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ABSTRACT

Interstitial lung diseases (ILD) are defined as a set of more than 200 pulmonary disorders. Among
these, the ones broadly termed as pneumonia represent a major cause of morbidity and mortality
in the world. The chest radiograph (CXR) was the first x-ray based lung imaging technique to
emerge and is still widely used as a diagnostic method for pneumonia and other lung diseases.
However, correct interpretation of CXR requires analysis by experts and stays vulnerable to
errors and observer-related variation. To counteract these problems, artificial intelligence (AI)
methods have been applied for the automated analysis of CXR and other medical images. The
deep learning (DL) branch of Al and in the particular the methods based on convolutional neural
networks (CNN), recently obtained impressive results in these tasks.

This dissertation presents a DL approach to classify pneumonia from medical CXR image
datasets. Two different models based on the development of CNN were trained from a prepro-
cessed dataset of CXR images obtained from 8562 individuals classified as normal (n=7214) or
with pneumonia (n=1348) (Dataset XP1’). Model 1 applied a normal cross entropy loss function,
and model 2 an alternative loss function aiming at counteracting the unbalance in normal/pneu-
monia class frequency. For performance enhancing both models underwent a hyper optimization
procedure. The optimized model 1 and 2 were tested on a test set from XP1’. To better under-
stand the predictability and generalization potential we then tested both models on an unrelated
test set of 624 images (Dataset XP2).

Interestingly, model 1 obtained better performance when tested on XP2 than in XP1°, scoring
an accuracy of 85%, recall of 93% and precision of 85% for the detection of the pneumonia class.
The higher homogeneity present on dataset XP2 compared with dataset XP1’ could be a plausible
justification. As for model 2, it correctly predicted more pneumonia cases on test set XP1’ than
model 1. However, on test set XP2 the results were poor, predicting most cases as pneumonia
and scoring a recall value of only 26% for the pneumonia class. Testing the DL. models on
unseen data is a relevant but not always performed validation. Overall, the higher accuracy,
recall and precision levels of model 1 in XP2 suggests it has a higher potential to be applied for
real-word application although its performance should be further improved and evaluated. This
work opened promising new lines of research for the future development of a high-performance

CNN-based automated method to classify CXR and assist in the diagnostic of pneumonia.



Keywords: interstitial lung diseases, pneumonia, chest radiographs, artificial intelligence,

deep learning, convolutional neural networks.
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RESUMO

Doencas intersticiais pulmonares sdo definidas como um conjunto de mais de 200 doengas pul-
monares. Dentro deste grupo de doencas, as doencas denominadas como pneumonia ou pneu-
monite representam uma condicao inflamatdria que afecta o intersticio pulmonar e representam
uma das principais causas de morbidade e mortalidade no mundo. A radiografia torécica foi a
primeira técnica de imagiologia pulmonar baseada em raios-x a surgir sendo, ainda amplamente
utilizada como método de diagndstico de pneumonia e outras doengas pulmonares. No entanto,
a correcta interpretacdo de radiografias tordcicas requer uma andlise de pessoal especializado e
encontra-se vulneravel a erros e variagdes relacionadas com o observador. De modo a contrariar
estes problemas, métodos de inteligéncia artificial tém sido aplicados na andlise automatizada de
radiografias tordcicas e outro tipo de imagens médicas. Métodos de ’Deep learning” e em partic-
ular, métodos baseados em redes neuronais convolucionais, obtiveram recentemente resultados
impressionantes quando aplicados nesta area de estudo.

Esta dissertacdo apresenta uma abordagem de “deep learning” que permite classificar im-
agens de pneumonia a partir de “datasets” de radiografias tordcicas. Dois modelos diferentes
baseados no desenvolvimento de redes neuronais convolucionais foram treinados a partir de um
”dataset” preprocessado de radiografias tordcicas obtido a partir de 8562 individuos classificados
como normais (n=7214) ou como doentes de pneumonia (n=1348) ("Dataset” XP1’). Ao mod-
elo 1 foi aplicada uma fungdo ”loss” de entropia cruzada normal, e ao modelo 2 foi aplicada
uma funcao “’loss” alternativa que visa contrariar o desbalanceamento entre casos normais e de
pneumonia presente no “dataset XP1’ 7. Para melhorar o desempenho, ambos os modelos foram
submetidos a um procedimento de hiper optimiza¢do. Os modelos 1 e 2 otimizados foram de
seguida testados no conjunto de teste do “dataset XP1’. Para entender melhor a capacidade de
previsdo e generalizagdo, os dois modelos foram também testados num conjunto de teste nio
relacionado de 624 imagens (Dataset XP2).

Curiosamente, o modelo 1 obteve melhor desempenho quando testado no XP2 do que no
XP1’, obtendo uma “accuracy” de 85%, sensibilidade de 93% e precisdo de 85% durante a
detecdo de casos de pneumonia. A maior homogeneidade de informacgdo presente no XP2 em
comparacdo com o XP1’, é vista como a justificacio mais plausivel. Quanto ao modelo 2, ele
previu correctamente mais casos de pneumonia no XP1 do que o modelo 1. No entanto, quando
testado no XP2, os resultados ficaram abaixo das expectativas, prevendo a maioria dos casos

como pneumonia e obtendo um valor de sensibilidade de apenas 26% para a classe de pneumo-
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nia. Testar os modelos de ”deep learning” em dados ndo relacionados € uma técnica de validacao
relevante, no entanto nem sempre € realizada. Os niveis elevados de precisdo, sensibilidade e
“accuracy” do modelo 1 quando aplicado no XP2 sugerem que possui um grande potencial de
utilizagdo em aplicacOes de caricter real, no entanto, o seu desempenho pode ainda ser melho-
rado. Este trabalho abriu novas e promissoras vias de pesquisa para o desenvolvimento futuro
de um método automatizado baseado em CNN de alto desempenho que seja capaz de classificar

radiografias tordcicas e auxiliar no diagndstico de pneumonia.

Palavras-chave: doencas intersticiais pulmonares, pneumonia, radiografias torcicas, in-

teligéncia artificial, ”deep learning”, redes neuronais convolucionais.
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INTRODUCTION

1.1 CONTEXT AND MOTIVATION

Interstitial lung diseases (ILD) can be defined as a set of more than 200 chronic pulmonary
disorders, which can cause several degrees of pulmonary fibrosis and inflammation [1]. The
ILDs can be classified into two major groups: idiopathic or unknown cause diseases, and known
cause diseases [2]. Even if these diseases can be classified into different groups, they have similar
clinical manifestations with each other, hindering their differential diagnosis. ILDs typically lead
to several complications in the patient affecting the normal function of the respiratory system,
such as reduced lung capacity and volume, progressive scarring of lung tissue and decreased
amount of available oxygen in the bloodstream [3]. ILDs represents a major cause of morbidity
and mortality in the world, being directly linked to respiratory failure [4].

High-resolution computed tomography (HRCT), computed tomography (CT) and chest ra-
diograph (CXR), both based in the principle of x-ray imaging, appear as the most classical diag-
nostic methods used in the detection of pulmonary diseases, including ILD. The CXR was the
first technique to emerge, being widely used nowadays as a first diagnostic method to evaluate
the structures of the pulmonary system in most clinical settings [5]. CT and HRCT came latter
and are nowadays common in-vivo radiology imaging tools used in the identification of specific
types of ILDs by the visualization of abnormal imaging patterns. However, these approaches
require analysis by an expert radiologist and stay vulnerable to the inter and intra-observer vari-
ation [6]. These variations can lead to incorrect image interpretation ultimately leading to a
potential increase in the mortality rates due to treatable ILDs

Over the last 40 years, approaches based on the application of computer systems as comple-
mentary tools in the doctors decision-making diagnosis, have been created. Current Computer-
aided diagnosis (CAD) systems focused on the detection and classification of many types of
lesions obtained from imaging methods, becoming relevant in the detection of lesions that are
easily missed [7, 8]. Overall, these CAD systems are gaining importance in the improvement

of diagnosis accuracy. Remarkably,the advances in artificial intelligence (Al) techniques and en-



1.1. Context and motivation

hanced computing power conjoined with a large increase in medical imaging data has opened up
new opportunities for the application of CAD systems as focal tools in the modern diagnosis of
ILD and other relevant health concerns. Al methods, especially deep learning (DL), as the poten-
tial substitute and largely enhance the usefulness of feature extraction and disease classification
in the traditional CAD systems [8].

DL is a branch of machine learning (ML), best known by its applications in computer vision,
bioinformatics, drug design, and speech recognition. Although the concept of DL has existed
since the 1980s, its real impact started only in the early 2000s, being now considered as a tool
able to strongly impact vast areas of the society. The most modern DL models are based on
artificial neural networks (ANN), which are inspired by knowledge from neurosciences, such as
the interpretation of information processing and communication patterns in the nervous system,
more properly in neural networks [9]. DL models have recently obtained impressive results in
a variety of computer vision problems, which leads to its new application in other areas, such
as medical image analysis [3]. Regarding medical image analysis Al technology can be used to
perform automatic lesion detection aiming at improved differential diagnostic [10]. Over the last
years, many articles based on the application of DL in the medical field have been published [11].
According to the PubMed database, the convolutional neural networks (CNN) are starting to gain
advantage over the other DL methods [11]. Some studies even demonstrated, by a comparative
analysis of lung pattern classification, that CNN were more effective than other existing DL
methods [3, 12].

Given the complexity involved in the medical diagnosis decision of ILDs, this work will be
based on the development of a DL model capable of distinguishing CXR images from healthy
individuals from the ones acquired in individuals diagnosed with a common ILD broadly known
as pneumonia. This highly challenging project will allow extracting practical knowledge on how

Al can be useful in the future of medical image analysis and in the diagnosis of pneumonia.



1.2. Objectives

1.2 OBJECTIVES

The main goal of this thesis is the development of a DL-based algorithm for classification of
pneumonia images from medical CXR image datasets. In detail, the scientific and technological

objectives of this work are:

e Review the relevant literature in lung diseases, their classic and modern diagnosis and how

deep learning methods can be applied in related scenarios;
e Explore relevant datasets of CXR image data commonly used in pneumonia diagnosis;
e Implement the automated analysis of chest medical images using Python language;

e Develop deep learning pipelines for pneumonia diagnosis.



1.3. Paper organization

1.3 PAPER ORGANIZATION

This dissertation is structured in six chapters.

The current chapter, Chapter 1, highlights the proposed objectives, an overview of the struc-
ture of the document and includes the general introduction to the main topics of interstitial lung
diseases and artificial intelligence illustrating the context and problematic that motivated this
dissertation.

In Chapter 2 a detailed review of the state-of-the-art relevant to this work is presented. A
particular focus is given to interstitial lung diseases diagnosis, computer aided diagnosis and
detection allied with artificial intelligence, artificial neural networks, deep learning methods and
its applications in healthcare.

During Chapter 3 the pratical methods involving both data selection and model development
are described in detail. At the same time, the preferences and choices of the work steps are
carefully explained to provide a reproducible pipeline.

In Chapter 4 the computational and technical steps of image preprocessing, convolutional
neural network models development, hyperparameter tuning, and convolutional neural network
final applications are explained in a more detailed context.

During Chapter 5 the main results generated in this thesis are presented and discussed. It
starts by the hyper optimization of the developed models and also includes the model perfor-
mance evaluation.

Finally, at Chapter 6, the general conclusions from this work and topics about its future

improvement are drawn.



STATE OF THE ART

2.1 PNEUMONIA AND OTHER INTERSTITIAL LUNG DISEASES

ILDs are defined as a set of chronic pulmonary disorders characterized by the inflammation of
the lung tissue, which can lead to pulmonary fibrosis. These group of disorders can be clini-
cally characterized by diffuse infiltrates on the CXR and histologically by changes of the gas
exchanging portion of the lungs [1]. When in fibrosis, other complications can exist, such as
lung stiffness, restriction of lung volumes and impaired oxygenation due to the reduced ability
of the air sacs to capture and carry oxygen into the bloodstream. In extreme cases, impaired oxy-
genation can lead to permanent loss of the ability to breathe [3]. The most common symptoms
are the cough and dyspnea, although patients may occasionally have an abnormal CXR in the
absence of these symptoms [1].

The group of ILD involves more than 200 chronic lung disorders and accounts for 15% of all
cases seen by pulmonologists [4]. These disorders involve the area between the alveolar epithelial
and capillary basement membranes, but also frequently involve the alveolar epithelium, alveolar
space, pulmonary microvasculature and less usually, the respiratory bronchioles, larger airways,
and the pleura [1]. There are some main causes for ILDs, like autoimmune diseases, genetic
abnormalities, infections and long-term exposures to hazardous materials. However, in other
cases, the cause of ILDs remains unknown and are defined as idiopathic interstitial pneumonia
[3]. It is estimated that up to 65% of all ILDs are of unknown causes and only 35% are of known
etiology cause [2]. Thus, ILDs can be classified into two major groups: idiopathic diseases and
known cause diseases (Table 1). This classification is not the ideal but the possible based on the
present medical knowledge and tends to help grouping the ILDs based on clinical similarities
helping in the differential diagnosis of the different ILDs. The term pneumonia or pneumonitis
broadly represents any inflammatory condition involving the lungs, including the pulmonary
interstitium. Thus, these terms are commonly used to refer to several ILDs of the idiopathic and

non-idiopathic groups (Table 1).



2.1. Pneumonia and other Interstitial lung diseases

Table 1: Major categories of interstitial lung diseases. Adapted from [2]

IDIOPATHIC ILDs (65%)

Idiopathic interstitial pneumonia (IIP):

» |diopathic pulmonary fibrosis (IPF)

» Non-specific interstitial pneumonia
(NSIP)

s Cryptogenic organizing pneumonia
(COP)

* Respiratory bronchiolitis interstitial
lung disease (RBILD)

s Desquamative interstitial
pneumonia (DIP)
» Acute interstitial (AIP)
» |lymphoid interstitial pneumonia
(LIP)
Eosinophilic pneumonia (EP):
s Chronic eosinophilic pneumonia
(CEP)
* Acute eosinophilic pneumonia (AEP)
Sarcoidosis
Primary disorders:
s Pulmonary Langerhans cell

histiocytosis (HX)
Lymphangioleiomyomatosis (LAM)

KNOWN CAUSE ILDs (35%)

Inherited disorders:
e Familial pulmonary fibrosis
¢ Hermansky-Pudlak syndrome

Connective tissue disease-associated
interstitial lung disease (CTD-ILD)

Hypersensitivity pneumonitis

Latrogneic pneumonitis:

s Drug-induced ILD

s Radiation injury
Occupational lung disease:

e Asthma
e Bronchiolis obliterans
s Pneumoconiosis

2.1.1 Disease groups
Idiopathic interstitial pneumonia (IIP) is one type of ILD of unknown etiology that shares clinical
and radiologic features, being distinguished primarily by its histological patterns following lung
biopsy. All the seven IIP subtypes are characterized by varying degrees of fibrosis and inflam-
mation on the lungs [13]. The main physical symptom is dyspnea. Idiopathic pulmonary fibrosis
(IPF) is the most important and common form of chronic ILD, most frequently occurring in older
adults [14]. The IPF is associated with a radiologic pattern of usual interstitial pneumonia term,
being recently placed in the IPP category [13].

The eosinophilic ILD, commonly known as eosinophilic pneumonia, is an heterogeneous
group of lung diseases characterized by a set of infectious and noninfectious pulmonary condi-

tions that induce the infiltration of an increased number of eosinophils into lung areas, such as
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alveolar spaces in the interstitium [15]. These eosinophils are immune system cells involved
in the response to the infection by multicellular parasites and other pathogens, and responsible
to regulate allergy and asthma-associated mechanisms [16]. The most common causes of this
disease are parasite infections, allergic reactions, exposure to drugs and toxins [17]. Although
some causes for this disease are known, many others remain unknown, like in the case of chronic
eosinophilic pneumonia and acute eosinophilic pneumonia conditions, where the massive accu-
mulation of eosinophils in the lungs cannot be clearly explained in the majority of cases [18, 19].

Other categories of unknown cause ILDs are the sarcoidosis, a multisystemic disorder that is
characterized by the formation of abnormal collections of inflammatory cells, known as immune
granulomas, in a variety of organs [20]. This disease can affect the eyes, liver, heart, and brain,
but the lungs and the lymphatic system are the most predominantly affected [21]. It is suspected
that sarcoidosis can be caused by an immune reaction trigger, such as an infection or chemicals
in those who are genetically predisposed [22, 20]. The symptoms of this disease depend on the
involved organ, in the case of lungs the usual symptoms are cough, chest pain and shortness of
breath [23].

Langerhans cell histiocytosis, commonly referred to histiocytosis X is a rare and complex
disease of unknown cause, characterized by the abnormal proliferation and infiltration of the
bone marrow-derived Langerhans cells in multiple organs, being that the lung and bone are the
most affected [24]. These cells are specific leukocyte dendritic cells involved in the regulation
of the immune system, being capable to migrate from the skin to lymph nodes [25]. This kind
of disease provokes a non-specific inflammatory response which includes fever, lethargy and
weight loss [24]. In the case of lung involvement, the histiocytosis provokes a swelling of the
bronchioles and blood vessels, which leads to breathing problems and increased risk of infection
[25].

Lymphangioleiomyomatosis (LAM) is the last major category of idiopathic ILD. LAM is a
rare multi-system and progressive disease that commonly results in cystic lung destruction. This
disease results from abnormal smooth muscle-like cells (LAM cells) interstitial proliferation in
the lungs, kidney and lymphatic channels [26]. That proliferation can, at the early phase, obstruct
venules, lymphatics, and small airways and can, at the late phase, develop cystic spaces through-
out the lung [27]. LAM disease occurs predominantly in premenopausal women, suggesting the
involvement of estrogen and/or progesterone in the disease progress. However, the main cause
of the LAM disease is not known for certain. [26]. LAM is considered an atypical or attenuated
manifestation of tuberous sclerosis, once its manifestation is associated with people carrying a
genetic disorder characterized by the growth of numerous benign tumors in many parts of the
body [28].
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The connective tissue diseases (CTD) can be defined as a set of disorders caused by autoimmune-

mediated damages associated with producing and circulating autoantibodies that target various
body organs [29, 30]. In the case of CTD-ILD, the main target are the lungs. CTD can affect
some regions of the lungs like chest wall, pleura, vasculature, airways, and parenchyma [31]. In
these cases, the ILD is considered a clinical manifestation of CTD, whereby the CTD-ILD cate-
gory can be defined as a progressive lung parenchymal manifestation of CTD [29]. The overall
incidence of CTD-associated interstitial lung disease (CTD-ILD) is 15% and the main symptoms
of this disease are fatigue and cough [30].

Another ILD category which cause is known is the hypersensitivity pneumonitis (HP), also
designated extrinsic allergic alveolitis. HP represents a group of pulmonary disorders mediated
by chronic inflammation reactions involving the lung parenchyma, more properly the bronchi
and peri-bronchi tissue. The HP is commonly provoked by the inhalation of an allergen. When
the patient is in prolonged contact with a certain type of allergen to which it is sensitive and
super-responsive, exaggerated immune reactions will be activated by the organism leading to
alveoli damages [32]. These diseases can be caused by inhalation of multiple and varied agents,
like microbes, chemicals, and animal and plant proteins [33].

latrogenic pneumonitis and fibrosis can be defined as a group of ILD induced by external
factors. Many treatment agents have been associated with pulmonary disorders, especially in-
terstitial inflammation and fibrosis [34]. The drug-induced interstitial lung diseases (DILD) can
be caused by several medications or treatments like chemotherapeutic agents, antibiotics, antiar-
rhythmic drugs, and immunosuppressives. The lungs are presented as an easy target for toxic
substances and can act as a metabolism site for certain drug compounds. Since some agents are
capable to induce specific respiratory reactions, sometimes the toxicity present in these agents
can injury the lungs, principally the lung parenchyma, pleura, and pulmonary vasculature. These
injuries may result from a direct or indirect drug effect, being that the oral and parenteral admin-
istration drugs are the main causes of DILD [35]. About 380 drugs are known to cause DILD and
that number tends to increase as new agents are developed [36, 35]. However, therapies using
radiation and several medical devices also present various levels of toxicity to the patient lungs
and are therefore also considered responsible for DILDs [34].

Occupational lung diseases are another major category of known cause ILDs. These dis-
eases are defined as a variety of lung disorders caused by the inhalation or ingestion of dust
particles [37]. These disorders are provoked by people exposed to certain substances in their
workplaces. The occupational lung diseases can be caused directly or indirectly by an immuno-
logical response to a variety of specks of dust, chemicals, proteins, and even organisms [38].
There is a lot of occupational lung diseases, being asthma, bronchiolitis obliterans and ILDs, like

pneumoconiosis, HP, and lung fibrosis, the most common [39].
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Relating to the inherited diseases, they are caused by genetic disorders that pass through the
offspring [40]. These disorders occur due to one or more abnormalities in the human genome,
staying in the family tree for several generations. One of ILDs belonging to inherited diseases cat-
egory is the familial pulmonary fibrosis [41]. It is characterized by the accumulation of excessive
scar tissue in the lungs [3]. When the cause of pulmonary fibrosis is not known, it is classified
as IPF. When this disease manifests itself in several people of the same family is designated as
familial pulmonary fibrosis and can be attributed to a known genetic cause [41]. During the last
years, it was revealed that mutations involving the telomerase complex, the enzyme responsible
for the formation and maintenance of the chromosomal ends, are associated with pulmonary fi-
brosis [40]. Another inherited disease is Hermansky-Pudlak syndrome (HPS). The HPS is an
extremely rare autosomal recessive disease characterized by oculocutaneous albinism, a form
of decreased pigmentation, and bleeding problems [42]. HPS presents pulmonary fibrosis and
immunological deficiencies as major complications [43]. At least six distinct genetic forms of
HPS have been identified. Mutations in the HPS1 gene are the main cause of most cases of the
HPS in the world [43]. It is also known that the prevailing of pathogenic variants of HPS1 and
HPS4 on the genetic basis of the family is related to lethal pulmonary fibrosis [43].

2.2 MEDICAL IMAGING: X-RAY TECHNIQUE

The X-ray radiation was first discovered in the year 1895, by a German physicist named William
Conrad Rontgén [44]. It is a form of electromagnetic radiation that can be produced by an energy
source and can pass through specific materials. X-ray radiation is similar to visible light but, has
more energy that allows itself to penetrate a variety of objects. The X-rays are produced upon
a sudden deceleration of fast-moving electrons and at the moment they collide and interact with
the target anode [45].The X-ray wavelength can range from 0.01 to 10 nanometers and X-ray
energies can range from 100 electro-volts to 100 kilo electro-volts. The X-rays can be classified
into soft X-rays and hard X- rays according to the wavelength. The soft X-rays have wavelengths
about 10 nanometers, being in the range of the electromagnetic spectrum between ultraviolet
light and gamma-rays. The hard X-rays have wavelengths about 0.1 nanometers, being in the
same region as gamma-rays in the electromagnetic spectrum [46]. Due to their ability to pass
through several materials, X-rays were cautiously applied for various nondestructive evaluation
techniques [44].

X-ray imaging, most commonly called radiography, can generate pictures of the inside of
the patient body, showing the different parts of the body in different shades of black and white.
This contrast is due to the different absorption of X-radiation by the various tissues of the body

[47]. For example, the calcium present in the bones absorbs a great number of X-rays, making
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bones looks white [48]. The bones present a high radiographic density, opposing the passage
of the X-rays through its structure. Contrarly, fatty and soft tissues, muscles and liquids have
a low radiographic density, absorbing fewer X-rays. This low absorption makes these tissues
look gray [49]. In the case of the lungs, they appear with the blackest color in the radiography,
due to the presence of air that absorbs only a minimum amount of X-ray radiation [50]. So, to
create a radiography (Figure 1), the patient is positioned according to the type of visualization
to be obtained, so that the part of the body being imaged is located between the X-ray source
and the X-ray detector. When the exam starts, X-rays travel through the body and are absorbed
in different scales by different tissues. At the end of the process, the X-ray detector converts the
energy transmitted by the X-rays into electronic signals which are digitized and recorded on the
computer. These signals present the different white and black contrast of the tissues, being after
analyzed by the specialized staff [51].
Xeray
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Patient
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source
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Figure 1: Schematic view of X-ray imaging

X-rays are classified as carcinogenic by the World Health Organization, being capable to
cause mutations in the patients DNA and, therefore, increase the probability of developing cancer
in later life [S5]. The X-rays may also present some short-term effects of lower risk, such vom-
iting, bleeding and fainting, and at high levels of exposure some tissue damages like cataracts,
skin lesions, and hair loss can occur. Nonetheless, the use of X-rays presents large benefits in
medicine as a non-invasive method to monitor internal organs of the body potentiating early diag-
nostic of several health conditions [52]. Due to its health risks, it is not recommended to perform
tests involving ionizing radiation when the desired information can be obtained by a non-ionizing
method with comparable accuracy. So, X-ray imaging technology should be per- formed after
careful consideration of the patients health and only in response to a medical necessity to answer

a clinical question or to monitor the treatment of a disease [46].
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Several other types of X-ray based medical imaging procedures relying on different tech-
nologies and techniques, such as CT, fluoroscopy, radiography and mammography (Table 2).
All of these medical resources work in the same principle: an energy source emits X-rays that
pass through a specific part of the patient’s body. Within the body structure, an x-ray portion is
absorbed or scattered by the internal tissues, and the other portion is transmitted to a detector,

normally a film or a computer screen [51].

Table 2: Different techniques of X-ray imaging.

Imaging Diagnosis Resolution
technique
Chest radiograph = Radiography Bone fractures; Two dimensional
Tumaors and abnormal
masses;
Some ILD;

Calcifications;
Foreign objects;
Dental problems
Mammography Radiography Breast cancer; Two dimensional
Microcalcifications;
Irregular and regular-
' shaped masses

Fluoroscopy - X-rays with Movement of beating ' Real-time images.
fluorescent heart; blood flow. Detailed
screening movements

Computed . X-ray with ' Detailed information:  Cross-sectional

tomography computer lungs and airways; images combined
processing Heart and blood vessels | to form a three-

Bones; dimensional x-ray
Soft tissues; image.

Head and brain;
Large part of tumors.

2.2.1 Chest radiograph

CXR is a particular form of X-ray imaging, building on the creation of a projection radiograph
by using ionizing radiation to generate images of the patient chest [8]. By 1900, five years after
the invention of the X-ray technology, the use of the X-ray machine was being considered as
essential for medical care, in particular for the diagnosis of foreign bodies and fractures. The
fact that the equipment needed to make an X-ray machine was relatively cheap and relatively
simple to use has made these devices very popular through various medical and non-medical
sites. The sudden ability to observe inside the human body had a very high medical and societal

11
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impact. As X-ray technology was being widely used, new applications such as the access to
visual information of the chest were emerging [44].

Nowadays, the CXR are still an important diagnostic method for evaluation of the structures
of the pulmonary and cardiovascular system, such as the airways, pulmonary parenchyma and
vessels, pleura, chest wall, and heart [53]. Pneumonia, pneumothorax, ILDs, heart failure, bone
fracture, and hiatal hernia are some conditions commonly identified by CXR [52].

Different views of the chest can be obtained by changing the orientation of the body and the
direction of the x-ray beam. Posteroanterior (PA), anteroposterior (AP) and lateral views are the
most common, being that additional perspectives such as supine, lateral decubitus, expiration
view, lordotic view and oblique view can also be acquired. The PA view (Figure 2a) is typically
the preferencial, the x-ray beam enters through the posterior part of the chest and exits the body
through the anterior part, where the beam is detected. Briefly, the x-ray detector is positioned
behind the patient and the x-ray source is positioned toward the patient. In the case of the AP

view (Figure 2b), the positions of the x-ray source and detector are reversed, so, the x-ray beam

enters through the anterior part of the chest and exits the body through the posterior part [47].

In the lateral views (Figure 2c), the patient stands with both arms raised, the left side of the
thorax stands adjacent to the x-ray detector and the x-ray beam enters through the right side of
the thorax [54].

(a) (b) (c)

Figure 2: Examples of chest radiograph obtained by different views. (a) Posteroanterior CRX view. Case
courtesy of Dr Usman Bashir, Radiopaedia.org, rID: 18394; (b) anteroposterior CRX view. Case courtesy
of Dr Derek Smith, Radiopaedia.org, rID: 62094; (c) lateral CRX view. Case courtesy of Dr Garth Kruger,
Radiopaedia.org, rID: 21938. CXR, chest radiograph.
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2.2.2  Computed tomography

The CT method is defined as a computerized imaging procedure using the ionizing radiation in
the form of X-rays [55]. This type of X-ray imaging has some advantages over the other X-ray
procedures. The CT scan can be performed in minutes and allows more assertive confirmation
or exclusion of a certain diagnosis [56]. The CT method has grown to a significant level in the
last years as a result of technological advances and new clinical applications [57].

The first application of CT dates between 1957 and 1963, when [58] applied this technology
to improve radiotherapy planning. A few years later, the first successful implementation of CT
was performed by [59], surprising the entire medical society. In the earlies of 1970, the official
introduction of the CT scan in the medical world was made. From that moment, the number of
CT examinations began to extremely increase and, nowadays, is widely used for both diagnostic
and therapeutic procedures [57]. CT has revolutionized the diagnostic decision, leading to better
surgery, better diagnosis and treatment of cancer, and better treatment of injuries, stroke and
cardiac conditions [60, 56].

The CT scanner uses a motorized X-ray source that rotates around a circular opening called
gantry. During the CT scan, the patient stays on a bed that slowly moves through the gantry while
the X-ray tube rotates around the patient, releasing narrow beams of X-rays through the patient’s
body [59]. The digital X-ray detectors are located directly opposite the X-ray source and when
the X-rays leave the patient’s body, electronic signals are produced. These electronic signals are
collected by the detectors and transmitted to a computer. In the computer, the electronic signals
are processed to create cross-sectional images, commonly called slices, of the body. These slices
are called tomography images and contain more detailed information than classic X-rays images.
The collection of successive slices by the computer can be digitally together to form a three-
dimensional image of the patient’s body, allowing the easier identification and location of basic
structures as well as possible tumors or abnormalities. However, the image slices can also be
displayed individually but, unlike the three-dimensional (3D) imaging, cannot rotate the image
in space or view slices in succession, being more difficult to find the exact place where the
abnormalities may be located [61].

Being an imaging procedure that uses ionizing x-radiation, a CT scan has the potential to
cause biological effects in living tissues, such as the development of cancer. This risk increases
with the number of exposures added up over the life of a person [62]. Sometimes intravenous
contrast agents are applied to better visualization and contrasting of the CT images. These agents
can lead to some allergic reactions in the patients or, in rare cases, temporary kidney failure [63].
In the cases of pregnant women, if the CT scan is applied in the abdomen and pelvis regions and

if the exposure is delayed or accumulated, injuries to the fetus may occur [56].
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CT scans can be used for the identification of diseases and injuries within various regions of
the human body. In that way, CT scans can give detailed information about several organs. In the
case of the lungs, CT images can reveal the presence of tumors, excess fluid, ILDs, interstitial
lung abnormalities, and pulmonary embolisms. CT images of the heart give information about
abnormalities and diseases, detailing the structure of the heart and blood vessels. CT can also be
used to image the head in order to detect injuries, hemorrhages, and tumors. The complex bone
fractures and bone tumors are also located by this imaging procedure. In addition, CT scanning
allows the identification of soft tissue abnormalities and the detection of part of organ tumors
[64].

2.2.3 High-resolution computed tomography

HRCT is a scanning branch of computed tomography, which involves specific techniques to
enhance image resolution, being obtained from a set of improvements in the scanner hardware
and software that are used in the reconstruction of the scan images. The HRCT is based on
a chosen set of imaging parameters that allows maximizing spatial resolution. One of these
parameters is the thickness of the slices, being that in these cases narrower slices allow greater
spatial resolution. A high spatial frequency algorithm that allows to decrease contrast resolution
and to increase the visibility of image noise, improving the spatial resolution, is also an important
feature of the HRCT mechanism. Faster scans are used to reduce the appearing motion artifact
in the images. Targeted reconstruction is also used in necessary conditions. The quick scans and
the target reconstruction allow selected areas to be viewed close to the maximal spatial resolution
of the scanning system. The scan data are manipulated in digital form by appropriated software
to produce the final image [65].

HRCT is a widely used technique in the diagnosis of various pathology. However, its appli-
cation is higher in lung diseases by allowing the access to the lung parenchyma through the thin
slices [65]. This CT protocol produces extremely high definition images of lung alveoli, airways,
interstitium, and pulmonary vasculature [66]. It is used for diagnosis and assessment of ILDs
and has at present an important role in the investigation of diffuse parenchymal lung disease and
bronchiectasis [67, 68].

As the CXR and the common CT, the application of HRCT scanning presents some setbacks,
being one of them the exposure to radiation [69]. In addition, the complexity of HRCT data
analysis may be a problem requiring advanced technical support for the correct identification of
certain clinical conditions. The fact that this technique is unsuitable for assessing the soft tissues

and blood vessels is also a disadvantage [65].
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2.3 COMPUTER-BASED SYSTEMS AS MEDICAL ASSISTANTS

2.3.1 Computer aided-diagnosis and automated computer diagnosis

In the 1960’s, early studies on quantitative analysis of medical images by computer were reported
[70], with the scientists assuming that computers could replace radiologists in detecting abnor-
malities and making the final diagnosis. This idea still defines the present conception line of
though underling automated computer diagnosis. More recently another approach gained popu-
larity being based on the use of he computer outputs by radiologists, helping them and enhancing
their capability and effectiveness without the intention to replace them. This idea formed the cur-
rent concept of computer-aided diagnosis (CAD), which spread quickly and widely [71].

At present, the concepts of automated computer diagnosis and CAD are both under strong
development particularly in what regards to medical image analysis algorithms. The biggest
difference between CAD and automated computer diagnosis is the way in which the output pro-
duced by the computer is utilized for the diagnosis. In the case of CAD, the output is integrated
by the radiologists as a “second opinion”, complementing its final decision on the case. The
output helps the radiologist to form its opinion with a higher or lower level of confidence. The
potential medical gain with CAD is provided by the synergistic effect obtained by the radiolo-
gists competence and computer performance. In the case of automated computer diagnosis, the
computer output is used to define the final diagnosis. So, while the level of performance of CAD
is achieved by the final decision of the physician, gathering the complement of computers out-
put, the performance level of the automated computer diagnosis is solely based on the computer
output. In this sense, the computer levels of sensitivity and specificity must be equal or surpass

that of a specialized physician, which is in most cases still hard to achieve [71].

2.3.2  Computer-aided diagnosis applications on medical imaging

CAD systems can be defined as a technology that assists doctors in the interpretation of medical
images, both in detection and diagnosis. So, CAD systems are divided into two different groups:
Computer-aided detection systems and CAD systems. Computer-aided detection systems are
engines geared for the location of lesions in medical images. On the other hand, CAD systems
perform the characterization of the lesions, for example, the distinction between benign and
malignant tumors [72].

From the moment that systematic research of various CAD schemes was begun in the early
1980’s, its applicability was emerging as one of the major research subjects in medical imaging

and diagnostic radiology [71].
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Nowadays, CAD can be defined as a research field widely dedicated to medical image anal-
ysis, based on the development of algorithms that complement the diagnosis decision of the
physicians. Current research in CAD explores the detection and classification of images of many
types of lesions obtained from various imaging methods, such as CXR and CT [7].

CXR is still the most used diagnosis method on lung diseases, such as pulmonary nodules,
tuberculosis or other ILDs. A CXR contains a lot of information about the health of the individual
under scrutiny but the correct interpretation of this complex information keeps a major challenge
for the physicians due to the complexity to distinguish specific lesions or, in some cases, even
healthy from non-healthy tissues. Thus, it is conceivable that pertinent information about lung
disease or abnormalities could be missed by routine visual examination of CXR. The intensive
use of CXR created the demand for the development of CAD systems to enhance the detection
of lesions that are easily missed, improving the accuracy of diagnosis while continuing to take
advantage of the experience of a trained radiologist [8].

Over the last few years, the development of Al techniques combined with the accumulation
of large sets of medical imaging data has opened up new opportunities for the construction of
new CAD and computer-aided detection systems for medical applications. Some CAD schemes
for detecting, classifying and diagnosing lung diseases have been developed by using CXR and
CT images. [73].

2.4 ARTIFICIAL INTELLIGENCE

Al can be defined as a technology branch of conjugating science and engineering aiming at the
computational understanding of intelligent behavior and creating mechanisms that exhibit such
behavior [74]. The definition and development of Al begun after World War II, with the disclo-
sure of Alan Turing’s article "Computing Machinery and Intelligence” [75]. The Al field draws
on knowledge from computer science, information engineering, mathematics, psychology, lin-
guistics, philosophy, biology, and many other scientific fields. Although the term has existed for
many years, it has only recently begun to popularize due to the development of new technolo-
gies, the increasing amount of data, advanced algorithms and improvements in both power and
computational storage [76]. With the appearance of the modern computer, more sophisticated,
Al began to gain the means and critical mass to establish itself as an integrated science with its
own methodologies.

Al systems achieved some forms of reasoning ability, learning, pattern recognition, and infer-
ence [77]. As for reasoning ability, the Al methods intend to apply logical rules to a set of data
to obtain a certain conclusion. When it comes to learning, the goal is to learn from mistakes and

hints in order to act more effectively throughout the process. In pattern recognition, Al systems
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Figure 3: Classification of Al systems. Adapted from [78]. Al, Artificial Intelligence.

aim to identify and classify specific patterns from images and other signals. The Al inference
is intended to apply the reasoning to various situations of the diversified human every day. This
set of features can divide the Al systems into a set of various Al classes (Figure 3). Al systems
have recently evolved in some strands, mainly the areas of computational vision, voice analysis,
diffusive logic, and artificial neural networks. Many of these strands have the potential to be
applied in the most diverse areas of society, always involving human behavior.

The modern medicine presents as a major problem the solving of complex clinical problems,
being this due to the existence of the enormous amount of knowledge that needs to be acquired,
analyzed and applied to resolve such problems. Al is capable to analyze complex medical data,
presenting a great potential to diagnosis, treatment and predicting outcomes in many clinical
scenarios. The medical Al development must assist the medical staff in the formulation of a diag-
nosis, leading to assertive therapeutic decisions. Al systems are projected to support healthcare
workers, assisting them with tasks that depend on the manipulation of data and knowledge [79].

The increasing amount of healthcare data and the fast development of methods that can an-
alyze big data have promoted the enthusiasm around Al applications in healthcare. In order
to overcome complex clinical problems and, besides presenting high potential in the diagnosis,
treatment and prediction, powerful Al techniques harbor the potential to unlock clinically rele-
vant information hidden in a large amount of data, assisting clinical decision making [80]. From
here, these systems can help to reduce diagnostic errors that are inevitable in the normal human
clinical practice [11].

The development of Al methods into healthcare applications requires a training process

through the use of real data generated from clinical activities, such as diagnosis, screening and
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treatment [11]). In the diagnosis stage the largest part of the Al literature data comes from med-
ical imaging, genetic testing, and electrodiagnosis (Figure 4). This training process allows Al
systems to learn similar groups of subjects and associations between subject features and out-

comes of interest [11].
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Figure 4: Origin of medical data used in artificial intelligence literature in the last years. Adapted from

[11]

Presently, the Al techniques translated into useful medical applications can be divided into
two major categories (Figure 5). The first category includes ML techniques that analyze struc-
tured data, mainly imaging, genetic and electrophysiological data [11, 81]. These techniques
can be further sub-grouped into classical techniques, such support vector machines (SVM) and
neural networks, and into the more recent technique, DL [11]. The second category includes the
natural language processing methods that allow extracting information from unstructured data,
such as clinical notes and medical journals, to complete and enrich structured medical data [82].

The IBM Watson system [83] is the pioneer in the application of Al systems in healthcare,
based both in ML and natural language process. The IBM Watson system obtained promising
results in cancer research, in which 99% of the treatment system recommendations are coherent
with the physician decisions [84]. Nowadays, Google is taking a crucial role on healthcare
domain, by applying Al to disease detection, new data infrastructure, and potentially insurance.
In health care, Google has designed tools to assess heart diseases risk, predict patient’s overall
risk of premature death and, more recently, detect breast cancer [85, 86].

Since this work is aimed at the classification from the analysis of medical imaging data,
we focused on the first aforementioned category and do not address in detail natural language

processes.
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2.5 MACHINE LEARNING

The ML can be defined as a set of automatic computing procedures based on logical or binary
operations that learn tasks from a set of examples [87]. So, ML studies the computer algorithms
that can learn complex relationships or patterns from empirical data and make accurate decisions
[88]. It is considered a branch of Al, enabling the collection and extraction of patterns from
examples, which is a component of human intelligence [89]. In ML, the training procedure uses
specific sets of instructions together with large amounts of data and algorithms that confer to the
machine the ability to learn how to perform a specific task. The ML methods can be classified,
according to the type of learning, in supervised learning methods and unsupervised learning
methods [90]. How a ML algorithm is trained to recognize certain features and thereby become
able to make accurate predictions on new examples depends on the type of data and the adopted

algorithms.
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2.5.1 Supervised learning

The supervised learning method aims at the prediction of a known output or target, at the same
time that the computer algorithm tries to approximate human performance [11]. Supervised
learning focuses on classification, involving the choice of subgroups to best describe a new data
instance, and prediction, which involves estimating an unknown parameter [91]. The input con-
sists of a set of training examples with recognized labels or features (Figure 6). Because input
data and response values are already identified, the algorithm is improved to can make iterations
until it reaches an agreed-upon result. A supervised learning algorithm analyzes the training
data and produces an inferred function. Supervised learning is the most commonly applied ML
approach in radiology, more properly in medical image analysis [11]. Inside radiology and other
medical procedures, supervised learning is commonly used to diagnose or predict disease out-
comes. Each case, in the input dataset, is characterized by a category label. The algorithms
generate a function that maps the dataset to the predefined categories by minimizing the classifi-
cation error. Both supervised and unsupervised learning tasks can be combined for the detection
and prediction of disease outcomes [92].

Supervised Learning
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Figure 6: Illustration of supervised approach, when the category membership is known. Adapted from
[92]

The supervised learning techniques most frequently used are logistic regression, random for-
est, linear regression, linear discriminant analysis, SVMs, ANNSs, bayesian classifiers, k-Nearest
Neighbor, and decision and classification trees. In medical applications SVMs and ANNs are the

most commonly used [11].
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2.5.2  Support vector machines

In ML, SVMs are supervised techniques with associated learning algorithms that analyze data
used for classification and regression analysis [93]. Through a set of training examples, where
each example is labeled as belonging to one of two categories, a SVM training algorithm builds
a model that assigns new examples to one of the categories. A SVM can be defined as a repre-
sentative model of the examples as points in space, mapped so, that the examples of the different
categories are separated by a hyperplane. The hyperplane is defined as a plane that exists in the
hyperspace (the new way of the space) that can optimally separate the different classes. More
properly, it is the separation line between the categories, found by the SVM algorithm. This
plane attempt to maximize the distance between the two nearest points of each category. Finally,
the new examples are mapped in the same space and predicted to belong to one of the predefined
categories, based on which side of the gap they fall into [94].

In medical application, SVMs can transform input data in a way that produces the widest
plane, or support vector, that allows the separation between the two categories. Basically, they
are used for classifying the subjects into two groups, where the outcome Y; is a classifier: Y;
=-lor Y; =1 [11]. This value represents whether the i;; patient is grouped in category 1 or
2, respectively. The basic assumption is that the subjects can be separated into two different
categories through a decision boundary defined on the traits X;;, which can be determined by the

following equation:
p
a; = E ?.Uinj —l—b,
=1

where W; is the weight placed on the j,;, trait to manifest its relative importance on affecting
the outcome among the others. The decision rule states that if a; >0, the i;j, patient is considered
a member of group 1, that is, labelling Y; = -1; If a; <O, the patient is classified to group 2, that
is, labelling Y; = 1 (Figure 7).

The category memberships are indeterminate if the spacial points have an a; = 0. The training
goal of SVMs is to find and set the optimal W, in order that the resulting classifications agree
with the outcomes as much as possible, that is, with the smallest misclassification error, i.e. the
error of classifying a patient into the wrong category. The best weights must allow two important
facts: first, the sign of a@; must be equal as ¥; so the classification is correct. Second, |a;| must
deviate from zero to minimize the ambiguity of the classification [11]. These can be obtained
by selecting W, that minimize a quadratic loss function [95]. If the new patients come from the

same training population, the obtained W can be applied to classify these new patients based
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Figure 7: Ilustration of SVM classification. SVM, support vector machine.

on their traits. An important estate of SVM is that the determination of the model parameters is

considered a convex optimization problem, so the resulting solution is always global optimum.

There are many convex optimization tools that can be readily applied in SVM [11].

SVMs can be considered as a powerful method for building a classifier and, compared to
other ML methods it is very powerful at recognizing patterns in complex datasets. As an Al
method, SVMs can help to recognize specific genomic features or patterns that may represent
some genetic diseases or be useful in classifying cancer subytpes [96]. Regarding the application
of this method in detection of thoracic diseases, several studies have been done, always obtaining

a high predictive efficiency, within 80% [8].

2.5.3 Neural Networks

The neural networks, most commonly named artificial neural networks (ANN), is an approach
of supervised learning that mimics the human brain in processing input signals and transform
them into output signals [97, 98]. They are inspired by advances in neuroscience, such as the

interpretation of information processing and communication patterns in the nervous system, more

properly in the connection between neurons, i.e. neural networks in the sense of biology [9].

The input signals are received by dendrites of a neuron from environmental stimulation or other
up-stream neurons. Then, the signal is processed in the cell body and transmitted along the
axon to the output terminal. Finally, the output signal is received by downstream neurons or
by the function organs to make a reaction. The work of a single artificial neuron is based on

this principle [99]. This single neuron, firstly called perceptron, was first proposed by Frank
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Rosenblatt in 1957 [100] (Figure 8). The perceptron consists of one or more inputs, a processor,
or “neuron”, and one output. If a network only contains two nodes, the input, and the output
nodes, is designed single-layer networks. Yet, such networks can be handled in order to do more

complex tasks, by adding one or more hidden layers, being then called multilayer network [98].

INPUT 0 \’/ﬁ

— /

Figure 8: Single neuron: perceptron. Reading from left to right: inputs come in, output goes out.

The ANN consists of several individual elements, designated by nodes or “neurons” [92].
Basically, these "neurons’ have as function the read of the input, processing it, and the generation
of an output [99]. In ANN topology, input nodes receive feature variables from raw data and
the output node applies an activation function to combined information from input nodes [98].
”Neurons” are connected to each other into different layers: one input layer to input data, one or
more hidden layers with different neuron connection weights and one output layer to produce the
classification (Figure 9).

HIDDEN
LAYER
INPUT  weights, k

W,

OuUTPUT OUTCOME

Figure 9: Artificial neural network with one hidden layer.

The associations between the outcome and the input are depicted through multiple hidden
layer combinations of prespecified functionals [11]. These kinds of connections between ~neu-
rons”, input, output, and hidden layers allow the collective processing of the information, in
parallel throughout the network of “neurons”. By this basic principle, the ANN can be consid-
ered as a connectionist computational learning system. In a network of many “neurons”, rich and
intelligent-like behaviors and faster processing systems can be obtained [99].
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The ANN aims to find the ideal weights through input and outcome data so that the average
error between the outcome and the resulting classifications is minimized, i.e. the prediction
error: Y (Y;i— a,-)2 [11]. The ANN is trained with the input data, being the obtained output
compared with the known input labels. If the new data come from the same training population,
the resulting weights can be applied in the prediction of the new outcomes based on their specific
traits [95].

One of the key elements of an ANN is its ability to learn patterns during the training process.

So, an ANN can be classified not just as a complex system, but also as a complex adaptative
system. Its adaptative ability means that the network can change its internal structure based on

the information that receives and flows through it [99]. If some classification errors occur, the

process is repeated until the errors are minimized in order to improve subsequent results [11].

This can be done by adjusting the weights, i.e. the number that controls the signal between
two neurons, that minimize the prediction error [99]. The error minimization can be performed
through standard optimization or gradient descent optimization algorithms [11]. In short, the
neural network is designed to adapt to itself, by changing the weight values according to the
expected quality of the output.

The use of neural networks in health care and other areas was firstly discouraged due to
weak processing power and low sets of data. However, in the past 20 years, due to advances in
computational ability, more properly the enhanced computing power, the larger availability of
big data and novel algorithms to train the networks, these methods have back into the stage as a
relevant viable tool for a variety of tasks [10, 101]. Some studies have been made, suggesting that
ANN have a big potential to perform better than human in some visual and auditory recognition
tasks, which may be very useful in medicine and healthcare applications [10]. For example, it has
been studied the application of ANN variants in the classification of patterns of various diseases,
using as input medical images. Dheeba et al [102] developed a neural network to predict breast
cancer, using as input the texture information presented by mammography scans. In the same
thought, [3] used CNNs to predict the classification of the most frequent ILDs patterns using CT
scans as input.

With the development of more complex ANN architectures encouraged by the increase of
computational power, a new set of ANN classes appeared, more commonly known as DL models
[101]. These models are a subgroup of ANNSs characterized by an increasing number of hidden
layers in order to improve prediction from big data. Inside of these hidden layers, a larger set of
activation functions are implemented, making deep neural models a good option for multifarious
tasks, such as natural language and image analysis [103]. Nowadays, DL techniques are currently
gaining a lot of attention for its utilization in big healthcare data, exhibiting impressive results in

mimicking humans performance in various fields, such as medical imaging [10].
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Overall, with the fast development of computer technology, internet, statistics, ML, ANN and
DL models, in addition to the increase in handheld networked devices, Al technology is begin-
ning to apply revolutionary changes in the society and medical and healthcare practices are no
exception [104]. It is not expected that medical Al systems will completely replace clinical work
but will with certainty play a focal role in patient monitoring, storage and automated analysis
of electronic health records, diagnosis and even decision of treatment protocols in some settings.
Together with these tasks, the medical Al models have also the potential to be protagonists at
patient care, in particular in the areas of robotic surgery and health system management [11].

2.5.4 Unsupervised learning

Contrary to the supervised learning task, in unsupervised learning, there are no outputs to predict
(Figure 10). This task aims at finding naturally occurring patterns or groupings within data. The
goal of unsupervised learning is to model the underlying structure or distribution in the data, in
order to learn more about the data and discover hidden signals within [91]. In an unsupervised
learning model, the input is a set of unlabeled examples without predefined categories [89]. In-
side the set of medical applications, unsupervised learning techniques are commonly used to
identify patterns of diseases but, in comparison to supervised learning, have low foreseen appli-
cability in radiology [92].

Clustering and principal component analysis are considered the two major unsupervised
learning methods. The most popular clustering algorithms are k-means clustering, hierarchical
clustering, and Gaussian mixture clustering. The clustering algorithms consist of the formation
of natural clusters, based on specific similarity criteria between the input dataset cases. The
principal component analysis method is mainly used for data dimension reduction, being this re-
duction able to prevent the loss of important information on the subjects. The most applications
of Al in healthcare are based on supervised learning, but the unsupervised methods are also im-
portant and can be used as part of data preprocessing steps leading to a more efficient follow-up
supervised learning step [11].

2.6 DEEP LEARNING: ALGORITHMS AND ARCHITECTURES

DL was inspired by the human brain and how the information is transmitted and processed in
the nervous system [105]. The early structure of the DL technique was derived from ANNs
[106], and since then DL has been developed and used in a wide range of technologic fields,
including, image recognition, pattern classification, natural language processing, drug discovery

and bioinformatics [107]. Simplistically, DL can be viewed as an artificial neural network with
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Figure 10: Illustration of unsupervised approach, when the category membership is unknown. Adapted
from [92].

more than one hidden layers, attempting to model abstraction from large-scale data, such as
images, videos, sounds and texts [11]. A DL network is composed of a set of nodes, but only
a few nodes will contribute to the final output and possibly with different weights. DL aims to
adapt the weights across the network, by changing their value in order to get the right nodes
operating [105].

In the last decades, witnessed a rapid development of modern computing and a massive
growth in biomedical data and medical images, due to the advances of high-throughput tech-
nologies [107]. At the same time, the big amount of medical data was presented with several
problems in terms of storing, analyzing and interpreting demanding effective and efficient com-
putational tools to process the data and overcome these setbacks [108]. The DL techniques
presented as a high potential tool for solving these problems. Studies showed that ANN had re-
markable performance in various fields but some limitations at the level of the optimization and
influence of overfitting. Inside these problems, researchers attempted to apply deep architectures
to determine better solutions. However, its complex operation limited the generalized ability to
generate successful models, being that DL applications are still under development [10].

As a general rule, DL is based on two important properties: multiple layers of nonlinear
processing units and supervised or unsupervised learning of feature presentations on each layer
[109]. In terms of architecture, DL networks consist of a series of stacked layers (Figure 11):
the first layer (input) represents the observed values in which a prediction is based. The layers
between the input and the output called hidden layers (no observable data), allow the network to
handle complex data. The last layer (output), produces a specific value or class prediction. This
layers-based structure allows the production of more complex decisions based on a combination
of simpler decisions [10]. The greatest advantage of DL networks is that each layer produces a

certain representation of the input data, which in turn is also used as input for the next represen-
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tation level. From here it is possible to pass through several different layers to combine all these
representations in order to perform any kind of task. By the way, the fact that a high number
of hidden layers are present allows the algorithm to handle complex data with various structures
[105].
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Figure 11: Illustration of a deep learning network with 3 hidden layers.

A DL network must learn by itself and only from the input data. The learning of a network
is divided into three main stages: training, validation, and testing. In the training phase, the
weights are updated at each step and layer, in order to reach the best model. The learning process
can be supervised or unsupervised, according to if the given input presents labels that should
be considered in the output. The validation phase assesses the performance of the network by
inputting different data from the initial training. In this phase there is an understanding of how
well the network behaves with unknown and new data, allowing to find the best model. Finally,
in the testing phase, once the best model is chosen, its general performance is evaluated with
previously unseen data [105].

The fact that the DL networks or deep neural networks (DNN) present more hidden lay-
ers offers a much higher ability for feature extraction from large scale and complex data [110].
The basic presupposition for feature extraction is similar in all types of DNN, in which the net-
work is activated by an input, which then spreads the activation to the final layer along with the
weighted connections. In the final, prediction results are generated. Along the process, the net-
work weights are tuned by minimizing the average error between the outcome and predicted data
[107].

The build-up of a DL neural network structure is based on the choice of some specific con-
ditions, parameters and algorithms, such as activation functions, optimization objectives and
methods, and proper architecture, taking always in account the type of data to be handled [107].

The activation functions form the non-linear layer in all DL structures, which in combination
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with the other layers allows the simulation of the non-linear transformation from the input to the
output [103]. The selection of appropriate activation functions allows a better feature extraction.
The most frequently used activation function in DL is the rectified linear unit (ReL.U). This spe-
cific function and its variants show superior performance compared with others in many cases
[111]. There are other popular activation functions, namely the sigmoid functions, hyperbolic
tangent, softmax, soft plus, absolute value rectification, and max out. A DL network also has an
optimization objective, composed of a loss function and a regularization term. The loss function
measures the discrepancy between the output of the network and the expected results [107].The
regularization process involves a set of strategies to reduce the test error. Relating to the opti-
mization methods, they present different advantages and disadvantages to different architectures
and loss functions [103]. There are some optimization methods used in DL networks, being the
stochastic gradient descent and its variants the most commonly used.

The proper architecture should be selected according to the considered data guiding the

choice among the main existing DNN architectures:

e Auto-encoder: is similar to principal component analysis, extracting features from unla-
beled data and setting target values to be equal to the inputs. When the number of hidden
units, i.e. the dimension of features, is smaller than the input dimension, is performed a

reduction of data dimensionality [107];

e Restricted Boltzmann Machine: is a generative stochastic ANN that can learn the distribu-
tion of training data by generating the probability distribution and optimizing parameters.

Restricted boltzmann machines can also be used in unsupervised learning [107];

e Deep belief network: is built by stacking restricted boltzmann machines [112] or auto-
encoders [113] and can learn the distribution of the data or learn to classify the inputs

according to given class labels;

e Convolutional neural network (Figure 12): within deep neural networks by layers, CNN
is the most complex. Its “neurons” extract features from small areas of the input, which
are called as receptive fields. This mechanism of feature extraction was inspired by the
visual system in living organisms, where cells in the visual cortex are sensitive only to
small regions of the visual field [114]. Beyond the basic structure of DL networks, CNN
has implemented more two different types of layers: the convolutional layers, in which
the receptive fields change and the number of hyperparameters reduced. These layers are
composed of many neurons and are typically used in series after the input; the pooling lay-

ers, which function is to reduce the computational requirements progressively through the
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network. This kind of layer is used after or interleaved with multiple stages of convolution

layers or non-linear layers [3, 107];

e Recurrent neural network: presents itself as the most different DL architecture, being built-
in circuit. They represent a hidden-to-hidden recurrence and are applied in sequential data
[107].

According to the PubMed database, CNN, recurrent neural network, and deep belief network are
the most used DL algorithms in medical applications, being that, in the last years, CNN started

to gain an advantage over the others [11].
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Figure 12: Illustration of a CNN structure: CT image as input; convolutional layers interleaved with
pooling layers before applying fully-connected or dense layers. CNN, Convolutional neural network.

2.7 CONVOLUTIONAL NEURAL NETWORKS

2.7.1 Pipeline

CNN algorithms adopt the majority steps of typical ML pipeline, including several steps that
must be meticulously implemented to achieve the best predictions (Figure 13). In the first step,
it is necessary to define the problem and how it can be solved. Then, some data preparation
must be done in order to build a good model. This data preparation is divided into three main
steps: data selection, data pre-processing and data transformation. Data selection allows se-
lecting the relevant samples of the entire data. The pre-processing step consists of removing
undesired data and sampling the data. The last step, data transformation, consists of transform-
ing the pre-processed data to a specific format that can be used during the model development
and subsequent application [115].

After the data preparation process, the dataset is divided into training, validation and test sets.
The data must be correctly partitioned to avoid biased evaluations. The training set must contain

the majority of the samples, once they are used for learning features by the model. These learned
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Figure 13: Typical CNN pipeline. CNN, Convolutional neural network.

features allow the model to make predictions for new samples. The validation set is used to eval-
uate the model during the hyperparameter optimization and to select the best model. Algorithms
for tuning hyperparameters within a family of models and optimizing model parameters on the
training data are needed. Finally, the test set is used for measuring the final model performance.
These three sets allow the model to pass through a training and validating process before making

an accurate prediction on new examples, for which outputs are unknown.

2.7.2 Concepts

The CNN was first proposed by LeCun et al. [116], becoming at present as one of the most
important branches of DL [117]. As said before, CNN is composed of three different types of
layers: convolutional, pooling and fully connected layers. The first two, in interleaved series,
perform the feature extraction of the input data. Next, the fully connected layers map the ex-
tracted features into a final output. These layers work as a classifier, assigning a probability for
the object on the image to belong to one of the problem classes [118, 119].

The convolutional layer consists of a combination of a linear operation, namely convolution,
and a nonlinear operation, namely activation function [119]. The convolution operation is used
on feature extraction, where a small array of numbers, called a kernel, is applied across the input,
which is an array of pixel values, called a tensor (Figure 14). Then, an element-wise product
between each element of the kernel and the input tensor is calculated at each location of the
tensor. This product is summed to obtain the output value in the corresponding position of the

output tensor, called a feature map [118, 119]. This process is repeated applying multiple kernels
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to form an arbitrary number of feature maps [120]. These feature maps are representative forms
of the different characteristics of the input tensors. The most common kernel form is 3x3, but
5x5 and 7x7 are widely used too. As one convolutional layer feeds its output into the next layer,

the extracted features can hierarchically become more complex [118].
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Figure 14: An example of convolution operation with a kernel size of 3 x 3, no padding, and a stride of 1.

Adapted from [118]

Sometimes, the convolution operation does not allow the center of each kernel to overlap
the outermost element of the input tensor and reduces the dimension of the output feature map
compared to the input tensor [118]. To solve this issue, the padding technique, typically zero
padding is used (Figure 15). This technique adds rows and columns of zeros on each side of the
input tensor, in order to fit the center of a kernel on the outermost element and keep the same
dimension through the convolution operation [121, 122]. Without zero padding, each feature
map dimension would be successively reduced after the convolution operation. The conservation
of the same dimension through this technique allows adding more layers to the model [118].

Another factor that defines the convolution operation is the stride, i.e. the distance between

two successive kernel positions. The stride value is commonly set as 1. Higher values of stride
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Figure 15: A convolution operation with zero padding. Adapted from [118]

are sometimes used to achieve the downsampling of the feature maps. Yet, pooling operations
can also perform downsampling, as described below [103, 118].

After the convolution operation, its outputs are then subjected to a nonlinear activation. This
activation allows the model to create a complex mapping between the network’s inputs and out-
puts, leading to a big capacity of learning and modeling complex data, such images and videos
[117]. The most common nonlinear activation function used is the ReLU [111]). Other nonlin-
ear functions, such as hyperbolic tangent and sigmoid are also used [123]. After the nonlinear
activation steps, pooling layers are usually applied.

The pooling layers consist of a downsampling operation that reduces the dimensionality of
the feature maps. This operation allows to introduce translation invariance to small shifts and
decrease the number of learnable parameters [117, 124]. The pooling operation can be divided
into two different forms: max pooling and global average pooling [103]. The max pooling is the
most used form and consists of extract patches from the input feature maps, assign and output
the maximum value for each patch and reject all the other values (Figure 16). A max pooling
with a filter of size 2x2 and a stride of size 2 is commonly used in practice [118]. The global
average pooling presents an extreme type of downsampling, where a feature map is downsampled
into a 1x1 array by simply taking the average of all the elements in each feature map [125]. At
the pooling layers there are no learnable parameters, whereas filter size, stride, and padding are
hyperparameters in pooling operations, similar to the hyperparameters presented in convolution
operations.

After the last convolutional layer or pooling layer, the output feature maps are flattened. This
process transforms the output feature maps into a single one-dimensional array of numbers. The
resulting product is then connected to one or more linked fully connected layers. At this point,

every input of each fully connected layer is connected to every output by a learnable weight. The
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Figure 16: An example of max pooling operation with a filter size of 2x2, no padding, and a stride of 2.

created features on the anterior “convolutional + pooling” layers are now mapped by a subset
of fully connected layers to the final output of the network. This output is commonly expressed
as the probabilities for each class in classification tasks, being the output nodes of the last fully
connected layer equal to the number of the problem classes [118, 119, 120].

Each of the selected fully connected layers is typically followed by a ReLLU function, with the
exception of the last layer. In the last fully connected layer, the choice of the activation function
must be done according to the original task. Sigmoid and softmax are the most used, being
that sigmoid function is applied on binary classification and multi-label classification tasks, and
softmax function is applied on multi-class classification tasks [118]. If there is a problem that
each input could present more than one correct answer, the sigmoid is more appropriate. On the
other hand, if there is a problem that each input can belong to exactly one class, i.e. each input

only could present one correct answer, the best choice is the softmax function [120, 126].

2.7.3 Training and hyperparameters

The training process of CNN consists basically of finding kernels in convolution layers and
weights in fully connected layers which minimize the differences between the predicted outputs
and the respective ground truth labels on a training set. This process is commonly unleashed
by a backpropagation algorithm. This algorithm allied with a gradient descent optimization al-
gorithm, called optimizer, and a loss function plays an important role in the training process
[118]. While the loss function measures the error between output predictions of the CNN and
ground truth labels on the training set through forward propagation, the optimization algorithm
iteratively updates the learnable parameters, such as kernels and weights, according to the loss
value measured by the previous function [103, 127].

The type of loss function and optimizer are one of the many hyperparameters existing on
CNNs and need to be defined according to the nature of the task. The cross-entropy loss function

is the most used on multi-class classification and the mean squared error is commonly used
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on regression problems. As for optimizer, many improved gradient descent algorithms, such
as Adam, RMSprop, and stochastic gradient descent (SGD) with momentum are widely used
[128, 129, 130].

Inside the optimizer, there are other hyperparameters that have big relevance, namely the
learning rate. The learning rate has a crucial role in the training process, once it determines the
step size that each learnable parameter is updated [131].

Another important CNN hyperparameter is the batch size, which is commonly used to coun-
teract the memory limitations, more concretely big datasets or big data memory. The whole
training dataset is divided into random subsets, called batches, of defined size. Then, for each
batch, the gradients of the loss function are measured [118].

Regarding batch size, another important hyperparameter is the number of epochs. One epoch
is defined as one forward pass and one backward pass of all the training examples, through the
network. It is known that the whole data must pass several times through CNN [131]. However,
the number of needed epochs is not fixed, being this dependent on the model capacity, number
of examples and complexity of the data.

As shown in the previous subsection, all of CNN’s layers have also subsequent hyperparame-
ters, that need to be set before the training process. The selectable hyperparameters for each type

of layer are synthesized on Table 3.

Table 3: CNN layers hyperparameters

Parameters | Hyperparameters

Kernel size, number of kernels, stride,
padding, activation function

Pooling layer None Pooling method, filter size, stride, padding
Fully connected layer | Weights Number of weights, activation function

Convolutional layer | Kernels

The complexity and the high number of hyperparameters are still a problem on CNNs. Their
values are set empirically, as they are linked to the problem, the dataset, and the model architec-
ture. There are no good predefined values, as they must pass through a tuning process based on
the model’s performance [132]. The validation data is hugely important on this step, once it can

be used for accurate the model’s performance before the final evaluation.

2.7.4 Overfitting and underfitting

A good CNN model can be defined as the one that can be able to generalize any input data, giving
correct predictions when tested on unseen data. However, this ability can often be affected by

two problematic situations very typical on the ML domain, namely overfitting and underfitting.
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The overfitting problem consists of a situation where the network learns too well specific
features of the training set, leading to a memorizing process of the irrelevant noise. This problem
is one of the major challenges of ML, once it decreases the model capacity to generalize on
new data and leads to inaccurate predictions. Underfitting is a frequent problem too, where the
model cannot fit the data well enough, leading to low generalization and unreliable predictions

[118, 133]. A usual procedure for detect overfitting and underfitting during the training process

is the monitoring of accuracy and loss curves on the training and validations sets (Figure 17).

The training process allows evaluating the model performance on the validation set at the end of
each epoch. If the model performs poorly on both training and validation sets, it is a signal of
underfitting. If the model performs much better on the training set relating to the validation set,
it is a signal of overfitting [118]. In general, the longer a network is trained, the greater is its
ability to perform in the training set. However, there is always a point where the network fits too
well on the training data but starts to lose its ability to generalize well, which can be observed by

the increase of the validation loss values.
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Loss value
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Figure 17: Overfitting, underfitting and optimum point.

Several methods to minimize overfitting were proposed, being adding more training data, data
augmentation, regularization, batch normalization and reducing architecture complexity the most
common. The most simple and advisable method to combat overfitting is to obtain more training

examples. A larger number of training examples leads to a better process of generalizing by the
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model, however, in medical imaging, this does not always happen. One way to avoid underfitting
problems is to build more complex and deep models [134].

In CNN it is crucial to set the right balance between overfitting and underfitting. This balanc-
ing point means that the model must be simple to generalize well but, at the same time, must be

not so simple at all in order to fit the data in a perfect way.

2.7.5 Evaluation

In DL techniques, such as CNN, there are several approaches and metrics that can be measured
in order to evaluate the performance of the models. The choice of the metrics depends on the
type of the task, classification or regression and depends on the sample distribution along with
the classes.

Regarding classification problems, the most commonly used approach is the confusion ma-
trix, which evaluates the classification accuracy by mapping the predicted outputs with the respec-
tive real value. In the simplest case of classification, binary classification, this matrix consists of 2
columns and 2 rows, where columns present the predicted values and rows present the real values
(Table 4). Each cell of this matrix corresponds to a single group of statistical mean, namely true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). The instance
of positive cases correctly predicted, and the instance of negative cases correctly predicted are
denominated as, TP and TN, respectively. On the other hand, if the predicted instance is positive,
but its real value is negative, it is denominated as FP. If the predicted instance is negative but its

real value is positive, it is denominated as FN [135, 136].

Table 4: Confusion matrix for binary classification.

Real/predicted | Negative | Positive
Negative TN FP
Positive FN TP

From the confusion matrix results, it is possible to compute some important performance
metrics such as the accuracy, specificity, recall, precision and f1 score (Table §). The accuracy
formula consists of dividing the number of examples correctly predicted by the total number
of examples. The specificity reveals the percentage of negative cases correctly identified and is
calculated by dividing the number of TN by the total number of real negatives (FP+TN). The
recall, also called sensitivity, indicates the percentage of real positive cases that are correctly
predicted, and is calculated by dividing the number of TP by the total number of real positives
(FN+TP). The precision is defined as the proportion of positive cases correctly predicted in the
total of positive cases predicted. Precision is calculated by dividing the TP by the sum of all
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positives (TP+FP). Although recall and precision are mostly applied to the positive class, they
can also be applied to the negative class for more detailed studies. Finally, the F1 score can be

defined as a weighted average measure between precision and recall values [137].

Table 5: Classification metrics formula.
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2.8 CONVOLUTIONAL NEURAL NETWORKS ON MEDICAL IMAGING

Millions of people suffer from chest diseases every year, being tuberculosis, pneumonia, and lung
cancer the most common [71]. As said anteriorly, DL is actually emerging in several fields, being
its application on healthcare one of the most promising. Detection of lesions and abnormalities is
the major issue in medical image analysis [107]. This renewed Al area can be applied to perform
automatic lesion detection and differential diagnoses [10]. Over the last years, many articles
related to the application of DL in the medical field have been published. According to data from
PubMed, the application of DL in medical research nearly doubled in 2016 (Figure 18). Most of
these publications involve the application of DL on detection and classification of abnormalities
and segmentation of regions of interest, such tissues and organs [11].

The recent development of Al combined with the accumulation of medical images brings new
opportunities for building CAD systems in medical applications. DL emerges as a big potential
theme that can be applied in these cases, replacing the feature extraction and disease classification
stages in traditional CAD systems. Specially CNNs, which automatically learn image features
to classify chest diseases, have become a mainstream trend [8]. There are some developed CAD
systems for pulmonary diseases, but most of them only focus on identifying single patterns, such
as nodules [138].

In some cases, it is difficult to distinguish between normal and abnormal tissue based on lung
texture. This difficulty combined with the hardest abnormalities detection by classic methods
leads to a need for improvements in medical tools capability to overcome these problems, be-

ing the researches on intelligent detection systems, such Al-based CAD systems, a promising
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Figure 18: Current evolution of deep learning articles in medical applications. Adapted from [11]

approach in medical image future analysis. Some CAD systems have been build to detect ILD
in CXR through changes in lung texture. The Kun Russman Laboratory in Chicago [139] devel-
oped a CAD system that divides the lung into multiple regions before analyzing it, to determine
the presence of abnormalities. Then, an neural network was implemented to classify suspicious
abnormalities. Another example is the work done by Plankis et al [7], which developed a CAD
system for ILD detection. This system was developed to detect a variety of pathological features
of lung tissue based on an algorithm that can divide the lung region into different regions of
interest. However, with the extensive application of DL on lung disease detection, the related
literature has more preference on CT datasets rather than CXR datasets [8]. In large medical im-
age datasets, DL methods are designed to classify each pixel to be a lesion point or not, and this
can be made by using a DNN or a fully-connected convolutional network [107]. For example,
[3] proposed a CNN method to classify the 7 most relevant patterns present in ILDs, obtaining
an efficiency of 86%, which outperformed other literature methods. As a future projection, it is
intended to extend this method to three-dimensional data and to integrate it into a CAD system
as a supportive tool in the differential diagnosis of ILDs. Other similar works have been done,
Gao et al [12] proposed a holistic classification of ILDs imaging patterns, using entire CT slices
as input [12]. The authors also used a CNN and, despite being different from other image patch-
based algorithms, have demonstrated some promising advantages, addressing a more practical

and realistic clinical problem.
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2.9 PYTHON LIBRARIES FOR DEEP LEARNING

There are many DL frameworks and software libraries in open source for ready use. The most
used ones are Torch, Caffe, Theano, MX net and TensorFlow. In addition to these, there are
others that were designed to promote ease of use, such as Keras, Lasagne and Blocks. All of these
frameworks and software are free and facilitate the application of DL algorithms and methods
in several fields. Regarding python language, the most used framework is Keras, which consists
of a neural networks library [107]. Besides DL libraries, there are other important packages that
play an important role in the preprocessing data and model development steps.

NumPy is a python package that allows efficient manipulation and transformation of n-
dimensional arrays and matrices. This package consists of a large collection of mathematical
functions to work with these structures. NumPy is the fundamental package for scientific com-
puting with Python [140].

Scikit-learn or Sklearn is a library that consists of many unsupervised and supervised learning
algorithms for Python language. It provides a user-friendly interface and a simplest user guide
for both software experts and non-experts. Scikit-learn is built upon other useful python libraries
such as NumPy, pandas and Matplotlib [141, 142].

Matplotlib is a python package that consists of the produce of high-quality two-dimensional
(2D) graphics. This package provides several tools for visualization and design of plots, being
very useful for interactive graphing, scientific publishing and user interface development [143].

Pandas is another important python library widely used on data manipulation and analysis. It
provides fast, flexible and expressive data structures (e.g. data frame) designed to make working
with labeled data in an easy way. It is very important in the pre-building of ML and DL models.
Furthermore, this library is very useful in handling CSV and excel files and can provide efficient
summary statistics [142].

OpenCV or cv2 is a python package widely used for image processing. It consists of program-
ming functions aimed at real-time computer vision, being able to do all the operations related to
images and their pixel data [142].

Talos is a python package and consists of applying hyper optimization methods on Keras mod-
els. It allows data scientists and data engineers to achieve complete control of their Keras model.
Talos provides grid, random and probabilistic hyperparameter optimization strategies with the
aim of maximizing efficiency both on search process and model performance. Among other hy-
per optimization methods, Talos provides the simplest and most powerful available method for

hyperparameter tuning on Keras workflow [144].
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METHODS

In this section of the dissertation, the practical methods will be described in detail at the same
time as their choice is explained. The programming language used in this work was Python
resorting to the Spyder [145] environment to ensure reproducibility and advanced development
functionalities. Google Colab [146] was the selected computational resource to accelerate the
DL model development, hyper optimization and performance evaluation. All the code, func-
tions, files and data used in this dissertation can be accessed at https://github. com/Nunorbc/

Pneumonia_classification.

3.1 DATASETS SELECTION

In a global context, there are not many medical large-size imaging datasets available for research.
Most data are highly fragmented in different hospital facilities and dispersed across different and
non-interoperable platforms. Furthermore, access to medical data even without compromising
the privacy of individual patients is still a slow and highly bureaucratic process. As a relevant
exception to this scenario was a collaborative effort by the Radiological Society of North Amer-
ican (RSNA), US National Institutes of Health, The Society of Thoracic Radiology and MD.ai
that collected and made available a large CXR dataset including images from individuals with
and without pneumonia. This was one of the datasets selected for this work (referred in the thesis
as dataset XP1) since the success of DL model development is largely dependent on the use of
datasets that are large and well-controlled.

Regarding XP1 structure, it is composed of 29 684 images with a resolution of 1024x1024
pixels in the Digital Imaging and Communications in Medicine (DICOM) format. The DICOM
format standard is a non-proprietary digital image format used for the communication, man-
agement, and storage of medical imaging information that is widely adopted by the medical
community [147]. In addition to the pixel image data optional tags to store, patient and exam
information can also be included as metadata in the DICOM file. Images in this dataset are anno-

tated with several useful patient and exam-related tags (Figure 19). Most importantly, all images
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corresponding to a single patient are identified with the same and unique patient id. Images can

be divided according to the patient’s gender and also according to age. Exam-related tags include

the information if the images refer PA view or AP view.
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Figure 19: DICOM metadata view presents all the exam-related tags of each patient. DICOM, Digital
Imaging and Communications in Medicine.

The dataset XP1 is divided into two groups: training with 26684 images and test with 3000
images. Beyond image data, the dataset is supplemented by two .csv files with additional infor-
mation for each patient id: the train image labels file and the detailed information file. The first
file classifies the images in a binary fashion where O corresponds to normal class and 1 corre-
sponds to the pneumonia class. The second file contains supplementary information relative to
the image labels, being the images subclassified into 3 different classes: “normal”, ”pneumonia”,
and “’not normal/not pneumonia”. Basically, the images labeled with O are originally subdivided
into “normal” and “not normal/not pneumonia”, while the images labeled with 1 remain in the
”pneumonia” group. This classification was performed by experts based on the clinical diagnos-
tic of each patient and on the inspection of X-rays for visual signals specifically termed lung
opacities. Lung opacities refer to areas that attenuate the x-ray beam and therefore appear gray
and opaquer than the surrounding area in the acquired image. Pneumonia is a lung infection
that can be caused by bacterial, viral or fungal infection being a common cause of lung opacity.
The bodys immune response to these infections leads to localized fluid accumulation in the lugs.

These fluids spread and accumulate within the lung airways in regions normally filled with air.
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3.1. Datasets selection

These fluid sacks alter the penetrative ability of x-rays leading to the appearance of opacities on
the CXRs [148].

For more perception and observation of the non-imaging data, one global data frame was
created from the information of the first file, second file and DICOM relevant metadata of each
patient id, being synthesized on (Figure 20a). It should be noted that the patient id links the im-

age to the information of that specific patient corresponding to a unique data frame line (Figure
20b).
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001031d9-f904-4a23-b3e5-2c088acd19c6 57 M CHEST PA 1 Adult (18-64) Pneumonia
0010f549-b242-4€94-87a8-57d79de215fc 56 M CHEST PA 0 Adult (18-64) Normal
0022995a-45eb-4cfa-9a59-cd 155196064 54 M CHEST PA 0 Adult (18-64) Normal
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00293de0-a530-41dc-9621-0b3def01d06d 63 F CHEST PA 0 Adult (18-64) Normal
(b)

Figure 20: Global dataframe created. (a) The information from the three different files was obtained in
order to create a global dataframe. For each patient id, first the dicom metadata was accessed, then the
labels file and lastly the detailed information file; (b) view of the global dataframe created with information
relative to patientld, age, sex, body part examined, view position, label, age group and condition.

In order to better understand the predictability of the generated models on independent data,
we decided to include in this thesis an unrelated dataset of X-ray images (referred in the thesis as
dataset XP2). This additional dataset was proposed by Kermany et al [149] and, like the dataset
XP1, has as its purpose the classification of X-ray images into ”normal” or "pneumonia’ category.
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The dataset images are in JPEG format and were limited to pediatric pneumonia patients between
1 and 5 years of age collected at the Guangzhou Women and Childrens Medical Center, China.
All the images were classified as Normal or Pneumonia. In total, the dataset contains 5871
images (1590 "normal” and 4281 ”pneumonia”), being divided into train (5231), validation (16)
and test (624) folders. Similarly to the dataset XP1, the dataset XP2 is also unbalanced, but in this
last case, the ”pneumonia” class represents the majority of the cases. Unlike the dataset XP1, the
images have no supplementary patient and exam informations. Furthermore, the classification
into “normal” or “pneumonia” class is not available from tags to embed in the image file and

additional .csv files but, from the title of the folder in which the images were grouped.

3.2 DATASETS PREPROCESSING

Image classification can be used for predicting normality or disease, based on the CXR images
and respective label information. For this, the dataset XP1 undergone filtering during the prepro-
cessing and selection stage (Figure 21). As for the dataset XP2, no further selection steps were

made, keeping the number of images intact.

26684 Train images
11821
Y
4563 Only Normal and
s Pneumonia images
-6301
h 4
2552 Only PA View Position
images
\.\‘-
Label 0 Normal | ‘ Pneumonia Label 1
7214 1348

Figure 21: Dataset XP1 image selection.

There are a few key data characteristics that we considered throughout the dataset XP1 selec-
tion, with one of them being the division of the labeled 0 images into two subgroups: “normal”

and “not normal/not pneumonia”. The last one does not refer to any specific medical condition.
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3.2. Datasets preprocessing

So, in order to have a dataset-specific of pneumonia and to prevent possible interferences of this
third class in the collection of characteristics of the totally normal images, we decided to remove
all images belonging to the “not normal/not pneumonia” subgroup. Finally, to avoid having more
than one image per unique patient we selected only the PA view images. The PA view prefer-
ence over the AP was due to the fact that the first is the most common in radiology exams [150].
Resuming, the dataset XP1 was filtered from 26884 images to 8562 images, being classified into
two classes: “normal”, labeled as 0, and ”pneumonia”, labeled as 1.

In order to understand the preprocessed dataset XP1 (referred to in the thesis as dataset XP1’)
we are working with, some data analysis were conducted. For the data analysis, some Matplotlib
and Pandas functions were used. While Pandas functions allow selecting specific columns of the
data frame, the Matplotlib package permits to do some graphical analysis of the selected data.

The Table 6 shows the number of patients grouped by gender and age group.

Table 6: Dataset XP1” number of patients grouped by gender and group.

Young | Adult | Elderly | Total
Female | 174 | 3221 389 3784
Male 219 | 3890 669 | 4778
Total 393 | 7111 | 1058

It’s possible to infer that from the chosen 8562 patients the majority is male and adult (Figure
22a, Figure 22b), which also happens in the original dataset XP1. Relating to the incidence of
pneumonia in the samples, it is higher in males (0.167) than in females (0.145), and higher in
the elderly population (0.206) than in the other group ages (0.153 for young and 0.15 for adult
patients) as would be expected.

The ratio between healthy cases and pneumonia cases is 5.35 on dataset XP1, which indicates
that exists approximately 5 healthy images for each pneumonia image (Figure 22c¢). That is a
superior ratio compared with the original dataset XP1, (1,5 for 1). Even though it is an unbal-
anced dataset, it is clearly simple and well processed, with enough image data for many types of
experiments.

Regarding misplaced values, namely outliers, there are three patients over 140 years old. This
is probably due to an age collection mistake or the patients were born 140 years ago but passed
away meantime. As this information does not affect the work to be done, and there is no way to
know the exact age of these three patients, they were grouped in the age group of over 64 years
old.

Relating to the dataset XP2, no additional information about the imaged patients, such as

gender or age, could be obtained and therefore no detailed statistical analysis could be performed.
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Figure 22: Dataset XP1’ statistical analysis. (a) number of patients by gender and clinical condition;
(b) the number of patients by age group and clinical condition; (c) proportion of healthy and pneumonia
patients.

It can only be mentioned that the ratio between normal cases and pneumonia cases is 0.37, which

indicates that exists approximately 2,7 pneumonia images for each normal image.

3.3 MODEL

With the recent improvement of computational power and availability of big data, DL has be-
come the most used Al approach in medical imaging, since it can learn much more sophisticated
patterns than conventional ML techniques. DL techniques are increasingly used to improve clini-
cal practice, and the list of examples is getting longer and longer. Regarding the interest of DL in
medical imaging, this is mostly triggered by convolutional neural networks, a class of artificial
neural networks. They are a powerful approach for learning useful image representations and
exploiting local connectivity patterns efficiently. Inside of medical imaging, there has been a
surge of big interest in the potential of CNN in radiology, being that several articles have already
been published in diversified areas such as image classification, image segmentation, image re-
construction, and lesion detection.
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Focusing on the classification task, since it is the DL task covered in this work, it is based
on two important terms: the ”X” variable, more properly the features, such as patterns, colors or
forms obtained from the medical images; and Y™ variable, commonly called label, which refers
to the target lesions or clinical conditions present in the medical images. These clinical situations
are annotated and classified by expert radiologists into two or more classes, and then saved as
labels.

The main aim of this work is the classification of CXR into two clinical conditions: healthy
or pneumonia. To achieve that we chose to develop and use a CNN model since its the most
used DL technique in this field of study. The construction of the CNN model was based on the
traditional architecture, where a set of convolutional layers is interleaved with pooling layers,
ending with a few fully-connected layers. For CNN development Keras modules such as layers,
activation functions, loss functions, optimizers, and models were used.

The further usage of the model will be divided into two different stages: hyperparameter
optimization, or hyperparameter tuning, and testing. The first stage is sequentially subdivided

into two important steps:

e Training, where all the training data will be loaded into the model. From the training
images the CNN will extract and learn differential features associated with the respective
label;

e Validation, despite being a step-in tune with training, is used for monitoring the model
learning. This step is important for selecting hyperparameters and choose the best combi-

nation that obtains the best model performance.

The testing is the final stage, where new data, not seen by the model previously, is used for
making predictions. The final performance of the model can be then measured by the application

of appropriate metrics on the predicted results.

3.4 HYPERPARAMETERS OPTIMIZATION

In order to set the model for usage, it’s important to look at some important hyperparameters that
influence the model behavior. Hyperparameters like the number of epochs and batches, batch
size, model optimizer, learning rate, learning rate decay and model loss function, are impor-
tant pieces of a CNN model. To get the best performance out of a CNN model, it is important
to achieve the best combination of hyperparameters that, together, provides better performance.
This process is not very simple, since the greater the number of hyperparameters, the greater the

number of possible combinations for the model. Sometimes the time required, and the lack of

46



3.5. Performance evaluation

computational refusals make this process unfeasible. So, once the number of hyperparameters
present in CNN algorithms is too high, we opted for using a random search optimization algo-
rithm. For this, we used the Talos package and its scan function with the random search tool
enabled.

3.5 PERFORMANCE EVALUATION

According to the medical context of the problem, the main purpose is to correctly identify as
many pneumonia cases as possible, being, at the same time, more important to avoid misclas-
sifying a pneumonia case as healthy than misclassifying a healthy case as pneumonia. In other
words, the biggest aim is to reach a high sensitivity for positive class. In unbalanced datasets,
the accuracy metric is often uninformative once it tends to favor the majority class, which in the
dataset XP1’ is the healthy class. However, we opted for use accuracy as well as {1 score, recall
and precision to evaluate the performance of the CNN model. Although, more importance was
given to the last 3 metrics, once these are more appropriate for this kind of problem. Finally,
confusion matrices were created for analyzing the number of TP, TN, FP, and FN. The Numpy
and Sklearn packages were used during the performance evaluation.
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DEVELOPMENT

In this section of the dissertation, the computational and technical steps of image preprocessing,
CNN model development, hyperparameter tuning, and CNN final testing will be explained in
more detail.

All the 8562 images present on the dataset XP1* were further submitted to a preprocessing
and transformation steps, where the pixel array and respective labels were collected and saved.
This step consists of preparing the data for posterior usage on the CNN model. When all the
data is prepared, the CNN model started to be built with defined architecture. In order to see
the response of the model according to different loss functions, two different models were con-
sidered: one with a classical loss function and another with a loss function that can counteract
unbalanced datasets. The two models were both subject to a training process with the training
data of dataset XP1°. This process was conducted together with hyperparameters tuning through
defined hyperparameter values and a limited number of combinations. Next, the best model 1

and 2 were selected. Finally, the best model 1 and 2 were tested in unseen data.

4.1 IMAGE PREPROCESSING

Before defining the architecture and building the CNN model, the data should be prepared, trans-
formed and stored in the ideal format for later use. For that, some data adjustments were made
on dataset XP1 and dataset XP2, both at the image content level, more specifically at the pixel
array, and at the level of the respective labels.

The construction of DL models based on imaging data requires, initially, a set of data adjust-
ments. All the image preprocessing steps done in this work for dataset XP1’°, are schematized
in Figure 23. Python packages cv2, Numpy, Skimage, tqdm and random were used along this
process. For the dataset XP1’, we first access each DICOM file, get the image pixel array and
convert to JPEG format. The JPEG format allows us to see the image from a first perspective
instead of DICOM format. Each image has a resolution of 1024 height by 1024 width, represent-

ing a total of 1048576 pixels. The high amount of information present in each image led us to
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4.1. Image preprocessing 49

consider decreasing image resolution. This option is justified by the fact that the larger the im-
age resolution greater the computational resources required to exploit it and the longer the time
required for such exploration. It is also known that high image resolution implies more complex
learning models, and sometimes the model performance turns out to be worse [134]. Therefore,
we decide to resize the resolution of each image from 1024 by 1024 pixels to 200 by 200 pixels.
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Figure 23: Image preparation pipeline for dataset XP1’. All dataset XP1’ images pass through some
preprocessing steps: convertion of DICOM file to JPEG format; resizing from 1024x1024 to 200x200
pixel resolution; normalization at pixel array content; split to training, validation and test folders; lastly,
the pixel arrays of all the images in each folder are collected and stored in three different files.



4.1. Image preprocessing

Afterward, a normalization procedure was implemented, where all the image pixel values
were divided by the maximum pixel value of each image. The pixel values are defined as integers
with values between 0 and 255, and the usage of large integer values can disrupt or slow down
the learning process on neural networks. So, we chose to normalize all data, obtaining for each
pixel a value between O and 1, with certainty that the image display remained normal.

Most DL models need different sets of input data in order to effectively train, monitor and
measure the performance. So, the dataset XP1’ images were split into three different sets and

saved in different folders, according to the following percentages:

e training set (76%): set of 6500 images used for training the model;

e validation set (18%): set of 1562 images used for control and measurement of the model
performance during the training. It’s important for model hyper optimization before testing

new unseen data;

e test set (6%): set of 500 images used for measuring the final model performance.

The dataset splitting was done randomly, being the images divided into three different folders:
train, validation, and test. For this, a Python function able to randomly select and move the
images to each of the folders according to the defined proportions was developed. The proportion
of healthy: pneumonia cases remained similar in each set.

Next, for each folder, the pixel array of each image was collected with the aid of the Numpy
package, resulting in three different 3D arrays: training array of dimension 6500,200,200, vali-
dation array of dimension 1562,200,200 and test array of dimension 500,200,200. These arrays
were posteriorly saved in three different files.

Furthermore, label information was collected from the global data frame. After the images
were divided, the respective labels were stored in different arrays also with aid of the Numpy
package. As such, three different label arrays with zeros and ones were created, one for each
folder: training, validation, and test. However, being a classification task and in order to facili-
tate the usage of the data in the CNN model, we opted for one hot encode the label arrays. The
one-hot encoding process consists of transforming the labels into a categorical format by con-
verting the class vector to a binary class matrix. This process was conducted by a Keras auxiliary
function called “’to categorical”. So, each label referring to an image with a normal condition
was transformed from O into [1,0] and each label referring to an image with pneumonia clues,
was transformed from 1 into [0,1]. The label arrays were saved in three different files.

During the construction of both image and label arrays, there was special attention to the order
of each image and its respective label, avoiding possible mismatches and wrong information.

Since the dataset XP2 was used to measure the final model performance, only the test set,

composed of 624 images, was considered in this work. For the test set, the array of each test
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image was also resized to 200 x 200, normalized and posteriorly collected and saved in a global
array. For label information, the label of each test image was collected, one hot encoded and
saved in a global array too. The two arrays were shuffled in tune, in order to undo the folder
order. Finally, two different files have resulted: the dataset XP2 test set array of size 624,200,200,
that will be used for new predictions, and the corresponding labels array of size 624,2, that will
be used for confirming and evaluate the final predictions.

After all these procedures, the image data is ready to be further loaded on the CNN model in
the format of arrays of pixel arrays, where a pixel array corresponds to a single image. As for
the label data, it will be loaded as a list of arrays, where an array corresponds to a single label
matching the respective image. The 1’s position in each array indicates the presence of normality

if in the first column, or disease if in second column.

4.2 MODEL ARCHITECTURE

CNN’s are constructed to learn spatial hierarchies of features in an adaptative and automatic way.
A standard CNN design starts with feature extraction and ends with classification. The feature
extraction process is performed by alternating the convolution layers with pooling layers while
classification is performed with some dense layers followed by a final output dense layer. In the
case of the image classification task, this kind of architecture performs better than an entirely
fully connected network [103, 151]. The number of layers is determined by the complexity of
the problem and the amount of data. So, the greater the number of data and the more information
present in them, the deeper CNN must be to keep up with all the data information. The CNN
architecture can be applied either in 2D data, like CXR or in 3D data like CT scans and magnetic
resonance imaging [152, 153].

Regarding the proposed CNN architecture, it is composed of five blocks of two 2D convo-
lutional layers, being each block separated by one pooling layer. Then a flatten layer is applied
to create a unidimensional vector that can be used on the following layers. Finally, three fully
connected layers are added, completing the CNN model (Figure 24). The input data is provided
from the previously saved arrays, being the input shape of 200,200,3 for each image. Once the
images are in RGB format, the number 3 is indicative of the total channels in the image: red,
green and blue. The model was developed through the Keras library and its CNN construction
modules. The model’s architecture, layers, filters and kernel’s size were defined as shown on
Table 7.

For all the convolutional layers, zero-padding were used, meaning that the output size remains

the same as the original input. In order to achieve this, one-pixel padding is applied around the
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Figure 24: Proposed CNN architecture based on the classical arrangement. The feature extraction process
is composed by five blocks of two 2D convolutional layers, each one interleaved with a pooling layer.
Finally, the classification process is composed by three dense layers, being the last one responsible for the
final output. The referred output results on one of the two different classes: 0, "Normal” or 1, ’Pneumo-
nia”. Blue boxes refers to convolutional layers, green boxes refers to max pooling layers, yellow boxes
refers to dense layers and the red box refers to the output softmax layer. More information about the
composition of the layers is provided in table Table 7. n, number of filters by layer; d, number of dense
units; *, flattening operation.

image array and the filter slides outside the array into this padding area. The stride value used
was the default by Keras, i.e. 1, both for convolutional layers and pooling layers.

Regarding the activation functions used in the CNN architecture, ReLU function was used in
the five blocks of convolution layers and in the first two dense layers. The softmax function was
used in the output layer. This function follows a probability distribution, where the input value is
normalized into a vector of two values, corresponding to both classes of the problem. This output
vector is composed of one probability value between [0,1] for each class, whose total sums up to
1. The position of the largest value indicates the output class. For example, an output vector of
[0.90,0.1] means that the input is more likely to belong to class O and is classified as such.

Dropout function was applied between the first and second dense layers and between the
second and third dense layers. The use of dropout function allows reaching better performances

by reducing model capacity. The first dropout value was set as 0.6 and the second as 0.5.

52



4.3. Model hyperparameters

Table 7: Model layers description.

Description Input shape | Output shape
First block | yumber of filters equal to 16; | oy 500 3 | 500x000x16
Kernel size of 3x3.
- .
S Ma’;apy‘:;h“g Window size of 2x2. 200x200x16 | 100x100x16
[®]
[+ .
£ | second block | Number of filters equal to 32; 1 0 160,16 | 100x100x32
o Kernel size of 2x2.
[«5) n
5 | Maxpooling |y 10w of size 2x2. 100x100x32 |  50x50x32
s layer
= X
Third block | umber of filters equal to 64; 1 ) 50 27 | s50x50x64
Kernel size of 2x2.
Ma’;g’ﬁihng Window of size 2x2. 50x50x64 25%x25x64
Fourth block | yumber of filters equal to 128; | - 5 H5 e/ | 25405x128
Kernel size of 2x2.
Ma’;gg"e‘zhng Window of size 2x2. 25x25x128 | 12x12x128
. Number of filters equal to 256;
Fifth block | 00 0 D0 12x12x128 | 12x12x256
Ma’;apy‘:;h“g Window of size 2x2. 12x12x256 6X6X256
g | Firstdense o0 its 256 256
= layer
wn
& | Seconddense | o0 1o 256 256
&) layer
Third dense 2 units: class 0 and class 1. 256 2
layer

4.3 MODEL HYPERPARAMETERS

In order to set the model for usage, it is important to look at some important hyperparameters
that influence the model behavior during the training process. Hyperparameters like the number
of epochs and batches, batch size, model optimizer, learning rate, learning rate decay and model
loss function, are crucial in the model development.

Epoch is defined as the number of times that the learning algorithm will work through the
entire training data. That means that one epoch equals one forward pass and one backward pass
of all the training samples. This value was firstly defined as 80 in order to better monitor the
model learning. The batch size defines the number of training samples per batch. The training
data will be learned separately in groups of x random samples. This value was defined as 128. In

the same line, the batch defines the number of training samples to work through before updating
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the internal model parameters. A training dataset can be divided into one or more batches. This
value was defined as 51, the result of dividing all training samples (6500) by the batch size
(128). The optimizer is one of the most important hyperparameters needed on CNN, having as
function updating the model response to the most accurate form. Choosing the most appropriate
optimizer was more difficult, once there are several optimizers that present good results in the
literature. However, comparing their performance is complicated as they are applied in different
image classification problems. In general, ADAM and SGD show better results in different
problems and, as such, were chosen. Within the optimizer, there are other hyperparameters that
must be defined, such as the learning rate and the learning decay rate. The learning rate controls
how much to change the model in response to the loss function each time the model weights are

updated. It is known that learning rate values must be not too high and not too low, in order to

achieve the best learning for the model. This value is commonly used between 0.01 and 0.00001.

For our work, learning rates of 0.01 and 0.001 were used. The decay rate allows reducing the
learning rate during the training process. Low values dont have an effect on learning rate and
high values lead to a learning rate blunt drop. It was defined as 1e-04 and 1e-06. Finally, the loss
function is responsible for measure the error between the real value and predicted value. The loss
function is one of the most important hyperparameters alongside the optimizer. For choosing
the loss function, some particularities were considered. The fact that the data is unbalanced
could interfere in the equal learning of the two classes. So, we opted for defining two different
loss functions: categorical cross-entropy and weighted categorical cross-entropy. The first was
chosen because it is the standard loss function used in multi-class classification problems and
the one that gets the best results along with using of softmax function on the output layer. The
second is a variation of the first and was chosen to try to offset data class imbalance, giving more
weight to the minority class, that is, the pneumonia class. With this weight gain, is expected that
the model can capture more information from the sick images. The class weights were defined
as 0.25 for Normal class and 4 for Pneumonia class.

In order to compare how these different loss functions can influence the model behavior and
performance, two different models were considered, one for each loss function. The model that
has categorical cross-entropy as loss function, will be named as model 1. The model that has
weighted categorical cross-entropy as loss function will be named as model 2. These two models
were then separately subjected to a process of hyperparameter optimization, according to the

selected hyperparameters.

54



4.4. Model hyper optimization and model selection

4.4 MODEL HYPER OPTIMIZATION AND MODEL SELECTION

The choice of the hyperparameters options was reduced by a pre-observation of the model’s
performance, excluding options that add no observable effects. The selected hyperparameters
are shown in Table 8. Since the possible combinations of hyperparameters remain too high (64),
we cannot explore all the experiments and their results. So, in order to get around this problem,
we opted for a simpler and more appropriate optimization method, the random search provided
by the Talos package. This technique consists of picking some random combinations from the
total number of possible combinations. The number of random combinations is defined by a
percentage value. In our case, the percentage value was set as 10%, which gives a total of 6
hyperparameters combinations for each model. For more simplicity, the term hyperparameters

combinations are now denominated as experiments.

Table 8: Selected hyperparameters for model optimization.

Batch size 64, 128
Optimizer Adam, SGD
Learning rate 0.01, 0.001
Decay rate 1E-04, 1E-06
Dense layer 1 units 256, 512
Dense layer 2 units 128, 256

The optimization process was based on two steps: training and validation. For each model,
the 6 experiments were trained with the same input data, i.e, the 6500 samples present in the
training array. For that, the Keras “compile” and ”fit” functions were used. While the “com-
pile” function allows configuring the model for training, the “fit” function trains the model for
a defined number of epochs, at the same time as the model parameters are saved as an internal
object.

As each train went through, the model’s learning capacity was monitored. For that, the
training accuracy and loss were measured for each epoch. As for tracking the quality of learning,
the validation accuracy and validation loss were measured for each epoch. These measures are
very important as they are the most direct quality learning markers of CNN models. Finally, the
experiments were tested on validation data in order to draw conclusions about which one gets
the best performance. For that, a confusion matrix was created and accuracy, precision, f1 score,
and recall values were calculated. From the optimization results, the best model 1 and 2 were

chosen to test on new data.
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RESULTS AND DISCUSSION

To find out the response of the model according to different loss functions, two different models
were considered: one with a standard cross-entropy loss function and another with a loss function
that can counteract unbalanced datasets. The effect of hyperparameter tuning on both model
performance was assessed by a random search method and the best model 1 and 2 were selected
from a predefined number of combinations. After choosing the best models, a testing comparison
of model 1 and model 2 performance was done on two different test sets: the test set of dataset
XP1’ and the test set of dataset XP2

5.1 CHALLENGES AND IMPORTANT CONSIDERATIONS IN DATA COLLECTION

There are not many medical imaging datasets available, being, for now, the access to these
datasets the biggest challenge on DL tasks. Furthermore, except for a few datasets, the acces-
sible datasets only contain a low number of patients and/or samples. Comparing to the datasets
used on general computer vision tasks where the number of data typically ranges from hundreds
of thousands to millions, the size of medical imaging datasets is too small. However, and given
the scarcity or even lack of accessibility of this data type, the free usage of the RSNA dataset is
an important step for many studies of this kind. The number of data provided by this dataset is a
good start point for improving the application of ML and DL techniques in medical imaging.
On the other hand, the heterogeneity present in this dataset, principally due to high variances
on age, weight, body mass, local of the exam and chest ray machine, is always a difficult problem
to reverse. When looking at the CXRs present in this dataset is possible to note that the quality of
each image is good but looking in a general context many images differ from the standard point
(Figure 25). Some variances on brightness, in chest distance to the x-ray detector and rib cage
field of view, may lead to the collection of conflicting information or even wrong information.
The unbalanced data was another challenge for dataset XP1’. The number of negative sam-
ples is much higher than the positive samples. However, this problem encompasses almost every

medical imaging dataset, once the number of healthy patients is almost always higher than dis-
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eased patients for a particular disease or group of diseases. Actually, there is a low number
of researches that study the impact of class imbalance on DL. Anand et al [154] show that in
shallow neural networks the majority class is dominating the net gradient that is responsible for
updating the model weights. Training CNN with unbalanced data can induce models that are

biased, giving more importance to the majority class [155].
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Figure 25: Examples of chest ray images present on dataset XP1°’.

Either way, several advised methods have proven that can counteract the problem of unbal-
anced data in DL tasks. Data sampling methods such as augmentations, over-sampling, under-
sampling, SMOTE (Synthetic Minority Over-sampling Technique) [156], which consists of cre-
ating artificial samples of the minority class, are widely used. However, in spite of these ap-
proaches being simple to apply, they may remove some important data or add redundant data to
the training set. Other algorithmic methods such as new loss functions, cost-sensitive learning
and threshold moving are an alternative to the data sampling methods. Instead of changing the
training data distribution, these methods adjust the learning or decision process in a way that
increases the importance of the positive class [155].

To address the unbalanced data issue and how it could affect the CNN operation, we decided
to see the effect of some of these methods. Firstly, we apply augmentation techniques, such as
rotations, translations and zooming, only on the minority class, obtaining an equal number of
negative and positive samples. In another experiment, we use the SMOTE technique for gener-
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ating artificial samples for the minority class. Unfortunately, in both experiments, no positive

effects were seen in model behavior and performance.

As the data sampling methods shown no effect, we decided to apply an algorithmic change.

Wang et al [157] and Lin et al [158] presented new loss functions that give more importance to
the minority samples, contributing more to the model’s loss. So, as stated before, we opted for
developing a second model, only changing the loss function to a weighted cross-entropy loss
function in relation to model 1. This was done to observe what effect the class weight changing
has on the final performance of the model. We believe that this change allows increasing the
sensitivity for the minority class, but as will be explained in the new data testing section, the
majority class is widely affected.

Regarding the dataset XP2, this did not present any challenge since it was only used for the
final test of the model’s performance. Since the samples of this dataset were taken from children
between 1 and 5 years of age, it would be expected a greater homogeneity of features at chest

level, which can be proven by the visualization of the chest ray images.

5.2 MODELS HYPER OPTIMIZATION

The number of each class samples present in the training and validation set of dataset XP1’ is
shown in Table 9. As previously stated, this is an unbalanced classification task, which can
be observed in the image number difference between class 0 and class 1, both on training and
validation set of dataset XP1’.

Table 9: Number of each class samples on training and validation sets of dataset XP1’

Training set | Validation set
Normal 5480 1324
Pneumonia | 1020 238

Even though the input data is the same, the model experiments do not behave identical, given
the different combinations of hyperparameters that define their composition. The joint action
of hyperparameters can lead to different loss and accuracy curves. The assumption that small
training and validation loss values, and high accuracy values increase the model’s performance,
was used in the evaluation of each experiment. The joint analysis of each of the values allows us
to infer the quality of the model. High training accuracy allied with low training loss, means that
the learning process is going on track. In its turn, high validation accuracy and low validation
loss mean that the model is predicting well on new data.

As explained before, we opted for using a random search method presented by Talos package.

This was done due to three principally reasons: high chances of finding a better configuration in
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fewer evaluations, contrary to the traditionally exhaustive grid search methods; evaluating more
different values for each of hyperparameters; each evaluation can be stopped at any time and the
trials form a complete experiment [127].

The optimization results for model 1 are shown in Table 10. Looking at each experiment it’s

possible to take some individual observations.

Table 10: Hyper optimization results for model 1.

By Val Val | Train | Train | Batch Lr Decay | Dense | Dense
loss acc loss acc size rate 1 2
0.427 | 0.848 | 0.435 | 0.843 64 0.01 | 1e-06 256 128 ADAM
0.334 | 0.909 | 0.071 | 0.975 | 128 0.01 | 1le-04 | 512 256 SGD
0.427 | 0.848 | 0.435 | 0.843 64 0.01 | Te-06 256 256 ADAM
0.256 | 0.905 | 0.251 | 0.901 64 0.001 | 1e-06 512 256 SGD
0.319 | 0.917 | 0.081 | 0.971 | 128 0.01 | 1e-06 256 128 SGD
0.655 | 0.919 | 0.017 | 0.994 64 0.001 | 1e-04 | 512 256 ADAM
Exp, Experiment; Val, Validation; Train, Training; Acc, Accuracy; Lr, learning rate.

Optimizer

N AW -D

There are no verified signs of progress on the learning process at experiments O and 2. The
training accuracy doesn’t keep a high landing, and the training loss remains high. The lack
of learning is visible in the validation results, where the value of validation accuracy is 84,8%.
The percentage of healthy cases on the validation set is 84,8%, which means that this model is
predicting all the validation data as belonging to normal” class. It is notorious that the accuracy
and loss curves for both training and validation do not change during training. At experiments
1,3 and 4, from the low training loss and high training accuracy, it’s possible to conclude that
the learning process went well. In its turn, the validation accuracy reached a high value in both
cases, while the validation loss remains at a median-low level. Finally, in experiment 5, the low
training loss and high training accuracy mean that the learning process went well. On the other
hand, when analyzing the validation results, it’s possible to see a strange case, where high values
of validation loss and validation accuracy are obtained. This might be a case of overfitting.

Analyzing all the optimization experiments, it is possible to conclude that the biggest perfor-
mance is obtained with the hyperparameters combination present in experiments 1, 3 and 4. For
better analyzes of these three experiments, a re-training process was made with a final validation
data prediction. The re-training process allows us to monitor the loss/accuracy curve throughout
the training, procedure that Talos scans did not allow. In its turn, the validation data prediction
lets concretely know how many cases of each of the classes each experiment can correctly predict,
giving the value of accuracy, recall, precision and f1 score.

During each experiment re-training, the best model weights were saved, recurring to two

important Keras functions: “early stopping” and “checkpoint”. The “early stopping” allows
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stopping the training process when it was apparent that the learning process had stalled, more
properly, when the validation loss starts to increase. The “checkpoint” allows saving the model
weights for the highest validation accuracy obtained. So, these combined techniques allow to
stop training and save the model weights that give the best validation accuracy until the point
that the loss curve starts to move away from the minimum and starts to rise. This procedure
helps to prevent overfitting.

From the analysis of the different loss-accuracy curves obtained (Figure 26) it is possible
to observe that at epoch 45-50 on experiment 1, the validation loss starts to increase (Figure
26a). So, the training was stopped at this point, and the model weights for experiment 1 were
saved. For the experiment 3, the validation loss starts to increase only after 100-110 epochs
(Figure 26b). This late increase is due to a lower learning rate. The training was stopped at this
point, and the model weights for experiment 3 were saved. The loss-accuracy curves presented
by experiment 4 (Figure 26¢) look similar to experiment 1, being the training stopped at epoch

40-45. The model weights for experiment 4 were saved.
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Figure 26: Accuracy-loss curves for model 1 experiments 1, 3 and 4. For the 3 experiments the model
weights for the highest validation accuracy obtained until the point that the validation loss starts to increase,
were saved. (a) In experiment 1, both training and validation accuracy increase along the epochs. As
well, both loss curves are decreasing. At epoch 45-50 the validation loss starts to increase. The best
weights were saved before this point, in order to prevent the overfitting phenomenon; (b) at experiment
3, both accuracy curves increases but, given to a lower learning rate, the number of needed epochs was
higher. At epoch 100-110 the validation loss starts to increase; (c) the behavior of accuracy-loss curves
for experiment 4 were similar to those presented by experiment 1. The validation loss starts to increase at
epoch 40-45.
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For choosing the best of the three models a prediction analysis was made. The class of all the
1562 validation images was predicted from each experiment and respective loaded weights. The
“normal” class is defined as negative class (0), while the “pneumonia” class is defined as positive

class (1). The prediction results for model 1 experiments are shown on Table 11.

Table 11: Confusion matrix of validation data prediction and performance metrics for experiment 1, 3 and
4 (Model 1).

Exp | Real/Predicted | Normal | Pneumonia | Precision | Recall | F1 score | Acc

| Normal 1292 32 0.94 0.98 0.96 0.92
Pneumonia 87 151 0.83 0.63 0.72 '

3 Normal 1297 27 0.93 0.98 0.95 092
Pneumonia 103 135 0.83 0.57 0.68 '

4 Normal 1305 19 0.93 0.99 0.96 0.92
Pneumonia 101 137 0.88 0.58 0.7 )

Exp, Experiment; Acc, Accuracy.

In medical cases, it’s important to verify that the hit rate is always high. However, in unbal-
anced datasets, the accuracy might not be a good metric to evaluate the model’s performance.
The number of FN and FP must be treated differently, once is preferable to have healthy pa-
tients that are diagnosed as diseased as opposed to having diseased patients that are diagnosed as
healthy. So, the important point at the evaluation of the three experiments is the lowest number
of FN, which is expressed as the highest recall for pneumonia class. Having the highest recall
means that the majority of the diseased patients are correctly classified, resulting in a low num-
ber of FN. However, there is special attention to the other metrics, since their values could not
be good for the medical problem. Even though the recall obtained is high, the hypothetical low
accuracy and low precision values make the model inefficient, leading to an incorrect prediction
of healthy cases. In conclusion, it’s important that the model hit as many cases as possible, but,
in a medical context, the higher the number of illness cases predicted correctly the better their
performance.

For class 0, all the experiments predicted well, with values slightly above 90% for accuracy
and precision and around 100% for recall. As for class 1, the results were more varied, with
precision values between 83% and 88% and recall values between 57% and 63%. Analyzing
the results and considering that in medical applications of this type recall is more valued than
accuracy and precision, we conclude that experiment 1 outperformed experiments 3 and 4.

Concluding from model 1 hyperparameter optimization, the SGD optimizer proved to be
better than Adam optimizer on these experiments. Inside this, batch size of 128, learning rate
of 0.01 and decay rate of 1e-04 outperformed the other values. As for dense 1 and dense 2, as

bigger the number of units, the better the performance of the model. So, looking at that, the
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hyperparameters combination present on experiment 1 was the one that correctly predicted the
highest number of cases of pneumonia and, as such, experiment 1 was chosen as the best model
1.

Similarly to the model 1, the optimization results for model 2 are presented in Table 12.

Analyzing each experiment, it’s possible to reach a few conclusions.

Table 12: Hyper optimization results for model 2.

By Val Val | Train | Train | Batch Lr Decay | Dense | Dense
loss acc loss acc size rate 1 2
0.988 | 0.881 | 0.053 | 0.957 64 0.01 | 1le-04 256 128 SGD
0.948 | 0.892 | 0.038 | 0.967 | 128 0.01 | 1le-06 512 256 SGD
1.511 | 0.889 | 0.028 | 0.979 | 128 | 0.001 | 1e-04 512 256 ADAM
0.888 | 0.894 | 0.063 | 0.945 | 128 0.01 | 1le-04 512 256 SGD
3416 | 0.152 | 3.398 | 0.157 64 0.01 | 1e-06 512 128 ADAM
1.338 | 0.872 | 0.044 | 0.963 64 0.001 | le-04 256 128 ADAM

Exp, Experiment; Val, Validation; Train, Training; Acc, Accuracy; Lr, learning rate.

Optimizer

N AW -D

At experiments 0, 1 and 3, from the low training loss and high training accuracy, it is possible
to conclude that the learning process went well. As for the validation values, the loss was median-
high, and the accuracy was high. The training accuracy and training loss values in experiments
2 and 5 indicate that the learning ability reached high levels on both experiments. However, the
high validation loss obtained indicates that the prediction process did not perform well. Poor
results were observed in experiment 4, namely at the learning level and prediction level. The
high validation loss and validation accuracy of 15,2% means that the model is predicting all the
validation data as belonging to pneumonia class, once it is the proportion of positive cases on the
training data. Observing the loss and accuracy values for training and validation it’s possible to
conclude that these do not change during the training.

Analyzing all the optimization experiments for model 2, it’s possible to conclude that ex-
periments O, 1 and 3 had a better performance. For a better analysis of these experiments, a
re-training process followed by a validation data prediction was made. The best model weights
save was done in the same way as for model 1.

From the analysis of the different loss-accuracy curves (Figure 27) obtained for experiments
0, 1 and 3 during the optimization of model 2, it’s visible that, for all the experiments, the
validation loss begins to rise in the range of epoch 35-40, being all the trainings stopped inside
this range (Figure 27a,27b,27¢). Looking for the training and validation curves there are not
many differences between the three experiments. All the model weights were separately saved.
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Figure 27: Accuracy-loss curves for model 2 experiment 0, 1 and 3. (a-c): All the training behaved
similarly, with both accuracy curves increasing and both loss curves decreasing until epoch 35-40. In
the three experiments, some oscillations on validation accuracy were observed. These oscillations are an
effect of the weighted loss function applied in this model, which attempts to counter the unbalanced data
present on the dataset XP1°.

Next, for choosing the best model 2, the weights were loaded into the respective experiment,
and a validation data prediction was made in the same way as done for model 1. The confusion

matrices, precision, recall, f1 score and accuracy values are shown in Table 13.

Table 13: Confusion matrix of validation data prediction and performance metrics for experiment 0, 1 and
3 (Model 2).

Exp | Real/Predicted | Normal | Pneumonia | Precision | Recall | F1 score | Acc

0 Normal 1111 213 0.96 0.84 0.9 0.84
Pneumonia 43 195 0.48 0.82 0.6 )

| Normal 1119 205 0.96 0.85 0.9 0.84
Pneumonia 41 197 0.49 0.83 0.62 )

3 Normal 1139 185 0.96 0.86 0.91 0.85
Pneumonia 52 186 0.5 0.78 0.61 '

Exp, Experiment; Acc, Accuracy.

As said before, it’s important to pick up a model with high recall value, but with balanced
precision and accuracy values. Observing the prediction results, it’s possible to conclude that all
the three predictions are very similar for both class 0 and class 1. It’s possible to see that the
experiments prediction were good for class 0, with high values of precision (96-97%) and recall
(82-86%). As for class 1, the recall obtained values were good (78-84%), but the precision only
approached the halfway percentage in all experiments. The choice of best model 2 relapsed on
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experiment 1 since it exhibits the highest recall and the middle value of precision for pneumonia
class when compared with the other two experiments.

From model 2 hyper optimization, it’s possible to conclude that, as for model 1, the SGD
optimizer revealed higher performance than Adam optimizer. Learning rate of 0.01, decay rate
of 1e-06 and batch size of 128 outperformed the other options. Similarly to model 1, units of 512
and 256, for first and second dense layers respectively, proved to be better options for improving
the model’s performance in this specific problem.

Both grid search and random search methods are widely used in the literature. However,
there are scarce studies on the application of hyper optimization methods in medical imaging.
As for similar studies, i.e. using DL techniques on chest ray images in order to predict particular
lung diseases, no hyper optimization methods were deepened as far as we are aware of. Thus,
we can only rely on studies carried out with CNN on other types of images. Most researchers
have been based on random search experiments from the Bergrtra and Bengio work [127], which
presented good results. This study showed that random search methods are more efficient than
exhaustive search methods, however, the final result could be not the optimum. Compared with
grid experiments of Larochelle [159], the random search method found better models with less
computational time in most cases. Grid search techniques encompass too many trials to the
exploration of dimensions that do not make a difference and suffer from poor coverage in dimen-
sions that are important. However, despite the advantages of random search over grid search,
the random approach is limited because presents poor adaptability and inability to exploit the
performance scores of each combination to direct the search [127].

From a global perspective, the obtained results for the hyper optimization procedure using
random search were good, with both optimized models being able to predict at a high-level on

validation data.

5.3 MODELS PERFORMANCE ON NEW DATA: TEST SET XP1’

To obtain the model’s final performance, new unseen data was inferred by the two selected mod-
els: experiment 1 for model 1 and experiment 1 for model 2. In a first approach, a prediction was
made in the XP1’ test set and, in a second phase, another prediction was made in the XP2 test
set. The prediction process for both test sets was conducted in the same way as the prediction of
validation set during the choice of the best models in the previous section. So, as stated before,
the “normal” class is defined as negative class (0), while the “pneumonia” class is defined as
positive class (1).

The model weights of both models were loaded, and the Keras function “predict ()” were
used on all the 500 test images of dataset XP1’. For further evaluation of the model’s ability to
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predict correctly on the test set, the previously saved test labels were used. So, for visualizing
the results, confusion matrices were created and the values of precision, recall, f1 and accuracy
were measured for each model Table 14.

Table 14: Confusion matrix of dataset XP1’ test set prediction and performance metrics for model 1 and
2.

Model | Real/Predicted | Normal | Pneumonia | Precision | Recall | F1 score | Acc

| Normal 395 15 0.91 0.96 0.93 0.89
Pneumonia 41 49 0.77 0.54 0.64 )

) Normal 341 69 0.94 0.83 0.88 0.82
Pneumonia 21 69 0.5 0.77 0.61 )

Real pneumonia cases: 90; Real normal cases: 410; Acc, Accuracy.

Analyzing the model 1 results, it’s possible to conclude that the model went well on “normal”
class prediction. From a total of 410 Normal cases, the model predicted correctly 395, failing
only 15 cases. The 91% value for precision, 96% for recall and 93% for f1 confirm the good
results. Regarding class 1, which has greater relevance, the prediction results were not so good,
reaching a medium level. From a total of 90 pneumonia cases, the model predicted correctly
49 cases, misclassifying 41 cases. As for class 1 precision, the obtained value was 77%, which
means that from the total of predicted pneumonia cases (64) the model hits 77% of these cases
(49). For class 1 recall, the value was 54%, which means that from the total of real pneumonia
cases (90) the model predicted correctly 54% of them (49). Finally, the class 1 f1 score was 64%.
As for global accuracy, the model obtained 89%, hitting 444 cases and misclassifying 56 cases.

From model 2 results, it’s possible to say that the model is predicting well in class 0. From
the 410 normal cases, the model predicted correctly 341 cases. For the precision, recall and f1
score, the obtained values were 94%, 83%, and 88%, respectively. For the total cases of class
1, the model predicted correctly 69 cases. For class 1 precision, the obtained value was 50%,
which means that from the total of predicted pneumonia cases (138), the model hits 50% of the
cases (69). For class 1 recall, the value of 77% indicates that from the total of real pneumonia
cases (90), the model predicted correctly 77% of these cases (69). The class 1 f1 score was 61%.
Finally, the model’s 2 global accuracy was 82%, hitting 410 cases and misclassifying 90.

Comparing model 2 and model 1 results, is possible to observe some differences when testing
on the test set XP1’, principally at class 1 prediction level. Is possible to see some variance on
precision and recall values, a kind of position exchange between the two models. The change
in class weights in model 2 led to greater learning of class 1 image features, countering their
numerical inferiority compared to class 0. At the prediction process, this greater importance
given to class 1 images led to a higher number of class 1 predicted images (138) relating to
model 1 (64), which is almost double. As the number of pneumonia cases predicted by the
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model increases, the number of pneumonia hits also yields to increase. So, this process allowed
a decrease in the FN cases, leading to an increase in recall percentage. On the other hand, as the
number of predicted pneumonia cases increases, the number of FP also increases, leading to a
precision reduction.

It is often difficult to compare DL models in literature due to differences in the task, dataset,
images, and architecture. The performance of several CNN on diverse abnormalities based on
publicly available Openl dataset shown that the same architecture does not perform well across
all abnormalities [160]. Performances for model 1 and model 2 are hard to discuss since the
chosen dataset has been scarcely used in research and studies beyond the RSNA 2019 challenge.
The fact that the purpose of this work is using the dataset into a classification task, contrary to the
original pneumonia detection task, leads to a more difficult term of comparison. From the RSNA
Pneumonia Challenge 2019, many submissions were done, but the highest score was low. The
winning solution was based on CoupleNet, a fully convolutional network that couples the global
structure of images with local parts for object detection [161]. It is known that ensemble models
significantly improve the classification performance when compared with a single model [162].
Even though the winning solution consisted of a deeper model based on ResNet [163] pre-trained
on the ImageNet dataset [164], it was still centered on a classifier that resembles the one used in
this work. The chosen optimizer was the SGD, similarly to the work here presented. However,
the authors opted for a lower learning rate of 0.001 and only 14 training epochs. As their used
metric was defined as the mean of the intersection over union of matching prediction and ground-
truth boxes at several matching thresholds, no comparison can be done with our work, once it is

only based on classification metrics such as precision, recall, and f1 score.

5.4 MODELS PERFORMANCE ON NEW DATA: TEST SET XP2

To see both model’s performance on another dataset, the weights of both models were loaded, and
the Keras function “predict () were used on all the 624 dataset XP2 test images. The evaluation
of the models was done in the same way, being the saved test labels used in this process. The

prediction results, confusion matrix and performance for both models are shown on Table 15.

Table 15: Confusion matrix of dataset XP2 test set prediction and performance metrics for model 1 and 2.

Model | Real/Predicted | Normal | Pneumonia | Precision | Recall | F1 score | Acc
| Normal 168 66 0.87 0.72 0.79 0.85
Pneumonia 26 364 0.85 0.93 0.89 ’
) Normal 60 174 0.97 0.26 0.41 0.72
Pneumonia 2 388 0.69 0.99 0.82 ’
Real pneumonia cases: 390; Real normal cases: 234; Acc, Accuracy.
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Observing the results, it can quickly be concluded that the results were very good for model
1. Starting from class 0, the precision of 87%, recall of 72% and f1 of 79% reveals that the model
was able to correctly predict a high number of “normal” images. From a total of 234 “normal”
cases, the model predicted correctly 168, failing 66. Regarding class 1, the prediction results
were very appreciable, reaching a high level. From a total of 390 cases, the model predicted
correctly an impressive number of 364 cases, misclassifying only 26 cases. The class 1 precision
of 85%, indicates that from the total of predicted pneumonia cases (430) the model hits correctly
364. The class 1 recall of 93% indicates that from the total of real pneumonia cases (390) the
model correctly predicted 364 cases. Additionally, the class 1 f1 score was also high, 89%.
Globally, the model managed to hit 532 out of 624 cases, obtaining an accuracy of 85%.

In a brief analysis, model 1 has better performance on predicting in the dataset XP2 than in the
dataset XP1” There is no plausible explanation, nor is there reference to such a similar event in the
literature. We can only infer that the high homogeneity present in the dataset XP2 comparing with
the dataset XP1’, could be the most likely justification. The high recall percentage obtained for
class 1 indicates that, in the new dataset, model 1 can correctly predict most of the “pneumonia”
cases.

For model 2, it’s possible to see the effect of the higher weight attributed to the pneumonia
class. There is a high discrepancy between the number of predicted cases for class 0 and class 1,
which results in only 2 FN and 174 FP. In this dataset, the model is predicting a high number of
Pneumonia cases (562) and a low number of Normal cases (62). As such, the recall, precision,
and f1 score values are affected.

From class O total cases (234), the model predicted correctly 60 cases and incorrectly 174
cases. As for class 0 precision, the results were good, 97%, which indicates that from the total
of predicted Normal cases (62), the model hits correctly 60. On the other hand, the class 0
recall is affected, being obtained a low value of 26%. This indicates that from the total number
of Normal cases (234), the model just predicted correctly 60 cases. As expected, the f1 score
obtained was also low, 41%. Regarding class 1 predictions, the results were good, since most
cases were predicted to belong to this class. From a total of 390 pneumonia cases, the model
predicted correctly 388 cases, misclassifying only 2 cases. As such, the class 1 recall was 99%.
The class 1 precision was 69%, which indicates that from the total of predicted “pneumonia”
cases (562) the model hits correctly 388 cases, misclassifying 174 cases. The f1 score for class
1 was 82%. Globally, the model correctly predicted 448 out of 624 cases, obtaining an accuracy
of 72%.

In conclusion, the performance of model 2 for class 1 was better in the dataset XP2 test data
than in the dataset XP1’ test data. In contrast, the results for class O were better in the dataset

XP1°. The better performance of model 2 for class 1 in the new test data is explained by the
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high number of ”pneumonia” class predictions. It is known that the more cases of pneumonia
are predicted, the greater the number of cases of pneumonia hit. If the model predicted all the
cases as belonging to class 1, the recall value would be 100%. The fact that only 2 patients were
incorrectly classified as healthy while ill is impressive. However, these results are misleading,
once in the medical context does not matter if the model can correctly predict the most diseased
patient while failing for most normal patients (174 out of 234). There needs to be a balance and of
course, the higher the number of correct predictions for both classes, the better the performance
of the model.

There are not many studies involving the application of DL methods on detecting pneumonia
with this dataset. Within the studies already published, there are many differences in the level
of data preparation, data division, metrics used in the evaluation, and adopted CNN architecture.
The models proposed in this work and some other on the literature that uses the dataset XP2
provided by Kermany et al [149] are resumed in Tables 16. In addition to building the dataset,
Kermany et al [ 149] also proposed a CNN model with transfer learning for chest ray classification.
In the "normal” versus “pneumonia” classification task, this work obtained an accuracy of 92,8%,

sensitivity of 93,2% and specificity of 90,1%.

Table 16: Comparison of the proposed models and literature models applied on dataset XP2.

Train | Test oo e .

data | data Acc | Specificity | Sensitivity Method
Kermany [149] XP2 | XP2 | 92,8% 90,1% 93,2% CNN + .

transfer learning
Stephen [165] XP2 | XP2 | 93,7% - - CNN
Saraiva [166] XP2 | XP2 | 95%** | 84,5%%** 99,29 ** CNN
) Customized

Rajaraman [167] | XP2 | XP2 | 95,7% 91,5% 98,3% VGG16
Rajaraman [167] | XP2 | XP2 | 94,3% 85,5% 98% CNN
Proposed 1 XP1’ | XP2 | 85% 72% 93,3% CNN
Proposed 2 XP1’ | XP2 | 72% 25,6% 99% CNN

Train, Training; Acc, Accuracy; ** average values; - information not provided.

In other research, Stephen et al [165] proposed a CNN model trained from scratch with the
same purpose as our work, i.e. classification of CXR images into “normal” or “pneumonia”
class. To achieve such a feat, the authors used all the images present on the dataset XP2, dividing
into only two sets: training and validation. The proposed CNN architecture was similar to the
presented in this work, with an input size of 200x200 and composed by 4 convolutional layers
interleaved with 4 pooling layers and 3 dense layers. Contrary to our final output layer, they
decided to apply a sigmoid layer, considering the problem as a binary classification task. Relating

to the model performance of the work, they obtained a validation accuracy of 93,73%. No other
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metrics, such as recall, and precision were measured, and the model was not tested on other
new data. The fact that the validation data used on this work is composed of 2134 images and
our test data is composed of 624 images, leads to an incomparable point between our highest
test accuracy (85%), obtained for model 1, and their highest validation accuracy (93,73%). The
usage of accuracy as a single metric on unbalanced datasets is often uninformative and their
comparison between different works is hard to achieve.

Saraiva et al [166] proposed a CNN model of input size of 300x300, composed of 7 convo-
lutional layers, 3 pooling layers, and 3 dense layers. As in our work, a softmax output layer
was used. A cross-validation procedure of k fold was used, dividing the dataset XP2 into a train
set and test set on 5 repetitions. Regarding the 5 experiments, Saravia et al obtained an average
accuracy of 95%, average sensitivity of 98,3% and an average specificity of 83,3%.

The research made by Rajaraman et al [167] consisted on evaluate, visualize and explain the
performance of customized CNN’s to detect pneumonia from the pediatric chest rays provided
by Kermany et al [149] dataset. The first stage of the work consisted on the lungs segmenta-
tion to avoid irrelevant features provided by surrounding chest ray regions. The proposed CNN
model is based on the input size of 1024x1024, composed of 6 convolutional layers interleaved
with 6 pooling layers followed by 1 dense layer. In terms of performance, CNN had an accuracy
of 94.3%, specificity of 85.5% and sensitivity of 98%. Rajaraman et al [167] also proposed a
customized VGG16 which obtained high results. The model is based on a deepest CNN designed
for object recognition. The customized VGG16 presented by the authors outperformed similar
state-of-the-art articles in all performance metrics, being the segmentation process and localiza-
tion of regions of interest important approaches that allow achieving better results. However, this
is a more complex DL approach that covers both classification and localization tasks.

As we stated before, the difference between the performance metrics of the referred papers
can be a subjective term of comparison. Inside the papers that provide all the performance
metrics, only Rajaraman et al [167] and Kermany et al [149] used the original XP2 test set of
624 images.

Even though our proposed model 1 does not outperformed the models proposed in the other
researches, it yields good results for an approach not previously used in similar cases. Unlike
the scientific research papers aforementioned, where the training data and test data belong to the
same dataset, our work consisted on training a CNN from the dataset provided by the RSNA
Pneumonia Challenge 2019 and testing on another dataset, the childhood pneumonia dataset pro-
vided by Kermany et al [149]. It is important to refer that in the literature no similar process was
done, as we aware of. For technological advances in radiology to occur, several kinds of research
at a testing level on independent and new data must be conducted. Not many conclusions can be

drawn if an algorithm is only tested on the same data distribution that it has been trained on. In-
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side the same data type, for example, CXR, a particular algorithm can reach a high-performance

level when tested on the same distribution data but reach poor results when tested on new data.



CONCLUSIONS AND FUTURE WORK

6.1 GENERAL CONCLUSIONS

Looking at the medical imaging field, there are three groups of x-ray-based techniques very suc-
cessfully used in diagnosis and detection of lung abnormalities, namely CXR, CT scans, and
HRCT scans. At the first line of diagnosis, the CXR are still the standard method in most clinical
settings. However, taking full advantage of the information in CXR is challenging and not al-
ways successful in the desired timeframe. One of the limitations in this process is its dependency
on the analysis by experts. Even with medical training it might be difficult for a physician to
identify some lesions or to perform differential diagnostic of diseases and abnormalities during
the visual examination of the image [6]. Other x-ray imaging methods, such as CT and HRCT,
improve assertive confirmation of exclusion of a certain diagnosis by giving more detailed and
high definition images. However, these approaches require a more costly and an even larger tech-
nical differentiation for its use and analysis. The largest amount of available data is in the form
of CXR, since it is historically the most frequently used method, and its exploitation combined
with automated detection and classification holds large promise in the field of medical imaging
for being a resource-efficient and value-creating option. This kind of approach is also of inter-
est because it can improve the accuracy of diagnosis even in clinical settings not equipped with
state-of-the-art equipment.

Over the last few years, the development of Al techniques combined with the accumula-
tion of large sets of medical imaging data has opened up new technologies useful for medical
applications extending from diagnosis to treatment and even disease prediction and prevention.
These rising technological advances have been investigated in the most diverse areas of the body,
namely the brain, liver, breast, and intestines [168, 169]. Recently, the Google Health company
developed and published an Al system that is able to surpass human experts in breast cancer
prediction [86]. In an independent study of six radiologists, the Al system outperformed all.
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Furthermore, the authors showed that the system was capable of generalizing on two different
datasets, one from the United Kingdom and one from the United States of America [86].

Inside AI branches, DL is emerging in several areas, being its application on healthcare one
of the most promising for automatic lesion detection and differential diagnoses [8]. The DL
can be defined as a modern field of ML based on ANNs assumption, however, DL methods are
deepest and with larger ability to model and extract important features from large-scale data, such
images, videos, and sounds. DL appears as a high potential and efficient field that can overcome
previous limitations with ANN, solving some big data issues, particularly at storing, analyzing
and interpretation levels.

The increase of computation tools, such as the advent of powerfull graphics processing units
(GPU), allied with the availability of different software, such as Tensorflow and Keras, has
much-improved the possibilities and accessibly in the application of DL methods towards the
medical field. Some well-rated CNN, such as AlexNet [121], VGGNet [163], ResNet[170] and
GoogleNet [171], have been widely used as a basis for many research projects. Recently, all of
these CNN and other DL methods have contributed to more promising diagnostic performance,
across medical specialties, such as ophthalmology, radiology, and dermatology [172].

Relating to the availability of the medical data and how it can be applied, even though the
number of medical images has increased exponentially over the past few years, these are under
enormous amount of restrictions that create barriers to the development of new studies and tech-
nologies. Regarding the availability of medical datasets, the privacy of the image owners must
be guaranteed, to prevent disclosure of personal information or even malicious practice. So, the
importance of having bigger medical data for research and development needs to be always in
line with the mandate of protecting human rights by imposing limits and restrictions on study
design quality. However, large efforts should be made to promote the correct of medical datasets
for research, eliminating all barriers regarding to bureaucracy, political will or lack of efficient
and interdisciplinary communication.

It is very challenging to differentiate among a large number of lung diseases, being most of
them very similar with very identical symptoms and radiological patterns. ILDs are the most
common chest diseases, being grouped into major categories that present similar abnormalities
and symptoms [2]. Inside ILD, pneumonia groups are the major categories, and their categoriza-
tion is still hard to achieve, even for experts. Many of the available medical imaging datasets
present a mixture of many lung diseases that hindering the performance of Al application for
disease classification or differential diagnosis.

During the construction of medical datasets, namely with imaging data, some large draw-
backs are difficult to avoid. The quality of the images is the hardest challenge, because the

quality of each image depends, beyond the x-ray machine, on the patient’s body. The hetero-

72



6.1. General Conclusions

geneity of individuals from which the samples are collected, including age, ethnicity, anatomical
particularities, add to the noise presented in the final dataset influencing the capacity of the mod-
els to extract important and differential features. Furthermore, the ground truth labels for each
sample sometimes diverge from subject to subject, being the dataset construction vulnerable to
the inter and intra-observer variation. So, the scientific and medical communities must ensure
robust training datasets with reliable ground truth labels in order to successfully implement DL
models in clinical practice.

One of the biggest problems present in similar literature is the non-extrapolation approach
across datasets. Not many conclusions can be drawn if a method is only tested on the same data
distribution that it has been trained on. For technological advances to be made, a less reserved
approach is essential. It’s critical that more in-depth studies are done to allow a relevant role of
DL in the future of medicine, especially at the level of diseases that are difficult to diagnose and
differentiate, such as ILD.

The main objective of this work was to create a DL pipeline based on CNN, to predict ’nor-
mal” or “pneumonia” classes from CXR images. This was accomplished by building two differ-
ent models based on two different loss functions. This work implemented an innovative approach
that, contrary to other relevant works, consisted of training a model with a dataset and test it on
another dataset. It’s possible to conclude that model 1 outperformed model 2 in a global analysis.
Even though our proposed model 1 does not outperform the models proposed in similar litera-
ture, it yields good results while using a generalization approach not previously used in similar
studies.

Model 1 obtained higher performance when tested on new data from dataset XP2, scoring
accuracy of 85%, recall of 93% and precision of 85% for positive class, than in the dataset XP1’,
which scored an accuracy of 89%, recall of 77% and precision of 54%. No conclusive facts can
be drawn to explain the difference of performance of the model between datasets, it can be only
inferred that the higher homogeneity present on dataset XP2 compared with dataset XP1’ could
be a plausible justification.

Model 2 behavior was different. Using XP1’, the extracted features from the training set
allow the model to predict well, being that the change on class weights allows the model to
predict and correctly identify more pneumonia cases. At this point, model 2 was considered
better than model 1, once it can correctly more pneumonia cases (49 vs. 69). However, when
tested on the test set XP2, the poor results for negative class (only 10% of total cases predicted
as normal) proven that model 2 only predicts well on the same data distribution, being not able

to distinguish well between normal and pneumonia cases on the test set XP2.
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Comparing both models, it’s possible to verify that model 1 outperformed model 2 by attain-
ing higher accuracy, recall and precision levels on both unrelated datasets, thus demonstrating

that it is able to generalize well on different data distributions.

6.2 FUTURE WORK

The work developed during this thesis consisted of the development of CNN for the classification
of CXR images into the ones obtained from individuals with or without pneumonia. Altogether,
the developed models showed a considerable capacity to perform the intended task not only in
the dataset used for training but also in unseen data. However, there is still room for improvement
in the continuation of the work herein performed. The priorities for future work are presented in
this section.

A relevant limitation to the development of CNN for the purpose of pneumonia classification
is the quantity of available CXR images and more importantly the correct classification of these
images. Furthermore, the term pneumonia is still used to classify a broad range of lung diseases
that may have differences in disease-related presentations. Overall, an increase in the quantity
and quality of available CXR images will likely have a relevant impact in the performance of
CNN developed for this task. There is also large variability in the CXR in what regards to
instance in the area of the images dedicated to the lungs.

One of the possible ways to improve the performance of the prediction of the CNN models
will be the implementation of a lung segmentation procedure or algorithm. This approach will
focus the feature extraction process only on the regions of interest, that are in this case the lungs.
By removing the background present in CXR the possibility of have undesired inputs influencing
the output will be reduced. In addition to image segmentation a deep optimization could also
positively influence the performance of the CNNss.

The process of testing hyperparameters is very resource and time-consuming. However, find-
ing the best combinations of hyperparameter values is essential to find the optimal model perfor-
mance. A deeper hyper optimization procedure could be implemented in the future by a exhaus-
tive search method that can drawn more detailed information about the effect of hyperparameters
on model behavior and performance.

Nowadays, in addition to classification tasks, object detection tasks are gaining relevance in
applications in the field of Health. Object detection tasks can be applied on the detection and
localization of disease-related organ abnormalities. It would be interesting to evolve this work
to an object detection task in order to detect specific lung patterns associated with pneumonia.
In order to analyze those regions, the development of a graphical interface to heat map the lung

affected areas would be considered essential.
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The CXR are the most available data in medical imaging with a large unexplored potential
related to automated analysis and being explored in many research and development projects
at radiology and technology field. However, the level of information related with lung disease
that can be extracted for CXR is potentially less that what could be obtained by other X-ray
based diagnostic methods. Working with more detailed images, such 3D images from CT scans,
could be more accurate during the feature extraction of pneumonia cases. Of course, the use of
these images or videos will also place more stress on the required computational resources that
could still be a limitation for the development and optimization of DL models. Paradoxically,
the high information present on these data could also become a barrier on many studies of this
kind. Applying transfer learning methods would help to use more deepest and published CNN,
such AlexNet and VGGnet. These methods allow to storing knowledge acquired while solving
one problem and applying it on a different but related problem.

Collectively, the work presented in this thesis represents advances for the application of DL
for pneumonia diagnostic opening new lines of investigation for the future in order to achieve this
complex task. This is of large relevance due to the global burden of pneumonia and other ILD.
Furthermore, the imminent health concerns provoked for instance by outbreaks of pneumonia-
causing virus also raise the demand for automated and efficient methods for the study, character-
ization and detection of these diseases.
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