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Abstract

The extreme value theory (EVT) encompasses a set of methods that allow inferring about the risk

inherent to various phenomena in the scope of economic, �nancial, actuarial, environmental, hydrological,

climatic sciences, as well as various areas of engineering. In many situations the clustering e�ect of high

values may have an impact on the risk of occurrence of extreme phenomena. For example, extreme

temperatures that last over time and result in drought situations, the permanence of intense rains leading

to �oods, stock markets in successive falls and consequent catastrophic losses. The extremal index is

a measure of EVT associated with the degree of clustering of extreme values. In many situations,

and under certain conditions, it corresponds to the arithmetic inverse of the average size of high-value

clusters. The estimation of the extremal index generally entails two sources of uncertainty: the level at

which high observations are considered and the identi�cation of clusters. There are several contributions

in the literature on the estimation of the extremal index, including methodologies to overcome the

aforementioned sources of uncertainty. In this work we will revisit several existing estimators, apply

automatic choice methods, both for the threshold and for the clustering parameter, and compare the

performance of the methods. We will end with an application to meteorological data.

1 Introduction

Climate change is at the order of the day, leading to a growing concern about the occurrence of phenomena

such as extreme drought, �oods, and large-scale forest �res. The pandemic situation caused by COVID-

19 and the outbreak of armed con�icts as happened recently also have a strong impact on the global

society and economy in which we live. Perhaps we have never seen an occurrence of extreme phenomena

like today and a consequent demand for the use of appropriate tools to assess their impact, such as those
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provided by the extreme values theory (EVT). The clustering e�ect of high values has a strong impact

on the assessment of the risk associated with extreme phenomena and its main actor is the extremal

index, denoted by θ. Indeed, θ describes and quanti�es the clustering amount of the extreme values in

many stationary time series. In Figure 1 we can see the daily maximum temperatures collected at the

climatologic station Abrantes in center of Portugal (in Celsius degrees). Clustering of extreme values

is visible and thus the presence of extremal local dependence. Recently, other areas such as Dynamical

Systems have also been applying the concept of extremal index (Moloney et al. [26] 2019, Freitas et

al. [12] 2021, among others).

Let XXX = {Xn}n≥1 be a stationary sequence of random variables (r.v.) with common marginal

distribution function (d.f.) F . We say thatXXX has extremal index θ ∈ [0, 1] if for each τ > 0 there exists a

sequence of normalized levels un, i.e., n(1−F (un)) → τ , as n → ∞, such that P (Mn ≤ un) → exp(−θτ),

where Mn = max(X1, ..., Xn). If θ = 1 then the tail behavior of XXX resembles an iid sequence, whenever

θ < 1 leads to the occurrence of clusters of extreme values.

One extremal local dependence condition that is usually considered is the D(un), which is basically

a standard mixing condition that limits the long-range dependence at large values. It implies that any

two exceedances of large un, Xi > un and Xj > un, for su�ciently separated time points i and j are

asymptotically independent (see Leadbetter, [24] 1974).

If XXX satis�es D(un), we have P (Mn ≤ un) ≈ Fnθ(un), for large n and un. Moreover, if there exist

normalizing real constants an > 0 and bn such that Fn(anx + bn) → G(x), then G is the d.f. of a

generalized extreme value distribution (GEV) and P (Mn ≤ anx+ bn) → H(x) ≡ Gθ(x). If we consider

{X∗
n}n≥1 an iid sequence with the same marginal d.f. F of XXX, the limiting GEV distribution of the

corresponding result for M∗
n = max(X∗

1 , ..., X
∗
n) is G(x) = H1/θ(x). In this context, θ plays a key role

on the sample maxima distribution. The location and scale parameters of the GEV d.f. H and G are

respectively related as follows: µH = µG +σG(θ
ξ − 1)/ξ and σH = σGθ

ξ, where the shape parameter ξ is

the same in both G and H. Thus ignoring θ may lead to misspeci�ed tail inferences: underestimation of

quantiles of F if inference is based on H from sample block maxima or overestimation of H quantiles if

inferences are based on marginal F from sample observations (see Beirlant et al. [2], 2004). The extremal

index also corresponds to the reciprocal of the mean cluster size in the point process of exceedance times

of a large threshold un, under a suitable mixing condition slightly stronger than D(un) (Hsing et al. [20],

1988). Another interpretation of θ due to O'Brien ([29], 1987) is based on a conditional probability that

quanti�es to what extent extremes cluster together.

Many contributions on the extremal index estimation are addressed in the literature, based on di�erent

interpretations of θ. The major discussion focuses on strategies for the best choice of one or more auxiliary

parameters involved in each method and respective stability of the estimates. Typically, the estimation
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of θ involves two sources of uncertainty: a threshold and some clustering parameter. Classical methods

proposed in, e.g., Hsing ([18] 1991), Hsing ([19] 1993), Smith and Weissman ([35] 1994), Weissman and

Novak ([39] 1998) require both the choice of a threshold and a parameter associated with the clusters

identi�cation (runs parameter). More recently, threshold-dependent estimators have been proposed which

are de�ned from the interexceedance times of a high threshold. This approach is based on the compound

Poisson character of the point process of exceedances, namely, with an appropriate normalization and

under a suitable and not restrictive mixing condition, the interexceedance times follow approximately

an exponential mixture distribution with a point mass at zero and involving a parameter corresponding

to θ. These include the intervals estimator of Ferro and Segers ([11], 2003), the K-gaps estimator of

Süveges and Davison ([38], 2010), the censored and the truncated estimators of Hol¥sovský and Fusek

(respectively, [21] 2020 and [22] 2022). The cycles estimator of Ferreira and Ferreira ([9] 2018) also

requires the choice of a threshold and the validity of a local dependence condition describing the cluster

behavior. The maxima estimators of Gomes ([15] 1993), Ancona-Navarrete and Tawn ([1] 2000) and

Northrop ([28] 2015) are based on the comparison between the block maxima distribution obtained from

the stationary sequence and the corresponding sequence of independent variables. We also include in this

group the more recent estimator of Ferreira and Ferreira ([10] 2022) which is obtained from the bivariate

block maxima distribution generated from the stationary sequence and an iid sequence of independent

standard Fréchet variables. These estimators require the choice of a block size. In this paper we introduce

a new version of the block maxima estimator in Ferreira and Ferreira ([10] 2022) and propose a bootstrap

method to compute con�dence intervals. In Section 2 we present a survey on the inferential methods

that will be used. We are going to analyze their performance trough simulation in Section 3. Besides

the pointwise estimation we also address interval estimation mainly based on bootstrap. In Section 4 we

will illustrate the methods on a climatological dataset. We end with a discussion in Section 5.

2 Some characterization and estimation of θ

In this section we describe some probabilistic characteristics of the extremal index that inspired the

methodology and the mathematical expression of the estimators to be presented. These will be analyzed

on the next section through simulation and their performances will also be compared.

We start with classical runs estimator that is related to the O'Brien's ([29] 1987) characterization,

θ = lim
n→∞

P (M1,rn ≤ un|X1 > un), (1)

where rn = o(n) and Mi,j = max(Xi+1, .., Xj), i ≤ j − 1, with Mi,j = −∞ if i > j − 1 and M0,j ≡ Mj .
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Figure 1: Daily maximum temperature in the months of July and August 2001 at the station Abrantes in
the center of Portugal.

4



The empirical counterpart of (1) leads to the runs estimator

θ̃(R) =

∑n−r+1
i=1 1{Xi>u,Xi+1≤u,...,Xi+r−1≤u}

Nu
(2)

where Nu denotes the number of exceedances of threshold u in stationary sequence XXX and 1{·} denotes

an indicator function (Hsing [19] 1993). In practice, clusters are identi�ed by considering two di�erent

groups of exceedances of a threshold u as independent clusters if there are at least r − 1 consecutive

observations below the threshold between them. We shall denote r the runs parameter.

Chernick et al. ([5] 1991) establishes a similar result to that of O'Brien, under a local mixing condition

denoted D(s)(un) which states that within a cluster, an exceedance of a high threshold un is most likely to

be followed by another exceedance within s−1 consecutive observations. Condition D(s)(un) requires the

validity of mixing condition D(un) that limits the long-range dependence at extreme levels by implying

that any two exceedances of un that are su�ciently separated in time are asymptotically independent.

More precisely, XXX satis�es condition D(un) if for any integers 1 ≤ i1 < ... < iq < j1 < ... < jq′ ≤ n for

which j1 − iq ≥ l, we have

∣∣∣P (Mi1,iq ≤ un,Mj1,jq′ ≤ un

)
− P

(
Mi1,iq ≤ un

)
P
(
Mj1,jq′ ≤ un

)∣∣∣ ≤ αn,l,

with αn,ln → 0, as n → ∞, for some sequence ln = o(n) and ln → ∞.

Condition D(s)(un) will hold for XXX if D(un) also holds and there exists s > 0 integer, sequences rn

and ln of integers such that rn → ∞, nαn,ln/rn → 0, ln/rn → 0 and

lim
n→∞

nP (X1 > un ≥ M1,s,Ms,rn > un) = 0 .

It is easily seen that once condition D(s)(un) holds, then D(s∗)(un) also holds for all s∗ ≥s.

Consider un(τ) such that, for τ > 0,

lim
n→∞

nP (X1 > un(τ)) = τ .

If D(s)(un) holds for the stationary sequence XXX, for some s > 0 and un = un(τ) for all τ > 0, the

extremal index θ of XXX exists if and only if

lim
n→∞

P (M1,s ≤ un|X1 > un) = θ , (3)

for all τ > 0 (Chernick et al. [5] 1991, Corollary 1.3).

Observe that the runs estimator (2) also corresponds to the empirical counterpart of (3) by considering
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the runs parameter r = s. When r = 2 we derive the Nandagopalan ([27] 1990) estimator which requires

condition D(2)(un) to hold. Its formula is very easy to compute since it is simply the ratio between the

number of upcrossings (or downcrossings) and the number of exceedances of un. The approach in Ferreira

and Ferreira ([9] 2018) is based on the Nadagopalan's estimator through an estimation procedure of the

extremal index of an auxiliary stationary sequence satisfying D(2)(un). More precisely, if XXX satis�es

D(s)(un), we take the so called cycles process {Zn = M(n−1)(s−1),n(s−1)}n≥1 for which D(2)(un) holds

and estimate θ as the ratio between the number of upcrossings of threshold u within {Z1, ..., Z[n/(s−1)]},

denoted UZ
u and the number of exceedances Nu of XXX (Ferreira and Ferreira, [9] 2018, Proposition 2.3),

i.e.,

θ̃(C) =
UZ

u

Nu
, (4)

here denoted cycles estimator.

Consider the interexceedance times r.v. T (un) = min{j ≥ 1 : Xj+1 > un|X1 > un}. Under a suitable

mixing condition, we have that P (X1 > un)T (un) converges in distribution to a mixture distribution

which is degenerated at zero with weight 1− θ and has exponential law with mean value 1/θ with weight

θ. Therefore, the extremal index θ expresses both the proportion of intra-cluster (within a cluster)

times and inter-cluster (between clusters) times, and the expected value of the inter-cluster times under

a convenient normalization. The intervals estimator of Ferro and Segers ([11] 2003) corresponds to a

moment-based estimator derived from the limiting mixture distribution. It only requires the choice of a

high threshold exempting the choice of a runs parameter. It will be denoted θ̃(I).

Although interexceedance times, Ti = ji+1 − ji, i = 1, ..., Nu, are not independent and a likelihood

procedure assumes independence, this assumption may be disregarded under the validity of condition

D(s)(un) for some s (Süveges [37] 2007; Süveges and Davison [38] 2010). On the other hand, the

normalized intra-cluster times are theoretically zero in the limit but they are observed as positive values

and thus will be assigned to the exponential part of the limiting mixture law.

By considering the new r.v. K-gap S(K)(un) = max(T (un) −K, 0), the smallest times Ti are set to

zero, which improves the identi�cation of intra-cluster times. Süveges and Davison ([38] 2010) shows that

the maximum likelihood (ML) method can be applied to the limit mixture model in order to estimate θ,

replacing interexceedance times by K-gaps S(K) and under condition D(s)(un) for s = K+1. In Süveges

([37] 2007), it was only addressed the case K = 1. This method corresponds to the so called K-gaps

estimator, here denoted θ̃(K). Choosing K involves some care, since if too large leads to more null times

and consequent assignment to the degenerate part of the limiting mixture law, while too small K means

fewer null times and hence an assignment tendency to the exponential component of the mixture law.
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The censored estimator introduced in Hol¥sovský and Fusek ([21] 2020) is similar to the K-gaps

estimator but the smallest interexceedance times (less than some integer c) are censored. The choice of c

is not so sensitive as the choice ofK, however, the likelihood expression underlying the censored estimator

does not allow an explicit formula for it, which makes its analysis and improvements di�cult. A new

approach is considered in Hol¥sovský and Fusek ([22] 2022), where the extremal index estimation is based

on truncation. The small interexceeding times are truncated by a given parameter t, corresponding to K

in the K-gaps estimator or c in the censored estimator. If condition D(s)(un) holds for XXX with s = t+1,

under the same mixing condition considered to derive the limiting mixture law of P (X1 > un)T (un),

Hol¥sovský and Fusek ([22] 2022) prove that P (X1 > un)(T (un)− t)|T (un) > t converges in distribution

to an exponential law with expected value 1/θ. Let T(1) ≤ ... ≤ T(Nu−1) be the order statistics of

T1, ..., TNu−1, assume that T(N−Nt−1) ≤ t < T(N−Nt), with Nt the number of times that are greater than

some �xed positive t, and {S1, ..., SNt} = {T(N−Nt) − t, ..., T(N−1) − t} the set of exceedance times above

the truncation value t. The ML method can be applied since truncated times are not a�ected by the

sequence dependence (inter-cluster times are asymptotically independent (Ferro and Segers [11] 2003)

and intra-cluster times have not propensity to exceed t under local dependence condition D(t+1)(un)).

A simple ML estimator for θ corresponds to the arithmetic inverse of sample mean

θ̃ =
nNt

Nu

∑Nt
i=1 Si

(5)

The derivation of the bias of (5) and of a penultimate approximation of the limiting distribution leads

to an improved and bias corrected estimator, yielding the so-called truncated estimator

θ̃(T ) = θ̃BC − Nu

2n(Nu − 1)

[
1 + θ̃BC(Nu − 4)−

(
θ̃BC

)2
(Nu − 1)

]
, (6)

with

θ̃BC =
(Nu − 1)θ̃ − 1

Nu − 1 + (Nu/n)t
,

where θ̃ is given in (5).

In applications, it can be di�cult to check the validity of D(s)(un) condition. Various proposals have

been presented, such as diagnostic plots of anti-D(s)(un) (Süveges, [37] 2007; Ferreira and Ferreira [9]

2018), the information matrix test (Süveges and Davison [38] 2010; Fukutome et al. [13, 14] 2014/2019),

or based on a stability check of the runs estimator (Cai, [3] 2019). However, the study of this issue

is not closed and still awaits developments. The automation procedure in Fukutome et al. ([13, 14]

2014/2019) allows to select both s and un. More precisely, considering the K-gaps estimator, it is based

7



on misspeci�cation tests through the information matrix test (IMT) presented in Süveges and Davison

([38] 2010). All combinations of pairs of thresholds and run parameters in plausible ranges are tested for

misspeci�cation of the model, and the pair (u,K) that generates the largest number of observations after

declustering, within a list of pairs of small misspeci�cation (IMT < 0.05) is selected, provided the number

of exceedances is larger than 80. We will apply this automation procedure to select both threshold and

runs parameter involved in each of the estimators: runs θ̃(R), cycles θ̃(C), intervals θ̃(I), K-gaps θ̃(K) and

truncated θ̃(T ), in order to compare their performances through simulation and further on the analysis

of real data. For a given selected pair (u,K), we will assume the validity of condition D(K+1)(u). In the

case of the intervals estimator, only the IMT threshold selection will be used since it solely depends on

the threshold choice.

There are other estimation methods of θ entailing the choice of a single tuning parameter. Maxima

methods as described in Gomes ([15] 1993), Ancona-Navarrete and Tawn ([1] 2000), Northrop ([28] 2015)

and more recently in Ferreira and Ferreira ([10] 2022) require the choice of a block length in order

to generate a block maxima sequence from the original one. The two �rst references present methods

that need to resample the original data to produce a sample of block maxima with approximate d.f. G.

Northrop proposal in ([28] 2015) avoids this drawback by comparing the limiting GEV H of the maxima

Mn of XXX directly to the marginal d.f. F . More precisely, for large enough n, we have H ≈ Fnθ, thus

Y = −n logF (Mn) has exponential law with mean value 1/θ. The Northrop estimator is based on the

ML approach, considering the sample of block maxima {M(i−1)b,ib, i = 1, ..., [n/b]} of b consecutive values

of {X1, ..., Xn} and estimating the unknown d.f. F by the respective empirical d.f.. This corresponds to

the disjoint blocks estimator. The sliding blocks version of Northrop estimator is based on a sample of

overlapping block maxima {Mi−1,i+b−1, i = 1, ..., n− b+ 1}, leading to

θ̃(N) =

(
1

n− b+ 1

n−b+1∑
i=1

Yi

)−1

, (7)

with Yi = −b log F̂ (Mi−1,i+b−1), i = 1, ..., n− b+ 1. We will use the sliding blocks θ̃(N) which compares

favorably with the disjoint blocks (Northrop [28] 2015). This will be denoted the Northrop estimator.

In Ferreira and Ferreira ([10] 2022) a new block maxima method was introduced to estimate the

extremal index. It is based on a bivariate sequence {(Yn,1 = X∗
n, Yn,2 = (1/2)X∗

n∨(1/2)Xn)}n generated

from the original XXX which is assumed to have standard Fréchet marginals and by an i.i.d. sequence

{X∗
n}n also having standard Fréchet marginals. Operator ∨ stands for �maximum". It is proved that

the component-wise maxima of sequence {(Yn,1, Yn,2)}n . has a limiting bivariate extreme value copula
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C(u, v) = min(uv
θ

1+θ , v) with tail dependence coe�cient

λ = lim
v→1−

2− 1− C(v, v)

1− v
=

1

1 + θ
. (8)

leading to estimator

θ̃ =
1

λ̃ ∨ 1/2
− 1 . (9)

Algorithm: The estimation procedure follows the steps below:

Step 1. Take the marginal transformation − 1

log F̃X (Xi)
, where F̃X is an empirical d.f. of sample X1, ..., Xn

with dimension n, in order to have approximately standard Fréchet marginals.

Step 2. Generate an i.i.d. sequence with standard Fréchet d.f., X∗
1 , ..., X

∗
n, and take (X

∗
i , (1/2)X

∗
i ∨(1/2)Xi),

i = 1, ..., n.

Step 3. Choose the blocks length b to generate a bivariate sample of component-wise maxima, and estimate

λ (see Ferreira and Ferreira [10] 2022 and references therein for details). Here we consider sliding

blocks (Zj,1, Zj,2) =
(∨j+b−1

i=j X∗
i ,
∨j+b−1

i=j (1/2)X∗
i ∨ (1/2)Xi

)
, 1 ≤ j ≤ n− b+ 1.

Step 4. Calculate θ̃ in (9).

Step 5. Repeat steps 2-4 a large number R of times, obtain estimates θ̃1, ..., θ̃R and estimate

θ̃(F ) =
1

R

R∑
j=1

θ̃j (10)

in order to achieve robustness given the existence of arbitrariness in the generation of a random

sample (Step 2) in each estimate.

Step 4 is based on estimator (9 which requires an estimate of the tail dependence coe�cient λ. We follow

the proposal of Ferreira and Ferreira ([10] 2022) with

λ̃ = 3− 1

1− 1
n

∑n
i=1

(
G̃1(Zi,1) ∨ G̃2(Zi,2)

) ,
where G̃j , j = 1, 2, is an empirical distribution function of the GEV marginal Gj of Z1,j . For more

details, see Ferreira and Ferreira ([10] 2022). In Ferreira and Ferreira ([10] 2022) it was considered

R = 10000 and block maxima taken on disjoint blocks. Here we consider the sliding blocks approach as

in the Northrop estimator. Some prior simulations lead us to the proposal that R = 100 is reasonable

for a robustness of the method. This approach will be denoted Ferreira estimator.
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In the following we provide a catalog of some distributions and their associated extremal indices.

Additional lists of models and respective extremal indices are also exposed in Gomes and Neves ([16, 17],

2015, 2020).

� A �rst order auto-regressive with maximum operator (MAR), Xi = max(ϕXi−1, ϵi), i ≥ 1, X0 =

ϵ1/(1 − ϕ), {ϵi} i.i.d. with standard Fréchet marginals (Davis and Resnick [6], 1989), for which

θ = 1− ϕ. See, e.g., Leadbetter ([25] 1983) and references therein;

� A moving maxima Xi = maxj=0,...,d ajZd−j with {Zi} i.i.d. standard Fréchet (MMFrec), where

parameters aj ≥ 0 and
∑d

j=0 aj = 1 (Deheuvels [7], 1983), for which θ = maxj=0,...,d aj (see, e.g.,

Beirlant et al. [2] 2004);

� AMarkov chain with standard Gumbel marginals and 1-lag bivariate logistic dependence (MCBEV),

P (Xi ≤ x,Xi+1 ≤ y) = exp(−(x−1/α + y−1/α)α). Calculations of θ for particular cases are found

in Smith ([34], 1992);

� An ARCH(1) process, Xi = (β + λX2
i−1)

1/2ϵi, with i.i.d. standard Gaussian innovations {ϵi}.

Embrechts et al. ([8] 1997) addresses the (not straightforward) extremal index computation of

ARCH models;

� A �rst order auto-regressive with Cauchy standard marginals (ARCau), Xi = ρXi−1 + ϵi, {ϵi}

i.i.d. having Cauchy d.f. with mean 0 and scale 1 − |ρ|. According to Chernicket al. ([5], 1991),

θ = 1− ρ if ρ ≥ 0 and θ = 1− ρ2 if ρ < 0;

� A �rst order auto-regressive negatively correlated uniform (ARUnif), Xi = −(1/r)Xi−1 + ϵi, i ≥ 1,

{ϵi} i.i.d. where P (ϵ1 = k/r) = 1/r for k = 1, ..., r, with X0 ∼ U(0, 1) independent of ϵi, having

θ = 1− 1/r2

� An AR(1) process, Xi = ϕXi−1 + ϵi, i ≥ 1, {ϵi} i.i.d. N(0, 1), X0 ⌢ N(0, 1/(1− ϕ2)), with θ = 1;

These models will be used in the simulation study, in the next section.

3 Simulation study

In this section we analyze the estimation of the extremal index through simulation. We compare the

performances of the runs (R) estimator in (2), the cycles (C) estimator in (4), the truncated (T) estimator

in (6), the intervals (I) estimator of Ferro and Segers ([11] 2003), the K-gaps (K) estimator of Süveges

and Davison ([38] 2010), along with the block maxima estimators of Northrop (N) in (7) and Ferreira

(F) in (10). The �rst �ve estimators require the selection of a runs parameter and a threshold, except

the intervals estimator only needing the choice of a threshold. To this end we apply the IMT method
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(Süveges and Davison [38] 2010; Fukutome et al. [13, 14] 2014/2019) described in Section 2. The block

maxima estimators require the settlement of a block length and no automation procedure is considered.

In the study we take block lengths b = 10, 20, ..., 70. The software R ([33], 2020) was used and the R

codes of estimators can be seen in https://github.com/msferreirauminho/msrf.

The simulation study is based on the following models: a �rst order max auto-regressive (MAR)

process with standard Fréchet marginals and autoregressive parameter ϕ = 0.5 (Davis and Resnick

[6], 1989) satisfying condition D(2)(un) (see, e.g., Cai [3] 2019); a moving maxima (MMFrec) process

with coe�cients aj = 1/5, j ∈ {1, 2, 3, 7, 8} (Deheuvels [7], 1983) for which D(5)(un) holds (Ferreira

and Ferreira [9] 2018); a Markov chain (MCBEV) with standard Gumbel marginals and logistic joint

distribution with dependence parameter α = 0.5 (Smith [34], 1992); an ARCH(1) process with Gaussian

innovations, autoregressive parameter λ = 0.5 and variance parameter β = 1.9 · 10−5 (Embrechts et al.,

[8] 1997); an AR(1) process with Cauchy marginals and auto-regressive parameter ρ = −0.6 (Chernick

[4], 1978) and a negatively correlated uniform AR(1) process with r = 2 (Chernick et al. [5], 1991),

respectively denoted ARCau and ARUnif and both satisfying condition D(3)(un). The extremal index

values of the processes MAR, MMFrec, MCBEV, ARCH, ARCau and ARUnif are 0.5, 0.2, 0.328, 0.835,

0.64 and 0.75, respectively. We also consider a classical �rst order AR(1) process with Gaussian marginals

and auto-regressive parameter 0.5, here denoted AR, which is almost independent and satis�es condition

D(1)(un) having θ = 1. As far as we know, there is no theoretical analysis on condition D(s)(un) for

MCBEV model and we mention an empirical evaluation conducted in Ferreira and Ferreira ([9] 2018).

Cai ([3] 2019) proved that D(s)(un) doesn't hold for a particular ARCH model.

We consider 1000 replicas of each model and compute the mean, the absolute bias (abias), the

root mean squared error (rmse) and the standard deviation (sd). Bootstrap con�dence intervals were

obtained through percentile method technique on time series. Con�dence intervals were obtained through

bootstrap percentile method technique on time series with �xed block length 20 (Kunsch [23] 1989, Politis

and Romano [31] 1994), except in the case of the intervals estimator where the bootstrap proposal in Ferro

and Segers ([11] 2003) was used. In the case of the likelihood estimators (K-gaps and Northrop block

maxima), the con�dence intervals are based on the asymptotic Normality. In Ferreira sliding blocks

estimator we considered percentiles 2.5 and 97.5 applied on the auxiliary estimates θ̃j , j = 1, ..., R,

produced by the method in Step 5 of the Algorithm in Section 2. We present the the proportion of

intervals in the simulations that included the true value of θ (cov), the mean range width (rw) and the

rate cov/rw corresponding to the proportion of coverage (cov) divided by the mean range width (rw).

Some of the con�dence intervals associated to Northrop sliding blocks failed to be computed because of

the invalid standard error estimates which were accounted in column �NAs" of Table 2. The results for

the runs, cycles, intervals, truncated and K-gaps estimators are presented in Table 1 and the estimates
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of Ferreira sliding blocks derived in (10) can be seen in Table 3. The rate cov/rw is plotted in Figure 2

obtained for the runs, the cycles, the intervals, the truncated and the K-gaps estimators (left-top), for

the Ferreira and Northrop sliding blocks estimators with block lengths b = 10, 20, ..., 70 (right-top) and

the third bottom plot includes all estimators where for each of the sliding blocks estimators we address

the best scenario (corresponding to the block length with the estimated largest rate, denoted by B) and

the worst scenario (where the block length choice led to the smallest estimated rate, denoted by W).

Analogous plots are represented in Figures 3 and 4 relating to abias and rmse, respectively.

Cases closer to the border values of the extremal index domain were also considered, namely, MAR(ϕ =

0.9) with θ = 0.1 and MAR(ϕ = 0.1) with θ = 0.9. In the almost independence Gaussian AR model

with θ = 1, besides parameter ϕ = 0.5 which induces strong dependence, we also analyze the AR weaker

dependence models AR(ϕ = 0.1) and AR(ϕ = −0.1) where θ is still unit but they are even more close of

independence. See Tables 4, 5 and 6.

The cycles (C), the runs (R) and K-gaps (K) estimators present a somewhat homogeneous perfor-

mance across the various models, with the K-gaps estimator slightly better behaved. We recall that we

are applying the IMT method in all estimators, except in the sliding blocks, which was developed under

the K-gaps estimator. On the other hand, the intervals (I) and the truncated (T) estimators show some

sensitivity to the di�erent models: they perform very well in the MMFrec, MAR, MCBEV and ARCH,

but their biases and rmse are high in the ARUnif model.

We can also see that the choice of the block-maxima size to be used in sliding blocks estimators is

important as their behavior improve in the best block choices. Indeed, both Ferreira and Northrop sliding

blocks estimators present the best overall performances along the di�erent models under the best block

choices. Both Northrop and Ferreira sliding blocks have to deal with a trade-o� between bias (larger

for small block-maxima lengths) and variance (increases with the block-maxima length). This can be

observed in Tables 2 and 3. In practice one can plot estimates for several block-maxima sizes b and

choose the smallest b above which estimates are approximately constant (Northrop [28] 2015).

In the coverage rate (Figure 2), it is observed that the K-gaps estimator presents an overall better

performance. Yet, the coverage percentages (�cov") in Table 1 are not as large as would be desirable. This

is particularly notorious in cases where estimates present larger rmse like AR model. In order to analyze

the e�ect of bootstrap block-size choice on CI coverage, we have also applied the automatic block-size

choice method developed in Politis and White ([32], 2004) and Patton et al. ([30], 2009), available in

R package blocklength ([36], 2022). We recall that the bootstrap CI requiring block-size selection was

considered for the runs, cycles and truncated estimators. The results of the automatic block-size choice

method are in Table 7 where we observe improvements for the truncated estimator, except in the ARCH
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model. On the other hand, the ARCH model bene�ts from the automatic method within the runs and

cycles estimators. The MAR model with θ = 0.1 also gains with the automated method. The Ferreira

sliding blocks estimator presents both the highest coverage proportions (cov) and range widths (rw),

leading to low coverage rates (�cov/rw"), as can be seen in Table 3 and Figure 2. The compromise

between both high coverage (�cov") and coverage rate (�cov/rw") points out the Northrop sliding blocks

estimator as the best choice, particularly for larger block-maxima sizes.

The AR model with stronger dependence (i.e., dependence parameter ϕ = 0.5) presents the worst

performance in all estimators (see, e.g., Figures 2, 3 and 4). Both sliding blocks estimators seem to be

the most promising in this model, which has an extremal index equal to one and, therefore, a boundary

value in the support of θ. However, the same is not true with weaker dependent AR models (i.e.,

with dependence parameter ϕ = ±0.1), where the absolute bias and rmse are lower, particularly within

intervals (I), truncated (T) and Northrop (N) estimators (Tables 4, 5 and 6). The bootstrap con�dence

intervals of runs (R) and cycles (C) exhibit very small coverage percentages as well as the ones of K-gaps

estimator based on ML, for all considered AR models. In the challenging cases of θ with values close

to the domain boundaries 0 and 1 through model MAR with autoregressive parameters ϕ = 0.1 and

ϕ = 0.9, corresponding to θ = 0.9 and θ = 0.1, respectively, we observe that estimators of runs (R),

cycles (C), K-gaps and Ferreira sliding blocks (F) tend to behave better for θ = 0.1 than θ = 0.9 while

in the truncated (T) estimator the conclusion is opposite. The intervals (I) and Northrop sliding blocks

(N) present an overall better performance in both situations.

4 Application

We consider the daily maximum temperatures in the months of July and August, from 2001 to 2021,

collected at the climatologic station Abrantes in center of Portugal (in Celsius degrees) available at

�SNIRH: Sistema Nacional de Informação dos Recursos Hídricos"1. The data is plotted in Figure 5, in

which successive high temperatures are seen, which are typical in this inland city. The results in Table

8 are obtained through the application of IMT procedure, leading to threshold 37.7 and K = 2. Thus

we assume D(3)(un) dependence condition. Figure 6 represents the estimates of θ̃(R), θ̃(I), θ̃(C). θ̃(T )

and θ̃(K), for thresholds corresponding to quantiles from 0.8 to 0.99. The estimators give quite close

results to each other, except the sliding blocks θ̃(F ) with larger values (Figure 6, left). However, most of

θ̃(F ) estimates are within the Northrop sliding blocks con�dence bands (Figure 6, right), which we use

as reference according to the simulation study �ndings in Section 3. Our guess is that possible values for

θ range between 0.4 and 0.55.

1https://snirh.apambiente.pt/index.php?idMain=1&idItem=1.6
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Table 1: Simulation results obtained for the runs (R), cycles (C), intervals (I), truncated (T) and K-gaps
(K): mean, absolute bias (abias), root mean squared error (rmse), standard deviation (sd), the coverage
proportion of the true extremal index value within the estimated con�dence intervals (cov), the intervals
range width (rw) and the ratio between �cov" and �rw".

R mean abias rmse sd cov rw cov/rw
MMFrec 0.1463 0.0537 0.0564 0.0173 0.9630 0.0831 11.5854
MAR 0.4300 0.0700 0.0791 0.0369 0.6190 0.1466 4.2211
ARUnif 0.8165 0.0665 0.1307 0.1125 0.7070 0.1054 6.7102
ARCau 0.5048 0.1352 0.1452 0.0528 0.2750 0.1636 1.6811
MCBEV 0.3296 0.0016 0.0655 0.0655 0.8300 0.1891 4.3896
ARCH 0.7461 0.0889 0.0968 0.0383 0.2260 0.1264 1.7878
AR 0.5879 0.4121 0.4181 0.0704 0.0040 0.1576 0.0254

C mean abias rmse sd cov rw cov/rw
MMFrec 0.1349 0.0651 0.0678 0.0188 0.8280 0.0846 9.7900
MAR 0.4287 0.0713 0.0809 0.0384 0.8000 0.1480 5.4070
ARUnif 0.7770 0.0270 0.1378 0.1352 0.5050 0.1104 4.5730
ARCau 0.4780 0.1620 0.1713 0.0558 0.1530 0.1638 0.9343
MCBEV 0.3202 0.0078 0.0713 0.0709 0.7590 0.1817 4.1780
ARCH 0.7438 0.0912 0.1007 0.0425 0.2200 0.1274 1.7263
AR 0.5822 0.4178 0.4245 0.0751 0.0040 0.1590 0.0252

I mean abias rmse sd cov rw cov/rw
MMFrec 0.2332 0.0332 0.0467 0.0329 0.6500 0.1228 5.2913
MAR 0.4975 0.0025 0.0508 0.0508 0.9670 0.2388 4.0501
ARUnif 0.9963 0.2463 0.2470 0.0189 0.0130 0.0297 0.4373
ARCau 0.8012 0.1612 0.1856 0.0920 0.3190 0.2608 1.2234
MCBEV 0.3737 0.0457 0.0763 0.0611 0.8310 0.2622 3.1695
ARCH 0.9089 0.0739 0.0973 0.0633 0.7370 0.2093 3.5207
AR 0.6741 0.3259 0.3312 0.0588 0.0450 0.2745 0.1639

T mean abias rmse sd cov rw cov/rw
MMFrec 0.2037 0.0037 0.0295 0.0293 0.2510 0.1211 2.0727
MAR 0.5035 0.0035 0.0424 0.0423 0.8910 0.1620 5.5000
ARUnif 0.9887 0.2387 0.2409 0.0319 0.0301 0.0833 0.3620
ARCau 0.7040 0.0640 0.0925 0.0669 0.4220 0.2012 2.0974
MCBEV 0.3883 0.0603 0.0905 0.0674 0.4670 0.2042 2.2870
ARCH 0.9090 0.0740 0.0890 0.0495 0.3980 0.1530 2.6013
AR 0.6914 0.3086 0.3140 0.0578 0.0050 0.1815 0.0275

K-gaps mean abias rmse sd cov rw cov/rw
MMFrec 0.1708 0.0292 0.0345 0.0184 0.8340 0.0929 8.9819
MAR 0.4593 0.0407 0.0546 0.0364 0.7010 0.1192 5.8818
ARUnif 0.8478 0.0978 0.1358 0.0943 0.4410 0.0835 5.2834
ARCau 0.5552 0.0848 0.0969 0.0469 0.3020 0.1346 2.2444
MCBEV 0.3561 0.0281 0.0699 0.0640 0.5760 0.1224 4.7048
ARCH 0.7726 0.0624 0.0716 0.0351 0.3280 0.1065 3.0800
AR 0.6174 0.3826 0.3878 0.0636 0.0000 0.1300 0.0000
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Table 2: Simulation results obtained for the Northrop ([28], 2015) sliding blocks estimator: mean, absolute
bias (abias), root mean squared error (rmse), standard deviation (sd), the coverage proportion of the true
extremal index value within the estimated con�dence intervals (cov), the intervals range width (rw), the
ratio between �cov" and �rw" and the number of replicates where the con�dence intervals couldn't be
calculated (NAs).

N b=10 mean abias rmse sd cov rw cov/rw NAs
MMFrec 0.3431 0.1431 0.1444 0.0189 0.0000 0.0640 0.0000 0
MAR 0.5522 0.0522 0.0626 0.0345 0.6700 0.1329 5.0433 0
ARUnif 0.9998 0.2498 0.2498 0.0026 0.0000 0.0145 0.0000 356
ARCau 0.8294 0.1894 0.1933 0.0387 0.0000 0.1047 0.0000 15
MCBEV 0.4319 0.1039 0.1089 0.0326 0.0440 0.1134 0.3881 0
ARCH 0.8996 0.0646 0.0800 0.0471 0.6433 0.1512 4.2547 2
AR 0.6616 0.3384 0.3412 0.0432 0.0000 0.1748 0.0000 0
N b=20 mean abias rmse sd cov rw cov/rw NAs
MMFrec 0.2721 0.0721 0.0750 0.0209 0.0655 0.0741 0.8836 7
MAR 0.5264 0.0264 0.0567 0.0502 0.9068 0.1896 4.7823 2
ARUnif 0.9557 0.2057 0.2113 0.0482 0.0482 0.1217 0.3958 66
ARCau 0.7303 0.0903 0.1084 0.0600 0.5859 0.1937 3.0249 5
MCBEV 0.3887 0.0607 0.0767 0.0468 0.7230 0.1679 4.3057 0
ARCH 0.8572 0.0222 0.0707 0.0671 0.8655 0.2181 3.9692 11
AR 0.6916 0.3084 0.3156 0.0672 0.0261 0.2677 0.0973 2
N b=30 mean abias rmse sd cov rw cov/rw NAs
MMFrec 0.2489 0.0489 0.0545 0.0241 0.3777 0.0822 4.5925 15
MAR 0.5185 0.0185 0.0668 0.0642 0.9130 0.2389 3.8209 0
ARUnif 0.9101 0.1601 0.1755 0.0720 0.3922 0.1964 1.9966 31
ARCau 0.6991 0.0591 0.0966 0.0764 0.8248 0.2566 3.2147 1
MCBEV 0.3736 0.0456 0.0736 0.0579 0.8640 0.2052 4.2108 0
ARCH 0.8405 0.0055 0.0830 0.0829 0.8809 0.2707 3.2537 9
AR 0.7186 0.2814 0.2951 0.0888 0.1401 0.3265 0.4292 1
N b=40 mean abias rmse sd cov rw cov/rw NAs
MMFrec 0.2374 0.0374 0.0462 0.0271 0.6214 0.0898 6.9219 86
MAR 0.5153 0.0153 0.0773 0.0758 0.8608 0.2689 3.2014 16
ARUnif 0.8827 0.1327 0.1582 0.0861 0.6002 0.2472 2.4276 117
ARCau 0.6852 0.0452 0.1008 0.0901 0.8301 0.2938 2.8257 35
MCBEV 0.3660 0.0380 0.0786 0.0689 0.8696 0.2362 3.6817 3
ARCH 0.8321 0.0029 0.0959 0.0959 0.8535 0.3018 2.8281 51
AR 0.7383 0.2617 0.2829 0.1075 0.2876 0.3559 0.8083 30
N b=50 mean abias rmse sd cov rw cov/rw NAs
MMFrec 0.2302 0.0302 0.0419 0.0291 0.7029 0.0963 7.2989 145
MAR 0.5144 0.0144 0.0870 0.0859 0.8494 0.2971 2.8595 37
ARUnif 0.8618 0.1118 0.1482 0.0974 0.7037 0.2839 2.4785 119
ARCau 0.6769 0.0369 0.1085 0.1020 0.8348 0.3217 2.5945 62
MCBEV 0.3613 0.0333 0.0850 0.0783 0.8583 0.2638 3.2533 5
ARCH 0.8264 0.0086 0.1067 0.1064 0.8339 0.3296 2.5300 73
AR 0.7536 0.2464 0.2743 0.1206 0.3947 0.3838 1.0283 65
N b=60 mean abias rmse sd cov rw cov/rw NAs
MMFrec 0.2250 0.0250 0.0399 0.0311 0.7695 0.1056 7.2873 37
MAR 0.5120 0.0120 0.0952 0.0945 0.8839 0.3398 2.6008 1
ARUnif 0.8443 0.0943 0.1424 0.1067 0.7638 0.3097 2.4662 39
ARCau 0.6685 0.0285 0.1163 0.1128 0.8688 0.3664 2.3715 9
MCBEV 0.3572 0.0292 0.0913 0.0866 0.8880 0.2964 2.9961 3
ARCH 0.8199 0.0151 0.1169 0.1160 0.8503 0.3567 2.3836 18
AR 0.7629 0.2371 0.2698 0.1288 0.5111 0.4172 1.2252 10
N b=70 mean abias rmse sd cov rw cov/rw NAs
MMFrec 0.2225 0.0225 0.0404 0.0336 0.7870 0.1150 6.8446 136
MAR 0.5132 0.0132 0.1043 0.1035 0.8463 0.3550 2.3842 37
ARUnif 0.8338 0.0838 0.1415 0.1140 0.7731 0.3331 2.3209 114
ARCau 0.6665 0.0265 0.1263 0.1235 0.8318 0.3850 2.1607 49
MCBEV 0.3557 0.0277 0.0990 0.0951 0.8687 0.3135 2.7708 10
ARCH 0.8153 0.0197 0.1243 0.1227 0.8273 0.3828 2.1612 85
AR 0.7714 0.2286 0.2658 0.1357 0.5303 0.4194 1.2643 42
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Table 3: Simulation results obtained for the Ferreira and Ferreira ([10], 2022) sliding blocks estimator: mean,
absolute bias (abias), root mean squared error (rmse), standard deviation (sd), the coverage proportion of
the true extremal index value within the estimated con�dence intervals (cov), the intervals range width
(rw), the ratio between �cov" and �rw" and the number of replicates where the con�dence intervals couldn't
be calculated (NAs).

F b=10 mean abias rmse sd cov rw cov/rw
MMFrec 0.3419 0.1419 0.1428 0.0155 0.0660 0.2725 0.2422
MAR 0.5711 0.0711 0.0943 0.0620 0.9930 0.4422 2.2454
ARUnif 0.8559 0.1059 0.1138 0.0416 1.0000 0.4055 2.4663
ARCau 0.7349 0.0949 0.1102 0.0561 0.9980 0.4937 2.0213
MCBEV 0.4467 0.1187 0.1388 0.0720 0.7090 0.3454 2.0528
ARCH 0.8287 0.0063 0.0471 0.0467 1.0000 0.4290 2.3312
AR 0.7899 0.2101 0.2156 0.0484 0.9470 0.4589 2.0637
F b=20 mean abias rmse sd cov rw cov/rw
MMFrec 0.2733 0.0733 0.0755 0.0181 1.0000 0.3157 3.1674
MAR 0.5651 0.0651 0.1097 0.0883 0.9950 0.5839 1.7041
ARUnif 0.8006 0.0506 0.0794 0.0612 1.0000 0.5225 1.9138
ARCau 0.6966 0.0566 0.0972 0.0791 1.0000 0.0678 1.6957
MCBEV 0.4300 0.1020 0.1451 0.1032 0.9100 0.4707 1.9334
ARCH 0.7984 0.0366 0.0713 0.0612 1.0000 0.5236 1.9100
AR 0.7923 0.2077 0.2155 0.0576 0.9910 0.5303 1.8687
F b=30 mean abias rmse sd cov rw cov/rw
MMFrec 0.2514 0.0514 0.0558 0.0217 1.0000 0.3638 2.7488
MAR 0.5698 0.0698 0.1244 0.1031 0.9980 0.6636 1.5040
ARUnif 0.7726 0.0226 0.0742 0.0707 1.0000 0.5914 1.6910
ARCau 0.6840 0.0440 0.1000 0.0899 0.9990 0.6467 1.5447
MCBEV 0.4379 0.1099 0.1644 0.1223 0.9500 0.5712 1.6632
ARCH 0.7804 0.0546 0.0865 0.0672 1.0000 0.5847 1.7104
AR 0.7861 0.2139 0.2230 0.0629 0.9990 0.5831 1.7132
F b=40 mean abias rmse sd cov rw cov/rw
MMFrec 0.2407 0.0407 0.0480 0.0255 1.0000 0.4125 2.4245
MAR 0.5749 0.0749 0.1345 0.1118 0.9970 0.7121 1.4000
ARUnif 0.7516 0.0016 0.0769 0.0769 1.0000 0.6417 1.5584
ARCau 0.6767 0.0367 0.1032 0.0965 0.9900 0.6870 1.4540
MCBEV 0.4495 0.1215 0.1818 0.1354 0.9720 0.6419 1.5143
ARCH 0.7646 0.0704 0.0992 0.0698 1.0000 0.6362 1.5719
AR 0.7763 0.2237 0.2335 0.0669 1.0000 0.6271 1.5947
F b=50 mean abias rmse sd cov rw cov/rw
MMFrec 0.2346 0.0346 0.0453 0.0292 1.0000 0.4617 2.1658
MAR 0.5789 0.0789 0.1403 0.1161 0.9980 0.7476 1.3349
ARUnif 0.7355 0.0145 0.0817 0.0804 1.0000 0.6849 1.4600
ARCau 0.6718 0.0318 0.1050 0.1001 0.9990 0.7207 1.3862
MCBEV 0.4625 0.1345 0.1960 0.1426 0.9810 0.7005 1.4003
ARCH 0.7508 0.0842 0.1119 0.0737 1.0000 0.6769 1.4773
AR 0.7661 0.2339 0.2440 0.0694 0.9980 0.6660 1.4985
F b=60 mean abias rmse sd cov rw cov/rw
MMFrec 0.2300 0.0300 0.0450 0.0330 0.9990 0.5061 1.9740
MAR 0.5800 0.0800 0.1450 0.1190 0.9980 0.7797 1.2800
ARUnif 0.7210 0.0290 0.0840 0.0810 1.0000 0.7212 1.3865
ARCau 0.6670 0.0270 0.1050 0.1010 0.9990 0.7522 1.3280
MCBEV 0.4720 0.1440 0.2050 0.1450 0.9930 0.7447 1.3334
ARCH 0.7390 0.0960 0.1220 0.0750 1.0000 0.7097 1.4090
AR 0.7540 0.2460 0.2550 0.0700 0.9990 0.7007 1.4257
F b=70 mean abias rmse sd cov rw cov/rw
MMFrec 0.2272 0.0272 0.0460 0.0371 0.9990 0.5530 1.8066
MAR 0.5825 0.0825 0.1447 0.1189 0.9980 0.8038 1.2417
ARUnif 0.7096 0.0404 0.0929 0.0837 1.0000 0.7506 1.3322
ARCau 0.6596 0.0196 0.1038 0.1020 0.9980 0.7781 1.2827
MCBEV 0.4814 0.1534 0.2138 0.1490 0.9930 0.7766 1.2786
ARCH 0.7265 0.1085 0.1319 0.0751 1.0000 0.7420 1.3477
AR 0.7410 0.2590 0.2686 0.0713 1.0000 0.7333 1.3637
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Table 4: Simulation results of models MAR with θ = 0.1 and θ = 0.9, AR(ϕ = 0.1) and AR(ϕ = −0.1),
obtained for the runs (R), cycles (C), intervals (I), truncated (T) and K-gaps (K): mean, absolute bias
(abias), root mean squared error (rmse), standard deviation (sd), the coverage proportion of the true
extremal index value within the estimated con�dence intervals (cov), the intervals range width (rw) and the
ratio between �cov" and �rw".

R mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.0941 0.0059 0.0233 0.0225 0.7020 0.1017 6.9058
MAR(ϕ = 0.1); θ = 0.9 0.6735 0.2265 0.2415 0.0839 0.0140 0.1319 0.1062
AR(ϕ = −0.1); θ = 1 0.7750 0.2250 0.2426 0.0909 0.0050 0.1148 0.0435
AR(ϕ = 0.1); θ = 1 0.7026 0.2974 0.3083 0.0812 0.0010 0.1244 0.0080

C mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.0913 0.0087 0.0246 0.0230 0.7700 0.1022 7.5342
MAR(ϕ = 0.1); θ = 0.9 0.6480 0.2520 0.2722 0.1030 0.0104 0.1342 0.1043
AR(ϕ = −0.1); θ = 1 0.7394 0.2606 0.2868 0.1199 0.0000 0.1210 0.0000
AR(ϕ = 0.1); θ = 1 0.6689 0.3311 0.3480 0.1070 0.0000 0.1314 0.0000

I mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.1010 0.0010 0.0273 0.0273 0.7920 0.1585 4.9971
MAR(ϕ = 0.1); θ = 0.9 0.8977 0.0023 0.0675 0.0675 0.9250 0.2216 4.1737
AR(ϕ = −0.1); θ = 1 0.9901 0.0099 0.0222 0.0198 1.0000 0.0878 11.3901
AR(ϕ = 0.1); θ = 1 0.9383 0.0617 0.0852 0.0587 0.9630 0.1782 5.4052

T mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.1340 0.0340 0.1257 0.1212 0.3500 0.1592 2.1985
MAR(ϕ = 0.1); θ = 0.9 0.9025 0.0025 0.0469 0.0464 0.9660 0.1797 5.3756
AR(ϕ = −0.1); θ = 1 0.9971 0.0029 0.0113 0.0109 0.8410 0.1690 4.9763
AR(ϕ = 0.1); θ = 1 0.9446 0.0554 0.0761 0.0531 0.8100 0.1786 4.5353

K-gaps mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.1034 0.0034 0.0243 0.0240 0.8790 0.0735 11.9590
MAR(ϕ = 0.1); θ = 0.9 0.7178 0.1822 0.1929 0.0634 0.0170 0.1123 0.1513
AR(ϕ = −0.1); θ = 1 0.8090 0.1910 0.2047 0.0736 0.0000 0.0982 0.0000
AR(ϕ = 0.1); θ = 1 0.7423 0.2577 0.2659 0.0658 0.0000 0.1089 0.0000
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Table 5: Simulation results of models MAR with θ = 0.1 and θ = 0.9, AR(ϕ = 0.1) and AR(ϕ = −0.1),
obtained for the Northrop ([28], 2015) sliding blocks estimator: mean, absolute bias (abias), root mean
squared error (rmse), standard deviation (sd), the coverage proportion of the true extremal index value
within the estimated con�dence intervals (cov), the intervals range width (rw), the ratio between �cov" and
�rw" and the number of replicates where the con�dence intervals couldn't be calculated (NAs).

N b=10 mean abias rmse sd cov rw cov/rw NAs
MAR(ϕ = 0.9); θ = 0.1 0.1939 0.0939 0.0946 0.0115 0.0000 0.0249 0.0000 76
MAR(ϕ = 0.1); θ = 0.9 0.9103 0.0103 0.0492 0.0481 0.8779 0.1591 5.5171 1
AR(ϕ = −0.1); θ = 1 0.9935 0.0005 0.0184 0.0172 0.9919 0.0548 18.0998 9
AR(ϕ = 0.1); θ = 1 0.9490 0.0510 0.0660 0.0419 0.7938 0.1357 5.8484 1
N b=20 mean abias rmse sd cov rw cov/rw NAs
MAR(ϕ = 0.9); θ = 0.1 0.1484 0.0484 0.0505 0.0147 0.0050 0.0461 0.1084 0
MAR(ϕ = 0.1); θ = 0.9 0.9030 0.0030 0.0655 0.0655 0.8825 0.2086 4.2302 13
AR(ϕ = −0.1); θ = 1 0.9823 0.0177 0.0372 0.0328 0.9621 0.1069 9.0034 51
AR(ϕ = 0.1); θ = 1 0.9526 0.0474 0.0701 0.0516 0.8799 0.1629 5.4019 26
N b=30 mean abias rmse sd cov rw cov/rw NAs
MAR(ϕ = 0.9); θ = 0.1 0.1331 0.0331 0.0374 0.0173 0.4474 0.06707 7.3683 1
MAR(ϕ = 0.1); θ = 0.9 0.8991 0.0009 0.0771 0.0771 0.8799 0.2368 3.7158 9
AR(ϕ = −0.1); θ = 1 0.9721 0.0279 0.0520 2 0.0441 0.9615 0.1463 6.5733 38
AR(ϕ = 0.1); θ = 1 0.9504 0.0496 0.0777 0.0599 0.9229 0.1902 4.8521 14
N b=40 mean abias rmse sd cov rw cov/rw NAs
MAR(ϕ = 0.9); θ = 0.1 0.1257 0.0257 0.0324 0.0196 0.7296 0.0707 10.3239 5
MAR(ϕ = 0.1); θ = 0.9 0.8952 0.0048 0.0863 0.0862 0.8463 0.2653 3.1899 76
AR(ϕ = −0.1); θ = 1 0.9641 0.0359 0.0646 0.0538 0.9287 0.1832 5.0686 159
AR(ϕ = 0.1); θ = 1 0.9475 0.0525 0.0853 0.0673 0.8890 0.2108 4.2171 126
N b=50 mean abias rmse sd cov rw cov/rw NAs
MAR(ϕ = 0.9); θ = 0.1 0.1715 0.0215 0.0309 0.0222 0.8141 0.0798 10.2055 10
MAR(ϕ = 0.1); θ = 0.9 0.8918 0.0082 0.0951 0.0948 0.8313 0.2851 2.9155 117
AR(ϕ = −0.1); θ = 1 0.9574 0.0426 0.0745 0.0612 0.9272 0.2149 4.3135 190
AR(ϕ = 0.1); θ = 1 0.9426 0.0574 0.0938 0.0743 0.8862 0.2444 3.6256 165
N b=60 mean abias rmse sd cov rw cov/rw NAs
MAR(ϕ = 0.9); θ = 0.1 0.1185 0.0185 0.0308 0.0246 0.8900 0.0905 9.8349 0
MAR(ϕ = 0.1); θ = 0.9 0.8860 0.0140 0.1038 0.1030 0.8447 0.3107 2.7188 28
AR(ϕ = −0.1); θ = 1 0.9503 0.0497 0.0848 0.0688 0.9263 0.2250 4.1170 64
AR(ϕ = 0.1); θ = 1 0.9376 0.0624 0.1025 0.0814 0.9057 0.2533 3.5762 56
hline N b=70 mean abias rmse sd cov rw cov/rw NAs
MAR(ϕ = 0.9); θ = 0.1 0.1170 0.0170 0.0321 0.0273 0.8516 0.0944 9.0179 16
MAR(ϕ = 0.1); θ = 0.9 0.8838 0.0162 0.1101 0.1090 0.8328 0.3295 2.5274 109
AR(ϕ = −0.1); θ = 1 0.9453 0.0547 0.0929 0.0751 0.9165 0.2651 3.4565 198
AR(ϕ = 0.1); θ = 1 0.9344 0.0656 0.1093 0.0875 0.8847 0.2835 3.1203 159
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Table 6: Simulation results of models MAR with θ = 0.1 and θ = 0.9, AR(ϕ = 0.1) and AR(ϕ = −0.1),
obtained for the Ferreira and Ferreira ([10], 2022) sliding blocks estimator: mean, absolute bias (abias),
root mean squared error (rmse), standard deviation (sd), the coverage proportion of the true extremal index
value within the estimated con�dence intervals (cov), the intervals range width (rw), the ratio between
�cov" and �rw" and the number of replicates where the con�dence intervals couldn't be calculated (NAs).

F b=10 mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.2160 0.1160 0.1206 0.0333 0.0750 0.1854 0.4046
MAR(ϕ = 0.1); θ = 0.9 0.8695 0.0305 0.0466 0.0352 1.0000 0.3887 2.5730
AR(ϕ = −0.1); θ = 1 0.9216 0.0784 0.0811 0.0207 1.0000 0.3285 3.0438
AR(ϕ = 0.1); θ = 1 0.9069 0.0931 0.0958 0.0230 1.0000 0.3472 2.8804
F b=20 mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.1935 0.0935 0.1056 0.0491 0.6500 0.2345 2.7717
MAR(ϕ = 0.1); θ = 0.9 0.8409 0.0591 0.0746 0.0455 1.0000 0.4858 2.0585
AR(ϕ = −0.1); θ = 1 0.8838 0.1162 0.1198 0.0294 1.0000 0.4419 2.2627
AR(ϕ = 0.1); θ = 1 0.8776 0.1224 0.1261 0.0306 1.0000 0.4497 2.2237
F b=30 mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.2024 0.1024 0.1208 0.0640 0.7600 0.2957 2.5702
MAR(ϕ = 0.1); θ = 0.9 0.8185 0.0915 0.0963 0.0513 1.0000 0.5541 1.8047
AR(ϕ = −0.1); θ = 1 0.8563 0.1437 0.1483 0.0367 1.0000 0.5191 1.9266
AR(ϕ = 0.1); θ = 1 0.8527 0.1473 0.1517 0.0363 1.0000 0.5229 1.9125
F b=40 mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.2179 0.1179 0.1403 0.0761 0.8120 0.3637 2.2324
MAR(ϕ = 0.1); θ = 0.9 0.7990 0.1010 0.1156 0.0563 1.0000 0.6087 1.6454
AR(ϕ = −0.1); θ = 1 0.8332 0.1668 0.1720 0.0421 1.0000 0.5780 1.7300
AR(ϕ = 0.1); θ = 1 0.8328 0.1677 0.1719 0.0399 1.0000 0.5788 1.7276
F b=50 mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.2360 0.1363 0.1611 0.0859 0.8400 0.4395 1.9113
MAR(ϕ = 0.1); θ = 0.9 0.7843 0.1157 0.1299 0.0591 1.0000 0.6499 1.5387
AR(ϕ = −0.1); θ = 1 0.8144 0.1856 0.1316 0.0473 1.0000 0.6250 1.5999
AR(ϕ = 0.1); θ = 1 0.8127 0.1873 0.1929 0.0459 1.0000 0.6285 1.5912
F b=60 mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.2566 0.1566 0.1837 0.0960 0.8670 0.5148 1.6840
MAR(ϕ = 0.1); θ = 0.9 0.7674 0.1326 0.1475 0.0646 1.0000 0.6913 1.4466
AR(ϕ = −0.1); θ = 1 0.7953 0.2047 0.2104 0.0488 1.0000 0.6707 1.4910
AR(ϕ = 0.1); θ = 1 0.7961 0.2039 0.2100 0.0504 1.0000 0.6686 1.4957
F b=70 mean abias rmse sd cov rw cov/rw
MAR(ϕ = 0.9); θ = 0.1 0.2769 0.1769 0.2060 0.1055 0.8960 0.5931 1.5106
MAR(ϕ = 0.1); θ = 0.9 0.7538 0.1472 0.1616 0.0667 1.0000 0.7231 1.3830
AR(ϕ = −0.1); θ = 1 0.7788 0.2212 0.2278 0.0546 1.0000 0.7053 1.4178
AR(ϕ = 0.1); θ = 1 0.7768 0.2232 0.2298 0.0545 1.0000 0.7092 1.4101

Table 7: Coverage proportion of the true extremal index value within the estimated bootstrap con�dence
intervals (cov), the intervals range width (rw) and the ratio between �cov" and �rw", considering automated
choice of block length in Politis and White ([32], 2004) and Patton et al. ([30], 2009), within runs (R), cycles
(C) and truncated (T) estimators.

R C T
cov rw cov/rw cov rw cov/rw cov rw cov/rw

MMFrec 0.9490 0.0826 11.4905 0.7820 0.0843 9.2772 0.2850 0.1203 2.3685
MAR 0.8190 0.1480 5.5354 0.8120 0.1478 5.4939 0.7670 0.1635 4.6920
MAR(ϕ = 0.9); θ = 0.1 0.8700 0.1050 8.2818 0.9080 0.1341 0.2088 0.6730 0.1814 5.3630
MAR(ϕ = 0.1); θ = 0.9 0.0280 0.1272 0.2202 0.0280 0.1048 8.6648 0.9730 0.1480 4.5471
ARUnif 0.7190 0.1083 6.6377 0.4890 0.1134 4.3107 0.0185 0.0778 0.2381
ARCau 0.3310 0.1618 2.0455 0.1830 0.1628 1.1243 0.3273 0.2009 1.6291
MCBEV 0.7600 0.1866 4.0721 0.7300 0.1836 3.9768 0.4640 0.2048 2.2652
ARCH 0.6530 0.1187 5.5014 0.6250 0.1191 5.2458 0.0790 0.1471 0.5371
AR 0.0040 0.1532 0.0261 0.0040 0.1580 0.0253 0.0040 0.1814 0.0221
AR(ϕ = 0.1); θ = 1 0.0010 0.1244 0.0080 0.0010 0.1319 0.0076 0.9460 0.1813 5.2166
AR(ϕ = −0.1); θ = 1 0.0040 0.1178 0.0339 0.0040 0.1243 0.0322 0.9570 0.1732 5.5241
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Figure 2: The ratio between the coverage proportion of the true extremal index value within the estimated
intervals and the respective range width (�cover/range") obtained for: (left-top) the runs (R), the cycles
(C), the intervals (I), the truncated (T) and the K-gaps (K); (right-top) the sliding blocks of Ferreira and
Ferreira ([10], 2022) (black) and of Northrop ([28], 2015) (grey), for block lengths b = 10, 20, ..., 70; (bottom)
the runs (R), the cycles (C), the intervals (I), the truncated (T) and the K-gaps (K), the sliding blocks of
Ferreira and Ferreira ([10], 2022) (black) and of Northrop ([28], 2015) (grey), for block lengths corresponding
to the largest �cover/range", denoted by B (from best) and with the smallest �cover/range", denoted by W
(from worst).
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Figure 5: Daily maximum temperature (in Celsius degrees) in the months of July and August, from 2001 to
2021, at the climatologic station Abrantes in the center of Portugal.

Table 8: Estimation results obtained for daily maximum temperatures when applying the runs (R), cycles
(C), intervals (I), truncated (T) and K-gaps (K) estimators based on IMT method which leads to the
validity of D(3) condition and the choice of threshold 37.7.

estimate lower upper rw
R 0.4190 0.3373 0.5670 0.2297
C 0.4095 0.3550 0.5589 0.2040
I 0.4423 0.3293 0.6456 0.3162
T 0.4474 0.3796 0.6328 0.2532
K 0.4340 0.3595 0.5128 0.1533
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of θ obtained from sliding blocks θ̃
(F )
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(N)
sl , for block sizes b = 10, 20, ..., 70; Right: Sliding blocks esti-

mates from θ̃
(F )
sl and θ̃

(N)
sl , for block sizes b = 10, 20, ..., 70, and θ̃

(N)
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5 Discussion

The extremal index is a very important measure in inferring extreme values of time series. In addition

to a�ecting the limiting law behavior of the maximum, it is also associated with a clustering e�ect of

exceedances of high values that can have harmful consequences. The estimation of the extremal index is

a long-standing subject in extreme value theory, and it still attracts the attention of researchers. Here

we present a study that covers several estimators, from the classic runs estimator to the most recent

methodologies in block maxima, such as Ferreira and Ferreira ([10] 2022) work resorting the theory of

bivariate extremes. This new approach is still at an early stage, and there is room to improve both

the estimation methodology that requires the generation of auxiliary samples and the analysis of the

asymptotic behavior of the estimator and obtaining con�dence intervals. Finding the asymptotic variance

of the extremal index estimators is a great challenge given the context of serial dependence. Thus the

resampling methodologies appear as good alternatives. However the choice of bootstrap block length is

a critical point of estimation. A careful analysis is still needed to ameliorate in practice the coverage

probabilities which proved to be poor in some cases. The great advanced in computing capabilities

that we are currently witnessing opens up good prospects for the implementation and development of

techniques such as bootstrap or jackknife. The area of machine learning is also a whole new horizon

waiting to be explored.
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