previously described, different strains/cell lines hold different genetic and metabolic features. It is 

ideal to build a specific biomass function for each cell type. In silico metabolic phenotypes can vary also 

according to the biomass objective function used for each cell line [201,202]. Subsequently, it is often 

important to build strain and condition specific biomass functions, given that they can improve the 

model capabilities to predict metabolic fluxes [33,203]. 
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As an example, it was previously discussed that yeast biomass composition can vary depending on the 

physiological conditions were it is grown [204]. A similar study concluded the same results for CHO 

cells [33]. Besides, it was also described that an accurate estimation of cell biomass composition is 

needed for robust predictions using GSMMs, not only when using microbial models but also for 

mammalian metabolic models (CHO) [33].  

In iCHO1766 [17], two different biomass functions were included in the model. The first biomass 

equation (R_biomass_cho) is employed in order to predict growth of naïve or (non-recombinant) CHO 

cells, whereas the second biomass function (R_biomass_cho_producing) is used to predict the growth 

for recombinant CHO cells targeting the production of monoclonal antibodies. These two different 

biomass equations were built due to the differences between calculated gross cell composition in non-

recombinant CHO cell lines and measured values for IgG-producing hybridoma lines (e.g., the amount 

of protein fraction constitute more than 70 % of cell dry weight in a producing cell, while it was 

calculated to be 55% in a non-producing cell). Using a specific biomass function for each cell type can 

significantly improve prediction accuracy. It also facilitates understanding of the metabolic features of 

these cell types in different environmental conditions, for instance, media formulations. 

In a nutshell, strategies based on in silico predictions using cell line specific genome scale models can 

play a role in decreasing the experimental workload as well as in avoiding needless laboratory costs by 

defining the most important parameters in silico without recurring to test all conditions experimentally 

[205]. Henceforth, in silico approaches hold a tremendous promise in improving bioprocesses relying 

on the study of cell culture attributes (e.g., cell growth and exchange rates of metabolites) towards 

improving both final product titer and quality attributes throughout predicting its post-translational 

modification patterns [206]. 
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3. CHAPTER 3  

In silico-based approaches for CHO cell culture media optimization 

 

The information presented in this chapter is being prepared for submission to a peer reviewed 

journal: 

Hamdi A., Santos S., Zanghellini, J., Rocha I.; In silico-based approach for medium optimization of 

CHO cells. 

---------------------------------------------------------------------------------------------- 

3.1. Introduction 

In a cell, nutrients are consumed and channeled through different pathways within its metabolic 

network. The latter is composed of a myriad of biochemical reactions and metabolic pathways that are 

catalyzed by several enzymes under the control of specific genes. This complex network is an organized 

combination of integrated functions of various genetic circuits controlling the machinery of various 

macromolecules in the cell. The latter represents a primary factor in studying the relationship between 

genotype and phenotype [1,2]. Improving our knowledge regarding the genotype-phenotype link will 

allow us to understand how to design a specific phenotype of interest. The different genetic 

mechanisms in the cell are far away from being simple and multiple genes can be responsible for 

generating one single protein that can have different functions within the metabolic network [3]. To 

better study and understand metabolic networks, it is essential to rely on using genome scale metabolic 

models (GSMMs) together with computational tools to facilitate strain and media optimization. 

Therefore, the availability of a full reconstruction of cellular metabolism in silico through genome-scale 

metabolic models is essential for the rational identification of metabolic engineering targets [4,5]. 

In bioprocessing, various modeling strategies emerged to support optimization of various production 

platforms. Among these modeling strategies, mechanistic dynamic and constraint-based modeling 

approaches have been described in literature [6].  Mechanistic modeling approaches rely on the use of 

mathematical equations. However, it is still difficult to employ these tools for studying complex 

organisms, such as mammalian systems, mostly due to the lack of resources, especially at academia, 

generating a lack of kinetic data. As an alternative, constraint-based modeling approaches such as FBA, 
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rely only on stoichiometric information, making it a very useful tool to study metabolic networks at 

different levels of complexity [8].  

Metabolic optimization pipeline using constraint-based modeling approaches is mainly based on 

rewiring cell’s tightly regulated metabolism to fulfill an objective, for instance, improving growth, the 

production of a compound/recombinant proteins of interest, improve its quality attributes of a specific 

recombinant protein or decrease process related by-products. FBA boosts the efforts to computationally 

understand metabolic networks and to optimize cellular capabilities through studying the changes in 

metabolic fluxes when manipulating different factors, for instance, the environmental constraints. 

Besides, flux variability analysis (FVA) is a tool that emerged to assess the robustness of genome scale 

metabolic models, under various conditions. Using a set of constraints in a metabolic network, FVA 

comes to evaluate the minimal and the maximal rate of specific fluxes based on single or a double 

linear programming (LP) problems (e.g., a maximization and a following minimization for specific 

reactions of interest) [9]. Several advantages are behind the use of FVA in constraint-based modelling, 

include finding alternative optima in a metabolic network, studying suboptimal growth conditions, 

understanding its metabolic flux distribution and evaluating the metabolic network robustness [10–12]. 

In the case of CHO cells, using FVA can be very useful to study the system behavior when maximizing 

for both, cell growth and recombinant protein production.  

Recently, various tools were used to engineer mammalian cells, mainly CHO, aiming at increasing their 

production performance. The universal GSMM of CHO cells, iCHO1766 [13], has been used to predict 

strategies for improving mAbs production in producer CHO cells, for instance, through media 

optimization. This tool is very useful to study, in silico, how the metabolism changes when changing the 

growth conditions [5,14]. Several computation tools and constraint-based methodologies have been 

developed to design novel cell factories and to improve existing strains [15]. In table 1, we can observe 

different computational frameworks that were developed for metabolic engineering, most of them were 

used for the study of various microbial cell factories. Several tools can be applied for the optimization of 

various strains, including CHO cells and can be useful for the cell line development stage of the 

process. Among the frameworks described in table 1, Optflux was used in this study to optimize CHO 

cell platforms. The latter is an open-source software that allows, in a user-friendly manner, to perform in 

silico metabolic engineering tasks [16]. 
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Table 3.1 Computational frameworks used for metabolic engineering. 

Tool Year Prediction Application (Strains) References 

OptKnock 2003 Possible knockouts that can improve production yield. E. coli, G. sulfurreducens, [17–19] 

  Maximize the target compound production using Bi-Level linear programming S. cerevisiae  

OptStrain 2004 Reaction addition/deletion E. coli, C. acetobutylicum, [20] 

  Possible knockouts. Possible insertions M. extorquens  

OptReg 2005 Up and downregulation of reactions for strain design E. coli [21] 

OptGene 2008 Optimization of non-linear objective functions S. cerevisiae [22] 

  Faster predictions compared to OptKnock   

RobustKnock 2009 Triple level optimization pipeline E. coli [18,19]  

  The framework targets the maximization of minimal target fluxes   

  of industrial targets based on FBA and FVA   

  Production of chemicals of interest is an obligatory by-product of   

  growth rate maximization   

GDLS 2009 Employs MILP search approach E. coli [23] 

  Finding direct gene-deletion targets   

  Low-complexity search of the space of genetic manipulations ignoring Gene-Protein-Reaction relationships   

Optflux 2010 Bi-level Optimization (OptGene/OptKnock) E. coli, yeast, [16] 

  Multiobjective Optimization mammalian cells  

OptORF 2010 Depict metabolic engineering strategies based on gene deletion/overexpression E. coli [24] 

SimOptstrain 2011 Concurrent gene insertions and knockouts E. coli [25] 

  Non-native reaction addition.   

  Bi-level strain design   

BiMoMa 2011 Knockout predictions based on mixed-integer programming solution techniques E. coli [25] 

  GPR association   

ReacKnock 2013 Predictions using Bi-Level FBA E. coli [26] 

  Improved computation time compared to OptKnock   
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MOMAKnock 2013 Relies on MOMA assumption to restrict constraints to steady-state fluxes E. coli core model [27] 

  Identification of robust knockout strategies   

OptGeneKnoc

k 

2015 Incorporates logic transformation of model (LTM) with a bilevel mixed integer linear programming (MILP)-based 

knockout method 

E. coli [28] 

  Designing fast genetic intervention strategies   

APCG 2016 Analysis of production and growth coupling E. coli [29] 

  Identification of gene targets for improving production of the desired metabolite   

IdealKnock 2016 Predict knockout strategies for overproduction of compounds of interest Y. lipolytica [30] 

SelFI 2017 Identification of selection pathways for directed enzyme evolution   

OptPipe 2017 Knockout prediction procedures and rank the suggested mutants according to the expected growth rate, 

production and a new adaptability measure 

C. glutamicum [31] 

gcOPT 2018 Prediction of possible strong growth-coupling combinations and intervention strategies E. coli [18] 

OptCouple 2019 Determination of knockouts, insertions and also medium supplements E. coli [32] 

OptRAM 2019 Overexpression, knockdown or knockout of both metabolic genes and transcription factors Saccharomyces cerevisiae [33] 

egKnock 2019 Find gene deletion targets for maximization of minimum target flux of industrial objective in flux variability analysis E. coli [34] 

  This tool takes gene-protein-reaction relationships into consideration   
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3.2. Methodology 

The universal CHO GSMM, iCHO1766, published by Hefzi et al, 2016 [35] was used in this work. The 

optimization pipeline is divided into two main parts. The first part is based on developing a new 

approach aiming at determining the minimal medium formulation using an in-house built evolutionary 

algorithm (optiModels), while the second part of the in silico work is aiming at evaluating cell culture 

parameters based on using the results obtained in the first part of the study. For that, evaluating the 

metabolic changes when varying the medium formulation (based on optiModels predictions and 

literature studies) were also explored, focusing on determining growth rate values together with the 

different exchange rates of metabolites in the network under various constrains. The optimal results of 

this study will be used for experimental validation. 

3.2.1. Prediction of the minimal number of exchange reactions using optiModels 

Aiming at determining an optimal minimal medium formulation for CHO to support growth, a novel 

evolutionary algorithms tool was used aiming at predicting a combination of the most essential 

transport reactions within CHO model, to sustain optimal growth values. Identifying this set of optimal 

candidate reactions will allow us to refine the medium formulation for CHO.  

In fact, optiModels is a framework fully implemented in Python language that enables analysis, 

simulation and optimization of stoichiometric, dynamic and Gecko models [36] (integrated models of 

metabolism, protein synthesis, and protein secretion), used for single and multi-organism cultures. 

OptiModels use the theory of natural evolution that aims at finding the best set of solutions to specific 

biological questions. Two different biomass functions (R_biomass_cho) and 

(R_biomass_cho_producing) were used in this study. The prediction pipeline starts with a population 

containing a set of different candidates. Each candidate is represented by a number of integers which 

represents a randomly selected exchange reactions in the model. Following, mutation/crossover studies 

are performed where a number of exchange reactions are added, removed or replaced by other more 

suitable ones. Additionally, the crossover studies are based on merging two parent candidates to 

generate two other solutions by combining specific characteristics from the parent candidates. Upon 

generating these solutions, the model predicts the value of the objective function for each candidate 

using pFBA and the method assigns a fitness score that represents the value for which each candidate 

is scored. The latter generates a fitness value that can vary between 0 and 1, where the higher fitness 
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values correspond to candidates with a smaller size. The maximum candidate size is the maximum 

number of uptake reactions allowed by user. By default, this value is the number of exchange reactions 

present in the given model. Therefore, the fitness function is provided by: 

fitness =
size(candidate)

maximum of candidate size
 

This prediction workflow is continuously repeated evaluating different candidates and the results are 

obtained after several iterations. Additional details about the prediction protocol (pipeline) using 

optiModels and the different packages/tools used for the simulations are described in the annexes of 

this chapter. Following several optimization cycles, optiModels generated a combination (a minimal 

number) of the most important reactions that hold a promise in sustaining (high) growth of the cells. 

The resulted rates of key metabolites (substrates) were applied in the following medium optimization 

step. 

The exchange rates of metabolites used for the optimization were described in Hefzi et al, 2016, and 

are referred along the thesis as the “original model constraints”. Besides, the FBA objective is set 

towards growth optimization. A minimum value of 10% of the maximum value of biomass growth was 

appointed as the first simulation constraint. Furthermore, glucose was set as the unique carbon source 

for the cells. The predictions were performed using pFBA, minimizing the number of open exchange 

reactions. The optimal results holding the highest scores ranging from 0.71, were further 

investigated. 

3.2.2. Medium optimization 

3.2.2.1. Medium optimization pipeline 

To consolidate the optiModels results, further screening based on literature studies was performed, 

excluding the reactions (or metabolites) that, although originated as a result from the evolutionary 

algorithm, have unclear biological significance. For mapping the metabolic landscape of the cells when 

using the optimized medium formulation, pFBA was performed to predict the growth rate values in each 

tested condition using Optflux.  

In figure 3.1, we can observe a scheme representing the medium optimization pipeline, where the 

prediction results obtained with optiModels, combined with data based on literature, were used to 

predict the best candidates that can play a role in boosting cell growth and decrease the process related 
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by-products. In these predictions, the constraints of key metabolites were based on data in Hefzi et al, 

2016 [35] combined with potential candidates predicted by optiModels. In addition, two different 

biomass equations were employed, and various environmental conditions were tested. The latter are 

expressed in mmol gDW-1 hr-1 and refer to the exchange rates values in steady state.  

  

Figure 3.1 Medium Optimization: Prediction workflow. GSMM (Genome scale metabolic model), pFBA 

(Parsimonious flux balance analysis). 

 

Multiple optimizations were performed and the values of growth rate and by-products (ammonium) were 

compared to the results with original constraints of the model which was constructed based on different 

simulations and omics data described in previous published reports [35,37,38]. This optimization 

pipeline can be very helpful to screen the effect of balancing the levels of different compounds in the 

growth medium, through pFBA.  

Based on the literature, the amino acids uptake levels were optimized to maximize cell growth and 

particularly to overcome the secretion of process by-products such as ammonium. To better 

compare/understand the results, the values of both growth rate and growth yield were calculated in 

order to assess/compare the prediction results. Growth yield values were calculated according to the 

following equation where 𝜇 represents the predicted specific growth rate and 𝑞𝐺𝑙𝑐 is the predicted 

specific consumption rate of glucose. 
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𝐺𝑟𝑜𝑤𝑡ℎ 𝑦𝑖𝑒𝑙𝑑 =
𝜇

𝑞𝐺𝑙𝑐
 

3.2.2.2. Maximizing growth and recombinant protein production using FVA 

In order to predict the maximum antibody production capacity using the original model constraints 

(Hefzi et al., 2016) and the in-house optimized constraints, flux variability analysis (FVA) was used. The 

latter tool was used to calculate the maximum possible value of a selected flux, in our case, the specific 

reaction for the production of IgG described in the model as (DM_igg[g]), for a range of fixed values of 

the biomass reaction.   

3.3. Optimization results and discussion 

3.3.1. Optimization of minimal medium using optiModels 

The optimal set of reactions that are capable to sustain CHO growth were determined. Several 

combinations of reactions were determined with a fitness score restrained between 0.7 to 1, as 

described in materials and methods. 

Within the solutions obtained using optiModels, we determined the 30 most frequent reactions that 

resulted from the predictions, relying on both biomass reactions, for producing and non-producing CHO 

cells. The comparison is highlighted in figure 3.2. In this representation, we observe the percentage of 

frequency versus the corresponding exchange reaction, where “R_EX” means Exchange reaction and at 

the end of the naming of the exchange reaction, “_e” means extracellular.  

Several exchange reactions of amino acids such as tryptophane, valine and isoleucine were part of the 

prediction solutions. Exploring these results deeper, we noticed that the solutions with the optimal 

fitness scores also included many reactions involving the catabolism of several complex structures of 

molecules, mainly vitamins, oligopeptides and polypeptides. Among these solutions, kinetensin 1-8, 

corresponding to the exchange reaction (R_CE5789_e) appeared in more than 70 % of the optimal 

results obtained by optiModels.  
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Figure 3.2 Frequency of reactions obtained by optiModels algorithm when minimizing the number of 

exchange reactions ensuring growth. trp_L (Tryptophan), thr_L (Threonine), Ile_L (Isoleucine), val-L (Valine), pydx5p 

(Pyridoxal-5-Phosphate), met_L (Methionine), cern (Carnitine), biocyt (Biocytin), leugly(Leucylglycine), CE5789 (Kinetensin 1-

8), CE5786 (Kinetensin), debrisoquine (Debrisoquine), no (Nitric oxide), dgsn (Deoxyguanosine), CE0074 (Alloxan), leuktrF4 

(Leukotriene F4), 9_cis_retfa (Fatty acid 9-cis-retinol), amp (Adenosine monophosphate), tag_cho (Triacylglycerol (cho)), 

dgmp (Deoxyguanosine monophosphate), taur (Taurine), CE4723 (Neocasomorphin (1-5)), galfuc12gal14acglcgalgl ((Gal)3 

(Glc)1 (GlcNAc)1 (LFuc)1 (Cer)1), retn (Retinoate), sph1p (Sphinganine 1-phosphate), akg (α-ketoglutarate), gltdechol (beta 

glucan-taurodeoxycholic acid complex), apnnox (Alpha-Pinene-oxide). 

 

The latter oligopeptide is chemically composed by several amino acids, in this case L-Isoleucinele-L-

Alanine-L-Arginine-L-Arginine-L-Histidine-L-Proline-L-Tyrrosine-L-Phenylalanine-L-Leucine. This high 

molecular weight molecule (C50H76N16O10) [39] is not a potential candidate for cell culture medium 

component, not only because of its complex chemical structure, but also because its high price in the 

market and the lack of commercial availability. 

In fact, these results are expected, since the model does not account for the biological feasibility of 

these solutions, but calculates, mathematically, the easiest metabolic path through pFBA towards 

growth and determines the best candidates with minimal medium components. Subsequently, further 

filtering of the data has to be performed based on literature studies to choose the best set of candidates 

proposed by the model that can be consumed by CHO. Nevertheless, it is important to emphasize that 
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the prediction results are merely an indication of which pathway should be targeted in terms of 

experimental implementation. 

Based on the results described in figure 3.2, for example, pyridoxal-5'-phosphate (P5P) appears to be a 

potential supplement for cell culture medium. This vitamin, B6, is essential for many mammalian 

metabolic reactions, acting as a coenzyme for several transamination reactions, mainly involved in the 

decarboxylation of amino acids [40].  

Within the optimal solutions, several reactions are appealing from a biological feasibility point of view, 

namely amino acids and vitamins. In this study, our target is to narrow the solution space and focus on 

amino acids, together with other nutrients that are directly involved in the central metabolism. Future 

studies should be focused on exploring the impact of the other candidates obtained by optiModels, for 

instance vitamins. Studying the impact of changing the levels of vitamins in the media and their 

influence on metabolism can thus be very interesting to explore in future studies. 

3.3.2. In silico CHO cell culture media optimization  

As described in the previous section, the genome scale metabolic model of CHO constructed by Hefzi et 

al, 2016, was combined with an in-house developed algorithm in order to determine the minimal and 

most essential components for CHO cells growth. Two different biomass reactions were used in the in 

silico predictions, (R_biomass_cho) and (R_biomass_cho_producing), respectively, for producing and 

non-producing CHO cells as previously described. Several media components were predicted for both 

cell types. In the following step we used generated data in order to build the optimal amino acids 

formulation to sustain CHO growth. 

3.3.2.1. Medium optimization for non-producing CHO cell lines 

In this step, various in silico predictions were performed in order to improve the specific growth rate and 

decrease cell culture by-products using as basis the results from the previous section. The prediction 

results were based on varying the environmental conditions, i. e., changing the boundaries of uptake 

fluxes at which certain metabolites are consumed. This strategy can be used to define the components 

of cell culture media of a specific cell line, in our case, CHO cells. Multiple simulations were performed 

and the results were compared to the original constraints of the model which was constructed based on 

different simulations and omics data described in previous published reports [35,38,41]. The in-house 

simulations were performed in Optflux. The simulations were performed based on the biomass equation 
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(R_biomass_cho) specific for the prediction of growth rate of non-producer CHO cell lines. The input 

data were based on literature studies and also on different data generated using the Python-based 

algorithm (optiModels) previously described.  

Using this approach, the optimal combinations of amino acids used for the growth of non-producer CHO 

cells were determined. The uptake reaction bounds (or constraints) referred in the model developed by 

Hefzi et al, 2016 and the in-house optimized constraints are referred in Figure 3.3 (Supplementary data 

in annexes). The values in Table 3.2 in Annexes are expressed in (mmol gDW-1 hr-1) and refer to the rate 

at which the cell consumes certain metabolites for growth (in steady state). The prediction results 

account for the consumption (Figure 3.2) and production (Figure 3.4) fluxes of different metabolites, as 

well as the growth rate value (Figure 3.3).  

Various differences were observed between the constraints developed in-house and to the original ones. 

In our work, we increased the uptake for different metabolites such as glucose and other amino acids, 

since they play a role in increasing cellular growth rate. On the other hand, we limited the consumption 

of a number of metabolites since their degradation in cell culture may promote the secretion of toxic by-

products that can inhibit cell growth. As an example, in order to decrease ammonium accumulation in 

cell culture medium, glutamine was removed from the optimized formulation. This amino acid is known 

to be a major source of ammonium which is considered as a toxic metabolite (at high concentrations: 

approximately over 4mM) for the cells (as described in chapter 2). Ammonium diffusion across the cell 

membrane play a major part in disturbing intracellular pH in addition to the electrochemical gradients 

[42]. Its build-up in the cell culture medium can significantly inhibit cell growth and final cell densities 

[43,44]. Removal of glutamine from the cell culture medium was previously studied. According to the 

literature, cells cultured with a glutamine substitute in the feed medium generated a decrease in cell 

growth and also a decrease in ammonium levels [45,46].  

On the one hand, additional amino acids were removed from the in-house medium formulation such as 

serine and asparagine. Serine is considered also as a potential source of ammonium secretion, since its 

degradation using serine dehydratase, also called serine ammonia lyase (SDH) can generate pyruvate 

and also ammonia [47]. Another study proved that serine presence in the cell culture medium did not 

improve the growth rates of the cells [42].The in-house in silico predictions using Optflux proved also 

that when forcing the over-consumption of serine, ammonium secretion rates increased significantly, 

and no improvements were observed regarding cell growth. Subsequently, we can presume that the in 

silico results are in accordance with the published data in Chen et al 2005 [42].  
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On the other hand, asparagine supplementation and consumption was proven to be linked to ammonia 

and alanine accumulation in the culture medium during growth [37]. Alanine accumulation during 

culture can also inhibit cell growth through repressing the TCA cycle, one of the most important 

pathways of the cellular machinery [48]. Our strategy was based on finding alternatives to glutamine, 

serine and asparagine that can improve cell growth and mitigate the effect of ammonium. The in silico 

predictions based on optiModels definitely played a role in facilitating this task. As part of the 

optimization strategy, the consumption rates of different groups of amino acids were set out to the 

minimum allowed levels. Tryptophan and methionine consumption rates were also set to the minimum 

since, as described in previously published reports by Pfzier, their presence in the cell culture medium 

in higher levels can generate a variety of toxic metabolites, considered as putative growth inhibitors for 

CHO cells. Examples can be indole 3-lactate and 2-Hydroxybutyrate [49].  On the other hand, disparate 

amino acids play a major part in improving CHO growth rate, for instance, proline and threonine [42]. 

Proline supplementation to the cells cultured in proline-free medium was previously studied, and it 

demonstrated a positive effect on cell growth [50].  

 

Figure 3.3 Predicted optimal metabolites uptake rates. Comparison between the prediction results of Hefzi 

et al., 2016 and the results of the in-house optimizations for non-producer CHO cell line. Sink Tyr ggn - Sink 

reaction for Tyr-194 Of Apo-Glycogenin Protein (Primer for Glycogen Synthesis). 

As commonly known, the genetic makeup of the cell lines, their expression profile as well as the 

environment in which cells are present, can obviously influence the consumption rates and the 

metabolic fluxes of amino acids. The rationale behind this optimization strategy is to develop a 

formulation which includes not only the amino acids that are easily consumed by the cells, but also 
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other metabolites that can retrofit the metabolism of the cells towards more efficiency. Subsequently, 

higher growth and extended viability of the cells is expected.   

As shown in figure 3.3, higher oxygen and glucose consumption were noticed as part of the predictions 

results when using our in-house optimized constraints. These results align with the fact that more 

oxygen and carbon source are needed as a means to achieve higher cell densities. We can also observe 

that higher amounts of valine, leucine, aspartate, proline and histidine have to be supplemented in the 

optimized cell culture medium to accommodate higher glucose consumption and the decrease in other 

amino acids. 

Concerning vitamins uptake values, a slightly higher uptake rate of choline was observed in the 

optimized medium formulation. Also, based on the results obtained, pyridoxal, a form of vitamin B6, 

positively impacts cell growth and plays a role in the decrease in ammonium accumulation in the cell 

culture medium. Vitamin B6 has a central role in the metabolism of amino acids. As an example, the 

cofactor Pyridoxal-5’-Phosphate plays an important role in the catalysis of many important steps in the 

metabolism of amino acids, such as transamination, racemization, decarboxylation, and α,β-elimination 

reactions [51]. According to the stoichiometric matrix described in the GSMM, pyridoxal plays a role in 

transamination through pyridoxal kinase and in the use of ammonium to produce pyridoxine. Pyridoxal 

potential in decreasing ammonium levels in the cell culture medium is promising. Further experimental 

validations have to be performed in order to ratify this hypothesis.  

 

Figure 3.4 Specific growth rate and growth yield values based on the in-house-based constraints for CHO 

non-producing cell line. 

 

Ensuing, myo-inositol was added to the optimized model constraints. In the predictions, myo-inositol 

was consumed by the cells and its uptake may hold a promise regarding the targeted improvements. 
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Finally, higher uptake rates of phosphate and hypoxanthine were observed comparing to the results 

based on Hefzi et al., 2016 predictions. 

A higher specific growth rate was observed using the optimized uptake rates, comparing to the values 

obtained using the constraints of Hefzi et al., 2016 (figure 3.4). We were able to increase the growth 

rate up to 5 times comparing to the prediction results based on the constraints of Hefzi et al., 2016. 

However, since glucose uptake was also increased, the comparison of specific growth rates can be 

misleading. Therefore, growth yields on glucose were also compared, and a significant increase was 

also observed, around 3.3 times. Thus, in principle, higher uptake rates of certain amino acids and 

vitamins can hold a promise for improving the growth rate/yield. However, higher nutrients uptake has 

to account for transporters capacity within the cell. 

Using the in-house optimized uptake constraints of various metabolites, interesting results were 

observed regarding the secretion rate of toxic metabolites such as ammonium (Figure 3.5). Relying on 

the in-house optimized constraints, ammonium secretion was eliminated comparing to the predicted 

results of Hefzi et al., 2016.  

 

Figure 3.5 Metabolites secretion values for optimum uptake conditions. Comparison between the in-house 

prediction results and the results obtained using Hefzi et al 2016 constraints. H+ (hydrogen ion), CO2 (Carbon 

dioxide), H20 (Water). 

Looking at the in silico results in figure 3.5, ammonium, formate and urea were not secreted by the 

cells when using the in-house optimized constraints, when maximizing for growth. Serine and 

asparagine were present in the formulation described in Hefzi et al., 2016, which can explain the 

Neither Ammonium, nor Formate
and Urea were produced using the 

in-house constraints
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accumulation of these toxic metabolites as a result of amino acids breakdown. Formate secretion is 

directly linked to serine presence in the constraints of Hefzi et al., 2016 since formate is considered as 

a product of serine metabolism [48]. Finally, pyridoxamine and pyridoxine were secreted in our results 

as part of vitamin B6 metabolism.  

As a conclusion, we can affirm that the improvements made using Optflux based on the minimal 

components developed in-house were successful in improving the non-producing cell’s growth rate. The 

biomass yield was more than tripled comparing to the results described in previously published data. 

Another major improvement is that the toxic by-products such as ammonium were decreased to their 

lowest levels. 

In the next section, we will discuss the in silico efforts made to improve the growth parameters for CHO 

producer cell lines, as well as the improvements made to enhance recombinant proteins production. 

3.3.2.2. Optimization results of CHO producing cell lines 

In order to predict the best medium components that can be used to improve the growth rate of CHO 

producing cell lines, the uptake fluxes were also optimized based on literature and also the minimal 

components predictions obtained using optiModels, previously described. The predictions were 

performed based on the biomass equation (R_biomass_cho_producing) specific for predicting growth 

rate of producer CHO cell lines. The prediction results account for the consumption and production 

rates of different metabolites, as well as the growth rate and yield values, specific for each condition 

tested. In this section, we were able to improve the growth rate by 5 times comparing to the growth 

value based on the use of Hefzi et al., constraints. Additionally, the growth yield value increased by 2 

times. These results are described in figure 3.6.  

In this part of the work, not only improving the growth rate/yield and reducing cell culture by-products is 

targeted, but also improving the production of mAbs is a major ambition. The obtained results were 

used to determine the effect of flux constraints on the production of recombinant proteins in producer 

cell lines. Two different sets of constraints were obtained depending on the goal of the use of CHO 

producing cell lines. The first set of results is based on improving the growth rate and decreasing by-

products levels. The second set of constraints was based on improving the mAbs production with 

maintaining the cell culture by-products at their lowest levels. The reason behind generating two 

different sets of environmental constraints in this part of the study, is that the cells use their resources 
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(Carbon source, amino acids, etc.) jointly for maximizing growth and maximizing the recombinant 

proteins production at the same time, as part of the mammalian growth-uncoupled phenomena, 

previously described in chapter 2. In this prediction studies we were able to improve the production rate 

of recombinant proteins comparing to different published data, described in Carinhas et al., 2013 

and Selvarasu et al., 2012 [38,41]. In table 3.3 (Supplementary data), we can observe the lowest 

bounds (uptake) of several metabolites referred in the reference model (original model constraints) and 

also the in-house optimized constraints aiming at increasing growth rate/yield and mAbs production 

rate. 

 

Figure 3.6 Specific growth rate and growth yield values based on the in-house-based constraints for CHO 

producing cell line. 

 

Predictions in Optflux targeting the enhancement of cell growth rate and the decrease of cell culture 

toxic metabolites were performed using pFBA. For predicting maximum protein production, different 

solutions were obtained by maximizing the flux through the DM_igg[g] reaction, specific for the 

production of Immunoglobulin G (IgG) in the model.  

On the one hand, the same constraints used for predicting the optimal growth rate for CHO non-

producing cell lines, described in the previous section, were used in this study. Some minor changes 

were performed in order to reduce the predicted secretion rate of ammonium, since the metabolic 

behavior of the producing cells was different regarding the use/secretion of some amino acids, 

pyridoxal-5-phosphate (P5P) and other metabolites. For that, hypoxanthine and P5P were removed from 

the optimized uptake constraints of CHO producing cell lines. Hypoxanthine was linked to ammonium 

secretion in this part of predictions. Also, in this case, serine uptake showed a positive effect on 
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increasing cell growth rate for CHO producing cell lines. In this part of the work, serine removal from 

the optimized constraints generated high secretion of ammonium and acetate.  

On the other hand, for maximizing IgG production, we exerted the same constrains used for predicting 

the CHO producing cells growth rate with minor modifications in order to balance the aptitude of the 

cell in sharing its nutrients for both growth and production of recombinant proteins. The optimum 

constraints obtained in this study are also shown in table 3.3 (Supplementary data).  

 

Figure 3.7 Predicted metabolites optimal uptake rates. Comparison between the prediction results of non-

producing cell line, producing cell line and the producing cell line targeting the IgG production. Sink Tyr ggn 

(Sink reaction for Tyr-194 of Apo-Glycogenin protein (Primer for glycogen synthesis). 

 

The predictions regarding the consumption rates of the metabolites applying the previously described 

constraints are referred in figure 3.7, where we can observe a comparison between the consumed 

metabolites of non-producing cell line, producing cell line and producing cell line targeting the 

production of recombinant proteins. 

Targeting growth maximization in producer cell lines, the latter consumed high levels of serine and 

much lower levels of histidine than the non-producer cell lines. In the predictions using CHO producing 

cell lines targeting the production of mAbs, we can observe that the cells used less resources, given 

that the production of recombinant proteins is less demanding than the production of biomass. . 

Moreover, higher ammonium and formate production rates were observed in the predictions using the 

CHO producing cell lines comparing to the non-producer ones. A comparison between the production 
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rates of metabolites in the conditions tested (non-producing, producing and producing+IgG) is 

highlighted in figure 3.89.  

 

Figure 3.8 Metabolites production rates for optimum uptake rates. Comparison between the in-house prediction 

results of non-producing cells, producing cells and producing targeting the generation of mAbs. H+ (hydrogen ion), CO2 

(Carbon dioxide), H20 (Water). 

 

As described, recombinant protein production competes with biomass. Therefore, the results above 

assume the production of one or the other.  
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Figure 3.9 FVA prediction results. (A): FVA results using the in-house optimized constraints for maximizing cell growth 

for producer cell lines. (B): Prediction results using Hefzi et al., 2016 model constraints. (C): Prediction results using the in-

house optimized constraints targeting IgG production. 

 

To illustrate this competition, a Flux Variability Analysis (FVA) was performed (Figure 3.9). FVA results 

show that the best predicted production rates of mAbs are the ones based on the constraints optimized 

targeting the optimization of protein production instead of the constraints targeting the optimization of 

growth rate.  

The optimal conditions can be studied and validated using cell culture and metabolomics studies, since 

they are just an estimation about the possible exchange values, but not taking into consideration any 

information regarding affinity of the cells towards these compounds or toxicity, neither about 

transporters capacities regarding the uptake of these candidates. 

3.3.3. Investigating α-ketoglutarate (AKG) effect on CHO metabolism in silico 

From the optiModels results, besides amino acids and vitamins, one compound that was part of the 

metabolites making part of the minimal components was further investigated: α-ketoglutarate (AKG). 

For this purpose, various predictions in Optflux using pFBA were performed. The growth rate, exchange 

rates of key metabolites, as well as values for the sum of fluxes that have been used in the network 

were determined, together with the values of growth yields in reference to glucose. In these 
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experiments, three different uptake rates of AKG were tested, based on 3 different concentrations: 

4mM, 8mM and 12 mM. The uptake values of AKG corresponding to the described concentrations were 

determined experimentally in the laboratory (Data shown in chapter 4). Therefore, these predictions 

were based on feeding experimental AKG uptake data to the model. 

In these experiments, we noticed that, when the cells consume AKG at different rates, the values of the 

sum of the fluxes decrease slightly and ammonium secretion rate also decreases, for both producer and 

non-producer cell lines. Relying on the use of the constraints described in Hefzi et al., the predicted 

growth rate was equal to 0.0323 h-1 in the case of non-producer cells. When forcing the uptake of AKG 

during the simulations, we can observe that the growth rate values decreased to 0.0243 h-1 (Figure 

3.10/A). The same effect was observed in the case of producing cells (Figure 3.10/C). Regarding the 

calculated growth yield, interesting results were obtained. We can observe in figures 3.10/B and 

3.10/D, that in the 4mM condition, the growth yield decreases comparing to the growth yield calculated 

using the original model constraints.  

 

Figure 3.10 Comparison of predicted growth rate and growth yield values between non-producer and 

producer CHO cells lines when varying AKG uptake rate. 3.12/A describe the predicted growth rate of naïve CHO 

cells. 3.12/B describe the predicted growth yield of naïve CHO cells. 3.12/C describe the predicted growth rate of producer 

CHO cells. 3.12/D describe the predicted growth yield of producer CHO cells. 
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However, in the conditions of 8mM AKG and 12mM AKG, the growth yield increases with the increase 

of AKG uptake.  

In order to further understand these results, we looked deeper at the exchange rates of metabolites and 

we tried to understand the response of the metabolism to the uptake of AKG. In figure 3.11, we can 

observe the values of the different exchange rates of key metabolites when varying the uptake levels of 

AKG, for both naïve (Figure 3.11/A) and producer cell lines (Figure 3.11/B). We can observe that, in 

the majority of the cases, the flow of different metabolites was similar among different cell types 

(Producers or not). Few differences were observed especially for the case of glucose consumption, 

which decreased when increasing the AKG uptake. These results might explain the lower growth rate 

observed where AKG was consumed by the cells. It should also be emphasized that AKG is also a 

relevant carbon source, which in part explains changes in growth rates and yields. 

The exchange rates of key amino acids were also studied and the results are also shown in Figure 3.11. 

When maximizing for growth, we noticed, among producer and non-producer cells, many differences in 

the uptake rate values of amino acids, as a result of varying the consumption rates of AKG in the 

model. The uptake of asparagine, in the case of naïve cells and serine/leucine in case of producer cell 

lines, were different when varying the uptake rate of AKG.  

On the other hand, lower levels of byproducts were observed in both cell types. In the case of naïve 

cells (Figure 3.11/D) we observed a decrease in ammonium secretion when increasing AKG 

concentration. Besides, the secretion rates of formate and urea decreased also. Regarding bicarbonate, 

its production rates increased significantly when increasing AKG uptake. In the case of producer cells, 

ammonium levels were decreased when increasing AKG uptake until observing a 0-ammonium 

secretion in the case of 12mM AKG condition (Figure 3.11/E). Formate and urea secretion rates were 

also decreased comparing to the predictions based on Hefzi et al. constraints. Finally, a different 

metabolic profile of bicarbonate was observed, where its secretion levels decreased when increasing 

AKG uptake, on the contrary of the metabolic behavior of the naïve cells. 

These prediction results are very promising towards the decrease of process byproducts such as 

ammonium and for future experimental validation, where we can test, experimentally, different 

concentrations of AKG that can be supplemented to CHO cultures. In principle, higher concentrations of 

AKG in the medium tend to force the production of glutamate in the cell, which is driven by the 

consumption of ammonium available in the medium. This reaction is catalyzed by glutamate 

dehydrogenase (GDH). The formed glutamate can be further aminated to produce glutamine, under the 
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control of glutamine synthase (GS), consuming free ammonia molecules [52]. Observing a decrease in 

the in silico ammonia secretion rate when AKG is consumed, correlates with idea of AKG being 

converted to glutamine and glutamate.  

According to the prediction results, we can conclude that adding AKG to the medium can play a role in 

influencing the amino acids metabolism (Asparagine-aspartate metabolism) and impact also the 

ammonium secretion levels.  

 

 

 

 

Figure 3.11 Comparison of predicted exchange rates of metabolites between non-producer and producer 

CHO cells lines when varying AKG uptake rate. 3.11/A and 3.11/B describe the different predicted uptake rates of 

key metabolites for CHO naïve and producer cells. 3.11/C describes the difference of glucose uptake between non 

D 
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producing and producing CHO cells. 3.11/D and 3.11/E describe the different predicted secretion rates of key metabolites 

for CHO naïve and producer cells. 

 

Looking deeper into the literature, it was previously discussed that alpha-ketoglutarate supplementation 

can play a role in both decreasing ammonia levels in the culture and increasing productivity of the cells 

towards the production of recombinant proteins [53,54].   

Additionally, cells supplemented with AKG exhibited lower growth rate comparing to glutamine-fed cells. 

This observation was highlighted in the work published by Tae Kwang Ha, Gyun Min Lee, 2014. In this 

study, the growth rate was recovered after several passages [54]. This strategy is further investigated 

along the thesis and described in the following chapters. According to the prediction results, it is 

relevant to understand experimentally the optimal levels of AKG to be added in the media.  

Being a very important intermediate in the TCA cycle, understanding AKG metabolism in both producer 

and non-producer cell lines, how does it impact the different metabolic pathways of the cell and what 

metabolic mechanisms are behind the boost in productivity will be targeted in the next chapter and 

consolidated with experimental data. 

3.4. Conclusions and following work 

Evolutionary algorithms hold a potential in improving various industrial organisms through its 

combination with genome scale metabolic models. On this regard, several efforts have been performed 

to explore various optimization strategies using several microbial organisms. Nonetheless, few examples 

employed mammalian production platforms (e.g., CHO) due to their genetic and metabolic complexity. 

In this study, we were successful in using the GSMM of CHO combined with optiModels, a novel 

evolutionary algorithm, that aids in exploring CHO metabolic network and understanding how to develop 

an optimal medium formulation, that can sustain (high) growth of CHO. Then, higher production titers 

and/or productivity can be achieved. Higher growth yield (3.3 times) was observed when using the in-

house optimized constraints comparing to predictions using the original model constraints (Hefzi et al., 

2016). Furthermore, based on FVA predictions, it was demonstrated that when using the optimized 

media formulation (based on the optimized in-house constraints), higher production rate of IgG was 

observed comparing to the conditions used for non/producing cells.   

In the second part of the study, we demonstrated that the supplementation of several candidates, 

determined using optiModels, might hold a potential in improving both growth and productivity of the 
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cells. Theoretically, AKG, as a very important intermediate in the TCA cycle, holds a huge potential in 

improving growth and productivity. Different uptake rates of AKG were tested in silico and the metabolic 

flux distribution was mapped based on the use of pFBA for both CHO producing and naive cells. Very 

interesting results were obtained regarding the supplementation of AKG to the medium, reflected by an 

increase in growth yield by 1.1 and 1.2 times, respectively, for naïve and producing CHO cells. In 

addition, a significant decrease in by-products secretion (Ammonia) was observed comparing to the 

results obtained using Hefzi et al. constraints.  

As conclusion, using the minimal media formulation described in this chapter as well as supplementing 

AKG might hold a tremendous potential in improving CHO bioprocesses. However, it should be pointed 

out that these results are merely an indication of a pathway forward in terms of experimental 

implementation. In fact, the results obtained using the GSMM do not take into consideration any kinetic 

limitations of the transporters and/or enzymes involved. This implies that the optimal uptake rates in 

silico might be not achievable in real conditions due to rate limitations. However, even if this is not fully 

possible, one can take the obtained results as leads for further metabolic or enzyme engineering 

approaches. The next steps will be focused on validating some of the in silico results experimentally.  

3.5. Annexes 

A) OptiModels 

This tool was developed by Sara Correia and Sophia Santos at Minho University. 

The framework uses three other open-source Python frameworks, namely: 

 FRAMED (Framework for Metabolic Engineering and Design): A Python package for analysis and 

simulation of metabolic models that is used to load metabolic models from SBML files 

(https://github.com/cdanielmachado/framed).  

 Odespy: offers a unified interface to a large collection of software for solving systems of ordinary 

differential equations (ODEs) (https://github.com/hplgit/odespy).  

 Inspyred: an open-source framework for creating biologically-inspired computational intelligence 

algorithms in Python, including evolutionary computation 

(https://github.com/aarongarrett/inspyred). 
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This framework was implemented to be able to use parallel computing during the optimization tasks 

taking advantage of high-performance computing resources. Moreover, the user can specify the 

maximum time allowed for each simulation. The main entities involved in the simulation process are 

shown in figure 3.12. The framework files are divided into 4 main packages: Model, simulation, 

optimization and utils, and the complete description of each one of them is described below: 

 Model: This package contains functions to load and manipulate the models. Loading the used 

model in SBML format, is based on the methods and classes present in the FRAMED framework. 

 Simulation: This package contains the classes and functions used to simulate different types of 

models.  

 Optimization: This package contains all required entities to perform the targeted optimization 

based on evolutionary computation. The inspyred framework is used for creating biologically 

inspired computational intelligence algorithms in Python, including evolutionary computation and 

simulated annealing. 

 Utils: This tool holds a set of generic and auxiliary functions, constants and configurations used by 

the methods developed in the framework. 

 

Figure 3.12 OptiModels simulation workflow. 
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3.5.1. Model handling and simulation 

The data obtained from the SBML file is stored as an instance class according to its own model type. 

The CBModel and ODEModel classes are extensions of the generic class Model. All of these classes are 

present in the FRAMED framework.  

To simulate the problem, the different simulation problem classes have all the information required to 

perform a phenotype simulation. Different parameters are required for each simulation problem class, 

depending on the model type (stoichiometric, kinetic, etc.). All these classes extend the abstract class 

SimulationProblem, and implement the abstract methods get_model and simulate. Thus, the 

implementation of new types of simulation problems must extend the abstract class SimulationProblem 

and implement the abstract methods. This allows the usage of any simulation problem by the 

optimization layer since all the classes have the required methods implemented. Following, for the 

simulation results, the instances of these classes stores the results of phenotype predictions. 

Depending on the model type, different data should be saved. All classes must extend the abstract class 

SimulationResults and implement the method get_fluxes_distribution, which return the steady-state flux 

distribution of the phenotype simulation. The flux distribution values will be used by the objective 

function to calculate the fitness of each candidate in the optimization process. 

Meta-heuristics algorithms, including Evolutionary Algorithms and Simulated Annealing, are used by this 

framework to identify genetic modifications (strain design) and infer minimal medium composition that 

can improve production yields for relevant industrial compounds. Although these algorithms do not 

guarantee the convergence to global optima, they have the necessary flexibility, use lower 

computational power than exact solvers and also provide a family of optimal or sub-optimal solutions 

that can be further studied in order to determine the optimal one. Figure 3.13 depicts the workflow of 

the optimization process using Evolutionary Algorithms and the important points of the implementation 

are explained in the following.  
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Figure 3.13 OptiModels optimization pipeline. 

 

 Candidate representation  

In this framework there are two types of candidate representations: 

- Set representation: this kind of representation can be used to simulate gene/reaction 

knockouts and infer minimal medium composition. In this case, each candidate element 

represents the index of the gene/reaction that will be knocked-out in the phenotype simulation. 

 

Figure 3.14 Candidates representation – Set representation. 

 

- Set of tuples: this representation is used to perform the simulation of under/over expression. 

Each element of the candidate solution is a tuple of 2 integers. The first identifies the reaction 

to manipulate and the second the level of expression. 
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Figure 3.15 Candidate representation - Set of tuples. 

These representations are the result of the functions generator_intSetRep and generator_intTupleRep 

used in the optimization workflow to generate new candidates for the population. 

 Operators 

For reproduction purposes within the Evolutionary Algorithm, the following operators have been 

implemented: 

- Mutation operations 

o Grow: insert a new element (integer/tuple) in the candidate solution. 

o Shrink: remove an element from the candidate solution. 

o Replace: replace one element for a new one randomly generated. 

- Crossover: using two candidates (parents) build 2 children: 

o Elements present in both parents will be present in both children. 

o Elements present in only one parent have equal probability to be present in child 1 or 

child 2. 

o note: children can be equal to the parents 

 Objective Functions 

The objective function has the role of evaluating each candidate of the population calculating the 

corresponding fitness value. The most common objective function is the flux value of a target 

compound, implemented in the framework as targetFlux class. All objective functions on the framework 

must extend the abstract class objectiveFunction and implement the methods:  

- get_name: returns a string with the method name.  
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- method_str: returns a string with the method formulation. 

- get_fitness: returns the fitness value considering the simulation result given as argument. 

 Decoders 

The decoders are responsible to convert a candidate representation into an OverrideModel which 

contains the modification that will be used over the simulation problem in the phenotype simulation. As 

example, the candidate represented by a set of integers (1,3,5) given as argument to the method 

get_override_simul_problem of the decoderReactionsKnockouts class, will retrieve a list of 

modifications that must be imposed to the simulation problem, in order to knockout the reactions 

represented by 1, 3 and 5 indexes. 

 Applications 

o Strain design 

Strain design through reaction knockouts or under/over expressed enzymes is implemented in our 

framework for single and multi-organism models. The approach used is the same for the two cases. The 

solution candidates can be represented as a set representation or as set of tuples, as described above. 

The operators (mutation and crossover) used in EA are the ones described previously. 

Two evaluation functions were implemented in the framework under the scope of strain design:  

- TargetFlux: The fitness is given by the flux value of the target reaction.  

- BPCY: "Biomass-Product Coupled Yield" objective function (Patil et al., 2005). The fitness is 

given by the equation: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑓𝑙𝑢𝑥 × 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑙𝑢𝑥

𝑢𝑝𝑡𝑎𝑘𝑒 𝑓𝑙𝑢𝑥
 

o Minimal Medium optimization 

The goal of minimal medium optimization is to find the best medium composition for a given objective 

function, such as growth or the production of a target compound.  EA are used by our framework to 

identify the smallest set of uptake compounds that can improve a given objective function for single and 

multi-organism models.    

The solution candidates can be represented as a set, where each element represents an uptake 

exchange reaction. The operators (mutation and crossover) used in EA are the ones described 

previously. 
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For medium optimization purposes, two evaluation functions are available in the framework: 

- BP_MinModifications: this evaluation function is based on the "Biomass-Product Coupled 

Yield" objective function (Patil et al., 2005) but considering the candidate size. The fitness is 

given by the equation: 

-  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑓𝑙𝑢𝑥 × 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑙𝑢𝑥

𝑢𝑝𝑡𝑎𝑘𝑒 𝑓𝑙𝑢𝑥
 

- MinNumberReac: this function returns a fitness value between 0 and 1. Higher fitness values 

correspond to candidates with a smaller size. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑠𝑖𝑧𝑒(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑖𝑧𝑒
 

The maximum of candidate size is the maximum number of uptake reactions allowed by user. By 

default, this value is the number of exchange reactions present in the given model. 

B) Additional Material 

Table 3.2 Original model constraints vs in-house optimized constraints for non-producer cell lines. 

 

Table 3.3 Comparison between the constraints used for predictions using producer cell lines. 

Reaction ID Metabolite Hefzi et al 2016 In-House
R_EX_glc__D_e D-Glucose exchange -0.19835 -0.3

R_EX_his__L_e L-Histidine exchange -0.00330 -0.2

R_EX_trp__L_e L-Tryptophan exchange -0.00408 -0.00408

R_EX_cys__L_e L-Cysteine exchange -0.00522 -0.05

R_EX_met__L_e L-Methionine exchange -0.00604 -0.02

R_EX_phe__L_e L-Phenylalanine exchange -0.00604 -0.1

R_EX_pro__L_e L-Proline exchange -0.00797 -0.7

R_EX_asp__L_e L-Aspartate exchange -0.00934 -0.2

R_EX_tyr__L_e L-Tyrosine exchange -0.00934 -0.05

R_EX_ile__L_e L-Isoleucine exchange -0.01016 -0.05

R_EX_thr__L_e L-Threonine exchange -0.01016 -0.2

R_EX_val__L_e L-Valine exchange -0.01209 -0.1

R_EX_lys__L_e L-Lysine exchange -0.01346 -0.08

R_EX_leu__L_e L-Leucine exchange -0.01484 -0.3

R_EX_arg__L_e L-Arginine exchange -0.01978 -0.1

R_EX_asn__L_e L-Asparagine exchange -0.04038 0

R_EX_ser__L_e L-Serine exchange -0.04780 0

R_EX_gln__L_e L-Glutamine exchange -0.06703 0

R_EX_chol_e Choline exchange -0.02029 -0.05

R_EX_pydxn_e Pyridoxine exchange -0.00017 -0.00017

R_EX_fol_e EX fol e -0.00046 -0.00046

R_EX_pydx_e Pyridoxal exchange 0 -1

R_EX_hxan_e Hypoxanthine exchange -0.00619 -0.1

R_EX_inost_e Myo-Inositol exchange 0 -0.001

R_EX_o2_e O2 exchange -1.12747 -1.12747

R_EX_so4_e Sulfate exchange -1000 -1000

R_EX_h2o_e H2O exchange -1000 -1000

R_EX_pi_e Phosphate exchange -1000 -0.5

R_SK_pre_prot_r Sink pre prot LPAREN er RPAREN -1000 -1000

R_EX_h_e H+ exchange -1000 -1000

R_SK_Ser_Thr_g Sink Ser/Thr[g] -0.1 -0.1

R_SK_Tyr_ggn_c Sink Tyr ggn -0.1 -0.1

R_SK_Asn_X_Ser_Thr_r Sink Asn X Ser/Thr[r] -0.1 -0.1

R_EX_fe2_e Fe2+ exchange -1 -1

R_EX_hco3_e EX hco3 LPAREN e RPAREN -1 -1
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4. CHAPTER 4  

Experimental validation of in silico results 

 

The information presented in this Chapter is being prepared for submission to a peer reviewed journal: 

Hamdi A., Borth, N., Zanghellini, J., Rocha I.; In silico-based approach for medium optimization of CHO 

cells. 

-------------------------------------------------------------------------------------------------------------------------------------- 

4.1. Introduction 

Mammalian metabolic network is very complex, and its operative mode is far away from being optimal 

[1]. Metabolic requirements vary between different industrial bio-production platforms (e.g., mammalian 

cells, yeast or bacteria) which reflects a complex divergent metabolome between species [2]. Within the 

mammalian metabolic network, biochemical pathways are tightly interconnected with strong crosstalk 

driven by cellular signaling [3] to regulate cellular activity [4], for instance, between glutaminolysis and 

glycolysis [5]. In the case of CHO, as previously described in chapter 2, glucose and glutamine 

represent two of the most important nutrients and energy sources of the cell [6]. In culture, these 

metabolites are drained rapidly and are consumed at higher rates compared to other media 

components [7,8]. Along with other nutrients, these two metabolites are the main responsible for 

delivering key atoms (e.g., carbon and nitrogen), allowing the cells to support their basic biological 

functions. Nevertheless, the fate of these two metabolites can be diverted towards the generation of 

high levels of toxic by-products [1,9,10], that can not only alter the growth rate of the cells but also 

decrease the final cell number and alter the productivity of recombinant proteins together with their 

post-translational patterns [11,12]. Moreover, amino acids are essential to the cell, being the core base 

of protein synthesis and cellular function, constituting up to 70 % of the cells dry mass [13,14]. The 

deamination of several amino acids was proven also to play a role in by-products accumulation during 

the culture period, such as ammonium (Chapter 2).  

Glutamine is a crucial amino acid and a substantial metabolite in nitrogen metabolism, producing 

cellular glutamate by glutamine synthase. This amino acid is involved in several anaplerotic reactions 
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(e.g., producing oxaloacetate and α-ketoglutarate) and also in energy formation [15]. However, its 

degradation yields high levels of free ammonium in the culture, which can heavily impact bioprocesses. 

Beyond that, glutamine instability in liquid media is very well known and it poses several issues for 

media manufacturers. Supplementing glutamine to the chemically defined media formulations can 

radically decrease the shelf life of the produced media [16]. Therefore, finding an alternative to 

glutamine in the cell culture media can definitely mitigate several bioprocessing problems mainly 

regarding the media validity and most importantly, ammonia accumulation. Moreover, not only 

glutamine degradation is a source of high ammonium concentrations, but also other amino acids, for 

instance, asparagine and serine are associated with this phenomenon [8].  

It is very important to highlight that different amino acids in the culture medium are consumed at 

different rates [17]. These values depend on the CHO platform in use, nutritional needs, culture 

condition, medium composition, the produced recombinant protein [13] and most importantly the 

transporters capacity within the cell, towards the exchange of metabolites between the extracellular and 

the intracellular environment [18]. In order to overcome the overproduction of ammonium and lactate 

and optimize the culture parameters, several approaches are being employed but few were able to fulfill 

the desired results [19,20].  

One of the most important approaches for optimizing bioprocesses is focused on media optimization. 

Previously, methodologies were based on using conventional practices, for instance mixing different 

media formulations or titration of the existing  components, which, experimentally represents a hurdle 

[21]. In fact, blending different media formulations is commonly used. This procedure relies mostly on 

the use of design of experiment (DoE) strategies that can help depicting the optimal media formulation 

among the tested ones. This procedure is efficient; however, the chemical composition of the resulting 

optimal media formulation selected remains unknown. Modern media optimization strategies are 

focusing mainly on statistical design and on the use of high-throughput screening of different potential 

media candidates, typically based upon scaling down cell culture models [22], where erlenmeyers and 

also spin tubes [23] are commonly used as small scale cell culture methods. Alongside, the emergence 

of novel high throughput automated robots, for instance ambr® microbioreactors and its combination 

with powerful DoE approaches is a robust tool for rapid and efficient process and media screening and 

optimization [24]. These approaches hold several advantages, for instance, accelerating the 

optimization timeline.  
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On the other hand, cell line development strategies have been employed to construct highly 

characterized and efficient stable cell lines for recombinant proteins production [25]. For large scale 

manufacturing of recombinant biotherapeutics using CHO platforms, several optimized CHO strains 

have evolved. These platforms are known for increased production titers comparing to the standard 

CHO cells commonly in use. Among these newly established cell lines, dihydrofolate reductase DHFR (-) 

and glutamine synthetase GS (-) cell lines are the most known [26]. Using the GS-knockout CHO cell 

line is very beneficial when it comes to overcoming the accumulation of ammonia in culture. These cells 

can grow independently of glutamine presence in the medium [26,27], considering that glutamine 

synthase catalyzes the consumption of glutamate to biosynthesize glutamine in the cell [28,29].  

A strategy built on re-channeling ammonium through several pathways within the cell can also be 

possible, even knowing that the CHO-GS metabolism is poorly known [17]. Indeed, metabolic 

engineering strategies based on directing the precursors of these byproducts inside the cell through 

other pathways combined with optimizing flux distributions is a very promising approach, taking 

advantage of the versatility of the cell’s metabolic network [30]. For that, balancing the levels of 

metabolites in the culture and controlling their exchange rates is an interesting approach, particularly 

emphasizing on medium optimization and customizing it to the cells exact nutritional need. In this case, 

the cells will evolve a more effective metabolism, by reusing the accumulated metabolites to fuel the 

cells with more energy and/or important metabolites that can improve both growth and quality 

attributes of products. 

α-ketoglutarate (AKG) or also called 2-oxoglutarate is a very important TCA cycle intermediate and a 

crucial compound for cell's metabolism [31]. It is a precursor in amino acids biosynthesis, also involved 

in signaling processes in the cell, ATP production, generation of reducing equivalents (NAD+/NADH), 

also playing a role in regulating various epigenetic mechanisms in the mammalian cell [32]. During cell 

culture, α-ketoglutarate is a potential additive for cell culture medium, since it can mutually replenish 

the TCA cycle and trigger its different metabolic intermediates to produce energy and replace glutamine, 

producing cellular glutamate by glutamate dehydrogenase (GDH). In theory, accumulated glutamate can 

play a role in the de novo biosynthesis of cellular glutamine by glutamine synthase, using the free 

ammonium in the culture [28,29].  

As well, α-ketoglutarate acts as an antioxidant instead of glutamine in many cellular processes and 

besides, it is more affordable and chemically more stable (in culture and storage) comparing to 

glutamine [33]. Previous reports studied the effect of supplementing AKG and different TCA cycle 
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intermediates, as a replacement of glutamine on CHO cells. In one study, they used CHO-DG44 DHFR 

(-) cell line where AKG was supplemented at a concentration of 4 mM. In this study, the authors stated 

the advantages of supplementing AKG to culture. Among these, an increase in productivity as well as a 

significant decrease in ammonia accumulation in the media were observed [34]. Following this idea, it 

is not yet clear how the substitution of glutamine by α-ketoglutarate modifies the metabolic network of 

CHO cells. It is a fact that supplementing α-ketoglutarate to the culture is not enough to channel most 

of the by-products in the cell, but concurrently balancing the amino acids levels inside of the culture 

medium, in the presence of α-ketoglutarate, might restructure the cells metabolism and overcome the 

accumulation of toxic metabolites that can hinder both growth and productivity. This hypothesis drove 

us to think about engineering strategies based on balancing the levels of nutrients in the medium in 

order to sustain and rewire the metabolism towards optimality. For that, balancing the amino acids 

levels together with testing different AKG concentration on CHO cells is very interesting, especially 

tackling GSneg CHO cell lines, since they hold a huge potential in modern bioproduction processes. 

It is a hurdle to rely just on experimental setup for optimization. As a solution, metabolic modeling 

approaches comes to support faster and accurate predictions towards optimizing the culture 

parameters by studying biochemical pathways in silico and applying the prediction results to be tested 

experimentally. 

Based on the results presented in chapter 3, predictions based on the use of GSMM of CHO and the 

evolutionary algorithm (optiModels) drove us to think about validating those hypotheses experimentally. 

4.2. Materials and Methods 

4.2.1. Experimental setup 

4.2.1.1. Cell culture 

Three different CHO cell lines (two producer and one non-producer) were used in this work. First, CHO-

K1 (ECACC 85051005) was employed in this study representing a naïve cell line, non-modified to 

produce recombinant proteins. Second, CHO-EpoFc represents a CHO DHFR (-) strain, a producer cell 

line engineered to produce EpoFc fragments (one molecule of erythropoietin joined to each hinge region 

of huIgG1Fc). CHO-EpoFc is known as a low producer that was established following the protocol 

previously described in Lattenmayer et al 2007 [35].  These cells were adapted internally to growth in 

serum-free and glutamine-free medium in the laboratory, prior to the use in this study. Finally, CHO-HyC 
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cells correspond to an antibody expressing CHO cell line provided by Cytiva, Uppsala, Sweden. The 

latter is GSneg cell line and known as a high-producer industrial clone, producing Trastuzumab, a 

monoclonal antibody under the commercial name of Herceptin.  

All the CHO clones were cultivated in suspension mode in chemically defined serum-free conditions 

using CD CHO medium (Gibco, Invitrogen, Carlsbad, CA, USA). After thawing, the cells were routinely 

cultivated in 50 mL TPP® TubeSpin bioreactors (Techno Plastic Products AG, Trasadingen, Switzerland) 

at a maximal working volume of 25 mL. The cells were incubated in 37°C in 80 % humidified air with 7 

% CO2, shaking at a speed of 220 rpm (rotation per minute). The cells were passaged every 3-4 days 

and the viable cell concentrations, viabilities and the values of the average cell diameters were 

determined using Vi-CELLXR (Beckman Coulter, USA).  

In standard conditions, CHO-K1 cells were grown in glutamine-free CD CHO medium (Gibco TM, MA, 

USA) and supplemented with 0.2% anti-clumping agent (ACA) (Thermo Fisher Scientific). CHO-EpoFc 

cells were grown in glutamine-free CD CHO medium and supplemented with 0.096 μM methotrexate 

(MTX) (Thermo Fisher Scientific).  

CHO-HyC cells were originally cultivated in CD CHO medium supplemented with 8 mM glutamine, 75 

µM of L-Methionine sulfoximine (MSX) (Thermo Fisher Scientific) and 0.2 % ACA (Thermo Fisher 

Scientific). An adaptation process to glutamine-free conditions was performed and consists of a 

sequential adaptation of the cells to different ratios of the CD CHO media containing 8mM glutamine 

and CD CHO glutamine-free medium. The sequential adaptation process is described in table 4.1. 

Table 4.1 Sequential adaptation of CHO-HyC cells to glutamine-free conditions. 

Adaptation step Ratio of CD CHO medium 

containing 8mM glutamine to CD 

CHO glutamine-free media 

Criteria to fulfill 

A 75:25 Viability ≥90% and normal doubling time for 

2 passages 

B 50:50 Viability ≥90% and normal doubling time for 

2 passages 

D 0:100 Viability above 90% of cells grown in 

glutamine-free medium and doubling time 

for 2 passages 
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As a result of this adaptation strategy, the cells were grown in glutamine-free media. A working cell bank 

was stored for further experiments.  

In all the experiments the cells were grown in glutamine-free conditions using CD CHO cell culture 

media. These cells were supplemented with different concentrations of AKG (4mM, 8mM and 12mM). 

For the experimental setup, batch cultures were performed in 125 mL non-baffled Erlenmeyer shake 

flasks at a working volume of 50 mL, incubated in 37°C in 80 % humidified air with 7 % CO2, shaking at 

a speed of 140 rpm. All the experiments were performed in triplicates, inoculated at the beginning of 

the experiment, at the same time and cell concentration. Samples were taken every 24h. The culture 

continued until reaching a cell viability lower than 60 %.  

4.2.1.2. Extracellular Metabolites 

For the analysis of the extracellular metabolites, samples were collected every 24h along the culture 

period. The cells were removed by centrifugation 10 min at 200 rcf (relative centrifugal force) and the 

supernatant was stored at -20°C. Metabolomics analyses were performed shortly after sampling, 

analyzing glucose, lactate and ammonia using Bioprofile 100 Plus (Nova Biomedical, MA, USA). Amino 

acids levels were quantified using HPLC with fluorescence detection (Dionex 3000 HPLC, Thermo 

Fisher Scientific, Waltham, Massachusetts, US). The HPLC was equipped with an AdvanceBio AAA 

column (4.6 x 100 mm, 2.7 µm, Agilent Technologies, Santa Clara, CA, USA) and a pre-column UPLC 

guard column, AdvanceBio AAA (4.6 x 5 mm, 2.7 µm, Agilent Technologies, Santa Clara, CA, USA). The 

column temperature was set to 37°C. The mobile phase consisted of A: 40 mM Na2 HPO4 in 0.02 % 

NaN3 and B: ACN/MeOH/H2O (45:45:10) (v/v). O-phthalaldehyde (OPA)-derivatized amino acids were 

detected at 340ex and 450em nm and 9-fluorenylmethyloxycarbonyl (FMOC)-derivatized amino acids at 

266ex and 305em nm [13]. Data were processed by Chromeleon software (Thermo Fisher Scientific, 

Waltham, MA, US). Cysteine could not be quantified due to sensitivity issues in the method, so the 

results are only qualitative. 

4.2.1.3. α-ketoglutarate quantification 

α-ketoglutarate levels were quantified using a colorimetric analytical method, following the manufacturer 

protocol. The quantification kit was purchased from Sigma Aldrich (MAK054). 
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The supernatant samples were deproteinized using 10 kDa MWCO Amicon Ultra-0.5 centrifugal filter 

units (Merck Millipore, MA, USA) and diluted using the assay buffer of the kit. Several dilutions were 

performed in order to fit our samples concentrations into the standard curve, not forgetting the negative 

control samples without adding AKG converting enzyme into the reaction mix. The AKG standard curve 

was established with concentrations ranging from 0 to 10 nmole/well. Every reaction contained 50 µL 

of reaction/well. The plates were incubated for 30 min at 37ºC with a shaking speed of 330 rpm to 

homogenize the reaction mix during the incubation time. Ensuing, the absorbance was measured at 

570 nm. 

4.2.1.4. Product quantification 

Product concentration was determined using Octet® QKe (Port Washington, NY), equipped with Dip 

and ReadTM Protein A Biosensors (Pall corporation, Port Washington, NY) according to the 

manufacturer’s recommendations. The supernatant was diluted with CD CHO medium prior to 

measurements in order to fit the samples concentrations within the standard curve ranging between 0-

100 µg/mL of Trastuzumab (BioVision, Milpitas, CA). A negative control consisting of cell culture 

medium was included. This method is based on biomolecular interactions, measuring the binding 

intensity of our product of interest to an immobilized ligand. 

4.2.1.5. α-ketoglutarate toxicity assay 

To evaluate the toxicity of supplementing different concentrations of α-ketoglutarate on CHO cells, Cell 

Titer 96 AQueousOne Solution Cell Proliferation Assay (Promega, Madison, WI, USA) was used. The 

latter is a colorimetric assay, used to determine the number of viable cells for cytotoxicity assays. It is 

based on the use of tetrazolium compound called [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) or simply MTS, which is converted 

by the cells to generate formazan. This process is mediated by NADPH or NADH produced by 

dehydrogenase enzymes in viable cells. The levels of formazan determined by absorbance at 490 nm 

are directly proportional to the number of viable cells in culture. 

In our case, 100 µL of CHO-HyC cells, at a concentration of 2x105 cells/mL, were inoculated in coated 

96 well plate for cell culture. The cells were supplemented with 10 µL of AKG at different 

concentrations, ranging between 20mM and 100mM. The cells were incubated at 37ºC for 48 h. 

Ensuing, Cell Titer 96 reagent was added to the samples, and the plate was incubated 1h at 37ºC with 
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a shaking speed of 130 rpm. Following, the absorbance was measured at 490 nm in order to evaluate 

the level of formed formazan and assess the number of viable cells after incubation with AKG. 

4.2.2. Culture characterization 

Growth data were determined based on Vi-CELL XR data and specific growth rates values were 

calculated as a function of time according to the following equation, knowing that X is the viable cell 

concentration at a specific time point (t), X0 is the initial viable cell concentration and μ represents the 

cell growth rate. 

𝑋 = 𝑋0𝑒𝜇𝑡 

 

The viable cell concentration described as viable cell density (VCD) given in viable cells/mL was 

measured using Vi-CELL XR. The viable cell volume VCV was calculated as follows. First, the values of 

the volume per cell described as (µm3/cell) were calculated according to equation 1 (Eq 1).  

 

𝑬𝒒 (𝟏):        𝑉𝑜𝑙𝑢𝑚𝑒 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙 =  
4

3
 𝜋 (

𝑉𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2
)  3 

The values determined in Eq 1 were used to calculate the VCV values as follow in Eq (2), using the 

diameters obtained also from Vi-CELL XR data. The VCV values are given in (mm3/mL). 

𝑬𝒒 (𝟐):           𝑉𝐶𝑉 = 𝑉𝑜𝑙𝑢𝑚𝑒 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙. 10−9. 𝑉𝐶𝐷 

 

Pearson’s correlation coefficients were determined for linear correlations between Ln-transformed VCD 

and the culture time, starting from the first time point analyzed (TP00) and including at least 5 time 

points. For each sample the highest correlation coefficient (rMAX) and the time point (TPXY) of its 

occurrence were determined. The growth rates were calculated as slopes in simple linear regressions of 

the ln-transformed VCD (or VCV) versus the interval (TP00–TPXY). 

Following, cumulative viable cell days (CCDCD), (CCDCV) were calculated based on different values of VCD 

and VCV respectively and described as (cells*days). This method was previously described at Klanert et 

al., 2019 [36] and adopted in this study. The different CCDCD and CCDCV values were determined based 

on the following equations where t represents the hours post-inoculation, and n the number of time 

points analyzed per batch.  
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𝐄𝐪 (𝟑):                   CCD𝐶𝐷 = ∑  

𝑛−1

𝑖=1

(𝑉𝐶𝐷𝑖+1 − 𝑉𝐶𝐷𝑖). (𝑡𝑖+1 − 𝑡𝑖 )

(ln(𝑉𝐶𝐷𝑖+1 ) − ln(𝑉𝐶𝐷𝑖)). 24
 

 

𝐄𝐪 (𝟒):                   CCD𝐶𝑉 = ∑  

𝑛−1

𝑖=1

(𝑉𝐶𝑉𝑖+1 − 𝑉𝐶𝑉𝑖). (𝑡𝑖+1 − 𝑡𝑖 ). 10−3

(ln(𝑉𝐶𝑉𝑖+1 . 10−3) − ln(𝑉𝐶𝑉𝑖. 10−3)). 24
 

 

Pearson’s correlation coefficients were determined for linear correlations between CCDCD and CCDCV and 

the product titers starting from the second measurement (TP02) (Taking into consideration that TP00 is 

the first measurement of time of inoculation) and including at least 6 time points. For each sample the 

highest correlation coefficient (rMAX) and the time point of its occurrence (TPXY) were determined. The 

specific productivities of product (qP) were calculated as slopes in simple linear regressions of the 

CCDCD (or CCDCV) versus the titers for the interval (TP02 – TPXY), representing the exponential phase of 

the cultures. 

4.2.3. Mathematical fitting of exchange rates of metabolites 

The calculated specific growth rates and the initial cell concentrations of different experiments were 

used to calculate the exchange rates of different metabolites, for instance, glucose, lactate, ammonia 

and other amino acids, relying on the following equation (Eq (5)) described in Széliová et al., 2020 [13]:  

𝐄𝐪 (𝟓):                             [𝑖] = [𝑖]0 +  
𝑞𝑀𝐵0

µ
(𝑒µ𝑡-1) 

where [i]0 and [i] are the concentration of metabolite i at the beginning and during the exponential 

phase, respectively, q
M is the specific uptake or secretion rate of metabolites, and B

0 is the initial 

amount of biomass, calculated from the initial cell concentration X
0 and the data of dry mass per cell. 

The latter was obtained internally in the lab and partially adapted from Széliová et al., 2020 [13]. This 

equation was used to estimate the exchange rates of metabolites in (mmol/gDW/h), using non-linear 

regression function. 

4.3. Results and discussion 

As previously mentioned in the materials and methods section, three different cell lines were cultivated 

in CD CHO medium without glutamine supplemented with ACA. Different concentrations of α-

ketoglutarate (4mM, 8mM and 12mM) were added in order to study the effect of α-ketoglutarate (AKG) 
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on growth and also its impact on the production of EpoFC recombinant proteins and Trastuzumab. 

Negative control batches also were performed, where the cells were not supplemented with α-

ketoglutarate but just grown with CD CHO medium without glutamine. Cell density, viability and 

metabolic profiles of the cells were monitored over time and compared between the different conditions.  

4.3.1. Growth characteristics 

Throughout the results and looking at figure 4.1, we can observe the growth profiles and the viability 

trends of CHO cell lines tested in this study. A clear difference in growth profiles was observed among 

the tested conditions, employing both producer and non-producer CHO cell lines. These results were 

mainly focused on comparing the batch periods, the viability profiles, as well as the maximal cell 

densities reached in each tested condition when varying the supplemented AKG concentrations. 

Higher specific growth rate values and maximal cell densities were observed in cultures non-treated with 

AKG comparing to the treated cells, noticing also a decrease in CHO growth rate when increasing the 

AKG concentration in the medium. In contrast to these observations, the viability/life span of the cells 

was extended in all clones treated with AKG comparing to the non-treated cells (Figure 4.1 B/C/D).  

It is clear that AKG supplementation is associated with increasing the viability of the cells and 

prolonging the stationary phase of the culture, which might be interesting from a bioprocessing 

standpoint. In fact, maintaining a high viability of the cells over time is a standard approach to increase 

the volumetric productivity of the cells, previously highlighted in literature [37]. Furthermore, several 

studies focused on controlling cells proliferation to improve mammalian cells productivity were 

previously discussed [38]. Within these approaches, medium optimization and metabolic rewiring of the 

cells holds a promise in controlling cell’s proliferation and consequently improving the product’s final 

titer [39,40]. In fact, the increase of production of recombinant proteins in stationary phase was 

previously observed [41]. To achieve this behavior, several approaches were already used to control the 

proliferation of the cells as mean of increasing its productivity in bioprocesses [42]. Strategies based on 

culturing the cells at lower temperatures (e.g., 32º C), chemical treatments (e.g., sodium butyrate) or 

also cell cycle arrest strategies, were previously described in the literature [43–46]. 

Ensuing, in figure 4.2, we can observe a summary describing the different values of the specific growth 

rate of the 3 different CHO cell lines tested in this study. According to these results, no significant 

differences in growth rate values were observed in non-treated cells and when treated with 4mM AKG. 
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When adding higher concentrations (8mM and 12mM of AKG) a more important difference in growth 

rate was observed among these cell types. These experimental results are comparable to the data 

previously published in Kwang Ha et al., 2014, where they tested different TCA cycle intermediates that 

can substitute glutamine in the cell culture medium. They also observed a clear decrease in growth rate 

of CHO cells with AKG supplementation. The latter was recovered after various passages [34]. 

 

Figure 4.1 Growth profiles of three different CHO cell lines used in the study. (A), (C) and (E) represent 

respectively the growth profiles of CHO-K1, CHO-HyC and CHO-EpoFc cell lines non supplemented with AKG (Purple 

squares), supplemented with 4mM AKG (Blue inclined squares), supplemented with 8mM AKG (Black circles) and 

supplemented with 12mM AKG (Green triangles). (B), (D) and (F) represent respectively the viability of the cells along the 

cultures of CHO-K1, CHO-HyC and CHO-EpoFc cell lines non supplemented with AKG (Purple squares), supplemented with 

4mM AKG (Blue inclined squares), supplemented with 8mM AKG (Black circles) and supplemented with 12mM AKG (Green 

triangles). The error bars represent the standard deviation between replicates.  
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This is explained by the fact that the cells tend to adapt its metabolism to the new media formulation 

and adjust it according to the available nutrients, which will generate a distinct metabolic flux 

distribution within the cell. A higher amount of a specific metabolite can change the utilization of 

metabolic pathways and influence growth parameters mainly the specific growth rate, doubling time 

and the maximal cell density. 

 

Figure 4.2 Comparison of growth rate values between different CHO cell lines (Producer and non-producer 

cells). The green bars represent the growth rate values of CHO-K1 non-producer cells. The grey and blue bars represent 

respectively the growth rates of two producer cells CHO-HyC and CHO-EpoFc. The error bars represent 95% confidence 

interval. 

4.3.2. Product titer and CHO productivity for producer cells 

When supplementing AKG, the production titers of Trastuzumab and EpoFc recombinant proteins 

obtained by different producer strains of CHO cells were monitored and described in figure 4.3. 

According to these results, we noticed an increase in the final batch titer when increasing the 

concentration of AKG in the medium. Regarding CHO-EpoFc and CHO-HyC cell lines, the final titer of 

the recombinant product in cells non-treated with AKG was respectively 108.25±1.06 µg/mL and 

686.9±20.57 µg/mL. When increasing AKG concentration in the medium up to 12mM, the final titer 

increased by 1.5-fold, reaching a concentration of 170.7±9.52 µg/mL and 1023±47 µg/mL 

respectively for CHO-EpoFc and CHO-HyC cell strains. 
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Figure 4.3 Comparison of final batch product titers between 2 different CHO cell lines (CHO-EpoFc and 

CHO-HyC) when varying AKG supplemented concentration. The barplots describing product titers of CHO-HyC cells 

were highlighted in grey. The barplots describing product titers of CHO-EpoFc cells were highlighted in blue. Error bars 

represent 95% confidence interval. 

 

Furthermore, during the exponential phase of the culture, the specific productivity (qP) values of both 

producer cell lines were calculated and different qP values were determined. The first is related to the 

viable cell density values (VCD) and the second is related to the corresponding cell volume (VCV), 

described respectively in (pg/cell/day) and (mg/mL/day). The mathematical description is described in 

materials and methods section. In figure 4.4, we can observe the different qP values for CHO-EpoFc 

(4.4/A) and CHO-HyC (4.4/B). In the case of CHO-EpoFc cells (Left plot), no significant changes were 

observed regarding the productivity of the cells. However, for CHO-HyC (Right plot), the specific 

productivity, in the exponential phase of the culture, increased when supplementing AKG. For the low 

producer cell line (CHO-EpoFc), the specific productivity was estimated as 2.66 pg/cell/day and 1.7 

mg/ml/day in the case of cells non-treated with AKG, while the qP values remained relatively 

unchanged, corresponding to 2.53 pg/cell/day and 1.55 mg/mL/cell for the case of CHO-EpoFc cells 

treated with 12mM AKG. Thereafter, focusing on the high-producer cell line, the specific productivity 

was estimated as 20.0 pg/cell/day and 12.7 mg/mL/day in the case of CHO-HyC cells non-treated 

with α-ketoglutarate increasing around 1.9-fold, corresponding to 38.1 pg/cell/day and 1.87-fold with a 

value of 21 mg/mL/cell for the case of CHO-HyC cells treated with 12mM AKG. 

Taking into consideration these differences in productivities during the exponential phase and the 

increase in the final titer values when increasing α-ketoglutarate concentration for both lines, we can 

assume that for the case of CHO-EpoFc cells treated with α-ketoglutarate, the production rate of the 

recombinant EpoFc proteins increased significantly in the stationary phase. 
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Conversely, the production rate of Trastuzumab clearly was improved in both exponential and the 

stationary phase, for CHO-HyC cells. The latter is a logical observation knowing that, in the exponential 

phase of the culture, there might be a clear competition between growth and production of recombinant 

proteins from nutrients standpoint [8], especially for the case of CHO-HyC. 

As previously described, CHO-HyC is a GSneg cell line. The latter seems to benefit more from the 

supplementation of AKG to the cell culture media, which can be explained by the fact that this high 

producer strain tends to biosynthesize glutamine due to its lack in the medium. In this construct, the 

glutamine is mainly produced by the available glutamate in the culture, which can be generated using 

AKG. Of course, this reaction is possible due to the GS gene inserted in the cells together with the 

transgene of interest. 

 

Figure 4.4 qP values for CHO-EpoFc (A) and CHO-HyC (B) and comparison between different AKG 

conditions. The qP of batch cultures were calculated by VCD (Red bars, pg/(cell*day)) or VCV (Green bars, mg/(cm3*day)). 

The error bars represent 95% confidence interval. 

 

In summary, we clearly observed that CHO production increased when supplementing AKG. Interesting 

results were observed mainly in CHO treated with 8mM and 12mM α-ketoglutarate, where the final 

titers were improved significantly. Even though the maximal cell densities were lower in treated cells, 

productivities were higher than previously published data [36]. Previous study showed also that α-

ketoglutarate is efficient in improving the productivities of CHO cells [34]. The results obtained in this 

work clearly consolidate the previously published data by exploring the effect of different concentration 

of AKG on two different producer CHO cell lines, DHFR and GS constructs. 
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4.3.3. Metabolic Impact of AKG supplementation 

As previously described, supplementing α-ketoglutarate had a clear influence on the growth 

characteristics of CHO. In order to understand the metabolic behavior of the cells in the presence of 

different concentrations of α-ketoglutarate in the cell culture media, the levels of several extracellular 

metabolites (glucose, lactate, ammonium and amino acids) were monitored over the culture period 

focusing on both non-producer (CHO-K1) and high-producer CHO (CHO-HyC) cell lines, to understand 

and compare the metabolic behavior of these two platforms, in the presence of AKG. In this part of the 

study, we decided to compare the data of both non-producer and producer CHO cells. CHO-EpoFc were 

excluded from this study since our focus is mainly centered around understanding what metabolic 

pathways are involved in obtaining high titers of recombinant proteins emphasizing more on the 

industrially preferred GSneg CHO cell lines (CHO-HyC). In this section, the metabolic profiles of CHO-K1 

and CHO-HyC cells treated or not with AKG are shown respectively in figure 4.5 and 4.6. In these 

figures, a number of time points especially concerning AKG and aspartate were not analyzed due to 

limiting access to the analytical equipment. Following, in figure 4.7 and 4.8, we can observe the 

different exchange rates of metabolites for both CHO-HyC and CHO-K1 cells cultured with different AKG 

concentrations. 

4.3.3.1. Effect of α-ketoglutarate on glucose and lactate metabolism 

During the exponential phase of the culture, we previously highlighted that the growth rate of CHO 

decreases when increasing the levels of α-ketoglutarate in the media. Looking at the consumption of 

glucose during culture, we can observe that, for non-treated cells, glucose depletes earlier comparing to 

the conditions where AKG is supplemented (Figure 4.5A/4.6A). However, looking at the specific 

consumption of glucose per cell, we can affirm that, in the presence of AKG, cells consume glucose at 

higher rates for both CHO-K1 and CHO-HyC cells. Data regarding the consumption and production rates 

of different metabolites are provided in annexes (Table 4.2/4.3). In the case of CHO-HyC cells grown 

with 12 mM AKG, glucose consumption increased by 1.4-folds comparing to the non-treated cells and 

1.3-folds comparing to the cells supplemented with 4mM AKG. For CHO-K1 cells, the latter was slightly 

increased by 1.1-folds comparing the non-treated cells and the cells supplemented with 4mM AKG.  

Focusing on the same conditions, AKG consumption rates increased when increasing its concentration 

in the media. The consumption rate of AKG in CHO-HyC cells treated with 12mM AKG increased 5 

times comparing to the cells treated with 4mM AKG. The same behavior is observed for CHO-K1 cells, 



CHAPTER 4 

105 

where cells treated with 12mM AKG increased 2.1 times comparing to the cells treated with 4mM AKG. 

Throughout these results we can observe that, in the case of CHO-HyC cells, the consumption of 

glucose and AKG, in the exponential phase, is higher comparing to the CHO-K1 cells. This suggests that 

these resources are diverted to produce higher titers of Trastuzumab, correlating with the results 

illustrated in the previous section 4.4.2. 

The low (non-significant) increase in glucose consumption rate in case of CHO-K1 cells is reasonable 

since the uptake rate of AKG in the exponential phase was very low. A hypothesis might be linked to the 

fact that the available nutrients in the media are able to sustain the growth of CHO-K1 cells. Thus, AKG 

play a role as an alternative metabolite in case of CHO-K1 cells, where it is consumed when the nutrient 

concentrations during culture are very low or depleted. In the case of CHO-K1 cultures, results suggest 

that AKG starts being consumed just at the stationary phase of the culture, because glutamate levels 

increased starting from day 9 post-inoculation (Figure 4.5/A and 4.5/C). Another hypothesis can be 

based on the idea that the cells need more time to adapt the metabolism to the consumption of AKG.  

Furthermore, during the exponential phase, the levels of lactate are lower in cultures supplemented with 

AKG (Figure 4.5/B and 4.6/B), an effect that is more pronounced for the K1 cells. The different 

production rates of lactate for all the tested conditions are described in Table 4.2 and 4.3 in annexes, 

respectively representing CHO-K1 and CHO-HyC cells. CHO-HyC cells produce lactate at a higher rate in 

cultures supplemented with α-ketoglutarate.  
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Figure 4.5 Metabolic profiles of CHO-K1 cultures treated or non-treated with AKG. (A) represents the glucose 

profile over time, (B) represents lactate profile over time, (C) represents glutamate profile over time, (D) represents 

ammonium profile over time, (E) represents AKG profile over time and (F) represents aspartate profile over time. 

 

For instance, we observe that for CHO-HyC cells supplemented with 12mM AKG, lactate production rate 

increases by 2-folds comparing to the non-treated cells, whereas, for CHO-K1 cell lines, a small 

increase by ~1.2-folds in lactate production was observed. Despite the fact that lactate secretion rates 

increased when supplementing AKG, the concentrations in the culture remains lower at the AKG treated 

cultures. 

Following, at the late exponential phase, a metabolic switch ceases lactate production and alternates it 

to consumption at the stationary phase of the culture until lactate is fully drained (Figure 4.5/B and 

4.6/B). As an exception, CHO-K1 cells consume lactate at the late exponential phase, just in the AKG 

treated cultures. For the non-treated cells, lactate accumulates during the exponential phase at higher 
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levels comparing to the treated cells together with a slight consumption of lactate when glucose is 

drained. 

 

 

Figure 4.6 Metabolic profiles of CHO-HyC cultures treated or non-treated with AKG. (A) represents the glucose 

profile over time, (B) represents lactate profile over time, (C) represents glutamate profile over time, (D) represents 

ammonium profile over time, (E) represents AKG profile over time and (F) represents aspartate profile over time. 

 

In fact, the high level of AKG in the medium replenishes the TCA cycle of CHO and in parallel seems to 

trigger the glycolytic pathway. Concerning the metabolic switch that forces lactate consumption, in 

some cases, this phenomenon can be triggered by glucose depletion in the medium, change in pH of 

the culture or also the difference in lactate levels in intra and extra cellular environment [47]. In fact, in 

this process, lactate is oxidized to pyruvate, and can take part of 4 metabolic pathways, being converted 
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to acetyl-CoA, oxaloacetate, malate or alanine, generating NADH that can play a role in the oxidative 

phosphorylation mechanism leading to ATP production [47].  

This mechanism of lactate switch in mammalian cultures is, in fact, an efficient metabolic process and 

was previously discussed in literature [48], knowing that high levels of lactate are toxic to the cells, 

consuming it can alleviate this toxicity and can be a source of energy to the cells. This phenomenon 

was previously discussed in various studies, but an exact explanation about the mechanisms that drives 

this switch are still unknown.  

According to these results, we can conclude that, especially regarding the high producer cell line (CHO-

HyC), glucose consumption rate increased during the exponential phase of the culture when increasing 

the levels of AKG (Table 4.2). Jointly, during the late exponential phase, even though lactate production 

rate was higher (Table 4.2), lactate switched to be consumed which decreases its amount in culture, 

overcoming the problem of lactate accumulation and its toxicity.  

4.3.3.2. Amino acids and ammonium 

When supplementing α-ketoglutarate, a major shift in the exchange rates of several amino acids such 

as glutamine, glutamate, asparagine, aspartate and ammonium was observed comparing to the 

standard condition (where CHO cells were grown in CD CHO medium without glutamine and without α-

ketoglutarate) (Figure 4.7 and 4.8). The different exchange rates of ammonia and amino acids in all the 

tested conditions are observed in table 4.2/4.3 in annexes.  

At first, in the presence of high levels of α-ketoglutarate in the medium, glutamate is produced, and its 

rate increases when increasing α-ketoglutarate concentration in the medium. Yet, its secretion period 

was also extended in cultures supplemented with 12mM α-ketoglutarate comparing to the ones with 

4mM α-ketoglutarate (Figure 4.5/C and 4.6/C). The amount of glutamate produced in the treated 

conditions was equivalent to the levels of α-ketoglutarate available in the medium. When reaching a 

level of (~2mM) of α-ketoglutarate, glutamate production from AKG is halted. For the case of CHO-HyC 

cells and looking to the flow of these metabolites over time, we observe that aspartate was the main 

driver of the conversion of α-ketoglutarate to glutamate as its concentration decreases gradually over 

time in the treated cells comparing to the non-treated ones (Figure 4.10). This was not observed for 

CHO-K1 cells (Figure 4.9). Several pathways are driving in the conversion α-ketoglutarate to other 

metabolites such as glutamate. This involves several reactions using specific amino acids such as 
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aspartate, tyrosine, phenylalanine, etc. [49,50]. In our case, we suggest that glutamate production from 

AKG is mediated by two main reactions, the first is the direct conversion of AKG to glutamate, using 

ammonium and the second is relying on the conversion of AKG using aspartate, secreting oxaloacetate. 

Since the extracellular ammonium levels are very low at the beginning of culture, direct conversion of 

AKG to glutamate is metabolically rather difficult. We suggest that AKG is using the available aspartate 

to produce glutamate. Investigating this hypothesis, we noticed that aspartate is consumed at higher 

rates in AKG treated cells.  

In addition, in figure 4.7 and 4.8 we can observe a comparison between the different tested conditions. 

When cells are not treated with AKG, we observe a different metabolic profile of aspartate where it is 

being produced, certainly, as a consequence of asparagine degradation [9], then consumed at the 

early/mid exponential phase. During growth of producer cells, when aspartate is consumed at high 

rate, hypothetically, asparagine comes to support the production of aspartate. Aspartate consumption 

rates increased by 10 folds when supplementing 12mM AKG to the cultures. In addition, asparagine 

consumption rates increased by 3 folds when increasing AKG concentrations in the medium. In the 

case of non-producer cells, the latter increased by 1.5 folds. As described in the literature, aspartate 

uses α-ketoglutarate to produce oxaloacetate and glutamate through transamination [9]. According to 

the experimental data, we observed that α-ketoglutarate metabolism in CHO is directly linked to the 

aspartate-asparagine metabolism.  

One of the possible theories can be that glutamate is also produced by direct conversion of α-

ketoglutarate to glutamate using the free ammonium in the culture and the cofactor NADH. This 

hypothesis is based on the results that show that, although aspartate is depleted, the production of 

glutamate continues, relying on other metabolites available in the medium. To investigate this 

hypothesis, looking at the experimental data, we can observe that, when aspartate is exhausted, CHO 

starts to consume ammonium from the medium. We can observe that ammonium starts to be 

consumed at ~day 6/7 of the experiment, exactly when aspartate depletes from the medium (Figure 

4.6/D, 4.7/D, 4.9 and 4.10). In the case of non-treated cells, the ammonium levels are rather 

stationary, which is probably related to the low levels of amino acids in the medium (e.g., glutamine, 

glutamate, asparagine, aspartate and serine).  

In cultures treated with α-ketoglutarate, we observe a production of α-ketoglutarate in the stationary 

phase, after it was depleted in the mid exponential phase. This production of α-ketoglutarate in the 

stationary phase, comes with a high increase of ammonium levels in the medium. The latter 
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phenomenon is an indication that the produced glutamate during the exponential phase, degrades to 

produce α-ketoglutarate, which will fuel the TCA cycle producing energy and boosting the production of 

recombinant proteins of interest.  

Finally, we can observe that for the cells treated with α-ketoglutarate, glutamine production rate 

increases also with the increase of α-ketoglutarate concentration in the medium. Looking to figures 4.7 

and 4.8, we can observe that the biosynthesis rate of glutamine is clearly higher in treated cells 

comparing to the non-treated cells, with a production rate 12 folds higher than the non-treated cells. 

Looking deeper to the metabolic flow of glutamine during culture, we can observe that glutamine is 

produced at high rate in the early exponential phase. In the mid/late exponential phase, the produced 

glutamine is consumed rapidly. The production/consumption rate of glutamine is higher in the case of 

CHO supplemented with 12mM α-ketoglutarate comparing to the non-treated cells.  

These results are in accordance with the hypothesis targeting the use of α-ketoglutarate 

supplementation to overcome the lack of glutamine in the medium. This way, the cells will rely in its 

metabolic capabilities to biosynthesize the required metabolites. In addition, glutamine production plays 

a role in detoxifying the cells from the free ammonium in the culture during growth instead of secreting 

it when glutamine is initially present in the medium. We can affirm that this strategy is more efficient 

from bioprocess standpoint overcoming the drawbacks of the initial supplementation of glutamine to the 

medium but not ignoring its essentiality for the cells, as a nitrogen supply, fueling biosynthesis, energy 

generation [51] and for the produced recombinant proteins.  

Another interesting result is the high production of glycine when increasing the AKG concentrations in 

the medium. Usually, glycine is a product of serine catabolism in culture. Its accumulation in culture 

indicates a positive effect [8]. Furthermore, alanine secretion rates increase when increasing the level of 

AKG in cultures. Even if its rate increases, alanine levels in CHO-HyC cultures were lower for the treated 

cells comparing to the non-treated (Figure 12). A different alanine profile was observed in CHO-K1 

cultures. On the other hand, serine consumption rates were very high in the case of CHO-HyC cultures 

while in the case of CHO-K1 cells, rather a small change in its uptake rate was observed (Figure 4.7 

and 4.8).  

Following, the uptake rates of the essential amino acids, for instance leucine, isoleucine, lysine and 

valine increased when increasing AKG concentrations in CHO-HyC cells. Conversely, these values were 

not influenced for CHO-K1 cells. This might be related to the fact, that these amino acids play an 
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important role in the production of recombinant proteins in the case of CHO-HyC cells. Higher 

productivity and titers need to be supported by higher levels of amino acids. 

 

Figure 4.7 Exchange rates of key metabolites during culture of CHO-HyC cells treated or not with α-

ketoglutarate. The negative and positive value indicate, respectively, the uptake and secretion rates of the corresponding 

metabolite. The values of the exchange rates of metabolites are expressed in mmol/gDW/h. Note that the rates of glucose, 

lactate and other metabolites were scaled down to fit the plot (indicated by the numbers after “/”). 

 

Regarding ammonium, its levels in culture were lower when increasing α-ketoglutarate concentration in 

the medium, for both CHO-HyC and CHO-K1 cells (Figure 4.5.D and 4.6.D). Yet, we noticed that the 

secretion rates of ammonium are higher when increasing AKG concentrations in the medium. For both 

cell lines, ammonium levels were slightly lower in culture during the early/mid exponential. Following, in 

the late exponential phase of the culture, ammonium is consumed and afterwards produced in the 

stationary phase of the culture, probably as a consequence of oxidative deamination of glutamate via 

GDH, generating α-ketoglutarate, that fuels the TCA cycle and produces ATP. This process also 

generates NADH or NADPH, important cofactors for oxidative phosphorylation [52]. 

These results are very interesting from bioprocess standpoint, since adding AKG to the culture acts on 2 

different metabolic related bottlenecks at the same time: decreasing lactate concentrations in the 

culture, triggering its consumption by fueling the TCA pathway generating more ATP, and also 

detoxifying the cells from the free ammonium accumulated in the culture through two different 

reactions.  
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For CHO-K1 cells, we observed a different metabolic behavior of the cells towards the use of the 

available α-ketoglutarate in the medium 

 

Figure 4.8 Exchange rates of key metabolites during culture of CHO-K1 cells treated or not with α-

ketoglutarate. The negative and positive value indicate, respectively, the uptake and secretion rates of the corresponding 

metabolite. The values of the exchange rates of metabolites are expressed in mmol/gDW/h. Note that the rates of glucose 

and lactate were scaled down to fit the plot (indicated by the numbers after “/”). 

 

At the stationary phase, we notice that α-ketoglutarate starts being produced, as a result of degradation 

of glutamate that was produced in the exponential phase. 

4.4. Conclusions 

Based upon the in silico results described in chapter 3, we recurred in this chapter to test 

experimentally the effect of supplementing different concentrations of AKG to the culture medium, 

evaluating its effect on growth, productivity and accumulation of by products during culture. This 

experimental validation was performed using different CHO strains (producer and nonproducer cells).  

In this context, we can conclude that AKG is a valuable additive to the culture media and can play a role 

in substituting glutamine in the formulation. Glutamine is generated due to AKG conversion to glutamate 

and the latter to glutamine.  

In addition, we were able to prove that the conversion of AKG to glutamate was mainly based on the use 

of available aspartate in the medium. Besides, we deduce that when increasing the AKG concentrations 
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in the medium, the final product titer of increased significantly. The latter is 1.9 folds higher comparing 

to the titer obtained in standard conditions. Obtaining higher titers may be correlated with the fact of 

exhibiting a more effective metabolism, fueling the TCA cycle and allowing lower accumulation of 

ammonia and lactate during culture.  

In addition, we were able to underline the different metabolic mechanisms involved in converting the 

supplemented AKG to CHO cultures. This knowledge is a valuable asset for developing optimization 

strategies, especially targeting cell culture media optimization. One approach can be based on 

increasing the aspartate levels in the media due to its potential in driving the conversion of AKG to 

glutamate. Another optimization strategy can be based on supplementing traces of ammonium in the 

culture in order to boost other metabolic reactions based on converting directly AKG to glutamate. 

4.5. Annexes: 

Table 4.2 Exchange rates of metabolites for CHO-HyC cells treated or not with AKG (mm/gDW(h). 

 CHO-HyC_0mM AKG CHO-HyC_4mM AKG CHO-HyC_8mM AKG CHO-HyC_12mM AKG 

 qM Standard 

error 

qM Standard error qM Standard 

error 

qM Standard error 

Alanine 0.01304 0.00133 0.02543 0.00050 0.02892 0.00148 0.03488 0.00430 

Arginine -0.00336 0.00015 -0.00586 0.00088 -0.00534 0.00088 -0.00682 0.00096 

Asparagine  -0.03790 0.00467 -0.07042 0.00446 -0.08159 0.00264 -0.11450 0.00637 

Aspartic acid -0.00227 0.00080 -0.00816 0.00055 -0.01488 0.00345 -0.02440 0.00679 

Glutamic acid -0.00350 0.00019 0.01314 0.00469 0.02264 0.00486 0.03249 0.00446 

Glutamine  0.00612 0.00464 0.00705 0.00056 0.02686 0.01273 0.07362 0.02515 

Glycine 0.00914 0.00541 0.00954 0.00209 0.01289 0.00239 0.03061 0.00510 

Histidine -0.00148 0.00027 -0.00248 0.00048 -0.00262 0.00095 -0.00209 0.00084 

Hydroxy 

Proline 

-0.00036 0.00067 -0.00052 0.00118 -0.00191 0.00285 0.00139 0.00087 

Isoleucine -0.00498 0.00025 -0.01126 0.00163 -0.01130 0.00220 -0.01507 0.00280 

Leucine -0.00895 0.00011 -0.01901 0.00243 -0.01894 0.00269 -0.02084 0.00221 

Lysine -0.00247 0.00187 -0.00730 0.00251 -0.00784 0.00262 -0.01062 0.00669 

Methionine -0.00227 0.00026 -0.00356 0.00028 -0.00351 0.00039 -0.00418 0.00070 

Phenylalanine -0.00347 0.00041 -0.00594 0.00050 -0.00607 0.00088 -0.00618 0.00070 

Proline -0.00507 0.00049 -0.00961 0.00193 -0.01000 0.00276 -0.01460 0.00301 

Serine -0.01674 0.00297 -0.03266 0.00353 -0.03533 0.00237 -0.04302 0.00826 
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Threonine -0.00436 0.00034 -0.00721 0.00117 -0.00568 0.00238 -0.00545 0.00306 

Tryptophan -0.00139 0.00025 -0.00251 0.00060 -0.00208 0.00091 -0.00114 0.00652 

Tyrosine -0.00258 0.00027 -0.00466 0.00056 -0.00451 0.00079 -0.00596 0.00091 

Valine -0.00741 0.00044 -0.01329 0.00182 -0.01193 0.00265 -0.01525 0.00229 

Glucose -0.3380 0.0202 -0.3557 0.0192 -0.3992 0.0154 -0.4620 0.02854 

Lactate 0.3545 0.0469 0.4057 0.0424 0.5378 0.0504 0.7030 0.0455 

Ammonia 0.0398 0.0029 0.0434 0.0026 0.0573 0.0018 0.0707 0.00136 

AKG 0 0 -0.0238 0.0015 -0.0292 0.0075 -0.1228 0.01583 

 

Table 4.3 Exchange rates of metabolites for CHO-K1 cells treated or not with AKG (mmol/gDW/h). 

 CHO-K1_0mM AKG CHO-K1_4mM AKG CHO-K1_8mM AKG CHO-K1_12mM AKG 

 qM Standard 

error 

qM Standard 

error 

qM Standard 

error 

qM Standard 

error 

Alanine 0.01938 0.00179 0.02950 0.00164 0.03737 0.00040 0.03831 0.00135 

Arginine -0.00587 0.00072 -0.00645 0.00148 -0.00660 0.00050 -0.00725 0.00054 

Asparagine  -0.04132 0.00645 -0.04456 0.01076 -0.05297 0.00656 -0.06185 0.00663 

Aspartic acid -0.01229 0.00020 -0.01201 0.00036 -0.01420 0.00030 -0.01558 0.00046 

Glutamic acid -0.01520 0.00024 -0.01737 0.00141 -0.02175 0.00220 -0.01936 0.00201 

Glutamine  0.01326 0.00151 0.01624 0.00161 0.02161 0.00255 0.03280 0.00433 

Glycine 0.00644 0.00166 0.00810 0.00354 0.00933 0.00208 0.00870 0.00244 

Histidine -0.00229 0.00024 -0.00219 0.00054 -0.00248 0.00037 -0.00304 0.00021 

Hydroxy 

Proline 
0.00059 0.00030 0.00161 0.00051 0.00123 0.00092 0.00083 0.00052 

Isoleucine -0.00879 0.00084 -0.00930 0.00108 -0.01054 0.00026 -0.01169 0.00039 

Leucine -0.01477 0.00138 -0.01569 0.00174 -0.01738 0.00072 -0.01911 0.00049 

Lysine -0.00634 0.00176 -0.00577 0.00300 -0.00801 0.00145 -0.00934 0.00185 

Methionine -0.00428 0.00029 -0.00438 0.00039 -0.00500 0.00019 -0.00578 0.00022 

Phenylalanin

e 
-0.00381 0.00042 -0.00405 0.00094 -0.00434 0.00026 -0.00484 0.00034 

Proline -0.00662 0.00087 -0.00402 0.00244 -0.00670 0.00112 -0.00881 0.00077 

Serine -0.02522 0.00273 -0.02571 0.00380 -0.03006 0.00242 -0.03228 0.00219 

Threonine -0.00591 0.00045 -0.00501 0.00090 -0.00679 0.00082 -0.00781 0.00064 

Tryptophan -0.00192 0.00024 -0.00158 0.00039 -0.00217 0.00020 -0.00244 0.00019 

Tyrosine -0.00317 0.00028 -0.00339 0.00035 -0.00385 0.00025 -0.00423 0.00030 
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Valine -0.00810 0.00093 -0.00771 0.00142 -0.00931 0.00066 -0.00999 0.00077 

Glucose -0.27302 0.01453 -0.26835 0.01476 -0.28437 0.01331 -0.29501 0.01855 

Lactate 0.22692 0.02506 0.22269 0.02658 0.25120 0.02918 0.26569 0.02838 

Ammonia 0.03775 0.00305 0.03802 0.00385 0.04071 0.00366 0.05037 0.00373 

AKG 0  0 -0.00874 0.00070 0.01220 0.00592 -0.01874 0.00440 

 

 

Figure 4.9 Metabolic flow of metabolites directly involved in the conversion of AKG to glutamate for CHO-K1 

cells. (A) represents the aspartate profile over time, (B) represents alanine profile over time, (C) represents asparagine 

profile over time, (D) represents phenylalanine profile over time, (E) represents tyrosine profile over time. 
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Figure 4.10 Metabolic flow of metabolites directly involved in the conversion of AKG to glutamate for CHO-

Hyc cells. (A) represents the aspartate profile over time, (B) represents alanine profile over time, (C) represents asparagine 

profile over time, (D) represents phenylalanine profile over time, (E) represents tyrosine profile over time. 
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5. CHAPTER 5  

Cell culture media optimization for CHO cells 

 

The information presented in this Chapter is being prepared for submission to a peer reviewed journal: 

Hamdi A., Borth, N., Zanghellini, J., Rocha I.; In silico-based approach for medium optimization of CHO 

cells. 

--------------------------------------------------------------------------------------------------------- 

5.1. Introduction 

Based on the recent advances in metabolic engineering and bioinformatics, several efforts are targeted 

at improving mammalian bioprocesses [1,2] and translating the predictive pipeline for bioprocess 

optimization from academic research to industry. Various studies highlighted the benefits of 

mathematical modeling for bioprocess optimization [3]. To achieve these goals, optimization strategies 

are being used employing CHO specific genome scale models, to predict cell growth, metabolic features 

of the cells and optimize the productivity/quality of the produced recombinant proteins (e.g., 

monoclonal antibodies) [4]. These predictions are based on combining genome scale metabolic 

models, experimental omics data and constraint-based modeling approaches to consolidate fluxomics 

studies. Omics data are very important asset to calculate, in silico, cellular flux distributions in an 

accurate manner [5] and consequently infer about the cell metabolism when varying culture conditions. 

Assuming steady state or a dynamic mode, these tools can be very useful for metabolic engineering and 

media design/optimization strategies.  

Along the years, several approaches for media optimization of mammalian cells, especially for CHO, 

have been explored, aiming at improving cell culture conditions and production titers. As described in 

chapter 2 and 4, one of the most important highlights was the development of serum-free, animal-free, 

chemically defined media. These media were further optimized using different strategies such as media 

blending and high-throughput screening of the best candidates, relying on deterministic modeling 

approaches, for instance design of experiments (DoE) [6].  
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Moreover, to further improve the production yield, strategies such as fed-batch and perfusion 

technologies were used to control the levels of toxic metabolites and improve the production titers of 

recombinant proteins of interest by balancing nutrients levels in culture and improving feeding 

strategies [7]. Several efforts were performed for media and feed optimization, improving CHO cells 

productivity and also decreasing the hurdle of downstream processing [8–14]. 

Knowing that different strains within CHO have different growth requirements, feeding strategies have to 

be customized to the cell strain in use [15,16].  It is also relevant to address other topics, for instance, 

cells heterogeneity and epigenetic regulations. 

Further, one of the most important aspects of media optimization is based on spent media analysis. 

This strategy is very useful to understand the flow of metabolites in the culture, which will facilitate 

designing the best media formulation for the cell line in use, and also determining optimal feeding 

tactics [17]. Accordingly, regular monitoring of glucose, amino acids, vitamins, etc. is very important in 

order to understand how the cells consume these nutrients and what are the limiting components that 

might influence the bioprocess performance.  

Following this idea, balancing amino acids levels in the medium has a great potential in improving not 

only growth parameters of CHO, but also the final product titers. Previous studies showed that by 

optimizing the amino acids levels in the medium, CHO cells were able to increase titers of fusion 

proteins by almost 25% [18]. Other efforts based on employing statistical experimental design 

methodologies helped also in improving the titers of recombinant proteins in CHO by 70%. These 

studies allowed understanding the key amino acids essential for CHO growth and the important 

elements interfering with the production of recombinant proteins [19,20].  

Amino acids are very important metabolites for the mammalian cell [21]. Besides providing essential 

building blocks molecules for cell metabolism and protein production, amino acids can also act as 

signaling molecules influencing cellular apoptosis [22] and also regulate the levels of osmolality in the 

medium and of other metabolites (e.g., ammonium). Therefore, it is mandatory to optimize the amino 

acids levels in the medium to fulfill the cellular needs. Within mammalian cells, it is important to 

optimize the concentrations of both essential amino acids (EAA) and non-essential amino acids (NEAA) 

in the medium, since they control, in a sophisticated manner, growth and recombinant proteins 

production. In fact, the medium has to contain high levels of EAA since they are consumed usually at 

very high rates [23]. Low concentrations of some EAA amino acids in culture, for instance, branched 



CHAPTER 5 

129 

amino acids (e.g., Leucine, isoleucine and Valine) or also phenylalanine, can heavily influence 

transporters activity in the cell, for instance, the L-transport system. Studies showed that Na+ transport 

system increased activity by 3-4 folds when cells starved these amino acids [24]. In media design 

efforts, different amino acids often have to be added at higher concentrations than the values 

determined in silico or by fluxomics/metabolomics studies [25] and levels of other EAA (e.g., 

tryptophan or lysine) have to be optimized since their excess or deficiency can radically influence the 

process, for example by secreting toxic amino acids derivatives [26,27]. 

On the other hand, NEAA are also very important nutrients for various metabolic pathways within the 

cell. Even though NEAA can be synthesized by mammalian cells, they are substantial in the cell culture 

medium. As previously described (Chapter 4), we noticed that when supplementing AKG into the 

medium, a very significant shift was observed from the levels of NEAAs standpoint. Glutamine and 

glutamate were highly produced and aspartic acid was depleted at a very early phase of the culture. An 

important observation was also regarding the exchange rates of both alanine and glycine, reflecting that 

high levels of AKG in the medium can rewire the metabolism and alter its behavior. Asparagine and 

aspartic acid are particularly important in various mechanisms in the mammalian metabolic system. 

These NEAAs are typically consumed at very high rates, mainly at the exponential phase of the culture, 

playing an important role in energy and glutamine/glutamate metabolism [12,28]. Lack of asparagine 

in the cell culture medium can radically impact protein synthesis and also the process by altering the 

quality of monoclonal antibodies [29]. However, its lack in the medium can be compensated by higher 

uptake of other amino acids such as aspartate, glutamine or glutamate. Although asparagine is known 

to be highly aminogenic, ammonium concentrations can be further controlled by balancing the levels of 

asparagine, glutamine and/or glutamate in the medium [30].  

When designing an optimized formulation of the cell culture media, it is important to focus on studying 

also the recombinant protein being produced. In our case, CHO-HyC cells are producing Trastuzumab, 

a humanized monoclonal antibody under the commercial name of Herceptin. The latter is an IgG1 

kappa molecule, a very important biopharmaceutical for the treatment of HER2-positive metastatic 

breast cancer [31], developed by Genentech/Roche and targeting specifically the human epidermal 

growth factor receptor 2 (HER-2/neu) [32,33]. The amino acids sequence of both the heavy chain and 

the light chain of this molecule is described in the invention patent of Trastuzumab [34]. 

Supplementing α-ketoglutarate to CHO cultures showed a great potential in improving productivity and 

decreasing by-products accumulation. Subsequently, according to the metabolomics results obtained in 
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chapter 4, we will try to optimize cell culture media and apply it to CHO-HyC. However, there is a wide 

room for media optimization, since we noticed that in the presence of AKG, the amino acids levels in 

the standard medium are unbalanced. Aspartate was highly consumed in the presence of AKG in 

culture, together with a high production of glutamate. Following these observations, we decided to 

design a medium containing the same levels of essential amino acids as the standard used media CD 

CHO, together with altering the levels of NEAAs by removing glutamate from the formulation and 

replacing it by 8 mM AKG. Additionally, higher levels of aspartate were supplemented to boost the 

production of glutamate by AKG. Additionally, a decrease in asparagine levels was tested in the 

presence of high values of aspartate in the media. Finally, the effect of supplementing different 

concentration of ammonium was performed. This strategy is based on triggering the reaction of direct 

production of glutamate from AKG at the beginning of the culture, relying on ammonia. Since ammonia 

levels in the beginning of the batch are very low, this strategy was employed in order to force the 

production of glutamate to fulfill the metabolic need of CHO-HyC cells. Taking into consideration that 

the latter is a GSneg cell line where the GS gene was inserted with the transgene of interest, glutamine 

production is expected during culture to overcome its lack in the medium. 

5.2. Materials and methods 

5.2.1. Experimental setup 

5.2.1.1. Cell culture 

The CHO-HyC cell line was used in this work. These cells correspond to an antibody expressing CHO 

cell line provided by Cytiva, Uppsala, Sweden. The latter is GSneg cell line and known as a high-

producer industrial clone, producing Trastuzumab, a monoclonal antibody under the commercial name 

of Herceptin.  

CHO cells were cultivated in suspension mode in chemically defined serum-free conditions using CD 

CHO medium (Gibco, Invitrogen, Carlsbad, CA, USA). After thawing, the cells were routinely cultivated in 

50 mL TPP® TubeSpin bioreactors (Techno Plastic Products AG, Trasadingen, Switzerland) at a maximal 

working volume of 25 mL. The cells were incubated in 37°C in 80 % humidified air with 7 % CO2, 

shaking at a speed of 220 rpm (rotation per minute). The cells were passaged every 3-4 days and the 

viable cell concentrations, viabilities and the values of the average cell diameters were determined using 

Vi-CELLXR (Beckman Coulter, USA).  
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To perform the experiments described in this chapter, we recurred to the use of CD CHO media without 

amino acids, a pre-customized medium purchased from Thermo-Fisher Scientific (Reference: 

ME19349L1). The formulation contained the same components with concentrations similar to CD CHO 

media, used for the negative control experiments.    

In order to design media formulation, non-essential amino acids levels were optimized. Amino acids 

stock solutions were prepared in the lab (see next section) and supplemented to the culture medium 

according to the desired levels in each experiment. Regarding essential amino acids, the levels were 

unchanged. Its concentration in the optimized media is equivalent to the values described in the CD 

CHO medium. 

In these experiments, different levels of glutamate, aspartic acid and asparagine, were tested in this 

study. After thawing, the cells were passaged 3 times in the corresponding culture conditions. For the 

experimental setup, batch cultures were performed in triplicates using 50 mL TubeSpin bioreactors at a 

working volume of 28 mL, incubated in 37°C in 80 % humidified air with 7 % CO2, shaking at a speed of 

220 rpm. All the experiments were performed in triplicates, inoculated at the beginning of the 

experiment, at the same time and seeding density. Cell concentration and viability were monitored every 

24h. In addition, samples for metabolomics evaluation were withdrawn every 24h. The culture 

continued until reaching a cell viability lower than 60 %.  

5.2.1.2. Preparation of amino acids solutions 

All the amino acids used in this study are from non-animal origin and suitable for cell culture 

experiments. The different amino acids used in these experiments were dissolved in CD CHO medium 

without amino acids, forming the stock solutions prior to the experiments. The reason behind dissolving 

these amino acids in the medium is to avoid the dilution of the other nutrients of the medium.  

The pH of the stock solutions was adjusted to 7.2 (besides some amino acids which are stable in acidic 

or basic pH). In table 1, we find the list of the used amino acids, its solubility values, the stock 

concentration prepared and the manufacturer references jointly with the CAS-number. 
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Table 5.1 Amino acids used in this study. 
 

Amino acid Solubility* Stock concentration Reference** CAS-

Number 

L-Arginine H2O: 100 mg/mL 70 mM A8094 74-79-3 

L-Asparagine 1 M HCl: 100 

mg/mL 

100 mM A4159  70-47-3   

L-Aspartate 1 M HCl: 100 

mg/mL 

70 mM A7219 56-84-8 

L-Cystin 1 M HCl: 100 

mg/mL 

30 mM C7602 56-89-3 

L-Glutamate 1 M HCl: 100 

mg/mL 

100 mM G8415 56-86-0 

L-Histidine H2O: 50 mg/mL 70 mM H6034 71-00-1 

L-

Hydroxyproline 

H20 70 mM H5534 51-35-4 

L-Isoleucine 1 M HCl: 50 mg/mL 100 mM I7403 73-32-5 

L-Leucine 1 M HCl: 50 mg/mL 100 mM L8912 61-90-5 

L-Lysine H2O: 100 mg/mL 70 mM L8662 657-27-2 

L-Methionine H2O: 25 mg/mL 70 mM M5308 63-68-3 

L-Phenylalanine 1M HCl; 50 mg/mL 70 mM (Protected from 

light) 

P5482 63-91-2 

L-Proline H2O: 50 mg/mL 100 mM P5607 147-85-3 

L-Serine H2O: 50 mg/mL 100 mM S4311 56-45-1 

L-Threonine H2O: 1 g/10 mL, 

clear, colorless 

70 mM T8441 72-19-5 

L-Tryptophan 1 M HCl: 10 mg/mL 70 mM (Protected from 

light) 

T8941 73-22-3 

L-Tyrosine 1 M HCl: 25 mg/mL 70 mM T8566 60-18-4 

L-Valine H2O: 25 mg/mL 100 mM V0513 72-18-4 

*According to manufacturer recommendations. **Sigma-Aldrich order reference. 
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5.2.1.3. Media preparation 

In this study, two different media formulations were prepared in order to evaluate the effect of adjusting 

amino acids levels in the media, on high-producer CHO clones (CHO-HyC). The different media 

formulations are summarized in the following table: 

Table 5.2 The levels of essential, non-essential amino acids and metabolites in the prepared cell culture 

media. 

Essential 

amino acids 

Concentrat

ion (g/L) 

Non-essential 

amino acid 

Concentration in the medium (g/L) 

CD CHO 

(Standard 

medium) 

Medium A Medium B 

L-Arginine 0.4 L-Aspartate 0.18 0.54 0.72 

L-Cystin 0.1 L-Asparagine 0.9 0.9 0.45 

L-Histidine 0.2 L-Glutamate 0.27 0 0 

L-Isoleucine 0.4 L-Proline 0.54 0.54 0.54 

L-Leucine 0.5 L-Hydroxyproline 0.18 0.18 0.18 

L-Lysine 0.5 L-Glutamine 0 0 0 

L-Methionine 0.1 L-Serine 0.54 0.54 0.54 

L-Phenylalanine 0.2 Metabolite Condition A Condition B 

L-Threonine 0.4 AKG 1.16 1.16 

L-Tryptophan 0.2 Ammonia * * 

L-Tyrosine 0.2 * In experiments using media A and B, different experiments were 

performed adding different levels of ammonium to the culture. The 

levels of ammonium tested were 0.01, 0.02 and 0.04 mM. L-Valine 0.4 

 

As previously described, the levels of essential amino acids were equivalent to the ones at CD CHO 

media. Instead, we adjusted the concentrations of the NEAA in the media, focusing mainly on aspartic 

acid, asparagine and glutamic acid levels. In medium A, aspartate levels were tripled, glutamate was 

removed, and the levels of asparagine kept constant. In medium B, aspartate levels quadrupled while 
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glutamate was removed and asparagine levels were reduced by half. Proline, hydroxyproline and serine 

levels were unchanged, and the concentrations were equivalent to CD CHO formulation. In medium B, 

asparagine was reduced by half in order to understand if the increased levels of aspartate will recover 

the lack of asparagine or not and how the growth and productivity will be affected in this case. 

Furthermore, AKG was added to all the media formulations at a concentration of 8 mM, replacing both 

glutamine and glutamate. In addition, ammonia was also added at different concentrations (0.01 mM, 

0.02 mM and 0.04 mM), to evaluate its effect on growth and productivity on CHO-HyC cells. Negative 

control experiments without ammonia supplementation were also performed. 

The growth parameters in these conditions were compared to the standard culture conditions. The 

latter represent CHO-HyC cells grown in CD CHO media without glutamine. 

5.2.1.4. Osmolality and pH 

For the prepared media solutions, pH was adjusted to 7.2, the same pH value of CD CHO cell culture 

media. Calibration was performed prior to the use of the pH meter. In addition, osmolarity was 

measured by freezing point depression using an Osmomat 030 (Gonotec). Osmolarity was adjusted by 

supplementing NaCl to the cultures. The values of osmolarity of each medium used for the experiments 

are described in the following table. 

Table 5.3 Osmolarity and pH values of the media used in the experiments. 

 
CD 

CHO 

Medium A Medium B 

mM NH4 mM NH4 

0  0.01  0.02  0.04  0  0.01  0.02  0.04  

Osmolality 

(mOsm/kg) 
0.326 0.322 0.322 0.323 0.318 0.324 0.321 0.320 0.319 

pH 7.2 7.2 

5.2.1.5. Extracellular Metabolites 

For the analysis of the extracellular metabolites, the supernatant was collected every 24 h along the 

culture period. The cells were centrifuged 10 min at 200 rcf (relative centrifugal force) and the 

supernatant was collected and stored at -20°C. Analysis of key metabolites (glucose, lactate, glutamine, 

glutamate and ammonium) were performed shortly after sampling, using Bioprofile 100 Plus (Nova 

Biomedical, MA, USA).  
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5.2.1.6. Product quantification 

Product concentration was determined using Octet® QKe (Port Washington, NY), equipped with Dip 

and ReadTM Protein A Biosensors (Port Washington, NY) according to the manufacturer’s 

recommendations. The supernatant was diluted with CD CHO medium prior to measurements in order 

to fit the samples concentrations within the standard curve ranging between 0-100 µg/mL of 

Trastuzumab (BioVision, Milpitas, CA). A negative control consisting of cell culture medium was 

included. This method is based on biomolecular interactions, measuring the binding intensity of our 

product of interest to an immobilized ligand. 

5.2.2. Culture characterization 

Growth data were determined based on Vi-CELL XR data and specific growth rates values were 

calculated as a function of time according to the following equation, knowing that X is the viable cell 

concentration at a specific time point (t), X0 is the initial viable cell concentration and μ represents the 

cell growth rate. 

 

𝑋 = 𝑋0𝑒𝜇𝑡 

 

The viable cell concentration described as viable cell density (VCD) given as viable cells/mL was 

measured using Vi-CELL XR. The viable cell volume VCV was calculated as follows. First, the values of 

the volume per cell using the diameters obtained also from Vi-CELL XR data described as (µm3/cell) 

were calculated according to equation 1 (Eq 1).  

 

𝑬𝒒 (𝟏):        𝑉𝑜𝑙𝑢𝑚𝑒 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙 =  
4

3
 𝜋 (

𝑉𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2
)  3 

 

The values determined in Eq 1 were used to calculate the VCV values as follow in Eq (2). The VCV 

values are described in (mm3/mL). 

 

𝑬𝒒 (𝟐):           𝑉𝐶𝑉 = 𝑉𝑜𝑙𝑢𝑚𝑒 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙. 10−9. 𝑉𝐶𝐷 

 

Pearson’s correlation coefficients were determined for linear correlations between Ln-transformed VCD 

and the culture time, starting from the first time point analyzed (TP00) and including at least 5 time 
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points. For each sample the highest correlation coefficient (rMAX) and the time point (TPXY) of its 

occurrence were determined. The growth rates were calculated as slopes in simple linear regressions of 

the ln-transformed VCD (or VCV) versus the interval (TP00–TPXY). 

Following, cumulative viable cell days (CCDCD), (CCDCV) were calculated based on different values of VCD 

and VCV respectively and described as (cells*days). This method was previously described at Klanert et 

al., 2019 [35] and adopted in this study. The different CCDCD and CCDCV values were determined based 

on the following equations where t represents the hours post-inoculation, and n the number of time 

points analyzed per batch.  

 

𝐄𝐪 (𝟑):                   CCD𝐶𝐷 = ∑  

𝑛−1

𝑖=1

(𝑉𝐶𝐷𝑖+1 − 𝑉𝐶𝐷𝑖). (𝑡𝑖+1 − 𝑡𝑖 )

(ln(𝑉𝐶𝐷𝑖+1 ) − ln(𝑉𝐶𝐷𝑖)). 24
 

 

𝐄𝐪 (𝟒):                   CCD𝐶𝑉 = ∑  

𝑛−1

𝑖=1

(𝑉𝐶𝑉𝑖+1 − 𝑉𝐶𝑉𝑖). (𝑡𝑖+1 − 𝑡𝑖 ). 10−3

(ln(𝑉𝐶𝑉𝑖+1 . 10−3) − ln(𝑉𝐶𝑉𝑖. 10−3)). 24
 

 

Pearson’s correlation coefficients were determined for linear correlations between CCDCD and CCDCV and 

the Trastuzumab titers starting from the second measurement (TP02) (Taking into consideration that 

TP00 is the first measurement of time of inoculation) and including at least 6 time points. For each 

sample the highest correlation coefficient (rMAX) and the time point of its occurrence (TPXY) were 

determined. The specific productivities of Trastuzumab (qP) were calculated as slopes in simple linear 

regressions of the CCDCD (or CCDCV) versus the titers for the interval (TP02 – TPXY), representing the 

exponential phase of the cultures. 

5.2.3. Mathematical fitting of growth and exchange rates of metabolites: 

The calculated specific growth rates and the initial cell concentrations of different experiments were 

used to calculate the exchange rates of different metabolites, for instance, glucose, lactate, ammonia 

and other amino acids, relying on the following equation (Eq (5)) described in Széliová et al., 2020 [36]:  

𝐄𝐪 (𝟓):                             [𝑖] = [𝑖]0 +  
𝑞𝑀𝐵0

µ
(𝑒µ𝑡-1) 

where [i]
0 and [i] are the concentration of metabolite i at the beginning and during the exponential 

phase, respectively, q
M is the specific uptake or secretion rate of metabolites, and B

0 is the initial 
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amount of biomass, calculated from the initial cell concentration X
0 and the data of dry mass per cell. 

The latter was obtained internally in the lab and partially adapted from Széliová et al 2020 [36]. This 

equation was used to estimate the exchange rates of metabolites in (mmol/gDW/h), using non-linear 

regression function, based on computational analysis following an R script described in annexes.  

5.3. Results and discussion 

As previously described in materials and methods, two media formulations were tested using CHO-HyC 

GSneg cell line. Growth characteristics, as well as productivity of the cells were evaluated. In addition, 

the metabolic profiles of these cells during culture were studied focusing mainly on key metabolites, 

glutamine, glutamate, glucose, lactate and ammonia. Metabolomics studies based on profiling amino 

acids levels during culture was not assessed in this part of study due to limitation to access the 

analytical tools at the university.   

5.3.1. Growth characteristics 

Throughout the results and looking at figure 5.1, we can observe the different growth profiles, as well as 

the viability trends of the different tested conditions using both medium A and B. Looking at figure 

5.1/A we can observe that no significant differences were observed regarding cell growth when 

supplementing different concentrations of ammonia to the cells cultured in medium A. Similar results 

were observed in Figure 5.1/C, where ammonia supplementation did not have an effect on the growth 

of CHO-HyC cells cultured in the second medium, B. On the other hand, we can notice that the 

maximal cell density of the cells in both media A and B was reduced by half comparing to the results of 

the cells grown in CD CHO medium without AKG and without glutamine (Results described in chapter 

4). As we can see in figure 5.1 A/C, the maximal cell density of CHO-HyC cells reached 5x106 cells/mL, 

while for the cells grown in CD CHO media without AKG and without glutamine, cells reached almost 

11x106 cells/mL. The decrease in maximal cell density is not related to the presence of ammonia in the 

culture, since the negative control culture, grown in both media A and B without ammonia (Highlighted 

in purple in figure 5.1A/C) showed similar growth trends.  

In literature, few studies were performed in order to assess the ammonia influence on growth of CHO 

cells. Results published in Mio-Sam Lao and Derek Toth, stated that higher levels of ammonia in the 

culture did not influence cell growth neither productivity of glycoproteins in CHO cells [37]. On the other 

hand, a study performed by Yang  and Butler, 2000 suggested that supplementing concentrations of 
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ammonia chloride above 5 mM can impact growth [38]. Knowing that in these experiments, the 

ammonia levels supplemented to the media were of a maximum concentration of 0.04 mM, it is 

excluded that ammonia is responsible for the lower cell densities using Media A and B. 

 

Figure 5.1 Growth parameters of CHO-HyC cells grown in tested medium A and B. 

(A) represents the growth profiles of CHO-HyC cells grown in medium A supplemented or not with ammonium describing the 

VCD of the cells over time (days). (B) represents the viability in (%) profiles of CHO-HyC cells grown in medium A 

supplemented or not with ammonium. (C) represents the growth profiles of CHO-HyC cells grown in medium B 

supplemented or not with ammonium describing the VCD of the cells over time (days). (D) represents the viability in (%) 

profiles of CHO-HyC cells grown in medium B supplemented or not with ammonium. 

 

As a matter of fact, the observed decrease in maximal cell density is maybe influenced by the levels of 

amino acids in the cell culture media. These media formulations might have triggered metabolic 

pathways that are responsible for upregulating the phenomena of growth-uncoupled production. The 

only way to validate this hypothesis is to look at the production capacity of these cells, the final titer of 

the batches, as well as the specific productivity of the cells. 

Besides, the viability trends are similar among the different tested conditions, regarding the two media 

formulations A and B. No influence was observed regarding ammonia supplementation nor the 
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optimized amino acids formulation. Although the trend was similar, the cells grown in medium B lasted 

1 day longer in the culture (Figure 5.1/B and 5.1/D). 

In addition, looking at the growth rates values in figure 5.2, we can observe that the growth rates in 

different conditions using medium A and B (Bars in green and red) are lower than the growth rate of 

cells grown in standard conditions using CD CHO medium (Blue bar). Additionally, we can also observe 

that, among the different conditions within medium A and B, ammonium concentration did not 

influence the growth rate values in the experiments. 

 

Figure 5.2 Growth rates values of different conditions tested among medium. A (Green bars) and B (Red bars), 

compared to growth rate values obtained using CHO-HyC cells grown in CD CHO media without AKG, referred as standard 

condition (Blue bar). The error bars represent 95% confidence interval. 

5.3.2. Trastuzumab titer and CHO productivity for producer cells: 

In order to evaluate the production efficiency of CHO-HyC cells towards the production of Trastuzumab 

while using both media formulations with different ammonia concentrations in the media, the final 

batch titers for the different tested conditions are shown in figure 5.3. According to these results, we do 

not observe any significant difference in final titer among the tested conditions. Following, we can affirm 

that increasing the level of ammonium up to 0.04 mM in the medium did not influence the final product 

concentration in the batches. Furthermore, removing glutamate from the medium in the presence of 

AKG did not influence the final titers, knowing that the values obtained in this part of the study are 

similar to the values described in the previous chapter 4. However, it is interesting to observe that, even 

when the cell density was reduced by half when optimizing the media formulation, the final titers 

obtained in the batches were similar.  
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Furthermore, looking at the specific productivities values described in figure 5.4, we can observe that 

the latter were also identical to the previously shown results in chapter 4. qP values based on VCD and 

VCV were comparable among the tested conditions. We can observe that ammonium supplementation 

to medium A, slightly influenced the productivity per cell since we observed a slightly higher qP value for 

the condition where ammonia was not supplemented to the culture. In medium B, we can observe that 

ammonium slightly improved the qP values as we can observe on figure 5.4/B. A hypothesis is maybe 

related to the different levels of aspartate and asparagine in the two different media formulations. About 

volumetric qP values, no significant changes were observed. 

 

Figure 5.3 Comparison of the final product titers for CHO-HyC cells grown in modified media A and B 

supplemented with different concentrations of ammonium. The barplots describing Trastuzumab titers of CHO-HyC 

cells cultivated in medium A are highlighted in blue. The barplots describing Trastuzumab titers of CHO-HyC cultivated in 

medium B are highlighted in grey. Error bars represent 95% confidence interval.  

 

Interesting conclusions are based on the idea that even with the lack of glutamine and glutamate in the 

medium, the final titers, as well as the specific cells productivity were not altered.  
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Figure 5.4 Comparison between the different qP values for CHO-HyC cells cultured in both medium A and B 

when supplementing different ammonium concentrations into the medium. The qP of batch cultures were 

calculated by VCD (Red bars, pg/(cell*day)) or VCV (Green bars, mg/(cm3*day)). The error bars represent 95% confidence 

interval. 

 

In the presence of 8 mM of AKG in the medium together with an increased aspartate concentration in 

medium A and B, CHO-HyC cells overcame the lack of glutamine and glutamate. A hypothesis is based 

on the idea that AKG, available in the 2 different media formulations, was converted to cellular 

glutamate and then to glutamine. This hypothesis can be validated by looking at the metabolites flow 

during culture, described in the next section of this study. On the other hand, ammonium did not 

influence the titers in these experiments, certainly because its levels are below the toxic limit for the 

cells. 

5.3.3. Metabolic overview 

As described in chapter 4, AKG supplementation to the culture medium played an important role in 

boosting the productivity of CHO cells by improving the final product titers in the tested batches. AKG 

conversion to glutamate was highlighted. The latter was the main source of the produced glutamine in 

the culture. In this part of the study, we modified the formulation of CD CHO medium from the NEAA 

point of view. Glutamate was removed from the medium and serine, proline, hydroxyproline levels were 

kept constant. Higher aspartate levels were added in medium A and B while asparagine levels were 

constant in medium A but reduced by half in the case of Medium B. 

In figure 5.5 and 5.6, we can observe the metabolic flow of different metabolites (Glucose, lactate, 

glutamine, glutamate and ammonia) for CHO-HyC cells cultivated in medium A and B with different 

concentration of ammonia. In figure 5.5, few data (time points) of metabolites are missing because of 

analytical problems where the sample could not be analyzed. 
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Following, in figure 5.7 and 5.8, we can observe a comparison between the different exchange rates of 

key metabolites in the standard condition and medium A (Figure 5.7) and medium B (5.8). In the 

standard condition, CHO-HyC cells were grown in CD CHO medium without glutamine and without AKG 

and the data were described in chapter 4. Finally, we can observe in table 5.9 and 5.10, the different 

values of the exchange rates of different metabolites that were analyzed in this study. It is important to 

highlight that fitting errors might be impact to the calculation of the exchange rates of metabolites. In 

table 5.9 and 5.10, in annexes, where we can observe the standard error values related to the 

metabolites exchange rates estimation for each condition tested experimentally. 

 

Figure 5.5 Metabolic profiles of CHO-HyC cultures in medium A. (A) represents the glucose profile over time, (B) 

represents lactate profile over time, (C) represents glutamate profile over time, (D) represents ammonium profile over time 

and (E) represents glutamine profile over time. The different conditions using different concentrations of NH4 are highlighted 

as follow: Purple (No ammonia was supplemented), blue (0.01 mM ammonia was supplemented), black (0.02 ammonia 

was supplemented), green (0.04 mM ammonia was supplemented). 
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Looking at the metabolic flow of glucose along the batch period, we can observe that the levels were 

similar, when using both medium A and B with different NH4 concentrations (Figure 5.5/A and 5.6/A). 

On the other hand, glucose consumption rate increased when increasing the NH4 concentration by 

0.04 mM in medium A. Similarly, glucose consumption also increased in the media supplemented by 

0.04 mM of ammonia comparing to the cells cultured in medium B non-supplemented with ammonia. 

Furthermore, comparing the two different conditions supplemented with the highest ammonia 

concentration, we can also observe an increase in glucose uptake by 1.3 folds when the cells are 

cultured in medium A. 

 

Figure 5.6 Metabolic profiles of CHO-HyC cultures in medium B. (A) represents the glucose profile over time, (B) 

represents lactate profile over time, (C) represents glutamate profile over time, (D) represents ammonium profile over time 

and (E) represents glutamine profile over time. The different conditions (using different concentrations of NH4 are 

highlighted as follow: Purple (No ammonia was supplemented), blue (0.01 mM ammonia was supplemented), black (0.02 

ammonia was supplemented, green (0.04 mM ammonia was supplemented). 
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Regarding lactate concentrations over time in culture, it is observed that the levels were also 

comparable among the tested conditions. Following, the metabolic switch from lactate production to 

consumption was observed (Figure 5.5/B and 5.6/B), where lactate starts being consumed 7-8 days 

post-inoculation, when glucose levels are very low. On the other hand, lactate production rate increased 

with increasing ammonia concentration in the medium. In medium A, the production rate increased by 

significantly between the cells supplemented with 0.04 mM NH4 and the ones non-treated with 

ammonia. For medium B, the secretion rate increased also. Although the secretion rate of lactate 

increased more in medium B, the rate of production of lactate in medium A was 1.3 higher than the 

values obtained for medium B. 

Furthermore, interesting results were observed concerning glutamate production profile. The latter 

started being produced 24h post-inoculation, certainly, as consequence of AKG catabolism as described 

in chapter 4. High values of glutamate were produced, reaching up to 5 mM using both media 

formulations. No difference was observed between the cells treated and non-treated with ammonia. 

According to the results observed in figure 5.5/C and 5.6/C, the ammonia supplemented to the culture 

did not boost the production of glutamate comparing to the non-treated cells, since the levels in the 

culture were quite comparable.  

  

Figure 5.7 Comparison of the exchange rates of key metabolites during culture of CHO-HyC cells in 

standard condition and medium A with different ammonia concentrations. The standard condition is highlighted 

in dark blue (Standard condition_qM). The negative and positive value indicate, respectively, the uptake and secretion rates 

of the corresponding metabolite. The values of the exchange rates of metabolites are expressed in mmol/gDW/h. Note that 

the rates lactate was scaled down and glutamine together with ammonia were scaled-up to fit the plot (indicated by the 

numbers after “/” for scaling down and “x” for scaling up). 
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On the other hand, looking at the rate of production of glutamate, calculated at the early exponential 

phase of the culture, we can observe that, when cells are grown in both media conditions, we can 

observe that the production rate of glutamate increased by 4 folds when the cells grown in medium A 

supplemented with 0.04 mM of ammonia. This production rate was compared to the glutamate 

production capacity of the cells supplemented with 0.01 mM of ammonia. When the cells are grown in 

medium B, production rate of glutamate increased by 3.7 folds comparing the same conditions 

previously mentioned. According to these results, the presence of ammonia reinforced the production of 

glutamate in the culture, since a direct conversion of AKG to glutamate is possible, when NH4 is 

consumed. In fact, the supplementation of ammonia was performed to fulfill this objective, so we can 

conclude that the hypothesis based on the idea of boosting AKG conversion to glutamate via 

supplementation of ammonia is confirmed.  

 

Figure 5.8 Comparison of the exchange rates of key metabolites during culture of CHO-HyC cells in 

standard condition and medium B with different ammonia concentrations. The standard condition is highlighted 

in dark blue (Standard condition_qM). The negative and positive value indicate, respectively, the uptake and secretion rates 

of the corresponding metabolite. The values of the exchange rates of metabolites are expressed in mmol/gDW/h. Note that 

the rates lactate was scaled down and glutamine together with ammonia were scaled-up to fit the plot (indicated by the 

numbers after “/” for scaling down and “x” for scaling up). 

 

When glutamate is highly produced in the culture, a high production of glutamine is expected. Looking 

at figure 5.5/E and 5.6/E, we can observe that glutamine levels increase during the cultures when 

using both medium A and B. Regarding its secretion rate, when looking at the results described in 

annexes, we can observe that the secretion rate of glutamine was improved by 3.6 folds when the cells 
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grown in medium A supplemented with 0.04 mM of ammonia comparing to the cells supplemented 

with 0.01 mM of ammonia. On the other hand, the rate of biosynthesis of glutamine in medium B was 

improved by 4 folds. We can understand from these results, that when higher concentrations of 

glutamate are available in the culture, higher levels of glutamine are produced. The reactions of 

glutamate and glutamine production are very important in the culture and generally in bioprocesses. 

The reactions of conversion of AKG to glutamate catalyzed by glutamate dehydrogenase while the 

conversion of glutamate to glutamine is driven by glutamine synthase, consume ammonia molecules 

which helps in overcoming its accumulation in the culture, and by than avoiding its toxic effects on the 

cells. Looking at the results described in figure 5.5/D and 5.6/D, we can observe that, even when, 

initially supplementing high levels of ammonia in the culture, the levels along the culture remained 

similar in all the conditions. 

Previous study published by Mio-Sam Lao, Derek Toth [37], showed that when supplementing high 

amount of ammonium chloride to CHO cultures, the specific ammonia production decreased by 55%. 

Looking at the secretion rates of ammonia described in figure 5.7 and 5.8 respectively for the 

experiment using media A and B, we can observe that when supplementing 0.04 mM of ammonia, 

slight increase in secretion rate of ammonia observed. The latter increased by 1.6 folds in medium A 

condition and 2.4 times in medium B condition. Higher ammonia supplementation to the culture did 

not generate higher uptake of the latter in the tested media conditions. An explanation is based on the 

fact that, our study was based on a media formulation, totally different from the one that was used in 

[37].  

The levels of amino acids and other nutrients in the media impact the metabolism of the cells towards 

the consumption and production of different metabolites. As an examples, adjusting feed rates in fed 

batch cultures, can play a role in changing the consumption rates of several nutrients during the culture 

[39].  

In fact, developing an animal-free chemically defined cell culture medium that can support the growth 

and boost the production of recombinant proteins without recurring to the supplementation of glutamine 

holds a tremendous promise in improving bioprocesses. This strategy can decrease bioprocess related 

by-products such as ammonia, increase the shelf life of the produced media and also allow the 

production of cheaper media formulations allowing the reduction of upstream processing cost of goods 

and decrease in the price of the drugs in the market. 
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5.4. Conclusions: 

Optimizing cell culture media is the core base of cell culture engineering, due to its potential for 

improving bioprocesses. However, knowing that the formulation contains several components to 

balance, finding the optimal recipe of cell culture media is still a hurdle. Focusing on balancing amino 

acids levels, we can affirm that removing glutamine and glutamate from the cell culture medium 

formulation and substituting those by AKG showed potential in improving the final titer as well as the 

specific productivities of the cells, comparing to the cells grown in CD CHO media without glutamine 

(standard condition) and maintaining the levels of unwanted metabolites below the toxicity threshold. 

Further, we concluded that when increasing the concentration of ammonia in the medium, glucose 

consumption rate slightly increased. The latter were unchanged among the two tested media 

formulations (A and B). 

In fact, based on previous assumptions and the results described in chapter 4, we infer that adding 

higher levels of aspartate comparing to the levels in original media (Tripled in medium A and 

quadrupled in medium B) drove higher production of glutamate from AKG using CHO-HyC cells 

comparing to the results observed in Chapter 4. It is not known, in these tested conditions if aspartate 

was in fact the main driver of AKG conversion to glutamate, due to the lack of analytical data, or other 

pathways were triggered in the case using this media formulation. Further studies can be performed 

based on analyzing the levels of amino acids during the culture. Although, in these experiments, 

glutamate secretion levels were increased by 3.6 and 4 folds, respectively for medium A and B, 

ammonia secretion levels increased by 1.6 folds in medium A condition and 2.4 times in medium B. 

This increase in ammonia secretion is not problematic from bioprocess standpoint, since its levels in 

the culture remained below the toxicity levels. 

5.5. Annexes: 

Table 5.4 Exchange rates values of metabolites for CHO-HyC cells cultured in standard condition and in 

Medium A with different NH4 concentration. The standard condition is highlighted as (0mM AKG_qM). 

 

0 mM AKG_qM Std error 0 mM NH4_qM Std error 0.01 mM NH4_qM Std error 0.02 mM NH4_qM Std error 0.04 mM NH4_qM Std error

Glucose -0.3380 0.0202 -0.2559 0.0261 -0.3556 0.0340 -0.6426 0.0581 -0.9552 0.0928

Lactate 0.3545 0.0469 0.4040 0.0666 0.5369 0.0839 1.0229 0.1562 1.4778 0.2753

Glutamate -0.0035 0.0002 0.0728 0.0170 0.0928 0.0214 0.1893 0.0365 0.2706 0.0637

Ammonia 0.0398 0.0029 0.0435 0.0038 0.0583 0.0045 0.0880 0.0067 0.0716 0.0044

Glutamine 0.0061 0.0046 0.0119 0.0008 0.0194 0.0017 0.0265 0.0035 0.0429 0.0058

0.04 mM NH4CHO-HyC_0mM AKG 0mM NH4 0.01mM NH4 0.02mM NH4
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Table 5.5 Exchange rates values of metabolites for CHO-HyC cells cultured in standard condition and in 

Medium B with different NH4 concentration. The standard condition is highlighted as (0mM AKG_qM).
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6. CHAPTER 6  

General conclusions and future work 

_____________________________________________________________ 

 

The main objective of this work was to improve cell culture media for the cultivation of CHO cells to 

achieve better growth parameters and production capacity of biopharmaceuticals. More specifically, this 

study aimed at contributing to solve the current bottlenecks related to mammalian bioprocesses by 

developing a pipeline for optimal media formulation for CHO strains. This strategy employed in silico-

based approaches namely constraint-based genome-scale models and flux balance analysis (FBA). 

Subsequently, some of the results regarding the optimal cell culture media formulation were tested 

using both producer and nonproducer CHO cell lines. To achieve the proposed motivation, the targeted 

research aims were elaborated in chapter 1. The main conclusions achieved, and the future research 

aims are presented below. 

Chapter 2 contains a very detailed literature review regarding the state-of-the-art methodologies for 

improving CHO bioprocesses. In this chapter, various concepts regarding the importance of CHO 

platforms in the biopharmaceutical industry were highlighted, as well as the basic features of CHO 

metabolism and its differences compared to microbial production platforms. Moreover, the different 

methodologies currently used to optimize growth parameters and production performance of CHO 

platforms were highlighted. Finally, modern engineering strategies based on systems biology 

approaches were described, focusing on the importance of constraint-based modeling and genome-

scale metabolic models and its great value for developing robust in silico-based approaches for 

bioprocess optimization, mainly media design and improvement.  

Knowing that the metabolic network of mammalian platforms is very complex, it is essential to deeply 

understand the different metabolic mechanisms of CHO, focusing on the different pathways and 

reactions, involved in cell growth and production of recombinant proteins. In chapter 3, we applied the 

universal genome-scale metabolic model of CHO in combination with an evolutionary algorithm 

(optiModels framework) to understand the metabolic demands of CHO and to design an improved 

version of cell culture media. As an outcome from these optimization strategies, we were able to: 
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 Predict the minimal media formulation that can sustain CHO growth based on the use of 

optiModels framework. After various optimization steps, this tool allowed designing an 

approach to further improve growth parameters of CHO. 

 Optimize the environmental constraints previously published in Hefzi et al., 2016 based on the 

results using optiModels, flux balance analysis simulations and literature. This approach was 

focused on identifying the most important metabolites that could influence growth parameters 

of CHO, as well as impact the secretion of by-products such as ammonium. Based on the 

optimized constraints, we were able to improve in silico the growth yield of CHO, as well as 

reduce ammonium secretion levels to its lowest limit. 

 Determine potential candidates (e.g., AKG) that hold a potential in further boosting CHO 

lifespan and increasing the duration of the batch process. AKG could replace glutamine in the 

culture medium due to its potential in producing cellular glutamate that can be used to 

biosynthesize glutamine in case of its lack in the cell culture medium. 

 Design experimental validation based on exploring the effect of supplementing AKG to the 

culture medium and validate the in silico results.  

In the last few years, the effect of glutamine supplementation into the cell culture media was discussed 

and several alternatives to glutamine have been explored due to several drawbacks resulting from its 

fast degradation. As a result of the prediction pipeline described in chapter 4, we experimentally tested 

the effect of supplementing different concentrations of AKG into the standard cell culture media (CD 

CHO). As an outcome of these experiments, we can conclude that: 

 The presence of AKG in the culture reduced specific growth rate compared to the standard 

culture conditions (Cells cultured in CD CHO media deprived of glutamine). 

 Supplementing AKG to different CHO cultures increased the lifespan of the cells during the 

batch cultures and improved the final product titers of the process. The final batch titer was 

1.9-fold higher compared to the titers obtained in standard culture conditions. 

 The presence of AKG in the cell culture medium influenced several metabolic pathways, for 

instance aspartate and glutamate metabolism. Aspartate consumption increased 10-fold when 

cultivating the producer cells in media containing 12 mM of AKG. However, its consumption 

increased only by 1.5 times in case of non-producer cells (CHO-K1) cultivated in the same 

conditions. According to the results, aspartate might play an important role in converting AKG 

to glutamate, mainly in the exponential phase of the cultures and therefore is an important 
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metabolite for increasing growth and qP. Subsequently, glutamate secretion rate increased 

proportionally to the level of AKG in the media. We can conclude that higher levels of AKG in 

the medium positively correlated with higher aspartate uptake rate and glutamate secretion 

rate. These results are interesting since glutamate production from AKG is an ammonium 

detoxifying reaction. This reaction is metabolically efficient since it plays a role in consuming 

the free ammonium in the culture to produce glutamate molecules. 

 AKG supplementation clearly influenced the exchange rates of various metabolites for both 

CHO-K1 and CHO-HyC cells cultures. However higher impact on metabolism was observed in 

case of high producer cells (CHO-HyC), where glucose consumption and lactate production 

rates increased compared with the uptake/secretion rates of these metabolites when cells 

cultured in the standard media formulation. This phenomenon is probably associated with the 

highest demands for recombinant protein production. 

 Despite the higher secretion rates of lactate and ammonia during the process, the 

concentrations of these metabolites during the batch were slightly lower than the 

concentrations in standard batches. 

Finally, the strategy adopted in chapter 5 is inspired from the results obtained in chapter 3 and 4, 

where the formulation of cell culture media was optimized and tested experimentally. In these 

experiments, the levels of non-essential amino acids (Aspartate, asparagine and glutamate) were varied 

in the media formulations. In addition, different concentrations of ammonium were supplemented to the 

cultures. Consequently, the metabolic effects of these media optimization strategies were studied using 

CHO-HyC cells. In this chapter we conclude that: 

 Growth and viability profiles of CHO-HyC cells cultured in modified media A and B (Table 5.2) 

were identical. The growth trends were also similar to the cells grown in CD CHO media 

supplemented with 8mM AKG (Results shown in chapter 4). 

 Removing both glutamine and glutamate from the media formulation did not influence the 

final titer of the process. The final batch concentrations were equivalent to the titers of the 

reference cultures grown in standard media supplemented with AKG (Results described in 

chapter 4). Consequently, we can conclude that both amino acids are not so relevant when 

the media contains high concentrations of AKG and aspartate. Subsequently, we hypothesize 

that aspartate is converted to oxaloacetate, boosting the TCA cycle together with AKG. 
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 We observed no differences in the final product titers in the case of CHO-HyC cultured in 

medium A and B. However, the specific productivity of the cells was slightly higher when 

using medium B supplemented with 0.04 mM ammonia compared to the other tested 

conditions. The latter might be explained by the adjustment of aspartate/asparagine levels in 

the media. 

 The increase of aspartate levels in the media formulations correlated with the increase in the 

levels of glutamate produced during cultures, using both medium A and B. This result is 

associated with the possible fact that the available AKG molecules in the media are directly 

converted to glutamate using glutamate dehydrogenase. Another hypothesis might be that the 

produced glutamate is based on the conversion of aspartate and AKG to glutamate under the 

control of aspartate amino transferases. 

 Higher secretion rates of ammonia and lactate were observed, but the concentrations during 

culture were below the levels determined in standard conditions and the toxicity levels at 

culture. 

 Overall, the conditions evaluated regarding aspartate, glutamate and ammonium did not 

provoke significant differences in the variables evaluated, comparing with the results obtained 

with AKG addition in the previous chapter, indicating that, at least in the range of 

concentrations testes, AKG was the most significant variable evaluated. 

Finally, we can conclude that using GSMMs combined with constraint-based modeling approaches such 

as FBA hold a unique potential in exploring cells metabolic features and simulating metabolic states of 

the cells in silico under specific environmental constraints, for instance media formulation. These tools 

are very promising in designing engineering approaches aiming at improving bioprocesses, for instance 

media optimization. This approach is not only important strategy for improving the titers of the producer 

of recombinant proteins but also improving the product quality. 

A follow up of this work should be focused on integrating the experimental data obtained in chapter 4 

and 5 into the CHO GSMM (iCHO1766) and compare its prediction capability to the experimental 

values. This would open various possibilities also for curating the existing model in order to increase its 

prediction accuracy. In addition, understanding the metabolism of amino acids in the optimized media 

formulations (A and B) is needed in order to further optimize the media formulations to retrofit the 

metabolic/nutritional need of the clone of interest (Producer or non-producer clone), improving growth 

parameters and production of recombinant proteins. 
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Based on optiModels predictions, various candidate metabolites, besides AKG, were determined and 

can be supplemented to the media formulation and evaluate its effect on improving growth parameters, 

process titers and product quality attributes. 

Future perspective regarding this project could be focused on improving the in-house evolutionary 

algorithm (optiModels) and improving its prediction accuracy towards determining additional 

supplementation candidates. Additionally, future work should be focused on further optimizing CHO 

strains at the cell line development stage due to their importance in biomanufacturing. Moreover, 

knowing that cellular resources are limited and need to be shared between growth and recombinant 

protein production, it is important to further study CHO metabolism and determine possible strategies 

to improve production strains through ameliorating its metabolic machinery. Besides metabolism, other 

bottlenecks should be addressed, for instance, improving the secretion capacities of the cells, better 

study/improve predictions towards designing custom post translational modifications patterns (e.g., 

glycosylation), folding, etc. These further improvements are essential for better CHO performance. 

Following, focusing on cell line development through designing a preoptimized modular CHO strain (a 

mammalian chassis strain) can reduce genetic instability of the cells which is one of the main sources 

of a large variation in product titers and fluctuation in product quality. The most important obstacle here 

is our lack of knowledge on many regulatory mechanisms within the cells that enable it to respond to 

different conditions and challenges. Subsequently, in the attempt to reach a fully designed chassis cell 

line rather than an optimized or engineered one, designing model-based predictions and computational 

strategies for the identification of the most useful engineering strategies (e.g., stable transgene 

integration sites) will play a key role. A challenge that still needs to be addressed here is the availability 

of tools to combine and correlate the different omics data sets in a comprehensive and automated way. 

A proper connection should link different omics layers to obtain a complete picture of their 

interrelationship and its combined influence on the system. So far, several algorithms have been 

developed to integrate omics data, such as transcriptomics, proteomics or metabolomics into GSMMs, 

but no truly comprehensive solution is yet available. Nevertheless, with the rapid advances that have 

been achieved over the last years, both in our basic understanding of cellular mechanisms and 

regulatory circuits, and with the new tools that have emerged, we are today in a much better position to 

aim for the design of mammalian chassis cell lines with defined characteristics, even though several 

challenges still need to be resolved. 

7.  


