
Universidade do Minho
Escola de Engenharia

maio de 2022

André Agostinho Ribeiro Campos

ALFA-Pd: Hardware-assisted
LiDAR Point Cloud Denoising

André Agostinho Ribeiro Campos

ALFA-Pd: Hardware-assisted
LiDAR Point Cloud Denoising

Dissertação de Mestrado
Engenharia Eletrónica Industrial e Computadores
Sistemas Embebidos e Computadores

Trabalho efetuado sob a orientação de
Professor Doutor João Monteiro
Professor Doutor Tiago Gomes

Universidade do Minho
Escola de Engenharia

maio de 2022

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos

conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da

Universidade do Minho.

Agradecimentos

Em primeiro lugar, gostaria de agradecer às pessoas que sempre me apoiaram e tornaram possível

tudo o que sou hoje. Aos meus pais e irmão, que sempre me apoiaram em todo o meu percurso,

mesmo nos momentos mais difíceis. Aos meus orientadores, Professor Doutor Tiago Gomes e Mestre

Ricardo Roriz, por todo o conhecimento transmitido, por toda a disponibilidade, e sobretudo pela confiança

depositada em mim para a realização deste trabalho. Um sincero obrigado por todas as oportunidades e

todas as lições.

Aos meus amigos de curso, que foram um grande apoio em todo o meu percurso académico. Um

agradecimento especial para as pessoas com quem tenho o prazer de conviver e partilhar experiências

diariamente – João Sousa, Luís Cunha, Pedro Sousa e Samuel Pereira e Mestre Diogo Costa. Um obrigado

a todos que fizeram parte deste meu percurso de desenvolvimento, e que me deram a oportunidade de

crescer e aprender.

Aos meu grupo amigos que sempre me apoiaram nos tempos mais difíceis. Um agradecimento

particular a Ricardo Santelo, Bruno Justa, Eduardo Baptista, João Machado, Letícia Amorim, Manuel

Raposo, Fábio Oliveira, Margarida Carvalho, Rita Vieira, Pedro Silva, Carlos Gomes e Tiago Amorim por

toda a ajuda e momentos de amizade ao longo destes anos.

À restante família e todas as outras pessoas que me apoiaram durante todos estes anos: um sincero

obrigado!

i

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading

to its elaboration. I further declare that I have fully acknowledged the Code of Ethical Conduct of the

University of Minho.

ii

Abstract

ALFA-Pd: Hardware-assisted LiDAR Point Cloud Denoising.

The interest in developing and deploying fully autonomous vehicles on our public roads has come

to a full swing. As a result, interest in autonomous driving capabilities, already implemented in modern

automobiles via Advanced Driver Assistance Systems (ADAS), is at an all-time high. However, employing

highly reliable perception systems to navigate the environment is a very demanding task, requiring multiple

sensors like Cameras, Radio Detection And Ranging (RADAR), and Light Detection And Ranging (LiDAR).

The latter is critical for determining the distance and speed of surrounding obstacles while producing

high-resolution 3D representations of the surrounding environment in real-time. Despite being assumed

as a game-changer in the autonomous driving paradigm, LiDAR sensors can be susceptible to several

noise sources, including internal components, mutual interference, light, and severe weather conditions.

Notwithstanding the numerous mitigation approaches for weather denoising described in the literature,

some issues still exist, ranging from high complexity to low accuracy or even systems with reduced overall

performance. Thus, this dissertation proposes the ALFA-Pd framework, an embedded weather denoising

approach that supports the existing and new state-of-the-art outlier removal methods using a reconfig-

urable hardware platform. ALFA-Pd contributes with a new weather denoising approach by combining the

Dynamic Radius Outlier Removal (DROR) and the Low-Intensity Outlier Removal (LIOR) algorithms. The

performed evaluation shows that Dynamic low-Intensity Outlier Removal (DIOR) can achieve better accu-

racy and performance while guaranteeing real-time requirements when compared to other state-of-the-art

solutions.

Keywords: ADAS, Autonomous vehicles, LiDAR, FPGA, Hardware-accelerated, Point cloud, Point

cloud filtering, Weather denoising.

iii

Resumo

ALFA-Pd: Aceleração de métodos de redução de ruído em sistemas LiDAR.

A indústria automóvel representa um dos principais setores económicos a nível mundial. Esta indús-

tria tem sofrido grandes evoluções tecnológicas nos últimos anos, especialmente no ramo de veículos de

passageiros. Estas evoluções e a mudança de paradigma rumo à produção de veículos cada vez mais in-

teligentes, tem desafiado constantemente fabricantes e marcas a investir inúmeros recursos na pesquisa

e desenvolvimento de soluções para assistir à condução autónoma. Este objetivo pode ser atingido recor-

rendo a um conjunto de sensores tais como Light Detection And Ranging (LiDAR), sendo estes últimos

bastante utilizados em sistemas comerciais Advanced Driver Assistance System (ADAS). A utilização de

sensores LiDAR em sistemas ADAS tem vindo a ganhar extrema importância, apresentando inúmeras

vantagens em relação aos demais, tais como resolução, precisão, mapeamento 3D, funcionamento em

ambientes com pouca luz, etc. Apesar das vantagens, o funcionamento de um sensor LiDAR pode ser

severamente afetado devido a interferências provocadas por outras fontes luminosas, como por exemplo

a luz solar, pela coexistência de outros sistemas LiDAR no mesmo raio de ação, ou pela influência de

condições meteorológicas adversas. Apesar das numerosas abordagens de mitigação destes problemas

na literatura, algumas questões ainda existem, desde alta complexidade até baixa precisão ou mesmo

baixo desempenho em geral. Assim, esta dissertação propõe a framework ALFA-Pd, que oferece métodos

de redução de ruído causado por condições climatéricas adversas existentes, apoiada por uma plataforma

de hardware reconfigurável. Para além disso, ALFA-Pd contribui com um novo método de filtragem, com-

binando os algoritmos Dynamic Radius Outlier Removal (DROR) e Low-Intensity Outlier Removal (LIOR). Os

testes e resultados obtidos permitem concluir que Dynamic low-Intensity Outlier Removal (DIOR) alcança

melhor precisão e desempenho ao mesmo tempo que cumpre requisitos real-time.

Palavras-chave: Point Cloud, Ruído, Remoção de ruído, Hardware reconfigurável, FPGA, LiDAR, Con-

dução autónoma.

iv

Contents

List of Figures viii

List of Tables ix

Glossary x

1 Introduction 13

1.1 Main Goals . 14

1.2 Document Structure . 14

2 Background and State of the Art 15

2.1 Automotive Perception Sensors . 15

2.1.1 RADAR . 15

2.1.2 Camera . 16

2.1.3 LiDAR . 16

2.2 Automotive LiDAR . 16

2.2.1 LiDAR Working Principle . 16

2.2.2 LiDAR Applications . 19

2.2.3 LiDAR Challenges . 19

2.3 Point Cloud Weather Denoising Methods . 20

2.3.1 Voxel-Grid Filter . 21

2.3.2 Radius Outlier Removal . 21

2.3.3 Statistical Outlier Removal . 22

2.3.4 Fast Cluster Statistical Outlier Removal . 23

2.3.5 Dynamic Radius Outlier Removal . 23

2.3.6 Low-Intensity Outlier Removal . 23

2.3.7 Discussion . 24

2.4 Dynamic low-Intensity Outlier Removal . 24

v

Contents vi

3 Platform and Tools 26

3.1 Reconfigurable Technology . 26

3.2 Robot Operating System . 27

3.3 Point Cloud Library . 27

3.4 Qt . 27

3.5 OpenEmbedded . 28

3.6 Advanced LiDAR Framework for Automotive . 28

4 ALFA-Pd Implementation 30

4.1 ALFA-Pd Software . 31

4.2 ALFA-Pd Memory . 36

4.2.1 BRAM Implementation . 37

4.2.2 DDR Implementation . 40

4.3 ALFA-Pd Hardware . 45

4.4 ALFA-DVC . 50

5 Evaluation and Results 54

5.1 Evaluation of Software-based Denoising Algorithms 54

5.1.1 System Configuration . 55

5.1.2 Voxel-Grid . 56

5.1.3 Statistical Outlier Removal . 57

5.1.4 Fast Cluster Statistical Outlier Removal . 58

5.1.5 Radius Outlier Removal . 59

5.1.6 Dynamic Radius Outlier Removal . 60

5.1.7 Low-Intensity Outlier Removal . 61

5.1.8 Dynamic low-Intensity Outlier Removal . 63

5.1.9 Discussion . 64

5.2 Hardware-Accelerated Denoising Algorithms . 65

5.2.1 Dynamic Radius Outlier Removal . 65

5.2.2 Low-Intensity Outlier Removal . 67

5.2.3 Dynamic low-Intensity Outlier Removal . 68

5.2.4 Hardware Resources . 70

5.3 Hardware vs Software Implementations . 71

5.4 Closing Discussion . 72

6 Conclusion 73

6.1 Future Work . 73

References 75

List of Figures

2.1 LiDAR working principle. 17

2.2 Velodyne VLP-16. 18

2.3 Scanning LiDAR. 18

2.4 Velodyne Vellaray H800. 19

2.5 Flash LiDAR. 19

2.6 VG working principle. 21

2.7 ROR working principle. 22

2.8 SOR working principle. 22

2.9 DROR working principle. 23

2.10 DROR working principle. 25

3.1 ALFA architecture block diagram. 28

4.1 ALFA-Pd framework architecture. 30

4.2 ALFA-Pd modules overview. 31

4.3 ALFA-Pd software modules architecture. 31

4.4 ALFA-Pd multithreading configuration. 33

4.5 ALFA-Pd BRAM memory architecture. 37

4.6 ALFA-Pd BRAM point layout. 38

4.7 ALFA-Pd BRAM implementation block diagram. 38

4.8 ALFA-Pd BRAM memory interface state machine. 39

4.9 ALFA-Pd DDR memory architecture. 40

4.10 Point memory placement. 41

4.11 AXI-Lite registers. 41

4.12 AXI-Lite configurations register. 42

4.13 ALFA-Pd DDR implementation block diagram. 42

4.14 ALFA-Pd DDR memory interface state machine. 43

4.15 ALFA-Pd memory interface cache design. 44

4.16 ALFA-Pd memory interface parallel execution. 45

4.17 ALFA-Pd hardware modules architecture. 45

vii

List of Figures viii

4.18 ALFA-Pd hardware controller execution flow. 46

4.19 ALFA-Pd point cluster execution flow. 47

4.20 Neighbor finder communication. 49

4.21 ALFA-DVC user interface. 50

4.22 ALFA-DVC subwindows. 51

4.23 ALFA-DVC filter window. 52

4.24 ROS-based architecture used in the ALFA-Pd . 52

4.25 ALFA-DVC ROS windows. 53

5.1 Software VG filter output. 56

5.2 Software SOR filter output. 57

5.3 Software FCSOR filter output. 58

5.4 Software ROR filter output. 59

5.5 Software DROR filter output. 61

5.6 Software LIOR filter output. 62

5.7 Software DIOR filter output. 63

5.8 Hardware-accelerated DROR filter output. 65

5.9 Hardware-accelerated LIOR filter output. 67

5.10 Hardware-accelerated DIOR filter output. 69

List of Tables

2.1 Weather denoising algorithms summary. 24

4.1 PCL software modules used by the ALFA-Pd and the ALFA-DVC tool. 32

4.2 Default parameters of DDR version. 43

5.1 Filter parameters. 55

5.2 Software VG performance. 56

5.3 Software SOR filter performance. 57

5.4 Software FCSOR filter performance. 59

5.5 Software ROR filter performance. 60

5.6 Software DROR filter performance. 61

5.7 Software LIOR filter performance. 62

5.8 Software DIOR filter performance. 64

5.9 Evaluation of software-only denoising algorithms. 64

5.10 Hardware-accelerated DROR filter BRAM performance. 66

5.11 Hardware-accelerated DROR filter DDR performance. 66

5.12 Hardware-accelerated LIOR filter BRAM performance. 68

5.13 Hardware-accelerated LIOR filter DDR performance. 68

5.14 Hardware-accelerated DIOR filter BRAM performance. 69

5.15 Hardware-accelerated DIOR filter DDR performance. 70

5.16 Hardware resources. 70

5.17 Hardware-based algorithms optimization. 72

ix

Glossary

ADAS Advanced Driver Assistance Systems

ALFA Advanced LiDAR Framework for Automotive

AR Angular Resolution

AXI Advanced eXtensible Interface

BRAM Block RAM

CNN Convolutional Neural Network

CPU Central Process Unit

DARPA Defense Advanced Research Projects Agency

DDR Double Data Rate

DIOR Dynamic low-Intensity Outlier Removal

DROR Dynamic Radius Outlier Removal

DSP Digital Signal Processors

dToF direct Time of Flight

DVC Debugger Visualiser Configurator

FCSOR Fast Cluster Statistical Outlier Removal

FF Flip-Flop

FIFO First In First Out

FLANN Fast Library for Approximate Nearest Neighbors

FN False Negatives

x

Glossary xi

FoV Field of View

FP False Positives

FPGA Field-Programmable Gate Array

FPS Frames Per Second

FPT Frame Processing Time

GCC GNU Compiler Collection

GUI Graphical User Interface

IP Intellectual Property

iToF indirect Time of Flight

LiDAR Light Detection And Ranging

LIOR Low-Intensity Outlier Removal

LRR Long-Range RADAR

LUT LookUp Table

MCU MicroController Unit

MPSoC MultiProcessor System on Chip

NF Neighbor Finder

NIR Near-InfraRed

PC Point Cluster

PCL Point Cloud Library

Pd Platform denoising

PL Programmable Logic

PR Points Removed

PS Processing System

RADAR RAdio Detection And Ranging

ROI Region Of Interest

Glossary xii

ROR Radius Outlier Removal

ROS Robot Operation System

SAE Society of Automotive Engineers

SNR Signal-to-Noise Ratio

SOR Statistical Outlier Removal

SRR Short-Range RADAR

SVM Support Vector Machine

ToF Time of Flight

TP True Positives

VG Voxel-Grid

VTK Visualization ToolKit

1. Introduction

Nowadays, more than a decade after the first self-driving car winning the Defense Advanced Research

Projects Agency (DARPA) Challenge, the interest in creating and deploying completely autonomous vehicles

is at an all-time high. An autonomous vehicle requires trustworthy solutions to produce an accurate map of

its surroundings, which is only possible through the use of multi-sensor perception systems equipped with

RAdio Detection And Ranging (RADAR), Cameras, and Light Detection And Ranging (LiDAR) sensors [1,

2, 3, 4]. These multi-sensor perception systems empower vehicles with the ability to detect the distance

and speed of nearby obstacles, as well as their shape, so they can drive safely through the environment,

contributing to the various levels of driving automation defined by the Society of Automotive Engineers

(SAE). Despite the use of LiDAR sensors in the automotive sector being relatively new, they are now widely

regarded as a key technology for fully autonomous vehicles due to their ability to generate high-resolution

3D representations of their surroundings in real-time [5, 6, 7].

LiDAR technology is constantly evolving and thus finding different usages in a wide range of applica-

tions. Since accurate and exact measurements of the environment using a 3D point cloud representation

can aid perception systems [3], they are used in a variety of applications, including obstacle identification,

object and vehicle detection [8], pedestrian recognition and tracking [9], and ground segmentation for

road filtering [10, 11]. Nonetheless, a variety of noise sources, including internal components [12], mu-

tual interference [13, 14], reflectivity issues [15], light [5], and severe weather conditions [4, 16, 17], can

corrupt LiDAR’s sparse 3D point clouds, difficulting the task of understanding the vehicle’s surroundings.

Most algorithms are designed to operate under ideal weather conditions or ignore its impact on the

sensor output. However, adverse conditions can reduce the vehicles’ perception system performance,

which can result in unexpected behavior. Recently, this issue has been extensively addressed in the

literature [4, 16, 17, 18], with multiple studies benchmarking the sensor’s responsiveness in a variety of

diverse and harsh weather conditions, including fog [19, 20, 21, 22, 23], rain [19, 20, 24, 25, 26, 27],

and snow [28, 29]. Solutions aiming to address the issue can be grouped as: (i) simulators for analyzing

the impact of adverse weather on various road conditions and scenarios [22, 24, 25, 26, 27]; (ii) filters to

improve background filtering and object clustering methods for processing roadside LiDAR data [23, 29];

(iii) denoising Convolutional Neural Network (CNN)-based learning approaches [20, 22]; and (iv) weather

classification systems [17, 19, 23], which uses LiDAR data to forecast weather and change the sensor’s

operation based on changes in the atmosphere and asphalt, which leads to a better mapping of the

13

Chapter 1. Introduction 14

surroundings in real-time.

1.1 Main Goals

This dissertation aims to reduce the LiDAR point cloud deterioration induced by adverse weather condi-

tions by introducing Advanced LiDAR Framework for Automotive (ALFA)-Pd, a framework that can execute

current state-of-art algorithms. Moreover, to help mitigate the current performance limitations of these

algorithms, ALFA-Pd offers hardware-accelerated capabilities to further improve state-of-art algorithms that

present the best overall true positive per false positive ratios. Therefore, to successfully deploy ALFA-Pd, it

must comply with the following requirements:

1. ALFA-Pd must be capable of selecting and executing different denoising methods at run time, which

enables the selection of an appropriate filter to a specific weather condition.

2. ALFA-Pd must have hardware-accelerated capabilities to enable real-time filtering without introduc-

ing delays in the executing system.

3. ALFA-Pd must use current 3D LiDAR point cloud standards to facilitate the integration with high-level

applications. Additionally, to ensure interoperability with other systems, ALFA-Pd must have a Robot

Operation System (ROS) interface, as the majority of native LiDAR sensor drivers support ROS.

4. ALFA-Pd must study new weather denoising approaches that can benefit from existing algorithms.

Viable approaches must be supported with or without the hardware acceleration tools, providing

the best possible performance while maintaining platform flexibility.

1.2 Document Structure

This dissertation is structured as follows: Chapter 2 provides an overview of LiDAR technology and

its applications in the automotive sector. Then, current issues posed by applying LiDAR sensors in auto-

motive solutions are briefly exposed, narrowing into LiDAR point cloud corruption due to weather-related

noise since it is the main topic of this dissertation. The Chapter concludes with a comprehensive analy-

sis of current solutions and the presentation of a novel technique that improves over current state-of-art

methods. Chapter 3 describes the platforms and tools used to develop this dissertation, as well as their

operation. Afterwards, Chapter 4 gives an overview of the ALFA-Pd framework, its implementation modules

and a working description of ALFA-DVC, a tool developed in this dissertation that enables real-time point

cloud visualization, filter configuration, and debugging. Next, Chapter 5 offers an in-depth analysis of the

performance of state-of-art weather denoising algorithms, including their hardware-accelerated implemen-

tation. Finally, Chapter 6 concludes the work developed throughout this dissertation and proposes future

improvements.

2. Background and State of the Art

This Chapter starts with an analysis regarding the main sensors used for autonomous driving. Then, in

Section 2.2, LiDAR technology is examined in detail, alongside its applications and challenges. Afterwards,

Section 2.3 surveys current state-of-art solutions for LiDAR challenges generated by adverse weather con-

ditions. Finally, Section 2.4 introduces a novel approach for LiDAR weather denoising based on existing

methods.

2.1 Automotive Perception Sensors

An autonomous vehicle must recognize and understand the world around it to safely navigate its

surroundings. Therefore, the majority of autonomous cars employ multi-sensor perception systems that

typically include RADAR, Cameras, and LiDAR sensors [1, 2, 3, 4]. Each of these sensors offers several

advantages and disadvantages. Nevertheless, they are capable of creating an accurate recreation of the

real world when combined [7].

2.1.1 RADAR

The RADAR sensors are themost commonly used sensors in automotive detection and tracking applica-

tions [30]. It uses electromagnetic radio waves, to determine an objects’ range, direction, and velocity [31],

and depending on the measuring range, RADAR sensors are classified as Short-Range RADAR (SRR) and

Long-Range RADAR (LRR) [32]. SRR sensors provide accurate range measurements in a broader Field

of View (FoV), enabling applications such as blind-spot detection [33, 34], parking assistance, obstacle

recognition [35, 36], and collision avoidance [30, 31]. However, they cannot achieve the high resolu-

tions offered by LRR sensors because SRR sensors operate at a low frequency, typically 24 GHz. On the

other hand, LRR sensors operate at a higher frequency, typically 77 GHz, thus offering accurate distance

measurements [37]. Therefore, LRR sensors are frequently employed in adaptive cruise control applica-

tions [38, 39], where detection of objects at great distances is critical. Nonetheless, they require more

complex antenna systems, which raises their production cost.

15

Chapter 2. Background and State of the Art 16

2.1.2 Camera

From photos to video, Cameras are the most accurate way to create a visual representation of the

world, a highly required feature in self-driving cars. Most autonomous vehicles rely on Cameras mounted

on all four vehicle sides to create a 360 degrees view of the surrounding environment [40]. To accomplish

this goal, some use Cameras with a wide FoV, up to 120 degrees, and with a limited range [41], while

others provide long-range visuals with narrow FoV [42]. Although Cameras provide accurate views, they

have limitations in low-visibility environments such as fog, rain, or night [43]. Additionally, Cameras cannot

measure the depth and distance to an object, as it must be estimated through calculations [6].

2.1.3 LiDAR

LiDAR sensors work by targeting an object with light pulses and measuring the time for the light to

return. This sensor, similar to Cameras, can provide high resolution representations of the surroundings.

However, instead of outputting 2D images, which Cameras provide, LiDAR sensors output images in a point

cloud (2D or 3D) format. These representations enable autonomous vehicles to read their surroundings,

fulfilling the requirements for applications like object detection and classification [7]. Similar to RADAR and

in contrast with Cameras, LiDAR sensors do not require external light sources because it features active

illumination, which mitigates the effects of environmental conditions.

2.2 Automotive LiDAR

Obtaining distances through measuring travel-time and intensity of light beams date back to the pre-

laser decade (1930s) [44, 45], but it was only in 1953 that the concept of LiDAR appeared [46, 47]. The

LiDAR principle has remained unchanged since then, as a method of measuring distances by calculating

the round-trip time of a flight pulse traveling between the sensor and a target.

2.2.1 LiDAR Working Principle

Typically, LiDAR sensors operate by emitting light into their FoV through one or more laser beams.

Some LiDAR transmitters use amplitude modulated laser pulses, in the spectrum’s Near-InfraRed (NIR)

region, which allow for better Signal-to-Noise Ratio (SNR) [7]. Subsequently, the receiver gathers the

reflected light, organizes the received data, and computes the acquired information to build a point cloud.

Measurement Principles

LiDAR sensors can measure the distance to a target using one of two methods: direct Time of Flight

(dToF) or indirect Time of Flight (iToF). The dToF principle employs a simpler architecture providing a

Chapter 2. Background and State of the Art 17

cheaper implementation [7]. However, dToF is less resistant to mutual interference from other LiDAR

sensors. In comparison, iToF is a more robust technique that produces better results, but it is substantially

more complex and thus requires higher production costs [6].

Em
itt
er

Re
ce
iv
er

Object

ToF
Range

Figure 2.1: LiDAR working principle.

The dToF technique determines the Time of Flight (ToF) by calculating the time required for light

to travel from the sensor to an object and back, as depicted in Figure 2.1. This method offers several

advantages because it does not take the phase of the signal into account. Another important factor is that

dToF techniques are far more affordable than other solutions. However, since the emitter and receiver are

simple, measuring ToF is less accurate, making it susceptible to external influences such as external light

sources and weather conditions, which results in a lower SNR.

In contrast, iToF is a more sophisticated approach. It is the most advanced silicon-based ToF technol-

ogy on the market, with numerous commercial implementations. Nonetheless, the measurement range

is significantly lower because longer ranges require longer pulses, which reduces the SNR. Additionally,

multi-object disambiguation can occur in iToF approaches as the estimated distance is an average of all

sources of optical reflection [48]. Moreover, SNR can be further degraded because complementary metal-

oxide semiconductor detectors often lack signal gain, have a low fill factor, and have lower responsivity

than the ordinary photodiodes used in dToF.

Imaging Techniques

Numerous techniques were developed and implemented in LiDAR sensors to create 3D point clouds

to recreate the real world. These techniques are divided into two broad categories: those that employ

beam-steering mechanisms to scatter a light signal across the environment spot, and those that illuminate

the entire FoV simultaneously.

LiDAR systems with beam-steering mechanisms are often divided into rotor-based mechanical LiDAR

systems and scanning solid-state LiDAR systems [49]. The rotor-based systems are the most mature

scanning technique, having a strong presence in current automotive perception systems [7]. Figure 2.2

Chapter 2. Background and State of the Art 18

Figure 2.2: Velodyne VLP-16.

depicts a rotor-based LiDAR sensor. To achieve 360º horizontal detection, they employ a mechanical rotor

that spins the emitter/receiver pairs. However, since they contain moving parts, the frame rate is limited

by the sensor rotation speed, influenced by the friction between components, resulting in a performance

decrease. Thus, current rotor-based LiDAR systems only generate data at a rate between 10 Hz to 20 Hz.

Scanning LiDAR systems focus light in a beam to illuminate the target, as depicted in Figure 2.3.

Additionally, these systems use a low divergence laser with some form of beam-steering as its emitter,

which defines the vertical and horizontal resolution. These techniques enable longer-range scanning by

relying solely on the system’s optics, resulting in a highly adaptable design. However, because the FoV

points do not share a common light source, these systems become susceptible to external interference,

reducing the SNR. Additionally, these beam guiding technologies degrade frame rate, operating at a fraction

of the speed offered by flash LiDARs.

Figure 2.3: Scanning LiDAR.

Scanning solid-state LiDAR systems are another LiDAR beam-steering mechanism, represented by

one example depicted in Figure 2.4. Since they lack a rotor mechanism that spins the emitter/receiver

pairs, these systems do not reach 360 degrees of horizontal FoV [50]. However, by having no mechanical

parts spinning, there is no friction between components, which results in the scanning solid-state LiDAR

systems being capable of achieving greater frame rates when compared to mechanical ones. Additionally,

their simplicity makes them cheaper to produce. Due to their scalability in the automotive industry, they

are frequently employed in groups of sensors to increase the FoV.

Since Flash LiDAR systems have no moving parts, they are often named as complete solid-state sen-

sors. Similar to traditional digital cameras, these sensors use a flash to illuminate the environment and

Chapter 2. Background and State of the Art 19

Figure 2.4: Velodyne Vellaray H800.

photodetectors to capture the reflected light, as illustrated in Figure 2.5. Additionally, these systems are im-

mune to light distortion, as all FoV points share the same light source. However, due to power constraints,

the measuring range of Flash LiDAR sensors is limited, as the only way to increase the measurement range

is by increasing the laser’s power.

Figure 2.5: Flash LiDAR.

2.2.2 LiDAR Applications

Advanced Driver Assistance Systems (ADAS) are designed to help drivers to avoid collisions by stopping

the vehicle or conducting evasive maneuvers. Therefore, these systems must constantly scan the vehicles’

surroundings for potentially harmful circumstances [51]. For instance, Wei et al. [52] developed an ADAS

based on LiDAR sensors to avoid collisions by automatically braking the vehicle in unsafe situations.

In recent years, the research on autonomous vehicles has gained considerable attention, with pedes-

trian recognition and tracking ranking among the most critical topics [53, 54]. Nevertheless, to predict the

possibility of a future collision, pedestrian recognition systems have to accurately recognize pedestrians as

far away as possible, which is enabled by using LiDAR technology [36]. Therefore, numerous methodolo-

gies such as stochastic optimization [55, 56], doppler effect [32, 57], and clustering [36] were developed.

Additionally, Kidono et al. [58] proposed a method of pedestrian recognition based on Support Vector Ma-

chine (SVM) techniques, where is shown the advantages and disadvantages of using LiDAR sensors over

other sensors.

2.2.3 LiDAR Challenges

According to Hasirlioglu et al. [53], over 1.2million people die in traffic accidents each year, highlighting

the critical need for some form of driver assistance to prevent more human deaths. For this, it is vital to

collect trustworthy information about the environment, allowing these systems to actively avoid dangerous

Chapter 2. Background and State of the Art 20

scenarios. However, the sparse 3D point clouds produced by an automotive LiDAR sensor can be corrupted

by a variety of sources of noise, such as internal components [12], mutual interference [13, 14], reflectivity

issues [15], light [5], adverse weather conditions [4, 16, 17], among others [18].

Weather Influence

One of the major drawbacks of LiDAR technology is its susceptibility to harsh weather, as it can degrade

the performance by up to 25% [53]. However, extreme weather conditions are a vast subject, and each

weather condition, such as fog, rain, or snow, has a unique effect on the LiDAR output. Firstly, fog is

characterized by Hasirlioglu et al. [53] as a multifaceted phenomenon influenced by various elements,

including droplet microphysics, aerosol chemistry, radiation, turbulence, large/small-scale dynamics, and

droplet surface conditions. In summary, fog is a collection of tiny water droplets with diameters less than

100 mm suspended in the air. Additionally, it is important to note that fog behaves differently at sea,

in the atmosphere, and on the ground. For example, the fog droplet size on the ground is smaller if

compared with droplets in cumulus clouds. Nonetheless, analyzing and studying every fog scenario is far

too time-consuming for any practical application, so Hasirlioglu et al. [59] developed a fog simulation to

accelerate the process of evaluating LiDAR performance. Wherefore, with the data provided by the author,

it is possible to deduce that fog has a detrimental influence on wave propagation, which is further disrupted

as fog density increases.

Heinzler et al. [19] published an in-depth analysis of vehicle LiDAR sensor performance under extreme

weather circumstances such as heavy rain and dense fog. The author finds that the quality and precision

of measurements are likely to be compromised due to atmospherics particles scattering too much laser

power. Moreover, in deep fog, where visibility is limited to 20-40 meters, almost all primary laser returns

are absorbed in a range of less than five meters, indicating that the absorptions were created by fog.

Nonetheless, highly reflective objects such as taillight retroreflectors are unaffected in the same conditions.

By constructing a mathematical model for the performance degradation of LiDAR as a function of rain

rate, Goodin et al. [24] conducted quantitative research on how rain rate affects ADAS performance. Later

in the article, this model is integrated into a simulation of an obstacle-detection system to demonstrate

how it may be used to forecast the rain effect on LiDAR measurements statistically. The author concludes

that the increasing rain rate significantly affects the created point cloud. However, the reduction in LiDAR

range has a negligible effect on obstacles’ distance detection, indicating that the sensor’s capacity to

identify obstacles is not significantly affected by rain.

2.3 Point Cloud Weather Denoising Methods

As previously stated, the majority of current data processing algorithms operate under ideal weather

conditions. Nonetheless, adverse conditions can affect the regular operation of the perception system.

Chapter 2. Background and State of the Art 21

[4, 16, 17, 18], making it critical to develop solutions that overcome present constraints in terms of per-

formance, accuracy, and overall system complexity. However, LiDAR point clouds are impacted differently

depending on the nature of the weather conditions. While rain and fog contain water droplets that scatter

the emitted light, decreasing the effective working range and resulting in wrong measurements, smoke

and snow contain solid particles that can generate ghost information in the point cloud.

The LiDAR noise generated by harsh weather conditions often manifests itself in the form of outliers. In

a defined dataset, observations that deviate significantly from the adjacent others are considered outliers.

On a 3D point cloud data, outliers are points that share no correlation or attributes with their neighbors

regarding distance or intensity. These outlier points are primarily associated with noise, and removing

them from the point cloud allows high-level applications such as object detection algorithms to achieve

higher accuracy ratios. Therefore, several approaches were developed to eliminate outliers caused by

weather conditions in LiDAR systems. These approaches include outlier removal techniques and machine

learning techniques. Aside from outlier removal methods, learning based denoising algorithms also started

to emerge [20, 22]. They are, nonetheless, considered complex since they require the use of real-world

datasets and powerful computational resources. As a result, they fall outside the scope of this dissertation.

2.3.1 Voxel-Grid Filter

Voxel-Grid (VG) [60] filter, depicted in Figure 2.6, consists in defining 3D boxes (forming a voxel grid) in

the 3D space of the point cloud. Then, for each voxel, the algorithm selects a point (usually the central point

or the centroid of the box) to approximate the remaining points inside the voxel. Because of this feature,

VG filters can be used for point cloud denoising since a noise point often lacks in neighbors or does not

share information with them, which will end in being removed from the point cloud. VG methods are fast

and relatively simple to implement. However, because they cause the down-sampling of the information

within the voxel, not only noise points will be removed from the point cloud but also points with useful

information about the surroundings.

Original data point Centroid Removed point

Figure 2.6: VG working principle.

2.3.2 Radius Outlier Removal

The Radius Outlier Removal (ROR) algorithm uses a k-d tree data structure to compute each point’s

mean distance to its neighbors within a user-defined radius R1, as seen in Figure 2.7. If the number

Chapter 2. Background and State of the Art 22

of neighbors inside the chosen radius is less than the user-defined threshold, the point is considered an

outlier and is removed from the point cloud. Therefore, the performance of this filter is highly dependent

on the radius and the minimum number of chosen neighbors. While this filter has the advantage of being

simple to implement, the fixed filter radius search becomes problematic when applied to sparse 3D LiDAR

sensors. As the detection range rises, the space between points increases as well due to the horizontal

and vertical resolution of LiDAR systems. Consequently, this filter will most likely eliminate points collected

at long distances.

Point to validate Neighbors inside Radius Outsider points

R1

Figure 2.7: ROR working principle.

2.3.3 Statistical Outlier Removal

Statistical Outlier Removal (SOR) is a denoising method that removes the outlier points based on

neighbor information (Figure 2.8). However, instead of using a fixed radius and a minimum threshold for

the number of neighbors, first it calculates the average distance R1 of each point to its neighbors, defined

as ”k-nearest neighbor”, rejecting the points whose distance is higher than R2, i.e., the average value

plus the standard deviation. Despite improving ROR in detecting outlier points, SOR severely increases the

computation overhead.

Point to validate Neighbors Outsider points

R1

R2

Figure 2.8: SOR working principle.

Chapter 2. Background and State of the Art 23

2.3.4 Fast Cluster Statistical Outlier Removal

The Fast Cluster Statistical Outlier Removal (FCSOR) [61] filter is a merge between VG and SOR filters

that aims at improving the time performance of SOR. Before calculating the distance to neighbors, FCSOR

performs a sub-sampling of the point cloud with a VG filter step (Figure 2.6). However, and despite

decreasing the computational complexity due to the reduction of the number of points, it still does not fit

the real-time requirements, and the success rate in detecting outlier points slightly decreases.

2.3.5 Dynamic Radius Outlier Removal

The Dynamic Radius Outlier Removal (DROR) [28] filter was developed to address the accuracy issues

presented by SOR and ROR in sparse 3D LiDAR point clouds. Nonetheless, unlike the ROR filter, which has

a fixed radius, the DROR filter has a dynamic radius. This radius is calculated by multiplying the sensor

Angular Resolution (AR) by the point distance to the sensors illustrated in Figure 2.9. Furthermore, with

the addition of the dynamically calculated search radius to ROR, DROR minimizes the wrong classification

of distant points as outliers. According to the author’s results, the DROR filter outperforms conventional

filters, and when compared to the conventional ROR, it improves accuracy by more than 90%. However,

despite its excellent accuracy, it suffers from performance concerns due to its high computational cost.

R1

Point to validate Neighbors inside Radius Outsider points

α LiDAR

Figure 2.9: DROR working principle.

2.3.6 Low-Intensity Outlier Removal

Low-Intensity Outlier Removal (LIOR) is a method proposed by Park et al. [62] that aims at improving

the speed and accuracy performance limitations of previous methods by removing the noise caused by

snow or rain based on the intensity of the reflected light. Noise points usually present a lower intensity value

when compared with neighbors at the same distance. Thus, every point below a defined threshold value

is classified as an outlier. To reduce the false positive ratio, a second step is applied to each outlier, which

can be turned into an inlier if several neighbors (defined by a threshold) are detected within a specified

Chapter 2. Background and State of the Art 24

distance. The working principle behind LIOR is based on the ROR algorithm (depicted by Figure 2.7) with

the addition of the point intensity information. When comparing LIOR with the previous filtering methods,

it can achieve filtering speeds up to 12x faster than SOR, and 8x faster than DROR. However, real-time

filtering in high-speed vehicles is only possible if the method is applied only to certain Region Of Interest

(ROI) rather than the full point cloud. Regarding the accuracy, the noise points can be filtered with the

same efficiency as the DROR method. In their evaluation, LIOR claims to achieve a false positive ratio of

1%, while DROR reached almost 50% of points wrongly classified as outliers.

2.3.7 Discussion

By analyzing the weather denoising 3D point clouds state-of-art algorithms, it is possible to conclude

that there is not one-size-fits-all algorithm. Firstly, the VG filter can achieve real-time speeds by downsam-

pling point clouds, which results in a weak denoising effect. The SOR and ROR filters are the most mature,

having been used in a wide variety of LiDAR applications. However, they present bad denoising perfor-

mance due to the sparsity of point clouds, making them unviable for autonomous applications. FCSOR

was developed to enhance SOR’s runtime performance by parallelizing and adding a voxel step, but it has

a low true positive ratio. Finally, DROR and LIOR can be regarded as state-of-the-art algorithms since they

are the most accurate and suitable for 3D point clouds.

Table 2.1: Weather denoising algorithms summary.

Algorithm Low complexity Sparsity ready Dynamic radius Intensity based Good TP ratio Real-time
VG X X
SOR X

FCSOR X
ROR X
DROR X X X X
LIOR X X X

The Table 2.1 summarizes the denoising methods analyzed and reproduced by this dissertation, high-

lighting the benefits and drawbacks of the state-of-the-art techniques. DROR and LIOR are the ones with

the best results. The DROR author asserts that it is capable of attaining a high true positive rate at the

expense of considerable processing resources. On the other hand, LIOR author states that the filter is

capable of operating in real-time by classifying points based on their intensity levels. However, there is a

need for an algorithm that can attain the high true positive ratio of DROR while still complying to the time

constraints imposed by LIOR.

2.4 Dynamic low-Intensity Outlier Removal

Dynamic low-Intensity Outlier Removal (DIOR) is a novel approach proposed by this dissertation [63].

DIOR uses the LIOR concept as its core, in which it classifies points as inliers or outliers based on their

Chapter 2. Background and State of the Art 25

intensity values. However, instead of using a ROR based technique to validate points as outliers, DIOR

uses the DROR methodology of using a dynamically calculated search radius (depicted in Figure 2.10).

This search radius is calculated by multiplying the LiDAR sensor’s horizontal resolution to the distance

of a given point. Therefore, DIOR is ready for the sparsity of 3D point clouds because the search radius

increases as the distance between points grows, resulting in DIOR outperforming DROR in terms of speed

performance while keeping DROR’s high true positive ratio. Since DIOR was developed in this dissertation,

the full explanation of this algorithm is further explained in the Chapter 4.

R1

Point to validate Neighbors inside Radius Outsider points

α LiDAR
Intensity

α Sensor angular resoluiton

Figure 2.10: DROR working principle.

3. Platform and Tools

This Chapter specifies the platform and tools that were used throughout the development of this work.

Since the framework must support both software and hardware tools, Section 3.1 will explain the platform

and why it was chosen, while Sections 3.2 and 3.3 will go into the tools used.

3.1 Reconfigurable Technology

Field-Programmable Gate Array (FPGA) technology enables the development of custom hardware ac-

celerators by providing flexibility and functionality with customizable hardware blocks. FPGAs’ hardware

fabric works by having an array of programmable logic blocks and a hierarchy of reconfigurable intercon-

nects that allow them to be linked together, much like a large number of logic gates that may be arranged

in a variety of different configurations. Additionally, using an MicroController Unit (MCU) allows the de-

ployment of higher-level applications that can control/configure the hardware layer in real-time and run

more complex parts of the algorithms, easing the implementation and deployment process. Therefore, to

fulfill the framework’s hardware-software co-design, a platform featuring FPGA resources and an MCU is

needed.

Zynq UltraScale+ MPSoC ZCU104

The selected platform to run all of the functionalities developed in this dissertation was the Zynq Ultra-

Scale+ MultiProcessor System on Chip (MPSoC) ZCU104 [64], which includes the XCZU7EV-2FFVC1156

MPSoC for hardware development. This MPSoC enables designing embedded applications such as ADAS

with the support of video codecs, while having plenty of peripherals and interfaces for embedded video

solutions. The MPSoC’s Processing System (PS) is comprised of a quad-core Arm Cortex-A53 application

processor running at 1.2 GHz, a dual-core Cortex-R5 real-time processor, a Mali-400 MP2 graphics pro-

cessing unit, a 4KP60 capable H.264/H.265 video codec, and 2 GB of Double Data Rate (DDR)4 memory

running at 525 MHz. Regarding the FPGA, it provides 23040 LookUp Table (LUT), 46080 Flip-Flop (FF),

312 Block RAM (BRAM)s, and 1728 Digital Signal Processors (DSP).

26

Chapter 3. Platform and Tools 27

3.2 Robot Operating System

ROS [65] is a collection of tools, libraries, and conventions aimed at simplifying the work of devel-

oping complex and robust robot behavior across a broad range of robotic platforms. It provides services

for heterogeneous computer clusters and the implementation of messages between processes and de-

vices connected to the same network. ROS processes are represented as nodes in a topic-based graph

structure. Furthermore, ROS nodes interact, respond to service requests, and provide services to other

nodes. Additionally, they can obtain and modify configuration data through a shared database known as

the parameter server. All of this is made possible by a process called the ROS Master, which registers

nodes, establishes and manages node communication. Rather than routing messages and service calls

through the master, ROS establishes peer-to-peer communication between all node processes upon their

registrations. This decentralized design is well-suited for autonomous applications, frequently composed

of networked computer hardware and that may interface with off-board computers for computationally in-

tensive tasks or directives. Due to its reliance on a wide array of open-source software, ROS runs on top

of a Linux system, easing the communication of ALFA-Platform denoising (Pd) to numerous LiDAR sensor

drivers. By publishing and subscribing to ROS topics, the ROS environment also enables the development

of a tool to configure and visualize the output of the ALFA-Pd platform.

3.3 Point Cloud Library

The Point Cloud Library (PCL) [66] is an open-source library of algorithms for processing 2D and 3D

point clouds. It includes algorithms for filtering, feature estimation, surface reconstruction, 3D registra-

tion, model fitting, object recognition, and segmentation. In this work, the PCL algorithms are used to

implement/deploy the weather denoising methods described in the state-of-art. PCL also offers different

formats to use and store point clouds: the Point Cloud Data (.pcd) and the Polygon File Format (.ply),

which enables the usage of publicly available datasets in this dissertation.

Additionally, PCL is accessible on most operating systems. It is written in C++ and is fully integrated

with ROS, allowing it to run on embedded systems such as the one used to deploy this dissertation’s work.

It is critical to note that this library depends on several third-party libraries to operate properly, including the

Eigen library, primarily used for mathematical operations, the Visualization ToolKit (VTK), enabling point

cloud visualization, Boost for shared pointers, and the Fast Library for Approximate Nearest Neighbors

(FLANN) to support fast k-nearest neighbor search.

3.4 Qt

Qt [67] is a software development toolkit for creating cross-platform Graphical User Interface (GUI)

that runs on desktop, mobile, and embedded platforms and is compatible with a variety of compilers,

Chapter 3. Platform and Tools 28

including the GNU Compiler Collection (GCC) C++ compiler. Qt is used in this dissertation to construct the

ALFA-DVC which is a tool that was developed from scratch that allows real-time point cloud visualization

debugging and configuration of all the parameters of the embedded system’s software/hardware.

3.5 OpenEmbedded

OpenEmbedded [68] is a framework for automating the build process and a cross-compilation envi-

ronment of developing embedded Linux distributions. OpenEmbedded is the recommended build method

for the Yocto Project [69], the Linux Foundation workgroup that develops Linux-based embedded systems.

Additionally, OpenEmbedded recipe collections are organized in layers, with the lowest layer containing

platform- and distribution-independent metadata. OpenEmbedded is employed in this dissertation to gen-

erate the Linux image with ROS, PCL, and all the essential packages. Furthermore, OpenEmbedded is

used to cross-compile all the software by invoking a custom recipe that fetches the code from GitHub and

installs it into the ROS environment.

3.6 Advanced LiDAR Framework for Automotive

ALFA is an in-house open-source framework for automotive that aims to offer a multitude of helpful

features for the validation and development of LiDAR-based solutions. These features include: (i) Generic

and multi-sensor interface; (ii) Pre-processing algorithms for data compression, noise filtering, ground

segmentation, amidst others; (iii) Configurable output for high-level applications; and (iv) Reconfigurable

point-cloud representation architecture.

Embedded Linux (ROS environment)

ALFA libraries

System Bus / AXI

FPGA

ALFA Core accelerators
Memory

Unit
LiDAR

Interface

Et
he

rn
et

Et
he

rn
et

LiDAR

ALFA-DVC
Other High-level
services & apps

Arm Cortex-A
Processor

ROS environment

H
A

R
D

W
A

R
E

SO
FT

W
A

R
E

ALFA-Pd Other
software

Point cloud
pre-processing

ALFA-Pc ALFA-Gs

ALFA-Pc
Other

Accelerators

ALFA-Pd

LIOR

DROR

ALFA-Gs

Algorithm x

Algorithm 1
...

Algorithm x

Algorithm 1
...

Control
Unit

DIOR

Figure 3.1: ALFA architecture block diagram.

Chapter 3. Platform and Tools 29

ALFA features a modular design, where its blocks are totally independent from each other, which en-

hances the framework’s flexibility and functionality. These blocks can be divided into two types: Units and

Extensions. The core components that provide resource management, control, and interface are defined

as ALFA Units and together form the ALFA Core, being the former where this dissertation is included, as

depicted in Figure 3.1. Developers can build algorithms for specific domains on top of the core, hence

expanding ALFA’s capabilities. By avoiding the need to implement a whole system to evaluate an algo-

rithm or a subset of it, ALFA significantly reduces the time required to test and design new LiDAR-based

algorithms. While the framework presented in this dissertation can be used independently, by integrating

with ALFA, it is feasible to access point cloud data without incurring the overhead of PS-Programmable

Logic (PL) communication, hence enhancing the speed of the developed algorithms even further.

4. ALFA-Pd Implementation

The ALFA-Pd framework enables real-time point cloud processing for automotive applications, by of-

fering state-of-art weather denoising methods with built-in hardware-accelerated capabilities. Figure 4.1

depicts the overall architecture of the ALFA-Pd framework. On the embedded platform, the framework

supports a collection of software-based denoising methods (assisted by the PCL), and core-libraries that

interface with the weather denoising accelerators. It features a software layer, which uses a ROS envi-

ronment on top of a minimalist embedded Linux, providing different levels of abstraction for high-level

applications. On the other hand, the hardware layer features several core blocks such as a hardware

interface for the software libraries; a memory management module; and distance calculator units to be

used by the hardware weather denoising accelerators. Additionally, the framework supports a high-level

application, ALFA-DVC. This tool enables point cloud visualization, weather denoising debugging features,

and can configure the embedded platform.

Et
h

er
n

et

ZCU104 Evaluation Kit

Hardware

Core Accelerators

Software

ALFA-Pd hardware

S
ys

te
m

 B
u

s
/

 A
X

I

Embedded Linux
ROS Aplication

DROR LIOR ALFA-DVCDIOR

ROR DROR

SOR FCSOR LIOR

DIOR

VG

Memory
Management

Distance
Calculator

Figure 4.1: ALFA-Pd framework architecture.

Currently, ALFA-Pd supports the deployment and evaluation of the following state-of-the-art denoising

algorithms: VG, SOR, FCSOR, ROR, DROR, LIOR, and the new method developed in this dissertation,

DIOR. At runtime, the user can select the denoising algorithm to employ and the type of system used to

execute it (software-only or hardware-accelerated). Regarding the software versions, the filter parameters

can be changed in real-time, alongside execution parameters such as thread count. ALFA-Pd uses ROS

messages to receive noisy point cloud data, transmit its denoised version, and system configuration.

As depicted in Figure 4.2, the ALFA-Pd embedded platform is divided into three main modules: soft-

ware, memory, and hardware. Firstly, the software module receives the noisy point cloud data through

a ROS topic, and, depending on the configuration, the point cloud is filtered in the software or hardware

30

Chapter 4. ALFA-Pd Implementation 31

layers. After the filtering process, the software module publishes the filtered point cloud to a ROS topic

alongside the filter performance metrics.

ALFA-Pd HardwareMemory

M
em

or
y

B
us

ALFA-Pd Node

R
O

S
 M

es
sa

ge
s

A
X
I

FU
LLALFA-Pd Software

Module

Memory
Management and
Organizer Module

ALFA-Pd Hardware
Accelerator

Figure 4.2: ALFA-Pd modules overview.

The memory module is responsible for interfacing the software and hardware modules using the

Advanced eXtensible Interface (AXI)-Full protocol. There are two different types of memory implementations

present in the platform. The BRAM memory implementation provides faster execution times, while the

DDR implementation features a more generic implementation, offering more portability. Despite using the

AXI-Full protocol to communicate with the software layer, they feature distinct communication protocols

with the accelerators for the weather denoising algorithms. If the BRAM memory implementation is in

use, the hardware modules wait a start signal from the PS to start executing. Then, the filtered point

cloud is stored inside a specified position in the BRAM, accessible by the software. On the other hand, the

point cloud data is accessed using AXI-Full transactions when using the DDR version. Once the hardware

modules finish processing a frame, the outliers are removed from the memory.

4.1 ALFA-Pd Software

ALFA-Pd Node

Algorithm module ROS point cloud
receiver

ROS point cloud
encoder

ROS point cloud
transmitter

R
O

S
 M

es
sa

ge
s

A
X
I

FU
LL

Figure 4.3: ALFA-Pd software modules architecture.

The ALFA-Pd software layer is supported by the ALFA-Pd ROS node. It is divided into several modules,

as depicted in Figure 4.3. The first module to execute is the ROS point cloud receiver, responsible for

Chapter 4. ALFA-Pd Implementation 32

receiving point cloud data and transforming it into the PCL format. The ROS point cloud encoder is

responsible for converting the point cloud to the ROS format, later published into a ROS topic by the

ROS point cloud transmitter module. Moreover, this module receives the configuration settings to apply

to the filters after. Lastly, the Algorithm module handles point cloud denoising tasks. It receives the

data from the previous module and executes one filter depending on the configuration. Most filters are

implemented using the PCL library, which provides several point cloud processing functionalities such as

neighbor search. Table 4.1 lists the denoising algorithms alongside the PCL functions used to implement

them. The PCL library allows for straightforward implementations of the ROR, SOR, and VG algorithms.

The FCSOR, LIOR, and DROR were implemented using the algorithms provided by their authors.

Table 4.1: PCL software modules used by the ALFA-Pd and the ALFA-DVC tool.

Algorithm PCL module(s) Description

Voxel Grid VoxelGrid()
Assembles a local 3D grid over a given PointCloud, and

downsamples plus filters the data.

ROR RadiusOutlierRemoval()
Filters points in a cloud based on the number of neighbors

they have.

SOR StatisticalOutlierRemoval() Uses point neighborhood statistics to filter outlier data.

FCSOR
StatisticalOutlierRemoval()

VoxelGrid()

These two PCL modules were combined to implement

the FCSOR algorithm.

DROR kdtree.radiusSearch() Obtains the number of neighbors inside a dynamic radius R1.

LIOR kdtree.radiusSearch() Obtains the number of neighbors inside a fixed radius.

DIOR kdtree.radiusSearch() Obtains the number of neighbors inside a dynamic radius R1.

Multithreading Configuration

Most of the state-of-art algorithms are designed to run with single-thread configurations. Therefore,

since ALFA-Pd is designed to run in embedded systems with limited computational power, multithreading

was employed to boost the system’s performance. The goal of the multithread version is to divide the

workload of the denoising filter, decreasing the time required to process a complete point cloud frame.

As Figure 4.4 depicts, the filter’s workload splits across N threads, where the default value of N is four

because of the number of Central Process Unit (CPU) cores present in the used platform.

StartPoint =
PointCloudSize

NumberOfThreads
∗ ThreadNumber (4.1)

EndPoint =
PointCloudSize

NumberOfThreads
∗ (ThreadNumber + 1) (4.2)

Each thread filters a point cluster block defined by Equation 4.1, the start point, and Equation 4.2,

which defines the processing limit. Moreover, a filter point method is used to filter the point cluster, which,

depending on the configuration, can be DROR, LIOR, or DIOR filters. Lastly, when the worker threads

Chapter 4. ALFA-Pd Implementation 33

complete their execution, the filtered point cloud is reconstructed and transmitted to the next module, the

ROS point cloud encoder.

Thread #0

Read point cloud

START

No
Limit Filter point

END

Ye
s

Thread ... Thread #N

No
Filter point

Send point
cloud

Limit

Ye
s

Figure 4.4: ALFA-Pd multithreading configuration.

Filters Implementation

The workflow of the software modules depends on the user configuration. If the user selects ROR,

SOR, or VG as the denoising filter, their direct PCL implementation is used. In contrast, if DROR, LIOR, or

DIOR are selected, their implementation is employed to filter each point in the point cloud.

As depicted in Algorithm 1, DROR removes points based on their distance to the LiDAR sensor. The

DROR filter can be tuned using specified parameters, which are the point cluster (P), a minimum search

radius (SRmin), and a minimum of neighbors (nmin). The point cluster is a set of points allocated to

the thread running the filter point method in each iteration, and the SRmin prevents points from being

removed when they are very close to the sensor. Finally, the nmin parameter defines the minimum of

close neighbors that a point requires to be an inlier.

To filter a point cloud, DROR must go through all point cloud points. The distance of each point to

the sensor is calculated using Equation 4.3. Subsequently, if the distance to the sensor is below the

search radius threshold SRmin,R1 takes the value of SRmin. Conversely,R1 is set using Equation 4.4.

Henceforward, the number of neighboring points is determined for each point using the PCL module

Chapter 4. ALFA-Pd Implementation 34

Algorithm 1 DROR filter point pseudocode
Require:

P : Point cloud cluster
nmin : Minimum number of neighbors
SRmin : Minimum search radius.
NeighborSearch : PCL module that calculates the nearest neighbors

1: for p ∈ P do
2: if rp < SRmin then
3: R1← SRmin

4: else
5: R1← SRp

6: end if
7: n← NeighborSearch(p,R1)
8: if n > nmin then
9: Inliers← p
10: else
11: Outliers← p
12: end if
13: end for

NeighborSearch, which determines if a point is an inlier or an outlier using the calculated R1. If the

number of neighbors exceeds the nmin threshold, the point is categorized as an inlier; otherwise, it is

classified as an outlier.

SRp = β × (rp × α) (4.3)

rp =
√
x2
p + y2p (4.4)

The LIOR filter was implemented based on the information provided by Park et al. [62]. LIOR premise

is that noisy outliers have less reflected intensity than neighboring inlier points. Therefore, LIOR can

classify a point as an inlier or outlier based on a simple comparison and threshold verification. As shown

in Algorithm 2, the LIOR filter requires fewer conditions than others to operate on a point cloud frame. It

requires the point cluster P , the point cloud block corresponding to the thread on which it is executing,

the minimum of neighboring points (nmin) required to categorize a point as an inlier or outlier, and the

intensity threshold (Ithr), used in point classification. This threshold is defined based on the used sensor

specifications provided by the manufacturer due to different standards between them. Furthermore, LIOR

uses a fixed search radius (SR), requiring it to be defined before execution. Similar to DROR, the software

implementation of this algorithm uses the NeighborSearch module of the PCL library.

After the first pre-evaluation based on the point’s intensity, LIOR reevaluates the point cloud outliers

with a second step, where a ROR type filter is applied. This step checks the number of points inside a

Chapter 4. ALFA-Pd Implementation 35

Algorithm 2 LIOR filter point pseudocode
Require:

P : Point cloud cluster
nmin : Minimum number of neighbors
Ithr : Minimum generic intensity threshold
SR : Search radius.
NeighborSearch : PCL module that calculates the nearest neighbors

1: for p ∈ P do
2: if Ip > Ithr then
3: Inliers← p
4: else
5: n← NeighborSearch(p, SR)
6: if n > nmin then
7: Inliers← p
8: else
9: Outliers← p
10: end if
11: end if
12: end for

fixed radius. If the number of points inside the radius exceeds the threshold, the point is considered an

inlier; otherwise, the point is considered an outlier.

Being a combination of DROR and LIOR, DIOR uses the same execution requirements as its predeces-

sors. It requires a point cluster P , the minimum of neighbors nmin to validate points, a generic intensity

threshold Ithr, and a minimum search radius SRmin. DIOR also uses the same PCL modules as DROR

and LIOR. As depicted in Algorithm 3, the filter point method removes the outliers from a given set of

points. First, the system verifies the intensity value of a point. If (Ip) is above the intensity threshold,

the system considers it an inlier, discarding further processing. However, if the point fails in the intensity

verification, a search radius (R1) is calculated, similarly to DROR. Finally, a neighbor search is performed

using a PCL method to determine whether the point has enough neighbors (n) to be verified as an inlier.

Chapter 4. ALFA-Pd Implementation 36

Algorithm 3 DIOR filter point pseudocode
Require:

P : Original point cluster

nmin : Minimum number of neighbors

Ithr : Minimum generic intensity threshold

SRmin : Minimum search radius.

NeighborSearch : PCL module that calculates the nearest neighbors

1: for p ∈ P do

2: if Ip > Ithr then

3: Inliers← p

4: else

5: if rp < SRmin then

6: R1← SRmin

7: else

8: R1← SRp

9: end if

10: n← NeighborSearch(p,R1)

11: if n > nmin then

12: Inliers← p

13: else

14: Outliers← p

15: end if

16: end if

17: end for

4.2 ALFA-Pd Memory

ALFA-Pd memory module interfaces the software modules running on the PS and the hardware mod-

ules running on the PL. Moreover, ALFA-Pd memory is responsible for storing all the information accessed

both from the PL and the PS. This information includes point cloud data, configuration data, and signaling.

There are two different types of memory present in the platform. The BRAM memory module provides

faster execution times, while the DDR module features a more generic implementation, offering more

portability.

Chapter 4. ALFA-Pd Implementation 37

4.2.1 BRAM Implementation

Data transmission between the software and the hardware layers represents one of the largest bot-

tlenecks of software/hardware co-design systems. Furthermore, denoising algorithms need to perform

multiple accesses to the same data point, which worsen this problem. To address this issue, the BRAM

version utilizes specific memory regions in the hardware to store entire point clouds, allowing faster exe-

cution times in exchange for less portability.

The BRAM-based implementation is optimized for performance since the system can read and output

data within one clock cycle. As described in Figure 4.5, the memory layout features four independent sec-

tions, each correspondent to one BRAM, and containing information about an individual point’s parameter.

The first position of each section is reserved for configuration purposes, which are used by the hardware

accelerators. The X BRAM, alongside the x coordinates for all points, holds the point cloud size, which is

necessary for the hardware modules to know the number of points it needs to process. Conversely, the

first position of the Y BRAM stores the start signal, used by the hardware layer to signal a new frame to

process, while in the Z BRAM, the same position signals when the hardware accelerators finish the filtering

tasks. Finally, the I BRAM stores the filter selector. ALFA-Pd supports the hardware-accelerated versions

of DROR, DIOR, and LIOR, being possible to change the filter running upon execution time using the value

stored in the filter selector.

Memory

M
em

or
y

B
usA

X
I FU

LL

Point Cloud
Size

Point 0

Point ...

Point N

Start Signal

Point 0

Point ...

Point N

Finish Signal

Point 0

Point ...

Point N-1 and
N

Filter Type

Point 0

Point ...

X Y Z I

Point Cloud
Size

Point 0

Point Cloud
Size

Point 0 and 1

Point N-1 and
N

Start Signal

Point 0 and 1

Point N-1 and
N

Finish Signal

Point 0 and 1

Point Cloud
Size

Point 0 and 1

Point ...

Point N-1 and
N

X Y

Start Signal

Point 0 and 1

Point Cloud
Size

Point 0 and 1

Point ...

Point N-1 and
N

X Y

Start Signal

Point 0 and 1 Point 0 and 1

Point ...

Point N-1 and
N

Z

Point 0 and 1

Point ...

Pointer

Point ...

Point N-1 and
N

Point N-1 and
N

Figure 4.5: ALFA-Pd BRAM memory architecture.

The ALFA-Pd BRAM memory module has a shared pointer pointing to all four sections, maintaining

synchronism between them. Each position inside these sections contains 32-bits of information. Therefore,

by having a shared pointer that accesses the 4 BRAM modules simultaneously, it is possible to obtain 128-

bits worth of data per operation, which equals to two data points. As depicted in Figure 4.6, the first 16-bits

of each BRAM module store the information on the respective parameter of a point, and the following 16-

bits contain the same parameter belonging to the next point. Furthermore, every point stored in the less

significant bits has a pair index; for example, in memory position one, the first 16-bits of memory holds

the information of point zero, and the most significant bits hold information of point one. The ALFA-Pd

hardware uses this information to determine the precise location of a particular point in the memory region.

Chapter 4. ALFA-Pd Implementation 38

X[0]X[1]

01531

X BRAM

Y[0]Y[1]

01531

Y BRAM

Z[0]Z[1]

01531

Z BRAM

I[0]I[1]

01531

I BRAM

Figure 4.6: ALFA-Pd BRAM point layout.

Figure 4.7 depicts a block diagram of the whole BRAM implementation system. The memory mod-

ules (2) are referent to the mentioned memory sections, which are implemented using 4 block memory

generators [70], one for each section. These block memory generators are a Xilinx-provided advanced

memory constructor Intellectual Property (IP), which generates performance-optimized memories utiliz-

ing integrated BRAMs found in Xilinx FPGAs. This IP core contains two separate ports, port A and port

B, allowing a true dual-port configuration. The dual-port configuration enables read and write operations

simultaneously. Furthermore, the dual-port configuration is connected to multiple modules to take ad-

vantage of this feature. One port connects to the PS through AXI-Full, enabling the ALFA-Pd embedded

software modules to write and read the BRAM. The other port links the BRAMs to the memory interface

by using a custom memory bus. This setup enables the PS and the PL modules to exchange data. The

dual-port functionality also simplifies signal processing because both the PS and the PL have read and

write permissions, allowing the PS and the PL to clear the end and start signal.

zynq_ultra_ps_e_0

Zynq UltraScale+ MPSoC

group_1

maxihpm0_fpd_aclk

maxihpm1_fpd_aclk

pl_ps_irq0[0:0]

pl_resetn0

pl_clk0
rst_ps8_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

axi_smc

AXI SmartConnect

group_1

M00_AXI

M01_AXI

M02_AXI

M03_AXI

aclk

aresetn

Bram_interface_0

Bram_interface_v1_0

clock

addr_x[31:0]

write_in_x[31:0]

read_out_x[31:0]

en_x

rst_x

we_x[3:0]

addr_y[31:0]

write_in_y[31:0]

read_out_y[31:0]

en_y

rst_y

we_y[3:0]

addr_z[31:0]

write_in_z[31:0]

read_out_z[31:0]

en_z

rst_z

we_z[3:0]

addr_i[31:0]

write_in_i[31:0]

read_out_i[31:0]

en_i

rst_i

we_i[3:0]

axi_bram_ctrl_2

AXI BRAM Controller

S_AXI BRAM_PORTA

s_axi_aclk

s_axi_aresetn

axi_bram_ctrl_3

AXI BRAM Controller

S_AXI BRAM_PORTA

s_axi_aclk

s_axi_aresetn

axi_bram_ctrl_1

AXI BRAM Controller

S_AXI BRAM_PORTA

s_axi_aclk

s_axi_aresetn

axi_bram_ctrl_0

AXI BRAM Controller

S_AXI

BRAM_PORTA

s_axi_aclk

s_axi_aresetn

axi_bram_ctrl_2_bram

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

addrb[31:0]

clkb

dinb[31:0]

doutb[31:0]

enb

rstb

web[3:0]

rsta_busy

rstb_busy

axi_bram_ctrl_3_bram

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

addrb[31:0]

clkb

dinb[31:0]

doutb[31:0]

enb

rstb

web[3:0]

rsta_busy

rstb_busy

axi_bram_ctrl_1_bram

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

addrb[31:0]

clkb

dinb[31:0]

doutb[31:0]

enb

rstb

web[3:0]

rsta_busy

rstb_busy

axi_bram_ctrl_0_bram

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

addrb[31:0]

clkb

dinb[31:0]

doutb[31:0]

enb

rstb

web[3:0]

rsta_busy

rstb_busy

1 2

2

2

2

2

2

2

2

3

Figure 4.7: ALFA-Pd BRAM implementation block diagram.

The hardware weather denoising modules (3), are encased inside the memory interface module (fur-

ther explained), which is responsible for communicating with all external modules. Additionally, the mem-

ory interface is responsible for controlling all block memory generators’ B ports, where each has its ded-

icated bus. Despite the BRAM bus used by default being 32-bits, it is possible to use buses with more

width, enhancing compatibility with different block memory generators’ configurations. Using a 32-bits

Chapter 4. ALFA-Pd Implementation 39

bus implies that the memory interface module fetches 2 points per clock cycle from the BRAMs. Never-

theless, in other platforms that have different architectures, it is possible to increase the BRAM bus size,

which increases the number of points obtained per clock cycle. For example, using a 64-bit wide bus, the

system can fetch 4 points per clock cycle, enhancing the performance even further.

BRAM Memory Interface

The memory interface module is responsible for interfacing with the BRAM memory modules and the

hardware controller. The memory interface uses a custom bus to communicate with the BRAM modules,

which allows the transaction between the modules to be complete within one clock cycle, simplifying the

control mechanism. The state machine, represented in Figure 4.8, features five states and is responsible

for controlling the BRAM memory interface. The module begins execution in the Stopped State, awaiting

configuration and the start signal. When the PS provides the start signal, the state machine progresses to

the Update cache state, which is responsible for updating this module’s caches.

Start signal
Stopped

Cache outdatedController done
Work filter

Cache updated

Update cache

Next clock

Wait

Fifo empty

Finished

Figure 4.8: ALFA-Pd BRAM memory interface state machine.

There are two caches in the memory interface: a Point Cluster (PC) cache and a Neighbor Finder (NF)

cache. The size of the PC cache is proportional to the number of PCs, whereas the size of the NF cache

is proportional to the number of NFs. The hardware controller uses the PC cache to reload the PC when

the processing phase is completed and the point stored by the PC is obsolete. The NF modules utilize the

NF cache to compute the distance between the point in the cache and the point stored in the PC, and to

classify the points as inliers or outliers.

The BRAM modules store two points per memory address. As a result, the number of clock cycles

necessary to fill the caches is always half of the cache size. As the cache increases, the fetching proce-

dure takes longer, reducing performance. However, increasing the cache size allows the deployment of

more PC/NF modules, which heavily parallelizes execution, mitigating the time consumed by the fetching

procedure.

Chapter 4. ALFA-Pd Implementation 40

After receiving the start signal from the PS, the status is changed to Update cache, which initiates the

ALFA-Pd workflow. Subsequently, after updating the cache through point fetches from the BRAM modules,

the execution state is set to Wait. In the Wait state, the module performs a clock cycle delay to guarantee

that subsequent modules remain in sync. After this, the state changes to the Work filter state. The Work

filter state begins de-caching the points while simultaneously updating the NF cache, boosting overall

throughput. The mentioned operations repeat until the hardware controller completes filtering the point

cloud.

When the hardware controller finishes its tasks, the executing state changes to Finished. If the hard-

ware module detects an outlier, it keeps its index in a First In First Out (FIFO), which is then utilized by

the interface to eliminate all the detected outliers. Therefore, in the final state of the state machine, the

memory interface reads the outlier indexes (memory positions) from the FIFO and discards them. When

the FIFO is empty, the hardware module triggers the PS that the processing has finished, at which point

the module returns to the Stopped state, waiting for the next frame to process.

4.2.2 DDR Implementation

The DDR version seeks to provide a more general implementation by utilizing a more generic memory

design. Rather than using BRAMs to fetch/store the point cloud, this version uses DDR memory. It utilizes

a AXI-full interface to acquire all the point cloud data, whereas the AXI-lite interface is used for transmitting

signals and configurations associated with the processing of a point cloud frame.

Memory

M
em

or
y

B
us

A
X
I FU

LL/Lite

Reg 0

Reg 1

Reg 2

Point 0

Point ...

Pointer Pointer

Reg 3

Reg 4

Point 0

Point ...

Point ...

Point ...

Point N

Figure 4.9: ALFA-Pd DDR memory architecture.

Using the DDR memory eliminates the need for a dedicated memory to store the points since the

PL can use the PS memory domain. However, the time required by the hardware accelerators to access

the memory is higher because the DDR is closer to the CPU than the PL fabric. Unlike the BRAM imple-

mentation, the DDR version does not use several memory sections to separate the points’ parameters,

using instead only one section, as depicted in the left side of Figure 4.9. Each memory position holds a

point with 16-bits width parameters, which results in each position having 64-bits. Additionally, an AXI-lite

module with four registers is utilized to signal and configure the ALFA-Pd hardware module (right side).

Chapter 4. ALFA-Pd Implementation 41

This module communicates with the remaining of the ALFA-Pd hardware modules through a custom bus,

allowing access to specific registers.

The used AXI-full interface operates on a 64-bit bus, allowing it to fetch a point per transaction. As

illustrated in Figure 4.10, the point composition progresses from the less significant 16-bits, that define

the point’s X parameter, to the most significant 16-bits, which represent the point’s intensity value. Addi-

tionally, by representing the coordinates with a 16-bits representation, the maximum distance value that

a parameter can hold is 327 meters.

XYZI

015314763

Point

Figure 4.10: Point memory placement.

The hardware features an AXI-lite interface, which allows the PS to configure and control the hardware

modules easily. The AXI-lite module contains four registers that include all the data necessary for process-

ing a point cloud frame. Each register has 32-bits, so the PS concatenates all the configurations, allowing

for a more efficient use of the memory space. The parameters required for processing a point cloud frame

are depicted in Figure 4.11. Firstly, register 0 stores all the necessary configuration and control signals.

The hardware can only read from this register, moving complete hardware control to the PS or other mod-

ule connected to the AXI-lite interface. Register 1 stores the point cloud size of the executing frame. The

ALFA-Pd’s hardware modules use the point cloud size to check when the filtering process finishes. Ad-

ditionally, register 2 carries the parameter Finish info, the number of outliers produced by the hardware

modules after the filtering. Finally, to maintain synchronism between the PL and the PS registers 3 and

4 store the current frame Id of each module. When the PS frame Id differs from the PL frame Id, the PL

starts the processing tasks since a new frame is available. Moreover, when the PS and the PL frame Id

are the same, the PS recognizes that it can transmit a new frame to the PL for filtering.

Configurations Point Cloud Size PS Frame Id

0 31 63 97 127

Reg 0 Reg 1 Reg 2 Reg3

PL Frame Id

Reg4

159

Configurations Point Cloud Size Finish Info

Figure 4.11: AXI-Lite registers.

In Figure 4.12, the register 0’s layout can be observed. The first bit is allocated to the start signal, and

the next 4 bits represent the filter selector, a variable responsible for changing what filter is executing. The

section from bit 6 to bit 9 holds the intensity threshold used by DIOR and LIOR algorithms. The following 4

bits can have different meanings depending on the filter used. It acts as a fixed radius for the LIOR filter’s

neighbor search and as the minimal search radius for the DROR or DIOR algorithms. The parameter min

Chapter 4. ALFA-Pd Implementation 42

neighbor threshold is encoded in bits 13 to 21. Finally, the remaining bits hold the multiplication parameter,

which allows calculating the compensation for the point spacing increase resultant from surfaces that are

not perpendicular to the LiDAR beams.

Start Signal
0 5 13 21 31

Filter Selector Intensity Threshold Search Radius Neighbor Treshold Multi parameter
91

Figure 4.12: AXI-Lite configurations register.

This parameter translates to β in Equation 4.3. The constants β and α are usually below 1, meaning

that they are decimal variables, which presents challenges in the hardware. Therefore, instead of using

Equation 4.3 as the software version, the simplified version in Equation 4.5 is used in the hardware.

SRp = β ÷ (rp ÷ α) (4.5)

Regarding the structure of the DDR version, it follows the same approach as the BRAM implementation

into: software, memory, and hardware, which are depicted in Figure 4.13. The memory modules (2), are

made up of two components: memoryInterface_AXI and AXI_lite_slave. Firstly, the memoryInterface_AXI

manages the AXI-Full communication, enabling read and write operations within the DDR memory area.

Additionally, this module has a read burst capacity of 32 operations, fetching 32 points in each transaction.

On the other hand, the AXI_lite_slave module is responsible of handling all memory interface signals and

configurations. The hardware weather denoising modules (3), encapsulate all the hardware denoising

accelerated methods. They receive the starting signal from the AXI Lite module and send back the result

through the same module. They obtain point cloud data through the memoryInterface_AXI, which is also

responsible for removing noise points from the DDR memory.

AXI_lite_Slave_0

AXI_lite_Slave_v1_0

group_1

group_2

S_AXI

S_AXI_ACLK

S_AXI_ARESETN

axi_interconnect_0

AXI Interconnect

S00_AXI M00_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

ddr_interface_0

ddr_interface_v1_0

group_1

group_2

group_3

group_4

rst

clock

memoryInterface_AXI_0

memoryInterface_AXI_v1_0

group_1

group_2

M_AXI

o_MI_error

M_AXI_ACLK

M_AXI_ARESETN

ps8_0_axi_periph

AXI Interconnect

group_1

M00_AXI

S02_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

S01_ACLK

S01_ARESETN

S02_ACLK

S02_ARESETN

rst_ps8_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_inaux_reset_in

mb_debug_sys_rst

dcm_locked mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

zynq_ultra_ps_e_0

Zynq UltraScale+ MPSoC

group_1

S_AXI_HP0_FPD

maxihpm0_fpd_aclk

maxihpm1_fpd_aclk

saxihp0_fpd_aclk

pl_ps_irq0[0:0]

pl_resetn0

pl_clk01

2

3

2

Figure 4.13: ALFA-Pd DDR implementation block diagram.

Table 4.2 depicts the DDR memory interface module’s parameters. The interface allows changes in

the burst size to enable compatibility for different configurations of the AXI module. However, the number

of PC must always be equal to or smaller than the burst size since the points obtained in the burst

transaction will fill a cache that contains the reloading points to each PC. Executing parallelly to the AXI

burst transactions, the NF modules use points to find neighboring points. Therefore, because the number

Chapter 4. ALFA-Pd Implementation 43

of cycles needed to do an AXI burst transaction is always greater than the number of points obtained in

the transaction, the number of NF modules is set to one.

Table 4.2: Default parameters of DDR version.

Paremeter Default value
AXI Burst size 32
AXI cluster cache multiplier 1
Point Clusters number 16
Neighbor Finders number 1
DDR Base address 0x0F000000

DDR Memory Interface

The Memory Interface module is responsible for interfacing the DDR memory, where the points are

stored, and the hardware controller, which controls the execution flow of all the connected hardware mod-

ules. Figure 4.14 depicts the state machine used by the DDR memory interface. The module begins

execution in the Stopped state, and waits for configurations and a start signal. When the PS provides

the start signal and its frame Id differs from the PL, the interface starts the execution by shifting to the

second state, fetch AXI cluster cache. In this state, the hardware controller module updates one of the

DDR memory’s cache. The DDR memory interface employs a two-cache architecture, one for the point

clusters and one to feed the neighbor finder.

Start signalStopped

Fetch AXI cluster
cache

Buffer updated and starting

Buffer updated

Buffer exhausted

Update
cluster buffer

AXI tx done Fetch AXI feeder
cache

Buffer updated Update feeder buffer

Finished

Buffer outdated

Controller done

Work Filter

AXI tx done

Parallel execution

Figure 4.14: ALFA-Pd DDR memory interface state machine.

Chapter 4. ALFA-Pd Implementation 44

The DDR memory interface employs a cache denoted by AXI cache in Figure 4.15. This cache purpose

is to hold values obtained through an AXI transaction. Since an AXI transaction is configured to read a

point of 32-bits from the DDR, the AXI cache must be at least as long as the AXI transaction used to get

the points, in factors of two. For example, if the transaction size is 32 points and the number of point

clusters is 42, the cache must hold 64 points.

The number of PC in use defines the cluster buffer size. However, as depicted in Figure 4.15, this

buffer size must always be smaller than the AXI cache since it acts like a sliding window of the AXI cache.

The feeder buffer design also works as a sliding window to the AXI feeder cache, holding points to reload

the neighbor finder modules. Moving the AXI caches’ points to the smaller buffers takes just one clock

cycle, which speeds up execution until the caches are emptied, meaning that there are not enough points

to move to the cluster buffer or the feeder buffer.

Cluster buffer

Point 0 Point 1 Point 2 Point 3 Point #n. . .AXI cache

Figure 4.15: ALFA-Pd memory interface cache design.

The caches must be updated after they depletion, which results in a change of the execution state.

Sequentially, when the cluster buffer is updated, the state machine can go to two different states, depend-

ing on the condition. If the feeder buffer is still up to date, the state machine progresses to the Work filter

state. Otherwise, the next executing state must be the Fetch AXI feeder cache, since the AXI feeder cache

is empty. The Fetch AXI feeder cache works like the Fetch AXI cluster cache, but instead of saving the data

received through the AXI transaction into the AXI cluster cache, it stores the values in the AXI feeder cache.

When the AXI transaction ends, the state machine executes the update feeder buffer state. The Update

feeder buffer state execution flow is identical to the Update cluster buffer state execution flow, except that

it uses a sliding window to go through all of the AXI feeder cache’s points. After the update operation is

complete, the state machine moves to the Work filter state.

TheWork filter state is responsible for controlling the execution flow of the hardware controller module,

which is does the denoising of the point cloud. The hardware controller features a stop and resume

mechanism to guarantee that it remains synced with the memory interface, which are manipulated in

the Work filter state. Additionally, when in this state, the module parallelizes some tasks, increasing the

overall throughput of validated points. As depicted in Figure 4.16, while the hardware controller executes

a process cycle, the memory fetches the AXI feeder cache and reloads the feeder buffer.

When the hardware controller finishes, it signals the memory interface, and the executing state

changes to the Finished state. In this last state, every outlier stored in the FIFO of the hardware mod-

ule is removed from the DDR memory. Moreover, the points are removed using the AXI-full module, which

sets the points indexes, obtained from the FIFO, to zero. When the FIFO is empty, the executing state

changes to the Stopped state, waiting for a new frame to process.

Chapter 4. ALFA-Pd Implementation 45

Work filter

Fetch AXI feeder cache

Update feeder
buffer

Process Cycle

Update feeder
buffer

Process Cycle

Update feeder
buffer

Parallel execution Waiting

Process Cycle Process Cycle Process Cycle

Figure 4.16: ALFA-Pd memory interface parallel execution.

4.3 ALFA-Pd Hardware

One of the key points of the ALFA-Pd framework is the ability to deploy customized hardware acceler-

ators on FPGA fabric, openning up the possibility to enhance the performance of the supported software

versions of weather denoising algorithms. ALFA-Pd’s hardware implementation, as seen in Figure 4.17,

consists of four major components: (1) the hardware controller; (2) a memory interface; (3) several PC

blocks; and (4) NF units. Each PC block requires at least one NFs, each of which requires one Distance

Calculator module from the ALFA core accelerators.

ALFA-Pd hardware

Memory Interface

M
em

or
y

B
us

Hardware
Controller

PC #1 PC #2 PC #n

NF #1 NF #n NF #1 NF #1NF #n NF #n.

Figure 4.17: ALFA-Pd hardware modules architecture.

The PC and NF blocks parallelize the algorithm’s execution in finding neighbors, which classify a given

point as inlier or outlier, decreasing the required time to process a point cloud frame. The number of PC

and NF dictates the filter performance at a resource cost. Moreover, the platform chosen dictates the limit

of modules that can be deployed. Thus, in an ideal world, with unlimited resources, the number of PC

and NF would be the size of the point cloud to process the whole point cloud in one clock cycle.

Chapter 4. ALFA-Pd Implementation 46

Hardware Controller

The Hardware Controller is the main block of the denoising accelerator. This module is responsible for:

sending points to the PCs for comparison, checking and controlling the output of all PCs, and tagging/s-

toring the points classified as outliers from each PC. The hardware controller does not change depending

on the memory implementation and acts as an abstraction layer for the upper modules. Additionally, it

has a start/stop mechanism to maintain synchronism with the caches controlled by top modules.

The hardware controller is in charge of performing the appropriate operations depending on the PC’s

results. It has a built-in FIFO that stores the point index of each outlier until the memory interface module

removes it. As seen in Figure 4.18, the hardware controller module evaluates each PC output in each clock

cycle. Since the module can only write one point in the FIFO per clock cycle, it buffers point indexes to

subsequently transferred them to the FIFO. The FIFO buffer ensures that no point is lost if more than one

is classified as an outlier in the same cycle. If the buffer contains an outlier, the hardware module saves

it in the FIFO independently, regardless the operation state.

PC #NPC #0

START

Point cluster
analysis

PC ...

Point cluster
analysis

FIFO
communication

END

Figure 4.18: ALFA-Pd hardware controller execution flow.

When the PC ends validating a point, all the information, such as the point itself and the indexes

becomes outdated. The process of reloading the PC information is presented in Algorithm 4. First, the

hardware controller sends the new point to process into the PC. Using cluster buffer from the memory

interface, the point selected to reload a specific PC is determined by the number of PCs that finished

executing before it. Therefore, after processing the point, the finish_counter is also updated. Note that all

point cluster analyzers are executed simultaneously and synchronously.

Chapter 4. ALFA-Pd Implementation 47

Algorithm 4 Point cluster output analyzes pseudocode

1: if inlier or outlier then
2: if outlier then
3: fifo_buffer[fifo_size]← cluster_point_index
4: fifo_size← fifo_size+ 1
5: end if
6: cluster_point_index← point_index
7: point_index← point_index+ 1
8: cluster_point← cluster_buffer[finished_counter]
9: finished_counter ← finished_counter + 1
10: end if

Point Cluster

The PC module is responsible for evaluating the point under processing, i.e., evaluate if it is an outlier

or not. If the number of neighbors identified is less than the defined neighbor threshold, the point under

validation is classed as an outlier; if the number of neighbors found is more than the given threshold, the

point is categorized as an inlier. As depicted in Figure 4.19, three submodules divide the PC module.

START

Neighbor
Counter

Search Radius
Calculation Point Classifier

END

Figure 4.19: ALFA-Pd point cluster execution flow.

The first module is the neighbor counter, a simple module that counts the number of neighboring

points a PC has. As Algorithm 5 depicts, the neighbor counting module compares the distance calculated

by each NF with the search radius to determine if it is smaller than it. If in fact is smaller, then a neighbor,

and the neighbor counter is incremented; otherwise, the computed distance is discarded.

The search radius calculation module determines the radius R1 based on the filter specified. Fs

represents the filter selected. If it contains the number 1, the PC uses a fixed search radius, used by

Chapter 4. ALFA-Pd Implementation 48

Algorithm 5 Neighbor counter pseudocode

1: for neighbor_index = 1, 2, 3...N do
2: if distance[neighbor_index] <= R1 then
3: neighbor_counter ← neighbor_counter + 1
4: end if
5: end for

LIOR. Otherwise, the PC uses a dynamic search radius, used by DROR and DIOR, in which the Algorithm 6

depicts the needed calculation. If the point distance to the sensor rp is below the predefined threshold

SRmin, then the value of the search radius R1 is set to the SRmin , otherwise, R1 assumes the value of

the SRp.

Algorithm 6 Search radius calculation pseudocode

1: if Fs != 1 then
2: if rp < SRmin then
3: R1← SRmin

4: else
5: R1← SRp

6: end if
7: else
8: R1← SRLIOR

9: end if

The point classifier submodule is responsible for tagging points as inlier and outliers. As shown in

Algorithm 7, the submodule first determines if the filter is either DIOR or LIOR, which needs the point’s

intensity. If this intensity is greater than the threshold Ithr, the point is categorized as an inlier. The

classification of inliers when the point reflectivity exceeds the intensity threshold takes one clock cycle to

complete, making it the system’s quickest validation scenario. Therefore, if every point is validated as an

inlier through the intensity condition, the number of cycles required to do the point cloud validation is the

point cloud size, not accounting for the time lost in AXI transactions.

If a point does not pass the intensity validation, either because of the threshold verification or because

the employed filter does not use it, the point must have more neighbors than the neighbor_threshold

to be classed as an inlier. However, if the point lacks the required neighbors, it is necessary to determine

if it is an outlier. If the number of points compared pcomp is greater than the size of the point cloud Psize,

it means that the point was already compared with the entire point cloud, indicating that it is an outlier.

The number of NF modules determines the number of comparisons performed every clock cycle. Thus,

increasing the number of NF modules severely boosts the system’s performance.

Chapter 4. ALFA-Pd Implementation 49

Algorithm 7 Point classifier pseudocode

1: if Fs >= 1 & Ip > Ithr then
2: inlier ← 1
3: outlier ← 0
4: else
5: if neighbor_found >= neighbor_threshold then
6: inlier ← 1
7: outlier ← 0
8: else
9: inlier ← 0
10: if pcomp > Psize then
11: outlier ← 1
12: else
13: outlier ← 0
14: end if
15: end if
16: pcomp ← pcomp +NF
17: end if

Neighbor Finder

The PC uses the NF module to calculate the distance between two given points, using its output to

classify the points considering the neighbor threshold and the search radius R1. As noted, each PC can

have multiple NFmodules, each totally independent from the others. The NFmodule uses the feeder cache

to compute the current point with the stored ones. As seen in Figure 4.20, different NFs do comparisons

using the same point. Thus, the feeder cache supplies points to all NFs each cycle, ensuring that the point

cloud is continually moving ahead. The feeder cache is independent from the NF and PC modules since

it works as a circular buffer for the point cloud, ensuring that all points flow through the NF module.

Feeder cache

Point 1 Point 2 Point 3 Point 4

NF #1 NF #2 NF #3 NF #4

NF #4NF #3NF #2NF #1

PC #1

PC #2

Figure 4.20: Neighbor finder communication.

Chapter 4. ALFA-Pd Implementation 50

The NF module, which is the core calculation module of the ALFA-Pd hardware accelerator, calculates

the distance between two points in a single clock cycle. Algorithm 8 illustrates the method for calculating

the distance between two points: the point under evaluation, stored inside the PC, and a point provided

by the feeder cache. Firstly, the NF module computes the three-dimensional vector of the two points.

To successfully calculate the vector’s square value, the point must be positive, otherwise, the calculation

would result in an overflow. To address this issue, the NFmodule examines the value of the most significant

bit, which indicates whether or not an integer is negative, and calculates its absolute value based on the

result.

Algorithm 8 Distance calculation pseudocode

1: V ector ← p1 − p2
2: if V ector[15] == 1 then
3: V ector = −V ector
4: end if
5: distance← Pdist

4.4 ALFA-DVC

The ALFA-Debugger Visualiser Configurator (DVC) tool, depicted in Figure 4.21, is a high-level QT

application that runs on a desktop system. It supports real-time visualization of up to two point clouds si-

multaneously, the deployment and evaluation of software-based algorithms, and debugging/configuration

of those weather denoising methods.

Figure 4.21: ALFA-DVC user interface.

Point cloud data can be loaded into the ALFA-DVC tool using Point Cloud Data (.pcd) and Polygon File

Format (.ply) files stored in the file system or through the subscription of ROS topics. These topics must

Chapter 4. ALFA-Pd Implementation 51

use the PointCloud2 message type, which is the standard for point cloud data transmission inside ROS.

The application allows storing screenshots of the point cloud, as well as publication of new point clouds

to a ROS topic. Additionally, the point parameters, such as coordinates and intensity values, are also

accessible in the interface by pressing shift + left mouse button, allowing quick and simple performance

evaluation of weather denoising algorithms.

ALFA-DVC enables easy interaction and analysis of point clouds via a box system, in which the user

can create/delete and position boxes inside the point cloud, as illustrated in Figure 4.21. Moreover, it is

possible to save/load box configurations from the file system, which allows for easier repeatability between

evaluation sessions.

(a) Box configuration window.

(b) Noise configuration window.

Figure 4.22: ALFA-DVC subwindows.

Three types of boxes are available: (i) label boxes, (ii) noise removal boxes, and (iii) noise injection

boxes. By double-clicking on the desired box, it is possible to alter its behavior, coordinates, and size,

as Figure 4.22a illustrates. While the label boxes count the number of points within their area and label

them as noise points to evaluate algorithms performance, then the noise removal boxes remove all the

points inside them, cleaning a point cloud of weather noise. The noise injection boxes create a random

number of noise points, which are then injected into the point cloud to simulate noise. When data points

are collected under ideal weather circumstances, ALFA-DVC can simulate and generate different types of

weather noise for specific portions of the point cloud using the box system. This can be accomplished

by simply clicking on the corresponding button, which opens a small window, illustrated in Figure 4.22b,

displaying all the setting options for simulating point cloud noise.

Finally, the filter window enables the configuration, application, and assessment of denoising methods

in a streamlined manner. This window, displayed in Figure 4.23, is where all the interaction with everything

related to the weather denoising filters is done. The user can choose which filter to apply from a list of

supported filters and configure it. Moreover, this window displays all the evaluation metrics of the running

filters.

Chapter 4. ALFA-Pd Implementation 52

Figure 4.23: ALFA-DVC filter window.

Interface Between ALFA-Pd and ALFA-DVC

The ALFA-Pd embbedded platform interfaces and communicates with the ALFA-DVC through a ROS

environment. As depicted in Figure 4.24, each module contains two publishers and two subscribers,

which are responsible for transmitting point clouds, filter configurations, and performance metrics. The

transmission of point clouds can be triggered in two ways: when the user presses the corresponding

button in ALFA-DVC or when another ROS node publishes data into the specified ROS topic. Then, ALFA-

Pd processes the point clouds received and responds with the filtered point cloud and metrics gathered

during the process. Finally, ALFA-DVC displays the achieved results.

ALFA-DVC

Et
h

er
n

et

ALFA-Pd

Et
h

er
n

et

alfa_filter_settings

alfa_point_cloud

alfa_output_point_cloud

alfa_metrics

S
u

b
sc

ri
b

er
S

u
b

sc
ri

b
er

P
u

b
lis

h
er

P
u

b
lis

h
er

P
u

b
lis

h
er

P
u

b
lis

h
er

S
u

b
sc

ri
b

er
S

u
b

sc
ri

b
er

ROS receiver ROS emitter

ROS receiverROS emitter

Process point cloud
Display point

cloud

User send
point cloud

Figure 4.24: ROS-based architecture used in the ALFA-Pd

The ALFA-Pd’s filters configuration are sent to a ROS topic named alfa_filter_settings through a custom

ROS message type, allowing ALFA-DVC and other applications to configure ALFA-Pd as long as they comply

Chapter 4. ALFA-Pd Implementation 53

with the established message format. The point cloud data is sent to alfa_output_point_cloud using

the Pointcloud2 format, which is a ROS point cloud message format used to represent arbitrary n-D (n-

dimensional) data. Point values are of any primitive data types (int, float, double, etc.), and the message

can be specified with height and width values, giving the data a 2D structure.

The ALFA-DVC tool has two dedicated subscribers to read the topics where ALFA-Pd publishes all

data. Moreover, the user interface is used to choose and connect to these topics. Upon receiving a

point cloud from a ROS topic, an event triggers the display of the point cloud. Additionally, receiving the

metrics information, triggers an independent event, in which ALFA-DVC compares the sent and received

point clouds based on the information provided by the box system. Finally, the filter window displays the

obtained metrics.

ALFA-DVC interfaces with the ROS environment through two different windows, depicted in Figure 4.25.

The ROS interface window, shown in Figure 4.25a, allows the user to define the ALFA-DVC workflow when

point clouds are retrieved from the ROS environment. The user must initially connect to a topic having

messages in the Pointcloud2 format to acquire the point clouds. Additionally, it is possible to define the

actions that execute after receiving a point cloud frame, which includes: filtering the point cloud using the

ALFA-DVC’s built-in weather denoising filter, removing all points inside the noise removal boxes, or injecting

noise into the point cloud through the noise boxes.

(a) ROS interface window. (b) ALFA window.

Figure 4.25: ALFA-DVC ROS windows.

5. Evaluation and Results

This Chapter presents an extensive benchmarking and comparative analysis of the proposed systems

and algorithm. The Chapter addresses the performance evaluation performed on the software versions

of state-of-art algorithms, followed by the ALFA-Pd’s hardware-accelerated versions validation and evalu-

ation results. The denoising algorithms were evaluated using the following metrics: (i) Points Removed

(PR), Equation 5.1; (ii) True Positives (TP), Equation 5.2; (iii) False Positives (FP), Equation 5.3; (iv) False

Negatives (FN), Equation 5.4; (v) Frame Processing Time (FPT); and (vi) Frames Per Second (FPS). This

approach ensures that all algorithms are compared fairly in terms of time-related performance and met-

rics relevant to the denoising of LiDAR point clouds. The ALFA-DVC’s box system assessed the point cloud

denoising related metrics. For visualization purposes, the input and output of each algorithm are also

shown through ALFA-DVC. Since the box system occupies a lot of the visual space, the boxes are hidden in

the following screenshots. Concerning the data utilized to conduct the testing and analysis, all evaluation

tests were conducted using a point cloud from a publicly available dataset obtained with a Velodyne Puck

(VLP-16) in a real-world heavy snowfall environment. The LiDAR sensor provides, on average, of 17098

points per frame in the used dataset.

PR = Input Points−Output Points (5.1)

TP =
Filtered Noise Points In Noise Areas

Total Labeled Noise Points
(5.2)

FP =
Filtered Noise Points In Non Noise Areas

Total Labeled Non Noise Points
(5.3)

FN =
Unfiltered Noise Points In Noise Areas

Total Labeled Noise Points
(5.4)

5.1 Evaluation of Software-based Denoising Algorithms

The software-based denoising techniques were evaluated using the ALFA-Pd embedded ROS node

to run the denoising filters and ALFA-DVC to collect the filtering results and compute the performance

54

Chapter 5. Evaluation and Results 55

metrics. Since the objective of this Chapter is to demonstrate the performance of state-of-the-art algorithms

utilizing an embedded environment, the filters were executed in the embedded hardcore processor. Some

algorithms were improved with multithreading, which were developed to ensure a fair comparison with

their hardware-accelerated implementation. Thus, performance is analyzed on native implementation

but also with software-accelerated implementation, emphasizing the advantages of hardware-accelerated

implementation.

5.1.1 System Configuration

All software was executed on an embedded Linux platform (4.19.0-Xilinx-v2019.2) that includes the PCL

library (version 1.8.1-r0) and a ROS environment (Ros1 melodic distribution). The software is supported

by the hardware platform, discussed in Section 3.1, equipped with a 1.2 GHz CPU and 2 GB of 535 MHz

DDR4 memory. Additionally, because the CPU Arm Cortex-A53 has four processing cores, the multithread

configurations are set to use four threads to optimize the throughput of filtered points per thread. Only the

time regarding the algorithm output values is considered to calculate the FPT metric, discarding the time

consumed ROS transactions since these do not concern the algorithms themselves.

Table 5.1: Filter parameters.

Algorithm Parameter Value
Number of k neighbors 4

SOR
Standard deviation multiplier 0.9
Searching radius 0.5

ROR
Min. number of neighbors 5
Min. searching radius 0.1
Min. number of neighbors 30
Angular resolution 0.3

DROR

Radius multiplier 0.9
Searching radius 0.5
Min. number of neighbors 5LIOR
Intensity threshold 4
Min. searching radius 0.1
Angular resolution 0.3
Radius multiplier 0.9
Min. number of neighbors 30

DIOR

Intensity threshold 4

Table 5.1 lists the denoising methods filter settings used during this evaluation. Since the algorithms’

performance is highly dependent on their setups, all tests were conducted with these values. Therefore, the

hardware-accelerators parameters were set to the most equivalent parameters to minimize the influence

of configurations on this evaluation.

Chapter 5. Evaluation and Results 56

5.1.2 Voxel-Grid

The VG filter removes noise from a point cloud by downsampling the point cloud data. Furthermore,

VG-based filters are the most time-efficient because of their low complexity. The before/after comparison

of the VG filter is shown in Figure 5.1. In the original frame, demonstrated on the left side of the figure,

the noise created by snow is visible. Contrarily, the right side displays the filtered point cloud. On the right

side is illustrated the output point cloud of this filter.

SNOW TREES

CARS

BUILDINGBUILDING
TREES

Figure 5.1: Software VG filter output.

VG filters work by establishing three-dimensional boxes (a voxel grid) in the three-dimensional space

of the point cloud and then selecting a point to represent the other points within each voxel. Thus, the

dense point cloud zones are the most influenced by this filter, but the dense zones are so dense that they

appear to have no alteration. However, while evaluating the ALFA-DVC metrics, it is feasible to discard the

difference between the original and filtered point clouds.

Table 5.2: Software VG performance.

Algorithm PR TP FP FN FPT (ms) FPS
Voxel Grid 28.8% 12% 29% 87% 6 166

Table 5.2 depicts the performance metrics obtained using the box system in ALFA-DVC. The VG filter

took 6 ms to finish its processing, achieving a frame rate of 166 FPS. However, the VG filter removed 28%

of the points present inside the point clouds. Additionally, the VG filter only removed 12% of the noise-

labeled points and wrongly classified 87% of the points removed from the point cloud. In short, this filter

Chapter 5. Evaluation and Results 57

demonstrates lower denoising accuracy when compared to other denoising filters, despite offering good

performance metrics.

5.1.3 Statistical Outlier Removal

The SOR filter classifies points as outliers based on the neighbor information. It is one of the most

mature state-of-art filters, and since the PCL provides a direct implementation of the algorithm, it was

employed recurring to this library for the evaluation. Figure 5.2 depicts the processing of the point cloud

corrupted by snow and the output after applying the SOR filter. Visually, it is possible to see that this

filter did remove most of the labeled noise points, even though some details of buildings, trees, and road

artifacts were lost. With this filter, it is possible to observe that the effect of the sparsity in the point cloud

is visible since the most distant objects, shown by the red color, and the tree’s leaves were deleted. The

picture is zoomed in to aid in visualization, which hides the filtering performance in distant objects.

SNOW TREES

CARS

BUILDINGBUILDING
TREES

Figure 5.2: Software SOR filter output.

Table 5.3 summarizes the performance metrics acquired using the ALFA-DVC box’s system. The SOR

filter needed an average of 175 ms to complete processing a frame, achieving up to 5 FPS. However, most

rotor-based LiDAR sensors generate point cloud frames at a rate of 10 FPS. Thus, requiring more than 175

ms to process, SOR starts introducing delays in the execution flow.

Table 5.3: Software SOR filter performance.

Algorithm PR TP FP FN FPT (ms) FPS
SOR 7% 56% 5% 44% 175 5.16

Chapter 5. Evaluation and Results 58

The SOR filter eliminated an average of 7% of all points in the point cloud, in which, of the labeled

noise points, more than half were correctly classified as outliers. However, SOR wrongly classified 5% of

the point cloud as outliers. To conclude, SOR provides a simple method for weather denoising at the cost

of some influence from the point cloud’s sparsity. Moreover, this filter may be acceptable in environments

with low noise levels, despite lacking a true-positive ratio at high levels of noise.

5.1.4 Fast Cluster Statistical Outlier Removal

The FCSOR filter is a combination of SOR and a voxel step that significantly decreases the processing

time for a point cloud frame. Since FCSOR was created for mapping proposals, the author did not provide

any findings for autonomous applications. The before/after comparison using the FCSOR filter is shown

in Figure 5.3. Being a merge of VG and SOR, it is possible to see their similarities. The downsampling is

visible by zooming in on the image, and like with SOR, a considerable loss of information is observable in

distant objects and buildings. Nonetheless, a very significant noise caused by the snowfall was removed

close to the vehicle, in the point cloud center.

SNOW TREES

CARS

BUILDINGBUILDING
TREES

Figure 5.3: Software FCSOR filter output.

Table 5.4 depicts the performance metrics obtained using the box system in ALFA-DVC. FCSOR

achieved an average frame processing time of 117 ms, enabling the processing of almost 9 FPS. Since

SOR filters go through all the points that compose a point cloud, by reducing the number of points, with

the VG step, FCSOR decreases the processing time required per frame when compared to native SOR.

However, even with significant speed enhancements, it cannot perform real-time point cloud processing

in the embedded system.

Chapter 5. Evaluation and Results 59

Table 5.4: Software FCSOR filter performance.

Algorithm PR TP FP FN FPT (ms) FPS
FCSOR 34% 59% 34% 40% 117 8.5

FCSOR filter removed 34% of the points in the point cloud and over 60% of the labeled noise points,

increasing the performance compared to SOR. However, due to the VG step, the FP ratio increases to 34%,

indicating a significant removal of points in dense zones of the point cloud. The denser the point cluster,

the more points are removed by the VG step. FCSOR presents a fast SOR solution, ideal for applications

where downsampling the point cloud is not an issue. Regarding the noise removed, FCSOR can have a

good performance in ideal weather conditions, but in extreme conditions like an intense downfall, FCSOR

shows some lack of performance.

5.1.5 Radius Outlier Removal

SNOW TREES

CARS

BUILDINGBUILDING
TREES

Figure 5.4: Software ROR filter output.

The ROR filter eliminates points with a small number of neighbors inside a given radius. It is one of the

most mature state-of-art filters, and it has a direct implementation in the PCL library. ROR is typically used

in point clouds that are not sparse, which presents a disadvantage when considering the sparse nature of

LiDAR point clouds. The before/after comparison using the ROR is depicted in Figure 5.4. It is possible

to see that ROR eliminated most of the labeled noise points, leaving just the cluster of snow on top of

the sensor in the point cloud’s center. Because of RORs fixed radius, it cannot correctly classify objects

located at a higher distance from the sensor, thus removing structures and relevant information. It is

Chapter 5. Evaluation and Results 60

possible to conclude that ROR did remove almost all the noise present in the point cloud, at the expense of

essential data in distant objects. The tree leaves were also significantly deleted by ROR, which are crucial

for high-level object classification algorithms.

Table 5.5 summarizes the performance metrics acquired using ALFA-DVC’s box system. The ROR

filter processes a point cloud frame in an average of 180 ms, which results to an average of 5.5 FPS

when executing on an embedded device. Like other filters, ROR delays the execution flow by operating

at a frame rate of less than 10 FPS. Subsequently, ALFA-Pd must reject unprocessed frames to ensure

that the most recent point cloud frame gets processed. ROR deleted around 19% of the point cloud total

number of points, and 75% of the labeled noise points, leaving just 24% unclassified. However, ROR

incorrectly identified 24% of the points deleted, which corroborates the visual analysis of the buildings and

trees removed from the point cloud. Globally, ROR is a low-complexity method for outlier elimination that

performs well in adverse weather conditions and in applications where distant targets are irrelevant. Since

some autonomous applications rely on LiDAR to detect distant objects, ROR is incompatible with such

applications.

Table 5.5: Software ROR filter performance.

Algorithm PR TP FP FN FPT (ms) FPS
ROR 19% 75% 18% 24% 180 5.50

5.1.6 Dynamic Radius Outlier Removal

As with ROR, the DROR filter eliminates points with few neighbors in a radius surrounding them.

However, DROR uses a dynamic radius to address the sparsity of 3D LiDAR point clouds instead of a fixed

radius. Two versions of DROR were evaluated: the original, derived from author-provided pseudocode,

and the multithreaded version, created in this dissertation. The before/after comparison using the DROR

filter is shown in Figure 5.5. The visual output of the original and multithreaded versions was identical,

so only one figure is used to represent them. To the naked eye, DROR eliminated most of the labeled

snow noise except the cluster of points near the vehicle that results from snow accumulation in front of the

sensor. Additionally, DROR retained information in distant objects such as trees and buildings eliminating

nearly all noise from the point cloud, demonstrating a very capable denoising algorithm. Furthermore, the

tree leaves, which resemble noise, were preserved, which did not happen in other filters, making this an

advantage for DROR.

Table 5.6 summarizes the performance metrics acquired using ALFA-DVC’s box system. DROR re-

quires an average of 2730 ms for each frame due to the search radius calculus and the neighbor search

utilizing that radius. On the other hand, the multithreaded version can process an entire frame in around

1193 ms, which represents an improvement of 56% compared to the original version. Despite this improve-

ment, the multithreaded version can only achieve 0.83 FPS, which is unsuited for real-time applications.

Chapter 5. Evaluation and Results 61

SNOW TREES

CARS

BUILDINGBUILDING
TREES

Figure 5.5: Software DROR filter output.

The long processing times are mainly due to the PCL’s method for neighbor search since it is necessary

to perform the search radius calculation for each point.

Table 5.6: Software DROR filter performance.

Algorithm PR TP FP FN FPT (ms) FPS
DROR 1T 2% 87% 1% 13% 2730 0,36
DROR 4T 2% 87% 1% 13% 1193 0.83

DROR deleted 2% of the point cloud points, including 87% of the identified noise points. Apart from

the identified noise points, DROR incorrectly classified roughly 1% of non-labeled noise points as outliers,

demonstrating remarkable effectiveness in removing noise in sparse point clouds. Additionally, because

the ALFA-DVC box system estimates the number of noise points, the 1% missing value may be lower in

reality. Another significant advantage is that DROR can remove almost all weather noise without eliminat-

ing important information, even under severe conditions. However, DROR has a significant performance

disadvantage for autonomous applications due to its inability to satisfy the time limits imposed by those

applications.

5.1.7 Low-Intensity Outlier Removal

The LIOR filter can identify points as inliers based on the intensity levels. If a particular point does

not satisfy the intensity requirements, a second step is applied using a ROR technique. To address the

issue caused by the sparsity in point clouds produced by 3D LiDAR sensors, LIOR filters points with a

Chapter 5. Evaluation and Results 62

distance lower than 71 meters. However, this parameter was not implemented in the versions present in

this work. The rest of the algorithms were implemented based on the description provided by the author

and were further accelerated using a multithread configuration. Both implementations were tested to

analyze the impact of parallelizing the processing flow. The before/after comparison using the LIOR filter

is shown in Figure 5.6. As with DROR, multithreading solely impacts the time-based metrics, and hence

only one picture is displayed to describe the output. Although the filter successfully removes most of the

labeled noise, denser noise created by severe snowfall is still incorrectly recognized as an inlier by the filter.

Additionally, because LIOR has a limited radius, as the distance between points grows for far objects, the

information about these distant items is lost. It is possible to observe that trees leaves are also classified

as outliers, which can cause further problems in high-level applications that rely on the point cloud for the

object recognition and classification tasks.

SNOW TREES

CARS

BUILDINGBUILDING
TREES

Figure 5.6: Software LIOR filter output.

Table 5.7 summarizes the performance metrics acquired using ALFA-DVC’s box system. The single-

threaded version requires an average of 173 ms per frame to execute. On the other hand, the multithread

configuration reduces processing time to 109 ms, representing a reduction of 37% over the single thread

version. Given these frame processing durations, the single-threaded algorithm can generate 5.7 FPS, and

the multithreaded accelerated version can obtain a maximum frame rate of 9 FPS.

Table 5.7: Software LIOR filter performance.

Algorithm PR TP FP FN FPT (ms) FPS
LIOR 1T 11% 74% 10% 25% 173 5,7
LIOR 4T 11% 74% 10% 25% 109 9,17

Chapter 5. Evaluation and Results 63

LIOR removed 11% of all point cloud points, demonstrating its similarity to ROR. LIOR deleted around

74% of the labeled snow points but categorized 10% of the non-noise points incorrectly. In general, LIOR is

a fast-running algorithm with strong denoising capabilities. LIOR is an efficient technique in severe weather

circumstances, especially when an ROI is applied, as seen in the authors experiments. However, LIOR

performs poorly in adverse weather circumstances compared to other state-of-the-art algorithms.

5.1.8 Dynamic low-Intensity Outlier Removal

The DIOR filter is a novel to weather denoising proposed by this dissertation. To compensate for

the sparsity of the point cloud, DIOR employs a dynamic search radius, which eliminates points with few

neighbors in a radius surrounding them. DIOR was evaluated in the same single thread/multithread con-

figurations as LIOR and DROR, with the workload divided among four threads to conduct a fair comparison

of DIOR and other state-of-the-art algorithms. The before/after comparison using the DIOR filter is shown

in Figure 5.7. Only one figure depicts the result since the original and multithreading visual output was

identical. Visually, DIOR removes all labeled noise points while retaining information about distant objects

and tree leaves. When comparing the results obtained with DIOR and DROR, it is possible to see the

similarities of both algorithms. Overall, DIOR presents a competent filter for denoising noise caused by

adverse weather and does not require the use of an ROI to retain point cloud data, as LIOR does.

SNOW TREES

CARS

BUILDINGBUILDING
TREES

Figure 5.7: Software DIOR filter output.

Table 5.8 depicts the performance metrics obtained using the box system in ALFA-DVC. Firstly, DIOR

achieves an average FPT of 1009 ms without utilizing multithreading. Using multithreading resulted in the

filter’s processing time being lowered to an average of 442 ms per frame, representing an enhancement

Chapter 5. Evaluation and Results 64

of 56%. Therefore, the original approach can output around 1 FPS with the measured frame processing

time, whereas the multithread accelerated version can generate 2.26 FPS, meaning no version of DIOR

can keep up with the throughput of most LiDAR sensors.

Table 5.8: Software DIOR filter performance.

Algorithm PR TP FP FN FPT (ms) FPS
DIOR 1T 2% 87% 0% 14% 1009 0,99
DIOR 4T 2% 87% 0% 14% 442 2,26

Regarding DIOR’s denoising efficiency, the filter deleted 2% of all the points inside the point cloud,

deleting around 87% of the noise labeled points, with approximatively 0% false positives. DIOR is highly

efficient in removing noise points, missing just 14% of label points due to the noise’s great density when

close to the vehicle. Moreover, this filter produced results comparable to those obtained with DROR but

with a better false-positive ratio. By combining the LIOR and DROR concepts, DIOR can attain the high

accuracy of DROR while significantly shortening the processing time necessary to analyze a point cloud

frame. Despite its good denoising performance, in its software versions, DIOR is still not suitable for

automotive applications because of its high frame processing times.

5.1.9 Discussion

With the software versions of the algorithms analyzed (depicted in Table 5.9), some conclusions and

comparisons can be made. Despite having the fastest processing time, the VG filter presents the poorest

denoising performance metrics, with an FN of nearly 87%. Regarding DROR, it is one of the best performing

filters in terms of denoising capabilities at the cost of real-time performance. On the other hand, SOR

and FCSOR present TP rates between 55% and 60%, with an FN of nearly 40%. LIOR, which uses ROR

principles, provides good accuracy results while being the fastest algorithm of the tested. Lastly, DIOR

achieves great results regarding its PR, around 2%, FN of 14%, and FP as low as virtually 0%, at the cost

of higher FPT.

Table 5.9: Evaluation of software-only denoising algorithms.

Algorithm PR TP FP FN FPT (ms) FPS
Voxel-Grid 28.8% 12% 29% 87% 6 166
ROR 19% 75% 18% 24% 180 5.50
SOR 7% 56% 5% 44% 175 5.71
DROR 2% 87% 1% 13% 1193 0.83
FCSOR 34% 59% 34% 40% 117 8.5
LIOR 11% 74% 10% 24% 109 9.17
DIOR 2% 85% 0% 14% 442 2.26

The ALFA-Pd software-only node results in long processing times for filtering due to the hardware

platform’s limited resources, such as the CPU and DDR memory speed. However, because the platform

Chapter 5. Evaluation and Results 65

supports hardware acceleration, the most promising algorithms, DROR, LIOR, and DIOR, were accelerated.

The main objective of porting some functionalities to hardware is to improve FPT and FPS without impairing

the algorithm’s classification efficiency.

5.2 Hardware-Accelerated Denoising Algorithms

ALFA-Pd features several hardware accelerators to improve the real-time performance of the algorithms

that have the best denoising metrics. The following Section demonstrates the results of their evaluation

in both hardware implementation (BRAM and DDR). The assessment was also done using the ALFA-DVC

tool, reducing testing variables.

5.2.1 Dynamic Radius Outlier Removal

SNOW TREES

CARS

BUILDINGBUILDING
TREES

Figure 5.8: Hardware-accelerated DROR filter output.

Due to the high potential attained in early software assessment, DROR was one of the filters imple-

mented in hardware. The significant disadvantage of DROR compared with the remaining was that it did

not fulfill the time limitations associated with autonomous applications, requiring hardware acceleration.

The before/after comparison using the DROR filter is shown in Figure 5.8. The result is visually identical

to the software implementation, where the hardware-accelerated version was capable of eliminating the

majority of the identified noise points. Additionally, the buildings and tree points were kept unchanged,

indicating that the hardware version is performing correctly as the point’s distance does not influence its

performance.

Chapter 5. Evaluation and Results 66

BRAM Implementation

ALFA-Pd offers a variety of hardware combinations, which affect the algorithm’s performance. Thus,

several hardware configurations were evaluated, gradually increasing the number of PCs from two to 32

and maintaining the NF number limited to two since the BRAM can only acquire two points each clock

cycle. Table 5.10 depicts the results obtained by evaluating the DROR hardware BRAM implementation.

The base implementation, which used two PCs, averaged around 689 ms to analyze an entire frame.

Nonetheless, when the number of PCs doubles, the time necessary to process a point cloud reduces to

half, which represents an almost linear improvement. At 32 PC units, the hardware-accelerated version

can process an entire frame in 40 ms, representing 27.77 FPS. Additionally, to achieve real-time filtering,

the throughput of the filter needs to be higher than 10 FPS, which DROR can achieve using 16 PCs. Despite

having slightly different filter configurations (rounding, floating-point handling), the hardware-accelerated

BRAM implementation still presents filtering results similar to its software counterpart. This version deleted

around 4% of the point cloud, with 87% of the noise points eliminated and only 3% false positives.

Table 5.10: Hardware-accelerated DROR filter BRAM performance.

Algorithm PCs PR TP FP FN FPT (ms) FPS
2 5.8% 95% 3% 5.4% 689 1.45
4 5.3% 95% 3% 5.5% 350 2.8
8 5.6% 93.2% 3.4% 6.8% 170 5.89
16 5.35% 92% 3% 7% 84 11.9

DROR

32 4% 87% 3% 13% 40 27.77

DDR Implementation

The DDR implementation performs similarly to the BRAM implementation but with an increase in

the FPT metric. Notwithstanding the fastest implementation of this version achieving 18.1 FPS, the 16

PC configuration is still sufficient to handle most 3D LiDAR sensor’s throughput. In general, the DROR

hardware implementation meets the requirements for usage in autonomous applications by providing a

high true positive ratio while still complying with time constraints.

Table 5.11: Hardware-accelerated DROR filter DDR performance.

Algorithm PCs PR TP FP FN FPT (ms) FPS
2 6% 92% 4.3% 7.6% 1173 0.85
4 5.9% 92% 4.2% 7.8% 545 1.84
8 5.6% 90% 3.75% 9.4% 220 4.5
16 5.35% 92% 3.4% 7.9% 84 11.9

DROR

32 5.25% 91% 3.6% 8.3% 55 18.1

Chapter 5. Evaluation and Results 67

5.2.2 Low-Intensity Outlier Removal

LIOR was one of the filters implemented in hardware due to the high potential shown in the early

software evaluation. LIOR achieved significant results in efficiency metrics, alongside outstanding perfor-

mance, achieving almost 10 FPS. Because of this, ALFA-Pd offers a hardware-accelerated version of this

algorithm. The before/after comparison using the LIOR filter is shown in Figure 5.9. The hardware version

of LIOR has many similarities to its software version, and although the filter eliminated a significant portion

of the labeled noise, it is clear that some information about distant objects was lost. The most severely

damaged areas of incorrect classification were the tree leaves, which were deleted from the point cloud.

Nevertheless, compared to the software implementation, it is possible to see that the number of relevant

information lost is smaller, showing a minor improvement over it.

SNOW TREES

CARS

BUILDINGBUILDING
TREES

Figure 5.9: Hardware-accelerated LIOR filter output.

BRAM Implementation

The BRAM implementation proposes a faster execution version of LIOR, which tries to achieve real-time

filtering. As with all the hardware-accelerated algorithms, it was evaluated with different PCs configurations

to see their performance impact. Table 5.12 depicts the results obtained through evaluating the LIOR

hardware BRAM implementation. When using 2 PCs, the filter took 631 ms to process an entire frame.

As expected, by increasing the number of PCs, the time required per frame also decreases, making LIOR

capable of processing 33 FPS in the 32 PCs configuration. It is essential to understand that the only

constraint on the number of PCs is the available resources of the platform in use. Nevertheless, the

Chapter 5. Evaluation and Results 68

hardware BRAM LIOR version already satisfies the time requirements with 16 PCs. Regarding efficiency,

LIOR deleted an average of 9% of all points in the point cloud. The filter accurately categorized 68%

of the noise points as inliers. In terms of FP, LIOR incorrectly categorized 7% of the points as outliers,

demonstrating the algorithm’s inefficiency when applied to sparse point clouds.

Table 5.12: Hardware-accelerated LIOR filter BRAM performance.

Algorithm PCs PR TP FP FN FPT (ms) FPS
2 11% 73% 9% 26% 631 1.58
4 10.65% 72.05% 8.9% 28% 308 5.31
8 9% 73% 8.9% 30% 143 6.9
16 9% 71% 7.6% 30% 56 19.6

LIOR

32 9% 68% 6.9% 34% 30 33.3

DDR Implementation

Non time-related performance metrics were quite similar to those obtained while analyzing the BRAM

implementation, as seen in Table 5.13. While the DDR implementation has slower execution speeds,

it still complies to the time constraints imposed by the throughput of most 3D LiDAR sensors. The 32

PC configuration is capable of delivering 20 processed FPS. To summarize, hardware-accelerated LIOR

enhanced the old version’s time performance.

Table 5.13: Hardware-accelerated LIOR filter DDR performance.

Algorithm PCs PR TP FP FN FPT (ms) FPS
2 14% 70% 12% 30% 970 1.03
4 10.81% 67% 9.25% 33% 383 2.61
8 11.48% 68% 10.25% 32% 150 6.71
16 11.56% 68% 11.3% 31% 56 19.6

LIOR

32 12% 68% 12.4% 31% 49 20.408

5.2.3 Dynamic low-Intensity Outlier Removal

DIOR, the dissertation’s proposed algorithm, was accelerated in hardware due to the good results

obtained in the software tests. Despite its high efficiency in removing weather noise from 3D LiDAR point

clouds, it demonstrated the need for acceleration, as it did not fulfill the time limitations for autonomous

applications. A before/after comparison using the DIOR filter is shown in Figure 5.10, created using a 32

PC setup. As with other hardware algorithms, the hardware version of DIOR produces similar visual results

compared to the software version. This filter reduced most snow-generated noise with changes between

the original and filtered images visible to the human eye. Furthermore, the filter’s efficiency is quite good

due to the features inherited from DROR. The algorithm left faraway objects untouched, while tree leaves,

which are the most difficult items to identify using outlier-based approaches, were barely eliminated.

Chapter 5. Evaluation and Results 69

SNOW TREES

CARS

BUILDINGBUILDING
TREES

Figure 5.10: Hardware-accelerated DIOR filter output.

BRAM Implementation

The BRAM implementation of DIOR features a quicker execution speed, and as with the other hardware-

accelerated algorithms, it was analyzed using various PC setups to determine their effect on the filter’s

overall performance. Table 5.14 summarizes the performance metrics acquired using the ALFA-DVC box’s

system. LIOR processes a point cloud frame in 476 ms using the base implementation. Naturally, by

increasing the number of PCs, DIOR reached a frame processing time of 30 ms using the fastest imple-

mentation. Notwithstanding the time necessary to process a frame comparable to LIOR, DIOR presents

better denoising ratios. A 16 PC implementation is sufficient for real-time operation providing 19 FPS.

Moreover, DIOR deleted an average of 4% of the point cloud’s total points, and accurately recognized

90% of the labeled points as inliers. In terms of false positives, DIOR miscategorized just 3% as outliers,

demonstrating the effectiveness of reducing weather-generated noise in adverse situations.

Table 5.14: Hardware-accelerated DIOR filter BRAM performance.

Algorithm PCs PR TP FP FN FPT (ms) FPS
2 5% 93% 3% 5.8% 476 2.1
4 5% 93% 3% 5.6% 244 4.1
8 5% 93% 3% 7% 124 8.1
16 4.35% 91% 2.5% 7% 56 19.6

DIOR

32 4% 88% 2.8% 13% 30 33.3

Chapter 5. Evaluation and Results 70

DDR Implementation

The results obtained using the DDR implementation, depicted in Table 5.15, are very similar to those

obtained with the BRAM implementation, apart from the time-related metrics, since by utilizing a more

general memory architecture, the FPT of lower-end PC configurations rises when compared to the BRAM

implementation. Nevertheless, on a higher count of PC modules, this difference is not that noticeable due

to the high parallelization of the algorithm. With the faster execution configuration, this version achieved

30.3 FPS, which was more than sufficient for the sensor used to gather the dataset utilized. Since the

methodology of finding neighbors in hardware differs from software one, the dynamic search radius does

not impact the processing time. Thus, it is possible to achieve high ratios without compromising the

algorithm’s time requirements. To summarize, DIOR in hardware presents the good time performance of

LIOR, with the excellent true positive ratio of DROR.

Table 5.15: Hardware-accelerated DIOR filter DDR performance.

Algorithm PCs PR TP FP FN FPT (ms) FPS
2 6.62% 92% 5.8% 7% 761 1.35
4 4.9% 90% 3% 7% 365 2.74
8 4.45% 89% 2.5% 7% 146 6.84
16 4.35% 91% 2.5% 7% 56 19.6

DIOR

32 4% 88% 3.8% 13% 33 30.30

5.2.4 Hardware Resources

ALFA-Pd has a modular approach, allowing the user to choose the number of PCs and NF modules,

which increases the parallelization of the denoising method, hence enhancing performance. However, the

resources required to produce the hardware rise substantially. Thus, a study of the requirements for each

PC setup was conducted. Table 5.16 summarizes the hardware resource consumption for both versions,

Table 5.16: Hardware resources.

PCs Version LUTS FFs BRAM DSP
BRAM 7.79% 4.05% 83.3% 0.92%

2
DDR 3.41% 2.19% 3.84% 0.57%
BRAM 9.01% 4.18% 83.3% 1.85%

4
DDR 4.77% 2.33% 3.84% 1.15%
BRAM 11.96% 4.39% 83.3% 3.7%

8
DDR 7.19% 2.62% 3.84% 2.31%
BRAM 19.09% 5.09% 83.3% 7.4%

16
DDR 13.11% 3.17% 3.84% 4.63%
BRAM 39.30% 5.68% 83.3% 14.81%

32
DDR 26.13% 3.75% 3.84% 8.68%

Chapter 5. Evaluation and Results 71

with the PCs ranging from 2 to 32. The three algorithms supported by the ALFA-Pd hardware implemen-

tation are all included within a PC module that may be enabled on-demand by the ALFA-DVC utility.

BRAM Implementation

To deploy the 32 PCs version, the system needs roughly 39% of the board’s LUTs, 5.68% of the FFs,

83.3% of the BRAMs, and 14.81% of the available DSP blocks. The high percentage of BRAMs in use is due

to pre-allocation; this does not indicate that they are constantly in use. Nonetheless, ALFA-Pd is compatible

with top-of-the-line sensors capable of producing 800 000 points each frame due to this allocation. When

the three algorithms analyze the selected point cloud at a frame rate of 10 Hz, 16 PCs can already deliver

real-time capabilities to sensors with a 10 Hz output at the cost of a few hardware resources.

DDR Implementation

Compared to the BRAM version, the DDR version needs half the number of NFs. However, the BRAM

version required more than half the resources of the DDR version in systems with more than four PCs.

The latter is due to the increased complexity of this version, which escalates more rapidly as the number

of PCs increases, resulting in the deployment of 32 PCs consuming about 26% of the available LUTs and

3.75% of available FFs. The number of BRAM used decreased significantly, from 83% to 3.84%, and the

number of DSP also dropped to 8.68%. Nonetheless, it is possible to reach real-time with 16 PCs when

using the DDR version and this dataset. Thus, ALFA-Pd presents denoising methods capable of filtering

noisy point clouds without disturbing the execution flow of high-level applications.

5.3 Hardware vs Software Implementations

The efficiency in detecting and removing noise was identical in the software and the hardware versions,

but it is still noticeable that the hardware version of LIOR improved the base algorithm. Such results prove

the correctness of the hardware implementation of the selected algorithms since the hardware deployment

accelerates the FPT metric without changing the algorithm’s behavior. Increasing the number of PCs has

a visible effect on the amount of time necessary to process a single point cloud frame. When the system

is deployed with only two PCs, the processing time for DROR and DIOR is nearly identical to their software

implementation. However, the LIOR processing time increases significantly from 109 to 631 ms. When

more than two PCs are used, the results are always superior to the software-only solution, with an FPT of

40 ms for DROR and 30 ms for LIOR and DIOR when the system uses 32 PCs. The theoretical maximum

number of PC and NF modules is unlimited, so if the number of PCs and NF is equal to the size of the

point cloud, the frame could be processed in one clock cycle under perfect conditions. Nonetheless, using

32 PCs, the BRAM enhanced DROR’s speed by about 98 times compared to the base version and 42

times compared to the multithread version. ALFA-Pd shortened the processing time required for LIOR by

Chapter 5. Evaluation and Results 72

3.3 times. Regarding DIOR, it showed improvements in its efficiency similar to those obtained obtained

by the DROR filter, but the execution times were somewhat equal to the ones obtained by LIOR.

5.4 Closing Discussion

Comparing DROR and LIOR algorithms with DIOR and using the ALFA-Pd platform, the obtained results

show that DIOR can achieve better performance ratios. Moreover, for the point cloud with 17098 points,

DIOR achieved better frame processing times with an FPS rate of around 33 FPS. Regarding the hardware

platform, and because the processing unit provides fewer resources when compared with the original se-

tups used by DROR and LIOR, the ALFA framework offers the possibility to deploy hardware accelerators

to achieve better performance rates at the cost of FPGA hardware resources, even when using an embed-

ded configuration. However, newer LiDAR sensors can provide denser point clouds with millions of points

to be processed. Despite increasing the accuracy of the perception system, they require more powerful

resources to process the point cloud data, ideally in real-time. In the evaluation of the LIOR algorithm, the

authors have used an Ouster OS-1 LiDAR with a point cloud output of around 60k points per frame. Ac-

cording to their results, and before applying optimizations, the processing rate performance for processing

the full sensor’s data was 0.16 FPS for DROR and 1.32 FPS for LIOR. To increase the performance of their

filter, the authors have optimized the denoising algorithm by applying a cropbox to different ROI to reduce

the number of points to be processed: Cropbox A (full data); Cropbox B (forward data); and Cropbox C

(only road data). By reducing the number of points, the achieved performance speed was 9.31 FPS for

Cropbox B and 10.0 FPS for Cropbox C. This way, authors could claim a frame rate that can cope with the

real-time processing of the output of a LiDAR sensor which is commonly 10 Hz.

Table 5.17: Hardware-based algorithms optimization.

Copbox A
(59395 points)

Cropbox B
(27734 points)

Cropbox C
(25456 points)

DROR LIOR DIOR DROR LIOR DIOR DROR LIOR DIOR
FPT 270 76 77 78 31 31 67 28 28
FPS 3.7 13.01 12.98 12.82 32 32 15 35.6 35.7

For a fair comparison between the frame rate provided by the ALFA-Pd and LIOR’s hardware setup,

which includes more processing capabilities, a point cloud was processed from a Velodyne VLP-32C sen-

sor, which can also output around 60k points per frame. Table 5.17 summarizes the obtained results

when applying the same strategy of including a Cropbox over different ROI. Processing the full point cloud

(Cropbox A) results in a frame rate of around 13 FPS, both for LIOR and DIOR, which copes with the

requirement of processing a sensor’s output of 10 Hz. Applying the Cropbox B and C reduces the number

of points processed to 27734 and 25456, respectively. These results in a processing frame rate of around

32 FPS for Cropbox B and 35 FPS for Cropbox C, showing that the ALFA-Pd is able to achieve real-time

capabilities even for sensors with higher output rates when ROI is applied.

6. Conclusion

With growing interest in developing fully autonomous vehicles, there is a demand to develop technolo-

gies capable of collecting accurate representations of a vehicle’s surroundings. As a result, multi-sensor

perception systems comprised of RADAR, Cameras, and LiDAR are becoming standard in the industry.

LiDAR sensors are a relatively new addition to these multi-sensor perception systems. Nevertheless, their

capacity to provide a high-resolution representation of the surrounding world in real-time has already es-

tablished them as a critical component. However, the output of 3D LiDAR sensors can be affected by

several noise sources, including adverse weather.

This dissertation presents a novel hardware-based technique for weather denoising, ALFA-Pd, which

allows the deployment of a variety of denoising algorithms in both software and hardware, supported by

the ALFA-DVC tool. This tool enables easy deployment and configuration of different weather denoising

algorithms in run time, providing debug and point cloud visualization capabilities within a ROS environment.

The framework’s embedded nature shows how state-of-the-art methods perform in a resource-constrained

environment. Furthermore, it explores how they can benefit from hardware acceleration to significantly

reduce the processing time of point cloud frames while maintaining the desired accuracy metrics, such as

the number of PR, TP, FP, and FN ratios.

ALFA-Pd presented two ways for optimizing state-of-the-art denoising algorithms through multithreading

and hardware accelerators. The multithreading used to parallelize the execution over the four CPU cores

available on the embedded platforms achieved good processing time reductions, ranging from 37% to 56%.

On the other hand, using the hardware-accelerated capabilities of the platform, it was possible to further

reduce those percentages up to 98.5%.

6.1 Future Work

ALFA-Pd fulfills all of the initial requirements, including the ability to select and execute several denois-

ing algorithms with or without hardware acceleration while offering connectivity to high-level applications

through a ROS environment. However, ALFA-Pd can still be enhanced in several ways, which were not

integrated due to higher complexity and time constraints. The following points are possible system im-

provements for future work:

73

Chapter 6. Conclusion 74

• Improve hardware method for finding neighbors: The current method for locating neighbors

is a brute-force approach, in which a point is compared to all other points in the point cloud.

However, there are more efficient approaches, such as FLANN, which can speed up processing

even more.

• Improve processing parallelization: The architecture of ALFA-Pd’s PC and NF modules has ex-

tensively parallelized processing. However, by increasing parallelization, for example in the memory

access process, it is feasible to improve performance.

• Integrating other types of denoising algorithms: ALFA-Pd focuses on outlier-based algo-

rithms, but there are other types of weather denoising methods like CNN-based, which were not

explored in this dissertation.

References

[1] J. Guerrero-Ibáñez, S. Zeadally, and J. Contreras-Castillo, “Sensor Technologies for Intelligent Trans-

portation Systems,” Sensors (Basel, Switzerland), vol. 18, no. 4, p. 1212, 2018.

[2] E. Marti, M. A. de Miguel, F. Garcia, and J. Perez, “A Review of Sensor Technologies for Perception in

Automated Driving,” IEEE Intelligent Transportation Systems Magazine, vol. 11, no. 4, pp. 94–108,

2019.

[3] B. Shahian Jahromi, T. Tulabandhula, and S. Cetin, “Real-Time Hybrid Multi-Sensor Fusion Frame-

work for Perception in Autonomous Vehicles,” Sensors, vol. 19, no. 20, 2019.

[4] A. S. Mohammed, A. Amamou, F. K. Ayevide, S. Kelouwani, K. Agbossou, and N. Zioui, “The Percep-

tion System of Intelligent Ground Vehicles in All Weather Conditions: A Systematic Literature Review,”

Sensors, vol. 20, no. 22, 2020.

[5] M. E. Warren, “Automotive LIDAR Technology,” in 2019 Symposium on VLSI Circuits, pp. C254–

C255, 2019.

[6] Y. Li and J. Ibanez-Guzman, “Lidar for Autonomous Driving: The Principles, Challenges, and Trends

for Automotive Lidar and Perception Systems,” IEEE Signal Processing Magazine, vol. 37, no. 4,

pp. 50–61, 2020.

[7] R. Roriz, J. Cabral, and T. Gomes, “Automotive LiDAR Technology: A Survey,” IEEE Transactions on

Intelligent Transportation Systems, pp. 1–16, 2021.

[8] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and A. Mouzakitis, “A Survey on 3D

Object Detection Methods for Autonomous Driving Applications,” IEEE Transactions on Intelligent

Transportation Systems, vol. 20, no. 10, pp. 3782–3795, 2019.

[9] X. Peng and J. Shan, “Detection and Tracking of Pedestrians Using Doppler LiDAR,” Remote Sensing,

vol. 13, no. 15, 2021.

[10] W. Huang, H. Liang, L. Lin, Z. Wang, S. Wang, B. Yu, and R. Niu, “A Fast Point Cloud Ground Seg-

mentation Approach Based on Coarse-To-Fine Markov Random Field,” IEEE Trans. on Intell. Transp.

Syst., pp. 1–14, 2021.

[11] R. Karlsson, D. R. Wong, K. Kawabata, S. Thompson, and N. Sakai, “Probabilistic Rainfall Estimation

from Automotive Lidar,” 2021.

75

REFERENCES 76

[12] J. Jiménez, “Laser diode reliability: Crystal defects and degradation modes,” Comptes Rendus

Physique, vol. 4, 2003.

[13] W. C. Kwong, W. Y. Lin, G. C. Yang, and I. Glesk, “2-d optical-cdma modulation in automotive time-

of-flight lidar systems,” International Conference on Transparent Optical Networks, vol. 2020-July,

2020.

[14] T. Fersch, R. Weigel, and A. Koelpin, “A CDMA Modulation Technique for Automotive Time-of-Flight

LiDAR Systems,” IEEE Sensors Journal, vol. 17, no. 11, pp. 3507–3516, 2017.

[15] H. Lee, S. Kim, S. Park, Y. Jeong, H. Lee, and K. Yi, “Avm / lidar sensor based lane marking detec-

tion method for automated driving on complex urban roads,” IEEE Intelligent Vehicles Symposium,

Proceedings, 2017.

[16] M. Jokela, M. Kutila, and P. Pyykönen, “Testing and validation of automotive point-cloud sensors in

adverse weather conditions,” Applied Sciences, vol. 9, no. 11, 2019.

[17] J. R. Vargas Rivero, T. Gerbich, V. Teiluf, B. Buschardt, and J. Chen, “Weather Classification Using

an Automotive LIDAR Sensor Based on Detections on Asphalt and Atmosphere,” Sensors, vol. 20,

no. 15, p. 4306, 2020.

[18] P. H. Chan, G. Dhadyalla, and V. Donzella, “A Framework to Analyze Noise Factors of Automotive

Perception Sensors,” IEEE Sensors Letters, vol. 4, no. 6, pp. 1–4, 2020.

[19] R. Heinzler, P. Schindler, J. Seekircher, W. Ritter, and W. Stork, “Weather Influence and Classification

with Automotive Lidar Sensors,” IEEE Intelligent Vehicles Symposium, Proceedings, vol. 2019-June,

pp. 1527–1534, 2019.

[20] R. Heinzler, F. Piewak, P. Schindler, and W. Stork, “CNN-Based Lidar Point Cloud De-Noising in

Adverse Weather,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2514–2521, 2020.

[21] T.-H. Sang, S. Tsai, and T. Yu, “Mitigating Effects of Uniform Fog on SPAD Lidars,” IEEE Sensors

Letters, vol. 4, no. 9, pp. 1–4, 2020.

[22] T. Yang, Y. Li, Y. Ruichek, and Z. Yan, “LaNoising: A Data-driven Approach for 903nm ToF LiDAR

Performance Modeling under Fog,” in 2020 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 10084–10091, 2020.

[23] Y. Li, P. Duthon, M. Colomb, and J. Ibanez-Guzman, “What Happens for a ToF LiDAR in Fog?,” IEEE

Transactions on Intelligent Transportation Systems, vol. 22, no. 11, pp. 6670–6681, 2021.

[24] C. Goodin, D. Carruth, M. Doude, and C. Hudson, “Predicting the Influence of Rain on LIDAR in

ADAS,” Electronics, vol. 8, no. 1, p. 89, 2019.

[25] S. Hasirlioglu and A. Riener, “A General Approach for Simulating Rain Effects on Sensor Data in Real

and Virtual Environments,” IEEE Transactions on Intelligent Vehicles, vol. 5, no. 3, pp. 426–438,

2020.

REFERENCES 77

[26] M. Byeon and S. W. Yoon, “Analysis of Automotive Lidar Sensor Model Considering Scattering Effects

in Regional Rain Environments,” IEEE Access, vol. 8, pp. 102669–102679, 2020.

[27] J. P. Espineira, J. Robinson, J. Groenewald, P. H. Chan, and V. Donzella, “Realistic LiDAR With Noise

Model for Real-Time Testing of Automated Vehicles in a Virtual Environment,” IEEE Sensors Journal,

vol. 21, no. 8, pp. 9919–9926, 2021.

[28] N. Charron, S. Phillips, and S. L. Waslander, “De-noising of lidar point clouds corrupted by snowfall,”

in Proceedings - 2018 15th Conference on Computer and Robot Vision, CRV 2018, pp. 254–261,

2018.

[29] J. Wu, H. Xu, Y. Tian, R. Pi, and R. Yue, “Vehicle Detection under Adverse Weather from Roadside

LiDAR Data,” Sensors, vol. 20, no. 12, 2020.

[30] M. Ash, M. Ritchie, and K. Chetty, “On the application of digital moving target indication techniques

to short-range fmcw radar data,” IEEE Sensors Journal, vol. 18, 2018.

[31] H. Iqbal, A. Löffler, M. N. Mejdoub, D. Zimmermann, and F. Gruson, “Imaging radar for automated

driving functions,” International Journal of Microwave and Wireless Technologies, vol. 13, 2021.

[32] S. M. Patole, M. Torlak, D. Wang, and M. Ali, “Automotive radars: A review of signal processing

techniques,” IEEE Signal Processing Magazine, vol. 34, no. 2, pp. 22–35, 2017.

[33] C. H. Kuo, C. C. Lin, and J. S. Sun, “Modified microstrip franklin array antenna for automotive short-

range radar application in blind spot information system,” IEEE Antennas and Wireless Propagation

Letters, vol. 16, 2017.

[34] F. R. A. Zakuan, H. Zamzuri, M. A. A. Rahman, W. J. Yahya, N. H. F. Ismail, M. S. Zakariya, K. A.

Zulkepli, and M. ZulfaqarAzmi, “Threat assessment algorithm for active blind spot assist system using

short range radar sensor,” ARPN Journal of Engineering and Applied Sciences, vol. 12, 2017.

[35] M. Richards, J. Scheer, and W. Holm, Principles of modern radar: Basic principles. Institution of

Engineering and Technology, 2010.

[36] H. Wang, B. Wang, B. Liu, X. Meng, and G. Yang, “Pedestrian recognition and tracking using 3D

LiDAR for autonomous vehicle,” Robotics and Autonomous Systems, vol. 88, pp. 71–78, 2017.

[37] M. Parker, “Automotive radar,” Digital Signal Processing 101, pp. 253–276, 2017.

[38] F. Pfeiffer and E. M. Biebl, “Inductive compensation of high-permittivity coatings on automobile long-

range radar radomes,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, 2009.

[39] Y. Yu, W. Hong, H. Zhang, J. Xu, and Z. H. Jiang, “Optimization and implementation of siw slot

array for both medium- and long-range 77 ghz automotive radar application,” IEEE Transactions on

Antennas and Propagation, vol. 66, 2018.

[40] N. V. H and P. V. Venkatesh, “Comparison review on lidar vs camera in autonomous vehicle,” Inter-

national Research Journal of Engineering and Technology, 2020.

REFERENCES 78

[41] H. Rashed, E. Mohamed, G. Sistu, V. R. Kumar, C. Eising, A. El-Sallab, and S. Yogamani, “Generalized

object detection on fisheye cameras for autonomous driving: Dataset, representations and baseline,”

Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021, 2021.

[42] F. E. Sahin, “Long-range, high-resolution camera optical design for assisted and autonomous driving,”

Photonics, vol. 6, 2019.

[43] B. Mohammadian, M. Sarayloo, J. Heil, H. Hong, S. Patil, M. Robertson, T. Tran, V. Krishnan, and

H. Sojoudi, “Active prevention of snow accumulation on cameras of autonomous vehicles,” SN Ap-

plied Sciences, vol. 3, 2021.

[44] E. Synge, “XCI. A method of investigating the higher atmosphere,” The London, Edinburgh, and

Dublin Philosophical Magazine and Journal of Science, vol. 9, no. 60, pp. 1014–1020, 1930.

[45] M. A. Tuve, E. A. Johnson, and O. R. Wulf, “A new experimental method for study of the upper

atmosphere,” Journal of Geophysical Research, vol. 40, no. 4, p. 452, 1935.

[46] J. Ring, “The Laser in Astronomy,” New Scientist, vol. 344, 1963.

[47] A. K. Biswas and W. E. K. Middleton, “Invention of the Meteorological Instruments,” Technology and

Culture, vol. 12, no. 2, 1971.

[48] A. Süss, V. Rochus, M. Rosmeulen, and X. Rottenberg, “Benchmarking time-of-flight based depth

measurement techniques,” in Smart Photonic and Optoelectronic Integrated Circuits XVIII, vol. 9751,

p. 975118, 2016.

[49] G. Atanacio-Jiménez, J. J. González-Barbosa, J. B. Hurtado-Ramos, F. J. Ornelas-Rodríguez,

H. Jiménez-Hernández, T. García-Ramirez, and R. González-Barbosa, “LIDAR velodyne HDL-64E cal-

ibration using pattern planes,” International Journal of Advanced Robotic Systems, vol. 8, no. 5,

pp. 70–82, 2011.

[50] T. Raj, F. H. Hashim, A. B. Huddin, M. F. Ibrahim, and A. Hussain, “A survey on LiDAR scanning

mechanisms,” 2020.

[51] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner, “Three decades of driver

assistance systems: Review and future perspectives,” IEEE Intelligent Transportation Systems Mag-

azine, vol. 6, 2014.

[52] P. Wei, L. Cagle, T. Reza, J. Ball, and J. Gafford, “Lidar and camera detection fusion in a real-time

industrial multi-sensor collision avoidance system,” Electronics (Switzerland), vol. 7, 2018.

[53] S. Hasirlioglu, A. Kamann, I. Doric, and T. Brandmeier, “Test methodology for rain influence on auto-

motive surround sensors,” in 2016 IEEE 19th International Conference on Intelligent Transportation

Systems (ITSC), pp. 2242–2247, IEEE, 2016.

[54] T. Ogawa, H. Sakai, Y. Suzuki, K. Takagi, and K. Morikawa, “Pedestrian detection and tracking using

REFERENCES 79

in-vehicle lidar for automotive application,” in 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 734–

739, IEEE, 2011.

[55] K. Granstrom, S. Renter, M. Fatemi, and L. Svensson, “Pedestrian tracking using Velodyne data-

Stochastic optimization for extended object tracking,” in IEEE Intelligent Vehicles Symposium, Pro-

ceedings, pp. 39–46, 2017.

[56] C. Lundquist, K. Granstrom, and U. Orguner, “An Extended Target CPHD Filter and a Gamma Gaus-

sian Inverse Wishart Implementation,” IEEE Journal of Selected Topics in Signal Processing, vol. 7,

no. 3, pp. 472–483, 2013.

[57] L. Guo, H. Yihua, L. Zheng, and X. Shilong, “Research on Infulence of Acousto-Optic Frequency

Shifter to Micro-Doppler Effect Detection,” Acta Optica Sinica, vol. 35, no. 2, p. 0212006, 2015.

[58] K. Kidono, T. Miyasaka, A. Watanabe, T. Naito, and J. Miura, “Pedestrian recognition using high-

definition lidar,” IEEE Intelligent Vehicles Symposium, Proceedings, 2011.

[59] S. Hasirlioglu, I. Doric, A. Kamann, and A. Riener, “Reproducible Fog Simulation for Testing Automo-

tive Surround Sensors,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), vol. 2017-

June, pp. 1–7, IEEE, 2017.

[60] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in 2011 IEEE International Confer-

ence on Robotics and Automation (ICRA), pp. 1–4, 2011.

[61] H. Balta, J. Velagic, W. Bosschaerts, G. De Cubber, and B. Siciliano, “Fast Statistical Outlier Removal

Based Method for Large 3D Point Clouds of Outdoor Environments,” IFAC-PapersOnLine, vol. 51,

no. 22, pp. 348–353, 2018.

[62] J. I. Park, J. Park, and K. S. Kim, “Fast and Accurate Desnowing Algorithm for LiDAR Point Clouds,”

IEEE Access, vol. 8, pp. 160202–160212, 2020.

[63] R. Roriz, A. Campos, S. Pinto, and T. Gomes, “DIOR: A Hardware-assisted Weather Denoising Solution

for LiDAR Point Clouds,” IEEE Sensors Journal, vol. 22, no. 2, pp. 1621 – 1628, 2021.

[64] “Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit.” [Xilinx, Online; accessed 2021-12-16].

[65] “ROS - Robot Operating System.” ROS, [Online; accessed 2021-12-16].

[66] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” Proceedings - IEEE International

Conference on Robotics and Automation, 2011.

[67] “Qt | Cross-platform software development for embedded & desktop.” Qt, [Online; accessed 2021-

12-16].

[68] “Openembedded.org.” Openembedded, [Online; accessed 2021-12-16].

[69] L. Foundation, “Yocto project quick start,” 2015.

[70] “Block Memory Generator.” Xilinx, [Online; accessed 2021-12-16].

	List of Figures
	List of Tables
	Glossary
	Introduction
	Main Goals
	Document Structure

	Background and State of the Art
	Automotive Perception Sensors
	RADAR
	Camera
	LiDAR

	Automotive LiDAR
	LiDAR Working Principle
	LiDAR Applications
	LiDAR Challenges

	Point Cloud Weather Denoising Methods
	Voxel-Grid Filter
	Radius Outlier Removal
	Statistical Outlier Removal
	Fast Cluster Statistical Outlier Removal
	Dynamic Radius Outlier Removal
	Low-Intensity Outlier Removal
	Discussion

	Dynamic low-Intensity Outlier Removal

	Platform and Tools
	Reconfigurable Technology
	Robot Operating System
	Point Cloud Library
	Qt
	OpenEmbedded
	Advanced LiDAR Framework for Automotive

	ALFA-Pd Implementation
	ALFA-Pd Software
	ALFA-Pd Memory
	BRAM Implementation
	DDR Implementation

	ALFA-Pd Hardware
	ALFA-DVC

	Evaluation and Results
	Evaluation of Software-based Denoising Algorithms
	System Configuration
	Voxel-Grid
	Statistical Outlier Removal
	Fast Cluster Statistical Outlier Removal
	Radius Outlier Removal
	Dynamic Radius Outlier Removal
	Low-Intensity Outlier Removal
	Dynamic low-Intensity Outlier Removal
	Discussion

	Hardware-Accelerated Denoising Algorithms
	Dynamic Radius Outlier Removal
	Low-Intensity Outlier Removal
	Dynamic low-Intensity Outlier Removal
	Hardware Resources

	Hardware vs Software Implementations
	Closing Discussion

	Conclusion
	Future Work

	References

