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ABSTRACT 

Parkinson’s Disease (PD) is a neurodegenerative disorder of the central nervous system. Resting 

tremor, akinesia, and bradykinesia (slow movements), rigidity, shuffling walking, and postural instability 

are some of the symptoms that not only negatively impacts patients’ life, but also the life of people around 

them. 

Current approaches for monitoring patients’ motor autonomy are limited to the observer and self-

reported methods. The observer-based examinations, patients perform a set of standard PD examinations. 

The self-reported method relies on patients’ daily activities diaries. These approaches are commonly used, 

but are limited to a few sessions per year, they do not address common motor daily tasks, and their 

results are object of subjective interpretation by the clinical expert. 

By combining kinematic-driven data from wearable sensor with AI, the main goal of this 

dissertation is to develop an automatic software for recognition of human activities (e.g., walking, 

standing, turning, sitting, and lying) in PD to assist the clinical experts with objective and concrete data. 

A data collection protocol was developed and captured, resulting in a database comprised of data 

collected from eighteen PD patients who performed three trials of six different daily activities: walk; 180º 

turning; sit on chair; get up from chair; lay on bed and get up from bed.  

A Deep Learning (DL) framework based on Convolutional Neural Network capable of recognizing 

daily activities was developed and attained a performance of F1 Score equal to 0.90892. 

As a complementary goal an automatic software for human walk initial contact (IC) and final 

contact (FC) recognition using kinematic data was also developed. IC and FC are tremendously important 

to provide patient on-demand motor assistance and estimation of walking-associated metrics. 

A Deep Learning framework based on Bidirectional Long Short-Term Memory Neural Network 

capable of walking IC/FC events detection was developed and attained a performance of MCC Score 

equal to 0.538386. 

Promising results were attained for both DL frameworks, however, this dissertation suggests that 

there is still room for further improvements. Enriching the dataset with more data from different patient, 

data balancing and feature extraction techniques, experimenting new models’ architectures should be 

considered in future works. 

 

Keywords: Parkinson’s Disease, Deep Learning, Human Activity Recognition   
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RESUMO 

A Doença de Parkinson (DP) é uma doença neurodegenerativa do sistema nervoso central. O 

tremor em repouso, acinesia e bradicinesia (movimentos lentos), rigidez, marcha e postura instável são 

alguns dos sintomas que afetam negativamente a vida dos pacientes e também as pessoas à sua volta. 

As monitorizações da autonomia motora dos pacientes estão limitadas aos métodos presenciais 

e auto-relatados. Em exames presenciais, os pacientes realizam um conjunto de exames padrão de DP. 

O método auto-relatado baseia-se nas agendas de atividades diárias dos pacientes. Estas abordagens 

são comuns, mas são limitadas a algumas sessões por ano, não abordam tarefas motoras diárias 

comuns, e os seus resultados dependem da interpretação subjetiva do perito clínico. 

O principal objetivo desta dissertação é desenvolver um software automático para e 

reconhecimento de atividades humanas (por exemplo, andar, estar em pé, virar, sentar e deitar) na DP, 

que combine dados cinemáticos de sensores vestíveis com inteligência artificial para ajudar os 

especialistas clínicos a obterem dados objetivos e concretos. Foi desenvolvido um protocolo de recolha 

de dados, resultando numa base de dados constituída por dados recolhidos de dezoito pacientes de DP 

que realizaram três ensaios de seis atividades diárias diferentes: caminhar; virar 180º; sentar-se na 

cadeira; levantar-se da cadeira; deitar-se na cama e levantar-se da cama. 

Foi desenvolvida uma estrutura de Deep Learning (DL) baseada em Convolutional Neural 

Network capaz de reconhecer as atividades diárias e atingir um desempenho de F1 score igual a 0,9089. 

Como objetivo complementar, foi também desenvolvido um software automático para o 

reconhecimento do contacto inicial (CI) e final (FC) do andar humano, utilizando dados cinemáticos. O 

CI e a CF são tremendamente importantes para fornecer assistência motora em tempo real e estimativa 

da métrica associada à marcha do paciente. 

Foi desenvolvida uma estrutura de DL baseada em Bidirectional Long Short-Term Memory Neural 

network capaz de detetar eventos de IC/FC durante o andar e atingir um desempenho MCC score igual 

a 0,5384. 

Foram alcançados resultados promissores para ambas as estruturas DL, contudo, esta 

dissertação sugere que ainda há espaço para mais melhorias. Enriquecer o conjunto de dados com mais 

dados de diferentes pacientes, técnicas de balanceamento de dados e extração de características, 

experimentar modelos com diferentes arquiteturas deve ser considerado em trabalhos futuros. 

Palavras-Chave: Doença de Parkinson’s, Deep Learning, Reconhecimento de Atividade 

Humana   
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1.1 MOTIVATION AND PROBLEM STATEMENT 

Parkinson’s Disease (PD) is a neurodegenerative disorder of the central nervous system [1], 

which is characterized by the loss of non-motor and motor functions. The non-motor symptoms include 

cognitive changes, behavioural/neuropsychiatric changes, autonomic nervous system failure, and 

sensory and sleep disturbances, while the motor symptoms are associated with resting tremor (initially 

unilateral), akinesia and bradykinesia (slow movements), rigidity, shuffling walking, and postural instability 

[2].   

According to Sociedade Portguesa de Doentes de Parkinson (APDP) akinesia is the central 

symptom of Parkinson's Disease, meaning difficulty in initiating a movement, with a progressive reduction 

in speed, amplitude, and difficulty in executing a motor plan. Bradykinesia is the slowing down and poverty 

of movement. Akinesia and bradykinesia are translated into difficulty and slowness in opening and closing 

the hands, in holding a glass, to get up from a chair and to start walking, difficulty in writing which tends 

to become progressively smaller [3].  

Rest tremor is a rhythmic movement of the extremities and is present in the hands, face, lip and 

chin, mainly in the resting position. It tends to appear asymmetrically, in the left or right hand, and may 

affect, with the progression and worsening of the disease, both sides and be present in the action of 

movements (e.g. holding a fork to the mouth) [3]. Rigidity consists of resistance to passive mobilization 

of a human body segment (neck, trunk, and limbs), remaining constant throughout the possible flexion 

or extension of the limb, leading to bradykinesia. This stiffness is accentually felt while combing the hair, 

brushing the teeth or when a freezing of walking happens [3]. Patients tend to adopt a curved posture, 

which, if not corrected, at long term causes changes in the curvature of the spine. Postural instability is 

a consequence of disturbed postural reflexes, due to a slower response to changes in the positioning of 

the center of body mass. Some patients have walking with small steps with decreased arm balance, poor 

foot elevation and sometimes an involuntary increase in the speed of increasingly shorter steps. Other 

patients have blockages during walking, at the beginning or during walking, with their feet sticking to the 

ground and difficulty in restarting the walking. In everyday life the Parkinson's patient is subject to several 

postural challenges of balance such as uneven flooring, changes in direction, sudden stops, unevenness, 

several tasks at the same time (e.g., talking, carrying a bag), inattention due to auditory (e.g. someone 

calling our name), visual and motor planning stimuli (e.g. moving around a chair; passing through a door 

between two rooms; imminence of an approaching obstacle on the floor). In these situations the 

parkinsonian patient has a higher risk of falling [3].  
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According to World Health Organization (WHO), disability and death due to PD are increasing 

faster than for any other neurological disorder, globally [4]. WHO estimated in 2019 that over 8.5 million 

individuals suffered from PD disability, which has doubled in the past 25 years.  

In Portugal, a study published by Ferreira et al.[5] in 2017, estimated a disease prevalence of 

180 cases by 100 000 habitants, which might indicate that over 185 000  persons is suffering from this 

disability. 

PD not only impacts the life of the patients, but also the life of people around them. Often, family 

members and friends provide informal care to the patient due to financial incapacity. Spending many 

hours daily providing care for the patient living with PD, besides incurring financial losses, physical and 

emotional stress can be unsurmountable to these informal caregivers. As such, providing more autonomy 

for PD patients can be life changer. 

Current approaches for monitoring patients’ motor autonomy are limited to the observer and self-

reported methods during the routine consultations. In the observer-based examinations, patients are 

required to perform a set of scored traditional PD examinations, such as Unified Parkinson's Disease 

Rating Scale Part III (UPDRS-III). The self-reported method relies in requiring patients to answer a list of 

questions about their daily activities, counting with the individuals’ self-memory.  

Despite these approaches being commonly used, they are limited to a few sessions per year, 

they do not address common motor daily tasks, and their results are object of subjective interpretation 

by the clinical expert. Indeed, walking, sitting on a chair or lying on a bed are examples of daily basic 

activities that are affected by PD, representing a spectrum of relevant information that if recognized and 

analysed could characterize patients’ motor function. Thus, there is a need to develop systems able to 

provide quantitative measures of ambulatory performance. Indeed, being motor symptoms the main 

trademark of PD, physicians will benefit from clinical support tech-tools capable of supervise and gather 

data about patients’ motor performance while performing daily physical activities. With this information 

physicians will be able to adopt a closed follow-up of the true motor stage of their patients, enhancing the 

power of prescribed treatments. 

Due to constantly decreasing production cost, availability, portability, miniaturized size and lower 

power consumption of wearable sensors (WS), scientific breakthroughs in fields such as machine learning 

(ML) and internet of things, these sensors emerged as a powerful tool to enable the human activity 

recognition (HAR) [6]. WS, like accelerometer, gyroscope, pedometers, can be defined as devices which 

can be worn by humans to track human health and can provide continuous monitoring of health 

parameters without visiting hospitals frequently [7]. 
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 By combining the kinematic-driven outcomes from WS with advanced methods of ML, an activity 

recognition system could be implemented to provide physicians a quantitative profile of motor function 

behaviour in natural settings and over prolonged periods. Also, real-time implementations could be 

integrated on assistance/rehabilitation devices to deliver sensory information about their posture or risk 

of falling during motor activities aiming to help patients to mitigate motor conditions.  

This emphasizes the significance of developing task recognition frameworks capable of provide 

long-term and objective data to physicians, but also be able to be integrated on wearable assistance 

devices. For example, inside the HAR field of study, walking analysis is probably the most studied and 

has the broadest scope of applications including medicine, rehabilitation or sports [8]. In walking analysis, 

the capability of detecting initial and final foot contact during walking cycle can endow the frameworks of 

on-demand motor assistance and estimation of walking-associated metrics. This showcases the HAR 

importance. 

Although HAR systems based on combination of WS and ML have received significant attention 

on the last years, few studies have been dedicated to PD.  It is required further studies about which motor 

tasks could better describe patients’ motor function, as also more clinical evidence is needed. Advanced 

artificial intelligence (AI) models, such as ML, need more analysis regarding data input processing, 

models’ features, and benchmarking analysis on models’ performance. Also, there is a need to consider 

a HAR framework able to identify human activities from a minimum number of WS, aiming to be a usable 

wearable technology that is comfortable and easily accepted by patients. 

 Therefore, future challenges on HAR systems based on AI combined with WS data include: (i) 

study HAR in PD; (ii) create an open-source multimodal dataset of physical activities in PD based on 3D 

motion data and kinematic-driven walking parameters acquisitions through wearable miniaturized inertial 

sensors; (iii) study the hypothesis to standardize protocols  to capture the meaningful motor tasks able 

to describe patients’ motor function, increasing at the same time the clinical evidence; (iv) explore 

advanced AI models; (v) include raw data input signals from a single wearable sensor. From this 

dissertation it is expected to answer these key-constraints.  

 

1.2 GOALS AND RESEARCH QUESTIONS 

By combining wearable sensor data with AI, the main goal of this dissertation is to develop an 

automatic software for recognition of human activities (e.g., walking, standing, turning, sitting, 

and lying) in PD. Wearable sensory acquisition systems will rely on the shortest number of inertial 
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sensors and in the lesser transformed data as possible to provide information about users’ motion 

without compromising patients’ movement. With the application of algorithms of AI over these 

kinematic data, it is expected to identify different physical activities that provide complete information 

about users’ motion. It is expected to contribute with an AI-based model capable of accurately identify 

different motor activities performed by a PD patient in his/her day-to-day life activities.  

There are various objectives that will allow to pursue the ultimate goals of this master’s 

dissertation, which are outlined below:  

Goal 1 - Critical analysis on the state-of-the-art (SoA) HAR in PD patients, to answer the following 

questions: (i) “Which are the most relevant daily activities performed by PD patients?” (ii) “Which sensors 

are used to generate relevant data?” (iii) “What are the best algorithms to use in HAR?”. In Chapter 0 

we address this issues in depth.   

Goal 2 - Determine which data is relevant to be used in the recognition of patient daily activities. 

This goal is addressed by Chapter 0, where in combination with the literature we will decide the best way 

to handle these data. A new data collection protocol is to be implemented, the resultant dataset 

should have data from twenty PD patients, each performing three trials of sit and get up from chair, get 

up and lay down from bed, walking, 180º right and left turning activities. 

Goal 3 - Define and implement a framework capable to recognize HAR in PD patients. 

By combining the information from the read literature, Chapter 0, an attempt to create a framework for 

HAR have been made. This framework must have a similar or better performance than the 0,946 F1 

score found in the literature and be the most efficient has possible. This implementation is described in 

Chapter 4. 

Goal 4 - Define and implement a framework for PD walking segmentation, considering 

that the detection of initial (IC) and final (FC) foot contact of a walking cycle is tremendously 

important to provide on-demand motor assistance and estimation of walking-associated metrics. In depth 

description and implementation are discussed in Chapter 5. 

Considering the final goal of this dissertation and the step-goals mentioned before, several 

research questions were identified to be investigated and answered: 

RQ1: What is the importance of daily activities recognition for motor assessment in PD? How 

have human activities been detected? And of IC/FCs?  

RQ2: Which DL model produces best result in recognizing daily human activities? And in IC/FC 

walking events recognition? 

RQ3: How effective and robust are the proposed DL solutions toward new patients? 
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The first question relates to the main Goal of this dissertation, on why and how this dissertation 

can contribute in a meaningful way to society. Throughout the chapters, Chapter 4 and Chapter 5, 

answers to RQ2 were discussed in depth. This RQs’ are related to Goal 2 and Goal 3, and asks about 

different DL models architectures, training and validating performances of the proposed DL models.  

RQ3, also related to Goal 3, is answered trough Chapter 4 and Chapter 5 by testing the proposed 

model with data from unknown PD patients. 

 

1.3 CONTRIBUTION TO KNOWLEDGE 

The main contributions of this dissertation to knowledge are: 

 

1. Review on SoA literature about HAR on PD, with the purpose to provide a closed, 

continuous, and objective clinical support tool using WS as input of AI-based models 

2. A new database with data from daily life physical activities performed by PD subjects. 

3. A framework based on DL algorithms capable of accurately recognize HAR performed by 

PD patients. 

4. A framework based on DL algorithms capable of accurately detect and recognize 

human walk IC/FC events performed by PD patients in real time. 

5. By changing the constitution of the final DL models, for both the HAR model and the 

human walk IC/FC detection model, an attempt to explain how their various constituent layers 

affect their building was made. 

 

1.4 DISSERTATION STRUCTURE 

This manuscript is divided in 6 chapters, including this as a first chapter, Chapter 1, which 

provides the motivation and context of the problem in study, what is the main goal of this dissertation and 

the main questions that emerged while achieving it, and finally how this dissertation is structured and 

what is the new knowledge this dissertation brought to the scientific community.  

In Chapter 0, is presented the theoretical knowledge of concepts and technologies addressed in 

this work. In this chapter a SoA review is presented, giving a background about the usage of WS to collect 

data and the AI models capable of recognizing human activities. A discussion about the answers to the 



1 Introduction 

7 
 

research questions made in Chapter 0, what was concluded after better understanding of the SoA and 

possible future direction of HAR discussion is also debated in this chapter. 

 In the Chapter 3, an overview of the solution presented by this dissertation is exposed. 

 In chapters 4 and 5 a description on how this dissertation main and complementary goals were 

achieved is elaborated. These chapters include the different stages needed to achieve the final AI 

classification model. Data collection and exploration, model training, validation and test performance 

evaluation are here presented and discussed.  

On Chapter 6 a conclusion about the important role of the AI in the close and continuous 

monitoring over PD patients is discussed while providing a brief analysis of the results obtained by this 

dissertation proposed solution. 
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2.1 INTRODUCTION 

Difficulty in initiating movements, slowing down and poverty of movement, resting tremors in 

body extremities, rigidity in movements, postural instability and freeze of walking (FoG) episodes are the 

main motors disabilities that PD patients suffer in day-to-day life. Thus, trivial motor activities are affected 

by these motor disabilities, and consequently patients’ quality of life.  

Nowadays only two options are available to clinical personnel for monitoring and evaluating the 

evolution of the disease in patients. By recurring to patients self-reported diaries, which are often 

incomplete, or by routine consultations, that sometimes can be sparse in time, where the clinical staff 

assesses in a subjective way the disease degree by applying already pre-existing and impersonal scales 

like UPDRS-III. As such, it is emergent and crucial an alternative technological solution capable of a 

constant monitoring, addressing long-term acquisitions on domiciliary contexts to provide a patient 

customized clinical support decision tool.  

Wearable sensing technology brings an emerging healthcare paradigm that assimilates the 

benefits of smart sensing devices, communication technologies and clinical diagnosis. This technology 

provides reliable and robust health monitoring services and reduces human hand in a cost effective 

manner [9]. In fact, in PD domain, WS can monitor patients’ motor function and help physicians 

implement an adequate treatment to improve motor symptoms. An activity recognition system could 

provide clinicians with a quantitative profile of patients’ motor behavior in home scenarios and over 

prolonged periods of time. Also, real-time monitoring of patients’ locomotion could be used to apply timely 

interventions and prevent associated walking injuries leading to patients’ motor autonomy.  

By combining WS data with advanced AI algorithms, research and development efforts have 

accomplished new HAR frameworks capable of a continuous patient monitoring. There are different body 

worn sensors and even more AI algorithms capable of successfully performing HAR. Inertial sensors or 

reflective markers are a good example of how wearable sensorial technology  in conjugation with AI 

algorithms can classify steady state locomotion’s, such as sitting, standing up/down or laying on bed, or 

non-steady state locomotion’s, like ascending/descending stairs and walking or to predict and classify PD 

symptoms [10][11][12][13].  

Considering the need to better understand the SoA, it was accomplished a comprehensive review 

on the scientific contributions about wearable devices combined with AI for HAR. From this critical review, 

the following questions were investigated and answered: (i) Which locomotion modes are recognized and 

for what purpose?  (ii) Which type of input data was used in AI models for locomotion modes recognition 
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systems? and (iii) Which AI models and how were they implemented in locomotion modes recognition 

systems?  

The first question indicates which are the most relevant motor activities. This knowledge enabled 

to build a framework focused on what is important to measure on PD patients. The second and the third 

research questions offer a more technological point of view over the SoA of HAR, allowing to better 

manipulate and understand how the most recent WS and promising AI algorithms have been used for 

HAR. 

 

2.2 METHODS  

2.2.1 DATA SOURCES, SEARCH STRATEGY AND STUDIES SELECTION 

An electronic systematic search was carried out on databases as Google Scholar, Research Gate, 

Science Direct, Scopus and Web of Science. The survey was conducted according to the guidelines of 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), as depicted on Figure 

2-1.  

For that purpose, key-words matching headings were used: [“locomotion modes recognition”]; 

[“locomotion modes in parkinson patients”]; [“parkinson's wearable”]; [“inertial  AND sensors  AND 

parkinson  AND machine  AND learning”]; [“parkinson machine learning”]; [“detecting parkinsons 

movements”]; [“inertial  AND Parkinson”]; [“activity recognition”]; [“gaist recognition”]; [“locomotion 

recognition”]; [“parkinson's disease review”]; [“activities daily living”]; [“sensor motion analysis”]; 

[“sensor motion analysis deep learning”]; [“parkinson patient activity recognition deep learning”] 

;[“wearable sensors deep learning activity”]; [“locomotion wearable Parkinson”]; [“activity recognition 

Parkinson”] ;[“deep learning walking events”]; [“deep learning walking segmentation”]; [“wearable 

sensors”] and [“wearable sensors in healthcare”]. 

Studies were included if they fulfilled the following inclusion criteria: (i) studies of idiopathic PD; 

(ii) preferable use of WS to classify daily activities (iii) use of DL models to recognize usual HA, (iv) data 

used in the paper was collected from healthy patients or PD patients or both, (v) results were published 

in the English language and within the past 11 years.  

The exclusion criteria were: (i) not using inertial sensors data to perform HAR, (ii) not 

recognizing steady and non-steady activities, (iii) not using models of deep learn in the classification of 

activities. Some articles’ reference lists were searched for additional support. 
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2.3 RESULTS 

2.3.1 GENERAL RESULTS 

A total of 196 articles were identified: Google Scholar (n= 165), Research Gate (n= 5), Science 

Direct (n= 3), SCOPUS (n= 14) and Web Of Science (n= 9) databases. Duplicates were removed (n= 87). 

Articles were excluded if they have the following keywords on titles (n= 18) and abstract: FoG, objective 

assessment for PD, tremor activity and limb amputation. In case the abstract of an article did not provide 

enough information to determine its eligibility, the full article was reviewed. Next, the full-text papers were 

reviewed to meet the inclusion criteria and 13 articles met the eligibility criteria and were included in this 

review.  

These reports were discussed according to their different aspects in performing HAR, i.e., What 

(1) locomotion modes and motor activities should be recognized, (2) Al model input to use and (3) Al 

models implemented for in HAR. As a result, 83 article were eligible to be part of this discussion although 

in order to cover all the paradigms of HAR, 13 proposed Al-models’ articles were identified to serve as 

base of discussion about HAR. Firstly, we discriminated the human activities to be recognized, secondly 

the sensor and types of data they produce, acquisition protocols and datasets used, lastly process of 

features selection/extraction and implementation Al-models and their performance. 

 

 

Figure 2-1 Flowchart for the search strategy based on Preferred Reporting Items for Systematic Reviews and Meta-
Analyses(PRISMA). 
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2.3.2 DAILY MOTOR ACTIVITIES  

Table 2-1 provides an overview of the human activities recognized by the selected studies during 

the SoA survey, as well as a synthesis of the studies objectives.  

 

Table 2-1 Overview of the most represented studied activities. 

Paper Target Motor activities 

[10] 
PD 

Ramp ascent/descent, upstairs, downstairs, and level-

ground walking 

[14] 
Healthy 

Walking, jogging, upstairs, 

downstairs, sitting, standing and others 

[15] 
Healthy 

Walking, jogging, upstairs, 

downstairs, sitting, standing and others 

[16] 
Healthy 

Walking, jogging, upstairs, 

downstairs, sitting, standing and others 

[17] 
Healthy 

Walk, jogging, skip, upstairs, downstairs, standing, 

sitting, and lying 

[18] 
Healthy 

Walking, upstairs, downstairs, sitting, lying, running, 

jumping, sleeping 

[19] 
Healthy 

Sitting, standing, walking, lying, sitting, walking, 

upstairs, downstairs and others 

[20] 
Healthy 

Sitting, standing, walking, lying, sitting, standing, 

walking, upstairs, downstairs and others 

[21] Healthy Downstairs, upstairs, sitting, standing, walking, jogging 

[22] 
Healthy 

Downstairs, upstairs, sitting, standing, walking, jogging 

and others 

[23] Healthy Walking, running, sitting, standing, and lying 

[24] 
Healthy and PD 

Tandem walk, sitting, standing, standing, backwards 

walking, walk 

[25] 
Healthy 

Walking, jogging, upstairs, downstairs, sitting, standing 

and others 

 

Eleven of the thirteen selected articles included healthy people as their target audience. Only [10] 

and [24]focused on the recognition of activities performed by people with PD. These studies produced 

DL models capable of identifying human activities from the simplest (walking, running, sitting, standing, 

lying down, climbing, or descending stairs) to the most complex (Nordic walking, car driving, playing 

soccer or rope jumping).  

The studies [10],[17],[18],[21],[23],[24] focused their models on the most recurrent activities to 

be performed in daily life (walking, running, sitting, standing, lying down, climbing or descending stairs) 

that may provide the more meaningful information from a clinical point of view. The focus on these 
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common activities, despite being more accessible to identify and already providing important information 

about patients’ motor status, it may also limit the physicians from the possibility of a more profound 

follow-up of their patients. Indeed, [14],[15],[16],[19],[20],[22],[25] complemented this simplicity of 

activities with the addition of data related to more complex human activities, such as folding laundry, 

prepare a sandwich or house cleaning. This more complex activities data might be of assistance to clinical 

experts to assess the impact of the disease in their patient’s daily life, well as the disease progression. 

However, the addition of these more complex activities, makes the classification models more complex 

and thus negatively affecting their classification ability. It is a necessity to find a trade-off between the 

daily activities and the model’s architecture utilized to recognize these activities. 

 

2.3.3 DATA INPUT 

Table 2-2 provides an overview of the data used to train the models for HAR in the selected studies. Also 

identifies which devices were used to collect the data, how they were implemented, their availability and 

what transformations they underwent to be used to train the AI models. 

In study [10], the researchers created a new dataset with data collected from five healthy subjects 

(4 males, 1 females, age 25.2±2.5 years, height 1.75±0.11 m, mass 66.8±12.2 kg) and five individuals 

with early stage PD (2 males, 3 females, age 62.8±3.9 years, height 1.72±0.03 m, mass 77.5±17.88 

kg, Hoehn and Yahr stage 1 or 2) participated in the study. Sixty-six reflective markers were attached 

to anatomical body locations to track 12 body segments of the arms, legs, and torso.  The experimental 

setup consisted of a “terrain park” circuit including an over-ground walkway, a four-step staircase 

with step height of 0.15 m and depth of 0.30 m, a 2.5 m ramp inclined at 10°, and elevated platforms 

to connect the stairs and ramp. The platform contained a single step of height 0.15 m. Individuals with 

PD were asked to walk at their comfortable speed and perform five trials of the circuit for both left 

leading and right leading legs in the following orders: stair ascent/ramp descent and ramp ascent/stair 

descent and, they were instructed to use handrails when desired. Healthy subjects performed five trails 

of the circuit while using the handrails, and five sets without using the handrails.  

Another research where the researchers created their own dataset was [23], where no 

information about the number of participants from which the data was collected is provided but 

information about the sensor used was disclosed, in this case a single smartphone was kept in a pants 

pocket to collect the sensor data during five common physical activities, each of which was 

performed for ten minutes. To eliminate noise from the sensor data a simple low-pass filter was 

applied. Also, [24] created their own dataset, which consisted of records from 10 healthy elderly 
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volunteers (mean age 75 years) and two Patients with Parkinson’s (PwP) (mean age 76 years). They 

performed six various mobility tests in the laboratory including Tandem walk, stand to sit, sit to stand, 

standing, backwards walking test and 3m walk. Each activity was performed three times. They collected 

participants movement by a video camera and a wearable sensor (includes an accelerometer and a 

gyroscope, set to capture three axes at 50 Hz) attached to participant’s lumbar spine. 
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Table 2-2 Sensors, data input and protocols observed in literature. 

Pap

er 
 

Sensors Data acquisition Dataset 

Which one? How many? Where? Participants Protocol 
Settin

g 

Open 

source? 

Pre-processing 

 [10] reflective 

markers 
66 arms, legs and torso 

5 H 

5 PD 

ramp ascent/descent, upstairs, downstairs, and level-ground 

walking 
L  

 

 [14] 
smartphone IMU 1  36 H 

walking, jogging, upstairs, 

downstairs, sitting, standing and others 
L 

✓  

 

[15] smartphone IMU 1  36 H 
walking, jogging, upstairs, 

downstairs, sitting, standing and others 
L 

✓  
 

 [16] 
smartphone IMU 1  36 H 

walking, jogging, upstairs, 

downstairs, sitting, standing and others 
L 

✓  
 

 [17] 
smartphone IMU 1  570 H 

walk, jogging, skip, upstairs, downstairs, standing, sitting, and 

lying 
H 

✓  

 

 [18] 
smartphone IMU 2 right hip 44 H 

walking, upstairs, downstairs, sitting, lying, running, jumping, 

sleeping 
H 

✓  

 

 [19] 

IMU 

(Accelerometer, 

Gyroscope) 

26 

wrist, arm, chest, 

dominant side's 

ankle, upper body, 

shoes, legs, hip, 

left/right front/back 

shoulder 

13 H 
sitting, standing, walking, lying, sitting, walking, upstairs, 

downstairs and others 
H 

✓  

 

IMU: inertial measurement unit; PD – patients with PD; H – healthy subjects; L – laboratory; H -home; Acce: accelerometer; Gyro: Gyroscope. 
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Paper 
 

Sensors Data acquisition Dataset 

Which one? 
How 

many? 
Where? Participants Protocol Setting 

Open 

source? 

Pre-processing 

[20] 

IMU 26 

wrist, arm, chest, dominant side's 

ankle, upper body, shoes, legs, 

hip, left/right front/back shoulder 

13 H 
sitting, standing, walking, lying, sitting, standing, walking, upstairs, 

downstairs and others 
H 

✓  

null handling, 

normalization [0,1] 

[21] IMU 1 smartphone 24 downstairs, upstairs, sitting, standing, walking, jogging H 
✓  2nd notch filter 

[22] 

IMU 26 

wrist, arm, chest, dominant side's 

ankle, upper body, shoes, legs, 

hip, left/right front/back shoulder 

13 h downstairs, upstairs, sitting, standing, walking, jogging and others L 
✓  

Normalization 

[0,1] 

[23] smartphone 

IMU 
1 hip - walking, running, sitting, standing, and lying H  

low-pass filter, 

Normalization [0,1] 

[24] 
IMU 1 body centre of mass 

10 H 

2 PD 
tandem walk, sitting, standing, standing, backwards walking, walk L  

 

[25] smartphone 

IMU and IMUs 
4 wrist, arm, chest, ankle 46 H walking, jogging, upstairs, downstairs, sitting, standing and others H 

✓  
 

IMU: inertial measurement unit; PD – patients with PD; H – healthy subjects; L – laboratory; H -home; Acce: accelerometer; Gyro: Gyroscope.  
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[14],[15],[16] used the WISDM public dataset. This dataset is often used in papers where it 

is intended to make an evaluation of the quality of the proposed model in comparison with other existing 

ones. WISDM dataset was built by using the raw accelerometer and gyroscope sensor data collected 

from the smartphone and smartwatch at a rate of 20Hz. It was collected from 51 test subjects as 

they perform 18 activities for 3 minutes each. In [15] only the data from six activities (walking, jogging, 

upstairs, downstairs, sitting and standing) from 36 different subjects was used and in [16] the 

same activities of [15] were selected but only the accelerometer data from 29 different subjects was 

used. 

Inoue et al [17] and Murad et al [18] both used the public dataset HAR Using Smartphones. 

This dataset is composed of experiments performed by 30 healthy volunteers within an age 

bracket of 19-48 years. Each person performed six activities (walking, walking upstairs, walking 

downstairs, sitting, standing, laying) wearing a smartphone on the waist. Using its embedded 

accelerometer and gyroscope, they captured 3-axial linear acceleration and 3-axial angular 

velocity at a constant rate of 50Hz. To label the data of the experiments, manual work supported by 

video-recordings was done. Additionally, in [18] the public USC-SIPI Human Activity Dataset was 

used. This dataset was collected from 14 subjects (7 male, 7 female) with a age ranged from 21 – 49 

years, height ranged between 160 – 185 cm and weight between 43 – 80 kg, by using a high performance 

inertial measurement unit (IMU) (3D accelerometer and gyroscope) sensor positioned on volunteers’ 

front right hips. The dataset contains 12 basic human activities: walking forward, walking left, 

walking right, walking upstairs, walking downstairs, running forward, jumping up, sitting, 

standing, sleeping, in elevator up, and in elevator down. Here the researchers considered 11 

classes by combining the last two activities into a single “in elevator” activity.  

[19],[20],[22] validated their proposed models in two public HAR benchmark datasets, PAMAP2 

and Opportunity datasets. PAMAP2 dataset contains data of 18 different physical activities (such as 

walking, cycling, playing soccer, etc.), performed by 9 subjects wearing 3 IMU placed over the wrist on 

the dominant arm, on the chest, on the dominant side's ankle and with a sampling frequency: ~9Hz. 

Opportunity dataset comprises records from 4 users wearing 7 IMU, 12 3D acceleration sensors, 4 3D 

localization information performing 18 different activities. In [20] data pre-processing was needed in order 

to fill the missing values of the sensor, to do that a linear fitting was executed, and the data for each 

sensor channel was normalized to the [0,1]. In [19] and [22] there are no records of data pre-processing 

being applied. 
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In order to prove the proposed algorithm, in [21], the Motion Sense benchmark public dataset 

was used. This dataset was built with data obtained through the sensor of a smartphone, which was 

not fixed on the user and data was produced in a controlled laboratory environment. For the dataset, data 

from 6 distinct activities (walk downstairs, walk upstairs, sit, stand and jogging) were collected 

from 24 healthy users, 14 men and 10 women with ages between 18 and 46 years old, heights between 

1.64 and 1.90 m and body weight between 48 and 102 kg. Before starting the model training, a second 

order notch (band-stop) filter was applied to the sensors to reduce the noise in the signal. 

 

2.3.4 AI-BASED MODELS 

Table 2-3 shows which AI models have been proposed for HAR, the attributes used in the training 

of the respective models and the results obtained through them.  

Garcia et al [25] used for benchmark tests of the proposed algorithm public datasets already 

previously mentioned, WISDM and PAMAP2. For both datasets exposed to the proposed algorithm, only 

the acceleration data were used in the model training process. 

Kazemimoghadam et al [10] implemented and compared two different algorithms, LDA and 

LSTM, using the F1 score metric, to evaluate the quality of the developed models. Each of the models 

were exposed to 3 different training processes, one of these training processes consisted in using data 

from healthy users for training and using the data from users with PD as validation, the second consisted 

in using the data from users with PD for training and using the leave-one-subject-out technique with data 

from healthy users and users with PD, lastly the training and testing used the data from users with PD 

and applying the cross-validation technique. To classify the tasks using LDA, six time-domain features 

from accelerometer and gyroscope including minimum, maximum, mean, standard deviation, first and 

last sample of each window were extracted. To classify the tasks using LSTM raw data without employing 

feature extraction was used, and the number of neurons in the input layer was adjusted according to the 

number of input signals and also as parameters used for optimizing the LSTM are batch size, number of 

epochs, and number of hidden units. The article presents a table of the several results with the several 

training paradigms defined by the authors, and in general the hypothesis that an LSTM is a better classifier 

than an LDA model is confirmed, having LSTM obtained an average F1 score of 0.89 and LDA an average 

F1 score in the recognition of activities of 0.69.  

 

 

 



 
 

 
 

 

Table 2-3 Summary of machine learning models proposed by several authors, and their data processing and algorithms performances. 

Paper Model Features feature selection /extraction Language/SW Performance 
Real-

time? 

[10] LDA e LSTM Acce, Gyr Min, max, mean, SD - LDA: F1 score=~0.64 

 LSTM: F1 score = ~0,88 
 

[14] CNN with shallow features Acce, Gyr Interquartile range, amplitude, kurtosis, RMS, variance, mean, SD, skewness, min, mean-cross, 

median, max, and zero-cross 

 
Acc = 98,6% 

 

[15] J48, MLP and LR Acce, Gyr Min, max, average, SD, zero crossing and correlation between axis WEKA machine 

learning toolkit 

J48:  Acc = 96,7%  

LR: Acc = 84,7%, MLP: Acc = 94,7% 

CC: Acc = 97,2% 

 

[16] CNN Acce, Gyr - FFTW3 library and the 

Torch 

Acc =98,2 
✓  

[17] DT, SVM, RF, RNN Acce, Gyr Mean, variance, MAS of the, first  and second eigenvalue of the Cov matrix, sum of the vertical 

component ratios for the intensity, Cov ratio, variance ratio, mean FFT-domain energy, mean FFT-

domain energy of the intensity, FFT-domain entropy, FFT-domain  entropy of the intensity,  number 

of mean crosses of the  MI, number of crosses of the zone of the  MI  ± 0.1 G, and number of 

samples outside  the zone of the MI 

- DT: Acc = ~59%, SVM: Acc = ~65%,  

RF: Acc = ~70%, RNN: Acc = ~98% 

 

[18] RNN Acce, Gyr - - UCI-HAD Proposed RNN: Acc= ~96,7, 

USC-HAD proposed RNN: Acc= ~97.8 
No 

LSTM: Long Short-Term Memory; LDA: Linear Discriminant Analysis; CNN: Convolutional Neural network;  RNN: Recurrent Neural Network; MLP: Multilayer Perceptron; Min: minimum; Max: maximum; RMS: Root Mean 

Square; MAS: mean absolute sum SD: standard deviation; Acce: Accelerometer; Acc: accuracy; CC: Combinational Classifier; LR: Linear Regression; DT: Decision Tree; SVM: Support Vector Machine; RF: Random Forest; 

GMM: Gaussian Mixture Modelling; HIER: average-linkage hierarchical agglomerative clustering; EAE: Ensemble Auto Encoder; MI: mean intensity; Cov: covariance 
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Paper Model Features feature selection /extraction Language/SW Performance Real-time? 

[19] 
Ensemble LSTM All features presented on datasets - - 

Opportunity: F1 score and SD: 0.726+-0,008, PAMAP2: F1 

score and SD: 0,854+-0,026 

No 

[20] combination of inception neural 

network and recurrent neural 

network 

Opportunity: Acce Gyr; PAMAP2: All 

features 
- 

Keras 2- Tensorflow 

framework, Python 
PAMAP2: F1 score= 0,935; Opportunity: F1 score= 0,946 

Yes 

[21] 

SVM with PSO Acce, Gyr 

mean, median, harmonic mean, 

sin, cosine, position vector and 

MFCC (Mel frequency cepstral 

coefficients) 

- Accuracy: 87,5 

no 

[22] 
CNN All features - - 

Opportunity: Acc= 89,66 F1 score=89,57; PAMAP2: 

Acc=92,55 , F1 score=92,60 

No 

[23] k-means clustering, GMM, and 

HIER 
Acce, Gyr mean, SD 

WEKA machine learning 

toolkit 
k-means: Acc=0,7198; GMM: Acc=1; HIER: Acc=0,7998 

No 

[24] 

Naive Bayes, LogitBoost, Random 

Forest, SVM 
Acce, Gyr 

correlation based feature selection, 

forward and backwards features 

selection methods and a wrapper 

feature selection method based on 

random forest algorithm 

WEKA machine learning 

toolkit 

naive bayes: Acc=81,24; LogitBoost: Acc=89,69; Random 

Forest: Acc= 92,29; 

SVM: Acc=84,17 

no 

[25] 
EAE, EkVN model Acce and Gyr; mean, SD and Pearson correlation - 

WISDM: EkVN Acc=0,73, EAE Accy=0,82;   PAMAP: EkVN 

Acc=0,71 , EAE Acc= 0,63 

No 

LSTM: Long Short-Term Memory; LDA: Linear Discriminant Analysis; CNN: Convolutional Neural network; RNN: Recurrent Neural Network; MLP: Multilayer Perceptron; Min: minimum; Max: maximum; RMS: Root Mean 

Square; MAS: mean absolute sum SD: standard deviation; Acce: Accelerometer; Acc: accuracy; CC: Combinational Classifier; LR: Linear Regression; DT: Decision Tree; SVM: Support Vector Machine; RF: Ranfom Forest; 

GMM: Gaussian Mixture Modelling; HIER: average-linkage hierarchical agglomerative clustering; EAE: Ensemble Auto Encoder; MI: mean intensity; Cov: covariance 



 
 

 
 

 

A proposal to combine a set of shallow features with those obtained from DL was made on [14]. 

The authors propose a pipeline that combines both shallow and deep learnt features, the raw datasets 

measured by the inertial sensors (accelerometer and gyroscope) are collected and divided into segments. 

The automatically learnt features and the shallow features are extracted in processes A and B, 

respectively. In the last block, the features are combined and classified using a fully connected layer and 

a soft-max layer of the deep learning model. In process A, a set of deep features is automatically extracted 

using the proposed deep learning model to convert the input data into a spectrogram representation that 

will feed a 1-D convolutional kernels with the same principle that CNN. In process B predefined shallow 

features are considered. The features are Interquartile Range, Amplitude, Kurtosis, Root Mean Square, 

Variance, Mean, Standard Deviation, Skewness, Min, Mean-cross, Median, Max, Zero-cross and are 

extracted separately from each segment of each axis, creating a vector representation for the considered 

segment. Average accuracy was used as comparing metric, and the proposed model achieved 98,6% of 

accuracy. 

In [15], the authors implemented three experiments using WEKA software, one using J48 

algorithm, the second using MLP algorithm, LR algorithm and finally an ensemble of the three previous 

algorithms. In the combinational classifier the voting algorithm based on their average probabilities was 

used to classify the activity. Before implementing the models, data extraction from the sensors data was 

needed, extracting data like minimum value, maximum value, average, standard deviation, zero crossing 

rate for every axis and correlation between axes. By applying the previous models to testing set the 

algorithm J48 obtained 96.7% accuracy, LR model achieved 74.7% accuracy, MLP classifier reached 

94.7% accuracy and the combinational model obtained a mean accuracy of 97.2% in the classification of 

the multiple activities. 

In [16] a comparison between their proposed model against SoA models was also made. The 

proposed DL architecture applied a filter to the pre-arranged spectrograms of the input, and the weighted 

sums of the convolved signal at each time are computed in the temporal convolution layer and finally, the 

fully connected layer and soft-max layer are used for classification. To extract the spectrogram from the 

data FFTW3 library was used and the Torch framework was needed to implement the DL model. The 

proposed model achieved an average accuracy of 98.2% 

Inoue et al [17] proposed a method of HAR from raw accelerometer data applying a recurrent 

neural network (RNN). The results obtained were then compare with more classic ML model such as 

Decision Tree (DT), Random Forest (RF) and Support Vector Machine (SVM). The quality measure 
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instrument was the accuracy. To train the more classic model were extracted from data 27 new features 

values, but to find the most relevant features a stepwise-feature selection using logistic regression was 

applied resulting on the 13 following features: mean value of x, y axis, variance of z axis, mean sum of 

the absolute values of each axis, second eigenvalue of the covariance matrix between the axes, covariance 

ratio in the x- and y-direction for the z-component variance of each axis, (14–16) variance ratio of the 

back and forth difference in the x- and y-direction for the variance of the back and forth difference in the 

z-direction of y axis, mean FFT-domain energy of the intensity, FFT-domain entropy of x axis, FFT-domain 

entropy of the intensity, number of crosses of the zone of the mean intensity. The authors constructed a 

deep recurrent neural network (DRNN) such that the three-axis acceleration data of each time 

corresponded to the three-dimensional input layer, and six activity classes to the six-dimensional output 

layer. Each unit of each internal layer was an LSTM unit. The activation function of the output layer and 

the error function were defined by a softmax function and a cross entropy function, respectively. The 

truncated BPTT under the mini-batch stochastic gradient descent method was used to update the weights 

at the time of training. Chainer framework, which uses Python language was used to build the RNN model.  

Parameters such as the numbers of layers and units, truncated time, and dropout rate, have been 

optimized to obtain the best result possible and so the proposed model obtained an accuracy of 95.42% 

which is higher 35.18%, 27.76% and 22.35% than those obtained from the comparative models of DT, 

SVM, and RF, respectively. 

A proposal of the use of deep recurrent neural networks (DRNNs) for building recognition models 

that are capable of capturing long-range dependencies in variable-length input sequences is presented in 

[18]. This manuscript presents us a unidirectional, bidirectional, and cascaded architectures based on 

long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark 

datasets. In all this models the inputs are raw signals obtained from multimodal-sensors, segmented into 

windows of length T and fed into LSTM-based DRNN model. The models outputs class prediction scores 

for each timestep, which are then merged via late-fusion and fed into the softmax layer to determine class 

membership probability. The Unidirectional LSTM-Based DRNNs model, consists of an input layer, several 

hidden layers, and an output layer and the number of hidden layers is a hyperparameter that is tuned 

during training. The bidirectional LSTM-based DRNN, includes two parallel LSTM tracks: forward and 

backward loops for exploiting context from the past and future of a specific time step to predict its label, 

and the number of hidden layers is also tuned during training. Cascaded unidirectional and bidirectional 

LSTM-based DRNN models are a cascaded structure in which the first layer is a bidirectional RNN, and 

the upper layers are unidirectional, with the number of layers being tuned also during training. To verify 
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the performance of the proposed models, the authors employed four widely used evaluation metrics for 

multi-class classification, precision, recall, accuracy, and F1-score. The model who attained the best 

performance was Unidirectional DRNN with an average accuracy=96.7%, precision= 96.8%, average 

recall= 96.7%, F1 score= 0.96 in UCI dataset and in USC-HAD dataset an accuracy = 97.8%, precision = 

97.4.0%, average recall = 97.4% and F1 score = 0.97. 

In [19] an attempt to demonstrate that Ensembles of deep LSTM learners outperform individual 

LSTM networks on human activity recognition using wearable sensors is made. Each LSTM model used 

present in the Ensemble was constituted by two-layer LSTM networks, with each layer containing 256 

LSTM units. Dropout was performed at the first and second hidden layers both with a probability of 0.5. 

We used the ADAM updating function, with a learning rate of 0.001. The metrics used to evaluate the 

performance of the Ensemble was F1 score and crosse entropy. In the process of training the authors 

made different combinations of Ensembles by changing the number of ensembles (1,10,20) and 

changing the evaluation score (F1 score, Cross entropy). The overall best model configuration, is an 

Ensemble with 20 LSTM models mixing cross entropy and F1 score + F1 as loss functions and with 10 

base learners each, reaching the best F1 score 0.726, 0.854 on opportunity dataset and PAMAP 

respectively. 

A proposition of a multi-level neural network structure model based on the combination of 

Inception Neural Network (INN) and Gate Recurrent Units (GRU) is made in [20]. The model proposed is 

a pipeline of 4 consecutive INN, followed by one max-pooling layer to help the network better eliminate 

misjudgment caused by noise disturbance, and finally by to 2 GRU layers, so that the model can better 

extract the sequential temporal dependencies, INN is a new and innovative network structure proposed 

by Google in the second half of 2014, composed by a 1×1 convolution kernel to directly activate the 

combination of multi-channel information and pass it to the next layer. Two convolution kernels of 1 × 3 

and 1 × 5 are cascaded respectively by a 1 × 1 convolution kernel. The network structure was built in 

Python with the assistance of Keras 2 - Tensorflow framework. The authors considered that classification 

accuracy was not an appropriate index for performance evaluation and so they decided to use F1 score 

as evaluation metric. The proposed solution obtained a F1 score of 0.946, 0.935 on Opportunity and 

PAMAP2 datasets respectively. In addition, the authors performed a real-time system evaluation of the 

model, reaching a predicted speed 65.09 sliding windows/s. 

In Batool et al [21], an SVM model based on Particle Swarm Optimization (PSO) is proposed. In 

the proposed model, six different feature like mean signal, median signal, harmonic mean, sine and 

cosine signal, position vector signal, frequency cepstral coefficients methods were extracted from the data 
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and are applied on the already pre-processed data (acceleration, gyroscope) for the analysis of human 

activity in frequency domain. The model proposed by the authors consists in applying the PSO algorithm 

that works as a pre-classifier, and the resulting particles are then used to feed the SVM model. A 

comparison of SoA methods with proposed method was made, by using accuracy metric to compare. 

The SoA methods were k-nearest neighbors (KNN) (accuracy= 74.0%), artificial neural network (ANN) 

(accuracy=75.3%) and a standard SVM (accuracy= 84.4%) classifier, and the proposed model, SVM with 

PSO, obtained 87.5% of accuracy. 

An architecture that processes time-series of multiple IMUs separately was proposed in [22]. 

However, this architecture contains multiple parallel processing branches, following the idea of wider 

rather than deeper networks. This architecture is referred as CNN-IMU network, and it contains parallel 

branches, each with temporal-convolutions, subsequent pooling operations, and an additional fully 

connected layer. Each branch contains N blocks, each of them having two stacked 5 × 1 temporal 

convolution followed by 2 × 1 max-pooling operations, and, eventually, concatenated by a fully connected 

layer. As referred Instead of scaling the network deeper, these layers are processed in parallel for each 

IMU, increasing the network’s descriptiveness. The network combines these intermediate representations 

into a global one by means of a subsequent fully connected layer. In [10], CNN-IMU is adapted to not 

realize max-pooling operations while CNN-IMU-2 does, and this is the biggest difference between the 2 

models proposed by the author. The results reported from author was by training the models while 

changing the learning rate, accuracy and F1 score was used as metric to evaluate the performance of 

the models, and no data features extraction or pre-processing was needed to do. With CNN-IMU the 

average accuracy obtained was 92.37% and the average F1 score was 0.92 while for model CNN-IMU-2 

the average accuracy reached 92.77% and the average F1 score was .93. 

In [23] features were extracted from the sensors data, by applying fast Fourier transform the 

authors extracted 12 features from time domain (six from acceleration and six from angular velocities) 

and 12 features from frequency domain (six from acceleration and six from angular velocities). To evaluate 

the performance of unsupervised learning methods for activity recognition, two kinds of experiments were 

carried out based on the knowledge of the number of activities (k). First, verification whether unsupervised 

learning is a reasonable way for activity recognition when k is known, and second, showed whether 

unsupervised learning can still be useful when k is unknown, indicating its potential to distinguish an 

arbitrary k. To evaluate the quality of the clustering algorithms accuracy and normalized mutual 

information was used. WEKA software was used to run the experiments. When k is known the author 

chose three clustering algorithms, k-means clustering (acc= 0.7198, NMI= 0.8670), mixture of Gaussian 



2 – Literature Review 

25 
 

(GMM) (acc= 1.0000, NMI= 1.0000), and average-linkage hierarchical agglomerative clustering (HIER) 

(acc= 0.7998, NMI= 0.9092). When k is unknown four clustering algorithms: k-means clustering, mixture 

of Gaussian (GMM), average-linkage hierarchical agglomerative clustering (HIER), and DBSCAN were 

chosen. Since the results for when k is known are presented in graphics it's hard to put them into numbers 

in this small review of the article.  

In [24] the authors aimed to study was to examine whether machine learning algorithms trained 

on data of tri-axial accelerometer alone or with gyroscope could identify human physical activity, to do 

this the authors applied several algorithms such as Naive Bayes, LogitBoost, RF and SVM. To feed and 

train this model besides accelerometer and gyroscope data, data extraction was needed to be done, 

extracting features as mean, autocorrelation, power spectral density, spectral power, Entropy, Sum Power 

Det Coeff, Inter Quartile range, Spectral variance, Main frequency, Intensity, Zero-crossing rate, Skewness 

and Correlation coefficient. A comparison by accessing the performance of the different models through 

precision, recall and average accuracy was made, where was confirmed that by using accelerometer data 

with gyroscope better results are achieved. Overall, the RF algorithm obtained the better results with 

precision=0.99, recall=0.99 and an average accuracy of 92.29%, while LogitBoost obtained 

precision=0.99, recall=0.99 and an average accuracy of 89.69%, followed by SVM with precision=0.95, 

recall=1 and an average accuracy of 84.17% and finally Naive Bayes with precision=1, recall=0.97 and 

an average accuracy of 81.24%. These algorithms were implemented through WEKA software. 

In article [25] the authors proposed a multi-class algorithm which consists of an ensemble of auto-

encoders (EAE) where each auto-encoder is associated with a unique class. Here the authors conducted 

several experiments to compare the predictive performance of the EAE, with others CNN SoA approaches 

and with a previous developed model by the authors called EkVN model which consists of an ensemble 

of models (KNN, Very Fast Decision Tree (VFDT) and Naive Bayes), in the context of human activity 

recognition. The author in the comparison used the accuracy and time (train/test) of the models as 

decisive metrics. For the CNN results the author used the values presented on their respective 

investigation, but for the EkVN model the author had to implement it from scratch, thus extracted features 

such has standard deviation and Pearson Correlation were added to data. The author on EAE trained it 

and tested it in an online and in an offline stage only by using accelerometer data as input. EAE online 

was trained/tested during 209.9/36s and obtained 0.82 of average accuracy, the EAE offline had a 

duration on train/test about 209.9/31s and an accuracy of 0.75 and finally the EkVN model achieved an 

accuracy of 0.97 with a time of 79.3/1.1 in train/test.  
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2.4 DISCUSSION 

2.4.1 (I) WHICH DAILY LIVING ACTIVITIES ARE RECOGNIZED AND FOR WHAT PURPOSE? 

Every day, human beings carry out a huge number of different physical activities. These activities 

range from the simplest, such as walking, sitting, and lying down, to the most complex such as brushing 

our teeth, jumping rope or vacuuming the room. In the health sector, being able to recognize human 

activity automatically through computers has special importance because it allows to know the habits and 

health conditions of a patient, thus improving the ability of diagnosis and treatment by health 

professionals. In the literature reviewed, it was found that most authors tried to develop their 

research on HAR for healthy people. Only [10] and [24] tried to develop HAR models for people with 

PD. This fact corroborates the statement made by Kazemimoghadam et al [10] that, although the area 

of HAR received enormous attention from scientists, there is still a long way to apply these methods to 

people with mobility disorders.  

It was observed that the most human activities commonly classified are walking, climbing, 

and descending stairs and sitting. Standing is also an activity slightly less represented  

[14],[15],[16],[17],[19],[20],[21],[22],[23],[24],[25] as also observed for activity of lying which was only 

studied in [17],[18],[19],[20] and [23]. 

Most of the selected articles refer to HAR systems in healthy people, being a need to 

extrapolate these findings to other field on medicine. Thus, it is required to develop and customize 

HAR systems to recognize basic physical activities of people with PD, as walking, standing, 

turning, upstairs/downstairs, sitting or lying, but also more complex activities like running, jumping, 

or carrying out weights.  

 

2.4.2 (II) WHICH TYPE OF DATA WAS USED IN AI MODELS INPUT FOR HUMAN ACTIVITIES RECOGNITION 

SYSTEMS? 

The crescent evolution of WS technologies has given rise to WS in the field of human health 

monitoring. This literature review verified what data these sensors produce, in which part of the body they 

should be placed, how many sensors need to be used and what is the experimental protocol for collecting 

meaningful data for HAR. 

There were two major types of systems to perform HAR, one system used WS and the other used 

external devices such as cameras [10]. 
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It was observed that IMUs were frequently applied to measure users’ motion during motor tasks. 

IMUs are an ideal option considering the low-cost, low power-consumption, portable, size, weight 

and easily accessibility and usability, not being technology invasive to users. The other options 

such as reflective markers would entail greater monetary investment and would limit patient data 

collection to indoor environments due to the static nature of the system resulting from the need to use 

cameras for data collection. Regarding to the use of smartphones as a source of data, it has against it 

the fact that the data obtained is affected by its orientation and placement on the body and this hinders 

the processing of these same data into meaningful and interpretable outputs [26]. 

IMUs can integrate accelerometers, gyroscopes and magnetometer and produce kinematic-

driven data from the segment which are coupled, such as 3D acceleration, angular velocity and orientation 

[27]. These sensors were mostly placed on the legs, ankles and trunk varying in number between 

3 and 7 IMU's used. As read in [14], [15], [16], [17], [21], [23], [24] by using a smartphone containing 

one IMU sensor it is possible to obtain satisfactory results regarding daily activity recognition 

and according to [28] by using one IMU on the lower back, it is also possible to obtain a 

complete analysis about the walking cycle 

In the selected articles it is found that mostly datasets used are public and are composed of data 

collected on healthy people, and mostly the data comes from smartphones. In the articles where the data 

came from people with PD [10],[24], few participants were included for data collection, 5 and 2 

respectively. Using data from a reduced number of subjects may raise problems in the 

reliability of the AI-based models’ performance, due to the possibility of overfitting not only in the 

training process but also in the validation process. Therefore, there is a need to consider using data 

from a higher number of patients with PD [29].  

It was verified that on the datasets used, whether publicly available or built by the authors, there 

is vague documentation about the protocols defined for the collection of information. Also, 

it was observed that all datasets included data collection methods from different protocols. Thus, there is 

a need to standardize the protocols to capture the most significant activities able to provide information 

about patients’ motion function.   
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2.4.3 (III) WHICH AI MODELS AND HOW THEY WERE IMPLEMENTED IN HUMAN ACTIVITIES 

RECOGNITION SYSTEMS?  

HAR generally exploits time series data from inertial sensors to identify the actions being 

performed [14]. In recent years, due to their popularity, DL technologies, for instance CNN and RNN, 

have been successfully introduced in HAR applications [10]. What distinguishes these from the classical 

statistical ML methods is that they can extract relevant features from raw data although this is 

achieved by adding more layers and nodes of classification which increase computational 

complexity [16]. The classical statistical ML, such SVM or DT, are trained to identify different activities 

using handcrafted features which means that these approaches rely on human domain knowledge which 

might affect the models’ performance [25]. 

On literature, it was observed that many different DL architectures have been proposed, 

such as CNN, RNN, AE, and all have in common the fact that they obtain better results in HAR than the 

classic statistical ML models. To evaluate the quality of the DL models, the authors chose to use as 

metrics the accuracy [14],[15],[16],[17],[18],[21],[22], [23],[24],[25] and the metric F1 scores 

[30],[19],[20],[22] . Particularly, F1 scores were used on the studies which included unbalanced 

datasets in the number of records of each classified activity. Thus, it is required to use protocols which 

provide data repeatability to overcome this data collection asymmetry. Besides F1 scores, accuracy, recall 

and MCC can be also considered to evaluate the performance of the proposed model. 

One of the applications of a HAR system for PwP is its integration in motor assistance devices, 

which can, for example, unlock FoG. Therefore, it is necessary that HAR performs in real time, but in the 

literature only Chen Xu et al [20] successfully performed tests with online implementations. Thus, after 

the models are trained and validated, it is recognized the need to use HAR systems in real time to be 

integrated in motor assistance devices. 

It was noticed that all the models proposed for HAR limit themselves to recognize simples’ 

activities such as walk, standing or sitting and are not able to be flexible enough to go 

beyond and reach further into more distinguishable continuous monitoring of human 

behavior, as segment between side-by-side activities or activities transitions, such as right/left turning 

or standing/walking or standing/sitting/getting up from a chair. To solve this problem the application of 

a tree diagram, suggested by Nguyen et al [31], enables the classification between dynamic/static sub-

activities without requiring high power computational consumes and allows more scalability to more 

precise activities such as raise left arm or raise one finger. Although this tree diagram might be a solution, 
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some concerns arise when happens to fail its first step of classification because it means that the last 

classification step will always be a wrong classification. 

 

2.5 CONCLUSION AND FUTURE DIRECTIONS 

From SoA review, it was concluded that HAR focused on PD was not very studied, proof of 

that is a total absence of public HA dataset composed by data collected from PD patients. Current 

approaches for evaluating the motor functions on individuals with PD are limited to observer-based and 

self-report methods [10]. IMUs were the sensors most chose by authors to provide data input signals 

on their HAR models. There is no standard method for data collection and for sensors placements. Except 

for the cases where smartphones were used, a great number of sensors are used for data collection 

which is impractical for day-to-day usage by the patients. 

In respect of DL models, CNN and LSTM networks were the most popular models 

implemented, as also the usage of accuracy as metric to evaluate the performance of the recognition 

models. At the training phase of this models the majority of the research papers [16], [18], [19], [20], 

[22] opted for not using feature extraction in the learning process. 

It was noted an absence of a standard framework to perform HAR, being the proposed 

models limited to identify basic human activities. Also, the proposed frameworks were not capable of 

stepping further into autonomous human monitorization, not being able to, for example, recognize if a 

person is walking slow or faster or even if is performing a second activity while is laying. Achieve this 

degree of HAR will be beneficial for the most varied scientific areas. 

Table 2-4 summarizes the identified limitations regarding technological, adopted strategies, and 

validation methodology issues and it is also provided guidelines for their mitigation. Therefore, a 

systematic approach will be followed to identify the requirements of the system, from the point of view of 

the user and technologies, considering the limitations identified in the literature review, allowing to move 

on to the next dissertation tasks. 

 

Table 2-4 - Limitations and guidelines to overcome them. 

Limitation End user requirements Guidelines 

Datasets composed only by data from 

healthy subjects 
Software capable of monitoring PD patients Develop a dataset with PD patients’ data 

Non clear body configuration of WS Portability, comfort, easy set-up 
Find a trade-off between the number/location of 

sensors without losing significant data 
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Poor data collection on home-based 

conditions 
Personalized treatments 

Perform experimental tests on home-based 

scenarios 

No assessment of HAR usability Acceptability of the device 

Include the users’ opinion in the development 

of the proposed solution and assess its 

acceptability and usability 

Flexibility and scalability of DL models Improve and deepen the HAR 

Implement a hierarchical framework capable 

with minor changes perform in depth 

continuous monitorization 
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3.1 INTRODUCTION 

Aiming to provide a closed, continuous, and objective clinical support tool using WS data as input 

for AI-based models, to reach the main goal of this dissertation, two main objectives were outlined: 

 

1. Build and develop a database with kinematic data from daily life physical activities performed by 

PD subjects. 

2. Develop AI framework based on deep learning (DL) algorithms capable of accurately recognize 

HAR performed by PD patients 

 

To this end, from a SoA review, it was defined the achievements and limitations of current related 

works, being able to clarify the steps to follow in this dissertation. A critical literature review was 

accomplished enabling to highlight the technological and end-users’ requirements to consider on the 

design of the proposed solution. Thus, the conceptual overview of the proposed solution in this 

dissertation includes three main aspects: 

 

1. Human activities to recognize in PD domain. The activities defined to collect kinematic 

data from are referred in Table 3-1: walking, stand, stand to sit, sit to stand, stand to lying, lying 

to stand and 180º turning. Although all activities add important information to monitor patients 

motor function, walking and turning recognition are key activities in a motor assistance device, 

since scientific community observed these situations as main triggers to walking-associated 

disabilities.  

 

Table 3-1 Human activities to be recognized by our proposed DL classification framework. 

Human activities Monitoring Assistance 

Standing still 
 

 

Siting on chair 
 

 

Get up from chair   

Lying on bed   

Get up from bed   

Walking   

180º turning   
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2. Data input. To be more comfortable and less invasive to patients, a small number of body 

sensors is used to collect data. One inertial measurement unit (IMU) that integrates an 

accelerometer and a gyroscope, capable of capturing lower trunk acceleration and angular 

velocity data, will be used to collect data from the patient. The kinematic raw data captured 

by the IMU sensor is to be used directly by DL model proposed by this dissertation, 

reducing the extra computational power used in the features extraction 

implemented by others AI models. Advantageously, this IMU sensor location can 

capture data from a complete walking cycle with a single sensor, while sensors 

configurations on lower limbs require more sensors to capture the same data. Indeed, inertial 

data have been extremely used on the literature, since it includes kinematic data about users’ 

motion and use low power-computation, low-cost and portable devices. Since there are no 

public datasets available with kinematic data from IMU pertaining to daily activities 

performed by PD patients, this dissertation built one. To do so, a collection protocol was 

defined and implemented as described on Appendix A. 

 

3.  HAR AI-based model. The proposed framework consists of one AI DL model. This 

Convolutional Neural Network (CNN) model based is responsible for classifying human activities 

such as:  walking, standing still, sit on chair, get up from chair, lay on bed, get up from bed and 

180º turning. 

 

Besides the two main objectives previously mentioned, a secondary objective was delineated 

during the dissertation implementation process, since it was observed the importance of detecting 

walking, Initial foot Contact (IC) and Final foot Contact (FC), to provide on-demand motor 

assistance and estimate walking-associated metrics. This complementary objective focused on the 

recognition of walking events using AI 

Human Walk IC/FC Detection (HW-IC/FC) AI-based model. This AI DL model is based 

on Bidirectional Long-Short Term Memory (BiLSTM). BiLSTM are upgraded version of the regular Long-

Short Term Memory (LSTM) and are efficient in data sequence processing. This dissertation solution can 

recognize IC and FC events from the PD patients walk, 

This dissertation frames in project research titled by +SENSE: Sensory biofeedback devices for 

patients with PD, which aims towards high-tech solutions to mitigate motor symptoms in PD. Therefore, 

with this dissertation it is expected to contribute with a HAR framework capable of recognizing daily 
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activities such as walking, sit and get up from chair, lay and get up from bed and to recognize when a 

patient performs a 180º turn. The complementary HW-IC/FC framework is capable of recognizing walking 

events, namely IC and FC. Both frameworks will be used to monitor PD patients’ motor function, and to 

be integrated on +SENSE assistance devices. Further description about +Sense project functioning, how 

this dissertation fits in +Sense project and how the HAR and HW-IC/FC frameworks were developed in 

this work will be presented in the following chapters. To process and transform the data, Python language 

with its multiple libraries dedicated to data handling, exploration and visualization will be used. Framework 

TensorFlow with its libraries will also be utilized to implement the HAR and HW-IC/FC DL models.  

 

3.2 PROPOSED SOLUTION FRAMED INTO +SENSE 

This dissertation is integrated into the +Sense project. +Sense presents front-end high-tech 

solutions based on wearable biofeedback devices which rely on acquisition, interpretation, and feedback 

of PD patients’ sensorimotor information. By promoting patients motor autonomy, +Sense projects 

research envisions to improve patients’ life quality. There are four +sense modules, as shown in Figure 

3-1: (1) +sBiofeedback; (2) +sMotion; (3) +sC-support and (4) +sImmersive. This dissertation 

contributed to the +sMotion module by building a framework capable of transforming the 

received data and using it to classify the daily activity (HAR) and walking IC/FC. HAR 

recognition enable to automatically detect which activity patients are performing and 

assess their performance during motor trivial quotidian tasks. Thus, a closed follow-up and 

assessment of patients can be achieved. Also, this framework by having the capability of recognizing 

walking IC/FC, also has the potential to assist PD patients in their locomotion’s. The application of this 

dissertation proposed framework indirectly contributes to +sBiofeedback module which provides on-

demand motor assistance biofeedback tools. Further, the estimation of walking IC/FC complements 

+sMotion for automatically estimate walking-associated metrics, such as velocity, step length/time, 

cadence, walking variability or walking asymmetry. 
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Figure 3-1 +Sense project modular composition. 

  

3.2.1 +SMOTION: COMBINATION OF KINEMATIC-DRIVE DATA FROM WEARABLE SENSORS WITH AI FOR 

MOTION ASSESSMENT IN PD 

+sMotion module includes a wearable walking analysis LAB which is a part of an instrumented 

waistband (WBD), comprising the 1) Sensory Acquisition Unit; 2) Processing Unit; 3) Data Storage Unit; 

4) Mobile APP, as depicted in Figure 3-2. The wearable walking analysis LAB is placed close to the 

center of mass area, being capable of capturing an entire gait cycle, this positioning confers stability 

to the device and adds more comfort to the user bye being discrete and light. Is responsible for a non-

invasive kinematic data acquisition and monitoring lower trunk inertial signal, post-processing walking 

analysis and walking-associated metrics estimations of PD patients. 

 

 

Figure 3-2 +Sense hardware and software setup. 
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The +sMotion module sensory acquisition relies on the use of only one MPU-6050 

Inertial Measurement Unit to acquire acceleration and angular velocity data. The computing 

unit comprises a STM32F4-Discovery that processes the acquired kinematic data in real-time to segment 

the walking cycle. The acquired inertial data and identified events are saved in the Data Storage Unit, a 

OTG USB driver. The Mobile APP is an Android APP that wirelessly communicates with the processing 

unit, via Bluetooth, enabling to start/stop data acquisition, control operability settings and plotting the 

acquired data.  

To further extend the +sMotion module utilities, this dissertation contributed by taking advantage 

of the already existing data sensory acquisition hardware and Mobile APP software, with two AI-based DL 

models, one for human activity recognition (HAR) and another to human walk IC/FC detection 

classification. +Sense device collects kinematic data that will be processed by DL HAR and HW-IC/FC 

frameworks, to support the clinical expert with relevant metrics regarding the PD patient, exemplified by 

Figure 3-3. 

 

 

Figure 3-3 Scheme about how this dissertation was framed in +Sense. Data collection using wearable motion LAB and AI 
analysis provided with this dissertation. 

 

3.3 CONCLUSIONS 

This dissertation was developed with the objective to automatically detect daily activities 

performed by people with PD using kinematic data through the implementation of an AI DL model 

framework. A complementary AI DL model was also built to detect IC/FC during PD patients walk using 

kinematic data. It is expected that these different frameworks to be a complement to +Sense project. 

PD patients’ assessments depend exclusively on presential consults or self-made report by 

patients. Usually, medical consults are sparce in time and the disease keep on evolving, often the drugs 

prescribed to lesser the symptoms of the disease becomes less effective. Auto-reports made by the 

patients of their day-to-day life are usually incomplete due to complacence or incapability of the patient, 

becoming in an unreliable assessment tool.  
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This dissertation also defends that the existence of a real-time walking device is important, since 

walking impairments are one of the majors’ symptoms of PD. By complementing the main objective of 

this work with AI model capable of human walk IC/FC events detection, it is expected to contribute with 

an alternative to the already existing solution in +sBiofeedback module. 

 Having an automatic All-in-One device capable of monitoring and support the PD patients in its 

daily life is crucial and game changer. 

Although in SoA research papers mentioned the usage of smartphones to collect data from the 

subject, in daily life that isn’t an option because it demands to always use it near the body of the subject. 

This handicap would affect one of the purposes of +Sense project which is the empowering of the 

autonomy of PD patients, especially the patients who like to wear their smartphones on their purses. 

As an alternative to smartphones in data collection, the SoA research proposed the usage of IMU 

sensors. The quantity of the sensors to be used ranged between 3 to 26. This high number of sensors 

might be impractical and uncomfortable to be used in the different everyday activities all day. 

Another critical issue mentioned in SoA is the body part positioning of the sensors, either 

smartphone or IMU device. Because different sensor body positioning generates distinct data for the 

same activity it will affect the performance of the device in its capability of recognizing human activity. 

+Sense is the answer to all handicaps mentioned above. With an elastic waistband adjustable to 

any person waist, it can be easily concealed beneath clothes, delivering total freedom of movements and 

full autonomy in daily activities. Since it imbeds one IMU sensor, that is always placed at the lower trunk 

when the WBD is placed on, the problems caused by placing the sensor in different/wrong places and 

the sensor being uncomfortable are also solved. 

As we will see later in this dissertation, good results using AI DL model for the recognition of 

PD patients’ daily activity and walking IC/FC were obtained, being the kinematic data 

collected through the +Sense WBD that is equipped with one IMU located at the lower trunk 

body position.



 

 

4 DEEP LEARNING 
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HUMAN ACTIVITIES 

RECOGNITION 



4 Deep Learning Framework for Human Activities Recognition 

 

 39 

4.1 INTRODUCTION 

As found in SoA research, generally, DL models can achieve better results in recognizing human 

activities through kinematic data. As such to build a DL framework capable of recognizing daily activities 

performed by PD patients it is this dissertation main objective. To do so, a series of steps needed to be 

taken:  

 

• know what activities were relevant to be monitored; 

• what type of data should be collected; 

• how the data should be processed; 

• how the pipeline for the DL model training and evaluation would be implemented. 

 

Always with the support of the literature, these steps will be presented and discussed throughout 

this chapter. 

 

 

Figure 4-1 HAR schema layout solution. 

 

4.2 DATA INPUT 

4.2.1 DATA ACQUISITION 

Several public datasets for activity recognition were found publicly available, like PAMAP2 [32], 

Opportunity [33] and UCI HAR dataset [34]. Nevertheless, these never presented all the required 

configurations needed to accomplish the aim of this dissertation, since most of them used smartphones 

to collect data, and all of them collected data from healthy people. As we will see later on this dissertation, 

the data signal collected from a PD patient is noticeably different from a healthy person. Therefore, a 

custom dataset was created. Data acquisition was conducted under the ethical procedures of the Ethics 
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Committee in Life and Health Sciences (CEICVS 147/2021), following the Helsinki Declaration and the 

Oviedo Convention. All participants gave their informed consent to be part of the study. Data was collected 

at the Hospital of Braga – 2CA Braga Academic Clinical Center. A complete protocol is available at 

Appendix A. 

 

4.2.1.1 PARTICIPANTS 

Eighteen participants with PD (ten males and eight females) were recruited and accepted to participate 

in this data collection. A list of inclusion criteria was outlined to conduct the experimental data collection.  

 

Table 4-1 Demographic and clinic characteristics of study participants. 

Characteristics Participants (N=18) 

Age [years] (mean ± SD) 67.89 ±8.72 

Height [cm] (mean ± SD) 166.21166.21 ±7.47 

Weight [Kg] (mean ± SD) 70.6870.68 ±11.63 

Gender 
Female N=8 

Male N=10 

H&Y 

(mean ± SD) 2.322.32 ±1.13 

I N= 6 

II N= 4 

III N= 4 

IV N= 4 

UPDRS-III 

(mean ± SD) 36.63±24.40 

Low (1-12) N=8 

Mild (13-22) N=6 

High (≥23) N=4 

SD: standard deviation. 

 

4.2.1.2 ACQUISITION INSTRUMENTS 

The volunteers performed the daily physical activities while using the WBD that contains one 

MPU-6050 Inertial Measurement Unit to acquire acceleration and angular velocity data. This equipment 

was used in all trial performed by the PD patients, Figure 4-2 presents the used WBD. 
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Figure 4-2 Waistband containing the MPU-6050 Inertial Measurement Unit sensor (WBD). 

 

4.2.1.3 ACQUISITION PROTOCOL 

Considering the literature found in SoA and hearing medical staff opinion, eight different physical 

daily activities were recognized by de DL model. Those activities are:  

 

• Walk 

• Turn 180º degrees while walking 

• Sit on chair 

• Get up from chair 

• Lie on bed 

• Get up from bed 

• Walk upstairs 

• Walk downstairs 

 

Due to the lack of physical conditions at 2CA Braga Academic Clinical Center department, the 

activities of climbing stairs and walk downstair were excluded from the trials, but to the activities of turning 

while walking were differentiated to distinguish between turn right or left while walking. As such, a final 

protocol was made to collect data of the following physical activities: 

 

• Walk 

• Turn 180º degrees right while walking 

• Turn 180º degrees left while walking 

• Sit on chair 
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• Get up from chair 

• Lie on bed 

• Get up from bed 

 

Each activity trial was performed three times by every study participant, and the execution times 

of the activity were manually recorded for later assistance in labelling the data, Figure 4-3. A 

comprehensive scientific protocol is available at Appendix A. 

 

 

Figure 4-3 Trials performed by the volunteers. A – Sit and get up from chair; B – Lay and get up from bed; C – Walking; D -
Walking and perform 180º turn. 

 

4.2.2 DATASET DESCRIPTION 

To build a DL model, possessing a good knowledge of the kinematic data that we are working on 

is very important, and so an initial data exploration was done. 

The Parkinson’s Disease Human Activity Recognition Database is a collection of eighteen PD 

patients’ data. Each patient performed three trials of eight different activities: 

 

• Walk; 

• Turn 180º degrees right while walking; 

• Turn 180º degrees left while walking; 

• Sit on chair; 

• Get up from chair; 

• Lie on bed; 
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• Get up from bed. 

 

The data was collected using the WBD containing one MPU-6050 IMU, which collected tri-axial 

data for acceleration and angular velocity at 100 Hz frequency, meaning 100 observations of the activity 

were registered per second. Each trial datafile contains eight independent variables: 

 

• time_sampling: internal time of the processing unit responsible for acquiring the IMU data 

• Sample: id number of the sample  

• acc_x: acceleration value in x axis  

• acc_y: acceleration value in y axis  

• acc_z: acceleration value in z axis  

• gyr_x: angular velocity value in x axis  

• gyr_y: angular velocity value in y axis  

• gyr_z: angular velocity value in z axis  

 

Figure 4-4, Figure 4-5, Figure 4-6, Figure 4-7, Figure 4-8, Figure 4-9 express how different PD 

patients activities kinematic collected data are different from Healthy persons performing the same 

activities. 

 

Figure 4-4 Comparison between Healthy person walking and PD patient walking activities. Only Acceleration values from X 
axis are displayed for better understanding. 

 

Figure 4-5 Comparison between Healthy person 180º turning and PD patient 180º turning activities. Only Acceleration 
values from X axis are displayed for better understanding. 
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Figure 4-6 Comparison between Healthy person sitting on chair and PD patient sitting on chair activities. Only Acceleration 
values from X axis are displayed for better understanding. 

 

 

Figure 4-7 Comparison between Healthy person get up from chair and PD patient get up from chair activities. Only 
Acceleration values from X axis are displayed for better understanding. 

 

 

Figure 4-8 Comparison between Healthy person lay on bed and PD patient lay on bed activities. Only Acceleration values 
from X axis are displayed for better understanding. 

 

Figure 4-9 Comparison between Healthy person get up bed and PD patient get up bed activities. Only Acceleration values 
from X axis are displayed for better understanding. 
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4.2.3 DATA INPUT PREPARATION 

Before begin training, validating, and testing the proposed DL model of this dissertation, several 

steps were needed to take based on literature, such as: data verification, data labelling and data splitting, 

were needed to take.  

 

 

Figure 4-10 Human activities recognition data input handling pipeline. 

 

4.2.3.1 DATA  VERIFICATION 

To assess if the data files collected contained corrupted data, a manual search in all dataset files 

were accomplished, as depicted in Figure 4-11. It is notable that the corrupted data was always found at 

the end of data file, being easily removed for further AI process. An example of corrupted kinematic data 

collected by the IMU sensor is present in Figure 4-11, where the signal selected by the black frame 

corresponds to a movement outside of the trial purpose.   

 

 

Figure 4-11 Patient trial with corrupted captured kinematic data. 
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4.2.3.2 FEATURES EXTRACTION 

Traditional machine learning approaches use handmade features to train their models [10], [15], 

[21], [22], [24] recent advancements in neural networks allow for automatic feature extraction. DL 

supervised training methods [10], [17], [18], [19], [20], [22], [25] were proved to be able to obtain better 

performances than the traditional machine learning models without the need for additional features 

beyond the raw basic data. As such no handcrafted features were added to the training dataset. 

 

4.2.3.3 DATA LABELLING 

The data labeling process was done manually based on synchronized notes of activities start/stop 

taken during data acquisition. During data acquisitions, a timer ran at the same time the WBD was 

activated to collect patients’ kinematic data and a researcher registered the time in which each participant 

started and stopped the execution of an activity. Data labeling used these notations and to avoid bias, 

during data acquisitions, the same researcher accomplished these annotations and data labelling. 

 

Figure 4-12 With a light blue color the PD patient walk kinematic data labelling and with a dark blue PD patient Standing still 
labelling kinematic data. Only Acceleration values from X axis are displayed for better understanding. 

 

 

Figure 4-13 With red color the PD patient 180º turning activities kinematic data labelling. With light blue color are labelled as 
walking activities and with dark blue color PD patient standing still kinematic data labelling. Only Acceleration values from X 

axis are displayed for better understanding. 
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Figure 4-14 With red color the PD patient sitting on chair activity kinematic data labelled. With dark blue color PD patient 
standing still activity kinematic data labelling. Only Acceleration values from X axis are displayed for better understanding. 

 

 

Figure 4-15 With green color the get up from chair activity labelled. With dark blue color PD patient standing still activity 
labelling kinematic data. Only Acceleration values from X axis are displayed for better understanding. 

 

 

Figure 4-16 With red color the sitting on chair activity labelled. Pink color represents the Lay on bed activity and dark blue 
color standing still activity labelled kinematic data. Only Acceleration values from X axis are displayed for better 

understanding. 
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Figure 4-17 With yellow color the labelled get up from bed activity. The green color represents the get up from chair activity 

and dark blue color standing still activity labelled kinematic data. Only Acceleration values from X axis are displayed for 

better understanding. 

 

With this choice of labelling, the activities to be recognized by the DL model proposed by this 

dissertation are enumerated at Table 4-2. 

 

Table 4-2 Daily activities label identification. 

Label identification Activity 

0 Standing 

1 Sit on chair 

2 Stand from chair 

3 Lay on bed 

4 Get up from bed 

5 Walk 

6 180º turning 

 

4.2.3.4 DATA SPLITTING 

The whole dataset was divided into four different individual datasets. More specifically, 20% was 

used as test dataset (3 patients) for the proposed model final evaluation, 80% (15 patients) of the data 

was used in the fine-tuning stage of the proposed model. This 80% of data is further divided into 80% (12 

patients) training and 20% (3 patients) validation datasets with the purpose of training and validating the 

final model using the best hyper-parameters found in fine-tunning stage phase. The testing dataset is only 

used once as unseen data for a final assessment of the model performance. 

 



4 Deep Learning Framework for Human Activities Recognition 

 

 49 

 

Figure 4-18 Schematic representation of the dataset splitting for the different HAR DL model development stages. 

 

After Data Splitting a Minimum-Maximum (MinMax) data normalization was applied. 

Variables measured at different scales do not contribute equally to the model fitting and 

model learned function and might end up creating a bias, thus normalization is a needed procedure. 

Although many methods exist for scaling data, on the chosen SoA literature only in [20], [22], [23] 

it was mentioned that the data was scaled to fit [0,1] range, and such this dissertation adopted this concept. 

MinMax data normalization was done feature-wise in an independent way. 

 

4.3 MODEL PIPELINE 

This dissertation proposed DL algorithm for the recognition of daily activities performed by PD 

patients is a Convolution Neural Network (CNN) DL model based on Jason Brownlee proposed 

architecture for HAR [35]. Model pipeline included model parameters optimization through grid search 

process, model validation using the best parameters found in grid search process and a final performance 

evaluation of the model using unknown patient kinematic data. The following sub-chapters will present 

and describe the used model, its hyperparameters, its input/output data formats and the metric used to 

judge the model performance. 
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Figure 4-19 Model Pipeline Schema representing the development of the final HAR DL model for PD patients’ solution. 

 

4.3.1 CONVOLUTIONAL NEURAL NETWORK 

Convolutional Neural Network (CNN) is a class of neural Network that can process data in a grid-like 

way. Usually is very associated with image processing but it can also process IMU sensor kinematic data.  

According to [36], CNNs are comprised of three types of layers. These are convolutional layers, pooling 

layers and fully connected layers. When these layers are stacked, a CNN architecture has been formed. 

 

 

Figure 4-20 Example of a basic CNN architecture. 

The convolutional layer input, through the calculation of the scalar product between the neuron 

weights and the region connected to the input data, is responsible of determining the output to be utilized 

by the following layer. 

Is common this convolutional layer be followed by a pooling layer. This pooling layer will perform 

a down sampling along the spatial dimensionality of the given input, further reducing the number of 

parameters within that activation. 
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The fully connected layers will then perform the same duties found in standard neural networks 

and attempt to produce class scores from the activations, to be used for classification. 

 

 

Figure 4-21 CNN example of functioning through convolutions, down sampling with pooling and finally the classification of 
input data. 

 

CNN architecture has multiple parameters, but three parameters can be considered key to its 

performance: number of filters, kernel size and pooling size. CNN use several different filters to convolve 

over a given data spatially to detect features. These filters learn to capture spatial features from the data 

based on the learned weights through backpropagation. Stacked layers of filters can than turn a given 

data into a highly abstracted representation of the original data, easier to predict the outcome. The kernel 

size dictates the size of the filter, often kernel and filter are mentioned as being the same thing. A filter is 

a matrix of weights with which we convolve the input, measuring how close a patch of input resembles a 

feature. Smaller filters collect as much local information as possible, bigger filters represent more global, 

high-level, and representative information. The pooling size refers to how much the data should be down 

sampled, reducing its dimensionality by keeping the sub-regions activated features binned.  

 

4.3.2 PROPOSED CONVOLUTIONAL NEURAL NETWORK MODEL 

Many CNN models were experimented, but with the collected data the best results were obtained 

by Jason Brownlee CNN architecture for HAR [35].  

The model is composed of two 1D CNN layers, followed by a dropout layer, rate 0.1, for 

regularization, then a pooling layer. According [35] is common to define CNN layers in groups of two, 

because gives the model a better chance of learning features from the input data. The dropout layer is 

intended to help slow down the learning process of the CNN layers. The pooling layer reduces the learned 

features to the most essential elements. After the CNN and pooling, the learned features are flattened, 

by a Flatten layer, to one long vector and pass through a fully connected layer before the output layer 

https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
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used to make a prediction. The fully connected layer works as a buffer between the learned features and 

the output with the intent of interpreting the learned features before making a prediction. For this model, 

we will use a kernel size of two, to optimize the network Adam version of stochastic gradient 

descent algorithm is used, and the categorical cross entropy loss function is applied since we 

are learning a multi-class classification problem. 

 

 

Figure 4-22 Proposed HAR DL model architecture. 

4.3.3 INPUT AND OUTPUT DATA FORMAT 

The model requires a three-dimensional input with [nº of samples, timesteps, nº of features]. 

Meaning, each input sample is one window of time that will have a pre-determined number of timestep, 

and a timesteps has a fixed number of variable or features.   

The output for the model will be a six-element vector containing the probability of a given window 

belonging to each of the seven activity types. 

These input and output dimensions are required when fitting the model, and we can extract them 

from the provided training dataset. 

Different sizes of input windows were experimented on, Table 4-4, but all had 50% overlapping 

data. The overlap size was determined by the baseline model authors [35]. Overlapping time windows 

are intended to handle transitions more accurately. The different sizes of input windows tested were 

influenced by the time duration of the physical activities. In this dissertation a DL model based on 

Convolutional Neural Network algorithm was made, as the algorithm works, in a roughly way, by 

performing convolutions over sliding windows of data. Knowing an approximated optimal size of those 

windows should help on finding the best parameters of the DL model. Minimum, maximum, and mean 

size of the sequence for each activity present on the dataset were calculated, resulting on Table 4-3. 

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
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Table 4-3 Mean, minimum, maximum length of each daily activity. 

Activity Min Mean Max 

Standing still 459 1770.872 4184 

Sitting on chair 18 388.2857 1442 

Get up from chair 116 303.6 1010 

Lay on bed 118 512.3208 1470 

Get up from bed 188 481.4259 1477 

Walk 470 1316.937 5487 

180º turn 231 512.2857 3507 

 

Based on the mean, minimum and maximum length calculated for each daily activity, four different size 

window input were experimented on, as indicated in Table 4-4. 

 

Table 4-4 Different size windows input experimented on. 

Size window Input 

5 56 112 240 

 

 

When fitting the model, it is also required a two-dimensional input [nº of samples, label]. Meaning, 

each sample have the corresponding label. The label is in one-hot-encoding format and chosen by 

selecting the most frequent label present in each sample window.  

 

4.3.4 MODEL EVALUATION METRIC  

In general, the prevalent assessing metric found in SoA research was the Accuracy, but SoA 

research papers where Neural Networks models were implemented and evaluated, F1 score metric was 

on an even foot against Accuracy metric. For a better result visualization commonly a Confusion Matrix is 

used, and from this instrument it is easier to calculate some of the most frequent evaluation metrics, 

such as F1 Score, Precision, Recall and Accuracy. 

 

Table 4-5 Confusion Matrix. 

 Predicted 

Actual 

 Positive Class Negative Class 

Positive Class True Positive (TP) False negative (FN) 

Negative Class False Positive (FP) True negative (TN) 
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Precision: It is implied as the measure of the correctly identified positive cases from all the predicted 

positive cases. Thus, it is useful when the costs of False Positives is high. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

 

Recall: It is the measure of the correctly identified positive cases from all the actual positive cases. It is 

important when the cost of False Negatives is high. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

Accuracy: One of the easiest metrics to calculate, it is the measure of all the correctly identified cases. It 

is most used when all the classes are equally important. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

 

F1-score: This is the harmonic mean of Precision and Recall and gives a better measure of the incorrectly 

classified cases than the Accuracy Metric. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

According to Hossim et al [37] Accuracy metric is the measure of all the correctly identified cases, 

while F1 score metric is the harmonic mean of Precision, measure for correctly identified positive cases 

from all the predicted positive cases, and Recall, measure of the correctly identified positive cases from all 

the actual positive cases [38], giving, in the perspective of this work, a better measurement of the 

incorrectly classified cases than the Accuracy metric. Since this work is using an unbalanced dataset, to 

train the suggested model, F1 score is used as the main measure to analyze the performance 

quality. 
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4.3.5 FINE-TUNNING STAGE 

To obtain better results from the initial chosen model, a common process in deep learning called 

Grid Search was implemented. With this algorithm every different combination of the chosen hyper-

parameters is tested, while calculating the performance metrics using cross-validation, to find a possible 

better model. GridSearchCV method from Scikit-learn library, was implemented. 

The implementation of this method required the compiled selected CNN model. Since this 

method returns a ranked report of the best results obtained by the different hyper-parameters 

combinations a scoring function was needed. A parameter grid in a Python dictionary format containing 

all the hyper-parameters to be tested was added. In GridSearchCV() method the parameters of the model 

used to apply these methods are optimized by cross-validated grid-search over the parameter grid. 

In the SoA literature there is no definite answer on which hyper-parameters must be tested to 

achieve a good performance. This dissertation has chosen the number of timesteps per sample, 

number of filters, number of neurons, pool size, data batch size, dropout rate, and learning 

rate as the different hyper-parameters to be tested. The values experimented on the different parameters 

are listed on Table 4-6. 

 

Table 4-6 Fine-tunning phase parameters explored. 

Parameters Values 

Window sample timestep size 5, 56, 112, 240 

Number of filters 32, 64, 128 

Number of neurons 60, 100 

Pooling size 2 

Data batch size 256, 512 

Dropout rate 0.3, 0.5 

Model learning rate 0.001, 0.0001 

 

There are different techniques that may be used to cross-validate a model. During literature 

research hold-out cross-validation [17][19][20][22] and k-Fold cross-validation [14][15][16][24] were the 

most common cross-validation used. According Payam et al [39] Hold-out validation avoids the overlap 

between training data and test data, yielding a more accurate estimate for the generalization performance 

of the algorithm. The downside is that this procedure does not use all the available data and the results 

are highly dependent on the choice for the training/test split. In k-fold cross-validation the data is first 

partitioned into k equally (or nearly equally) sized segments or folds. Subsequently k iterations of training 

and validation are performed such that within each iteration a different fold of the data is held-out for 
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validation while the remaining k - 1 folds are used for learning [39], thus using all data available. In this 

model tunning phase, was decided that a tenfold cross-validation would be implemented. 

 

4.3.6 ABLATION MODEL INDEX 

To know the contribution that each layer to the general performance of the model, an ablation 

study was made. This study consists of systematically removing layers from the general model and 

checking its performance at each removal. The different ablations performed to the compete 

architecture can be seen in Table 4-7. 

At each removal, the model was trained with all training dataset available, and with the same 

parameters utilized to build the general model. The results were obtained, by testing this new model 

versions against the test dataset, see Table 4-12. 

 

Table 4-7  Ablation study for this dissertation proposed architecture. 

Model Architecture 

General C1 + C2 + D + MP + FL + FC1 + FC2 

Ablation 1 C1 + D + MP + FL + FC1 + FC2 

Ablation 2 C1 + D + MP + FL + FC2  

Ablation 3 C1 + MP + FL + FC2  

Ablation 4 C1 + FL + FC2  

C- Convolution layer D – Dropout layer MP – Max pooling FL – Flatten layer FC – Fully connected layer 

 

4.4 RESULTS 

4.4.1 FINE-TUNING STAGE PERFORMANCE 

Table 4-8, presents the best training and validations results from grid search hyper-parameters 

optimization. 

 

Table 4-8 Fine-Tuning stage optimal parameters found, and the results obtained with them. 

Window timestep 

size 
Parameters Value Dataset F1 score (mean) Standard 

deviation 

240 

Epochs 200 

Train 0.93695 0.00423 
Overlapping 50 % 

Number of filters 128 

Number of neurons 60 

Pooling size 2 
Validation 0.91285 0.01084 

Data batch size 256 
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Dropout rate 0.5 

Model learning rate 0.0001 

 

4.4.2 MODEL TRAINING AND VALIDATION PERFORMANCE 

Through the optimization of the algorithm parameters by performing a grid search, it was found 

that the DL model obtained better performance using window samples containing 240 timesteps in 

batches of 256, 128 filters in each convolutional layer, a pooling size of 2, 60 neurons in each dense 

layer, dropout rate of 0.5 and the algorithm should update at 0.0001 rate. The best parameters for the 

proposed model are presented in Table 4-8. It was necessary to retrain the model with the new found 

parameters to understand if the model was performing well and to identify if it was underfitting or 

overfitting the data. 

 

 

Figure 4-23 F1-score value evolution for train and validation dataset. 

 

 

Figure 4-24 Loss value evolution for train and validation dataset. 
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After analyzing the evolution of the evaluation metric F1 score, and the Loss Function value, that 

evaluates how well specific algorithm models the given data, to retrain the final model with all data available 

it was concluded that to prevent a possible model overfitting the training data, the final algorithm should 

be retrained with 100 epochs and with all the optimized parameters found in grid search. 

 

 

Figure 4-25 Confusion matrix results of the DL model trained for 100 epochs. 

 

Table 4-9 Metrics evaluation for 100 epochs trained model. 

Epochs Dataset Loss value Accuracy Precision Recall F1 score 

100 
Train 0.27854 0.91255 0.92799 0.89879 0.913127 

Validation 0.36319 0.90139 0.92848 0.88334 0.90518 

 

4.4.3 TEST PERFORMANCE 

Before evaluating this dissertation proposed solution, the algorithm was retrained with all training 

data available and with the optimal parameters discussed before, 4.4.1. To evaluate the performance of 

the DL model proposed, completely unknown data to the algorithm was used. 

 

 

Figure 4-26 Confusion matrix test results, using Test dataset. 
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Table 4-10 DL model final evaluation using the Test dataset. 

Dataset Loss Accuracy Precision recall F1 score 

Test 0.326218 0.907432 0.944849 0.87622 0.90892 

 

Table 4-11 Accuracy values from HAR model final test, by each recognized activity. 

 Activity 

Classification Standing still Sitting on chair 
Get up from 

chair 
Lying on bed Get up from bed Walking 180º turn 

Well labeled 927 27 13 17 22 345 41 

Wrong labeled 23 23 25 19 8 29 17 

Total 950 50 38 36 30 374 58 

Accuracy 97.78% 54.00% 34.42% 47.22% 73.33% 92.25% 70.49% 

 

4.4.4 ABLATION INDEX PERFORMANCE 

The following Table 4-12, present the different results obtained throughout layers removal from 

the complete DL HAR model architecture proposed in this dissertation. These obtained results were 

measured using the test dataset. The ablated models were trained with all training data available and 

with the same parameters as the complete DL HAR model suggested by this dissertation.  

 

Table 4-12 Ablation study results using test data for this dissertation proposed DL model architecture. 

 Models 

Metrics Complete Ablation 1 Ablation 2 Ablation 3 Ablation 4 

Loss 0.326218 0.487938 0.491814 0.405462 0.361279 

Accuracy 0.907432 0.898305 0.89309 0.887223 0.901565 

Precision 0.944849 0.948564 0.939242 0.912337 0.924155 

Recall 0.87622 0.848189 0.850122 0.866408 0.878824 

F1 score 0.90892 0.895159 0.892253 0.888625 0.900728 
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Figure 4-27 Confusion matrix result for architecture Ablation 1, Ablation 2 in upper row. Confusion matrix results for 
architectures Ablation 3 and 4 in lower row, respectively. 

 

4.5 DISCUSSION 

4.5.1 PROPOSED DL HAR MODEL PERFORMANCE 

PD is a neurodegenerative disorder of the central nervous system which is characterized by the 

loss of non-motor and motor functions. PD impacts in a harmful way the patients’ lives, and the life of 

people around them. Motor symptoms are the main trademark of PD, and physicians will benefit from 

clinical support tech-tools capable of supervise and gather data about patients’ motor performance while 

performing daily physical activities. With this data physicians will be able to adopt a closed follow-up of 

the true motor stage of their patients, enhancing the power of prescribed treatments. 

This dissertation aimed to develop a framework capable of recognizing basic daily living activities 

performed by PD patients through the application of DL algorithms.  

Human activity recognition is a problem of classifying sequences of data. There are two main 

classes of an artificial neural network capable of performing this task: LSTM and CNN [40]. While both 

can perform the same task, they work in different ways. LSTM focus on learning and classify through 

temporal dependencies [41] while CNNs exploits spatial correlation in data to make the output [42]. In 



4 Deep Learning Framework for Human Activities Recognition 

 

 61 

literature there is no clear answer to which is the best of this neural network classes in performing human 

activity recognition. But is clear that they can outperform classic machine learning algorithms. In literature 

DL algorithms obtained around 25% higher performance than the classic ML algorithms. 

A CNN model was implemented and during training stage obtained F1 score metric 

of 0.90518 and an Accuracy of 90.14%. This result was achieved by training the model during 100 

epochs, using a window sample containing 240 timesteps in batches of 256, 128 filters in each 

convolutional layer, a pooling size of 2, 60 neurons in each dense layer, dropout rate of 0.5 and the 

algorithm should update at 0.0001 rate. In SoA , the best performing LSTM architecture, proposed by 

Murad et al [18], achieved an 97.8 % accuracy in recognizing activities on WISDM dataset, while the 

better CNN architecture resulted in a 98,6% accuracy and was proposed by Ravi et al [14] to assess 

his mode against USC HAR dataset. This dissertation used a dataset comprised of kinematic data 

collected from PD patients while the SoA found best models using data collected from healthy 

persons with ages between 21 – 49 years, which have significantly less data variability compared with 

the inherently impaired motion of PD patients with ages between 59 – 76 years. 

The kinematic data collected to build this dissertation training, validation and test datasets is 

unbalanced due to the nature of activities performance duration, as seen in Table 4-3. Some activities 

take longer time to be performed (e.g., 10m walk) in comparison with others (e.g., sitting on chair). As 

such the main metric to evaluate our model was F1 score, according to Hossim et al [37] it is a more 

appropriate metric to be used because as discussed earlier gives a better measurement of the incorrectly 

classified cases than the, not so indicated metric for unbalanced dataset problems, Accuracy metric utilized 

by the SoA best performing models. 

This dissertation contributes to the SoA with an algorithm based on only one sensor 

instead of using several sensors as in Murad et al [18], and by standardizing the sensor 

placement at lower back instead of the assumption made by Ravi et al [14] that the subject will 

always place the smartphone at front right hip, enabling to obtain more ergonomic, compact, and daily 

easy-to-use solution. 

Final test results showed that the proposed CNN model in is able to recognize HAR 

with a F1 score of 0.90892 and an Accuracy of 90.7432%. The standing still activity, is the best 

recognized activity by the model with an accuracy of 97.78%, followed by the walking activity with 92.25% 

accuracy. The continuous and cyclic nature of the data from these two activities in conjugation with its 

length allowed the model to learn particularly well these actions. In contrast, the sitting, getting up from 

chair, with 54.00% and 34.42% accuracy each are where the model performed worst, as Table 4-10 
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indicates. These activities usually are short in timestep length, with a mean of 388 timestep length in 

performing sitting action and a mean of 303 timestep length in getting up from chair, as seen in Table 

4-3. With 47.22%, 70.00% and 73.33% accuracy, laying on bed, 180º turn and get up from bed have 

overall better recognition than sitting and get up from chair, with 54.00% and 34.42% accuracy, 

respectively. Laying on bed, 180º turn and get up from bed have a longer duration in execution with a 

mean 512 timesteps to both lie on bed and 180º turn and mean duration of 481 timesteps length to get 

up from bed. The longer the activity duration is, better results are obtained with this model, which might 

indicate that in Training stage more samples of small duration activities are needed to the model better 

learn the characteristics associated with them. By analysing the Test stage resultant confusion matrix, 

Figure 4-, it is also observable that the model has difficulty in distinguishing between walking activity and 

turning 180º. This difficulty is explained by observing the representing graphic of the collected tri-axial 

data, where they are extremely similar at naked eye, see Figure 4-5. 

The developed solution innovates by being able of classifying daily living activities 

performed by PD patients and adds to the SoA the recognition of two new activities: get up 

from chair and 180º turning. 

 

4.5.2 ABLATION INDEX PERFORMANCE 

At each layer remotion, the proposed complete CNN solution maintained the best result, 

with F1 score equals to 0.90892. The reduction in F1 score, accuracy, precision and recall were visible 

throughout the reduction layer process. The most trimmed model obtained a still good F1 score of 

0.900728 for its performance and could also be a possibility if a lighter model should be needed. 

Although it was not directly measured in this study, the training process of the ablated models 

decreased along the layers trimming. This is expected because less layer, less calculus the computer 

needs to be performed, thus less time computing. 

 

4.6 CONCLUSION 

Having obtained a F1 Score of 0.90892, this dissertation concludes that a satisfactory result 

was achieved, although this dissertation supports the idea that there is still room to improve since is a 

result lower than other SoA solutions. 

This score was obtained by using data from PD patients, that as observed in dataset exploration 

have high variability.  The data was subjectively and manually labelled. The dataset used in training stage 
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was highly unbalanced and have tri-axial data of acceleration and angular velocity collected from a single 

IMU sensor placed in lower back. 

Having in mind the aspects mentioned before, as future work this dissertation suggests that to 

improve the learning capacity of the model more data should be collected, the data labelling should be 

performed and reviewed by 3 or more people with clinical experience. Techniques of data balancing like 

oversampling, under sampling and addition of gaussian noise should be tested out. Besides the raw tri-

axial data, experimenting with features extracted from the dataset should also be considered.  

Naturally, not all possible DL models were tested before reaching this dissertation proposed 

model. As such, experimenting with different models’ architectures is also a viable option in search of a 

better result. 

During model parameters optimization phase, different combination of values and parameters 

could also be tested as also the cross-validation method could also be changed for. 

In validation training phase instead of dividing the dataset in twelve patients to train and three to 

validation, and although the computation time required is higher a Leave-one-out cross-validation should 

be considered. 

To finalize, instead of testing the performance of the model with offline data, implementing the 

model proposed in +Sense project and subject it in a real-time evaluation during a real-world situation, 

would be even more interesting and would bring even more credibility to its real performance. 



 

 

5 DEEP-LEARNING 

FRAMEWORK FOR 

HUMAN WALK IC/FC 

DETECTION 
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5.1 INTRODUCTION 

Walking impairments are among the most common and disabling symptoms of 

Parkinson’s disease [43]. As PD it’s a slow progressing disease, walking problems worsen as the 

disease progresses severely impacting the patient’s autonomy [44]. Making the capability of continuously 

monitoring and assess patients walking patterns, like step time and stride length, an important diagnosis 

tool not only for PD specialized clinics as also for other scientific areas that are walking focused and are 

developing new assistive devices to bring more comfort, autonomy, and life quality to PD patients. 

Nowadays such assessments are performed by human clinics by following the standard scale UPDRS-III 

and the results might vary depending on the experience and subjective point of view of the professional. 

As a complementary goal, this dissertation aimed to endow +Sense project with a walking IC/FC 

detection framework using an AI DL algorithm.  

Before starting to develop a solution, it was needed to know better this problematic. A brief SoA 

review was made. In this review this dissertation focused on knowing and understanding the different 

walking segments, data required, and it’s needed transformations, which models are used and on how 

to evaluate them.  

 

 

Figure 5-1 Human walk IC/FC detection framework schematic view. 

 

5.2 RELATED WORKS: BRIEF STATE OF THE ART  

According to Michael W.Whittle [45] the human walking is defined as a locomotion method 

generated by the use of both legs in an alternated way, allowing the support and propulsion of the human 

body. Walking execution requires the presence of periodic movements of each foot toward a support 

position and reaction forces applied to the feet, enough to give support to the body even under distortions 

due to pathological conditions [46]. This periodic movement is called “walking cycle” and can be divided 

into eight different phases [47]: 
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1. Initial Contact: considered the starting and finishing event of a walking cycle. Corresponds to the 

first contact between the heel and the ground.  

2. Foot flat: The plantar surface touches the ground.  

3. Midstance: The contralateral foot passes the position of the stance foot.  

4. Heel-off: The heel comes off the ground. Higher pressures are present in the metatarsal heads. 

5. Final Contact: The toes lose their contact with the ground. The least amount of foot is in contact 

with the surface during this event.  

6. Acceleration: quick acceleration of the swinging foot.  

7. Mid swing: The swinging foot passes the position of the stance foot.  

8. Deceleration: The swinging foot decelerates as it approaches the ground. The heel takes its 

position for a new Initial Contact. 

 

 

Figure 5-2 Walking cycle and walking events. 

 

Since walking have a cyclical pattern, parameters that break the pattern norm can 

be good indicator that the individual is suffering walking impairment, thus the necessity 

and importance of a close monitoring of the walk, especially in non-healthy subjects. 

Table 5-1 provides an overview of the different walk segmentations recognized by the selected 

studies during this brief SoA survey, as well as a synthesis of the studies objectives. 

 

Table 5-1 Types of walking segmentation. 

Paper  
Goal 

Target Participants number Walking Segments 
[48] Children with walking 

disorders 
226 

The 5 walking events (no event, left Foot Strike, right Foot Strike, left Foot Out and 
right Foot Out) 

[49] Healthy adults 20 Initial Contact and Final Contact 
[50] Health adults 4 Stance and Swing phase 
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Three different ways of segmenting the walking cycle were found. [49] segmented the walk by 

two distinct walk events: Initial Contact and Final Contact. While [48] divided the walk cycle by 

all of its walking events and [50] partitioned by walking phases: stance and wing phase.  

Table 5-2 resumes the type of sensors used, data collected, and features needed by the different 

research to recognize the different walking segments. 

 

Table 5-2 Sensors and features presented in SoA research. 

Paper Sensor 

Sensor number Sensor Type Sensor Location Features collected Features extracted 

[48] 

8 Reflective markers 

right and left anterior 
superior iliac spines, 
greater trochanter, 

midthigh, knee joint, mid 
shank, lateral malleolus, 
between the second and 
third metatarsal heads 

X, Y, Z coordinates - 

4 Force plates floor 
ground reactions 

forces 
- 

[49] 

2 IMU Right and left ankle 
triaxial accelerometer 

data 

four composite 
accelerations by 

calculating the root sum of 
squares 

[50] 

3 IMU Foot, calf and thigh 
triaxial accelerometer 

data 

Standard deviation (SD), 
mean absolute value 

(MAV), maximum (MAX), 
minimum (MIN), and 

median (MED) 

 

[49], [50] applied IMU sensors for data collection while [48] opted for Reflective Markers. Tri-

axial accelerometer data was collected in [49], [50] and the relative positional coordinates were 

collected on [48]. Extra features were extracted and added to the different datasets, except on research 

paper [48]. 

In all research studies more than one sensor was used to collect data. 

Table 5-3 is focused on the most common AI algorithm implemented to perform walking 

segmentation recognition 

 

Table 5-3 AI algorithms presented in SoA research. 

Paper 
Algorithm 

Model Data Split Validation methods Performance 
[48] LSTM 60% trials for training, 10% 

trials for validation, 30% 
trials for testing 

- AUC of 0.9955 for the 
left FS, 0.9971 for the 

right FS, 0.9958 for the 
left FO and 0.9955 for 

the right FO      
[49] LSTM First 70% of the total 

timesteps as training and 
the last 30% of timesteps 

as test data. 

3-Fold cross-validation F1 score of 0.98 for 
right/left Initial Contacts 
and 0.94 for right/left 

toe-offs 
[50] LSTM 3 volunteers for training 

and 1 for test 
- Stance and Swing phase; 

F1 score +/- 0.94 
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Research papers like [48], [49], [50] implementing AI LSTM based algorithms were the 

most commonly found. The metric usually defined to evaluate the performance of the different models 

are the F1_score and Accuracy with the combined application of k-Fold and Leave-one-out cross 

validation techniques. 

 

5.2.1 CONCLUSION 

From the brief SoA review, it was concluded that IC and FC are crucial parameter in 

the quantification of PD patients walking disability. Current approaches for evaluating PD patients 

walking disabilities are limited to presential observed-based methods. IMUs sensors are the most 

chosen instruments by authors, to collect and provide kinematic data input on their DL models. 

There is no standard methods for kinematic data collection, minimum of sensors required and 

no consensus regarding their body placement. In SoA, it was found that two or more sensors are used 

for data collection and are often placed on lower body extremities of person body. These facts are huge 

constraints in a monitoring system that must be practical and easy to be worn in day-to-day and while 

performing the daily activities. It’s important to have in mind the difficulty that PD patients have in 

executing motor plan movements. 

An absence of an open public dataset was constated, since all SoA papers had to build 

and use their own dataset. These datasets kinematic data were all collected on laboratory 

environment. 

In respect of DL models, LSTM models are the most popular models implemented, as 

also the usage of F1 score metric to evaluate the performance of the walking events recognition 

models. 

In SoA research overview it was also noticed that no solution proposed was tested in a real-

life environment. Table 5-4 summarizes the identified limitations regarding technological, adopted 

strategies, and validation methodology issues and it is also provided guidelines for their mitigation.  

 

Table 5-4 Limitations and guidelines to overcome them. 

Limitation End user requirements Guidelines 

No clear body  

configuration of WS 
Portability, comfort, easy set-up 

Find a trade-off between the number/location of 

sensors without losing significant data 

Poor data collection  

on home-based conditions 
Personalized treatments 

Perform experimental tests on home-based 

scenarios 
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No assessment of HAR usability Acceptability of the device 

Include the users’ opinion in the development of 

the proposed solution and assess its 

acceptability and usability 

 

5.3 DATA INPUT 

5.3.1 DATA ACQUISITION 

Walking dataset with kinematic-driven data collected from PD patients was used to train, 

validate and test this dissertation proposed DL model. This data was collected and used as part of previous 

work for the +Sense project [28][51]. This custom dataset data acquisition was conducted under the 

ethical procedures of the Ethics Committee in Life and Health Sciences (CEICVS 147/2021), following 

the Helsinki Declaration and the Oviedo Convention. All participants gave their informed consent to be 

part of the study. Data was collected at the Hospital of Braga – 2CA Braga Academic Clinical Center.  

 

5.3.2 DATASET DESCRIPTION  

The PDGD dataset is a collection of data from 40 different PD patients.  

Two different trials were performed by PD patients, a ten meter strait line walk, Figure 5-3,  and 

a more complex circuit descripted bellow on Figure 5-4. 

 

 
Figure 5-3 Patients started the trial on (1), walked 10m and stopped at (2). 

 

 

Figure 5-4 Patients started the trial on (1), walked 30m, turned right at (2), walk forward 2m (3), turned around (4), walking 
forward 2m (5), runed left at (6), made a 32m walk (7), tuner at left (8), walking 2m (9) until returning to the trial initial 

position. 

 

 



5 Deep-Learning Framework for Human Walk IC/FC Detection 

 70 

Each trial datafile contains eight independent variables: 

 

• time_sampling: internal time of the processing unit responsible for acquiring the IMU data; 

• Sample: id number of the sample ;  

• acc_x: acceleration value in x axis ; 

• acc_y: acceleration value in y axis ; 

• acc_z: acceleration value in z axis ; 

• gyr_x: angular velocity value in x axis ;  

• gyr_y: angular velocity value in y axis ; 

• gyr_z: angular velocity value in z axis . 

 

For each patient trial, the dataset has four distinct files. Each one of this four files have the 

timestamps of when the different walking events occurred, as seen in Figure 5-5. The four walking events 

registered are:  

 

• IC left – Initial Contact left foot 

• FC right – Final Contact right foot 

• IC right – Initial Contact right foot 

• FC left – Final Contact left foot 

 

 

Figure 5-5 Walking events occurrence during the trial plotted over the x-axis values of the acceleration based on [28]. 
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5.3.3 DATA INPUT PREPARATION  

Decisions about the data labelling, what transformations should be made to the data and how 

the data should be split will be discussed and presented in this section. A schematic resume of this 

section is presented in Figure 5-6. 

 

 

Figure 5-6 Human Walking IC/FC detection data input handling pipeline. 

 

5.3.3.1 DATA VERIFICATION 

Before starting using the data in the AI DL model development, a manual revising and correction 

of the walking event timestamps was needed and performed. 

A manual overhaul of all the walking events has been carried out. In this laborious processed, 

due to bad data collection three trials data files were eliminated and twenty-six wrong walking events 

timestamps were corrected based on previous literature [28]. Figure 5-7 exemplifies the wrong walking 

events timestamps and how they were corrected. 

 

 

Figure 5-7 Correction to walking events timestamps. Green color circle representing a FC event timestamp was placed at 
green color dot timestamp. Orange color cross representing a IC event timestamp was placed at red color cross timestamp. 
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5.3.3.2 FEATURES EXTRACTION 

In SoA research was prevalent the utilization of handcrafted features [49], [50] and features like 

SD, MAV, MED or root sum square were the most frequently used. Although Lempereur et al [48] obtained 

good results without applying features extraction, the researcher have added to training dataset data from 

force plate sensors located at the floor. This dissertation, to add more value to the SoA, chose not to 

add handcrafted features to the Training dataset. 

 

5.3.3.3 DATA LABELLING 

Two prevalent types of labelling the data were found on literature research. Labelling the 

data and classifying it by walking stance phase, as in research [50]. Labelling data timesteps with 

Initial Contact right foot, Initial Contact left foot, Final Contact right foot and Final Contact 

left foot, as in [48] study. The third most common way found was as in research paper [49], where 

the timesteps where the walking events happened during trial were classified only as Initial foot 

Contact and Final foot Contact. In accordance with SoA research paper Zhen et al [50], timesteps 

were classified as Initial foot Contact (IC) and Final foot Contact (FC). With this chosen 

labelling style, to the walking events chosen to be recognized ‘0’ will represent IC event and ‘1’ the 

FC event, as presented on Table 5-5. 

 

Table 5-5 Walking events to be recognized label ids’. 

Label Id Walking event 

0 Initial foot Contact 

1 Final foot Contact 

  

An example on how the labelling for the kinematic data used in Training stage is visible in Figure 

5-8, where the red colored timesteps are labelled as ‘0’ which is the code identification of IC event and 

the green colored timesteps are labelled as ‘1’ corresponding to FC event. When an IC event happens, 
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the following timesteps are labelled as ‘0’ until a FC event appears. Whenever a FC event is performed 

the following timesteps are labeled as ‘1’ until an IC event happens, and so on.  

 

 

Figure 5-8 PD patient Trial labelled example. With red color timesteps labelled as IC. With green color timesteps labelled as 
FC. 

 

5.3.3.4 DATA SPLITTING 

The whole dataset was divided into four different individual datasets. Specifically, 20% was used 

as test dataset (8 patients) for the proposed model final evaluation, 80% (32 patients) of the data was 

used in the fine-tuning stage of the proposed model. This 80% of data is further divided into 80% (26 

patients) training and 20% (6 patients) validation datasets with the purpose of training and validating the 

final model using the best hyper-parameters found in fine-tunning stage phase. The testing dataset is only 

used once as unseen data for a final assessment of the performance the model. 

 

Figure 5-9 Schematic representation of the dataset splitting for the different Human walk IC/FC detection model 
development stages. 



5 Deep-Learning Framework for Human Walk IC/FC Detection 

 74 

 

Although not mentioned on [48], [49], [50], a MinMax normalization was performed feature-

wise in an independent way over the accelerometer and gyroscopic collected data. But as mentioned 

before, variables measured at different scales do not contribute equally to the model 

fitting and model learned function and might end up creating a bias, thus normalization is a needed 

procedure. 

 

5.4 MODEL PIPELINE 

A Bidirectional Long-Short Term Memory (BiLSTM) AI DL algorithm is proposed by this 

dissertation for the recognition of walking events performed by PD patients while walking.  

Several steps were needed to obtain the proposed model of this dissertation. These steps 

encompass decisions about data input and its format, model composition, how to evaluate its training 

performance and how to fine tune it to obtain its final version. In the following section a more detailed 

exposition will be made. 

 

 

Figure 5-10 Model Pipeline Schema representing the development of the final Human walking IC/FC DL model for PD 
patients’ solution. 

 

5.4.1 BIDIRECTIONAL LONG SHORT-TERM MEMORY 

LSTM is a variety of RNN capable of learning long-term dependencies. LSTM due to its feedback 

connections is capable of processing and entire sequence of data.[52] By adding thresholds, called input 
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gate, forget gate, output gate and memory unit to a RNN, [52] solved the vanishing and exploding gradient 

problem present in the RNN. Figure 5-11 present a schematic view about the LSTM cell composition. 

 

 

Figure 5-11 Architecture of a LSTM cell. 

 

According to [53], LSTM by having the nodes between the hidden layers connected, allowed the 

input data of the hidden layers at the given time not only containing the output of prior hidden layer but 

also includes the output of its own hidden layer at a previous time. The historical information of the data 

sequence is stored in the hidden layer. 

Bidirectional LSTM are an upgrade over LSTM. In BiLSTM, each training is presented forward 

and backwards while in LSTM the input sequence can only flow either forward or backward. Both 

sequences are connected to the same output layer, granting complete information about every point in a 

given sequence, everything before and after it [54]. A high-level schematic vision representation on how 

a LSTM and BiLSTM work is presented on Figure 5-12. 

 

 

Figure 5-12 LSTM and BiLSTM architectures workflow. 

 

BiLSTM architecture have multiple parameters, but five parameters can be considered key to its 

performance: batch size, timestep size, neurons number, dropout rate and learning rate. Batch size 

defines the number of samples to work on before the internal parameters of the model are updated. 

Timestep size is the number of observations that each sample window has. Neurons numbers defines 
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the quantity of nodes present in each layer. Dropout rate have values between 0 and 1, this rate helps 

avoid overfitting in training by bypassing randomly selected neurons, thereby reducing the sensitivity to 

specific weights of the individual neurons. Learning rate defines how quickly the network updates its 

parameters.  

Setting a higher learning rate accelerates the learning but the model may not converge or even 

diverge. Conversely, a lower rate will slow down the learning drastically as steps towards the minimum of 

loss function will be smaller but will allow the model to converge smoothly. 

 

5.4.2 PROPOSED BIDIRECTIONAL LONG SHORT-TERM MEMORY MODEL 

The proposed algorithm is based on Lempereur et al [48] algorithm and is able to classify walk 

IC/FC events from PD patients walking kinematic data produced by one IMU. 

 
 

 
Figure 5-13 Proposed Human Walk IC/FC DL model architecture. 

 

The model is composed of three Bidirectional LSTM layers, with 60 neurons each. Each of these 

layers implemented dropout at 0.1 rate. After the last Bidirectional LSTM layer, the outputs are flattened 

to one long vector and pass through a dropout layer, with 0.1 drop rate, before passing the outputs to a 

fully connected layer, with 60 neuros, using Rectified Linear Unit (Relu) activation function before the last 

fully connected layer, with 60 neurons, where a prediction is made through the application of Sigmoid 

activation function.  

To optimize the network Adam version of stochastic gradient descent algorithm is used, and the 

binary cross entropy loss function is applied since we are learning a binary-class classification problem. 

 

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
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5.4.3 INPUT AND OUTPUT DATA FORMAT 

Similarly, to section 4.3.3 the model requires a three-dimensional input with [nº of samples, 

timesteps, nº of features]. Meaning, each input sample is one window of time that will have a pre-

determined number of timestep, and a timesteps has a fixed number of variable or features. 

The output for the model will be a two-element vector containing the probability of a given window 

belonging to one of the two possible walking events. 

These input and output dimensions are required when fitting the model, and we can extract them 

from the provided training dataset. 

 

 

Figure 5-14 Counting the Initial foot Contact sequence size. 

 

 

Figure 5-15 Counting the Final foot Contact sequence size. 

 

Since the proposed algorithm training input works by feeding data samples with fixed timesteps 

size, a better understanding over the sizes of IC sequences,  Figure 5-14, and FC sequences, Figure 5-15, 
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was studied. The most counted IC event sequence was the sequence of 12 timesteps with 511 

occurrences, while in the FC walking event is the most represented sequence was divided between 34 

and 38 sequences size with the corresponding counts of 338 for both.  

 In Table 5-6, it is possible to conclude that a minimum sequence of 7 timesteps for Initial Contact 

and Final Contact  was performed by a subject in the trials, a mean sequence size of 18 and 37 

,respectively,  for Initial Contact and Final Contact was collected and also a 54 sequence size for Initial 

Contact and 167 sequence size Final Contact was founded in all dataset.  

This dissertation opted for a window input size of 5 timestep, and a data overlapping 

of 80% with the intention that the model would handle transitions more accurately. 

 

Table 5-6 Initial Contact and Final Contact sequence size. 

 Initial Contact Final Contact 

Minimum 7 7 

Mean 18 37 

Maximum 54 167 

 

When fitting the model, it is also required a two-dimensional input [nº of samples, label]. Meaning, 

each sample have the corresponding label. The label is in one-hot-encoding format. The label of the 

correspondent sample input is defined by which label occurs the most in the selected sample window, 

this process works in the same way as stated in section 4.3.3. 

 

5.4.4 MODEL EVALUATION METRIC 

Although not mentioned in the literature review, Mathew Correlation Coefficient (MCC) is the 

metrics chosen to evaluate the quality of this dissertation proposed model. F1 score is the prevalent 

metric found in literature, Table 5-3, but according to [55]  MCC produces a more informative and truthful 

score in evaluating binary classifications than accuracy and F1 score. MCC is a more reliable statistical 

rate which produces a high score only if the prediction obtained good results in all the four confusion 

matrix categories (true positives, false negatives, true negatives, and false positives), proportionally both 

to the size of positive elements and the size of negative elements in the dataset. MCC can be calculated 

as follow: 

 

𝑀𝐶𝐶 =
𝑇𝑁 ∗ 𝑇𝑃 − 𝐹𝑁 ∗ 𝐹𝑃

√((𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁))
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Figure 5-16 Matthews Correlation Coefficient formula. TN: True Negative; TP: True Positive; FN: False Negative; FP: False 
Positive. 

 

According to [56][57] MCC is the only binary classification rate that generates a high score only 

if the binary predictor was able to correctly predict the majority of positive data instances and the majority 

of negative data instances. It ranges in the interval [ −1, +1], with extreme values – 1 and +1 reached in 

case of perfect misclassification and perfect classification, respectively, while MCC = 0 is the expected 

value for the coin tossing classifier 

 

5.4.5 FINE-TUNNING STAGE 

A similar process to 4.3.5 was implemented to optimize the model performance. A Grid Search 

parameter grid while applying a 10-Fold cross validation technique to validate and evaluate the 

performance was executed. Batch size, number of neurons to be used, dropout rate and the learning rate 

were the tested hyper-parameters. In Table 5-7 are presented the values tested for each hyper-parameter. 

 

Table 5-7 Optimization hyper-parameters. 

Hyper-parameter Tested values 

Batch size 256, 512 

Neurons number 30, 45, 60 

Dropout rate 0.1, 0.15, 0.2 

Learning rate 0.001, 0.0001 

 

5.5 RESULTS 

5.5.1 FINE-TUNING STAGE PERFORMANCE 

The best combination of parameters found by grid search process are presented in Table 5-8. 

 

Table 5-8 Fine-Tuning stage optimal parameters found, and the results obtained with them. 

Window timestep size Parameters Value Dataset (mean) MCC score Standard deviation (std dev) 

5 

Epochs 200 

Train 0.95228 0.00179 Overlapping 80 % 

Batch size 512 

Number of neurons 60 
Validation 0.88104 0.00385 

Dropout rate 0.1 
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Model learning rate 0.001 

 

5.5.2 MODEL TRAINING AND VALIDATION PERFORMANCE 

By performing a grid search process several parameters were tested to find the more indicated 

to be used in the final model. It was revealed that the BiLSTM architecture proposed by this dissertation 

performed better by using batches containing 512 window samples with 5 registered timesteps each. 

BiLSTM layers should have 60 neuros, dropout rate of 0.1 and the algorithm should update at 0.001 

rate. With this a satisfactory MCC value of 0.88104 (std dev = 0.00385) was achieved, see Table 5-8.  

Similarly, to what was done in the Chapter 4, the model was retrained with the new set of 

parameters to evaluate how the model was performing and to avoid underfitting or overfitting situations. 

 

 

Figure 5-17 MCC Score value evolution for train and validation dataset. 

 

 

Figure 5-18 Loss value evolution for train and validation dataset. 

 

By analyzing the evolution of the algorithm learning curve, Figure 5-18, and MCC Score value, 

Figure 5-17, it is possible to avoid overfitting and underfitting situations. In this case, it is clearly possible 

to see in Figure 5-18, that an overfitting is starting to occur after the tenth epochs of training. As such it 
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is advised to stop the training process there. The final model was retrained with 10 epochs and with the 

best parameters found in the optimization model stage, section 5.5.1 . 

 

 

Figure 5-19 Confusion matrix results of the DL model trained for 10 epochs. 

 

Table 5-9 Metrics evaluation for 10 epochs trained model. 

Epochs Dataset Loss Accuracy Precision Recall F1 score AUC MCC 

10 
Train 0.250750 0.89726 0.906184 0.94777 0.926378 0.951711 0.75861 

Validation 0.381386 0.838962 0.852137 0.928297 0.885351 0.899318 0.63466 

 

5.5.3 TEST PERFORMANCE 

To do the final evaluation of this dissertation model proposition, the model was retrained with all 

data available for training, best parameters found previously in section 5.5.1, during the epochs necessary 

to avoid overfitting discussed formerly in  5.5.2 . After this process, the model performance was tested 

with completely new and unknown data. This data was isolated from the training dataset as discussed in 

section 5.3.3.4 . 

 

Figure 5-20 Confusion matrix test results, using Test dataset. 
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Table 5-10 DL model final evaluation using the Test dataset. 

Dataset Loss Accuracy Precision Recall F1 score AUC MCC 

Test 0.540085 0.781152 0.774337 0.93841 0.841554 0.854381 0.538386 

 

 

Table 5-11 Accuracy values for Human Walk IC/FC Detection model final test, for each walking event recognized.  

 Walking event 

Classification Initial Contact Final Contact 

Well classified 13684 42830 

Wrongly classified 12957 2876 

Total 26641 45706 

Accuracy 51.36% 93.70% 

 

 

5.6 DISCUSSION 

Walking impairments are among the most common and disabling symptoms of PD. Walking 

difficulties worsen as the disease progresses severely impacting the patient’s autonomy. Through the 

detection of IC and FC key walking patterns, like step time and stride length, can be determined and be 

of use to perform disease diagnosis by PD clinical experts or the development of walking assistance 

devices. The existence of a tool capable of continuously monitoring and assess patients walking patterns 

is vital. 

This dissertation complementary goal aimed to develop a framework capable of detecting IC an 

FC events during PD patients walking through the application of DL algorithms.  

Walking event detection, just like in Human activity recognition problematic, is a problem of 

classifying sequence of data. Human Walking IC/FC Detection assessment is a crucial aspect in 

identifying and interpret a user’s walking abnormalities and in designing assistive tools [49]. 

During the brief literature research donned by this dissertation, DL models presented superior 

results compared to classical machine learning algorithms. Although CNNs are also capable of performing 

data sequence recognition, architectures based on LSTMs were found to be more common to perform 

this task in the literature. In fact, this dissertation model proposition is BiDirectional Long Short-Term 

Memory architecture base on Lempereur et al [48] but with a slight alteration to the input layer. While 

Lempereur et al [48] injects the input directly to the BiDirectional layers, this dissertation proposed that 

the first layer should be a Batch Normalization Layer to reduce the number of training epochs required 

to train deep neural networks. This alteration was needed due to the lack of computational resources at 
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time, and possibly justify why the validation Loss value at the tenth epoch of training starts to enter in 

overfitting, see Figure 5-17 and Figure 5-18. 

This dissertation DL model proposition during training stage obtained a MCC score 

of 0.63466, F1 score of 0.885351, AUC of 0.899318 in the recognition of walking IC and 

FC events. This result was achieved by using a 80% overlapped window sample containing 5 timesteps 

in batches of 512, 60 neurons in each BiDirectional layer and Dense layer, dropout rate of 0.1 and the 

algorithm should update at 0.001 rate. This dissertation base line LSTM architecture proposed by 

Lempereue et al [48] obtained AUC values of 0.9955 for the left IC, 0.9971 for the right IC, 

0.9958 for the left FC and 0.9955 for the right FC, and Xing Tan et al [49] achieved with its’ 

LSTM architecture a mean F1 score of 0.98 for the left and right IC, 0.94 for the right and left 

FC.  

To build the necessary dataset to train, validate and test this dissertation proposed framework 

for human walk IC and FC detection, one IMU sensor positioned at lower back was used to 

collect kinematic data from PD patients. 

 This dissertation dataset used to train, validate, and test the proposed framework for human 

walk IC and FC detection, utilizes kinematic data from PD patients while compared with the best SoA 

performing models, Lempereur et al [48] and Xing Tan et al [49] utilizes data from children’s’ 

with gait disorders and healthy people with age ranged between 26.6 – 40.4 years, respectively. 

Another key factor for the obtained results is the number of wearable sensors utilized in the process of 

data collection. This dissertation utilized kinematic data collected through a single IMU sensor while 

Lempereur et al [48] utilized data from 12 different sensors, 8 reflexive markers placed on patient’s body 

and 4 force plates on the floor, and in Xing Tan et al [49] 2 IMU sensors placed on each ankle was used.  

The kinematic data utilized in the different building stages of the DL model proposed by this 

dissertation was also different from Lempereur et al [48] and Xing Tan et al [49]. This dissertation only 

utilizes raw kinematic data comprised of tri-axial values for acceleration and angular velocity, while 

Xing Tan et al [49] extracted 4 new features from the tri-axial acceleration values. Due to the nature 

of the data collected from reflexive markers and force plate sensors, Lempereur et al [48] utilized 

positional 3D data and ground force reaction data. 
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5.7 CONCLUSION 

Having obtained a MCC score of 0.538386, this dissertation concludes that a not so 

satisfactory result was obtained. Although by observing the resulting confusion matrix test data, Figure 

5-20, a satisfactory accuracy 93.70% in the FC walking event classification was obtained, the same cannot 

be said about de 51.36% of accuracy when classifying the Initial Contact walking event.  

This result was obtained through tri-axial accelerometer and gyroscope raw data from one IMU 

placed at the lower back, while performing walking activities. It was observed that the dataset collected 

was highly unbalanced because Initial Contact walking event timestep sequence is shorter than the Final 

Contact walking event timestep sequence. As a future suggestion, this dissertation proposed the 

implementation of data oversampling while preparing the sample window to feed the DL model. 

Experimenting with different window timestep sizes, model parameters, architecture layers and 

composition is also a viable suggestion. Another suggestion is the addition of new features extracted from 

the data.  

In future work by experimenting with these suggestions, it might be possible for this dissertation 

proposed solution to have more space to grow and to be improve.
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The main objective of this work was the development of a DL framework capable of automatic 

detection of daily activities in people with Parkinson’s Disease using kinematic-driven data. 

In this work a CNN based architecture was implemented and can recognize daily activities such 

as walking, standing still, sit on chair, get up from chair, lay on bed, get up from bed and can identify 

180º turns performed by PD patients. 

The developed work was based and inspired in an extensive literature review on ML classification 

algorithms and DL recognition algorithms applied to HAR problematic. This research helped to 

comprehend the so far implemented techniques potential and inherent limitations, providing insights 

about the promising approaches that could be implemented and the areas about HAR in PD more adept 

to enhancement. 

A custom dataset was necessary to acquire, and a protocol to collect data was made. The dataset 

comprised of 18 PD patients (10 males, 8 females) who performed 9 different daily activities and 

repeating each trial 3 times. Tri-axial accelerometer and gyroscope data collected was using the single 

IMU sensor present in the waistband of +Sense Project. The data was posteriori manually labelled, 

resulting in an unbalanced dataset data which was used to train, evaluate, and test the CNN based 

algorithm proposed by this dissertation. Data from 13 patients was used as training, 2 patients for 

validation and 3 patients’ data was used to test the final model composition.  

To find the best parameters of model architecture a grid search process testing different number 

of window sample timesteps, number of filters, neurons quantity, data batch size, algorithm learning rate 

and layer dropout rate.  

During this optimization stage, 10-Fold cross-validation was implemented to assess the model 

validity. In validation stage, the model was subjected to overfitting, underfitting study where Holdout cross-

validation was used in the assessment. Finally, the model was retrained with all training data and was 

assessed by using the unknown data of the 3 remaining patients. 

CNN based architecture proposed by this dissertation obtained F1 Score of 

0.90892. Although satisfactory result was achieved, this dissertation supports the idea that there is still 

room to improve. Data balancing, improvements to the manual data labelling and experimentation of 

different parameter should be considered to further improve this dissertation proposed in future work. 

 

As a complementary objective of this work a DL framework capable of automatic detection of 

walking events in people with Parkinson’s Disease using kinematic-driven data was developed. 
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BiLSTM based architecture was implemented and is capable of recognizing walking events such 

as Initial Contact and Final Contact performed by PD patients during walking activity. 

The developed work was based in a brief literature review on DL recognition algorithms applied 

to walking IC/FC detection problematic. This research helped to comprehend the so far implemented 

techniques potential and inherent limitations, providing insights about the promising approaches that 

could be implemented in walking IC/FC detection in PD.  

An already existing dataset was used from +sense project. The dataset comprised of 40 PD 

patients who performed 2 different walking activities. Data from 26 patients was used as training, 6 

patients for validation and 8 patients’ data was used to test the final model composition. To find the best 

parameters of model architecture a grid search process testing different number of neurons quantity, 

data batch size, algorithm learning rate and layer dropout rate.  

During this optimization stage, 10-Fold cross-validation was implemented to assess the model 

validity. In validation stage, the model was subjected to overfitting, underfitting study where Holdout cross-

validation was used in the assessment. Finally, the model was retrained with all training data and was 

assessed by using the unknown data of the 18 remaining patients. 

BiLSTM based architecture proposed by this dissertation obtained MCC Score of 

0.538386. Although a satisfactory result was achieved while recognizing Final Contact walking events 

(93.70% Accuracy) a not so good result was obtained while classifying Initial Contact events (51.36% 

Accuracy). Data balancing, experimentation of different parameter should be considered to further 

improve this dissertation proposal in future work. 

The presented work allowed to obtain answers for the addressed research Question (RQs): 

 

RQ1: What is the importance of daily activities recognition for motor assessment in PD? How 

have human activities been detected? And of IC/FCs? 

PD symptoms restricts the quality of life of the affected person. The more severe the symptoms 

are the more daily activities like walking, sitting or lay on bed are affected. Measuring the correlation 

between the disease symptoms and daily activities performance can be a good indicator on how disease 

is evolving or how well the patient is responding to medicine or therapy. As such, it is important the 

existence of a tool capable of continuously monitoring the PD patient, enabling a personalized and 

accurate support to the patient from the clinical expert. 

Due to its low cost, low power consumption, small size, light weight, easy usability, and 

accessibility, and not intrusive to a person, IMUs are frequently used as monitoring tools. IMUs integrates 
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accelerometer and gyroscopes that produces kinematic driven data. This produced kinematic data have 

been explored and utilized, with success, by researchers to perform not only HAR but also, in a more 

specific way, the recognition of IC/FC walking events. 

With the ability to recognize IC/FC events, walking associated metric such as velocity, step 

length/time, cadence, walking variability or walking asymmetry can be calculated. This data can then be 

used by clinical experts to improve a patient diagnosis or by clinical supportive tools capable of stimulating 

the patient walking capability. 

 

RQ2: Which DL model produces best result in recognizing daily human activities? And in IC/FC 

walking events recognition? 

A CNN model architecture fed with raw kinematic data with a sliding window approach of length 

240, attained the most promising results (0.90518 F1 Score and 0.90139 Accuracy) in the recognition 

of human activities performed by PD patients. 

For the Human walk IC/FC recognition a BiLSTM model architecture fed with raw kinematic data 

and with a sliding window length of 5, achieved the better results (0.8455 F1 Score, 0.78115 Accuracy 

and 0.53839 MCC score). 

 

RQ3: How effective and robust are the proposed DL solutions toward new patients? 

The CNN model for HAR of PD patients was tested with unknown data from three different PD 

patients. The testing dataset contained data of three trials for each of the following activities: walking, 

180º turning, sit on chair, get up chair, lay on bed and get up from bed. The CNN model obtained a 

performance of 0.90892 F1 Score and an Accuracy of 0.90743.  

The BiLSTM model for HW IC/FC detection was tested with unknown data from six different PD 

patients. The dataset contained two trial of walking activity for each different patient. The BiLSTM model 

attained a 0.53839 MCC Score, F1 Score of 0.84155 and an Accuracy of 0.78115. 

 

Promising results were attained for both DL frameworks, however this dissertation suggests that 

there is still space for further improvements. Enrich the dataset with more data from different patient, 

data balancing and feature extraction techniques, experimenting new models’ architectures should be 

considered in future works.



 

 

7 REFERENCES



7 References 

 

 90 

[1] M. Kazemimoghadam and N. P. Fey, “Continuous Classification of Locomotion in Response to 

Task Complexity and Anticipatory State,” Front. Bioeng. Biotechnol., vol. 9, no. April, pp. 1–13, 

2021, doi: 10.3389/fbioe.2021.628050. 

[2] J. M. Beitz, “School of Nursing-Camden, Rutgers University, 311 N. 5,” Front. Biosci., vol. 6, no. 

3, pp. 65–74, 2014. 

[3] Associação Portuguesa de Doentes de Parkinson, “Manual Para Pessoas Com Parkinson,” Msd, 

pp. 6, 7, 8, 2014, [Online]. Available: http://msd.pt/wp-content/uploads/2015/10/Parkinson-

Manual_XXXX_v7_pt.pdf 

[4] W. H. Organization, “Parkinson disease,” 2022. https://www.who.int/news-room/fact-

sheets/detail/parkinson-disease 

[5] J. J. Ferreira et al., “Prevalence of Parkinson’s disease: a population-based study in Portugal,” 

Eur. J. Neurol., vol. 24, no. 5, pp. 748–750, 2017, doi: 10.1111/ene.13273. 

[6] C. Jobanputra, J. Bavishi, and N. Doshi, “Human activity recognition: A survey,” Procedia Comput. 

Sci., vol. 155, no. January 2019, pp. 698–703, 2019, doi: 10.1016/j.procs.2019.08.100. 

[7] S. Nasiri and M. R. Khosravani, “Progress and challenges in fabrication of wearable sensors for 

health monitoring,” Sensors Actuators, A Phys., vol. 312, p. 112105, 2020, doi: 

10.1016/j.sna.2020.112105. 

[8] C. Fadillioglu, B. J. Stetter, S. Ringhof, F. C. Krafft, S. Sell, and T. Stein, “Automated gait event 

detection for a variety of locomotion tasks using a novel gyroscope-based algorithm,” Gait Posture, 

vol. 81, no. November 2019, pp. 102–108, 2020, doi: 10.1016/j.gaitpost.2020.06.019. 

[9] S. Baskar, P. Mohamed Shakeel, R. Kumar, M. A. Burhanuddin, and R. Sampath, “A dynamic and 

interoperable communication framework for controlling the operations of wearable sensors in 

smart healthcare applications,” Comput. Commun., vol. 149, no. October 2019, pp. 17–26, 

2020, doi: 10.1016/j.comcom.2019.10.004. 

[10] M. Kazemimoghadam and N. P. Fey, “An Activity Recognition Framework for Monitoring Non-

Steady-State Locomotion of Individuals with Parkinson’s Disease,” pp. 1–4, 2021. 

[11] D. G. M. Zwartjes, T. Heida, J. P. P. Van Vugt, J. A. G. Geelen, and P. H. Veltink, “Ambulatory 

monitoring of activities and motor symptoms in Parkinsons disease,” IEEE Trans. Biomed. Eng., 

vol. 57, no. 11, pp. 2778–2786, 2010, doi: 10.1109/TBME.2010.2049573. 

[12] S. Pardoel, J. Kofman, J. Nantel, and E. D. Lemaire, “Wearable-sensor-based detection and 

prediction of freezing of gait in parkinson’s disease: A review,” Sensors (Switzerland), vol. 19, no. 

23, pp. 1–37, 2019, doi: 10.3390/s19235141. 



7 References 

 

 91 

[13] N. Shawen et al., “Role of data measurement characteristics in the accurate detection of 

Parkinson’s disease symptoms using wearable sensors,” J. Neuroeng. Rehabil., vol. 17, no. 1, 

pp. 1–14, 2020, doi: 10.1186/s12984-020-00684-4. 

[14] D. Ravi, C. Wong, B. Lo, and G. Z. Yang, “A Deep Learning Approach to on-Node Sensor Data 

Analytics for Mobile or Wearable Devices,” IEEE J. Biomed. Heal. Informatics, vol. 21, no. 1, pp. 

56–64, 2017, doi: 10.1109/JBHI.2016.2633287. 

[15] M. N. S. Zainudin, M. N. Sulaiman, N. Mustapha, and T. Perumal, “Activity recognition based on 

accelerometer sensor using combinational classifiers,” ICOS 2015 - 2015 IEEE Conf. Open Syst., 

pp. 68–73, 2016, doi: 10.1109/ICOS.2015.7377280. 

[16] D. Ravi, C. Wong, B. Lo, and G. Z. Yang, “Deep learning for human activity recognition: A resource 

efficient implementation on low-power devices,” BSN 2016 - 13th Annu. Body Sens. Networks 

Conf., pp. 71–76, 2016, doi: 10.1109/BSN.2016.7516235. 

[17] M. Inoue, S. Inoue, and T. Nishida, “Deep recurrent neural network for mobile human activity 

recognition with high throughput,” Artif. Life Robot., vol. 23, no. 2, pp. 173–185, 2018, doi: 

10.1007/s10015-017-0422-x. 

[18] A. Murad and J. Y. Pyun, “Deep recurrent neural networks for human activity recognition,” Sensors 

(Switzerland), vol. 17, no. 11, 2017, doi: 10.3390/s17112556. 

[19] Y. Guan and T. Plötz, “Ensembles of Deep LSTM Learners for Activity Recognition using 

Wearables,” Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., vol. 1, no. 2, pp. 1–

28, 2017, doi: 10.1145/3090076. 

[20] C. Xu, D. Chai, J. He, X. Zhang, and S. Duan, “InnoHAR: A deep neural network for complex 

human activity recognition,” IEEE Access, vol. 7, pp. 9893–9902, 2019, doi: 

10.1109/ACCESS.2018.2890675. 

[21] M. Batool, A. Jalal, and K. Kim, “Sensors Technologies for Human Activity Analysis Based on SVM 

Optimized by PSO Algorithm,” 2019 Int. Conf. Appl. Eng. Math. ICAEM 2019 - Proc., pp. 145–

150, 2019, doi: 10.1109/ICAEM.2019.8853770. 

[22] F. M. Rueda, R. Grzeszick, G. A. Fink, S. Feldhorst, and M. Ten Hompel, “Convolutional neural 

networks for human activity recognition using body-worn sensors,” Informatics, vol. 5, no. 2, pp. 

1–17, 2018, doi: 10.3390/informatics5020026. 

[23] Y. Kwon, K. Kang, and C. Bae, “Unsupervised learning for human activity recognition using 

smartphone sensors,” Expert Syst. Appl., vol. 41, no. 14, pp. 6067–6074, 2014, doi: 

10.1016/j.eswa.2014.04.037. 



7 References 

 

 92 

[24] F. Tahavori et al., “Physical activity recognition of elderly people and people with Parkinson’s 

(PwP) during standard mobility tests using wearable sensors,” 2017 Int. Smart Cities Conf. ISC2 

2017, 2017, doi: 10.1109/ISC2.2017.8090858. 

[25] K. D. Garcia et al., “An ensemble of autonomous auto-encoders for human activity recognition,” 

Neurocomputing, vol. 439, pp. 271–280, 2021, doi: 10.1016/j.neucom.2020.01.125. 

[26] M. Straczkiewicz, P. James, and J. P. Onnela, “A systematic review of smartphone-based human 

activity recognition methods for health research,” npj Digit. Med., vol. 4, no. 1, pp. 1–15, 2021, 

doi: 10.1038/s41746-021-00514-4. 

[27] M. Fusca, F. Negrini, P. Perego, L. Magoni, F. Molteni, and G. Andreoni, “Validation of a wearable 

IMU system for gait analysis: Protocol and application to a new system,” Appl. Sci., vol. 8, no. 7, 

pp. 1–16, 2018, doi: 10.3390/app8071167. 

[28] H. R. Gonçalves, A. Rodrigues, and C. P. Santos, “Gait monitoring system for patients with 

Parkinson’s disease,” Expert Syst. Appl., vol. 185, no. June, p. 115653, 2021, doi: 

10.1016/j.eswa.2021.115653. 

[29] C. F. Caiafa, Z. Sun, T. Tanaka, P. Marti-Puig, and J. Solé-Casals, “Machine learning methods with 

noisy, incomplete or small datasets,” Appl. Sci., vol. 11, no. 9, pp. 0–3, 2021, doi: 

10.3390/app11094132. 

[30] M. Kazemimoghadam and N. P. Fey, “An Activity Recognition Framework for Monitoring Non-

Steady-State Locomotion of Individuals with Parkinson’s Disease”. 

[31] B. Nguyen, Y. Coelho, T. Bastos, and S. Krishnan, “Trends in human activity recognition with 

focus on machine learning and power requirements,” Mach. Learn. with Appl., vol. 5, no. April, p. 

100072, 2021, doi: 10.1016/j.mlwa.2021.100072. 

[32] German Research Centre for Artificial Intelligence and A. Reiss, “PAMAP2 Physical Activity 

Monitoring Data Set,” 2012. https://medium.com/@arifwicaksanaa/pengertian-use-case-

a7e576e1b6bf 

[33] D. Roggen, A. Calatroni, L.-V. Nguyen-Dinh, R. Chavarriaga, H. Sagha, and S. Tejaswi Digumarti, 

“OPPORTUNITY Activity Recognition Data Set,” Systems, Man and Cybernetics Workshop on 

“Robust machine learning techniques for human activity recognition,” 2011. 

https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition 

[34] J. L.Reyes, D. Anguita, A. Ghio, L. Oneto, and X. Parra, “Human Activity Recognition Using 

Smartphones Data Set,” A Public Domain Dataset for Human Activity Recognition Using 

Smartphones. 



7 References 

 

 93 

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones 

[35] J. Brownlee, “1D Convolutional Neural Network Models for Human Activity Recognition,” Deep 

Learning for Time Series, 2018. https://machinelearningmastery.com/cnn-models-for-human-

activity-recognition-time-series-classification/ 

[36] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,” pp. 1–11, 2015, 

[Online]. Available: http://arxiv.org/abs/1511.08458 

[37] M. Hossin and M. . Sulaiman, “A Review on Evaluation Metrics for Data Classification Evaluations,” 

Int. J. Data Min. Knowl. Manag. Process, vol. 5, no. 2, pp. 1–11, 2015. 

[38] Z. C. Lipton, C. Elkan, and B. Narayanaswamy, “Thresholding Classifiers to Maximize F1 Score,” 

2014, [Online]. Available: http://arxiv.org/abs/1402.1892 

[39] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-Validation,” in Encyclopedia of Database Systems, 

Boston, MA: Springer US, 2009, pp. 532–538. doi: 10.1007/978-0-387-39940-9_565. 

[40] A. Emam, M. Shalaby, M. A. Aboelazm, H. E. A. Bakr, and H. A. A. Mansour, “A Comparative 

Study between CNN, LSTM, and CLDNN Models in the Context of Radio Modulation 

Classification,” 2020 12th Int. Conf. Electr. Eng. ICEENG 2020, pp. 190–195, 2020, doi: 

10.1109/ICEENG45378.2020.9171706. 

[41] T. Zebin, M. Sperrin, N. Peek, and A. J. Casson, “Human activity recognition from inertial sensor 

time-series using batch normalized deep LSTM recurrent networks,” Proc. Annu. Int. Conf. IEEE 

Eng. Med. Biol. Soc. EMBS, vol. 2018-July, no. September, pp. 1–4, 2018, doi: 

10.1109/EMBC.2018.8513115. 

[42] F. Cruciani et al., “Feature learning for Human Activity Recognition using Convolutional Neural 

Networks: A case study for Inertial Measurement Unit and audio data,” CCF Trans. Pervasive 

Comput. Interact., vol. 2, no. 1, pp. 18–32, 2020, doi: 10.1007/s42486-020-00026-2. 

[43] A. Mirelman et al., “Gait impairments in Parkinson’s disease,” Lancet Neurol., vol. 18, no. 7, pp. 

697–708, 2019, doi: 10.1016/S1474-4422(19)30044-4. 

[44] M. Politis, K. Wu, S. Molloy, P. G. Bain, K. R. Chaudhuri, and P. Piccini, “Parkinson’s disease 

symptoms: The patient’s perspective,” Mov. Disord., vol. 25, no. 11, pp. 1646–1651, 2010, doi: 

10.1002/mds.23135. 

[45] M. W. Whittle, “Gait Analysis An Introduction,” Elsevier, vol. 4th Editio, p. 

https://news.ge/anakliis-porti-aris-qveynis-momava, 2007. 

[46] C. . Vaughan, B. . Davis, and J. . O’Connor, Dynamics of Human Gait, 2nd ed. Cape Town, South 

Africa: Kiboho Publishers, 1992. 



7 References 

 

 94 

[47] P. Aqueveque, E. Germany, R. Osorio, and F. Pastene, “Gait segmentation method using a plantar 

pressure measurement system with custom-made capacitive sensors,” Sensors (Switzerland), vol. 

20, no. 3, 2020, doi: 10.3390/s20030656. 

[48] M. Lempereur et al., “A new deep learning-based method for the detection of gait events in 

children with gait disorders: Proof-of-concept and concurrent validity,” J. Biomech., vol. 98, p. 

109490, 2020, doi: 10.1016/j.jbiomech.2019.109490. 

[49] H. X. Tan, N. N. Aung, J. Tian, M. C. H. Chua, and Y. O. Yang, “Time series classification using a 

modified LSTM approach from accelerometer-based data: A comparative study for gait cycle 

detection,” Gait Posture, vol. 74, no. August, pp. 128–134, 2019, doi: 

10.1016/j.gaitpost.2019.09.007. 

[50] T. Zhen, L. Yan, and P. Yuan, “Walking gait phase detection based on acceleration signals using 

LSTM-DNN algorithm,” Algorithms, vol. 12, no. 2, 2019, doi: 10.3390/A12120253. 

[51] A. Branquinho, H. R. Goncalves, J. F. Pinto, A. M. Rodrigues, and C. P. Santos, “Wearable gait 

Analysis LAB as a biomarker of Parkinson’s disease motor stages and Quality of life: A preliminary 

study,” 2021 IEEE Int. Conf. Auton. Robot Syst. Compet. ICARSC 2021, no. i, pp. 234–239, 

2021, doi: 10.1109/ICARSC52212.2021.9429770. 

[52] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, 

pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735. 

[53] J. Donahue et al., “Long-Term Recurrent Convolutional Networks for Visual Recognition and 

Description,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 677–691, 2017, doi: 

10.1109/TPAMI.2016.2599174. 

[54] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Trans. Signal 

Process., vol. 45, no. 11, pp. 2673–2681, 1997, doi: 10.1109/78.650093. 

[55] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 

score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, pp. 1–13, 

2020, doi: 10.1186/s12864-019-6413-7. 

[56] G. Jurman, S. Riccadonna, and C. Furlanello, “A comparison of MCC and CEN error measures in 

multi-class prediction,” PLoS One, vol. 7, no. 8, pp. 1–8, 2012, doi: 

10.1371/journal.pone.0041882. 

[57] D. Chicco, “Ten quick tips for machine learning in computational biology,” BioData Min., vol. 10, 

no. 1, pp. 1–17, 2017, doi: 10.1186/s13040-017-0155-3. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 



Appendix A 

 

 96 

 

Experimental Protocol 

Postural Assessment in Parkinson's Disease 
 

Purpose: 

OB1: Create an open-source multimodal dataset of the pull test and physical activities in Parkinson’s 

Disease based on 3D motion data and kinematic-driven walking parameters acquisitions through 

wearable miniaturized inertial sensors.  

OB2: Assess dynamic postural instability. 

OB3: Automatic estimation of pull test score based on artificial intelligence models. 

 

Study design: 

▪ Cross-sectional study. 

 

Local: 

▪ Hospital of Braga – 2CA Braga Academic Clinical Center. 

 

Study chronology: 

▪ T0: Patients’ selection and recruitment 

▪ T1: Experimental procedure 

▪ T2: Data analysis 

▪ T3: Dissemination 

 
Figure A-1 Study chronology (W: week). 

Participants: 

▪ Number of participants: 10 participants with PD  
 

Table A-1 Inclusion and exclusion criteria. 

Inclusion Criteria Exclusion Criteria 

- Diagnosis of PD according to the UK Parkinson's 

Disease Society Brain Bank criteria 

- Present Freezing of Walking (FoG) 

- Hoen & Yahr scale ≤ 3 

- Age between 50-85 years old 

 

- Co-morbid disorders likely to affect walking, including 

stroke, orthopedic disease, rheumatologic disease, 

neurological and musculoskeletal disorders, 

cardiovascular disease and pulmonary disorders and 

normal flexibility and muscle strength 

- Cognitive impairment 

- Obvious motor impairments 

- Cognitive impairments 

- Visual acuity deficits 
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- Audiometric deficits 

- Other neurological disease 

- Pain that may affect walking 

- Be evaluated by the same neurologist 

 

Material: 

▪ Hoehn & Yar scale (H&Y) 

▪ Unified Parkinson's Disease Rating Scale (UPDRS-III) 

▪ Pull test score 

▪ Participants demographic registration document 

▪ +sense waistband: +senseMotion 

▪ Xsens: 

o 4 sensors: right/left trunk, and front/back lower trunk (L3-L5 level) of participant 

o 2 sensors: right/left hand of evaluator 

o MTManager SW 

 

Data acquisition and outcomes: 
 

 

Table A-2 Acquired variables and respective necessary material. 

Type Variables Material 

C
li

n
i

c 

Disease stage H&Y 

Motor disability UPDRS-III 

D
e

m
o

g
ra

p
h

ic
 Age [years] Participants demographic registration 

document Gender [F/M/Non-binary] 

Weight [Kg] 

Height [cm] 

M
o

ti
o

n
 

1. 3D motion data 

2. Kinematic-driven walking parameters: 

▪ Rhythm: step/stride time and stance/swing/double-support 

phase. 

▪ Pace: step/stride length, velocity, and cadence. 

▪ Variability: step length/time, velocity, and stance/swing 

phase standard deviation. 

▪ Asymmetry: step length/time, velocity, and stance/swing 

phase asymmetry. 

3. Postural related metrics: 

▪ Trunk pitch and roll. 

▪ Range of motion. 

▪ Root mean square 

▪ JERK. 

 

+senseMotion 

Xsens 
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Experimental procedure: 

Step 1. Participation informed consent signature. 

Step 2. Record participants demographic data: age, gender, weight and heigh. 

Step 3. Wear Xsens in participant and evaluator. 

Step 4. Record and assess participants clinic scales (UPDRS-III except point 3.12). 

Step 5. Wear Xsens. 

Step 6. Wear +sense. 

Step 7. Turn on +sense and pair with +S APP (Error! Reference source not found.). 

Step 8. Explain the first task (point 3.12 of UPDRS-III – pull test) to perform on data acquisition 

discrete type (Error! Reference source not found. and Figure A-2) and, if necessary, 

demonstrate it. 

Step 9. In +S APP configure +sense to execute a motion monitoring acquisition as described in 

Error! Reference source not found.. 

Step 10. Connect +sense with Xsens base station via wire. 

Step 11. Start data acquisition:  

a. Press start button in +S APP (Error! Reference source not found.). 

b. Confirm in Xsens desktop if started data acquisition and disconnect +sense to Xsens 

base station. 

c. Indicate to the participant to perform the explained task.  

d. Record the moment where participants start a new activity transition.  

Step 12. Finish data acquisition:  

a. Indicate to the participant to finish the first motion trial. 

b. Confirm in Xsens desktop if stopped data acquisition. 

c. Press stop button in +S APP (Error! Reference source not found.).  

Step 13. Repeat the procedure from step 8 until subsequently complete the tasks indicated on 

Error! Reference source not found. referred to data acquisition discrete type. 

Step 14. In +S APP, plot acquired data to confirm that no losses have occurred during trials 

acquisition (Error! Reference source not found.). 

Step 15. Exit +S APP, turn off +sense and remove it from the participant (Error! Reference 

source not found.). 

Step 16. Ask participant to fill out SUS questionnaire. 

Step 17. Confirm acquired data in +S Desktop APP. 

Estimated time per subject: ~30min 
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Table A-3 +S APP configuration for respective experimental step and +sense strategy. 

+S APP configuration 
Experimental 

procedure 
+sense command 

 

Step 7 Bluetooth pairing 

 

Step 9 Motion monitoring 

 

Step 11 Start trial 

 

Step 12 Stop trial 
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+S APP configuration 
Experimental 

procedure 
+sense command 

 

Step 14 Plot acquired data 

  

Step 15 Exit +SAPP 

 

Table A-4 Data acquisition type (discrete and continuous), physical activity and corresponding tasks, and estimated and total 
estimate time. 

 

Activity Tasks 

Estimated time 

Total estimated time 

 Per trial Total 

Pull-test (3.12 point of UPDRS-III) 15sec ~1min 

H
um

an
 m

ot
or

-re
la

te
d 

ac
tiv

iti
es

 

(1) Sit in a chair 10sec stand + sit in a chair + 10sec sitting 25sec  

~12min 

(2) Get up from a chair 10sec sitting + get up + 10sec stand 25sec  

(3) Sit in a chair 10sec stand + sit in a chair + 10sec sitting 25sec 

(4) Get up from a chair 10sec sitting + get up + 10sec stand 25sec 

(5) Sit in a chair 10sec stand + sit in a chair + 10sec sitting 25sec  

(6) Get up from a chair 10sec sitting + get up + 10sec stand 25sec  

(7) Lie on a bed 10sec stand + lie on a bed + 10sec lying 25sec 

(8) Get up from a bed 10sec lying + get up + 10sec stand 25 sec 

(9) Lie on a bed 10sec stand + lie on a bed + 10sec lying 25sec 

(10) Get up from a bed 10sec lying + get up + 10sec stand 25 sec 

(11) Lie on a bed 10sec stand + lie on a bed + 10sec lying 25sec 

(12) Get up from a bed 10sec lying + get up + 10sec stand 25 sec 

(13) Walk 10sec stand + 10m walk + 10sec stand 10sec 

(14) Walk 10sec stand + 10m walk + 10sec stand 10sec 

(15) Walk 10sec stand + 10m walk + 10sec stand 10sec 

(16) 180° turning 5sec lying + 

10m walk + right 180° turning +  

75sec 
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10m walk + left 180° turning +  

10m walk + right 180° turning +  

10m walk + left 180° turning +  

10m walk + right 180° turning +  

10m walk + left 180° turning +  

10m walk + 5sec lying 

 

 

 
Data acquisition: human motor-related activities 

  

  

  

 
Figure A-2 - Experimental procedure tasks for human motor-related activities: (A) Sit in a chair, (B) Get up from a char, (C) 

Lie on a bed, (D) Get up from a bed, (E) Walk/Stand, (F) Right/Left 180° turning. 

Data analysis:  
 

Table A-5 Variables and methods designation to achieve respective study purposes. 

Purpose Variables Method 

Create an open-source multimodal dataset of 

physical activities in Parkinson’s Disease based on 

3D motion data and kinematic-driven walking 

parameters acquisitions through on wearable 

miniaturized inertial sensors. 

Motion data 

Open-source database guidelines 

(https://www.dbta.com/Editorial/Trends-and-

Applications/A-Practical-Guide-to-Adopting-an-Open-

Source-Database-for-Enterprise-IT-Use-66368.aspx) 

Assess posture instability and estimate the pull 

test score using the created dataset. 
AI-based models and statistical analysis 

Descriptive and visual analysis of clinic and 

demographic data. 
Clinic and demographic data Statistical descriptive (mean ± standard deviation) * 

*SPSS will be used to accomplish the statistical analysis. 
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1. FRAMEWORK FOR HAR MODEL FINE-TUNNING STAGE DIFFERENT SIZE 

WINDOW INPUT EXPERIMENTATION RESULTS 

 

Table B-1 Fine-tunning best result using an input window size of 5. 

Window 

size 
Parameters Value Dataset 

F1 score 

(mean) 

Standard 

deviation 

5 

Epochs 200 

Train 0.89136 0.00185 
Overlapping 50 % 

Number of filters 128 

Number of neurons 100 

Pooling size 2 

Validation 0.88845 0.00225 
Data batch size 512 

Dropout rate 0.3 

Model learning rate 0.001 

 

 

Table B-2 Fine-tunning best result using an input window size of 56. 

Window timestep size Parameters Value Dataset 
F1 score 

(mean) 

Standard 

deviation 

56 

Epochs 200 

Train 0.91341 0.00204 
Overlapping 50 % 

Number of filters 128 

Number of neurons 100 

Pooling size 2 

Validation 0.90182 0.00504 
Data batch size 256 

Dropout rate 0.5 

Model learning rate 0.0001 

 

 

Table B-3 Fine-tunning best result using an input window size of 112. 

Window timestep size Parameters Value Dataset F1 score 

(mean) 

Standard 

deviation 

112 

Epochs 200 

Train 0.92215 0.00243 
Overlapping 50 % 

Number of filters 128 

Number of neurons 60 

Pooling size 2 

Validation 0.90793 0.00533 
Data batch size 256 

Dropout rate 0.5 

Model learning rate 0.0001 

 


