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Abstract: The ways in which people dress, as well as the styles that they prefer for different contexts
and occasions, are part of their identity. Every day, blind people face limitations in identifying and
inspecting their garments, and dressing can be a difficult and stressful task. Taking advantage of
the great technological advancements, it becomes of the utmost importance to minimize, as much
as possible, the limitations of a blind person when choosing garments. Hence, this work aimed at
categorizing and detecting the presence of stains on garments, using artificial intelligence algorithms.
In our approach, transfer learning was used for category classification, where a benchmark was
performed between convolutional neural networks (CNNs), with the best model achieving an F1
score of 91%. Stain detection was performed through the fine tuning of a deep learning object detector,
i.e., the mask R (region-based)-CNN. This approach is also analyzed and discussed, as it allowed us
to achieve better results than those available in the literature.

Keywords: blind people; clothing recognition; stain detection; transfer learning; deep learning

1. Introduction

Vision is one of the senses that dominates our lives. It allows us to form perceptions
of the surrounding world and give meaning to objects, concepts, ideas, and tastes [1].
Therefore, any type of visual loss can have a great impact on our daily routines, significantly
affecting even the simplest tasks in our day-to-day habits. Vision loss can be sudden and
severe, or the result of a gradual deterioration, where objects at great distances become
increasingly difficult to see. Therefore, the wording “vision impairment” encompasses
all conditions in which vision deficiency exists [2]. The individual who is born with the
sense of sight and later loses it stores visual memories and can remember images, lights,
and colors. This particularity is of the highest importance for re-adaptation. On the other
hand, those who are born without the capacity of seeing can never form or possess visual
memories. For both cases, clothing represents a demanding challenge.

Recently, there has been an increasing focus on assistive technology for people with
visual impairments and blindness, aiming at improving mobility, navigation, and ob-
ject recognition [3–5]. Despite the high technology already available, some gaps remain,
particularly in the area of aesthetics and image.

The ways in which we dress and the styles that we prefer for different occasions are
part of our identity [6]. Blind people do not have this sense, and dressing can be a difficult
and stressful task. Taking advantage of the unprecedented technological advancements of
recent years, it becomes essential to minimize the key limitations of a blind person when it
comes to managing garments. Not knowing the colors, the types of patterns, or even the
state of garments makes dressing a daily challenge. Moreover, it is important to keep in
mind that blind people are more likely to have stains on their clothes, as they face more
challenges in handling objects and performing simple tasks, such as eating, cleaning and
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painting surfaces, and leaning against dirty surfaces, among others. In these situations,
most of the time, when we involuntarily drop something on our clothes that causes a stain,
we immediately attempt to clean it, as we know that the longer we take to clean it, the
greater the difficulty in removing the stain later—something that might happen more often
with blind people.

Despite the already available cutting-edge technology and smart devices, some aspects
of aesthetics and image still remain barely explored. This was the fundamental issue behind
the motivation for this work—namely, how to enable blind people to feel equally satisfied
with what they wear, functional, and without needing help. The scope of this research
follows the previous work of the authors [7–10], as, through image processing techniques,
it is possible to help blind people to choose their clothing and to manage their wardrobes.

In short, this work mainly contributes to the field with (i) the listing of relevant
techniques used in image recognition for the identification of clothing items and for the
detection of stains on garments; (ii) an annotated dataset of clothing stains, which could
be later increased by new research; and (iii) a benchmark between different deep learning
networks. The outcomes of this work are also foreseen to be implemented in a mobile appli-
cation already identified as a preferred choice in a survey conducted with all departments
of the Association of the Blind and Amblyopes of Portugal (ACAPO) [11].

Following the model approach already identified by the authors [12], the scope of the
research presented here is focused on the algorithm for clothing category classification and
stain detection. Alongside this, a mobile application and a mechatronic system, i.e., an
automatic wardrobe, will complement all presented algorithms and methodology [13].
Taking advantage of the partnership with ACAPO and with the Association of Support
for the Visually Impaired of Braga (AADVDB), the developed work was validated and
opportunities for future improvements were identified. In the five upcoming sections,
related work is described (Section 2), the methodology is explained (Section 3), experiments
are described (Section 4) and the main conclusions and future work are finally presented
(Section 5).

2. Related Work

In the last few years, deep learning techniques have arisen as a great method to solve
problems in computer vision, such as image classification, object detection, face recognition
and language processing, where convolutional neural networks (CNNs) play an imperative
role [14].

The convolutional neural networks (CNNs) have exhibited excellent results and ad-
vances in image recognition since 2012 (CNNs) [15,16], when AlexNet [17] was intro-
duced in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [18,19]. The
ImageNet competition consists of evaluating several algorithms for large-scale object
detection and image classification, allowing researchers to compare detection across a
variety of object classes. In recent years, several CNNs have been presented, such as
VGG [20], GoogLeNet [21], SqueezeNet [22], Inception [23], ResNet [24], ShuffleNet [25],
MobileNet [26,27], EfficientNet [28] and RegNet [29], among others, using these networks
for different image classification problems.

In line with this premise, some researchers turned to the fashion world, making
use of the more recent advances in computer vision to explore diverse areas such as
fashion detection, fashion analysis and fashion recommendations, achieving promising
results [30]. Based on the scope of the conducted research, only fashion classification is
covered in this work. A quick literature survey allowed the identification of several works
that have attempted to handle the classification of fashion images. Most of the authors
evaluate their models based on top k accuracy regarding clothing attribute recognition,
normally with top 3 and top 5 scores, which means that the correct label is among the top k
predicted labels.

The research of Chen et al. [31] presented a network for describing people based on
fine-grained clothing attributes, with an accuracy of 48.32%. Similarly, Liu et al. [32] intro-
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duced FashionNet, which learns clothing features by jointly predicting clothing attributes
and landmarks. Predicted landmarks are used to pool or gate the learned feature maps.
The authors reported a top 3 classification accuracy score of 93.01% and a top 5 score of
97.01%. Another method to detect fashion items in a given image using deep convolutional
neural networks (CNN), with a mean Average Precision (mAP) of 31.1%, was performed by
Hara et al. [33]. Likewise, Corbière et al. [34] proposed another method based on weakly
supervised learning for classifying e-commerce products, presenting a top 3 category accu-
racy score of 86.30% and a top 5 accuracy score of 92.80%. Later, Wang et al. [35] proposed a
fashion network to address fashion landmark detection and category classification with the
introduction of intermediate attention layers for a better enhancement in clothing features,
category classification and attribute estimation. In their work, accuracy scores of 90.99%
and 95.75% were reported for top 3 and top 5, respectively. In another study by Li et al. [36],
the authors presented a two-stream convolutional neural with one branch dedicated to
landmark detection and the other one to category and attribute classification, allowing
the model to learn the correlations among multiple tasks and consequently achieve im-
provements in the results. Accuracy scores of 93.01% and 97.01% for top 3 and top 5 were
reported, respectively. A novel fashion classification model proposed by Cho et al. [37]
improves the performance by taking into account the hierarchical dependences between
class labels, reaching accuracy of 91.24% and 95.68% in top 3 and top 5, respectively. A
multitask deep learning architecture was then proposed by Lu et al. [38] that groups similar
tasks and promotes the creation of separated branches for unrelated tasks, with accuracy
results of 83.24% and 90.39% for top 3 and top 5, respectively. Seo and Shin [39] proposed a
Hierarchical Convolutional Neural Network (H-CNN) for fashion apparel classification.
The authors demonstrated that hierarchical image classification could minimize the model
losses and improve the accuracy, with a result of 93.3%. The research of Fengzi et al. [40]
applied transfer learning using pertained models for automatically labeling uploaded
photos in the e-commerce industry. The authors reported an accuracy value of 88.65%.
Additionally, a condition convolutional neural network (CNN) was proposed by Kolisnik,
Hogan and Zulkernine [41], based on branching convolutional neural networks. The pro-
posed branching can predict the hierarchical labels of an image and the last label predicted
in the hierarchy is reported with accuracy of 91.0%.

Table 1 summarizes the aforementioned works, including the used datasets.

Table 1. Literature overview on fashion image classification works (adapted from [41]).

Author Dataset Year Accuracy

Chen et al. [31] Street-data 2015 Top 1: 48.31%
Liu et al. [32] DeepFashion 2016 Top 3: 82.58%

Hara et al. [33] Fashionista 2016 mAP: 31.1%
Lu et al. [38] DeepFashion 2016 Top 3: 83.24%

Corbière et al. [34] DeepFashion 2017 Top 3: 86.30%
Wang et al. [35] DeepFashion-C 2018 Top 3: 90.99%

Li et al. [36] DeepFashion-C 2019 Top 3: 93.01%
Cho et al. [37] DeepFashion 2019 Top 3: 91.24%

Seo and Shin. [39] Fashion-MINIST 2019 Top 1: 93.33%
Fengzi et al. [40] Fashion Product Images 2020 Top 1: 88.65% 1

Kolisnik, Hogan and Zulkernine [41] Fashion Product Images 2021 Top 1: 91.0% 1

1 Results only reported for fashion classification accuracy.

Regarding the specific topic of stain detection, to the best of our knowledge, there are
no relevant works available in the literature. Nonetheless, stain detection is an important
sub-topic of defect detection in clothing and in the textile field; hence, considering a broader
approach, i.e., defect detection in clothing and in the textile industry, some research works
could be considered for comparative purposes.

C. Li et al. [42] recently developed a survey based on fabric defect detection in textile
manufacturing, where learning-based algorithms (machine learning and deep learning)
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have been the most popular methods in recent years. The deep learning-based object
detector is divided into one-stage detectors and two-stage detectors. One-stage detectors
such as You Look Once (YOLO) [43] and the Single Shot Detector (SSD) [44] are faster but
less accurate when compared with two-stage detectors, such as Faster R-CNN[45] and Mask
R-CNN (region-based convolutional neural network) [46]. On the other hand, two-stage
detectors are more accurate, but also slower. Thus, choosing an adequate algorithm is
necessary for the envisioned application. Therefore, in the first stage, a more accurate
detector was considered instead of a real-time need, since the detection of stains is affected
by different sizes, aspects, and locations on clothes.

In sum, it is visible that there has been great effort to build efficient methods for fashion
category classification. Moreover, the aforementioned works (Table 1) did not focus on
developing systems to aid visually impaired people, and there is yet no solution capable of
covering all the difficulties experienced by a blind person, namely an automatic system for
clothing type identification and stain detection.

3. Methodology

In the pursuit of clothing type image classification and stain detection, a fundamental
question arose: how can artificial intelligence enable the identification and inspection of
clothing for blind people? The methodology implemented in this work aimed at answering
this challenging question, and the dataset, deep learning techniques and evaluation metrics
of the proposed solution are presented in the following sections.

3.1. Clothing Type Category Classification Methods

The clothing category classification is based on a public dataset. Prior to being sub-
mitted to a benchmark between several networks, the dataset is sorted and balanced for
the same number of records. Then, utilizing data augmentation allows one to observe its
influence on the results. This workflow is illustrated in Figure 1.
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Detailed descriptions of each step of the workflow are provided in the follow-
ing subsections.

3.1.1. Dataset

As previously mentioned, at an early stage, the goal was to identify the dataset that
could fit the project needs. All images taken by blind people are placed in a controlled
environment and with one item of clothing at a time [13].
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The previous work carried out by the authors [12] allowed us to understand that more
data are needed for training and to obtain more accurate results. Nevertheless, the results
obtained with a fine-tuning process have shown that this could be a good approach for a
small quantity of data. In this sense, a research survey was performed to look for available
datasets; see Table 2.

Table 2. Summary of available datasets for fashion category classification (adapted from [30]).

Dataset Year # of Photos Description

DeepFashion-C [32] 2016 289,222
Annotated with clothing bounding box,
pose variation type, landmark visibility,
clothing type, category, and attributes.

Fashion Landmark
Dataset [47] 2016 123,016

Annotated with clothing type, pose
variation type, landmark visibility, clothing

bounding box and human body joint.

FashionMinist [48] 2019 70,000 Grayscale image dataset associated with a
label from 10 classes.

DeepFashion2 [49] 2019 491,000
A versatile benchmark of four tasks

including clothes detection, pose estimation,
segmentation, and retrieval.

Fashion Product
Images [50] 2019 44,400

Annotated with gender, master category,
subcategory, article type, base color, season,

year, usage and product description.

Based on the characteristics of each dataset, it was decided to use the Fashion Product
Images Dataset, namely the low-resolution version, as illustrated in Figure 1. It provides
different attributes that meet the project’s current and further needs, such as category,
color, and season of wear, among others. In addition, annotations with bounding boxes
or clothing landmarks are avoided (since they do not fall within the scope of this work)
and allow us to feed the dataset with more images without time-consuming annotations.
However, despite the number of annotated features included in the dataset, it presents
unbalanced data between article types, which were assumed as “categories” in this study.
Figure 2 illustrates the clothes categories whose distribution had 500 records, i.e., each entry
of the xx axis represents a specific category for which, at least, 500 images were considered.
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To ensure a fair comparison between categories and to avoid imbalanced data, from
the initial complete range, exactly 500 records were considered for each category depicted
in Figure 1. An example of an item from each category is illustrated in Figure 3.
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3.1.2. Transfer Learning for Clothing Type Classification

The main objective of image classification is to classify the image by assigning it to a
specific label. It involves the extraction of features from the images.

CNNs have been used for different image classification problems. Most of them have
a small quantity of data and training these networks carries a high computational cost and
is a time-consuming task. With this premise, transfer learning appears as an interesting
solution, where a pre-trained network is retrained with another dataset, allowing one to
train a network faster than training from scratch. Transfer learning could be used in two
different approaches, feature extraction and fine-tuning. Regarding the first one, the head
of the network, the fully connected layer (FC), is replaced, and it only retrains this part.
Moreover, all the weights of the convolutional layers of the network are frozen. On the
other hand, in the second approach, the head of the network is replaced, and a new head
can be built, which is similar to feature extraction. However, it differs from the first one as
the weights of the convolution neural network can be unfrozen and the entire network can
be retrained.

In this work, six implementations of convolutional neural networks were made,
specifically those that, to the best of our knowledge, have never been used before in
the Fashion Product Images Dataset. The choice of the implementation was based on
the different depths and parameters; notwithstanding, all implementations had with the
same resolution—see Table 3. Overall, this study used the following networks: RestNet-
18, ResNet-50, MobileNetV2, GoogLeNet, Mobilenet V3 (small) and EfficientNet-B0. A
comparative analysis of the results obtained with these networks was also carried out.
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Table 3. Main characteristics of pre-trained models.

CNN Parameters (Millions) Image Size (Pixels)

ResNet 50 25.6 224 × 224
ResNet18 11.7 224 × 224

MobileNetV2 66 224 × 224
GoogLeNet 7 224 × 224

MobileNet V3 Small 67.66 224 × 224
EfficientNet-B0 5.3 224 × 224

3.1.3. Evaluation Metrics

As already explained in Section 2, most authors evaluate their models with top 3 and
top 5 scores, meaning that the correct label is among the top k predicted labels. Nevertheless,
the top 1 score is required in this work due to the practical application in sight, which
translates to the fact that the predicted class with the highest probability is the same as the
target value.

As a result, it is necessary to use the following metrics.

• Accuracy (acc), i.e., the relation of correctly predicted observations to the total
observations:

acc =
TP + TN

TP + FP + FN + TN
, (1)

• Precision (P), i.e., the relation of correctly predicted positive observations to the total
predicted positive observations:

P =
TP

TP + FP
(2)

• Recall (R), i.e., the relation of correctly predicted positive observations to the observa-
tions in the actual class:

R =
TP

TP + FN
(3)

• F1 score, i.e., the weighted average of precision and recall:

F1Score = 2∗ P ∗ R
P + R

(4)

where TP, FP and FN represent, respectively, the number of true positives (TP), false
positives (FP) and false negatives (FN).

3.2. Stain Detection Methods

The stain detection process involves the creation of a dataset and its annotation. A
neural network is then applied to the dataset, using fine-tuning, for stain detection. Figure 4
depicts the entire workflow process.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 17 
 

R = TPTP + FN (3) 

• F1 score, i.e., the weighted average of precision and recall: F1Score = 2 ∗  P ∗ RP + R (4) 

where TP, FP and FN represent, respectively, the number of true positives (TP), false pos-
itives (FP) and false negatives (FN). 

3.2. Stain Detection Methods 
The stain detection process involves the creation of a dataset and its annotation. A 

neural network is then applied to the dataset, using fine-tuning, for stain detection. Figure 
4 depicts the entire workflow process. 

 
Figure 4. Workflow methodology for stain detection. 

The following subsections provide descriptions of each step of the workflow. 

3.2.1. Dataset 
To the best of our knowledge, there is no public dataset on clothes with stains avail-

able. Therefore, a new dataset with ca. 104 images was built and named the “stains da-
taset”; it was then divided into a training set and a validation set. The training dataset 
comprised 80% of the images, while the remaining 20% served as an evaluation set to 
determine the model’s accuracy. Each article of clothing could have multiple stains dis-
persed across different parts of the garment, resulting in a total of ca. 300 stains. The im-
ages used in the “stains dataset” were collected from personal wardrobes, where coffee 
and wine stains were applied on clothes, as depicted in Figure 5. 

 
Figure 5. Sample images from stains dataset: (a) coffee stain; (b) wine stain; (c) multiple stains; (d) 
stain on the back. 

Figure 4. Workflow methodology for stain detection.



Appl. Sci. 2023, 13, 1925 8 of 16

The following subsections provide descriptions of each step of the workflow.

3.2.1. Dataset

To the best of our knowledge, there is no public dataset on clothes with stains available.
Therefore, a new dataset with ca. 104 images was built and named the “stains dataset”; it
was then divided into a training set and a validation set. The training dataset comprised
80% of the images, while the remaining 20% served as an evaluation set to determine the
model’s accuracy. Each article of clothing could have multiple stains dispersed across
different parts of the garment, resulting in a total of ca. 300 stains. The images used in
the “stains dataset” were collected from personal wardrobes, where coffee and wine stains
were applied on clothes, as depicted in Figure 5.
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An automatic wardrobe is currently being developed to allow the clothes to be placed
in standardized positions, with which blind people can take photographs under the same
controlled conditions [13].

3.2.2. Transfer Learning for Stain Detection

Regarding stain detection, using deep learning, the segmentation and classification
heads of Mask R-CNN were trained through Detectron2, a Pytorch-based modular object
detection tool. Detectron2 has shown better results on benchmarks compared to other
Mask R-CNN implementations. Mask R-CNN is an extension of Faster R-CNN, since it is
enhanced with the introduction of instance segmentation.

Despite garments having two types of stains, the annotation process was done with
only one class, i.e., a stain. In order to use transfer learning, the weights file mask_rcnn_R_50
_FPN_3x with ResNet50 was used as a backbone.

3.2.3. Evaluation Metrics

An evaluation of the proposed methodology was conducted based on the average
precision (AP). The AP was measured using an IoU threshold of 0.50 and 0.75, as expressed
in Equation (5):

IoU =
Area of Overlap
Area of Union

(5)

with respect to the previous IoUs, precision and recall can be calculated by means of
Equations (2) and (3), respectively, by calculating the number of true positives (TP), false
positives (FP) and false negatives (FN).

Finally, a precision–recall curve (PR) for the object class is generated, and the area
under the curve represents the average precision (AP) of the model.

4. Experiments and Results

This section presents the results of the experiments conducted for the classification of
category types and stain detection.
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4.1. Clothing Type Category Classification

A total of three experiments were initially conducted using the Fashion Product
Images Dataset. The two first experiments were based on fine-tuning, while the third
experiment relied on feature extraction. In order to perform a comparison between all
networks, the training and validation parameters were unchanged. Table 4 describes
the hyper-parameters.

Table 4. Hyper-parameters of model experiments.

Parameters Value

Optimizer SGD
Momentum 0.9
Leaning rate 0.001

Batch size 16

The epochs were the only change between networks due to their architecture and
targeting the best performance. The cross-entropy loss (Equation (6)) allowed us to measure
how well a classification model performed, providing a probability value between 0 and 1:

LCE = −
n

∑
i=1

ti log(pi), for n classes, (6)

where ti is the truth label and pi is the Softmax probability for ith class.
These networks were implemented using the Pytorch library and trained using an

NVIDIA A100 running Ubuntu 20.04.2 LTS.
Table 5 reports the fine-tuning results using pre-trained neural networks.

Table 5. Test performance results.

Network Train
Accuracy

Validation
Accuracy Train Loss Validation

Loss Epochs Time (s)

ResNet-50 0.946 0.903 0.159 0.296 4 153.72
ResNet-18 0.939 0.904 0.183 0.279 4 111.66

MobileNet V2 0.917 0.898 0.233 0.290 4 139.04
GoogLeNet 0.940 0.907 0.189 0.279 7 266.20

MobileNet V3
(small) 0.917 0.883 0.234 0.327 7 241.66

EfficientNet-B0 0.927 0.900 0.210 0.295 12 539.59

During the fine-tuning process, the entire network is trained, meaning that all the
layers’ weights are trainable. However, the weights of batch normalization—a network
layer inserted between hidden layers—are set to non-trainable to prevent the network
from learning new batch normalization parameters, i.e., beta and gamma [51]. These batch
statistics are likely to differ greatly if the fine-tuning examples differ from those in the
original training dataset. As a result of the small size of the fine-tuning dataset, it is not
always desirable to re-learn these parameters during fine-tuning. The results presented in
Table 5 reveal that GoogLeNet had the highest validation accuracy, of 90.7%, with almost
all networks presenting close validation accuracy values. Only MobileNet V3 presented a
notably lower accuracy value, i.e., 88.3%.

In addition, in the fine-tuning process, the depth between the same architectures
(ResNet-18 and ResNet-50) for this dataset was not relevant, achieving approximately the
same results, with 90.4% and 90.3% validation accuracy values, respectively. Moreover, the
increase in the depth leads to more time consumption, and the number of epochs needed
to achieve approximately the same results is equal. The depth between networks, as well
as the parameters, does not show any correlation with the accuracy of them.
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The inference time was then evaluated for each network. For this, the synchronization
time between the CPU and GPU was considered and 400 iterations of GPU warm-up
were implemented. Table 6 summarizes the average time and the standard deviation for
400 inferences of the same image, and for each network.

Table 6. Inference time by network architecture.

Network Time (ms) Standard Deviation

ResNet 50 0.0126 0.251
ResNet18 0.0081 0.162

MobileNetV2 0.0117 0.235
GoogLeNet 0.0169 0.338

MobileNet V3 Small 0.0120 0.239
EfficientNet-B0 0.0197 0.394

The results presented in Table 6 indicate that ResNet-18 allows us to achieve the
best inference time. Moreover, these results allow us to infer that the inference time does
not depend either on the number of parameters or on different network architectures.
Furthermore, the standard deviation appears to be correlated with the inference time, as it
increases with the inference time.

In the second experiment, data augmentation was introduced, namely random hori-
zontal flip and random rotation, which normally leads to improvements in the model. The
obtained results are described in Table 7.

Table 7. Test performance results with augmented data.

Network Train
Accuracy

Validation
Accuracy Train Loss Validation

Loss Epochs Time (s)

With Random Horizontal Flip

ResNet-50 0.958 0.906 0.112 0.307 6 262.63
ResNet-18 0.950 0.907 0.146 0.275 6 162.28

MobileNet V2 0.927 0.910 0.201 0.271 6 228.77
GoogLeNet 0.941 0.911 0.171 0.272 10 356.57

MobileNet V3
(small) 0.911 0.893 0.251 0.320 7 223.88

EfficientNet-B0 0.921 0.903 0.223 0.276 13 542.21

With Random Rotation (90)

ResNet-50 0.934 0.887 0.187 0.323 11 364.47
ResNet-18 0.914 0.887 0.238 0.339 10 272.93

MobileNet V2 0.911 0.887 0.245 0.334 12 464.70
GoogLeNet 0.908 0.894 0.269 0.306 14 509.61

MobileNet V3
(small) 0.896 0.880 0.281 0.379 15 481.10

EfficientNet-B0 0.896 0.880 0.295 0.321 18 804.20

With Random Horizontal Flip and with Random Rotation (90)

ResNet-50 0.947 0.887 0.148 0.328 15 508.69
ResNet-18 0.904 0.885 0.260 0.331 11 306.74

MobileNet V2 0.908 0.884 0.255 0.334 13 539.59
GoogLeNet 0.903 0.883 0.259 0.325 17 608.41

MobileNet V3
(small) 0.899 0.880 0.271 0.369 17 533.98

EfficientNet-B0 0.908 0.891 0.254 0.304 25 1041.29

Based on the results in Table 7, it can be concluded that amongst data augmentation,
the random horizontal flips feature effectively contributed to the improvement in the
model’s performance. As in the first experiment, GoogleLeNet allowed us to obtain the
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best accuracy value (91.1%) and MobileNet V3 (small) resulted in the lowest accuracy
value (89.3%). Finally, augmented data with random rotation resulted in poor performance.
Following this, the precision, recall and F1 score obtained for the GoogLeNet network are
presented in Table 8. Complementarily, Figure 6 depicts the confusion matrix of the model
with the best result based on the performance measurements (GoogLeNet). The confusion
matrix allows the visualization of the performance of the classification model.

Table 8. Classification report of the GoogLeNet network.

Network Precision Recall F1 Score Support

Backpacks 0.99 0.96 0.98 110
Belts 1.00 1.00 1.00 102
Briefs 1.00 0.99 0.99 96

Casual Shoes 0.81 0.75 0.78 102
Flats 0.71 0.61 0.66 107

Flip Flops 0.88 0.94 0.91 124
Formal Shoes 0.98 0.94 0.96 104

Handbags 0.95 0.92 0.94 91
Heels 0.66 0.77 0.71 97
Jeans 0.99 0.90 0.95 115

Kurtas 0.93 0.95 0.94 101
Perfume and

Body Mist 1.00 0.99 0.99 90

Sandals 0.86 0.83 0.84 105
Shirts 0.91 0.94 0.92 96
Shorts 0.98 0.99 0.98 96
Socks 0.97 0.99 0.98 90

Sports Shoes 0.81 0.86 0.83 90
Sunglasses 1.00 1.00 1.00 96

Tops 0.83 0.88 0.85 105
Trousers 0.88 0.98 0.92 88
T-Shirts 0.93 0.83 0.88 90
Wallets 0.95 0.97 0.96 107
Watches 0.98 0.99 0.98 97

Accuracy 0.91 2299
Macro avg 0.91 0.91 0.91 2299

Weighted avg 0.91 0.91 0.91 2299

Independently of the good performance of the model, it is worth noting that there are
some misclassifications between similar clothing articles, such as casual shoes and sport
shoes, heels and flats, and t-shirts and tops (Figure 6).

The third experiment employed transfer learning via feature extraction, where the
weights of all layers are frozen, except the output layer. The obtained results show that the
loss of the network is ca. 90 %, and it is therefore not viable.

Thus, the results show that using a pre-trained network, the fine-tuned GoogLeNet
with augmented data, with proper hyper-parameters, effectively outperforms the work
proposed by Fengzi et al. [40]. Comparatively, the obtained results can be explained by the
fine-tuning of all network layers, leveraging the pre-trained weights of all architectures and
replacing only the last layer, which differs from Fengzi et al. [40], where new head layers
were added. Moreover, in this study, the various augmentations were tested in order to
assess their contribution, with rotation having the greatest impact on the reduced perfor-
mance, and the horizontal flip having the greatest impact on the increased performance.
Contrarily, Fengzi et al. [40] combined all augmentations during the training process.

The accuracy of this study is similar to that obtained by Kolisnik, Hogan and Zulker-
nine [41], although the number of classes considered is not mentioned.
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4.2. Stain Detection

At this stage of the work, the Detectron2 library was used with the implementation of
Mask R-CNN for stain detection. The hyper-parameters are stated in Table 9.

Table 9. Hyper-parameters for fine-tuned Mask R-CNN.

Parameters Value

Iterations 360
Leaning rate 0.001

Batch size 1

As briefly discussed, this network has advantages over Faster R-CNN as a result of the
addition of pixel-level segmentation, i.e., labeling every pixel that belongs to the detected
object. This benefit is easily perceptible in Figure 7, which shows an example of stain
detection, where the bounding box around the stain is visible, as well as its pixel level.

An experiment was conducted that addressed only the detection of stains, rather than
the distinction between them. The main results of the network performance and model
losses from Mask R-CNN are presented in Tables 10 and 11, respectively.

Through the COCO evaluator, it is possible to verify that despite the small quantity of
data, the presented results are promising, especially regarding the AP at IoU = 0.50 of 0.857
(Table 10). The highest verified loss was 0.240 (Table 11), indicating a more challenging task
related to the segmentation of the stain.

The evaluation of the model allowed us to conclude that the misclassifications were
mainly related to the detection of brand logos in the clothing and the low contrast between
the stain and the clothing color, as shown in Figure 8.
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Table 10. Results from Common Objects in Context (COCO) evaluator.

Network AP AP at IoU = 0.50 AP at IoU = 0.75

Bounding Box 0.549 0.857 0.672
Segmentation 0.540 0.858 0.674

Table 11. Summary of model losses.

Total Loss Loss Classification Loss Box Regression Loss Mask

0.480 0.053 0.154 0.240
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5. Conclusions

Blind people experience challenging difficulties regarding clothing and style on a daily
basis, something that is often essential to an individual’s identity. Especially regarding stain
detection in clothing, blind people need supporting tools to help them to identify when a
clothing item has a stain, as cleanliness is often important for a person to feel comfortable
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and secure in their appearance. Such difficulties are often overcome with the help of family
or friends, or others with great organizational capacity. However, for a blind person to feel
self-confident in their clothing, the use of technology becomes imperative, namely the use
of neural networks.

In this study, an analysis of clothing type identification and stain detection for blind
people is presented. Through the transfer learning benchmark results, a deep learning
model was demonstrated to be able to identify the clothing type category with up to a 91%
F1 score, representing an improvement in comparison to the literature. Augmented data
were proven to potentially improve even further the obtained results. Nevertheless, more
tests should be performed in order to identify which type of augmented data fits better the
model considered in this work.

A pioneering method to detect stains from a given clothing image was also presented
based on a dataset comprising clothing with wine and coffee stains. This dataset was built
to demonstrate that the proposed deep learning algorithm could accurately detect and
locate stains on clothing autonomously. The results were promising and are expected to
improve when a larger dataset is used.

This work was somehow limited by the fact that clothing type recognition was based
on clothing worn by models, which can lead to an unwanted loss in the model and to
categories that are not necessary due their redundancy. On the other hand, the stains
dataset can be improved with more data and with the optimization of the number of
categories considered for clothing type detection. Additionally, the development of a mobile
application and its subsequent validation with the blind community can be performed,
allowing these results to be integrated into an automatic wardrobe.

Nevertheless, the overall concept behind this work was fully demonstrated, as a
system that can significantly improve the daily lives of blind people was developed and
tested, allowing them to automatically recognize clothing and identify stains.

Author Contributions: Conceptualization, D.R., F.S., E.O. and V.C.; methodology, D.R., F.S. and V.C.;
software, D.R.; validation, D.R., F.S. and V.C.; formal analysis, D.R., F.S. and V.C.; investigation, D.R.,
F.S. and V.C.; resources, F.S., E.O. and V.C.; data curation, D.R.; writing—original draft preparation,
D.R.; writing—review and editing, D.R. and V.C.; visualization, D.R. and V.C.; supervision, F.S., E.O.
and V.C.; project administration, F.S. and V.C.; funding acquisition, F.S. and V.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has been supported by national funds through FCT—Fundação para a Ciência e
Tecnologia within the Projects Scope: UIDB/00319/2020, UIDB/05549/2020 and UIDP/05549/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work had the support of the Association of the Blind and Amblyopes of Por-
tugal (ACAPO) and the Association of Support for the Visually Impaired of Braga (AADVDB). Their
considerations were essential in obtaining key insights into a viable solution for the blind community.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Wade, N.J.; Swanston, M. Visual Perception, 3rd ed.; Psychology Press: London, UK, 2013; pp. 1–322. [CrossRef]
2. GBD 2019 Blindness and Vision Impairment Collaborators. Causes of blindness and vision impairment in 2020 and trends over

30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden
of Disease Study. Lancet. Glob. Health 2021, 9, e144–e160. [CrossRef] [PubMed]

3. Bhowmick, A.; Hazarika, S.M. An insight into assistive technology for the visually impaired and blind people: State-of-the-art
and future trends. J. Multimodal User Interfaces 2017, 11, 149–172. [CrossRef]

http://doi.org/10.4324/9780203082263
http://doi.org/10.1016/S2214-109X(20)30489-7
http://www.ncbi.nlm.nih.gov/pubmed/33275949
http://doi.org/10.1007/s12193-016-0235-6


Appl. Sci. 2023, 13, 1925 15 of 16

4. Messaoudi, M.D.; Menelas, B.-A.J.; Mcheick, H. Review of Navigation Assistive Tools and Technologies for the Visually Impaired.
Sensors 2022, 22, 7888. [CrossRef]

5. Elmannai, W.; Elleithy, K. Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future
directions. Sensors 2017, 17, 565. [CrossRef] [PubMed]

6. Johnson, K.; Lennon, S.J.; Rudd, N. Dress, body and self: Research in the social psychology of dress. Fash. Text. 2014, 1, 20.
[CrossRef]

7. Rocha, D.; Carvalho, V.; Oliveira, E.; Goncalves, J.; Azevedo, F. MyEyes-automatic combination system of clothing parts to blind
people: First insights. In Proceedings of the 2017 IEEE 5th International Conference on Serious Games and Applications for
Health (SeGAH), Perth, Australia, 2–4 April 2017; pp. 1–5.

8. Rocha, D.; Carvalho, V.; Oliveira, E. MyEyes—Automatic Combination System of Clothing Parts to Blind People: Prototype
Validation. In Proceedings of the SENSORDEVICES’ 2017 Conference, Rome, Italy, 10–14 September 2017.

9. Rocha, D.; Carvalho, V.; Gonçalves, J.; Azevedo, F.; Oliveira, E. Development of an Automatic Combination System of Clothing
Parts for Blind People: MyEyes. Sens. Transducers 2017, 219, 26–33.

10. Rocha, D.; Carvalho, V.; Soares, F.; Oliveira, E. Extracting Clothing Features for Blind People Using Image Processing and Machine
Learning Techniques: First Insights BT—VipIMAGE 2019; Tavares, J.M.R.S., Natal Jorge, R.M., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; pp. 411–418.

11. Rocha, D.; Carvalho, V.; Soares, F.; Oliveira, E.; Leão, C.P. Understand the Importance of Garments’ Identification and Combination
to Blind People. In Proceedings of the Human Interaction, Emerging Technologies and Future Systems V, Paris, France, 27–29
August 2021; Ahram, T., Taiar, R., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 74–81.

12. Rocha, D.; Carvalho, V.; Soares, F.; Oliveira, E. A model approach for an automatic clothing combination system for blind people.
In Design, Learning, and Innovation; Springer International Publishing: Cham, Switzerland, 2020.

13. Rocha, D.; Carvalho, V.; Soares, F.; Oliveira, E. Design of a Smart Mechatronic System to Combine Garments for Blind People:
First Insights. In IoT Technologies for HealthCare, Proceedings of the 8th EAI International Conference, HealthyIoT 2021, Virtual Event,
24–26 November 2021; Garcia, N.M., Pires, I.M., Goleva, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020;
pp. 52–63.

14. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput.
Intell. Neurosci. 2018, 2018, 7068349. [CrossRef]

15. Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN Variants for Computer Vision:
History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [CrossRef]

16. Patel, C.; Bhatt, D.; Sharma, U.; Patel, R.; Pandya, S.; Modi, K.; Cholli, N.; Patel, A.; Bhatt, U.; Khan, M.A.; et al. DBGC:
Dimension-Based Generic Convolution Block for Object Recognition. Sensors 2022, 22, 1780. [CrossRef]

17. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; Pereira, F., Burges, C.J.C.,
Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25.

18. ImageNet Large Scale Visual Recognition Competition (ILSVRC). Available online: http://www.image-net.org/challenges/
LSVRC/ (accessed on 13 July 2020).

19. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

20. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA,
7–9 May 2015.

21. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. arXiv 2014, arXiv:1409.4842.

22. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and. arXiv 2016, arXiv:1602.07360.

23. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015,
arXiv:1512.00567.

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
25. Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. arXiv 2018,

arXiv:1807.11164.
26. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv

2018, arXiv:1801.04381.
27. Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for

MobileNetV3. arXiv 2019, arXiv:1905.02244.
28. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946.
29. Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollár, P. Designing Network Design Spaces. arXiv 2020, arXiv:2003.13678.
30. Cheng, W.-H.; Song, S.; Chen, C.-Y.; Hidayati, S.C.; Liu, J. Fashion meets computer vision: A survey. ACM Comput. Surv. 2021,

54, 72. [CrossRef]

http://doi.org/10.3390/s22207888
http://doi.org/10.3390/s17030565
http://www.ncbi.nlm.nih.gov/pubmed/28287451
http://doi.org/10.1186/s40691-014-0020-7
http://doi.org/10.1155/2018/7068349
http://doi.org/10.3390/electronics10202470
http://doi.org/10.3390/s22051780
http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/
http://doi.org/10.1145/3447239


Appl. Sci. 2023, 13, 1925 16 of 16

31. Chen, Q.; Huang, J.; Feris, R.; Brown, L.M.; Dong, J.; Yan, S. Deep domain adaptation for describing people based on fine-grained
clothing attributes. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 5315–5324.

32. Liu, Z.; Luo, P.; Qiu, S.; Wang, X.; Tang, X. DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich
Annotations. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 27–30 June 2016; pp. 1096–1104. [CrossRef]

33. Hara, K.; Jagadeesh, V.; Piramuthu, R. Fashion Apparel Detection: The Role of Deep Convolutional Neural Network and
Pose-dependent Priors. arXiv 2014, arXiv:1411.5319.

34. Corbière, C.; Ben-Younes, H.; Ramé, A.; Ollion, C. Leveraging Weakly Annotated Data for Fashion Image Retrieval and Label
Prediction. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy,
22–29 October 2017. [CrossRef]

35. Wang, W.; Xu, Y.; Shen, J.; Zhu, S.-C. Attentive Fashion Grammar Network for Fashion Landmark Detection and Clothing
Category Classification. In Proceedings of the Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4271–4280.

36. Li, P.; Li, Y.; Jiang, X.; Zhen, X. Two-Stream Multi-Task Network for Fashion Recognition. arXiv 2019, arXiv:1901.10172.
37. Cho, H.; Ahn, C.; Yoo, K.M.; Seol, J.; Lee, S. Leveraging Class Hierarchy in Fashion Classification. In Proceedings of the 2019

IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019;
pp. 3197–3200.

38. Lu, Y.; Kumar, A.; Zhai, S.; Cheng, Y.; Javidi, T.; Feris, R. Fully-adaptive Feature Sharing in Multi-Task Networks with Applications
in Person Attribute Classification. arXiv 2016, arXiv:1611.05377.

39. Seo, Y.; Shin, K.-S. Hierarchical convolutional neural networks for fashion image classification. Expert Syst. Appl. 2019, 116,
328–339. [CrossRef]

40. Fengzi, L.; Kant, S.; Araki, S.; Bangera, S.; Shukla, S. Neural Networks for Fashion Image Classification and Visual Search. arXiv
2020, arXiv:2005.08170. [CrossRef]

41. Kolisnik, B.; Hogan, I.; Zulkernine, F. Condition-CNN: A hierarchical multi-label fashion image classification model. Expert Syst.
Appl. 2021, 182, 115195. [CrossRef]

42. Li, C.; Li, J.; Li, Y.; He, L.; Fu, X.; Chen, J. Fabric Defect Detection in Textile Manufacturing: A Survey of the State of the Art. Secur.
Commun. Netw. 2021, 2021, 9948808. [CrossRef]

43. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015,
arXiv:1506.02640.

44. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer
Vision—ECCV 2016; Springer: Cham, Switzerland, 2015. [CrossRef]

45. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv
2015, arXiv:1506.01497. [CrossRef]

46. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. arXiv 2017, arXiv:1703.06870.
47. Liu, Z.; Yan, S.; Luo, P.; Wang, X.; Tang, X. Fashion Landmark Detection in the Wild. arXiv 2016, arXiv:1608.03049.
48. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv

2017, arXiv:1708.07747.
49. Ge, Y.; Zhang, R.; Wu, L.; Wang, X.; Tang, X.; Luo, P. A Versatile Benchmark for Detection, Pose Estimation, Segmentation and

Re-Identification of Clothing Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 15–20 June 2019.

50. Fashion Product Images Dataset|Kaggle. Available online: https://www.kaggle.com/paramaggarwal/fashion-product-images-
dataset (accessed on 28 December 2021).

51. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,
arXiv:1502.03167.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/CVPR.2016.124
http://doi.org/10.1109/iccvw.2017.266
http://doi.org/10.1016/j.eswa.2018.09.022
http://doi.org/10.2139/ssrn.3602664
http://doi.org/10.1016/j.eswa.2021.115195
http://doi.org/10.1155/2021/9948808
http://doi.org/10.1007/978-3-319-46448-0_2
http://doi.org/10.1109/TPAMI.2016.2577031
https://www.kaggle.com/paramaggarwal/fashion-product-images-dataset
https://www.kaggle.com/paramaggarwal/fashion-product-images-dataset

	Introduction 
	Related Work 
	Methodology 
	Clothing Type Category Classification Methods 
	Dataset 
	Transfer Learning for Clothing Type Classification 
	Evaluation Metrics 

	Stain Detection Methods 
	Dataset 
	Transfer Learning for Stain Detection 
	Evaluation Metrics 


	Experiments and Results 
	Clothing Type Category Classification 
	Stain Detection 

	Conclusions 
	References

