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ADVANCES IN GENERAL RELATIVISTIC ELASTICITY -

A MATHEMATICAL APPROACH

Abstract

In recent years there has been increasing consideration of and interest in general rela-

tivistic elasticity. In this framework, the elasticity difference tensor has been introduced

in the literature by Karlovini and Samuelsson (2003) [35]. This tensor contains infor-

mation about the space-time connection and the material metric.

In this thesis, a mathematical analysis is presented for the elasticity difference tensor.

Some of its properties are investigated and a tetrad formulation is given for this tensor.

Furthermore, the elasticity difference tensor is decomposed along the eigenvectors of

the pulled-back material metric, thereby obtaining three second order tensors. The

following eigenvalue-eigenvector problem is carried out: It is studied under which con-

ditions the eigenvectors of the pulled-back material metric remain also eigenvectors for

those three second order tensors. The corresponding eigenvalues are also presented.

Another topic which is investigated in this thesis is to consider two conformally related

material metrics and study the consequences on relativistic elastic quantities, such as

the constant volume shear tensor, the energy-momentum tensor and the elasticity dif-

ference tensor. Relations between these objects associated with both material metrics

are obtained and the previously mentioned eigenvalue-eigenvector problem is studied

in this context.

Due to the fact that neutron stars are the objects of study in astrophysical problems

in general relativistic elasticity, and since neutron stars can be modelled by spherically

and axially symmetric metrics, the results are applied to spherically symmetric space-

times and to a particular class of axially symmetric space-times.

Moreover, existing results for non-static spherically symmetric space-times with a flat

material metric are generalized by considering a non-flat material metric conformally

related to the flat one. Thereby the Einstein field equations are rewritten for the new

configuration.
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Desenvolvimentos na elasticidade em relatividade geral - uma

abordagem matemática

Resumo

A área de elasticidade em relatividade geral tem, recentemente, despertado interesse

na comunidade cient́ıfica, traduzido no aparecimento de trabalhos publicados. Neste

contexto, o “elasticity difference tensor” foi introduzido na literatura por Karlovini

e Samuelsson (2003) [35]. Este tensor contém em si informação sobre a conexão do

espaço-tempo e sobre a métrica material.

Na presente tese apresenta-se um estudo matemático sobre o “elasticity difference ten-

sor”: são exploradas algumas propriedades; obtém-se uma formulação para este tensor

em termos de um tetrado; o “elasticity difference tensor” é decomposto ao longo dos

vectores próprios do “pull-back” da métrica material, obtendo-se desta forma três ten-

sores simétricos de segunda ordem. Para estes tensores são estudadas as condições para

que os vectores próprios da métrica material permaneçam como vectores próprios para

os mesmos tensores. Também se apresentam os valores próprios correspondentes.

Um outro tema abordado nesta tese é o seguinte: Considerando duas métricas ma-

teriais conformemente relacionadas, são estudadas as consequências em quantidades

elásticas, sendo as mais relevantes o “constant volume shear tensor”, o tensor de im-

pulsão-energia e o “elasticity difference tensor”. Neste contexto são obtidas relações

entre estes objectos associados às duas métricas e é explorado o problema de valores e

vectores próprios, descrito anteriormente.

Devido ao facto de as estrelas de neutrões serem objecto de estudo na elasticidade

relativista e estas serem modeladas por métricas esfericamente simétricas e métricas

simétricas em relação a um eixo, os resultados são aplicados a espaços-tempo represen-

tados por estas métricas.

Nesta tese também se expõem os resultados obtidos por generalização de resultados

existentes para espaços-tempo não-estáticos e esfericamente simétricos com métrica

material plana, considerando uma métrica material não plana. Também são reescritas

as equações de Einstein para esta nova configuração.
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Chapter 1

Introduction

1.1 State of the art

In recent years there has been a growing interest in the theory of elasticity to the theory

of general relativity. Based on the classical Newtonian elasticity theory going back to

the 17th century and Hooke’s law, some authors began to adapt the theory of elastic-

ity to relativity due to the necessity to study many astrophysical problems such as the

interaction between the gravitational field and an elastic solid body in the description

of stellar matter, as well as to understand the interaction of gravitational waves and

gravitational radiation and to study deformations of neutron star crusts. One of the

first elastic phenomenon considered in the relativistic context was Weber’s observation

of the elastic response of an aluminium cylinder to gravitational radiation and the

detection of gravitational waves: Weber (1960,1961,1969) [68],[69],[70]. Neutron stars

have attracted attention since it has been argued, Pines (1971) [56], that the crusts of

neutron stars are in elastic states and since the existence of a solid crust has been estab-

lished, and there has been speculation on the possibility of solid cores in neutron stars,

Shapiro and Teukoplsky (1983) [61], McDermott et al. (1988) [50], Haensel (1995) [30].

There were many attempts to formulate a relativistic version of elasticity theory whereby

laws of non relativistic continuum mechanics had to be reformulated in a relativistic

way. The study of elastic media in special relativity was first carried out by Noether
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(1910) [52], Born (1911) [8], Herglotz (1911) [33] and Nordström (1911) [53]. The

discussion of elasticity theory in general relativity started with Synge (1959) [64], De

Witt (1962) [71], Rayner (1963) [57] and Bennoun (1964,1965) [6],[7]. De Witt (1962)

[71] worked on the development of a fully relativistic theory of perfect elasticity by

reformulating the theory of Herglotz (1911) [33], who developed the formal mathemat-

ics to place the theory of the elastic medium in the context of special relativity. In

classical elasticity, the strain (or deformation) of an elastic body is measured relative to

a “natural” (unstrained) state, and the basic stress-strain relation is a linear equation

(Hooke’s law) connecting stress and strain. Synge’s and Bennoun’s presentations are

based on a modified Hooke’s law, which states that the rate of stress is proportional

to the rate of strain. These authors avoided defining an absolute state of strain. In

their opinion it was impossible to carry over the classical concept of strain into general

relativity, because the unstrained or “natural” state of an elastic body is unattainable

since gravity cannot be turned off. Also based on this point of view was the work done

by Papapetrou (1972) [54], who investigated vibrations of an elastic body induced by

a gravitational wave. Rayner (1963) [57] provided a Hookean perfect elasticity the-

ory with a linear stress-strain relationship and Bennoun (1965) [7], a general, but not

necessarily linear elasticity theory. As pointed out by Hernandez (1970) [34], Rayner’s

measure of strain was not well defined and was somewhat arbitrary. Hernandez empha-

sized that there is no problem in considering the concept of absolute strain in general

relativity because strain is a microscopic quantity in elasticity theory; and for each mi-

croscopic portion of the body, one can imagine removing that small portion of the body

to a distant point, where it is free from all stresses, and where the natural state of the

infinitesimal piece of the elastic material can be seen. There is no natural state for the

body, but there is for the material of the body. Bressan (1964) [9] studied wave fronts

in nonlinear elastic solids. Glass and Winicour (1972) [29] extended Rayner’s theory

by basing it upon a generalized Hooke’s law for prestressed materials, which states

that stress minus equilibrium stress is proportional to strain. Roy et al. (1973) [60]

presented an attempt to apply Rayner’s theory of elasticity in general relativity for the

2



construction of realistic models by obtaining a general solution of the field equations of

general relativity theory for an elastic sphere of constant density. In 1973, the authors

Carter and Quintana (1972) [19] developed a relativistic formulation of the concept of

a perfectly elastic solid and constructed a quasi-Hookean perfect elasticity theory suit-

able for applications to high-pressure neutron star matter, based on linearization with

respect to a shear tensor instead of a strain tensor. These authors presented a non-

linear theory of elasticity adapted to general relativity. Carter (1980) [18] noted later

that the basic theoretical framework of their theory had already been given by Souriau

(1965) [62]. The theory developed by Carter and Quintana served as a starting point

for further studies and applications in this field some of which are listed below. Carter

and Quintana (1975) [20] also showed how to calculate stationary elastic rotational

deformations of a relativistic neutron star model in the sense of Carter and Quintana

(1972) [19]. Carter (1973) [17] derived characteristic equations for sound wave fronts

in an elastic solid in terms of the formalism given in Carter and Quintana (1972) [19].

Carter (1073) [16] applied perturbation analysis to the theory of a general relativistic

perfectly elastic medium as developed by Carter and Quintana (1972) [19]. Recently,

Karlovini and Samuelsson (2003) [35] extended the presentation given by Carter and

Quintana including new methods, results and modifications. Karlovini et al. (2004)

[37] studied radial perturbations of general relativistic stars with elastic matter sources

and Karlovini and Samuelsson (2004) [36] presented a recipe for obtaining stationary

rigid motion exact solutions to the Einstein equations with elastic matter source.

Maugin (1971,1978) [47], [49] dealt with a nonlinear elastic medium in interaction with

the gravitational field and with electromagnetic fields; he obtained field equations for a

nonlinear elastic magnetized homogeneous solid in the frame of general relativity and

he developed a theory of general relativistic magnetoelasticity valid under conditions

of extremely high pressure. Maugin (1977) [48] also studied wave propagation speeds

in initially stressed nonlinear relativistic elastic solids.

Kijowski and Magli (1992,1997) [39],[41] presented a gauge-type theory of relativistic

elastic media and a generalization in Kijowski and Magli (1998) [42]. The theory is

3



free of any assumption about the existence of a global relaxation state of the mate-

rial. Kijowski and Magli (1992) [46] and Magli (1993) [45], [44] also studied interior

solutions of the Einstein field equations in elastic media. A similar approach to that

of Kijowski and Magli (1992) [39] was formulated by Cattaneo and Gerardi (1975) [23]

and Cattaneo (1980) [22] based on the assumption that there exists a global relaxation

state of the material when the gravitational interaction is hypothetically “switched

off”; this, however, is poorly justified from the physical point of view and it is not

relativistically invariant as remarked by Kijowski and Magli. Tahvildar-Zadeh (1998)

[65] presented relativistic elastodynamics with small shear strains using a variational

formulation. Recently, Beig and Schmidt (2003) [1] obtained existence and uniqueness

theorems for elasticity in the setting of Einstein’s gravity. A general existence theo-

rem covering the case of elasticity has also been announced by Christodoulou (2000)

[24]. Beig and Schmidt (2003) [2] showed the existence of static solutions describing

elastic bodies deformed by their own Newtonian gravitational field and, later, Beig

and Schmidt (2005) [3] established the existence of elastic bodies deformed under rigid

rotation. Park (2000) [55] established and proved existence theorems for the case of

spherically symmetric static solutions for elastic bodies. Calogero and Heinzle (2007)

[11] studied the dynamics of Bianchi type I elastic space-times.

Most of the relativistic reformulations identify a material body with a three-dimensional

material space manifold. Four-dimensional material space manifolds have been used

by Kijowski et al. (1990) [43] and Kijowski and Magli (1998) [42] to describe thermo-

elastic continua where the extra dimension is associated with temperature rather than

time.

1.2 Objectives

The state of the art reveals that, in recent years, there has been an increasing consid-

eration of general relativistic elasticity. Due to the development in astrophysics and

applications to neutron stars it is of considerable interest to extend and enlarge infor-
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mation in the area of general relativistic elasticity.

The main goal of this thesis is to provide advances in the area of general relativistic

elasticity by contributing to it with this present work. The area of general relativistic

elasticity is approached mathematically in the considered study topics.

The main contributions of this thesis are given to the following topics. The recognition

and importance of general relativistic elasticity motivate a detailed study of quantities

used in this context; in this thesis the mathematical investigation is concentrated on

the elasticity difference tensor defined in Karlovini and Samuelsson (2003) [35]. The

research area also motivates us to consider important subjects in general relativity and

to adapt them to general relativistic elasticity in order to study them in this frame-

work. The conformal transformations represent one of these topics. A first step of an

approach in this field is given in this thesis. Furthermore, applications are carried out

for spherically symmetric and axially symmetric space-times, since these space-times

are used to model neutron stars. Also, existing results about non-static spherically

symmetric space-time metrics with flat material metric are generalized by working

with a non-flat material metric.

Some of the contributions, in particular the results presented in Chapter 3 and Chapter

5, namely the analysis of the elasticity difference tensor and the examples, appear in

the publication Vaz and Brito (2008) [66]. Another article Brito, Vaz and Carot (2008)

[10], which contains results obtained for non-static spherically symmetric metrics, given

in Chapter 5 and Chapter 6, is in advanced preparation. Also a third article about

conformal transformations is being developed, to which the results of Chapter 4 will

contribute.

1.3 Outline

This thesis is structured as follows. Chapter 1 contains the state of the art, a descrip-

tion of the objectives of this thesis and its outline.

Chapter 2 introduces terminology and reviews basic concepts of the theory of relativis-

5



tic elasticity which are relevant for the work presented in this thesis. The configuration

map linking the space-time and the material space is introduced. The relativistic defor-

mation gradient, associated with the configuration mapping, is an important element

to pull-back tensors from the material space to the space-time. The material metric

and the projection tensor are defined. These tensors are fundamental for the construc-

tion of the elasticity difference tensor. Two measures of strain and shear appearing in

the context of relativistic elasticity are presented: the relativistic strain tensor and the

constant volume shear tensor. A formulation based on the eigenvalues and the eigen-

vectors of the pulled-back material metric is described, which later plays an important

role for the analysis of the elasticity difference tensor. The expression of the energy-

momentum tensor for elastic matter is given. This chapter ends with the exposition of

the elasticity difference tensor.

Chapter 3 is entirely devoted to the elasticity difference tensor by providing a mathe-

matical analysis of this challenging object. First of all, basic properties are explained.

Then it is shown how the elasticity difference tensor arises from the difference tensor

when one considers two specific metrics. In this context an interesting expression is

obtained, which indicates how to write the difference of the projected Riemann tensors

associated with the two metrics entirely in terms of the elasticity difference tensor.

These first results motivate the further study of this tensor in the future. A tetrad

formulation of the elasticity difference tensor is presented and its traces are calculated.

The elasticity difference tensor is decomposed along the eigenvectors of the pulled-back

material metric into three second order tensors. The following eigenvalue-eigenvector

problem is carried out for these tensors. It is studied under which conditions the eigen-

vectors of the pulled-back material metric remain also eigenvectors for the three second

order tensors. The corresponding eigenvalues are then presented.

Chapter 4 provides a first step in the field of conformal transformations and confor-

mally related metrics in general relativistic elasticity. It concerns the simplest case.

Two conformally related material metrics are considered in the same space-time. Re-

lations between some relativistic quantities are found. Also in this chapter, attention

6



is focussed on the elasticity difference tensor and, again, the eigenvalue-eigenvector

problem is analysed in this case.

Chapter 5 contains applications of the results obtained in the previous chapters to con-

crete examples. Spherically symmetric and axially symmetric space-times are chosen,

since these space-times are used in the framework of relativistic elasticity to model

neutron stars. The software Maple GRTensor was used to perform some calculations.

Another topic in general relativistic elasticity is investigated, namely, existing results

for a given space-time and a flat material metric are generalized by considering a non-

flat material metric conformally related with the flat one. Thereby the Einstein field

equations are rewritten for this new configuration. These results appear in Chapter 6.

Finally, in Chapter 7, general conclusions of the work contained in this thesis are

drawn and some attractive study topics are mentioned, which arise immediately from

the ideas and methods which are presented here. These new problems reinforce the

motivation and the interest for continuing this investigation which has been started in

general relativistic elasticity.

7
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Chapter 2

Elasticity in General Relativity -

General Results

This chapter provides a review of the theory of general relativistic elasticity by ex-

plaining its basic concepts. Thereby it is mainly concentrated on presenting elements

- definitions and formulations - which are relevant for the work presented here.

When searching for information about the theory of general relativistic elasticity in

published articles one is faced with the problem of finding different notations, designa-

tions and definitions occasionally for the same relativistic elastic object, for example

the strain tensor is defined in various manners.

From the disposal of various formalisms of general relativistic elasticity, definitions

and formulations have to be selected according to the requirements of the work. Here,

the main objective is to enlarge information and results about a specific tensor, the

elasticity difference tensor, defined by Karlovini and Samuelsson (2003) [35] in the

framework of general relativistic elasticity; to approach the problem of having two con-

formally related material metrics by studying consequences on some relativistic elastic

quantities; and to reconsider a case studied by Magli (1993) [45] in order to generalize

it. Therefore, the exposition given in this chapter follows the orientations proposed by

Karlovini and Samuelsson (2003) [35] on the one hand, who pursued partly the work

of Carter and Quintana (1972) [19], and by Magli (1993) [45] on the other hand.
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This chapter starts with the set-up of the theory based on the existence of a configura-

tion mapping linking the space-time and the material space. An important element is

the relativistic deformation gradient used to pull-back tensors from the material space

to the space-time. Fundamental tensors like the material metric and the projection

tensor are defined needed to construct later the elasticity difference tensor. A formu-

lation based on the eigenvalues and eigenvectors of the pulled-back material metric is

presented. This formulation plays an important role for the analysis of the elasticity

difference tensor in Chapter 3. The definition of the energy-momentum tensor in the

context of general relativistic elasticity is given. Finally, the construction of the elas-

ticity difference tensor is explained, one of the central points in this presentation, to

which attention is focused in the next chapter.

2.1 Basic concepts

Let M be the general relativistic space-time, a four-dimensional manifold endowed with

a Lorentz metric g of signature (−,+,+,+), assumed to be time-orientable. Suppose

that the space-time is filled with a continuous material. Let {ωa}, a = 0, 1, 2, 3, be a

coordinate system defined on M .

In order to distinguish tensors defined on M from tensors defined on the material space,

which is the next topic to be presented, the following coordinate index convention is

used throughout this work: lowercase Latin indices a,b,... take the values 0,1,2,3 and

denote space-time indices; capital Latin indices A,B,... range from 1 to 3 and denote

material indices.

Thus, tensor components written with lowercase Latin indices represent space-time

tensors and tensors with capital Latin indices are called material tensors. The material

tensors are defined on the material space X, which is described in the next subsection.

Later, in order to distinguish tetrad indices from coordinate indices, the following index

convention consisting of Greek letters is introduced: Orthonormal frame space-time

indices are represented by letters from the second half of the Greek alphabet (µ, ν, ρ... =
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0, 1, 2, 3) and orthonormal frame spatial indices are denoted by letters from the first

half of the Greek alphabet (α, β, γ... = 1, 2, 3). The Einstein summation convention

and the notation for the symmetric part of tensors will be applied to coordinate indices

only, unless otherwise stated.

Other notation conventions used in this thesis are the following: εABC and εabcd repre-

sent permutation symbols, respectively defined by

εABC =


+1 if ABC is an even permutation of 123

−1 if ABC is an odd permutation of 123

0 if two or more indices are equal

and

εabcd =


+1 if abcd is an even permutation of 0123

−1 if abcd is an odd permutation of 0123

0 if two or more indices are equal.

The symbol δab denotes the Kronecker delta.

2.1.1 Material Space

The material space X is a three-dimensional manifold, representing an abstract col-

lection of idealized “molecules”, or particles, of the material. The manifold X is also

called the “body” or “body manifold”. Each point in X represents a particle of the

material. The coordinates on X are denoted by {ξA}, A = 1, 2, 3. The material space

can be equipped with various types of tensor fields which characterize the structure of

the material in a reference state. The most important of these tensor fields is certainly

the material metric KAB, measuring distances between particles in the locally relaxed

state of matter. Another fundamental tensor defined on X is the particle density form

nABC . Integrating this three-form over a certain volume in X yields the number of

particles contained in that volume.
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2.1.2 Configuration mapping

The space-time configuration of the material is described by a Ck (k > 1) mapping

Ψ : M −→ X,

the configuration mapping, which associates to each point p of the space-time M

the particle p̄ = Ψ(p) ∈ X of the material coinciding with p at a given time.

Using the coordinate systems defined previously, the configuration of the material can

be described by the fields ξA = ξA(ωa).

Associated with the configuration mapping, there are two important tools to work out

the theory, namely the operators push-forward Ψ∗ and pull-back Ψ∗.

The operator

Ψ∗ : TpM −→ TΨ(p)X

maps a vector v ∈ TpM to a vector Ψ∗v ∈ TΨ(p)X. The pushforward Ψ∗v of the vector

v by Ψ is defined by1

(Ψ∗v)(f) = v(f ◦Ψ),

where f is a function f : X −→ R and f ◦Ψ = Ψ∗f .

The operator

Ψ∗ : T ∗
Ψ(p)X −→ T ∗

pM

takes one-forms at Ψ(p) to one-forms at p. The pullback Ψ∗$ ∈ T ∗
pM of the one-form

$ ∈ T ∗
Ψ(p)X is defined by its action on a vector v:

(Ψ∗$)(v) = $(Ψ∗v).

These definitions can be extended to higher rank tensors. The pushforward of con-

travariant tensors S of type (k, 0) is defined by

(Ψ∗S)($1, ..., $k) = S(Ψ∗$1, ...,Ψ
∗$k)

1See e.g. Wald (1984) [67] for a more detailed description of these standard definitions.
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and the pullback of covariant tensors T of type (0, l), by

(Ψ∗T )(v1, ..., vl) = T (Ψ∗v1, ...,Ψ∗vl).

2.1.3 Relativistic deformation gradient

The mapping

Ψ∗ : TpM −→ TΨ(p)X

gives rise to a (3× 4) matrix in the chosen coordinate charts ωa and ξA. This matrix

is called the relativistic deformation gradient, whose entries are

ξAa =
∂ξA

∂ωa
,

representing the derivatives of the spatial coordinates with respect to the space-time

coordinates.

The pushforward and the pullback operators can be described with the use of this

matrix:

Ψ∗v
a =

∂ξA

∂ωa
va = vA

and

Ψ∗$A =
∂ξA

∂ωa
$A = $a.

The relativistic deformation gradient is applied to material tensors to perform the

pull-back operation and to space-time tensors to perform the pushforward operation,

according to the previous definitions, in the following way.

The operator push-forward Ψ∗ takes contravariant tensors from M to X:

Ψ∗t
ab... =

∂ξA

∂ωa
∂ξB

∂ωb
· · · tab... = tAB...,

and the operator pull-back Ψ∗ takes covariant tensors from X to M :

Ψ∗tAB... =
∂ξA

∂ωa
∂ξB

∂ωb
· · · tAB... = tab....

It is required that the relativistic deformation gradient has maximal rank, dim(ImΨ∗) =

3, and that its Kernel is an one-dimensional timelike subspace of TpM , ∀p ∈ M :
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dim(KerΨ∗) = 1. Since the space-time is time orientable, one can choose a generator

ua of the Kernel such that:

u0 > 0, uaua = −1 and uaξBa = 0. (2.1)

Notice that for each p̄ ∈ X, Ψ−1(p̄) is an integral curve of u, the worldline of the

particle p̄.

2.1.4 Matter velocity field

The vector field ua, whose components are uniquely determined by the conditions (2.1),

namely

u0 > 0

uaua = −1

uaξBa = 0,

is called the velocity field of the matter or the matter four-velocity.

It is well known that the covariant derivative of a timelike unit vector field u can be

decomposed as follows2

ua;b = −u̇aub + ua;ch
c
b = −u̇aub +

1

3
Θhab + σab + ωab, (2.2)

where u̇a denotes the acceleration vector, hab = gab+uaub, σab is the shear tensor field,

ωab, the antisymmetric vorticity tensor field and Θ, the expansion scalar field for the

congruence associated with u. These kinematical quantities are defined by

u̇a = ua;bu
b (2.3)

Θ = ua;a (2.4)

σab = u(a;b) + u̇(aub) −
1

3
Θhab (2.5)

ωab = u[a;b] + u̇[aub], (2.6)

2See Ehlers (1993) [25] or Stephani et al. (2003) [63].
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where round brackets and square brackets enclosing indices denote, as usual, sym-

metrization and anti-symmetrization, respectively.

2.1.5 Particle density

Following Karlovini and Samuelsson (2003) [35], let nabc = Ψ∗nABC be the pull-back of

the particle density form and εabcd be the space-time volume form associated with gab.

The flowline tangential particle current is defined by

na =
1

3!
εabcdnbcd. (2.7)

The particle current satisfies the continuity equation ∇an
a = 0 and is proportional to

u, i.e. na = nua. The quantity n, satisfying n =
√
−nana, is the particle density.

Defining the spatial volume form by εabc = εabcdu
d, from (2.7) it follows that

nabc = nεabc. (2.8)

The relation between the particle density and the material metric is shown later in

Section 2.1.11.

2.1.6 Material metric

As stated before, the material metric KAB is a second order symmetric tensor with

signature (+,+,+) defined on the material space. This Riemannian metric describes

the ‘would be” rest-frame space distances between adjacent particles measured in the

locally relaxed state of the material3. This state can be understood as follows. Con-

sidering an infinitesimal portion of the material, this portion will tend spontaneously

to a relaxed state, where no external forces act on it. At the locally relaxed state the

influence of the rest of the material, possibly prestressed, is eliminated. A material

is said to be prestressed if it corresponds to a curved material metric. The flat, Eu-

clidean metric corresponds to non prestressed materials and is the simplest example of

a material metric.
3See e.g. Kijowski and Magli (1997) [41], Kijowski and Magli (2005) [38].
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2.1.7 Pulled-back material metric

The pull-back of the material metric

kab = Ψ∗KAB = ξAa ξ
B
b KAB (2.9)

is a Riemannian metric tensor on the subspaces of TpM orthogonal to ua. The pulled-

back material metric is symmetric and satisfies

kabu
a = 0 (2.10)

and

Lukab = 0, (2.11)

so that k is Lie dragged by u.

For an arbitrary tensor field T a1...ak
b1...bl

the Lie derivative is defined by

LuT a1...ak
b1...bl

= ucT a1...ak
b1...bl;c

−
k∑
i=1

T a1...c...ak
b1...bl

uai;c +
l∑

j=1

T a1...ak
b1...c...bl

uc;bj .

The two conditions (2.10) and (2.11) are consequences of (2.9). Since uaξAa = 0, the

condition (2.10) follows immediately. To prove the second condition, first, rewrite

(2.11), using the definition of the Lie derivative and (2.10), as

Lukab = uc(kab,c − kac,b − kbc,a),

where a comma denotes a partial derivative. Then, substituting (2.9) into the last ex-

pression and from ucξCc = 0, uc
∂KAB

∂ωc
= ucξCc

∂KAB

∂ξC
= 0 and from the fact that second

partial derivatives commute, one concludes that Lukab = 0.

The condition (2.11) means that the material distance between particles remains con-

stant along the matter flow. In this case, the material is said to have no memory4.

More precisely, it means that extracting an infinitesimal portion of the material and

letting it relax, in order to achieve a description of the particles’ distance in the locally

relaxed state where the material is free from external forces, leads to the same distance

4See Kijowski and Magli (1994) [40].
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between the particles, independently of the moment at which the portion has been

extracted.

2.1.8 Projection tensor

The projection tensor is the second order symmetric tensor defined by

hab = gab + uaub, (2.12)

associated with the matter velocity field u. It is a Riemannian metric tensor on the

subspaces of TpM orthogonal to ua and clearly satisfies habu
a = 0. A relevant task of

the projection tensor consists in decomposing tensor fields ta... b..., defined on M , into

components perpendicular to the matter velocity field by projecting them orthogonally

to u:

T c... d... = hc a · · ·hb d ta... b....

In this way, the tensor field T c... d... is such that T c... d...uc = · · · = T c... d...u
d = 0.

2.1.9 Relativistic strain tensor

In the relativistic literature different definitions are proposed for the strain tensor - a

tensor which measures the state of strain of the material. Most of them are based on

the idea that the material is locally relaxed, or unstrained, at a point x ∈M if and only

if the material metric coincides with the physical metric on the subspace orthogonal

to ua, in which case

hab = kab, (2.13)

i.e. the pulled-back material metric is equal to the projection tensor.

Following Cattaneo (1973) [21], Maugin (1978) [49], Magli (1993) [45] and [44], the

strain tensor is defined by

sab =
1

2
(hab − kab). (2.14)
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This tensor measures the deviation of the material from the unstrained state, or locally

relaxed state, by comparing the value of hab with the value of the pulled-back material

metric kab. Therefore, the material is said to be in an unstrained state, or locally

relaxed, if the strain tensor vanishes.

The strain tensor can be rewritten as

sab =
1

2
(gab − g̃ab), (2.15)

where

g̃ab = gac(kcb − ucub) (2.16)

is called the symmetric strain operator5.

The operator g̃ab and three invariants of the strain tensor defined by

I1 =
1

2
(Trg̃ − 4)

I2 =
1

4

[
Trg̃2 − (Trg̃)2]+ 3

I3 =
1

2
(detg̃ − 1)

(2.17)

have been used by Magli (1993) [45] to rewrite the energy-momentum tensor as will be

seen in Section 2.1.12.2.

These invariants are related to the coefficients of the characteristic polynomial of g̃ab

in the following way:

det(g̃ab − λδab) =(1− λ)det(kab − λδab) =

λ4 − (2I1 + 4)λ3 − 2I2λ
2 − (2I3 − 2I2 − 2I1 + 4)λ+ 2I3 + 1.

Carter and Quintana (1972) [19] give a more detailed description of the unstrained

state, by explaining that this state, which the Hookean elasticity theory is based on,

is a locally relaxed state of the material in the sense that at each point in X there is a

particular value κab of the projection tensor hab for which the energy per particle ε is

5See e.g. Magli (1993) [44].
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minimum. This tensor, κab, is designated as unstrained reference tensor.

Together with hab, κab builds the Lagrangian strain tensor

eab =
1

2
(hab − κab). (2.18)

However, the same authors avoided using a strain tensor and introduced a shear tensor

for the reasons explained in the next section.

2.1.10 Constant volume shear tensor

Carter and Quintana claimed that the theory using the unstrained reference tensor,

the value of the projection tensor for which the energy per particle takes a minimum

value, and the Lagrangian strain tensor (2.18), based on the Hookean elasticity theory

is inadequate for the description of solid matter at high pressures occurring in the

interior of neutron stars, because a fully relaxed state may not exist. For example the

crystalline structure in neutron star crusts would break down by relaxing that crystal.

Under these circumstances it is impossible to define the unstrained reference tensor

and the Lagrangian strain tensor. To solve this problem, Carter and Quintana (1972)

[19], followed by Karlovini and Samuelsson (2003) [35], suggested considering states

in which the material has not an absolute minimum of energy per particle ε0, but a

minimum by restricting the constant particle number density n. This state is defined

as the unsheared state.

Consider a family of positive definite tensor fields ηAB(n) parameterized by n. For the

unsheared state with particle number density n, the value of ηAB(n) represents the

value of hAB in which ε has the minimum value ε̌ for that particular value of n. The

tensor ηAB is such that gACηCB = δAB for the unsheared state and gAC = η−1AC .

In this case, the constant volume shear tensor sab defined as6

sab =
1

2
(hab − ηab) (2.19)

6See Carter and Quintana (1972) [19], Karlovini and Samuelsson (2003) [35].
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is used to measure deviations from the state of minimum energy at fixed particle number

density n. It gives the difference between the actual value of hab and the corresponding

value ηab = Ψ∗ηAB for the unsheared state at the same volume, where ηab describes

the most relaxed state at a given fixed particle density n. The constant volume shear

tensor vanishes for the unsheared state.

Let εABC be the volume form of ηAB, its pull-back coincides with the spatial volume

form Ψ∗εABC = εabc. From (2.8), it turns out that the relation between the particle

density form nABC and εABC is given by

nABC = nεABC . (2.20)

The authors Karlovini and Samuelsson (2003) [35] defined for reasons of convenience

the tensor KAB as being conformal to ηAB and having nABC as its volume form.

Let KAB = f(n)ηAB, then the relation between the determinants detK of KAB and

detη of ηAB is given by

detK = f 3(n)detη.

On the other hand, due to (2.20) and the definitions of the volume forms

nABC =
√

detK εABC

and

εABC =
√

detη εABC ,

it follows that

detK = n2detη.

One concludes that f(n) must be of the form

f(n) = n
2
3 .

Thus, the tensor KAB is defined by

KAB = n
2
3ηAB. (2.21)
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In this thesis, the following expression for the constant volume shear tensor is consid-

ered

sab =
1

2
(hab − n−2/3kab). (2.22)

It is used in Chapter 4 to obtain a formula relating the constant volume shear tensors

for two conformally related metrics and in Chapter 5 to investigate whether a material

is in an unsheared state for a given space-time configuration.

2.1.11 Eigenvalue and eigenvector formulation

In this section, the eigenvalue-eigenvector formulation for the pulled-back material

metric kab is presented. The eigendirections of kab are used to construct an orthonormal

tetrad that substitutes the space-time metric whenever one uses the tetrad formalism.

This tetrad has the special property that it contains information about the material

metric. The relationship between the eigenvalues of kab and the particle density is also

obtained. The tetrad and the associated eigenvalue-eigenvector formulation, which was

proposed by Karlovini and Samuelsson (2003) [35], enable to write other tensors, like

the pressure tensor and the energy-momentum tensor, in terms of the eigenvectors or

also in terms of the eigenvalues of kab, as will be seen later. The formulation and the

tetrad also play a main role in the analysis of the elasticity difference tensor in Chapter

3.

Having pointed out the highlights of this section, now they are described in more detail.

From (2.10), it is clear that ub is an eigenvector of kab associated with the eigenvalue

0. Let the non zero eigenvalues of kab be denoted by n2
1, n

2
2 and n2

3. It is well known

that the eigenvalues are determined from the standard equation

|kab − λδab| = 0.

These eigenvalues are related with the determinant of kab, which in turn can be used

to define the particle density n, introduced in Section 2.1.5. One has

n2 = n2
1n

2
2n

2
3 = det(kab). (2.23)
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It follows that the particle density is the product of three positive quantities

n = n1n2n3 =
√

det(kab). (2.24)

These quantities n1, n2 and n3, the positive square roots of the eigenvalues of k, are

called linear particle densities7, since their product equals the volume particle density

n.

The next step to set up the tetrad is to find the three spacelike eigendirections of kab

associated with the three eigenvalues, according to the equation

(kab − λδab)v
b = 0,

and to join the timelike vector ua, the velocity field of matter, to them. The spacelike

eigenvectors xa, ya and za for the tetrad, which are orthogonal to ua, are determined

to satisfy the orthonormality conditions

−uaua = xax
a = yay

a = zaz
a = 1,

all other inner products being zero.

The constructed tetrad {ua, xa, ya, za} in M consists of the three spacelike eigenvectors

of kab and of the velocity field of matter ua.

Using this tetrad, the pulled-back material metric can be written as

kab = n2
1 xaxb + n2

2 yayb + n2
3 zazb, (2.25)

and the space-time metric takes the form

gab = −uaub + hab = −uaub + xaxb + yayb + zazb, (2.26)

where

hab = xaxb + yayb + zazb. (2.27)

It should be noticed that the eigenvectors x, y, z are automatically orthogonal whenever

the corresponding eigenvalues are distinct. However, if the eigenvalues are not all

distinct, the eigendirections associated with the same eigenvalue can be chosen to be

orthogonal.

7See Karlovini and Samuelsson (2003) [35].
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2.1.12 Relativistic energy-momentum tensor

In the context of relativistic elasticity, one can find two different expressions for the

energy-momentum tensor: the symmetric and the canonical energy-momentum tensor.

The Einstein equations Gab = 8πTab describe, by means of the energy-momentum

tensor for elastic matter, the interaction of the elastic material with the gravitational

field. In this thesis, the Einstein equations with the canonical energy-momentum tensor

are considered in the last Chapter, where they are “re-obtained” for a generalized

existing case.

The equations of motion for elastic matter ∇bT
ab = 0, using the symmetric energy-

momentum tensor, appear in Section 2.2, where it is shown that they can be written

in terms of the elasticity difference tensor.

It is worth mentioning that, up to now, the dominant energy conditions have been

studied by Calogero and Heinzle (2007) [11] for Bianchi type I elastic space-times.

They showed that the dominant energy conditions are violated by a particular class of

constitutive equations as the singularity is approached.

2.1.12.1 Symmetric energy-momentum tensor

The expression for the symmetric energy-momentum tensor is8

Tab = −ρgab + 2
∂ρ

∂gab
= ρuaub + pab, (2.28)

where the pressure tensor

pab = 2
∂ρ

∂gab
− ρhab (2.29)

satisfies

uapab = 0. (2.30)

The energy density ρ can be rewritten as

ρ = nε, (2.31)

8See e.g. Karlovini and Samuelsson (2003) [35].
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where n denotes the particle density and ε is the energy per particle.

Karlovini and Samuelsson (2003) [35] used the tetrad {u, x, y, z}, defined previously,

to write the pressure tensor as

pab = p1xaxb + p2yayb + p3zazb, (2.32)

where

pi = nni
∂ε

∂ni
(2.33)

are the eigenvalues of pab, called principal pressures.

This expression for the pressure tensor is obtained from (2.29) in the following way.

In order to simplify the calculations, the notation9 {eα}, α = 1, 2, 3, is introduced for

the spacelike eigenvectors, where {ea1, ea2, ea3} = {xa, ya, za}.

To begin with, rewrite the operator ∂
∂gab

as

∂

∂gab
=
∂kcd
∂gab

∂

∂kcd
. (2.34)

Then, since
∂kcd
∂gab

=
∂(gcmkmd)

∂gab
= δc(akb)d,

it follows from (2.34) that

∂

∂gab
=

1

2

(
kca

∂

∂kbc
+ kcb

∂

∂kac

)
, (2.35)

which can further be written as

∂

∂gab
=

1

2

(
kca

3∑
τ=1

∂nτ
∂kbc

∂

∂nτ
+ kcb

3∑
σ=1

∂nσ
∂kac

∂

∂nσ

)
. (2.36)

To proceed, a useful relation for
∂nσ
∂kac

is obtained.

Writing the pulled-back material metric as

kab =
3∑

α=1

n2
αe

a
αeαb

9Please see the explanation given on page 10 for the index convention for Greek indices.
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and contracting this equation with eαae
b
α, yields the eigenvalue

n2
α = kabeαae

b
α,

so that the linear particle density is given by

nα =
√
kabeαae

b
α.

Therefore, calculating
∂nα
∂kab

leads to

∂nα
∂kab

=
1

2nα
eαae

b
α. (2.37)

Returning to expression (2.36), using (2.37) and kab =
3∑

α=1

n2
αeαaeαb, it turns out that

the operator ∂
∂gab

takes the form

∂

∂gab
=

1

2

3∑
α=1

nαeαaeαb
∂

∂nα
. (2.38)

This expression allows to write the pressure tensor (2.29) in the form

pab =
3∑

α=1

nα
∂ρ

∂nα
eαaeαb − ρhab. (2.39)

Continuing the calculations and taking into account (2.31), n = n1n2n3 and hab =
3∑

α=1

eαaeαb one gets

pab =
3∑

α=1

nnα
∂ε

∂nα
eαaeαb, (2.40)

which is equivalent to writing (2.32) together with (2.33).

One concludes that the pressure tensor pab and the pulled-back material metric kab

have the same eigenvectors.

The energy-momentum tensor (2.28) becomes

Tab = nεuaub + nn1
∂ε

∂n1

xaxb + nn2
∂ε

∂n2

yayb + nn3
∂ε

∂n3

zazb, (2.41)
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when the relations (2.31) and (2.32) with (2.33) are used.

The definitions for the energy-momentum tensor and the pressure tensor presented

here are considered in Chapter 4, where they are rewritten for two conformally related

material metrics.

2.1.12.2 Canonical energy-momentum tensor

Another expression for the energy momentum tensor that appears in the general rela-

tivistic elastic literature is the canonical energy-momentum tensor given by

T a
b =

1√
−g

(
∂Λ

∂ξAa
ξAb − δabΛ

)
= δabρ−

∂ρ

∂ξAa
ξAb , (2.42)

where ρ denotes the energy density10, ξAa represents the relativistic deformation gradient

and Λ is the Lagrangian density defined by

Λ = −
√
−gρ. (2.43)

Kijowski and Magli (1994) [40] showed, using the Belinfante-Rosenfeld theorem11, that

this definition coincides with the definition of the symmetric energy-momentum tensor

(2.28)

Tab = − 2√
−g

∂Λ

∂gab
= 2

∂ρ

∂gab
− ρgab, (2.44)

used e.g. by Karlovini and Samuelsson (2003) [35], Beig and Schmidt (2003) [1], Beig

and Wernig-Pichler (2007) [4], up to a sign:

Tab = −Tab. (2.45)

In order to prove this result, consider the push-forward of the space-time metric Ψ∗gcd =

GCD given by

GCD = ξCc ξ
D
d g

cd. (2.46)

The canonical energy-momentum tensor (2.42) can be rewritten as

T a
b = − ∂ρ

∂GCD

∂GCD

∂ξAa
ξAb + ρδab. (2.47)

10Some authors, e.g. Magli (1993) [45], use the letter ε to represent the energy density.
11See Belinfante (1994) [5] and Rosenfeld (1940) [59].
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Calculating
∂GCD

∂ξAa
from (2.46) leads to

∂GCD

∂ξAa
= gadδCAξ

D
d + gacδDAξ

C
c . (2.48)

Substituting this result in (2.47) gives

T a
b = −2

∂ρ

∂GAD
gadξAb ξ

D
d + ρδab. (2.49)

On the other hand, the symmetric energy-momentum tensor (2.28) can be expressed

as

Tab = 2
∂ρ

∂GCD

∂GCD

∂gab
− ρgab. (2.50)

From (2.46) it follows that

∂GCD

∂gab
=

1

2

(
ξCa ξ

D
b + ξCb ξ

D
a

)
. (2.51)

Consequently, (2.50) transforms in the following way, when one rises the first index

and uses the last result:

T ab = 2
∂ρ

∂GCD
gamξCmξ

D
b − ρgab. (2.52)

Comparing this expression with (2.49), one obtains the expected result: the expressions

for the energy-momentum tensor differ in a sign.

The energy-momentum tensor (2.42) can be rewritten as12

T a
b = ρδab −

∂ρ

∂I3
detg̃ hab +

(
Trg̃

∂ρ

∂I2
− ∂ρ

∂I1

)
kab −

∂ρ

∂I2
kack

c
b, (2.53)

where the operator g̃, already presented in (2.16), is defined by g̃ab = gac(kcb−ucub), k

being the pulled-back material metric, and hab represents the projection tensor hab =

gab + uaub. The quantities I1, I2 and I3 are the invariants of the strain tensor given

in (2.17), chosen by Magli (1993) [45] to parameterize the equation of state by writing

the energy density as a function of these invariants.

12See Magli (1993) [45].

27



To obtain (2.53) from (2.42), first note that13:

∂ρ

∂ξAa
ξAb =

∂ρ

∂IC

∂IC
∂g̃de

∂g̃de
∂ξAa

ξAb . (2.54)

This expression shows how to relate the energy density with the relativistic deformation

gradient using the dependence on the invariants and on g̃.

Applying
∂

∂g̃de
to (2.17), the expressions

∂IC
∂g̃de

for C = 1, 2, 3 become:

∂I1
∂g̃de

=
1

2

∂Trg̃

∂g̃de
=

1

2
gde

∂I2
∂g̃de

=
1

4

(
∂Trg̃2

∂g̃de
− ∂(Trg̃)2

∂g̃de

)
=

1

2

(
g̃de − g̃mmg

de
)

∂I3
∂g̃de

=
1

2

∂detg̃

∂g̃de
=

1

2
(detg̃) g̃−1de,

(2.55)

where

Trg̃ = gmf g̃fm

Trg̃2 = gab g̃bm g
mp g̃pa

detg̃ = εabcd g̃a0 g̃b1 g̃c2 g̃d3

(2.56)

g̃−1deg̃ef = δdf . (2.57)

Further, since g̃de = kde − udue and kde = ξDd ξ
E
e KDE, calculating

∂g̃de
∂ξAa

ξAb yields

∂g̃de
∂ξAa

ξAb = kbeδ
a
d + kbdδ

a
e − ud

∂ue
∂ξAa

ξAb − ue
∂ud
∂ξAa

ξAb . (2.58)

Hence, multiplying
∂g̃de
∂ξAa

ξAb with each expression given in (2.55), one obtains

∂I1
∂g̃de

∂g̃de
∂ξAa

ξAb = kab

∂I2
∂g̃de

∂g̃de
∂ξAa

ξAb = kadkdb − g̃mmk
a
b

∂I3
∂g̃de

∂g̃de
∂ξAa

ξAb = detg̃hab,

(2.59)

where the following relations are used: ud
∂ud
∂ξAa

= 0, g̃abu
b = ua, (g̃−1)abu

b = ua and

g̃adkdb = kadkdb.

13See the appendix given in Magli (1993) [45].
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Inserting (2.59) in

T a
b = δabρ−

∂ρ

∂IC

∂IC
∂g̃de

∂g̃de
∂ξAa

ξAb ,

gives the desired formula (2.53).

2.2 Elasticity difference tensor

The elasticity difference tensor, one of the main topics in this thesis, was introduced

in the literature by Karlovini and Samuelsson (2003) [35].

After having defined basic concepts, like the material metric, its pull-back and the pro-

jection tensor, needed to construct the elasticity difference tensor, the way is prepared

to devote this section to the elasticity difference tensor.

In Section 2.2.1, it is explained how the elasticity difference tensor was defined by

Karlovini and Samuelsson (2003) [35]. Further, in Section 2.2.2, it is shown how the

equations of motion can be written in terms of this tensor.

Here, it becomes clear that the elasticity difference tensor is an important tensor in

general relativistic elasticity, since, on the one hand, it depends on the pulled-back

material metric and on the projected space-time connection and, on the other hand, it

gives a contribution to the equations of motion by entering in its expression.

The next chapter is entirely focussed on the elasticity difference tensor, where it is

studied in more detail.

2.2.1 Definition

On the way to the presentation of the elasticity difference tensor, another operator

is introduced: the spatially projected connection. This operator is also needed to

construct the elasticity difference tensor.

Let∇ represent the connection associated with the space-time metric gab. The spatially

projected connection Da is defined by acting on an arbitrary tensor field tb... c... as
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follows:

Dat
b...

c... = hdah
b
e...h

f
c...∇dt

e...
f..., (2.60)

and it satisfies Dahbc = 0.

Before proceeding, the definition of the convected derivative is provided. The convected

derivative [T b... a...]
· of a general mixed space-time tensor field T b... a... is defined by14

[T b... a...]
· = Ṫ b... a... − T c... a...(u

b
;c + ubu̇c)− · · ·+ T b... c...(u

c
;a + ucu̇a) + · · · ,

where

Ṫ b... a... = T b... a...;cu
c

and

u̇c = uc;mu
m.

When applied to covariant orthogonal space-time tensors, the convected derivative

coincides with the Lie derivative. The condition of having zero convected derivative is

necessary for the pushforward of a space-time vector field to be a well defined vector

field on the material space. Orthogonal tensors with zero convected derivative are said

to be materially constant.

Now, consider a differential operator D̃a acting on space-time tensors obtained from

the pull-back of the Levi-Civita connection D̃A of kAB under the following hypothesis:

(i) there exists a torsion-free connection ∇̃ on M such that

D̃at
b...

c... = hdah
b
e...h

f
c...∇̃dt

e...
f...; (2.61)

(ii) for all space-time vector fields V b and Za, which have zero convected derivative

Ψ∗(V
bD̃bZ

a) = V BD̃BZ
A, V B = Ψ∗(V

b), ZA = Ψ∗(Z
a).

The operator D̃a satisfies D̃akbc = 0.

14A comprehensive description of the convected derivative can be found in Carter and Quintana

(1972) [19].
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It follows that

D̃bX
a −DbX

a = hmbh
a
n(∇̃mX

n −∇mX
n) = SabcX

c, (2.62)

for any space-time vector field X.

The tensor field Sabc is the elasticity difference tensor.

Using hypothesis (ii), this third order tensor can be written as

Sabc =
1

2
k−1am(Dbkmc +Dckmb −Dmkbc), (2.63)

where k−1am is such that k−1amkmb = hab.

As can be seen, the elasticity difference tensor depends on the pulled-back material

metric and on the spatially projected connection associated with the space-time metric.

2.2.2 Equations of motion for elastic matter

The energy-momentum tensor Tab satisfies the equations of motion

∇bT
ab = 0, (2.64)

which are also called energy and momentum conservation equations.

Applying the equations of motion to the energy-momentum tensor given by (2.28):

Tab = ρuaub + pab, (2.65)

where

pab = 2
∂ρ

∂gab
− ρhab, (2.66)

and projecting the equations along u,

ua∇bT
ab, (2.67)

and orthogonal to u,

hac∇bT
cb, (2.68)

31



one finds, respectively,

ρ,bu
b + (ρhab + pab)D(aub) = 0 (2.69)

(ρhab + pab)u̇b +Dbp
ab = 0, (2.70)

where Da denotes the spatially projected connection defined in (2.60).

Karlovini and Samuelsson (2003) [35] re-expressed the term Dbp
ab occuring in the Euler

equations (2.70) as

Dbp
ab = AabcdS

cd
b, (2.71)

where Aabcd is the relativistic Hadamard elasticity tensor defined by

Aabcd = 2
∂pab

∂gcd
− pabhcd − hac p

b
d (2.72)

and S represents the elasticity difference tensor.

Using (2.71), they showed that the Euler equations (2.70) can be rewritten as

(ρhab + pab)u̇b + AabcdScdb = 0, (2.73)

emphasizing the dependence of the Euler equations on the elasticity difference tensor.
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Chapter 3

A mathematical study of the

Elasticity Difference Tensor

This chapter provides a mathematical analysis of the elasticity difference tensor. Prop-

erties of the elasticity difference tensor are investigated. Using an orthonormal tetrad,

a general expression for the elasticity difference tensor is obtained which brings in Ricci

rotation coefficients and the linear particle densities. Moreover, the elasticity differ-

ence tensor is decomposed along the eigenvectors of the pulled-back material metric

into three second order tensors, for which it is studied if the eigenvectors of the pulled-

back material metric remain eigenvectors for the three second order tensors.

3.1 Motivation and basic properties

The elasticity difference tensor has recently been introduced in the literature by Karlovini

and Samuelsson (2003) [35] in the context of general relativistic elasticity. As shown

in the previous chapter, in Section 2.2, the elasticity difference tensor is defined by

Sabc =
1

2
k−1am(Dbkmc +Dckmb −Dmkbc), (3.1)

where kab is the pulled-back material metric

kab = n2
1 xaxb + n2

2 yayb + n2
3 zazb, (3.2)
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k−1am is such that k−1amkmb = hab and the operator Da, which satisfies Dahbc = 0,

represents the spatially projected connection obtained through the projection of the

connection ∇ associated with the space-time metric g, according to (2.60).

Observing the definition of the elasticity difference tensor, one can see that it is related

with the space-time connection, emphasizing therefore the geometric significance of the

elasticity difference tensor.

Moreover, the elasticity difference tensor occurs contracted with the relativistic Hadamard

elasticity tensor in the Euler equations for elastic matter, already presented in (2.73)

in Chapter 2.

These aspects together with the fact that, due to the recent increasing consideration

of relativistic elasticity in the literature, it becomes interesting and important to study

in detail quantities appearing in this context, motivate the study of the elasticity dif-

ference tensor.

The following two properties of the elasticity difference tensor are straightforward:

(i) it is symmetric in the two covariant indices,

Sabc = Sacb; (3.3)

(ii) it is a completely flowline orthogonal tensor field,

Sabcua = 0 = Sabcu
b = Sabcu

c. (3.4)

3.2 Interpretative construction of the elasticity dif-

ference tensor

This section provides an alternative mathematical construction for the elasticity differ-

ence tensor, which requires a second metric defined on M and its associated Levi-Civita

connection. This construction is interpretative in the sense that here the elasticity dif-

ference tensor arises in such a way that its origin is attributed directly to the existence
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of two space-time connections associated with two specific metrics.

The foundation for the construction is given by the difference tensor. The difference

tensor appears in the general relativistic literature, when two different space-time met-

rics are considered. And associated with it one can find expressions for the difference of

the Riemann and the Ricci tensors, which are written directly in terms of the difference

tensor. Continuing the construction by specifying a second required metric and using

the projection tensor one arrives at the expression of the elasticity difference tensor.

It is shown, how the difference of the Riemann and the Ricci tensors can be written in

terms of the elasticity difference tensor.

3.2.1 Difference tensor

Given a space-time manifold M with metric tensor g, assume that another different

metric tensor g̃ is defined on M . These metrics naturally determine two unique deriva-

tive operators ∇ and ∇̃, respectively. The metric connections satisfy ∇g = 0 and

∇̃g̃ = 0. Having chosen a coordinate system, one can write gab;c = 0 and g̃ab||c = 0,

where ; denotes the covariant derivative relative to gab and || the covariant derivative

relative to g̃ab. It is a well known result1 that the difference between two connections

∇̃ − ∇ defines a tensor of type (1, 2) with components

Cn
mc = Γ̃nmc − Γnmc, (3.5)

where Γnmc and Γ̃nmc are the Christoffel symbols associated with the referred two

metrics. One can write this tensor in terms of the metric g̃ and its covariant derivative

with respect to the metric g, yielding

Cn
ml =

1

2
g̃np(g̃pm;l + g̃pl;m − g̃ml;p), (3.6)

where g̃np is such that g̃npg̃pr = δnr.

1See e.g. Rosen (1963) [58], Misner et al. (1970) [51], Wald (1984) [67], Carroll (2004) [15].
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The difference tensor Cn
ml can be used to write the difference of the Riemann and the

Ricci tensors associated with the two metrics in the following form:

R̃a
bcd −Ra

bcd = −Ca
bd;c + Ca

bc;d − Ca
lcC

l
bd + Ca

ldC
l
bc (3.7)

and

R̃bd −Rbd = −Ca
bd;a + Ca

ba;d − Ca
laC

l
bd + Ca

ldC
l
ba. (3.8)

The expressions for the difference tensor and for the difference of the Riemann and

Ricci tensors appear in the literature, for example in Misner et al. (1970) [51], in Wald

(1984) [67], where the case of two conformally related metrics is considered, or in Rosen

(1963) [58], where one of the two metric tensors is flat.

3.2.2 Elasticity difference tensor

Now, assume that the two metric tensors g and g̃ are specified by gab = −uaub + hab

and g̃ab = −uaub + kab, so that ∇ and ∇̃ are their associated Levi-Civita connections.

The difference tensor of these two connections can be expressed as in (3.6). Projecting

the difference tensor orthogonally to u according to

han h
m
b h

l
c C

n
ml, (3.9)

and using the definition of the spatially projected connection2, one obtains

Sabc = han h
m
b h

l
c C

n
ml =

1

2
k−1am(Dbkmc +Dckmb −Dmkbc). (3.10)

One can see that the expression on the right hand side of (3.10) is the elasticity

difference tensor given in (2.63).

Therefore, under this approach, the elasticity difference tensor can be viewed as the

projection, orthogonally to u, of the difference between two Levi-Civita connections:

the connection associated with the space-time metric g and the connection associated

with the metric g̃ab = −uaub + kab, where kab is the pull-back of the material metric

KAB and u is the velocity field of matter.

2See (2.60) on page 30.
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3.2.3 Difference of the projected Riemann and Ricci tensors

Calculating the spatial projection of equation (3.7) using (2.60) and (3.9), yields the

following expression for the difference of the Riemann tensors:

hfm h
n
g h

p
e h

q
h [hma h

b
n h

c
p h

d
q (R̃a

bcd −Ra
bcd)]

= −DeS
f
gh +DhS

f
ge − SfkeS

k
gh + SfkhS

k
ge.

(3.11)

The spatial projection of (3.8) expressing the difference of the Ricci tensors can be

obtained analogously by equating the indices a = c (e = f) in (3.11):

hem h
n
g h

p
e h

q
h [hma h

b
n h

a
p h

d
q (R̃a

bad −Ra
bad)] =

−DeS
e
gh +DhS

e
ge − SekeS

k
gh + SekhS

k
ge.

(3.12)

Therefore, these expressions, which contain the elasticity difference tensor, give the

difference between the projected Riemann and Ricci tensors associated with the metrics

referred to in Section 3.2.2.

The reason for projecting all indices twice on the left hand side of equation (3.11) is

the following:

First, projecting all indices of equation (3.7) one obtains:

hmah
b
nh

c
ph

d
q(R̃

a
bcd −Ra

bcd) = −DpC
m
nq +DqC

m
np − SmlpS

l
nq + SmlqS

l
np, (3.13)

where hmah
b
nh

d
qh

c
pC

a
bd;c = DpC

m
nq.

Now, from the relation

DpS
f
gh = Dp(h

f
mh

n
gh

q
hC

m
nq) = (DpC

m
nq)h

f
mh

n
gh

q
h, (3.14)

it follows that one must project all indices m,n, p, and q in (3.13) in order to obtain

the tensor S in all expressions on the right hand side of equation (3.13). So, this leads

to equation (3.11).
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3.3 The elasticity difference tensor in tetrad nota-

tion

3.3.1 General expression

In order to obtain the tetrad components of the elasticity difference tensor, consider

the following notation for the orthonormal tetrad:

eaµ = (ea0, e
a
1, e

a
2, e

a
3) = (ua, xa, ya, za).

It is important to stress that {u, x, y, z} is the tetrad defined in Section 2.1.11, con-

structed by taking the eigendirections of the material metric and the velocity field of

matter u.

Tetrad indices can be raised or lowered with the metric

ηµν = ηµν = diag(−1, 1, 1, 1).

The following relation between the metric η and the metric g is valid:

gab =
3∑

µ,ν=0

eµaeνbη
µν .

The triad components of the elasticity difference tensor can be calculated by the stan-

dard definition from

Sαβγ = Sabce
α
ae

b
βe

c
γ, (3.15)

the result being

Sαβγ =
1

2n2
α

[
(
n2
α − n2

γ

)
γαγβ +

(
n2
α − n2

β

)
γαβγ +

(
n2
γ − n2

β

)
γ α
βγ

+Dn(n
2
α)e

n
βδ

α
γ +Dp(n

2
α)e

p
γδ
α
β −Dl(n

2
β)e

lαδβγ].

(3.16)

Here, the following notation is used for the Ricci rotation coefficients:

γµνρ = eµa;be
a
νe
b
ρ,
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where the spatial Ricci rotation coefficients are denoted by

γαβγ = eαa;be
a
βe

b
γ.

An alternative form for (3.16) is:

Sαβγ =
1

2
[(1− εγα)γ

α
γβ + (1− εβα)γ

α
βγ + (εγα − εβα)γ

α
βγ

+mβαδ
α
γ +mγαδ

α
β −mα

βδβγεβα],

(3.17)

where εγα =

(
n2
γ

n2
α

)
and mα

β = Da(lnn
2
β)e

aα.

The Ricci rotation coefficients, when related to the quantities used in the decomposition

(2.2), can be split into the set3:

γ0α0 = u̇α (3.18)

γ0αβ =
1

3
Θδαβ + σαβ − εαβγω

γ (3.19)

γαβ0 = −εαβγΩγ (3.20)

γαβγ = −Aαδβγ + Aβδαγ −
1

2
(εγδαN

δ
β − εγδβN

δ
α + εαβδN

δ
γ). (3.21)

The quantity ωa represents the vorticity vector defined by

ωa =
1

2
εabcωbc.

The quantity Ω is defined by

Ωµ =
1

2
εµνρσuνeρėσ,

where ėσ = eσ;mu
m, and represents the rate of rotation of the spatial frame {eα} with

respect to a Fermi propagated basis.

The quantities A and N appear in the decomposition of the spatial commutation

functions4 Γαβγ = γαγβ − γαβγ, where N is a symmetric object.

3See e.g. Ellis and Elst (1998) [26], [28].
4See Ellis and McCallum (1969) [27].
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3.3.2 Traces

For the elasticity difference tensor it is possible to define two independent traces. Since

Sabc is symmetric in the last two indices, the traces are obtained by contracting the

first with the second index, Saac, and by contracting the last two indices, Sa b
b . Here

are given their expressions in the orthonormal tetrad already chosen:

3∑
α=1

Sααγ =
3∑

α=1

1

2
mγα =

3∑
α=1

1

nα
Da(nα)e

a
γ (3.22)

and

3∑
β=1

Sαββ =
3∑

β=1

[
(1− εβα)γ

α
ββ +mβαδ

α
β −

1

2
mα

βεβα

]
. (3.23)

3.4 A decomposition for the elasticity difference

tensor

The elasticity difference tensor can be expressed using three second order symmetric

tensors, denoted by Mbc
α

, α = 1, 2, 3, as follows:

Sabc = Mbc
1

xa +Mbc
2

ya +Mbc
3

za =
3∑

α=1

Mbc
α

eaα. (3.24)

The three tensors building up the elasticity difference tensor are defined by

Mbc
1

= Sabcxa (3.25)

Mbc
2

= Sabc ya (3.26)

Mbc
3

= Sabc za. (3.27)

The three tensors Mbc
α

are analysed in order to understand to what extent the principal

directions of the pulled back material metric remain privileged directions of the elas-

ticity difference tensor through the tensors Mbc
α

, following the eigenvalue-eigenvector

approach for these second order tensors.
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First, expressions for M
1

, M
2

and M
3

are given, which depend on the orthonormal tetrad

vectors, the Ricci rotation coefficients and the linear particle densities. By contracting

Sabc in (3.1) with each one of the spatial tetrad one-forms, following (3.25), (3.26) and

(3.27), and using then the relationships (3.2) and (2.60), after some appropriate sim-

plifications, one obtains the subsequent expressions.

3.4.1 Expressions for M
1
, M

2
and M

3

Expression for Mbc
1

:

Mbc
1

= um(xm;(buc) + u(bxc);m) + x(b;c) − xmx(cxb);m + γ011 u(bxc) − γ010 ubuc

+
1

n1

[2n1,(bxc) + 2n1,mu
mu(bxc) + n1,mx

mxbxc]

+
1

n2
1

{−xm(zbzcn3n3,m + ybycn2n2,m)

+ n2
2[(γ021 − γ120)u(byc) + xm(ym;(byc) − y(byc);m)]

+ n2
3[(γ031 − γ130)u(bzc) + xm(zm;(bzc) − z(bzc);m)]}

(3.28)

Expression for Mbc
2

:

Mbc
2

= [um(ym;(buc) + u(byc);m) + y(b;c) − ymy(cyb);m + γ022 u(byc) − γ020 ubuc]

+
1

n2

[2n2,(byc) + 2n2,mu
mu(byc) + n2,my

mybyc]

+
1

n2
2

{−ym(zbzcn3n3,m + xbxcn1n1,m)

+ n2
1[(γ120 + γ012)u(bxc) + ym(xm;(bxc) − x(bxc);m)]

+ n2
3[(γ032 − γ230)u(bzc) + ym(zm;(bzc) − z(bzc);m)]}

(3.29)

Expression for Mbc
3

:
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Mbc
3

= [um(zm;(buc) + u(bzc);m) + z(b;c) − zmz(bzc);m + γ033 u(bzc) − γ030 ubuc]

+
1

n3

[2n3,(bzc) + 2n3,mu
mu(bzc) + n3,mz

mzbzc]

+
1

n2
3

{−zm(ybycn2n2,m + xbxcn1n1,m)

+ n2
1[(γ130 + γ013)u(bxc) + zm(xm;(bxc) − x(bxc);m)]

+ n2
2[(γ023 + γ230)u(byc) + zm(ym;(byc) − y(byc);m)]}

(3.30)

3.4.2 General expression for M
α

The last expressions for the three second-order tensors can be represented by using

just one general expression in the following way.

Mbc
α

= um(eαm;(buc) + u(beαc);m) + eα(b;c) − emα eα(ceαb);m

+ γ0αα u(beαc) − γ0α0 ubuc

+
1

nα
[2nα,(beαc) + 2nα,mu

mu(beαc) + nα,me
m
α eαbeαc]

+
1

n2
α

{−emα (eβbeβcnβnβ,m + eγbeγcnγnγ,m)

+ n2
γ[(γ0γα − γαγ0)u(beγc) + emα (eγm;(beγc) − eγ(beγc);m)]

+ n2
β[(γ0βα − γαβ0)u(beβc) + emα (eβm;(beβc) − eβ(beβc);m)]}.

(3.31)

Here γ 6= β 6= α and a comma represents a partial derivative. To read (3.31) properly

one must see that each value of α = 1, 2, 3 fixes exactly one pair of values for (β, γ).

For example, α = 1 fixes (β, γ) as either (2, 3) or (3, 2), yielding the same result for

both choices.

It should be noticed that this expression also contains the non-spatial Ricci rotation

coefficients given in (3.18), (3.19) and (3.20).

3.5 Eigenvalue-eigenvector problem

In the next paragraphs, the eigenvalues and eigenvectors for the three tensors Mbc
α

are

investigated. The results are presented for each tensor Mbc
α

separately, for reasons of
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clarity. However, all results can be presented in a condensed manner, as described in

Section 3.5.5.

The expressions obtained for Mbc
α

satisfy the conditions

Mbc
α

ub = 0, (3.32)

as a consequence of the orthonormality conditions of the tetrad together with (3.24)

and (3.25-3.27).

Thus, all Mbc
α

have u as a timelike eigenvector associated with a zero eigenvalue:

M c
b

α

ub = 0. Therefore, their corresponding Segre type is {1, 111} or one of its de-

generacies.

Now, consider the following eigenvector-eigenvalue equation for M
α

:

M c
b

α

ωb = λωc, (3.33)

where ωb = δ1x
b + δ2y

b + δ3z
b is a vector defined on M .

This eigenvalue-eigenvector problem for Mbc
α

is quite difficult to solve in general. How-

ever, one can investigate the conditions for the tetrad vectors to be eigenvectors of

Mbc
α

. An interesting question is: do x, y and z - principal directions of kab - remain as

principal directions of M
1

, M
2

and M
3

? The problem can also be formulated as follows:

What conditions have to be satisfied for x or y or z to be a principal vector of M
1

or

M
2

or M
3

?

The results of this study are given in the next theorems.

On what follows, intrinsic derivatives of arbitrary scalar fields Φ, as derivatives along

tetrad vectors, will be represented by ∆eα and defined as:

∆eαΦ = Φ,me
m
α ,

where a comma stands again for a partial derivative.
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3.5.1 Eigenvalue-eigenvector problem for M
1

The next three theorems, namely Theorem 1, Theorem 2 and Theorem 3, refer to the

eigenvector-eigenvalue problem for M
1

, considering ωb = xb, ωb = yb and ωb = zb,

respectively, in (3.33).

Theorem 1 x is an eigenvector of M
1

iff n1 remains invariant along the directions of

y and z, i.e. ∆y(lnn1) = ∆z(lnn1) = 0.

The corresponding eigenvalue is λ = ∆x(lnn1).

Proof: In order to solve this eigenvector-eigenvalue equation the following algebraic

conditions are used

M c
b

1

xbxc = λ, (3.34)

M c
b

1

xbyc = 0 (3.35)

and

M c
b

1

xbzc = 0. (3.36)

Using the orthogonality conditions satisfied by the tetrad vectors and the properties

of the rotation coefficients, namely the fact that they are anti-symmetric on the first

pair of indices, (3.35) and (3.36) yield ∆y(lnn1) = 0 = ∆z(lnn1). On the other hand,

from (3.34) one obtains λ = ∆x(lnn1).

Conversely, if ∆y(lnn1) = 0 = ∆z(lnn1), it follows that the conditions (3.35) and

(3.36) are satisfied and that the eigenvalue is given by (3.34).

�

Theorem 2 y is an eigenvector of M
1

iff n1 remains invariant along the direction of

y, i.e. ∆y(lnn1) = 0, and

−1
2
γ132[

n2
3

n2
1
− 1] + 1

2
γ123[1− n2

2

n2
1
] + 1

2
γ231[

n2
3

n2
1
− n2

2

n2
1
] = 0.

The corresponding eigenvalue is λ = −n2

n2
1
∆xn2 + γ122(−n2

2

n2
1

+ 1).
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Proof: Contracting M c
b

1

yb = λyc with xc one obtains ∆y(lnn1) = 0. This condition is

satisfied whenever ∆yn1 = 0. The second condition results from M c
b

1

ybzc = 0. And

contracting M c
b

1

yb = λyc with yc yields the eigenvalue λ. The used simplifications are

based on the orthogonality conditions of the tetrad vectors and on the properties of

the rotation coefficients.

On the other hand, suppose that the conditions ∆y(lnn1) = 0 and −1
2
γ132[

n2
3

n2
1
− 1] +

1
2
γ123[1 − n2

2

n2
1
] + 1

2
γ231[

n2
3

n2
1
− n2

2

n2
1
] = 0 hold, then it can be shown that M c

b
1

ybxc = 0 and

M c
b

1

ybzc = 0 are satisfied, so that y is eigenvector of M
1

associated with the presented

eigenvalue.

�

Theorem 3 z is an eigenvector of M
1

iff n1 remains invariant along the direction of

z, i.e. ∆z(lnn1) = 0, and

1
2
γ123[1− n2

2

n2
1
] + 1

2
γ132[1− n2

3

n2
1
] + 1

2
γ231[

n2
3

n2
1
− n2

2

n2
1
] = 0.

The corresponding eigenvalue is λ = −n3

n2
1
∆xn3 − γ133(

n2
3

n2
1
− 1).

Proof: The first two conditions and the eigenvalue are obtained respectively from the

following algebraic equations:

M c
b

1

zbxc = 0, (3.37)

M c
b

1

zbyc = 0 (3.38)

and

M c
b

1

zbzc = λ. (3.39)

Here also the orthogonality conditions between the tetrad vectors and the properties

of the rotation coefficients are used.

The converse is true as well. Suppose that the two conditions hold, then it follows that

(3.37) and (3.38) are satisfied and (3.39) leads to the expression for the eigenvalue.

�
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3.5.2 Eigenvalue-eigenvector problem for M
2

Solving the eigenvector-eigenvalue problem for M
2

, considering ωb = xb, ωb = yb and

ωb = zb, respectively, in (3.33), yields the results given in Theorem 4, Theorem 5 and

Theorem 6.

Theorem 4 x is an eigenvector of M
2

iff n2 remains invariant along the direction of

x, i.e. ∆x(lnn2) = 0, and

1
2
γ123 [

n2
1

n2
2
− 1] + 1

2
γ132 [

n2
3

n2
2
− n2

1

n2
2
] + 1

2
γ231 [1− n2

3

n2
2
] = 0.

The corresponding eigenvalue is λ = γ121(
n2

1

n2
2
− 1)− n1

n2
2
∆yn1.

Proof: Starting with the following conditions:

M c
b

2

xbyc = 0 (3.40)

M c
b

2

xbzc = 0 (3.41)

M c
b

2

xbxc = λ (3.42)

and applying simplification rules, attributed to the orthogonality conditions of the

tetrad vectors and to the properties of the rotation coefficients, one obtains ∆x(lnn2) =

0 from (3.40). Equation (3.41) yields the second condition and (3.42), the eigenvalue

λ.

Conversely, if ∆x(lnn2) = 0 and 1
2
γ123 [

n2
1

n2
2
− 1] + 1

2
γ132 [

n2
3

n2
2
− n2

1

n2
2
] + 1

2
γ231 [1− n2

3

n2
2
] = 0

hold, then (3.40) and (3.41) are identically satisfied and the eigenvalue is obtained from

(3.42).

�

Theorem 5 y is an eigenvector of M
2

iff n2 remains invariant along the directions of

x and z, i.e. ∆x(lnn2) = 0 and ∆z(lnn2) = 0.

The corresponding eigenvalue is λ = ∆y(lnn2).
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Proof: The first two conditions are consequences of

M c
b

2

ybxc = 0 (3.43)

and

M c
b

2

ybzc = 0, (3.44)

resulting in ∆x(lnn2) = 0 and ∆z(lnn2) = 0, respectively. The eigenvalue λ is obtained

from the contraction of M c
b

2

yb = λyc with yc:

M c
b

2

ybyc = λ. (3.45)

On the other hand, supposing that ∆x(lnn2) = 0, ∆z(lnn2) = 0 and λ = ∆y(lnn2),

then (3.43), (3.44) and (3.45) follow directly.

�

Theorem 6 z is an eigenvector of M
2

iff n2 remains invariant along the direction of

z, i.e. ∆z(lnn2) = 0, and

1
2
γ231[1− n2

3

n2
2
] + 1

2
γ123[−1 +

n2
1

n2
2
] + 1

2
γ132[

n2
3

n2
2
− n2

1

n2
2
] = 0.

The corresponding eigenvalue is λ = −n3

n2
2
∆yn3 − γ233(

n2
3

n2
2
− 1).

Proof: The conditions are obtained from the relations

M c
b

2

zbyc = 0 (3.46)

and

M c
b

2

zbxc = 0. (3.47)

The eigenvalue λ can be calculated using

M c
b

2

zbzc = λ. (3.48)

Conversely, if ∆z(lnn2) = 0 and 1
2
γ231[1− n2

3

n2
2
]+ 1

2
γ123[−1+

n2
1

n2
2
]+ 1

2
γ132[

n2
3

n2
2
− n2

1

n2
2
] = 0, then

(3.46) and (3.47) are satisfied and it follows that z is an eigenvector for M
2

associated

with the eigenvalue λ.
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�

You can observe that (3.46) equals (3.44) of Theorem 5 and (3.47) equals (3.41) of

Theorem 4, leading respectively to the same conditions. This is due to the symmetry

property of M
2

.

3.5.3 Eigenvalue-eigenvector problem for M
3

Now, the process is repeated for the third second-order symmetric tensor M
3

. Setting

ωb = xb, ωb = yb and ωb = zb in (3.33) and solving the respective equations leads to

Theorem 7, Theorem 8 and Theorem 9.

Theorem 7 x is an eigenvector of M
3

iff n3 remains invariant along the direction of

x, i.e. ∆x(lnn3) = 0, and

1
2
γ132 [

n2
1

n2
3
− 1] + 1

2
γ123 [

n2
2

n2
3
− n2

1

n2
3
] + 1

2
γ231 [

n2
2

n2
3
− 1] = 0.

The corresponding eigenvalue is λ = γ131(
n2

1

n2
3
− 1)− n1

n2
3
∆zn1.

Proof: In the same way as described in the other proofs you get these results from the

contraction of the eigenvalue-eigenvector equation with zc, yc and xc respectively:

M c
b

3

xbzc = 0, (3.49)

M c
b

3

xbyc = 0 (3.50)

and

M c
b

3

xbxc = λ. (3.51)

The converse is true as well. Supposing that ∆x(lnn3) = 0 and 1
2
γ132 [

n2
1

n2
3
− 1] +

1
2
γ123 [

n2
2

n2
3
− n2

1

n2
3
] + 1

2
γ231 [

n2
2

n2
3
− 1] = 0 hold and that the eigenvalue is given by λ =

γ131(
n2

1

n2
3
−1)− n1

n2
3
∆zn1, then it can be shown that (3.49), (3.50) and (3.51) are satisfied,

so that x is an eigenvector of M
3

associated with the given eigenvalue.

�
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Theorem 8 y is an eigenvector of M
3

iff n3 remains invariant along the direction of

y, i.e. ∆y(lnn3) = 0 and

1
2
γ132[

n2
1

n2
3
− 1] + 1

2
γ231[−1 +

n2
2

n2
3
] + 1

2
γ123[

n2
2

n2
3
− n2

1

n2
3
] = 0.

The corresponding eigenvalue is λ = γ232(
n2

2

n2
3
− 1)− n2

n2
3
∆zn2.

Proof: The eigenvalue λ is found by contracting the equation M c
b

3

yb = λyc with yc.

The other two conditions are consequences of

M c
b

3

ybzc = 0 (3.52)

and

M c
b

3

ybxc = 0, (3.53)

where (3.53) yields the condition depending on the rotation coefficients.

Conversely, the conditions ∆y(lnn3) = 0 and 1
2
γ132[

n2
1

n2
3
−1]+ 1

2
γ231[−1+

n2
2

n2
3
]+ 1

2
γ123[

n2
2

n2
3
−

n2
1

n2
3
] = 0 imply that y is an eigenvector of M

3
associated with the given eigenvalue.

�

Theorem 9 z is an eigenvector of M
3

iff n3 remains invariant along the directions of

x and y, i.e. ∆x(lnn3) = 0 and ∆y(lnn3) = 0.

The corresponding eigenvalue is λ = ∆z(lnn3).

Proof: The first two conditions can be obtained by contracting M c
b

3

zb = λzc with xc

and yc. The eigenvalue is found by contracting the same equation with zc.

On the other hand, if ∆x(lnn3) = 0 and ∆y(lnn3) = 0, then one can show that z is an

eigenvector of M
3

associated with the eigenvalue λ = ∆z(lnn3).

�

3.5.4 Concluding remarks

In general, the previous theorems show that strong conditions have to be imposed on

n1, n2 and n3 and the metric in order to have x, y and z as principal directions of M
1

,
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M
2

and M
3

.

However, the conditions to have x as eigenvector of M
1

seem less restrictive then the

conditions for y and z to be eigenvectors of the same tensor, since the latter involve

not only intrinsic derivatives of the scalar fields but also rotation coefficients of the

metric. Furthermore, for x to be an eigenvector of M
1

only conditions on n1 have to

be satisfied, namely that n1 remains constant along the directions of y and z, in which

case the eigenvalue corresponding to x depends only on n1. On the other hand, the

conditions imposed for y and z to be eigenvectors of M
1

also involve n2 and n3. A

similar interpretation is valid when one considers M
2

and M
3

, where the role of x is now

taken over by y and z, respectively. Thus, the significance and the role that x and n1

play for M
1

are the same as y and n2 play for M
2

and z and n3 play for M
3

.

Analysing the conditions of the theorems, one can say that they are particularly satis-

fied in the cases explained below.

Notice that the conditions for y and z to be eigenvectors of M
1

(see Theorem 2 and

Theorem 3), for x and z to be eigenvectors of M
2

(see Theorem 4 and Theorem 6) and

for x and y to be eigenvectors of M
3

(see Theorem 7 and Theorem 8), are satisfied

whenever n1 = n2 = n3 = c, where c is a constant. Consequently, the eigenvalues

in the mentioned theorems result in λ = 0. In this case, kab takes the form kab =

c2 xaxb + c2 yayb + c2 zazb.

Analysing the conditions of Theorem 1, Theorem 5 and Theorem 9, one can state the

following.

1. Considering Theorem 1:

If n1 = c, c being a constant, the two conditions in Theorem 1 are satisfied. This

implies that λ = 0 and kab = c2 xaxb+n2
2 yayb+n2

3 zazb. In this case, x is an eigenvector

for M
1
.

2. Considering Theorem 5:

If n2 = c, c being a constant, the two conditions in Theorem 5 are satisfied, then λ = 0
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and kab = n2
1 xaxb + c2 yayb + n2

3 zazb. In this case, y is an eigenvector for M
2
.

3. Considering Theorem 5:

If n3 = c, c being a constant, the two conditions in Theorem 9 are satisfied, so that z

is an eigenvector for M
3
. In this case, one has λ = 0 and kab = n2

1 xaxb+n
2
2 yayb+c

2 zazb.

Next, the previous theorems are used to establish the conditions for x to be an eigenvec-

tor of M
1

, M
2

and M
3

simultaneously (similar results are obtained when x is substituted

by y or z):

(i) ∆y(n1) = 0,

(ii) ∆z(n1) = 0,

(iii) ∆x(n2) = 0,

(vi) ∆x(n3) = 0,

(v) 1
2
γ123 [

n2
1

n2
2
− 1] + 1

2
γ132 [

n2
3

n2
2
− n2

1

n2
2
] + 1

2
γ231 [1− n2

3

n2
2
] = 0,

(vi) 1
2
γ132 [

n2
1

n2
3
− 1] + 1

2
γ123 [

n2
2

n2
3
− n2

1

n2
3
] + 1

2
γ231 [

n2
2

n2
3
− 1] = 0.

These restrictions are, again, quite strong. If n1 = n2 = n3 are constant scalar fields,

x is a common eigenvector for M
1

, M
2

and M
3

. However this case is physically not

interesting for the problem. Finding other solutions for the previous equations is not

an easy task for the majority of metrics that one may consider.

Therefore, in general the principal directions of the pulled back material metric k are

not principal directions for M
1

, M
2

and M
3

.
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3.5.5 Summarizing the results

The results of the last theorems (Theorem 1-Theorem 9) can be reproduced and sum-

marized in the two following theorems.

Theorem 10 The tetrad vector eα is an eigenvector for M
α

iff nα remains invariant

along the two spatial tetrad vectors eβ, such that β 6= α, i.e. ∆eβ(lnnα) = 0 whenever

β 6= α.

The corresponding eigenvalue is λ = ∆eα(lnnα).

Proof: In order to solve this eigenvector-eigenvalue equation the following algebraic

conditions are used

M c
b

α

ebαeαc = λ, (3.54)

M c
b

α

ebαeβc = 0 (3.55)

and

M c
b

α

ebαeγc = 0, (3.56)

where γ 6= β 6= α. Considering the orthogonality conditions satisfied by the tetrad

vectors and the anti-symmetry of the Ricci rotation coefficients on the first pair of

indices, expressions (3.55) and (3.56) yield ∆eβ(lnnα) = 0 = ∆eγ (lnnα). Therefore

∆eβnα = 0 = ∆eγnα. On the other hand, from (3.54) one obtains, after some calcula-

tions, the eigenvalue λ = ∆eα(lnnα).

Conversely, suppose that ∆eβ(lnnα) = 0 for β 6= α and λ = ∆eα(lnnα), then the con-

ditions (3.54), (3.55) and (3.56) are identically satisfied, so that eα is an eigenvector

for M
α

.

�

For each value of α, the eigenvalue λ in Theorem 10 vanishes iff nα remains constant

along eα. However this condition is satisfied whenever nα = c, with c as a constant. In

this case, kab = c2 eαa eαb +
∑
β 6=α

n2
β eβa eβb.
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Theorem 11 eβ is an eigenvector of M
α

(with α 6= β ) iff the following conditions are

satisfied:

(i) ∆eβ(lnnα) = 0, i.e. nα remains invariant along the direction of eβ;

(ii) γαγβ[n
2
α − n2

γ] + γαβγ[n
2
α − n2

β] + γβγα[n
2
γ − n2

β] = 0, where γ 6= β 6= α for one pair

(β, γ).

The corresponding eigenvalue is λ = −nβ
n2
α
∆eαnβ + γαββ(−

n2
β

n2
α

+ 1).

Proof: Contracting M c
b

α

ebβ = λecβ with eαc one obtains ∆eβ(lnnα) = 0. This condition is

satisfied whenever ∆eβnα = 0. The second condition is a consequence of M c
b

α

ebβeγc = 0.

Contracting M c
b

α

ebβ = λecβ with eβc yields the eigenvalue λ.

The simplifications performed are based on the orthogonality conditions of the tetrad

vectors and on the properties of the rotation coefficients.

The converse is true as well. If the conditions (i) and (ii) hold, then it can be shown that

eβ is an eigenvector ofM
α

associated with the eigenvalue λ = −nβ
n2
α
∆eαnβ+γαββ(−

n2
β

n2
α
+1).

�

Notice that the two conditions (i) and (ii) in Theorem 11 are satisfied simultane-

ously whenever nα = nβ = nγ = c, with c a constant, in which case λ = 0 and

kab = c2 xaxb + c2 yayb + c2 zazb.

The previous theorems show that strong conditions have to be imposed both on nα

(α = 1, 2, 3) and the metric if one requires that the spatial tetrad vectors are principal

directions of M
α

, for α = 1, 2, 3.

However, the conditions for eα to be an eigenvector of M
α

are less restrictive then the

conditions for eβ to be an eigenvector of the same tensor, for all values of β 6= α:

in the first case the conditions to be satisfied contain only intrinsic derivatives of the

quantities nα; in the second case, besides conditions on the intrinsic derivatives on the

nα, one also has conditions containing the Ricci rotation coefficients.

Furthermore, for eα to be an eigenvector of M
α

, only conditions on nα have to be

satisfied: nα must remain constant along the directions of eβ for all values of β 6= α.
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In this case the eigenvalue corresponding to eα depends on nα only. Moreover, the

conditions for the vectors eβ, for all β 6= α, to be eigenvectors of M
α

depend explicitly

on the three quantities n1, n2 and n3.

Finally, the previous theorems are used to establish the conditions for each vector eα,

with α = 1, 2, 3, to be an eigenvector of the three tensors M
1
, M

2
, M

3
simultaneously.

One can show that those conditions are:

(i) ∆eβ(lnnα) = 0,

(ii) ∆eα(lnnβ) = 0,

(iii) γαβγ [n2
α − n2

β] + γαγβ [n2
γ − n2

α] + γβγα[n
2
β − n2

γ] = 0,

for all values of β and γ such that β 6= γ 6= α.

Here conditions (i), (ii) and (iii) must be satisfied for all values of β 6= α.

Ruling out the solution n1 = n2 = n3 = constant, which is not physically interesting,

it is not easy to solve these last equations. However one can say again that, in general,

the principal directions of the pulled back material metric k are not principal directions

of the three tensors M
1

, M
2

and M
3

.
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Chapter 4

Two conformally related material

metrics

Conformal transformations have a number of uses in general relativity and reveal to be

important in many applications. To mention some of them, conformal transformations

can be used to obtain physically more interesting space-times and allow for an easier

study of the new space-time’s geometry by using special properties of the original space-

time (the space-time which is undergone a conformal transformation). The conformally

reducible 2+2 space-times studied by Carot and Tupper (2002) [14] serve as an example

of these applications. These space-times include the class of warped space-times, which

contain all spherically symmetric solutions and a wide variety of other space-times like

Robertson-Walker, Bertotti-Robinson, de Sitter. The warped space-times also take the

advantage of being conformally related with locally decomposable space-times, namely

that they can be characterized by using properties of the locally decomposable ones1.

Conformal transformations can also be used as a method for generating solutions2.

Another important application can be found in the context of symmetries3, where

the conformal transformations are used to simplify their study, such that results can

then be inferred about one metric and through the conformal relation about the other

1See Carot and Costa (1993) [12].
2See Carot and Mas (1986) [13]; Stephani et al. (2003) [63] page 45.
3See e.g. Hall (1989) [31] or Hall and Steele (1991) [32].
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metric.

In the general context of conformal transformations one can find in the literature4 re-

sults showing the relations between the Riemann tensors, the Ricci tensors and other

relativistic objects associated with two metrics gab and ḡab, which are conformally

related: gab = f 2ḡab, f being a smooth strictly positive function depending on the

spacetime coordinates.

Guided by this topic arises a new idea in the context of general relativistic elasticity.

Under the hypothesis of having two conformally related metrics, it is interesting to in-

vestigate the consequences on and the relations between relativistic elastic quantities,

such as the elasticity difference tensor, associated with the two metrics. For further

investigation, the obtained relations can then be advantageous to study elasticity for

two specific space-times, which are conformally related, by transferring known results

and properties for one space-time to the other space-time.

The intended problem branches into two possible study proposals.

One possibility is to consider two conformally related spacetime metrics gab and ḡab:

gab = f 2ḡab, and to study the relations and the consequences for relativistic elastic

quantities. This problem is interesting, but since the elastic quantities depend on ma-

terial tensors, essentially on the material metrics, originally defined on the material

space which are then pulled back to the space-time, it seems to be more straightfor-

ward and technically feasible to begin with the other study proposal.

Instead of having two conformally related space-time metrics, this other study pos-

sibility consists in considering two conformally related material metrics KAB, K̄AB:

KAB = f 2K̄AB, and in studying the consequences on relativistic elastic quantities and

the relations between the quantities associated with KAB and K̄AB. Having in view

the study of this problem, a starting point for a new problem is opened. Assuming

that the pulled-back conformally related material metrics kab and k̄ab belong to the

space-times (M, g) and (M, ḡ), respectively, how are the space-time metrics gab and ḡab

related? An additional question is: Can kab and k̄ab belong to the same space-time, i.e.

4See e.g. Wald (1984) [67], Carroll (2004) [15].
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gab = ḡab?

Regarding applications of the elastic relativistic theory, one can observe in the litera-

ture, that it is quite common to work with a flat material metric. However, there is

no apparent strong reason for such an assumption. Physically, one can assume that

the material metric K has non-zero curvature and is obtained from another material

metric K̄ through a conformal transformation: K = f 2K̄, the metric K̄ being possibly

flat or also non-flat. Further, concerning the space-time metrics, one can suppose that

the pulled-back material metrics belong to the same space-time, that is: gab = ḡab.

Thus, as a first step and attempt to approach this field of problems, here it is as-

sumed that the pulled-back conformally related material metrics belong to the same

space-time, i.e. gab = ḡab. Consequences like how some relativistic elastic quantities

change under a conformal transformation of the material metric are studied. Among

other topics the relationship between the elasticity difference tensors associated with

the two material metrics is analysed. Furthermore the eigenvalue-eigenvector problem

considered in Chapter 3 is investigated from this point of view.

4.1 Problem set-up

Let (M, g) be a space-time equipped with coordinates wa and (X,K), a material space

with coordinates ξA.

The configuration map Ψ : M −→ X leads to the following presentation of the material

coordinates: ξA = ξA(wa).

Consider two conformally related material metrics KAB and K̄AB defined on the ma-

terial space such that

KAB = f 2K̄AB, (4.1)

where f is a smooth, strictly positive function depending on the material coordinates

(consequently on the space-time coordinates): f = f(ξA(wa)).
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The corresponding pulled-back material metrics kab and k̄ab are in the same way con-

formally related:

kab = f 2k̄ab. (4.2)

In fact, using the relativistic deformation gradient ξAa = ∂ξA

∂wa
to perform the pull-back

operation: Ψ∗KAB = f 2Ψ∗K̄AB, one obtains (4.2) from (4.1).

Working with the orthonormal tetrad {u, x, y, z}, where x, y and z are the spatial

eigenvectors of kab and k̄ab, these metrics can respectively be written as

kab = n2
1xaxb + n2

2yayb + n2
3zazb, (4.3)

and

k̄ab = n̄2
1xaxb + n̄2

2yayb + n̄2
3zazb, (4.4)

where n2
i and n̄2

i , i = 1, 2, 3, denote the eigenvalues of the respective metrics.

4.2 Consequences

4.2.1 Relations between the eigenvalues and between the par-

ticle number densities

Since k = f 2k̄, one concludes that the eigenvalues of the metric k, given in (4.3), are

related with those of the metric k̄, given in (4.4), in the following way:

n2
1 = f 2n̄2

1 (4.5)

n2
2 = f 2n̄2

2 (4.6)

n2
3 = f 2n̄2

3. (4.7)
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The determinants n2 of k and n̄2 of k̄ satisfy

n2 = (n1n2n3)
2 = f 6(n̄1n̄2n̄3)

2 = f 6n̄2. (4.8)

Consequently, for the particle number densities n and n̄ one has:

n = f 3n̄. (4.9)

4.2.2 The energy-momentum tensor and further relations

Consider the following expression of the energy-momentum tensor5

Tab = −ρgab + 2
∂ρ

∂gab
= ρuaub + pab, (4.10)

ρ = nε being the energy density and pab, the pressure tensor.

The pressure tensor can be written as

pab = p1xaxb + p2yayb + p3zazb, (4.11)

where

pi = nni
∂ε

∂ni
, (4.12)

for i = 1, 2, 3.

The tensors pab, k
a
b and k̄ab have the same eigenvectors: xa, ya and za.

The energy-momentum tensor Tab depends on the metric k through its eigenvalues,

more precisely, through the square roots n1, n2 and n3 of the eigenvalues. However,

taking into account the metric k̄, the energy-momentum tensor also depends on k̄,

this time through the square roots n̄1, n̄2 and n̄3 of the eigenvalues. Let the energy-

momentum tensor associated with k̄ be denoted by T̄ab.

From the fact that the energy-momentum tensors coincide

Tab = T̄ab, (4.13)

5See Section 2.1.12.1 of Chapter 2.
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one obtains the conditions presented below.

In effect, writing the energy-momentum tensor considering the metric k,

Tab = nεuaub + nn1
∂ε

∂n1

xaxb + nn2
∂ε

∂n2

yayb + nn3
∂ε

∂n3

zazb, (4.14)

equating it to the energy-momentum tensor associated with the metric k̄,

T̄ab = n̄ε̄uaub + n̄n̄1
∂ε̄

∂n̄1

xaxb + n̄n̄2
∂ε̄

∂n̄2

yayb + n̄n̄3
∂ε̄

∂n̄3

zazb, (4.15)

and using the relations (4.5-4.7) and (4.9), leads to the following conditions

ε =
1

f 3
ε̄ (4.16)

∂ε

∂n1

=
1

f 4

∂ε̄

∂n̄1

(4.17)

∂ε

∂n2

=
1

f 4

∂ε̄

∂n̄2

(4.18)

∂ε

∂n3

=
1

f 4

∂ε̄

∂n̄3

(4.19)

The next paragraphs show how the quantities depending on the metric k̄ are related

to those depending on the metric k.

4.2.3 Relation between the constant volume shear tensors

For two conformally related material metrics defined on the same space-time (M, g),

satisfying kab = f 2k̄ab, the constant volume shear tensor associated with the metric k,

sab =
1

2

(
hab − n−2/3kab

)
, (4.20)

coincides with the constant volume shear tensor associated with the metric k̄, given by

s̄ab =
1

2

(
hab − n̄−2/3k̄ab

)
, (4.21)

so that

sab = s̄ab. (4.22)

This result can be proved by substituting kab = f 2k̄ab and n = f 3n̄ in equation (4.20).
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Therefore, two conformally related material metrics belonging to the same space-time

have the same constant volume shear tensor. In other words, the conformal transfor-

mation of the material metric leaves the constant volume shear tensor invariant. In

this case, the state of shear of a material characterized by a conformal material metric

is independent of the conformal factor.

4.2.4 Relation between the elasticity difference tensors

Consider the elasticity difference tensor corresponding to the pulled-back material met-

ric k:

Sabc =
1

2
k−1am (Dbkmc +Dckmb −Dmkbc) (4.23)

and the elasticity difference tensor corresponding to the pulled-back material metric k̄:

S̄abc =
1

2
k̄−1am

(
Dbk̄mc +Dck̄mb −Dmk̄bc

)
. (4.24)

Note that D, the spatially projected connection6, is equal for both expressions, D = D̄,

since it is obtained from the connection associated with the space-time metric g, which

is supposed to be equal for k and k̄, i.e. g = ḡ and ∇ = ∇̄.

Introducing k = f 2k̄ in (4.23) and making use of k−1amkmb = hab leads to the following

relation between S and S̄

Sabc = S̄abc +
1

f

(
hacDbf + habDcf − k̄−1amk̄bcDmf

)
, (4.25)

where k̄−1amk̄bc = k−1amkbc is valid.

4.2.4.1 Tetrad expression and traces

Using the orthonormal tetrad

eaµ = (ea0, e
a
1, e

a
2, e

a
3) = (ua, xa, ya, za)

the relationship (4.25) in tetrad components takes the form

Sαβγ = S̄αβγ +
1

f

(
δαγDb(f)ebβ + δαβDc(f)ecγ −

n̄2
β

n̄2
α

δβγDm(f)emα

)
, (4.26)

6See (2.60) in Chapter 2.
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where the tetrad expression for the elasticity difference tensor Sαβγ is given in (3.17)

and

S̄αβγ =
1

2
[(1− ε̄γα)γ

α
γβ + (1− ε̄βα)γ

α
βγ + (ε̄γα − ε̄βα)γ

α
βγ

+ m̄βαδ
α
γ + m̄γαδ

α
β − m̄α

βδβγ ε̄βα],

(4.27)

with ε̄γα =

(
n̄2
γ

n̄2
α

)
and m̄α

β = Da(ln n̄
2
β)e

aα.

The relationships between the traces of the elasticity difference tensors in tetrad com-

ponents are given by

3∑
α=1

Sααγ =
3∑

α=1

[
S̄ααγ +

1

f

(
Db(f) ebγ

)]
(4.28)

and

3∑
β=1

Sαββ =
3∑

β=1

[
S̄αββ +

1

f

(
2δαβDb(f) ebβ −

n̄2
β

n̄2
α

Dm(f)emα

)]
. (4.29)

The expression for Sααγ and Sαββ can be found in (3.22) and (3.23), respectively, and

the traces for S̄αβγ are

3∑
α=1

S̄ααγ =
3∑

α=1

1

2
m̄γα =

3∑
α=1

1

n̄α
Da(n̄α)e

a
γ (4.30)

and

3∑
β=1

S̄αββ =
3∑

β=1

[
(1− ε̄βα)γ

α
ββ + m̄βαδ

α
β −

1

2
m̄α

β ε̄βα

]
. (4.31)

4.2.5 Relations between the second-order tensors M
1
, M

2
, M

3

and M̄
1
, M̄

2
, M̄

3

According to (3.24) of Chapter 3, the decomposition of the elasticity difference tensor

for the metric k can be written as

Sabc = Mbc
1

xa +Mbc
2

ya +Mbc
3

za =
3∑

α=1

Mbc
α

eaα (4.32)
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and the decomposition of the elasticity difference tensor for the metric k̄, as

S̄abc = M̄bc
1

xa + M̄bc
2

ya + M̄bc
3

za =
3∑

α=1

M̄bc
α

eaα. (4.33)

The second order tensors are defined by

Mbc
1

= Sabcxa Mbc
2

= Sabcya Mbc
1

= Sabcza (4.34)

and

M̄bc
1

= S̄abcxa M̄bc
2

= S̄abcya M̄bc
1

= S̄abcza. (4.35)

Inserting (4.25) into (4.34) and using (4.35), the calculations reveal that the relations

between the tensors M
1

, M
2

, M
3

and M̄
1

, M̄
2

, M̄
3

are:

Mbc
1

= M̄bc
1

+
1

f

(
xcDbf + xbDcf −

1

n2
1

kbcx
mDmf

)
(4.36)

Mbc
2

= M̄bc
2

+
1

f

(
ycDbf + ybDcf −

1

n2
2

kbcy
mDmf

)
(4.37)

Mbc
3

= M̄bc
3

+
1

f

(
zcDbf + zbDcf −

1

n2
3

kbcz
mDmf

)
(4.38)

Rewriting the last expressions using the orthonormal tetrad

eaµ = (ea0, e
a
1, e

a
2, e

a
3) = (ua, xa, ya, za),

employed in Section 3.3 of Chapter 3, leads to

Mbc
α

= M̄bc
α

+ 1
f

(
eαcDbf + eαbDcf − 1

n2
α
kbce

αmDmf
)
. (4.39)

Recall that letters from the first half of the Greek alphabet denote spatial tetrad indices.

4.3 Eigenvalue-eigenvector problem

In this section, the eigenvalue-eigenvector problem, studied in Chapter 3, is here re-

considered, now for the case of having two conformally related pulled-back material
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metrics kab = f 2k̄ab belonging to the same space-time.

The first purpose is to investigate conditions for x, y and z, the eigendirections of k

and k̄, to be eigenvectors for M
α

, α = 1, 2, 3, knowing that (4.39) holds. That means

that the equation

M c
b

α

ωb = λωc (4.40)

is solved particularly for ωb = xb, ωb = yb and ωb = zb.

Since the tensors M
α

are related with M̄
α

, α = 1, 2, 3, as shown in the previous section,

it is also interesting to continue and extend the analysis by finding conditions for x, y

and z to be also eigenvectors for M̄
α

. This problem corresponds to solve

M̄ c
b

α

ωb = λ̄ωc (4.41)

for ωb = xb, ωb = yb and ωb = zb, in addition to (4.40). The last step enables then to

establish the relation between the corresponding eigenvalues λ and λ̄ to which each of

the eigenvectors is associated.

The developed analysis is summarized in the following theorems. The results obtained

from the first problem considering the eigenvalue-eigenvector equation (4.40) appear in

the theorems in item a) and the results concerned with the problem of solving (4.40)

together with (4.41) appear in item b).

4.3.1 Eigenvalue-eigenvector problem for M
1

and M̄
1

The first three theorems, Theorem 12, Theorem 13 and Theorem 14, are devoted to

investigate the stated problem for M
1

which is related with M̄
1

through equation (4.36).

Theorem 12 a) x is an eigenvector for M
1

iff M̄ c
b

1

xbyc + ∆y(ln f) = 0 and

M̄ c
b

1

xbzc + ∆z(ln f) = 0.

The corresponding eigenvalue is λ = M̄ c
b

1

xbxc + ∆x(ln f).

b) x is an eigenvector for M
1

and M̄
1

iff f remains invariant along the directions of y

and z, i.e. ∆y(ln f) = ∆z(ln f) = 0.
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The relation between the corresponding eigenvalues is given by

λ = λ̄+ ∆x(ln f). (4.42)

Proof: Consider the conditions

M c
b

1

xbxc = λ, (4.43)

M c
b

1

xbyc = 0, (4.44)

M c
b

1

xbzc = 0, (4.45)

which must be satisfied for x to be an eigenvector of M
1

. Introducing the expression

(4.36) for M
1

in these equations and performing simplifications leads to the results given

in a).

Assume additionally that

M̄ c
b

1

xbxc = λ̄, (4.46)

M̄ c
b

1

xbyc = 0, (4.47)

M̄ c
b

1

xbzc = 0. (4.48)

These conditions must be verified in order to have x as eigenvector for M̄
1

. Substituting

these expressions in a), one obtains the formula relating the eigenvalues λ and λ̄ and

the conditions appearing in b).

Also, supposing that the conditions given in a) and b), respectively, are satisfied, then

it follows that x is an eigenvector for M
1

, respectively, for M
1

and M̄
1

.

�
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Theorem 13 a) y is an eigenvector for M
1

iff M̄ c
b

1

ybxc+∆y(ln f) = 0 and M̄ c
b

1

ybzc = 0.

The corresponding eigenvalue is λ = M̄ c
b

1

ybyc − n2
2

n2
1
∆x(ln f).

b) y is an eigenvector for M
1

and M̄
1

iff f remains invariant along the direction of y,

i.e. ∆y(ln f) = 0, and M̄ c
b

1

ybzc = 0.

The relation between the corresponding eigenvalues is given by

λ = λ̄− n2
2

n2
1

∆x(ln f). (4.49)

Proof: The results are obtained by contracting M c
b

1

yb = λyc and M̄ c
b

1

yb = λyc with xc,

yc and zc in the way explained below.

Solving

M c
b

1

ybxc = 0, (4.50)

by using (4.36) gives the first condition in a), which together with

M̄ c
b

1

ybxc = 0, (4.51)

results in ∆y(ln f) = 0, the first condition in b).

Imposing

M c
b

1

ybzc = 0 (4.52)

leads to the second condition in a)

M̄ c
b

1

ybzc = 0, (4.53)

which must also be satisfied in case b). The eigenvalue λ in a) is calculated from

M c
b

1

ybyc = λ. (4.54)

And taking into account

M̄ c
b

1

ybyc = λ̄ (4.55)
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one obtains the relation between the eigenvalues exposed in b).

Conversely, if the conditions presented in a) and b), respectively, hold, then it can be

shown that y is an eigenvector for M
1

, respectively, for M
1

and M̄
1

, associated with the

corresponding eigenvalues.

�

Theorem 14 a) z is an eigenvector for M
1

iff M̄ c
b

1

zbxc+∆z(ln f) = 0 and M̄ c
b

1

zbyc = 0.

The corresponding eigenvalue is λ = M̄ c
b

1

zbzc − n2
3

n2
1
∆x(ln f).

b) z is an eigenvector for M
1

and M̄
1

iff f remains invariant along the direction of z,

i.e. ∆z(ln f) = 0, and M̄ c
b

1

zbyc = 0.

The relation between the corresponding eigenvalues is given by

λ = λ̄− n2
3

n2
1

∆x(ln f). (4.56)

Proof: Consider the eigenvalue-eigenvector equations M c
b

1

zb = λzc and M̄ c
b

1

zb = λ̄zc.

The first condition in a) results from calculating

M c
b

1

zbxc = 0, (4.57)

where M
1

is substituted by the expression (4.36). One gets the condition ∆z(ln f) = 0

in b) introducing

M̄ c
b

1

zbxc = 0 (4.58)

in the expression obtained from (4.57).

Imposing

M c
b

1

zbyc = 0 (4.59)

yields

M̄ c
b

1

zbyc = 0, (4.60)
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which must be satisfied in both cases a) and b). The expression for the eigenvalue

given in a) is obtained from

M c
b

1

zbzc = λ (4.61)

by using again (4.36). Inserting

M̄ c
b

1

zbzc = λ̄ (4.62)

in that expression for λ implies

λ = λ̄− n2
3

n2
1

∆x(ln f). (4.63)

On the other hand, the conditions given in a) and b), respectively, imply that z is an

eigenvector for M
1

, respectively, for M
1

and M̄
1

, associated with the given eigenvalues.

�

4.3.2 Eigenvalue-eigenvector problem for M
2

and M̄
2

The eigenvalue-eigenvector problem is now studied for the tensors M
2

and M̄
2

. The

results appear in Theorem 15, Theorem 16 and Theorem 17.

Theorem 15 a) x is an eigenvector for M
2

iff M̄ c
b

2

xbyc +∆x(ln f) = 0 and M̄ c
b

2

xbzc =

0.

The corresponding eigenvalue is λ = M̄ c
b

2

xbxc − n2
1

n2
2
∆y(ln f).

b) x is an eigenvector for M
2

and M̄
2

iff f remains invariant along the direction of x,

i.e. ∆x(ln f) = 0, and M̄ c
b

2

xbzc = 0.

The relation between the corresponding eigenvalues is given by

λ = λ̄− n2
1

n2
2

∆y(ln f). (4.64)

Proof: In order to solve the eigenvalue-eigenvector problems M c
b

2

xb = λxc and M̄ c
b

2

xb =

λ̄xc, one must contract each of these equations with xc, yc and zc. The results are

obtained as follows. Calculating

M c
b

2

xbyc = 0, (4.65)
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by using (4.37), gives the first condition in a), and introducing there the equation

M̄ c
b

2

xbyc = 0, (4.66)

leads to the condition ∆x(ln f) = 0 in b). The condition

M c
b

2

xbzc = 0 (4.67)

yields

M̄ c
b

2

xbzc = 0, (4.68)

appearing in a), which must also be imposed in case b). The expression for the eigen-

value λ in a) is obtained from

M c
b

2

zbzc = λ (4.69)

together with (4.37). Substituting in that expression the condition

M̄ c
b

2

zbzc = λ̄, (4.70)

the relation between the eigenvalues λ and λ̄ in b) is established.

Conversely, from the conditions established in a) and b), respectively, it follows that x is

an eigenvector for M
2

, respectively for M
2

and M̄
2

, associated with the given eigenvalues.

�

Theorem 16 a) y is an eigenvector for M
2

iff M̄ c
b

2

ybxc + ∆x(ln f) = 0 and

M̄ c
b

2

ybzc + ∆z(ln f) = 0.

The corresponding eigenvalue is λ = M̄ c
b

2

ybyc + ∆y(ln f).

b) y is an eigenvector for M
2

and M̄
2

iff f remains invariant along the directions of x

and z, i.e. ∆x(ln f) = ∆z(ln f) = 0.

The relation between the corresponding eigenvalues is given by

λ = λ̄+ ∆y(ln f). (4.71)
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Proof: Consider the conditions

M c
b

2

ybxc = 0, (4.72)

M c
b

2

ybyc = λ, (4.73)

M c
b

2

ybzc = 0, (4.74)

which must be satisfied to have yb as eigenvector for M
2

, and the conditions

M̄ c
b

2

ybxc = 0, (4.75)

M̄ c
b

2

ybyc = λ̄, (4.76)

M̄ c
b

2

ybzc = 0, (4.77)

which correspond to yb being an eigenvector for M̄
2

. You get the first condition in

a) from (4.72) by considering (4.37). Together with (4.75) that condition results in

∆x(ln f) = 0, presented in b). Calculating (4.74) and making use of (4.37) yields

the second condition in a). Inserting there the expression (4.77) gives the condition

∆z(ln f) = 0 in b). The eigenvalue λ in a) is obtained from (4.73), where (4.37) is

used. Joining that equation for λ and (4.76) allows to calculate the relation between

the eigenvalues given in b).

On the other hand, if the conditions given in a) and b) hold, then (4.72-4.77) are

satisfied, so that y is an eigenvector for M
2

, respectively for M
2

and M̄
2

.

�

Theorem 17 a) z is an eigenvector for M
2

iff M̄ c
b

2

zbyc+∆z(ln f) = 0 and M̄ c
b

2

zbxc = 0.

The corresponding eigenvalue is λ = M̄ c
b

2

zbzc − n2
3

n2
2
∆y(ln f).

b) z is an eigenvector for M
2

and M̄
2

iff f remains invariant along the direction of z,

i.e. ∆z(ln f) = 0, and M̄ c
b

2

zbxc = 0.

The relation between the corresponding eigenvalues is given by

λ = λ̄− n2
3

n2
2

∆y(ln f). (4.78)

70



Proof: Consider the eigenvalue-eigenvector equations

M c
b

2

zb = λzc (4.79)

and

M̄ c
b

2

zb = λ̄zc. (4.80)

Solving

M c
b

2

zbyc = 0, (4.81)

by using (4.37), one gets the first condition in a). Substituting there the expression

M̄ c
b

2

zbyc = 0, (4.82)

leads to ∆z(ln f) = 0 given in b). The condition

M c
b

2

zbxc = 0 (4.83)

implies

M̄ c
b

2

zbxc = 0, (4.84)

which must be satisfied for case a) and b). The eigenvalue λ in a) is obtained from

M c
b

2

zbzc = λ (4.85)

by using (4.37). Substituting in the expression for λ the condition

M̄ c
b

2

zbzc = λ̄ (4.86)

leads to the relation between the eigenvalues given in b).

Conversely, the conditions presented in a) and b), respectively, imply that (4.81-4.86)

are satisfied, which mean that z is an eigenvector for M
2

, respectively, for M
2

and M̄
2

associated with the corresponding eigenvalues.

�
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4.3.3 Eigenvalue-eigenvector problem for M
3

and M̄
3

The following three theorems, Theorem 18, Theorem 19 and Theorem 20, are concerned

with the eigenvalue-eigenvector problem for the tensors M
3

and M̄
3

.

Theorem 18 a) x is an eigenvector for M
3

iff M̄ c
b

3

xbzc +∆x(ln f) = 0 and M̄ c
b

3

xbyc =

0.

The corresponding eigenvalue is λ = M̄ c
b

3

xbxc − n2
1

n2
3
∆z(ln f).

b) x is an eigenvector for M
3

and M̄
3

iff f remains invariant along the direction of x,

i.e. ∆x(ln f) = 0, and M̄ c
b

3

xbyc = 0.

The relation between the corresponding eigenvalues is given by

λ = λ̄− n2
1

n2
3

∆z(ln f). (4.87)

Proof: Contracting the eigenvalue-eigenvector equationsM c
b

3

xb = λxc and M̄ c
b

3

xb = λ̄xc

with xc, yc and zc, one obtains the following results.

Calculating

M c
b

3

xbzc = 0 (4.88)

together with (4.38) gives the first condition in a). Inserting

M̄ c
b

3

xbzc = 0 (4.89)

in those condition results in ∆x(ln f) = 0, the condition appearing in case b). Imposing

M c
b

3

xbyc = 0, (4.90)

leads to

M̄ c
b

3

xbyc = 0, (4.91)

which must be verified in case a) and in case b). Substituting (4.38) in

M c
b

3

xbxc = λ (4.92)
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reveals that the eigenvalue λ takes the form presented in a). And taking into account

the condition

M̄ c
b

3

xbxc = λ̄ (4.93)

implies that the eigenvalues λ and λ̄ are related by λ = λ̄− n2
1

n2
3
∆z(ln f).

On the other hand, if the conditions given in a) and b) hold, then one can prove

that (4.88-4.91) are satisfied; and the expressions for the eigenvalues satisfy (4.92) and

(4.93), respectively. Consequently, x is an eigenvector for M
3

, respectively, for M
3

and

M̄
3

.

�

Theorem 19 a) y is an eigenvector for M
3

iff M̄ c
b

3

ybzc+∆y(ln f) = 0 and M̄ c
b

3

ybxc = 0.

The corresponding eigenvalue is λ = M̄ c
b

3

ybyc − n2
2

n2
3
∆z(ln f).

b) y is an eigenvector for M
3

and M̄
3

iff f remains invariant along the direction of y,

i.e. ∆y(ln f) = 0, and M̄ c
b

3

ybxc = 0.

The relation between the corresponding eigenvalues is given by

λ = λ̄− n2
2

n2
3

∆z(ln f). (4.94)

Proof: Considering the eigenvalue-eigenvector equations M c
b

3

yb = λyc and M̄ c
b

3

yb =

λ̄yc, the results are found by contracting these equations with xc, yc and zc in the way

explained below.

Using (4.38) and calculating

M c
b

3

ybzc = 0 (4.95)

yields the first equation in a). Inserting

M̄ c
b

3

ybzc = 0 (4.96)

in those equation results in ∆y(ln f) = 0, the condition given in b).

Imposing

M c
b

3

ybxc = 0 (4.97)
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yields

M̄ c
b

3

ybxc = 0, (4.98)

so that (4.98) must be satisfied in case a) and b). Solving

M c
b

3

ybyc = λ (4.99)

and considering (4.38) one obtains the expression for the eigenvalue presented in a).

Introducing

M̄ c
b

3

ybyc = λ̄ (4.100)

in those expression it follows that

λ = λ̄− n2
2

n2
3

∆z(ln f). (4.101)

Conversely, the conditions presented in a) and b) imply that (4.95-4.98) are identically

satisfied. The identities (4.99) and (4.100) are true for the eigenvalues given in a) and

b), respectively. This proves that y is an eigenvector for M
3

in case a) and that y is an

eigenvector for M
3

and M̄
3

in case b).

�

Theorem 20 a) z is an eigenvector for M
3

iff M̄ c
b

3

zbxc + ∆x(ln f) = 0 and

M̄ c
b

3

zbyc + ∆y(ln f) = 0.

The corresponding eigenvalue is λ = M̄ c
b

3

zbzc + ∆z(ln f).

b) z is an eigenvector for M
3

and M̄
3

iff f remains invariant along the directions of x

and y, i.e. ∆x(ln f) = ∆y(ln f) = 0.

The relation between the corresponding eigenvalues is given by

λ = λ̄+ ∆z(ln f). (4.102)

Proof: To solve the eigenvalue-eigenvector equations

M c
b

3

zb = λzc (4.103)
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and

M̄ c
b

3

zb = λ̄zc, (4.104)

one must contract these equations with xc, yc and zc. Thereby, the exposed results are

obtained in the following way. The first condition in a) is a consequence of

M c
b

3

zbxc = 0, (4.105)

and (4.38). Joining

M̄ c
b

3

zbxc = 0 (4.106)

to those condition yields ∆x(ln f) = 0 given in b). From

M c
b

3

zbyc = 0 (4.107)

and (4.38) one calculates the second condition in a), which together with

M̄ c
b

3

zbyc = 0 (4.108)

results in ∆y(ln f) = 0. Inserting (4.38) in

M c
b

3

zbzc = λ, (4.109)

one gets the eigenvalue presented in a). Considering

M̄ c
b

3

zbzc = λ̄ (4.110)

leads to expression relating λ and λ̄.

The converse is true as well. The conditions given in a) and b), respectively, imply

(4.105-4.108). The expressions for the eigenvalues satisfy (4.109) and (4.110), respec-

tively. Thus, z is an eigenvector for M
3

in case a), and z is an eigenvector for M
3

and

M̄
3

in case b).

�
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4.3.4 Concluding remarks

Analysing the results of the eigenvalue-eigenvector problem obtained for the tensor M
1

,

knowing that M
1

is related with M̄
1

by

Mbc
1

= M̄bc
1

+
1

f

(
xcDbf + xbDcf −

1

n2
1

kbcx
mDmf

)
given in (4.36), one can say the following.

The conditions that must be satisfied, so that the eigenvectors of k remain eigenvectors

for M
1

, depend on the conformal function f through a derivative along a spatial vector

and on contractions of the tensor M̄
1

with two spatial tetrad vectors7. In particular,

two such conditions must be verified for x to be an eigenvector of M
1

, whereas for y and

z to be eigenvectors only one of the two conditions depends on the conformal function.

Regarding the expressions for the eigenvalues of M̄
1

, the eigenvalue corresponding to

x depends on the derivative of f along x and on M̄
1

contracted totally with x. The

eigenvalue corresponding to y (or z) depend on the contraction of M̄
1

with the respective

eigenvector y (or z), on the derivative of f along x and additionally on the eigenvalues

of k: n2
1 and n2

2 (or n2
1 and n2

3).

Observing the conditions that must be satisfied in order to have x as eigenvector for

M
1

and M̄
1

, f must be invariant along the other two eigenvectors of k, namely y and z.

In this case, one obtains an expression showing the relation between the eigenvalues λ

and λ̄ corresponding to x. The eigenvalues differ absolutely in the quantity ∆x(ln f).

For y (or z) to be eigenvectors of M
1

and M̄
1

, the function f must be invariant along

the same eigenvector y (or z) and the quantity M̄ c
b

1

ybzc must vanish, which due to the

symmetry of M̄
1

equals M̄ c
b

1

zbyc. The eigenvalue λ depends on λ̄, on the derivative of f

along x and on the eigenvalues of k: n2
1 and n2

2 (or n2
1 and n2

3). In this case, the absolute

difference between the eigenvalues λ and λ̄ is given by
n2

2

n2
1
∆x(ln f), (or

n2
3

n2
1
∆x(ln f)).

Considering Theorem 15, Theorem 16 and Theorem 17, where the eigenvalue-eigenvector

problem is analysed for the tensors M
2

and M̄
2

, one can observe a similar behaviour.

The role that x plays for M
1

and M̄
1

is now played by y. Interchanging x with y, M
1

7See Theorem 12, Theorem 13 and Theorem 14.
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with M
2

and n2
1 with n2

2 in the preceding results leads to the conclusions concerning

this case.

As for the tensors M
3

and M̄
3

, whose eigenvalue-eigenvector problem is dealt in Theorem

18, Theorem 19 and Theorem 20, the same presented remarks are valid by interchanging

x with z, M
1

with M
3

and n2
1 with n2

3.

As seen in the previous chapter, the eigenvectors of k (respectively k̄) are not, in

general, eigenvectors for M
α

(respectively M̄
α

). Here, one can additionally say that the

eigenvectors of k and k̄, which are conformally related, do not remain eigenvectors

for the tensors M
α

and M̄
α

simultaneously and in order to remain, restrictions must be

imposed on the conformal factor f and other restrictions involving the tensor M̄
α

.

4.3.5 Summarizing the results

Using the orthonormal tetrad eaµ = (ea0, e
a
1, e

a
2, e

a
3) = (ua, xa, ya, za) to reformulate the

results presented in the last theorems, one can summarize them in the two following

theorems:

Theorem 21 a) The tetrad vector eα is an eigenvector for M
α

iff

M̄ c
b

α

ebαeβc + ∆eβ(ln f) = 0 for each β 6= α.

The corresponding eigenvalue is λ = M̄ c
b

α

ebαeαc + ∆eα(ln f).

b) The tetrad vector eα is an eigenvector for M
α

and M̄
α

iff f remains invariant along

the two spatial tetrad vectors eβ, such that β 6= α, i.e. ∆eβ(ln f) = 0 whenever β 6= α.

The relation between the corresponding eigenvalues is given by

λ = λ̄+ ∆eα(ln f).

Proof: The eigenvalue-eigenvector problem M c
b

α

ebα = λecα is solved using the following

algebraic conditions

M c
b

α

ebαeαc = λ, (4.111)

M c
b

α

ebαeβc = 0 (4.112)
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and

M c
b

α

ebαeγc = 0 (4.113)

together with the relation (4.39), where γ 6= β 6= α. From (4.112) and (4.113) one

obtains the two conditions summarised in the expression given in a). The eigenvalue λ

in a) is calculated from (4.111). Considering in addition to (4.111), (4.112) and (4.113)

the conditions

M̄ c
b

α

ebαeαc = λ̄, (4.114)

M̄ c
b

α

ebαeβc = 0 (4.115)

and

M̄ c
b

α

ebαeγc = 0, (4.116)

where γ 6= β 6= α, one gets the results presented in b).

On the other hand, suppose that the conditions presented in a) and b), respectively,

hold. Then, it follows that (4.112), (4.113) and (4.115), (4.116), respectively, are

satisfied. The eigenvalues given in a) and b), respectively, satisfy (4.111) and (4.114),

respectively. This proves that eα is an eigenvector for M
α

in case a) and that eα is an

eigenvector for M
α

and M̄
α

in case b).

�

Theorem 22 a) The tetrad vector eβ is an eigenvector for M
α

iff

M̄ c
b

α

ebβeαc + ∆eβ(ln f) = 0 and M̄ c
b

α

ebβeγc = 0.

The corresponding eigenvalue is λ = M̄ c
b

α

ebβeβc −
n2
β

n2
α
∆eα(ln f).

b) The tetrad vector eβ is an eigenvector for M
α

and M̄
α

iff ∆eβ(ln f) = 0, for a fixed

β 6= α, i.e. f remains invariant along the direction of eβ, and M̄ c
b

α

ebβeγc = 0.

The relation between the corresponding eigenvalues is given by λ = λ̄− n2
β

n2
α
∆eα(ln f).
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Proof: Contracting the eigenvalue-eigenvector problemsM c
b

α

ebβ = λecβ and M̄ c
b

α

ebβ = λ̄ecβ

with eαc, eβc and eγc, where γ 6= β 6= α, the results are obtained as follows. Substituting

(4.39) in

M c
b

α

ebβeαc = 0 (4.117)

and in

M c
b

α

ebβeγc = 0 (4.118)

leads to the first two respective conditions given in a). Joining (4.117) and the equation

M̄ c
b

α

ebβeαc = 0 (4.119)

implies ∆eβ(ln f) = 0, the condition appearing in b). From M c
b

α

ebβeγc = 0 and (4.39),

one gets M̄ c
b

α

ebβeγc = 0, the same condition in a) and b). The eigenvalue λ in a) is

calculated from

M c
b

α

ebβeβc = λ (4.120)

by using (4.39). Finally, introducing

M̄ c
b

α

ebβeβc = λ̄ (4.121)

in those expression reveals that the eigenvalues λ and λ̄ are related by

λ = λ̄− n2
β

n2
α
∆eα(ln f).

Also, if the conditions given in a) and b), respectively, hold, then (4.117-4.119) are

satisfied, so that eβ is an eigenvector for M
α

in case a), and eβ is an eigenvector for M
α

and M̄
α

in case b), associated with the corresponding eigenvalues.

�

The following conclusions can be drawn. Solving the eigenvalue-eigenvector problem

for M
α

, knowing that M
α

is related with M̄
α

by

Mbc
α

= M̄bc
α

+
1

f

(
eαcDbf + eαbDcf −

1

n2
α

kbce
αmDmf

)
,
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the two conditions, that must be imposed for eα to be an eigenvector, depend on

the derivative of the function f along the other spatial tetrad vector eβ and on the

contraction of M
α

with eα and eβ. In this case the corresponding eigenvalue depends

on the derivative of f along eα and on M̄
α

contracted totally with eα.

For eα to be an eigenvector for M
α

and M̄
α

, f must be invariant along the other two

eigenvectors of k: ∆eβ(ln f) = 0. The eigenvalue λ depends on λ̄ and on the derivative

of f along eα.

Solving the problem for eβ to be an eigenvector of M
α

one concludes that the contraction

of M̄
α

with the two vectors eβ and eγ must vanish and additionally a condition depending

on the derivative of f along eβ and on M̄
α

contracted with eα and eβ must be satisfied.

The eigenvalue corresponding to the eigenvector eβ depends on M̄
α

contracted totally

with the same eigenvector, on the derivative of f along the eigenvector eα and on the

eigenvalues of k: n2
α and n2

β.

In order to have eβ as eigenvector for both tensors M
α

and M̄
α

, f must be invariant along

eβ and the contraction of M̄
α

with eβ and eγ must vanish. In this case, one obtains

an expression relating the eigenvalues λ, λ̄ and n2
β, all three obtained from different

tensors - M
α

, M̄
α

and k - but corresponding to the same eigenvector eβ, and another

eigenvalue of k: n2
α. The absolute difference between λ and λ̄ is given by

n2
β

n2
α
∆eα(ln f).

Based on this analysis one can state that in general the eigenvectors of k do not remain

eigenvectors for M
α

and M̄
α

. Only if one imposes restrictions on the conformal function,

the eigenvectors of k are also eigenvectors of M
α

and M̄
α

. Under those restrictions one

obtains an expression relating the mentioned eigenvalues of M
α

, M̄
α

and k.
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Chapter 5

Applications to spherically and

axially symmetric space-times

In this chapter, the analysis developed in Chapter 3 is applied to a static spheri-

cally symmetric space-time, a non-static spherically symmetric space-time and to a

particular case of an axially symmetric space-time. Moreover, considering the static

spherically symmetric space-time, the results are obtained for two material metrics

which are conformally related, one of them being flat, in order to have also a practical

application of the analysis developed in Chapter 4. For the non-static spherically sym-

metric space-time, the attempt to specify all results also for both conformally related

material metrics was not completely successful. The calculations revealed that it was

almost impossible to write down the results, because the expressions are complicated

and long due to the fact that in the non-static case additional terms involving deriva-

tives with respect to the coordinate t appear. So, in this case, only the eigenvalues are

specified for both material metrics. The other results are written as functions of n1

and n2 without specifying them.

The spherically symmetric space-times and the axially symmetric space-time with

cylindrical symmetry are considered due to their significance on modelling neutron

stars and due to the motivation presented in the literature to study elasticity for these

stellar objects.
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The elasticity difference tensor Sabc and the constant volume shear tensor sab are calcu-

lated for the mentioned space-times and the eigenvalue-eigenvector problem associated

with the elasticity difference tensor through its decomposition into the three tensors

M
α

is studied.

5.1 Static spherically symmetric space-time

Neutron stars can approximately be modelled by spherically symmetric metrics. The

metric regarded here, for example, can be thought of as the interior metric of a non

rotating star composed by an elastic material1.

Consider a static spherically symmetric space-time, whose metric g is given by the

following line-element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dθ2 + r2 sin2 θdφ2, (5.1)

with coordinates ωa = {t, r, θ, φ}, where r represents the radial coordinate, φ, the

axial coordinate and θ, the azimuthal coordinate. The space-time can be specified by

defining the orthonormal tetrad {u, x, y, z} with the following basis vectors and basis

one-forms

ua =
[

1
eν(r)

, 0, 0, 0
]

ua =
[
−eν(r), 0, 0, 0

]
xa =

[
0, 1

eλ(r) , 0, 0
]

xa =
[
0, eλ(r), 0, 0

]
ya =

[
0, 0, 1

r
, 0
]

ya = [0, 0, r, 0]

za =
[
0, 0, 0, 1

r sin θ

]
za = [0, 0, 0, r sin θ] ,

so that gab = −uaub + xaxb + yayb + zazb. The line-element corresponding to the

projection tensor hab = xaxb + yayb + zazb is given by

ds2 = e2λ(r)dr2 + r2dθ2 + r2 sin2 θdφ2. (5.2)

1See for instance Magli and Kijowski (1992) [46].
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In the spherically symmetric case, two of the eigenvalues of kab are equal. Let n2 = n3,

so that n2
2 = n2

3 are the degenerate eigenvalues, implying that the pulled-back material

metric takes the form kab = n2
1xaxb + n2

2yayb + n2
2zazb with corresponding line-element

ds2 = n2
1e

2λ(r)dr2 + n2
2r

2dθ2 + n2
2r

2 sin2 θdφ2. (5.3)

Let ξA = {r̃, θ̃, φ̃} be the coordinate system in the material space X. Because of the

assumption that the space-time is static and spherically symmetric, the material radius

r̃ depends only on r, r̃(r), and the material angles θ̃ and φ̃ can be chosen to be equal

to the physical angles: θ̃ = θ and φ̃ = φ. Thus, the configuration of the material is

described by the material radius r̃(r). And the relativistic deformation gradient has

only
dξ1

dω1
=
dr̃

dr
= r̃′,

dξ2

dω2
= 1 and

dξ3

dω3
= 1 as non-zero components. The derivative

with respect to the coordinate r is here represented by a prime.

Since every three-dimensional spherically symmetric metric is conformally flat, the

following two material metrics are considered in X, whose line-elements are given by

1. ds2 = dr̃2 + r̃2dθ̃2 + r̃2sin2θ̃dφ̃2

2. ds2 = f 2(r̃)(dr̃2 + r̃2dθ̃2 + r̃2sin2θ̃dφ̃2).

The material metric 1. is flat and the material metric 2. is conformally related with

the flat one. Denoting the metric tensor 1. by K̄ and the metric tensor 2. by K, then it

becomes obvious that both metrics satisfy the relation K = f 2(r̃)K̄. Therefore, this is

a particular case of the more general case treated in Chapter 4, where two conformally

related material metrics are investigated and no particular restrictions about flatness

are considered.

The results listed in the next paragraphs concerning these two material metrics are

numbered 1. and 2., respectively.

Pulled-back material metric

1. Calculating the pull-back of the material metric 1. one obtains
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kab = gackcb = gac(ξCc ξ
B
b KCB)

= r̃′2 e−2λ δa1 δ
1
b +

r̃2

r2
δa2 δ

2
b +

r̃2

r2
δa3 δ

3
b.

The line-element corresponding to the pulled-back material metric kab is

ds2 = r̃′2 dr2 + r̃2 dθ2 + r̃2 sin2θ dφ2. (5.4)

Comparing this expression with the line-element given by (5.3), one concludes that the

eigenvalues of k are given by

n2
1 = r̃′2 e−2λ = n2

1(r) (5.5)

n2
2 = n2

3 =
r̃2

r2
= n2

2(r). (5.6)

The linear particle densities have the following form

n1 = n1(r) =
√
r̃′2 e−2λ = r̃′ e−λ (5.7)

n2 = n2(r) = n3(r) =
r̃

r
. (5.8)

2. Calculating the pull-back of the material metric 2. one obtains

kab = gackcb = gac(ξCc ξ
B
b KCB)

= f 2(r̃)

[
r̃′2 e−2λ δa1 δ

1
b +

r̃2

r2
δa2 δ

2
b +

r̃2

r2
δa3 δ

3
b

]
.

The line-element corresponding to the pulled-back material metric kab is

ds2 = f 2(r̃)[r̃′2 dr2 + r̃2 dθ2 + r̃2 sin2θ dφ2]. (5.9)

The eigenvalues of k are given by

n2
1 = f 2(r̃)r̃′2 e−2λ = n2

1(r) (5.10)

n2
2 = n2

3 = f 2(r̃)
r̃2

r2
= n2

2(r). (5.11)
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The linear particle densities have the following form

n1 = n1(r) = f(r̃)
√
r̃′2 e−2λ = f(r̃)r̃′ e−λ (5.12)

n2 = n2(r) = n3(r) = f(r̃)
r̃

r
. (5.13)

The linear particle densities are positive quantities, for this reason, the function f(r̃)

must be positive.

Comparing the eigenvalues of the metric 1. with those of the metric 2., they differ in

the factor f 2(r̃), confirming the result obtained in Section 4.2.1.

Constant volume shear tensor

The components of the constant volume shear tensor sab =
1

2
(hab − n− 2

3kab) are:

srr =
1

2
e2λ
(
1− n− 2

3n2
1

)
sθθ =

1

2
r2
(
1− n− 2

3n2
2

)
sφφ =

1

2
r2sin2θ

(
1− n− 2

3n2
2

)

The components of the constant volume shear tensor vanish iff n2
1 = n2

2.

Substituting n2
1 and n2

2 explicitly in the last expressions one obtains the following re-

sults, considering the two material metrics

1.

srr =
1

2

(
e2λ − n− 2

3 r̃′2
)

sθθ =
1

2

(
r2 − r̃2n− 2

3

)
sφφ =

1

2
sin2θ

(
r2 − r̃2n− 2

3

)
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The constant volume shear tensor is zero if r̃ is of the form r̃ = ce±
R

1
r
eλdr, c > 0. Since

the linear particle densities are positive, it follows that the allowable form for r̃ in the

unsheared state is r̃ = ce
R

1
r
eλdr, c > 0.

2.

srr =
1

2

(
e2λ − n− 2

3 r̃′2f 2
)

sθθ =
1

2

(
r2 − r̃2n− 2

3f 2
)

sφφ =
1

2
sin2θ

(
r2 − r̃2n− 2

3f 2
)

The constant volume shear tensor is zero if r̃ is of the form r̃ = ce±
R

1
r
eλdr, c > 0. Also

in this case, since the linear particle densities are positive, r̃ is restricted to the form

r̃ = ce
R

1
r
eλdr, c > 0, for the unsheared state.

Analysing the last results, one can observe that the condition forcing the constant vol-

ume shear tensor to vanish is the same for the two considered material metrics. The

case of the material being in an unsheared state, which means sab = 0, is independent

of the conformal factor. One concludes that the conformal factor has no influence on

the state of shear of the material.

Since n− 2
3 = (n2

1n
4
2)

− 1
3 and by introducing in this expression the eigenvalues (5.10) and

(5.11), one can prove that the components of the constant volume shear tensor given

in 2. equal the components of the constant volume shear tensor given in 1. .

These results are in accordance with the result stated in Section 4.2.3, where it is shown

that two conformally related pulled-back material metrics belonging to the same space-

time have the same constant volume shear tensor.

Elasticity difference tensor

The non-zero components of the elasticity difference tensor Sabc are:
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Srrr =
n′

1

n1

Sθθr =
n′

2

n2

Sφφr =
n′

2

n2

Srθθ = re−2λ − re−2λn
2
2

n2
1

− e−2λr2n2

n2
1

n′
2

Srφφ = e−2λrsin2θ − e−2λrsin2θ
n2

2

n2
1

− e−2λr2sin2θ
n2

n2
1

n′
2

Since Sabc = Sacb, there are only seven non-zero components for this tensor on the

coordinate system.

These components can alternatively be written in the following form, after substituting

the quantities n1 and n2 by their expressions for the two material metrics:

1.

Srrr =
r̃′′

r̃′
− λ′

Sθθr =
r̃′

r̃
− 1

r

Sφφr =
r̃′

r̃
− 1

r

Srθθ = re−2λ − r̃

r̃′

Srφφ = sin2θ

(
re−2λ − r̃

r̃′

)

One can verify that the components Sθθr and Sφφr are zero if the function r̃ is of the

form r̃ = c1r, where c1 is a positive constant.

Srrr is zero if r̃ = c2 + c3
∫
eλdr, where c2 + c3

∫
eλdr > 0, and the components Srθθ

and Srφφ are zero if r̃ = c4e
R
e2λ

r
dr, c4 > 0.
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2.

Srrr =
r̃′′

r̃′
− λ′ +

1

f

df

dr̃
r̃′

Sθθr =
r̃′

r̃
− 1

r
+

1

f

df

dr̃
r̃′

Sφφr =
r̃′

r̃
− 1

r
+

1

f

df

dr̃
r̃′

Srθθ = re−2λ − r̃

r̃′
− r̃2

r̃′
1

f

df

dr̃

Srφφ = sin2θ

(
re−2λ − r̃

r̃′
− r̃2

r̃′
1

f

df

dr̃

)

The components Sθθr and Sφφr are zero if the function r̃ is of the form r̃ = cr
f
, where

c > 0 is a constant.

Srrr is zero if r̃′′

r̃′
− λ′ + 1

f
df
dr̃
r̃′ = 0 and the components Srθθ and Srφφ are zero if

1 + r̃ d ln(f)
dr

− e−2λr d ln(r̃)
dr

= 0.

Analysing these results one may conclude that it is most unlikely that the elasticity

difference tensor vanishes totally, because very strict conditions must be imposed on r̃,

r and λ and, concerning the non-flat material metric, additionally on the function f .

One can observe that the components of the elasticity difference tensor for the non-flat

material metric 2. depend on the components of the elasticity difference tensor for the

flat metric 1. and on additional terms. These additional terms making the difference

between the elasticity difference tensors can be calculated according to the formula

(4.25) given in Section 4.2.4:

Sabc − S̄abc =
1

f

(
hacDbf + habDcf − k̄−1amk̄bcDmf

)
,

where S̄abc represents the elasticity difference tensor associated with the flat material

metric 1..
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The tetrad components of the elasticity difference tensor can be obtained using the

formula (3.16) given in Section 3.3, yielding:

S1
11 = e−λ

n′
1

n1

S2
21 = e−λ

n′
2

n2

S3
31 = e−λ

n′
2

n2

S1
22 = e−λ

1

r
− e−λ

1

r

n2
2

n2
1

− e−λ
n2

n2
1

n′
2

S1
33 = e−λ

1

r
− e−λ

1

r

n2
2

n2
1

− e−λ
n2

n2
1

n′
2.

Expressions for M
1
, M

2
and M

3

The second order symmetric tensors M
1

, M
2

and M
3

have the following non-zero com-

ponents.

Mrr
1

= eλ
n′

1

n1

Mθθ
1

= e−λr − e−λr
n2

2

n2
1

− e−λr2n2

n2
1

n′
2

Mφφ
1

= e−λrsin2θ − e−λrsin2θ
n2

2

n2
1

− e−λr2sin2θ
n2

n2
1

n′
2

Mrθ
2

= Mθr
2

= r
n′

2

n2

Mrφ
3

= Mφr
3

= rsinθ
n′

2

n2

One can observe, that the components of M
2

are very similar to the components of M
3

,

they differ only in the factor sin θ.

Using the explicit expressions for n2
1 and n2

2, concerning the two material metrics, one

obtains:
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1. Flat material metric

Mrr
1

= eλ
(
r̃′′

r̃′
− λ′

)
Mθθ
1

= eλ
(
re−2λ − r̃

r̃′

)
Mφφ
1

= sin2θeλ
(
re−2λ − r̃

r̃′

)
Mrθ
2

= Mθr
2

=
r̃′

r̃
r − 1

Mrφ
3

= Mφr
3

= sinθ

(
r̃′

r̃
r − 1

)
2. Non-flat material metric

Mrr
1

= eλ
(
r̃′′

r̃′
− λ′ +

1

f

df

dr̃
r̃′
)

Mθθ
1

= eλ
(
re−2λ − r̃

r̃′
− r̃2

f

df

dr̃

1

r̃′

)
Mφφ
1

= eλsin2θ

(
re−2λ − r̃

r̃′
− r̃2

f

df

dr̃

1

r̃′

)
Mrθ
2

= Mθr
2

= r

(
r̃′

r̃
− 1

r
+

1

f

df

dr̃
r̃′
)

Mrφ
3

= Mφr
3

= r sin θ

(
r̃′

r̃
− 1

r
+

1

f

df

dr̃
r̃′
)

Comparing the tensor components of M
1

for the flat material metric with those for the

non-flat material metric, also here one can recognize that the components of M
1

in 2.

depend on the components of M
1

for the flat material metric. This property is inherited

from the elasticity difference tensor via its decomposition to the tensors M
α

, since it is a

consequence of the existing relation between the elasticity difference tensors associated

with the two metrics. The additional terms in the components of M
1

in 2., indicating

the difference between the tensors M
1

for both cases, result according to the formula

(4.36):

Mbc
1

− M̄bc
1

=
1

f

(
xcDbf + xbDcf −

1

n2
1

kbcx
mDmf

)
,

deduced in Section 4.2.5.

The following relations between the components of S and the second order tensors can

be established.
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Mrr
1

= eλSrrr

Mθθ
1

= eλSrθθ

Mφφ
1

= eλSrφφ

Mrθ
2

= rSθθr

Mrφ
3

= rsinθSφφr

Eigenvalue-eigenvector problem

The following paragraphs deal with the eigenvalue-eigenvector problems for M
1

, M
2

and

M
3

, respectively.

Solving the eigenvalue-eigenvector problem for M
1

one obtains the results exposed in

Table 5.1.

Table 5.1: Eigenvectors and eigenvalues for M
1

Eigenvectors Eigenvalues

x µ1 = e−λ

n1
n′

1

y µ2 = e−λ

r
− e−λ

r

n2
2

n2
1
− e−λ n2

n2
1
n′

2

z µ3 = e−λ

r
− e−λ

r

n2
2

n2
1
− e−λ n2

n2
1
n′

2

Substituting n1 and n2 by their explicit expressions yields the results exposed in Table

5.2 for the flat metric 1. and in Table 5.3 for the non-flat metric 2..
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Table 5.2: Eigenvectors and eigenvalues for M
1

considering the material metric 1.

Eigenvectors Eigenvalues

x µ1 = e−λ
(
r̃′′

r̃′
− λ′

)
y µ2 = eλ

r2

(
re−2λ − r̃

r̃′

)
z µ3 = eλ

r2

(
re−2λ − r̃

r̃′

)

Table 5.3: Eigenvectors and eigenvalues for M
1

considering the material metric 2.

Eigenvectors Eigenvalues

x µ1 = e−λ
(
r̃′′

r̃′
− λ′ + 1

f
df
dr̃
r̃′
)

y µ2 = eλ

r2

(
re−2λ − r̃

r̃′
− 1

f
df
dr̃
r̃2

r̃′

)
z µ3 = eλ

r2

(
re−2λ − r̃

r̃′
− 1

f
df
dr̃
r̃2

r̃′

)

The eigendirections x, y and z of k are directly eigenvectors for M
1

. One notices that

y and z are eigenvectors associated with the same eigenvalue. The results imply that

the canonical form for M
1

is Mbc
1

= µ1xbxc+µ2(ybyc+zbzc), where µ1 and µ2 (= µ3) are

the eigenvalues with which x and y (or z), respectively, are associated. The algebraic

multiplicity of µ2 coincides with the geometric multiplicity and is equal to 2. The

eigenvalues depend on ni, i = 1, 2 and on the variation of ni due to the variation of r.

Moreover, n1 appears explicitly in all eigenvalues.
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Table 5.4 contains the eigenvalues and associated eigenvectors for the tensor M
2

.

Table 5.4: Eigenvectors and eigenvalues for M
2

Eigenvectors Eigenvalues

x+ y µ4 = e−λ
n′2
n2

x− y µ5 = −e−λ n
′
2

n2

z µ6 = 0

Replacing n2 by its explicit expression leads to the results presented in Table 5.5 for

the flat metric 1. and in Table 5.6 for the metric 2..

Table 5.5: Eigenvectors and eigenvalues for M
2

considering the material metric 1.

Eigenvectors Eigenvalues

x+ y µ4 = e−λ( r̃
′

r̃
− 1

r
)

x− y µ5 = −e−λ( r̃′
r̃
− 1

r
)

z µ6 = 0

Table 5.6: Eigenvectors and eigenvalues for M
2

considering the material metric 2.

Eigenvectors Eigenvalues

x+ y µ4 = e−λ
(
r̃′

r̃
− 1

r
+ 1

f
df
dr̃
r̃′
)

x− y µ5 = −e−λ
(
r̃′

r̃
− 1

r
+ 1

f
df
dr̃
r̃′
)

z µ6 = 0

One can observe that all eigenvalues of M
2

are distinct. Since z is an eigenvector as-

sociated with a zero eigenvalue, the canonical form for M
2

can be expressed as Mbc
2

=

2µ4(xbyc + ybxc), where µ4 = e−λ
(
r̃′

r̃
− 1

r

)
for case 1. and µ4 = e−λ

(
r̃′

r̃
− 1

r
+ 1

f
df
dr̃
r̃′
)

for case 2..
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Solving the particular eigenvalue-eigenvector problems M c
b

2

xb = µxc, M c
b

2

yb = µyc and

M c
b

2

zb = µzc leads to the following results.

i) x is an eigenvector for M
2

associated with the eigenvalue 0 iff e−λ
n′2
n2

= 0.

ii) y is an eigenvector for M
2

associated with the eigenvalue 0 iff e−λ
n′2
n2

= 0.

iii) z is an eigenvector for M
2

associated with the eigenvalue 0.

The eigenvector z of k is automatically an eigenvector for M
2

, however, for x and y to

be eigenvectors for M
2

, n2 must be a constant scalar field with respect to r: n′
2 = 0.

For case 1. this equation implies that r̃ must be of the form r̃ = cr, with c a positive

constant. If r̃ = cr, then x, y and z are associated with the same eigenvalue 0. In this

case, M
2

would vanish.

Considering the non-flat material metric, n′
2 = 0 is satisfied iff

f ′r̃r + f r̃′r − f r̃ = 0.

Table 5.7 contains the eigenvalues and associated eigenvectors for the tensor M
3

.

Table 5.7: Eigenvectors and eigenvalues for M
3

Eigenvectors Eigenvalues

x+ z µ7 = e−λ
n′2
n2

x− z µ8 = −e−λ n
′
2

n2

y µ9 = 0

Writing the results specifically for the metric 1. and the metric 2., one obtains the

results given in Table 5.8 and Table 5.9, respectively.
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Table 5.8: Eigenvectors and eigenvalues for M
3

considering the material metric 1.

Eigenvectors Eigenvalues

x+ z µ7 = e−λ( r̃
′

r̃
− 1

r
)

x− z µ8 = −e−λ( r̃′
r̃
− 1

r
)

y µ9 = 0

Table 5.9: Eigenvectors and eigenvalues for M
3

considering the material metric 2.

Eigenvectors Eigenvalues

x+ z µ7 = e−λ
(
r̃′

r̃
− 1

r
+ 1

f
df
dr̃
r̃′
)

x− z µ8 = −e−λ
(
r̃′

r̃
− 1

r
+ 1

f
df
dr̃
r̃′
)

y µ9 = 0

The tensor M
3

has distinct eigenvalues, the eigenvalue corresponding to y is zero. The

canonical form of M
3

can be written as Mbc
3

= 2µ7(xbzc + zbxc), where µ7 = e−λ( r̃
′

r̃
− 1

r
)

for case 1. and µ7 = e−λ
(
r̃′

r̃
− 1

r
+ 1

f
df
dr̃
r̃′
)

for case 2..

Considering the eigenvalue-eigenvector problems M c
b

3

xb = µxc, M c
b

3

yb = µyc and

M c
b

3

zb = µzc one gets:

i) x is an eigenvector for M
3

associated with the eigenvalue 0 iff e−λ
n′2
n2

= 0.

ii) y is an eigenvector for M
3

associated with the eigenvalue 0.

iii) z is an eigenvector for M
3

associated with the eigenvalue 0 iff e−λ
n′2
n2

= 0.

For M
3

, y is an eigenvector associated with the eigenvalue 0 and x and z are eigenvec-

tors associated with the same zero eigenvalue if and only if n′
2 = 0. Considering the

flat material metric 1. and substituting n2 by its expression given in (5.8) one deduces

that y and z are eigenvectors for M
3

iff r̃ = cr, where c > 0. Considering the non-flat
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material metric 2. and substituting n2 by (5.13), y and z are eigenvectors for M
3

iff

f ′r̃r + f r̃′r − f r̃ = 0. In this case M
3

reduces to Mbc
3

= 0.

Ricci rotation coefficients

The expressions for the Ricci rotation coefficients are

γ010 = e−λν ′

γ122 =
e−λ

r

γ133 =
e−λ

r

γ233 =
cos θ

r sin θ
.

Kinematical quantities

Calculating Θ, u̇a, σab, and ωab, contained in2

ua;b = −u̇aub + ua;ch
c
b = −u̇aub +

1

3
Θhab + σab + ωab,

one obtains

Θ = 0

u̇a = (0, ν ′, 0, 0)

σab = 0

ωab = 0.

5.2 Non-static spherically symmetric space-time

Consider a non-static spherically symmetric space-time and write the line-element of

the corresponding space-time metric g in the form

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)dr2 + r2dθ2 + r2 sin2 θdφ2, (5.14)

2See page 14 in Section 2.1.4.
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where the space-time coordinates are given by the set ωa = {t, r, θ, φ}. This space-time

metric differs from the static spherically symmetric one in the coordinate functions e2ν

and e2λ, which depend here additionally on the coordinate t.

Let ξA = {r̃, θ̃, φ̃} be the coordinate system in the material space X. Because of the

assumption that the space-time is non static and spherically symmetric, the material

radius r̃ depends on t and r. The material angles θ̃ and φ̃ can be chosen to be equal

to the physical angles: θ̃ = θ and φ̃ = φ. Thus, the configuration of the material is

described by the material radius r̃(t, r). The relativistic deformation gradient ξAa =
∂ξA

∂ωa

has
∂ξ1

∂ω0
= ˙̃r,

∂ξ1

∂ω1
= r̃′,

∂ξ2

∂ω2
= 1 and

∂ξ3

∂ω3
= 1 as the only non-zero components.

In X, consider two forms of the material metric:

1. ds2 = dr̃2 + r̃2dθ̃2 + r̃2sin2θ̃dφ̃2

2. ds2 = f 2(r̃)(dr̃2 + r̃2dθ̃2 + r̃2sin2θ̃dφ̃2).

Again, here, the metric 2. is conformally related with the flat metric 1., this being

again a particular case of that one considered in Chapter 4.

At this point one can see the reasons for the difference between the non-static config-

uration considered in this section and the static configuration treated in the previous

section. As already mentioned, the functions e2ν and e2λ of the non-static space-time

metric depend on both coordinates t and r. Here, the material radius r̃ and the confor-

mal factor f 2 depend in addition to r also on the coordinate t. Moreover, the relativistic

deformation gradient has one more non-zero component, namely ˙̃r, the time derivative

of the material radius.

In the subsequent paragraphs, the results corresponding to the flat material metric 1.

and to the non-flat material metric 2. are listed subordinately to the items 1. and 2.,

respectively.

Pulled-back material metrics

1. Pulling back the material metric 1. gives
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kab = gackcb = gac(ξCc ξ
B
b KCB)

= − ˙̃r2 e−2ν δa0 δ
0
b − ˙̃r r̃′ e−2ν δa0 δ

1
b + r̃′ ˙̃r e−2λ δa1 δ

0
b

+ r̃′2 e−2λ δa1 δ
1
b +

r̃2

r2
δa2 δ

2
b +

r̃2

r2
δa3 δ

3
b.

The line-element corresponding to the pulled-back material metric kab is

ds2 = − ˙̃r′2 dt2 + ˙̃r r̃′ dtdr + r̃′ ˙̃r drdt

+ r̃′2 dr2 + r̃2 dθ2 + r̃2 sin2θ dφ2.
(5.15)

Calculating the eigenvalues of k one obtains:

n2
1 = r̃′2 e−2λ − ˙̃r2 e−2ν = n2

1(t, r) (5.16)

n2
2 = n2

3 =
r̃2

r2
= n2

2(t, r). (5.17)

The linear particle densities have the following form

n1 = n1(t, r) =
√
r̃′2 e−2λ − ˙̃r2 e−2ν (5.18)

n2 = n2(t, r) = n3(t, r) =
r̃

r
. (5.19)

2. Pulling back the material metric 2. implies

kab = gackcb = gac(ξCc ξ
B
b KCB)

= f 2(r̃)[− ˙̃r2 e−2ν δa0 δ
0
b − ˙̃r r̃′ e−2ν δa0 δ

1
b + r̃′ ˙̃r e−2λ δa1 δ

0
b

+ r̃′2 e−2λ δa1 δ
1
b +

r̃2

r2
δa2 δ

2
b +

r̃2

r2
δa3 δ

3
b].

The line-element corresponding to the pulled-back material metric kab is

ds2 = f 2(r̃)[− ˙̃r′2 dt2 + ˙̃r r̃′ dtdr + r̃′ ˙̃r drdt

+ r̃′2 dr2 + r̃2 dθ2 + r̃2 sin2θ dφ2].
(5.20)
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Calculating the eigenvalues of k one obtains

n2
1 = f 2(r̃)[r̃′2 e−2λ − ˙̃r2 e−2ν ] = n2

1(t, r) (5.21)

n2
2 = n2

3 = f 2(r̃)
r̃2

r2
= n2

2(t, r). (5.22)

The linear particle densities have the following form

n1 = n1(t, r) = f(r)
√
r̃′2 e−2λ − ˙̃r2 e−2ν (5.23)

n2 = n2(t, r) = n3(t, r) = f(r)
r̃

r
. (5.24)

Multiplying the eigenvalues of the metric 1. by the conformal factor f 2(r̃) establishes

the expressions of the eigenvalues of the metric 2.. This is a consequence of the result

proved in Section 4.2.1.

Now, calculating the spatial eigenvectors x, y and z of k associated with the eigenvalues

n2
1 and n2

2 (which has algebraic multiplicity 2) and determining the matter velocity

field u from uaξAa = 0, uaua = −1 and u0 > 0, allow to define the orthonormal tetrad

{u, x, y, z}:

ua =

[
e−ν γ,−e−ν

˙̃r

r̃′
γ, 0, 0

]
ua =

[
−eν γ,−e2λ−ν

˙̃r

r̃′
γ, 0, 0

]
xa =

[
−eλ−2ν

˙̃r

r̃′
γ, e−λ γ, 0, 0

]
xa =

[
eλ

˙̃r

r̃′
γ, eλ γ, 0, 0

]
ya =

[
0, 0,

1

r
, 0

]
ya = [0, 0, r, 0]

za =

[
0, 0, 0,

1

r sin θ

]
za = [0, 0, 0, r sin θ]

where γ =

√
e2ν r̃′2

e2ν r̃′2 − e2λ ˙̃r2
.

Note that −uaua = xaxa = yaya = zaza = 1 and all other inner products are zero.

Using this orthonormal tetrad, the space-time metric can be written as gab = −uaub +

xaxb + yayb + zazb. The line-element corresponding to the projection tensor hab =
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xaxb + yayb + zazb is given by

ds2 = e2λ(t,r)dr2 + r2dθ2 + r2 sin2 θdφ2. (5.25)

And the pulled-back material metric takes the form kab = n2
1xaxb + n2

2yayb + n2
2zazb.

Constant volume shear tensor

The only non-zero components of the constant volume shear tensor sab =
1

2
(hab − n− 2

3kab)

are

stt =
1

2

e2λ+2ν ˙̃r2

e2ν r̃′2 − e2λ ˙̃r2
(1− n− 2

3n2
1)

str = srt =
1

2

e2λ+2ν ˙̃rr̃′

e2ν r̃′2 − e2λ ˙̃r2
(1− n− 2

3n2
1)

srr =
1

2

e2λ+2ν r̃′2

e2ν r̃′2 − e2λ ˙̃r2
(1− n− 2

3n2
1)

sθθ =
1

2
r2(1− n− 2

3n2
2)

sφφ =
1

2
r2sin2θ(1− n− 2

3n2
2)

Excluding the cases ˙̃r = 0, r̃′ = 0, sin θ = 0, r = 0 and f = 0, the components of the

constant volume shear tensor vanish iff n2
1 = n2

2, or, writing this condition explicitly,

iff

1. r̃′2e−2λ − ˙̃r2e−2ν − r̃2

r2
= 0

2. r̃′2e−2λ − ˙̃r2e−2ν − r̃2

r2
= 0.

The condition obtained for the non-flat material metric coincides with the condition

for the flat material metric, since the factor f 2 cancels on both sides of the equation

n2
1 = n2

2, when substituting n2
1 and n2

2 by the eigenvalues (5.21) and (5.22), respectively.

This is consistent with the result obtained in Section 4.2.3, where it has been shown

that the constant volume shear tensor corresponding to the non-flat metric equals the

constant volume shear tensor defined for the flat metric.
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Elasticity difference tensor

The non-zero components of the elasticity difference tensor Sabc are:

Sttt =
˙̃r3e2λ

n1

e2λ ˙̃rṅ1 − e2ν r̃′n′
1

(e2ν r̃′2 − e2λ ˙̃r2)2

Strt =
˙̃r2r̃′e2λ

n1

e2λ ˙̃rṅ1 − e2ν r̃′n′
1

(e2ν r̃′2 − e2λ ˙̃r2)2

Srtt = −
˙̃r2r̃′e2ν

n1

e2λ ˙̃rṅ1 − e2ν r̃′n′
1

(e2ν r̃′2 − e2λ ˙̃r2)2

Srrt = −
˙̃rr̃′2e2ν

n1

e2λ ˙̃rṅ1 − e2ν r̃′n′
1

(e2ν r̃′2 − e2λ ˙̃r2)2

Strr =
˙̃rr̃′2e2λ

n1

e2λ ˙̃rṅ1 − e2ν r̃′n′
1

(e2ν r̃′2 − e2λ ˙̃r2)2

Srrr = − r̃
′3e2ν

n1

e2λ ˙̃rṅ1 − e2ν r̃′n′
1

(e2ν r̃′2 − e2λ ˙̃r2)2

Sθθt = −
˙̃r

n2

e2λ ˙̃rṅ2 − e2ν r̃′n′
2

(e2ν r̃′2 − e2λ ˙̃r2)

Sφφt = −
˙̃r

n2

e2λ ˙̃rṅ2 − e2ν r̃′n′
2

(e2ν r̃′2 − e2λ ˙̃r2)

Sθθr = − r̃′

n2

e2λ ˙̃rṅ2 − e2ν r̃′n′
2

(e2ν r̃′2 − e2λ ˙̃r2)

Sφφr = − r̃′

n2

e2λ ˙̃rṅ2 − e2ν r̃′n′
2

(e2ν r̃′2 − e2λ ˙̃r2)

Stθθ = − r ˙̃r

n2
1e

2ν

rn2(ṅ2
˙̃re2λ − n′

2r̃
′e2ν) + r̃′e2ν(n2

1 − n2
2)

e2ν r̃′2 − e2λ ˙̃r2

Srθθ =
rr̃′

n2
1e

2λ

rn2(ṅ2
˙̃re2λ − n′

2r̃
′e2ν) + r̃′e2ν(n2

1 − n2
2)

e2ν r̃′2 − e2λ ˙̃r2

Stφφ = −r
˙̃r sin2 θ

n2
1e

2ν

rn2(ṅ2
˙̃re2λ − n′

2r̃
′e2ν) + r̃′e2ν(n2

1 − n2
2)

e2ν r̃′2 − e2λ ˙̃r2

Srφφ =
rr̃′ sin2 θ

n2
1e

2λ

rn2(ṅ2
˙̃re2λ − n′

2r̃
′e2ν) + r̃′e2ν(n2

1 − n2
2)

e2ν r̃′2 − e2λ ˙̃r2

Since Sabc = Sacb, there are twenty non-zero components for this tensor on the coordi-

nate system chosen above.

The components Sttt, S
t
rt, S

r
tt, S

r
rt, S

t
rr, S

r
rr are zero if e2λ ˙̃rṅ1 − e2ν r̃′n′

1 = 0. Sθθt,

Sφφt, S
θ
θr and Sφφr vanish if e2λ ˙̃rṅ2 − e2ν r̃′n′

2 = 0. Stθθ, S
r
θθ, S

t
φφ and Srφφ are zero if
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rn2(ṅ2
˙̃re2λ − n′

2r̃
′e2ν) + r̃′e2ν(n2

1 − n2
2) = 0.

For the non-static case, the components of the elasticity difference tensor and of the

tensors M
α

concerning the two material metrics are not listed here, since the expressions

become quite long. The tensor components are expressed in terms of the eigenvalues

n2
1 and n2

2 without specifying them for the two material metrics.

Expressions for M
1
, M

2
and M

3

The second order symmetric tensors M
1

, M
2

and M
3

have the following non-zero com-

ponents.

Mtt
1

=
eν+λ ˙̃r2

n1

e2ν r̃′n′
1 − e2λ ˙̃rṅ1

e2ν r̃′2 − e2λ ˙̃r2

√
1

e2ν r̃′2 − e2λ ˙̃r2

Mrt
1

=
eν+λ ˙̃rr̃′

n1

e2ν r̃′n′
1 − e2λ ˙̃rṅ1

e2ν r̃′2 − e2λ ˙̃r2

√
1

e2ν r̃′2 − e2λ ˙̃r2

Mrr
1

=
eν+λr̃′2

n1

e2ν r̃′n′
1 − e2λ ˙̃rṅ1

e2ν r̃′2 − e2λ ˙̃r2

√
1

e2ν r̃′2 − e2λ ˙̃r2

Mθθ
1

= −r[rn2(e
2ν r̃′n′

2 − e2λ ˙̃rṅ2) + r̃′e2ν(n2
2 − n2

1)]

eν+λn2
1

√
1

e2ν r̃′2 − e2λ ˙̃r2

Mφφ
1

= −r sin2 θ[rn2(e
2ν r̃′n′

2 − e2λ ˙̃rṅ2) + r̃′e2ν(n2
2 − n2

1)]

eν+λn2
1

√
1

e2ν r̃′2 − e2λ ˙̃r2

Mtθ
2

=
r ˙̃r(r̃′n′

2e
2ν − ˙̃rṅ2e

2λ)

n2(e2ν r̃′2 − e2λ ˙̃r2)

Mrθ
2

=
rr̃′(r̃′n′

2e
2ν − ˙̃rṅ2e

2λ)

n2(e2ν r̃′2 − e2λ ˙̃r2)

Mtφ
3

=
r ˙̃r sin θ (r̃′n′

2e
2ν − ˙̃rṅ2e

2λ)

n2(e2ν r̃′2 − e2λ ˙̃r2)

Mrφ
3

=
rr̃′ sin θ (r̃′n′

2e
2ν − ˙̃rṅ2e

2λ)

n2(e2ν r̃′2 − e2λ ˙̃r2)

The structure of the tensor M
1

is similar to the structure of the tensor k in the sense

that both tensors consist of six non zero components having the same coordinate in-

dices.
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Eigenvalue-eigenvector problem

The subsequent paragraphs are concerned with the eigenvector-eigenvalue problems for

M
1

, M
2

and M
3

, respectively.

Solving the eigenvalue-eigenvector problem for M
1

one obtains the results exposed in

Table 5.10.

Table 5.10: Eigenvectors and eigenvalues for M
1

Eigenvectors Eigenvalues

x µ1 =
e2ν r̃′n′1−e2λ ˙̃rṅ1

eλ+νn1

√
1

e2ν r̃′2−e2λ ˙̃r2

y µ2 =
rn2(e2λ ˙̃rṅ2−e2ν r̃′n′2)+r̃′e2ν(n2

1−n2
2)

eλ+νrn2
1

√
1

e2ν r̃′2−e2λ ˙̃r2

z µ3 =
rn2(e2λ ˙̃rṅ2−e2ν r̃′n′2)+r̃′e2ν(n2

1−n2
2)

eλ+νrn2
1

√
1

e2ν r̃′2−e2λ ˙̃r2

The eigendirections x, y and z of k are directly eigenvectors for M
1

. One notices that y

and z are eigenvectors associated with the same eigenvalue. The results indicate that

the canonical form for M
1

can be written as Mbc
1

= µ1xbxc+µ2(ybyc+zbzc), where µ1 and

µ2 (= µ3) are the eigenvalues with which x and y (or z), respectively, are associated.

The algebraic multiplicity of µ2 coincides with the geometric multiplicity and is equal

to 2. The eigenvalues depend on ni, i = 1, 2, and on the variation of ni due to the

variation of r and of t. Moreover, n1 appears explicitly in all eigenvalues.
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For M
2

, the eigenvalues and associated eigenvectors are listed in Table 5.11.

Table 5.11: Eigenvectors and eigenvalues for M
2

Eigenvectors Eigenvalues

x+ y µ4 = − e2λ ˙̃rṅ2−e2ν r̃′n′2
eλ+νn2

√
1

e2ν r̃′2−e2λ ˙̃r2

x− y µ5 =
e2λ ˙̃rṅ2−e2ν r̃′n′2

eλ+νn2

√
1

e2ν r̃′2−e2λ ˙̃r2

z µ6 = 0

In this case, only z is simultaneously an eigenvector of k and M
2

, but now the cor-

responding eigenvalue is zero. The tensor M
2

has three distinct eigenvalues, two of

them differ only in a sign. The canonical form for M
2

can be expressed as Mbc
2

=

2µ4(xbyc + ybxc).

Solving the particular eigenvalue-eigenvector problems M c
b

2

xb = µxc, M c
b

2

yb = µyc and

M c
b

2

zb = µzc leads to the following results.

i) x is an eigenvector for M
2

associated with the eigenvalue 0 iff e2λ ˙̃rṅ2−e2ν r̃′n′
2 = 0.

ii) y is an eigenvector for M
2

associated with the eigenvalue 0 iff e2λ ˙̃rṅ2−e2ν r̃′n′
2 = 0.

iii) z is an eigenvector for M
2

associated with the eigenvalue 0.

The condition for z to be an eigenvector for M
2

is automatically satisfied, however, for

x and y to be eigenvectors for M
2

, the condition e2λ ˙̃rṅ2 − e2ν r̃′n′
2 = 0 must hold. The

eigenvectors x, y and z are then associated with the eigenvalue 0. In this case, M
2

vanishes.

Table 5.12 contains the eigenvalues and associated eigenvectors for the tensor M
3

.
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Table 5.12: Eigenvectors and eigenvalues for M
3

Eigenvectors Eigenvalues

x+ z µ7 = − e2λ ˙̃rṅ2−e2ν r̃′n′2
eλ+νn2

√
1

e2ν r̃′2−e2λ ˙̃r2

x− z µ8 =
e2λ ˙̃rṅ2−e2ν r̃′n′2

eλ+νn2

√
1

e2ν r̃′2−e2λ ˙̃r2

y µ9 = 0

Here, only the eigenvector y of k remains as eigenvector for M
3

, now it is associated

with the eigenvalue 0. The other two eigenvalues differ in a sign. One concludes that

the canonical form for M
3

can be written as Mbc
3

= 2µ7(xbzc + zbxc).

Considering the eigenvalue-eigenvector problems M c
b

3

xb = µxc, M c
b

3

yb = µyc and

M c
b

3

zb = µzc, it follows:

i) x is an eigenvector for M
3

associated with the eigenvalue 0 iff e2λ ˙̃rṅ2−e2ν r̃′n′
2 = 0.

ii) y is an eigenvector for M
3

associated with the eigenvalue 0.

iii) z is an eigenvector for M
3

associated with the eigenvalue 0 iff e2λ ˙̃rṅ2−e2ν r̃′n′
2 = 0.

For M
3

, y is directly an eigenvector associated with the eigenvalue 0 and x and z are

eigenvectors associated with the same zero eigenvalue if and only if e2λ ˙̃rṅ2−e2ν r̃′n′
2 = 0.

In this case M
3

reduces to Mbc
3

= 0.

Ricci rotation coefficients

The expressions for the Ricci rotation coefficients are
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γ010 =
eν+λ(r̃′2 ˙̃rν̇ + r̃′ ˙̃r2λ′ − 2r̃′2 ˙̃rλ̇− 2r̃′ ˙̃r2ν ′ + 2r̃′ ˙̃r ˙̃r′ − r̃′2 ¨̃r − ˙̃r2r̃′′)

(e2ν r̃′2 − e2λ ˙̃r2)3/2

+
e4λ ˙̃r3λ̇+ e4ν r̃′3ν ′

eν+λ(e2ν r̃′2 − e2λ ˙̃r2)3/2

γ011 =
e2λ( ˙̃r3ν ′ − r̃′ ˙̃r2ν̇ + r̃′ ˙̃r¨̃r − ˙̃r2 ˙̃r′) + e2ν(r̃′3λ̇− r̃′2 ˙̃rλ′ − r̃′2 ˙̃r′ + r̃′ ˙̃rr̃′′)

(e2ν r̃′2 − e2λ ˙̃r2)3/2

γ022 = −
˙̃r

r

√
1

e2ν r̃′2 − e2λ ˙̃r2

γ033 = −
˙̃r

r

√
1

e2ν r̃′2 − e2λ ˙̃r2

γ122 =
eν r̃′

eλr

√
1

e2ν r̃′2 − e2λ ˙̃r2

γ133 =
eν r̃′

eλr

√
1

e2ν r̃′2 − e2λ ˙̃r2

γ233 =
cos θ

r sin θ
.

For the non-static case there are three more rotation coefficients (γ011, γ022 and γ033)

than for the static case.

Kinematical quantities

Calculating the expressions for the expansion Θ, acceleration u̇a, shear σab and vorticity

ωab, one realizes that it is quite impossible to write them down due to their complexity,

but in this case one can state the following:

i) The expansion is non zero.

ii) The acceleration has u̇t and u̇r as non zero components.

iii) For the shear tensor field the following components are non-zero: σtt, σtr = σrt,

σrr, σθθ and σφφ.

iv) The vorticity tensor ωab vanishes.
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5.3 Axially symmetric non-rotating space-time

To begin with, consider an elastic, axially symmetric, uniformly rotating body in in-

teraction with its gravitational field. The exterior and the interior of the body may be

described by the following metric3

ds2 = −e2νdt2 + e2µdr2 + e2µdz2 + e2ψ(dφ− ωdt)2, (5.26)

where ν, ψ, ω, µ are functions of r and z.

Assume that the material metric is flat. Introducing in X cylindrical coordinates

ξA = {R, ζ,Φ}, then the material metric takes the form

ds2 = dR2 + dζ2 +R2dΦ2, (5.27)

where the parameters R, ζ depend on r and z. Φ is given by Φ(t, r, z, φ) = φ−Ω(r, z)t.

The space-time metric for the limiting case of an axially symmetric non-rotating elastic

system can be written as

ds2 = −e2νdt2 + e2µdr2 + e2µdz2 + e2ψdφ2. (5.28)

This metric is obtained from (5.26), when ω = 0 and Ω = 0.

Imposing R = R(r), ζ = z and gab = gab(r), one obtains a further reduction to

cylindrical symmetry. This reduction is mentioned in Magli (1993) [44].

The space-time metric used in this section is given by (5.28), where the functions ν, µ, ψ

depend on r only. The space-time coordinates are taken as ωa = {t, r, z, φ}.

Suppose that the orthonormal tetrad {u, x, y, z} is defined by the following basis vectors

and one-forms

ua =
[

1
eν(r)

, 0, 0, 0
]

ua =
[
−eν(r), 0, 0, 0

]
xa =

[
0, 1

eµ(r) , 0, 0
]

xa =
[
0, eµ(r), 0, 0

]
ya =

[
0, 0, 1

eµ(r) , 0
]

ya =
[
0, 0, eµ(r), 0

]
za =

[
0, 0, 0, 1

eψ(r)

]
za =

[
0, 0, 0, eψ(r)

]
.

3See Magli (1993) [44].

107



Using this tetrad, the space-time metric can be written as gab = −uaub +xaxb + yayb +

zazb.

In X, the material metric KAB is given by the line-element

ds2 = dR2 + dζ2 +R2dφ2, (5.29)

where ζ = z and R = R(r).

The relativistic deformation gradient ξAa =
∂ξA

∂ωa
has the following non-zero components

dξ1

dω1
=
dR

dr
= R′,

dξ2

dω2
= 1 and

dξ3

dω3
= 1.

Calculating the pull-back of the material metric one obtains

kab = gackcb = gac
(
ξCc ξ

B
b KCB

)
= R′2e−2µδa1δ

1
b + e−2µδa2δ

2
b +R2e−2ψδa3δ

3
b.

(5.30)

The line-element corresponding to the pulled-back material metric kab can be expressed

as

ds2 = R′2dr2 + dz2 +R2dφ2. (5.31)

Writing the pulled-back material metric in terms of the orthonormal tetrad

kab = n2
1xaxb + n2

2yayb + n2
3zazb,

it follows that its line-element is given by

ds2 = n2
1e

2µdr2 + n2
2e

2µdz2 + n2
3e

2ψdφ2. (5.32)

Comparing this line-element with the line-element (5.31) enables to determine the

eigenvalues of k:

n2
1 = R′2e−2µ = n2

1(r) (5.33)

n2
2 = e−2µ = n2

2(r) (5.34)

n2
3 = R2e−2ψ = n2

3(r). (5.35)
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The linear particle densities are defined by

n1 = n1(r) = e−µR′

n2 = n2(r) = e−µ

n3 = n3(r) = Re−ψ.

Constant volume shear tensor

The non-zero components of the constant volume shear tensor sab =
1

2
(hab − n− 2

3kab)

are

srr =
1

2
e2µ
(
1− n− 2

3n2
1

)
szz =

1

2
e2µ
(
1− n− 2

3n2
2

)
sφφ =

1

2
e2ψ
(
1− n− 2

3n2
3

)
Equating the components srr, szz and sφφ to zero and substituting n2

1, n
2
2 and n2

3 by

its values (5.33)-(5.35), one derives that the constant volume shear tensor vanishes iff

the condition R(r) = r = eψ−µ is satisfied.

Elasticity difference tensor

The non-zero components of the elasticity difference tensor are listed below:

Srrr =
n′

1

n1

Szzr =
n′

2

n2

Sφφr =
n′

3

n3

Srzz = µ′ − n2
2

n2
1

µ′ − n2

n2
1

n′
2

Srφφ = e−2ψ−2µ

(
ψ′ − n2

3

n2
1

ψ′ − n3

n2
1

n′
3

)
.

One can see that only seven components of the elasticity difference tensor are non-zero.

Replacing the eigenvalues, which appear in the components of the elasticity difference
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tensor, by their explicit expressions (5.33), (5.34) and (5.35), implies

Srrr =
R′′

R′ − µ′

Szzr = −µ′

Sφφr =
R′

R
− ψ′

Srzz = µ′

Srφφ = −R

R′ + e2ψ−2µψ′.

Calculating the conditions for these components to vanish, leads to the following results:

(i) Srrr is zero whenever R(r) = c1 + c2
∫
eµ(r)dr;

(ii) Szzr is zero whenever µ(r) = c, where c is a constant;

(iii) Sφφr is zero whenever R(r) = c3e
ψ(r);

(iv) Srzz is zero whenever µ(r) = c4, where c4 is a constant;

(v) Srφφ is zero whenever R(r) = c5e
R
e−2ψ+2µ

ψ′ dr
.

The tetrad components of the elasticity difference tensor are:

S1
11 = e−µ

n′
1

n1

S2
21 = e−µ

n′
2

n2

S3
31 = e−µ

n′
3

n3

S1
22 = e−µµ′ − e−µ

n2
2

n2
1

µ′ − e−µ
n2

n2
1

n′
2

S1
33 = e−µψ′ − e−µ

n2
3

n2
1

ψ′ − e−µ
n3

n2
1

n′
3.
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Expressions for M
1
, M

2
and M

3

The second-order tensors M
1

, M
2

and M
3

have the following non-zero components:

Mrr
1

= eµ
n′

1

n1

Mzz
1

= eµ
(
µ′ − n2

2

n2
1µ

′ −
n2

n2
1

n′
2

)
Mφφ
1

= e2ψ−µ
(
ψ′ − n2

3

n2
1

ψ′ − n3

n2
1

n′
3

)
Mrz
2

= Mzr
2

= eµ
n′

2

n2

Mrφ
3

= Mφr
3

= eψ
n′

3

n3

.

Inserting in these expressions the eigenvalues given in (5.33), (5.34) and (5.35) leads

to:

Mrr
1

= eµ
(
R′′

R′ − µ′
)

Mzz
1

= µ′eµ

Mφφ
1

= eµ
(
−R

R′ + e2ψ−2µψ′
)

Mrz
2

= Mzr
2

= −µ′eµ

Mrφ
3

= Mφr
3

= eψ
(
R′

R
− ψ′

)
The next equations show the relations between the components of Sabc and the second

order tensors.

Mrr
1

= eµSrrr

Mzz
1

= eµSrzz

Mφφ
1

= eµSrφφ

Mrz
2

= eµSzzr

Mrφ
3

= eψSφφr
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Recalling the decomposition of the elasticity difference tensor4, these results show that

the components of the elasticity difference tensor are linear combinations of the com-

ponents of only one eigenvector of k in each case. Three of them, Srrr, S
r
zz and Srφφ,

are linear combinations of the component of the vector x. The other two (four if we

also count the symmetric components), Szzr and Sφφr, are linear combinations of the

component of the vector y and z, respectively.

Eigenvalue-eigenvector problem

The following tables, Table 5.13 - Table 5.18, contain the eigenvalues and eigenvectors

for the tensors M
1

, M
2

and M
3

. Their eigenvectors are then compared with the eigen-

vectors of the pulled-back material metric.

Solving the eigenvalue-eigenvector problem for the tensor M
1

one obtains the results

appearing in Table 5.13.

Table 5.13: Eigenvectors and eigenvalues for M
1

Eigenvectors Eigenvalues

x λ1 = e−µ
n′1
n1

y λ2 = e−µ
(
µ′ − n2

2

n2
1
µ′ − n2

n2
1
n′

2

)
z λ3 = e−µ

(
ψ′ − n2

3

n2
1
µ′ − n3

n2
1
n′

3

)

Substituting n2
1, n

2
2 and n2

3 by their explicit expressions leads to the eigenvalues exposed

in Table 5.14.

4See (3.24) in Chapter 3.
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Table 5.14: Eigenvectors and eigenvalues for M
1

Eigenvectors Eigenvalues

x λ1 = e−µ
(
R′′

R′ − µ′)
y λ2 = e−µµ′

z λ3 = e−µ
(
− R
R′ e

2µ−2ψ + ψ′)

One can observe that the eigendirections x, y and z of k are also eigenvectors for the

tensor M
1

. The eigenvectors are now associated with different eigenvalues, but still

depending partially on the eigenvalues of k. The canonical form for M
1

can be written

as Mbc
1

= λ1xbxc + λ2ybyc + λ3zbzc.

Table 5.15 contains the eigenvalues and eigenvectors for the tensor M
2

.

Table 5.15: Eigenvectors and eigenvalues for M
2

Eigenvectors Eigenvalues

x+ y λ4 = e−µ
n′2
n2

x− y λ5 = −e−µ n
′
2

n2

z λ6 = 0

Writing n2 explicitly, one obtains the results given in Table 5.16.

Table 5.16: Eigenvectors and eigenvalues for M
2

Eigenvectors Eigenvalues

x+ y λ4 = −µ′e−µ

x− y λ5 = µ′e−µ

z λ6 = 0

M
2

inherits only one eigenvector z from k, which is associated with the eigenvalue 0.
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The other two eigenvectors of M
2

are linear combinations of x and y, namely x + y

and x − y. The corresponding eigenvalues are symmetric and depend on n2
2, more

accurately on n2 and on the derivative n′
2. The canonical form for M

2
can be written

as Mbc
2

= 2λ4(xbyc + ybxc).

Solving the particular eigenvalue-eigenvector problems M c
b x

b

2

= λxc, M c
b y

b

2

= λyc and

M c
b z

b

2

= λzc leads to the following results.

i) x is an eigenvector for M
2

associated with the eigenvalue 0 iff e−µ
n′2
n2

= 0.

ii) y is an eigenvector for M
2

associated with the eigenvalue 0 iff e−µ
n′2
n2

= 0.

iii) z is an eigenvector for M
2

associated with the eigenvalue 0.

The eigenvector z is directly an eigenvector for M
2

. The other two eigenvectors, x

and y, of k are eigenvectors for M
2

iff n2 is constant with respect to r: n′
2 = 0. This

condition implies µ(r) = c, in which case M
2

= 0.

The eigenvalues and eigenvectors for the tensor M
3

are presented in Table 5.17.

Table 5.17: Eigenvectors and eigenvalues for M
3

Eigenvectors Eigenvalues

x+ z λ7 = e−µ
n′3
n3

x− z λ8 = −e−µ n
′
3

n3

y λ9 = 0

Substituting n3 by Re−ψ, one obtains the results given in Table 5.18.
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Table 5.18: Eigenvectors and eigenvalues for M
3

Eigenvectors Eigenvalues

x+ z λ7 = e−µ
(
R′

R
− ψ′)

x− z λ8 = −e−µ
(
R′

R
− ψ′)

y λ9 = 0

M
3

and k have the eigenvector y in common, the corresponding eigenvalue being equal

to zero. The other two eigenvectors of M
3

are linear combinations of x and z, namely

x + z and x − z. These two eigenvectors are associated with symmetric eigenvalues,

which depend on n2
3 through its square root and the derivative n′

3. The canonical form

for M
3

can be written as Mbc
3

= 2λ7(xbzc + zbxc).

Solving the particular eigenvalue-eigenvector problems M c
b x

b

3

= λxc, M c
b y

b

3

= λyc and

M c
b z

b

3

= λzc leads to the following results.

i) x is an eigenvector for M
3

associated with the eigenvalue 0 iff e−µ
n′3
n3

= 0.

ii) y is an eigenvector for M
3

associated with the eigenvalue 0.

iii) z is an eigenvector for M
3

associated with the eigenvalue 0 iff e−µ
n′3
n3

= 0.

M
3

inherits the eigenvector y from k, which is associated with the eigenvalue 0. For x

and z to be eigenvectors for M
3

one must require that n3 is constant with respect to r:

n′
3 = 0. Solving this equation yields R(r) = ceψ. In this case, one has M

3
= 0.
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Ricci rotation coefficients

Calculating the Ricci coefficients one obtains:

γ010 =
ν ′

eµ

γ122 =
µ′

eµ

γ133 =
ψ′

eµ
.

Kinematical quantities

The kinematical quantities entering in the decomposition

ua;b = −u̇aub + ua;ch
c
b = −u̇aub +

1

3
Θhab + σab + ωab (5.36)

are given by the following expressions:

Θ = 0

u̇a = (0, ν ′, 0, 0)

σab = 0

ωab = 0.

5.4 Concluding remarks

Static spherically symmetric space-time

For the static spherically symmetric space-time the results of the eigenvalue-eigenvector

problem show that the eigendirections x, y and z of k remain eigenvectors for the tensor

M
1

only. The eigenvalues associated with the three vectors are altered, when compared

with the eigenvalues of k. In fact, the eigenvalues of M
1

are functions of the eigenvalues

of k: the eigenvalue corresponding to x depends on n1 and on n′
1; the eigenvalues

corresponding to y and z are equal and they depend on both eigenvalues of k: n2
1 and

n2
2 and on n′

2.

Considering M
2

and M
3

, not all eigendirections of k remain eigendirections for those

tensors. For M
2

, only z continues to be an eigenvector, and for M
3

, only y. Both are
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associated with the eigenvalue zero. Furthermore, for M
2

, the eigendirections x and y

of k are changed to be x+y and x−y. For M
3

, x and z are changed to x+ z and x− z.

The vectors x+ y and x+ z are associated with the same eigenvalue, as well as x− y

and x − z are associated with the same eigenvalue, both eigenvalues differing only in

sign. Thus, the set of eigenvalues of M
2

coincides with the set of eigenvalues of M
3

.

The conditions for the vectors x, y and z to remain eigenvectors for M
2

and M
3

is that

n2 is constant with respect to the coordinate r, in which case M
2

and M
3

are reduced

to a zero tensor.

The property that the eigenvectors y and z of k are associated with the same eigenvalue,

namely n2
2, goes over to the elasticity difference tensor, due to its formal definition, and

consequently to the tensors M
α

. There, this property seems to be reflected by the new

property that M
2

and M
3

, the coefficients of y and z in the decomposition of S, have

the same eigenvalues. One can see that the role that y (z) plays for M
2

is the same

that z (y) plays for M
3

. Interchanging y and z in Table 5.4 (Table 5.5 and Table 5.6)

leads to the results given in Table 5.7 (Table 5.8 and Table 5.9) for M
3

.

Non-static spherically symmetric space-time

Here, the behaviour of the eigenvectors and eigenvalues is similar to the static case.

x, y and z are eigenvectors for M
1

. M
2

has x + y, x− y and z as eigenvectors, z being

again associated with the eigenvalue 0. M
3

has x + z, x − z and y as eigenvectors, y

being associated with the eigenvalue 0. The eigenvalues corresponding to x + y and

x+ z are equal, as eigenvectors of M
2

and M
3

, respectively, i.e. µ4 = µ7, as well as the

eigenvalues corresponding to x − y and x − z are equal, µ5 = µ8. These eigenvalues

are symmetric: µ4 = µ7 = −µ5 = −µ8. As in the previous case, all eigenvalues of M
2

are equal to those of M
3

. The vectors y and z are identical to the vectors y and z in

the static case, only x is here different. Other differences that can be observed in this

case are that the expressions of the eigenvalues depend here on the coordinate t and

on derivatives of the functions ν, λ and r̃ with respect to this coordinate.

One can conclude that the transition from the static to the non-static case does not
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change the structure of the eigenvectors. This means that the vectors which are eigen-

vectors for M
1

, M
2

and M
3

in the static case are also eigenvectors for the three tensors in

the non-static case, the only difference being that the expressions of some eigenvectors

and eigenvalues are altered.

Axially symmetric space-time

For the axially symmetric space-time here considered one can conclude that the three

eigenvectors x, y and z of k remain eigenvectors for the tensor M
1

. The correspond-

ing eigenvalues are now changed, but they still depend on the eigenvalues of k. The

eigenvalue associated with the eigenvector x is a function of n1 and n′
1. The eigenvalue

associated with y depends on the eigenvalues n2
1 and n2

2 of k and the eigenvalue as-

sociated with z depends on the eigenvalues n2
1 and n2

3 of k. One can observe that all

eigenvalues depend on n1.

Considering M
2

, z remains as eigenvector, now associated with a zero eigenvalue. The

other two eigenvectors are x + y and x − y, associated with symmetric eigenvalues.

These new eigenvalues depend on n2 and n′
2.

The tensor M
3

inherits only y as eigenvector from k. The other two eigenvectors are

linear combinations of x and z: x+ z and x− z. Also in this case they are associated

with symmetric eigenvalues depending on n3 and n′
3.

One can observe that the vector x plays the same role for the tensors M
2

and M
3

. In-

terchanging in Table 5.15 n2 with n3, y with z and M
2

with M
3

, one obtains the results

of Table 5.17.
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Chapter 6

Generalizing results established for

a spherically symmetric space-time

with flat material metric

6.1 Introduction

Magli (1993) [45] applied the relativistic elasticity theory to a non-static spherically

symmetric space-time and obtained a form for the Einstein field equations, which can

be useful in the analysis of the relativistic interior dynamics of a spherically symmetric,

non-rotating star composed of an elastic material. He expressed the energy-momentum

tensor in terms of the material fields, see (2.53), in order to describe the interaction of

the elastic material with the gravitational field by means of the Einstein field equations.

In all this work, the material metric was assumed to be flat.

The results exposed in this chapter present a generalization of the results given in Magli

(1993) [45] in the sense that here, the Einstein field equations are obtained for a non

flat material metric K, conformally related with the flat material metric K̄ used by

Magli. Two cases are analysed. In the first case, two different space-time metrics still

belonging to the same class of non-static spherically symmetric space-time metrics are

considered: g, the space-time metric associated with the non-flat material metric K,
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and the space-time metric ḡ associated with the flat material metric K̄, which is the

configuration established in Magli (1993) [45]. The second case consists in supposing

that the space-time metric is the same both for the flat and the non-flat material

metric, i.e. g = ḡ.

6.2 First case: g 6= ḡ

Consider a non static spherically symmetric space-time M equipped with the coordi-

nate system ωa = {t, r, θ, φ}. Let the space-time metric gab be given by the line-element

ds2 = −a(t, r)dt2 + b(t, r)dr2 + r2dθ2 + r2sin2θdφ2. (6.1)

Consider a non-flat material space X with material space coordinates ξA = {y, θ̃, φ̃},

where y = y(t, r), θ̃ = θ and φ̃ = φ. Defining the non-flat material metric KAB by the

line-element

ds2 = f 2(y)(dy2 + y2dθ̃2 + r̃2sin2θ̃dφ̃2), (6.2)

thenK and the flat material metric K̄ used in Magli (1993) [45] are conformally related,

since

KAB = f 2(y)K̄AB, (6.3)

where the line-element of K̄ is given by

ds2 = dy2 + y2dθ̃2 + r̃2sin2θ̃dφ̃2. (6.4)

Let the line-element corresponding to the space-time metric ḡ used by Magli1 be written

as

ds2 = −ā(t, r)dt2 + b̄(t, r)dr2 + r2dθ2 + r2sin2θdφ2. (6.5)

1Here, the space-time metric coefficients are chosen to be ā and b̄ instead of a and b; (c.f. Magli

(1993) [45]).
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In order to distinguish the quantities corresponding to the flat case considered by

Magli, where the flat material metric K̄ (6.4) and the space-time metric ḡ (6.5) were

used, from the quantities corresponding to the case of a non-flat material metric K

(6.2) with space-time metric g (6.1), bars are placed over those functions and tensors

referring to Magli’s work, that is, to the flat case. Furthermore, the following notation

is established: a dot indicates a derivative with respect to t and a prime, a derivative

with respect to r.

Calculating the pull-back of the material metric K one obtains

kab = gackcb = gacKCBξ
C
c ξ

B
b = f 2(y)gacK̄CBξ

C
c ξ

B
b = f 2(y)gack̄cb

= f 2(y)gac
[
ẏ2δ0

cδ
0
b + ẏy′(δ0

cδ
1
b + δ0

bδ
1
c) + y′2δ1

bδ
1
c + y2δ2

bδ
2
c + y2sin2θδ3

bδ
3
c

]
,

where the relativistic deformation gradient ξAa is of the form

ξAa =
∂ξA

∂ωa
=


ẏ y′ 0 0

0 0 1 0

0 0 0 1

 . (6.6)

One can write the pulled-back material metric kab as

kab =


−f 2(y)(ẏ2/a) −f 2(y)(ẏy′/a) 0 0

f 2(y)(ẏy′/b) f 2(y)(y′2/b) 0 0

0 0 f 2(y)(y2/r2) 0

0 0 0 f 2(y)(y2/r2)

 . (6.7)

The velocity field of matter u defined by the conditions2 uaξAa = 0, uaua = −1 and

u0 > 0 can be expressed as

ua =
γ√
a

(
1,− ẏ

y′
, 0, 0

)
, (6.8)

where

γ =

(
1− b

a

(
ẏ

y′

)2
)− 1

2

. (6.9)

2See Section 2.1.4 in Chapter 2.
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The projection tensor is defined by

hab = δab + uaub =


1− γ2 −γ2(bẏ/ay′) 0 0

γ2(ẏ/y′) 1 + γ2(b/a)(ẏ/y′)2 0 0

0 0 1 0

0 0 0 1

 . (6.10)

The strain operator g̃ab = gackcb− uaub (2.16), which can be used to measure the state

of strain of the material by (2.15), has, due to the relation g̃abu
b = ua, one eigenvalue

which is equal to one.

The other eigenvalues are

s = n2
2 = n2

3 = f 2(y)
y2

r2

η = n2
1 = f 2(y)

y′2

γ2 b
,

(6.11)

so that these eigenvalues can be related with the eigenvalues s̄ and η̄ of the strain

operator ˜̄gab = ḡack̄cb − uaub considered in Magli (1993) [45] by

s = n2
2 = n2

3 = f 2(y) s̄

η = n2
1 = f 2(y)

γ̄2

γ2

b̄

b
η̄

(6.12)

Note that s is the eigenvalue of algebraic multiplicity 2, which equals the eigenvalues

n2
2 and n2

3 of k.

The three invariants of g̃, chosen by Magli3, have the following expressions

I1 =
1

2
(Trg̃ − 4)

I2 =
1

4

[
Trg̃2 − (Trg̃)2]+ 3

I3 =
1

2
(detg̃ − 1) ,

(6.13)

3See (2.17) in Chapter 2.
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where

Tr g̃ = η + 2 s + 1

Tr g̃2 = η2 + 2 s2 + 1

det g̃ = η s2.

(6.14)

Substituting (6.12) in (6.14) implies

Tr g̃ = f 2 Tr ˜̄g + f 2

(
γ̄2

γ2

b̄

b
η̄ − η̄ − 1

)
+ 1

Tr g̃2 = f 4 Tr ˜̄g2 + f 4

(
γ̄4

γ4

b̄2

b2
η̄2 − η̄2 − 1

)
+ 1

det g̃ = f 6 γ̄
2

γ2

b̄

b
det ˜̄g,

(6.15)

showing the dependence of the traces Trg̃ and Trg̃2 on the traces Tr˜̄g and Tr˜̄g2, respec-

tively, and the dependence between the determinants of g̃ and ˜̄g.

Inserting (6.15) into (6.13) yields the following relation between the invariants I1, I2,

I3 and the invariants Ī1, Ī2, Ī3 of ˜̄g corresponding to the flat material metric

I1 = f 2Ī1 +
3

2

(
f 2 − 1

)
+

1

2
f 2η̄

(
γ̄2

γ2

b̄

b
− 1

)
I2 = f 4Ī2 − 3f 4 +

1

4
f 4

[(
γ̄2

γ2

b̄

b

)2

η̄2 − η̄2 − 1

]
+

1

4

− f 2Ī1

[
f 2

(
γ̄2

γ2

b̄

b
η̄ − η̄ − 1

)
+ 1

]
− 2f 2

[
f 2

(
γ̄2

γ2

b̄

b
η̄ − η̄ − 1

)
+ 1

]
− 1

4

[
f 2

(
γ̄2

γ2

b̄

b
η̄ − η̄ − 1

)
+ 1

]2

+ 3

I3 = f 6 γ̄
2

γ2

b̄

b
Ī3 +

1

2
f 6 γ̄

2

γ2

b̄

b
− 1

2
.

(6.16)

Following the appendix of Magli (1993) [45], to deduce the expression for the energy-

momentum tensor, one concludes that considering the metric g and the non-flat ma-

terial metric K, the expression for the energy-momentum tensor is the same as (2.53).

Calculating the components of the energy-momentum tensor

T a
b = ε δab −

∂ε

∂I3
det g̃ hab +

(
Trg̃

∂ε

∂I2
− ∂ε

∂I1

)
kab −

∂ε

∂I2
kac k

c
b, (6.17)
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where the energy density is here represented by ε, agreeing with the notation used in

Magli (1993) [45], yields

T 0
0 = ε +

ẏ2

a

∑
T 1

0 = − ẏy′

b

∑
T 1

1 = ε− y′2

b

∑
T 2

2 = ε− y2

r2

[∑
+

(
∂ε

∂I2
− f 2(y)

y2

r2

∂ε

∂I3

)(
f 4(y)

y2

r2
− f 4(y)

y′2

γ2b

)]
,

(6.18)

where

∑
= f 2(y)

[
∂ε

∂I1
− ∂ε

∂I2

(
1 + 2 f 2(y)

y2

r2

)
+

∂ε

∂I3
f 4(y)

y4

r4

]
. (6.19)

The other two non vanishing components of the energy-momentum tensor are related

by T 0
1 = − b

a
T 1

0 and T 3
3 = T 2

2.

The energy density is defined in Magli (1993) [45] by

ε = ρ v, (6.20)

where

ρ = ρ0

√
detg̃ = ρ0 s

√
η (6.21)

represents the actual density calculated in the rest frame, ρ0 stands for the density of

the relaxed material and

v = v(I1(s, η), I2(s, η), I3(s, η)) = v(s, η) (6.22)

represents the constitutive equation.

The quantities ρ and ε are related with ρ̄ and ε̄ by
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ρ = ρ̄

√
detg̃

det˜̄g
= ρ̄f 3

√
γ̄2b̄

γ2b

ε = ε̄ f 3 v

v̄

√
γ̄2b̄

γ2b
.

(6.23)

Using (6.13) and (6.14), one can prove the following relations:

∂ε

∂η
=

1

2 f 2

∑
, (6.24)

∂ε

∂s
=

1

f 2

∑
+

(
f 2 ∂ε

∂I2
− f 4 y

2

r2

∂ε

∂I3

) (
y2

r2
− y′2

γ2b

)
. (6.25)

Alternatively, one can express the components of the energy-momentum tensor in terms

of the eigenvalues s and η by substituting the last results in (6.18) and using (6.20)

and (6.21):

T 0
0 = ρ

[
v +

(
v + 2η

∂v

∂η

)
γ2ω2

]
,

T 1
0 = −ρ

√
a

b

(
v + 2η

∂v

∂η

)
γ2ω,

T 1
1 = −ρ

[
γ2

(
v + 2η

∂v

∂η

)
− v

]
,

T 2
2 = −ρs∂v

∂s
,

(6.26)

where

ω =

√
1− 1

γ2
=

√
b

a

ẏ

y′
. (6.27)

The Einstein field equations Ga
b = 8πT a

b can be written as

G0
0 = 8πT 0

0:

− b′

rb2
− 1

r2

(
1− 1

b

)
= ρ

[
v +

(
v + 2η

∂v

∂η

)
γ2ω2

]
8π, (6.28)

G1
0 = 8πT 1

0:

ḃ

rb2
= −ρ

√
a

b

(
v + 2η

∂v

∂η

)
γ2ω 8π, (6.29)
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G1
1 = 8πT 1

1:

a′

rab
− 1

r2

(
1− 1

b

)
= −ρ

[
γ2

(
v + 2η

∂v

∂η

)
− v

]
8π, (6.30)

G2
2 = 8πT 2

2:

1

2b

[
a′′

a
− a′2

2a2
+

1

r

(
a′

a
− b′

b

)
− a′b′

2ab

]
− 1

2a

(
b̈

b
− ḃ2

2b2
− ȧḃ

2ab

)
=

− ρs
∂v

∂s
8π.

(6.31)

It is possible to relate the expression for the energy-momentum tensor T (6.17) with the

energy-momentum tensor T̄ corresponding to the case where the flat material metric

is used. For that purpose,
∂ε

∂Ii
are written in terms of

∂ε̄

∂Īi
, for i = 1, 2, 3 with the help

of (6.16), the result being

∂ε

∂I1
=
∂ε

∂ε̄

{
∂ε̄

∂Ī1

1

f 2
+

∂ε̄

∂Ī2

1

f 4

[
f 2

(
γ̄2b̄

γ2b
η̄ − η̄ − 1

)
+ 1

]}
∂ε

∂I2
=
∂ε

∂ε̄

∂ε̄

∂Ī2

1

f 4

∂ε

∂I3
=
∂ε

∂ε̄

∂ε̄

∂Ī3

1

f 6

γ2b

γ̄2b̄
.

(6.32)

Introducing the results (6.32) and (6.15) in (6.17) and using (6.23) leads to

T a
b = f 3v

v̄

√
γ̄2b̄

γ2b
T̄ a
b +

∂ε̄

∂Ī3
det˜̄g f 3v

v̄

√
γ̄2b̄

γ2b
(1− f 2) k̄ab (6.33)
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6.3 Second case: g = ḡ

As for the analysis of the case ḡab = gab, the quantities corresponding to the non-

flat material metric K are related in a directer and simpler way with the quantities

corresponding to the flat material metric K̄.

The pull-back of the non-flat material metric K is calculated as follows

kab = gackcb = f 2(y)gacK̄CBξ
C
c ξ

B
b = f 2(y)gac[ẏ2δ0

cδ
0
b + ẏy′(δ0

cδ
1
b + δ0

bδ
1
c)

+ y′2δ1
bδ

1
c + y2δ2

bδ
2
c + y2sin2θδ3

bδ
3
c].

One can verify that k can simply be related with the flat pulled-back material metric

k̄:

kab = f 2(y)k̄ab. (6.34)

Thus, in this case, both the flat and non-flat material metric and its pull-backs are

conformally related.

The eigenvalues s and η of k satisfy

s = f 2y
2

r2
= f 2s̄

η = f 2 y
′2

γ2b
= f 2η̄,

(6.35)

where γ is given by (6.9).

The expressions (6.35) imply the following equivalences

Trg̃ = η + 2s+ 1 = f 2 Tr˜̄g + 1− f 2

Trg̃2 = η2 + 2s2 + 1 = f 4 Tr˜̄g2 + 1− f 4

detg̃ = η s2 = f 6 det˜̄g.

(6.36)

Using the last relations, one can show that the invariants I1, I2, I3 associated with the

operator g̃ depend on the invariants Ī1, Ī2, Ī3 associated with ˜̄g as follows:

I1 =
1

2
(Trg̃ − 4) = f 2Ī1 +

3

2

(
f 2 − 1

)
I2 =

1

4

[
Trg̃2 − (Trg̃)2]+ 3 = f 4Ī2 + (f 4 − f 2)Ī1 +

3

2

(
f 4 − f 2

)
− 3f 4 + 3

I3 =
1

2
(detg̃ − 1) = f 6Ī3 +

1

2

(
f 6 − 1

)
.

(6.37)

127



Taking into account the definitions (6.20) and (6.21), the energy density ε can be

related with ε̄ by

ε = f 3v

v̄
ε̄. (6.38)

Considering this equation for ε and observing (6.37), one can find the following expres-

sions for ∂ε
∂Ii

, i = 1, 2, 3, which appear in the definition of the energy-momentum tensor

(6.17)

∂ε

∂I1
=

1

f 2

∂ε̄

∂Ī1
− ∂ε̄

∂Ī2

(
1

f 2
− 1

f 4

)
∂ε

∂I2
=

1

f 4

∂ε̄

∂Ī2
∂ε

∂I3
=

1

f 6

∂ε̄

∂Ī3
.

(6.39)

Now, substituting (6.38), (6.39), (6.36) and (6.34) in the expression

T a
b = ε δab −

∂ε

∂I3
det g̃ hab +

(
Trg̃

∂ε

∂I2
− ∂ε

∂I1

)
kab −

∂ε

∂I2
kac k

c
b (6.40)

leads to

T a
b = f 3v

v̄
T̄ a
b, (6.41)

where T̄ denotes the energy-momentum tensor associated with the flat metric k̄. From

the fact that g = ḡ, the energy-momentum tensor T associated with the metric k coin-

cides with T̄ : T = T̄ . Therefore, the following condition for the constitutive equations

v̄ and v and the function f must be satisfied: v = 1
f3 v̄. This implies ε = ε̄.

6.4 Concluding remarks

When considering a non-flat material metric instead of a flat material metric, the anal-

ysis of the results show that the Einstein field equations Ga
b = 8πT a

b (6.28-6.31) itself

have the same structure as the Einstein field equations derived by Magli for the flat

case. The difference lies in the content of the equations. On the one hand, considering
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the Einstein tensor G, the difference is caused by the functions a and b appearing in the

space-time metric used to construct G, since here, g differs from ḡ through the coor-

dinate functions: a 6= ā, b 6= b̄. On the other hand, considering the energy-momentum

tensor T , its difference is due to the quantities building up T which depend on k or g

or on both. Thus, in addition to the deviating functions a and b, here also the function

f 2, since k = f 2k̄, contributes to the discrepancy between T and T̄ .

In addition to k and h, the quantities building up T are: the energy density ε, its

derivatives with respect to the invariants
∂ε

∂Ii
, Trg̃ and detg̃. Investigating the con-

struction of these objects in more detail, one can verify that the functions f 2, a and

b, providing the discrepancy, enter into the objects through the eigenvalues of k. The

eigenvalues are present in all mentioned quantities except in h.

In order to generalize the Einstein field equations, expressions showing the relation be-

tween quantities, such as the eigenvalues s and η, the invariants Ii, the energy density ε,

the density ρ, the derivatives
∂ε

∂Ii
and the energy-momentum tensor T , corresponding

to the non-flat case and quantities corresponding to the flat case have been obtained.

The functions f 2, a and b, which enables k and g to be distinct from k̄ and ḡ, make

the transition from the case where a flat material metric is used to the here considered

generalized case.

As expected, for f = 1, a = ā and b = b̄, the expressions presented in this chapter are

reduced to the expressions given in Magli (1993) [45].

Exploring the case g = ḡ, one can draw the following conclusion. For two conformally

related material metrics K = f 2K̄ belonging to the same space-time, the constitutive

equations v associated with k and v̄ associated with k̄ must verify v =
1

f 3
v̄.
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Chapter 7

Conclusions

To end this thesis, the conclusions are presented within the context of the contributions

of this work which suggest the prospect of future work.

7.1 Contributions

This thesis contributes to the advances in general relativistic elasticity in the following

aspects.

• The leitmotif of this thesis is the elasticity difference tensor defined by Karlovini

and Samuelsson (2003) [35]. The mathematical study of the elasticity differ-

ence tensor presented in this thesis underlines the importance and the interest

of this object in the framework of general relativistic elasticity. In particular, it

has been shown in Section 3.2 of Chapter 3, that the elasticity difference tensor

arises from projecting the difference of two connections, one associated with the

space-time metric gab = −uaub + hab and the other associated with the metric

g̃ab = −uaub+kab, where k is the pulled-back material metric. Additionally, it has

been demonstrated1 that the elasticity difference tensor can be used to write the

difference between the projected Riemann tensors (and Ricci tensors) associated

with the two metrics entirely in terms of it.

1See (3.11) in Chapter 3.
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Referring to its construction presented in Chapter 3, the elasticity difference

describes the difference between two connections: the projected space-time con-

nection and the projected connection originated by the material metric. One

possible interpretation of this result is that the elasticity difference tensor reflects

the difference between the curvatures of the actual space-time and the “relaxed”

space-time. It gives a measure of deviation not on the level of the metrics, as for

instance the strain tensor does, but on a higher level of curvatures.

• The mathematical study provides other new results for the elasticity difference

tensor. In Chapter 3, a tetrad expression has been obtained for the elasticity

difference tensor. This tetrad allows the elasticity difference tensor to be written

in terms of the eigenvalues of the pulled-back material metric and in terms of

the Ricci rotation coefficients. Also its traces have been calculated; these are

invariants of that tensor.

• Furthermore, a new way of studying third order tensors, which are symmetric in

the two covariant indices, has been presented through the analysis carried out

for the elasticity difference tensor in Section 3.4 and Section 3.5. The elasticity

difference tensor has been decomposed along the eigenvectors of the pulled-back

material metric k into three second order tensors M
α

, which are the coefficients

of the three eigenvectors in the decomposition. It has been studied under which

conditions the eigenvectors of k are also eigenvectors of M
α

and expressions for

the corresponding eigenvalues have been found. This process can be viewed as

an attempt to approach a classification for the elasticity difference tensor via the

tensors M
α

. The derived results show that, in general, the eigendirections of k are

not directly eigendirections of M
α

, unless conditions involving the Ricci rotation

coefficients and the eigenvalues of k are satisfied.
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• Another research field has been considered in this thesis: conformal transfor-

mations in general relativistic elasticity. In Chapter 4, first results in this topic

have been obtained for the simplest case of having two conformally related ma-

terial metrics in the same space-time. Among the results, relations have been

established for the eigenvalues, the elasticity difference tensor and the tensors M
α

associated with both material metrics. The constant volume shear tensors have

been found to coincide for both material metrics. Also the eigenvalue-eigenvector

problem for the tensors M
α

has been reconsidered in connection with the confor-

mally related material metrics. This work inspires the study of general relativistic

elasticity in the context of conformally related metrics.

• The knowledge on physically significant space-times has been enriched. Indeed,

results given in Chapter 2, Chapter 3 and Chapter 4 have been applied to: a

static and a non-static spherically symmetric space-time, and to a particular

case of an axially symmetric space-time. In particular, elements of the theory

of general relativistic elasticity have been calculated and analysed and the elas-

ticity difference tensor with the associated eigenvalue-eigenvector problem have

been studied for these space-times. Moreover, in the static spherically symmetric

case, two conformally related material metrics have been considered and some

consequences have been explored.

• Existing results for a non-static spherically symmetric space-time with flat mate-

rial metric have been generalized in Chapter 6. The generalization proceeds from

working with a non-flat material metric, conformally related with a flat metric.

The Einstein field equations have also been obtained in this case.

7.2 Future work

From the preceding topics and from the ideas and methods presented in this thesis,

new problems arise. These problems are partly interesting study objectives for future
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work. Here the most straightforward ones are mentioned.

• Concerning the elasticity difference tensor, it would be interesting to study the

relation between the metrics g, h, k and the elasticity difference tensor in more

detail. As an example, the elasticity difference tensor vanishes if kab = hab, i.e.

kab = hab ⇒ Sabc = 0, since in this case Dakbc = Dahbc = 0. However, it is

not straightforward that Sabc = 0 implies kab = hab. It seems to be interesting to

investigate this problem more carefully by studying in which cases or for which

classes of metrics is valid:

a) kab = hab ⇐⇒ Sabc = 0;

b) kab 6= hab and Sabc = 0.

• The construction of the elasticity difference tensor presented in Section 3.2 has

been performed by specifying the alternative connection ∇̃ as associated with

the metric g̃ab = −uaub + kab. It is attractive to explore whether there are more

possible choices of g̃ which via the projected connection lead to the elasticity

difference tensor.

• The eigenvalue-eigenvector problem can be extended, and one can try to direct

it more towards the elasticity difference tensor in order to achieve a better char-

acterization or even a classification method for the elasticity difference tensor

and thus for third order tensors which are symmetric in the two covariant indices

(e.g. difference tensor). Up to now, it seems that a classification method for

these tensors is neither established nor known.

• Another research field which contains many problems and can be addressed in

the future is that of investigating the case of having conformally related metrics

(space-time metrics and/or material metrics). A first step in this matter has

been achieved in Chapter 4. Consequences for relativistic elastic objects can be

studied and relations between these objects associated with both metrics can be

determined. In this context it is interesting to study elasticity for warped space-

times which are conformally related with locally decomposable space-times.
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• Regarding the applications of relativistic elasticity, further problems can be inves-

tigated. Existing results for axially symmetric space-times can be generalized by

considering non-flat material metrics and more general space-time metrics. The

Einstein field equations for elastic spherically and axially symmetric space-times

can be explored. Moreover, the dominant energy conditions and the equations of

state can be taken into account in the study of relativistic elasticity.
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