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Abstract

This paper presents three basic approximations developed to solve the
Adaptive Stochastic Multimodal Resource Allocation Problem. Two of them
are based on the DP model introduced in earlier papers ([23], [24]). The other
one uses NLP to solve this problem. The approximations developed consist in
considering the Work Content of some or all the activities of the project as
represented by their mean values. These approximations were applied to a set
of examples, and results were obtained and commented. As expected, running
times were reduced, compared to the original model, but the total cost was
underestimated, due to the use of means instead of the complete distribution.

Key Words: Activity Networks, Resource Allocation, Dynamic Program-
ming

1 Introduction and Background

After de..ning a dynamic programming (DP) model to be applied to the adaptive
resource allocation in stochastic multimodal project networks (see [23]), and after
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having implemented and tested the model with a set of networks (see [24]), we pro-
ceeded to develop basic approximations to this model, due to the complexity of the
problem. These approximations were able to reduce computation time considerably,
with still good results.

Before introducing the approximations, we are going to briety de..ne the problem.
Given a multimodal activity network®, with a stochastic work content (17,), we want
to decide the amount of resource to apply to each activity (x,), so that the total cost
iIs minimized. This cost includes the resource cost and the delay cost. The duration
of an activity depends on its work content and on the amount of resource allocated
to it. To evaluate the delay cost, a due date must be speci..ed (7)), as well as the unit
cost per period tardy (cz). To the best of our knowledge this problem has never been
treated before. Contributions to the classical ‘resource constrained project scheduling
problem’ (RCPSP) and its variants are numerous; the interested reader may wish to
consult the two most recent books on the subject by Demeulemeester and Herroelen
(2002) [10] and Neumann, Schwindt, and Zimmermann (2002) [20], and the references
cited therein, to gain a complete picture of developments in that aspect of project
scheduling.

We imposed the following assumptions:

e The work content of each activity is a random variable (r.v.) exponentially
distributed?.

e The amount of resource is speci..ed within a lower and an upper bound [/, u] .

e The availability of the resource is unlimited, so it doesn’t impose any limitations
to the problem.

The model developed to solve this problem will be reviewed, using a simple ex-
ample with only three activities (see ..gure 1).

The due date of the projectis 7' =9, and the unit cost per period tardy is ¢, = 4.
The resource allocation to each activity is denoted by z; for i = 1,2,3; with lower
limit [, = 0.5 and upper limit «; = 1.5 for all i. The z;’s are the decision variables
of this problem. The parameters {\;} of the distributions of the work content of the
activities are as shown in table 1.

Table 1. Parameters for the simple example
Activityi : |1 [ 2 3
Xi:[04]016(0.1

That is, each activity can be performed in any number of levels of resource intensity applied to
it, with resulting shorter or longer duration.
2This assumption was done for simplicity of exposition and computing.



Figure 1: Example network with its uniformly directed cutsets.

At any point in time the manager must cope with a subset of activities that lie
on a uniformly directed cutset (udc)®. In this simple example there are only two
udc’s: C; = {1,3} and Cy = {2, 3} . To be sure, at the outset the project manager is
concerned with activities 1 and 3, which lie on C;. Then, depending on the progress
in these two activities, he may eventually be concerned with activities 2 and 3, which
lie on . If the resource allocation to activity 3 is (temporarily) ..xed at, say, Z3, the
problem reduces to the optimal determination of the resource allocation to activities
1 and 2, which can be readily resolved by standard DP recursion. The set of “..xed”
activities is denoted by F; in this example F = {3} . Finally, searching over the
values of 3 with repeated optimization at each value would yield the (unconditional)
optimum allocation to all three activities. In general, our procedure determines the
udc’s of the network (which de..ne the stages of the DP iterative scheme), and the
cutset intersection index (cii), which represents the variables to be (temporarily)
..xed (see [23] for details).

The expected resource cost of the ..xed variables is denoted by rcf, which in this
case, is the expected cost of activity 3

ref =ds- & (Ws) = =2, ()
0.1
where W3 is the work content of activity 3, £ (Ws3) denotes its expected value, and 3
the amount of resource allocated to it. Reverse numbering of the DP stages yields

| F=(8Y) =ref + min € {a,W, +4€ ()}, @
where

U =max{0,YT3; — T}, ?3)
and

3A udc represent a set of possible active activities, during the life of the project.



T3 = max{ty + W, Wy : 4)

) A

) 3
The second and last stage would be de..ned as follows:

=01 F = {3}) = min &, Wi +E[f(T2)]} ®)
where
T,— % ®)

The solution for this network, obtained in 0.22 seconds®, is:

{z7, 25} = {1.25,1.5} @)
with an expected cost of 35.97.

The optimal value of 2 depends on the state of node 2, when it is reached, and
can be obtained by the previously developed optimal policy for stage 1, as de..ned in
equation (2). The time necessary to get results in this example is considerably small,
but for bigger networks, this time increases exponentially, taking hours and even days
to achieve®.

This model was implemented in Matlab. The pseudo-code can be accessed on the
internet®, or upon request by e-mail”.Details of the development of this application
can be seen in our previous paper ([24]).

2 The Approximations Developed

In this section we will introduce the basic approximations developed to solve this
problem. Two of them still use DP, and one uses non linear programming (NLP).
These approximations were developed considering that the Work Content of some or
all the activities of the project is represented by the mean value. The approximations
were applied to a set of examples, and results were obtained and will be commented.
As expected, running times were reduced, compared to the original model, but the
total cost was underestimated, due to the use of means instead of the complete
distribution ([13]).

4The computer used to do the experimentations was a Pentium 111, 650 MHz, 128 MB.
5See the order of complexity of this problem in our previous paper ([24]).
Swww.eng.uminho.pt/~dps/anabelat (Topic: research).

Tanabelat@dps.uminho.pt.



2.1 Approximation 1

This approximation is based on the DP model introduced ([23], [24], [25]), but
considers the Work Contents of the ..xed activities (set F) as represented by their
mean values. For the simple network, only W5 would be approximated to its mean

(@ =55 =10).
The approximated solution was obtained in 0.19 seconds, and it is stated in (8).

{o},235} = {1.25,1.0} ®)
with an expected cost of 27.65.

2.2 Approximation 2

This approximation is based on the DP model introduced and represents all random
variables by their mean values. These variables are the Work Contents of all the
activities. In the simple example above, we would have:

(W, Wy, W} = {2.50,6.25,10.00}. )

The solution for the simple network, was obtained in 0.12 seconds:

{x%, 23} = {1.25,1.0} (10)
with an expected cost of 21.81.

2.3 Approximation 3

This approximation uses NLP and considers all random variables as represented by
their mean values. These variables are the Work Contents of the all the activities. In
the simple example above, the work content will be as shown in (9).

The model was developed in the Excel Solver. The goal is to minimize the total
cost of the project, which includes the resource cost and the delay cost. The non-
linear function that represents the total cost, for the example project, can be seen in
(12).

F(:E) =x1Wi + 22Wa + 23W3 +cr, maX(O, t3 — T). (11)

The parameters introduced were the values of A, for all the activities, and the
correspondent work content was evaluated using expression (12).
1
=—. 12
> (12)
It was also introduced the value of 7= 9 and C';, = 4. The goal is to determine
the values of z, that minimize the function F(z).



Itis also necessary to know the value of ¢3, the time of realization of the last node
of the network. This value can be obtained using the expression (13).
W W-
t3 = max(tg + —2, t1 + —3), (13)
) I3
where t, = t; + 2 and t; = 0.
It is also necessary to include restrictions for the x limits, of the type 0.5 < z < 1.5.
Then, the minimization of the objective function was done, and the result, (14),
was obtained in 0.1 seconds.

{a7, 25,23} = {0.8,1.06,1.11} 14
with an expected cost of 19.79.

The Excel sheet that allowed to solve this problem, can be seen in ..gure 2.

Activity a Lambda a Wa xa [timeti
1 0,4 25 x1= 0,8 0:t1=0 F(x)= 19,79
2 0,16 6,25 x2= 1,06 3,113 : t2=t1+W1/x1
3 0,1 10 x3=/ 1,11 9,021 : t3=max(t1+W3/x3;t2+W2/x2)
F(x)=x1W1+x2W2+x3W3
u=t3- 0
delay u= 0,02 +cl*max(0;u)
T= 9
cl= 4

Figure 2: NLP in Excel (Simple example)

3 Examples and Results

The initial model and subsequent approximations were tested on a set of four projects
that range in size from 5 to 18 activities. These examples are shown in appendix A,
and the solutions obtained in appendix B. The solution times varied from a few
seconds to ..ve days on a Pentium 111, 650 MHz, 128 MB. The program output, for
the DP case, indicates the “optimal’” cost and the “best” values for the variables that
emanate from node 1, as well as the “best” values for the ..xed variables. The values
of the remaining decision variables depend on the state of the project, at the time
of the decision, and can be determined from the optimal policies developed for the
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corresponding stage. The words optimal and best are put between quotation marks
because they are not the absolute optima and best due to the discretization of the
work content and the times of node realizations. Finer meshes may result in improved
optima, at the price of (greatly) increased computational ecort. In the NLP case,
the discretization error does not exist, but the values obtained are not optimal, due
to the approximations.

There are two important remarks:

e Network 3 has only one more activity than network 2, but the time necessary
to get results (in the DP Model case) increases from 30 minutes to 23 hours.
This was due to the increased number of ..xed activities (from six to eight).
Thus the number of combinations generated for the ..xed variables increased
from 36 = 729 to 3® = 6561.

e To be able to obtain the solution for network 4, it was necessary to reduce the
number of points considered, for the resource allocation of the ..xed variables,
to two?. Ewven after this reduction, the results were obtained after 5 days, using
the straight DP model.

4 Conclusions and Future Research

After these set of experiments we can see that for the straight DP model, and for the
larger networks, the time necessary to get results is prohibitive. In theory, this is an
exact model. Armed with a powerful computer, we would be able to get real optimal
values. As this is not possible, we tried to develop simple approximations, to start
with, to improve computational time. And this was accomplished. As more variables
are approximated, the computational time is reduced. With NLP, the reduction is
even bigger.

The values obtained using the DP model can be seen as upper limits to the
optimum. This is due to the discretizations needed.

As we do approximations, the expected value of the cost tends to be lower, be-
cause, when we use means instead of the complete distribution, to represent the work
contents, the true conclusion dates are underestimated ([13]). That explains why the
values tend to decrease, as more variables are approximated.

Theoretically, approximations 2 and 3 should give the same results. The dizer-
ences observed are due to the discretizations needed in the DP model.

But rather then looking at the expected value of the cost, it is also important
to look at the values of the levels of resources (z’s) proposed by the model and the
approximations. There are cases in which these values don’t change much. Since these
values are stable, it is a good recomendation to use them, when implementing the

8For the other networks, the quantities of resources for the ..xed variables were discretized using
three points.



project. The others may not be so important, to the ..nal result. In approximation
3, the = values are dicerent from the others, because in NLP, it is not necessary to
use discretization, as in DP.

As future research we plan to keep improving results, times and searching for
better approximations to the optimum, namelly:

e Forfeit some ‘managerial fexibility’ in the adaptive optimization by ‘aggregat-
ing’ activities. The very act of ‘aggregation’ combines two or more activities
into a larger ‘aggregate activity’, which will necessarily delete nodes in the orig-
inal network. All aggregated activities shall be treated as a single activity to
which a resource allocation shall be made. This robs the manager of the fexi-
bility of varying the allocation to individual activities according to progress to
date, which was stated in the realization of the (deleted) nodes.

e Forfeit the generality of the DP approach in favor of the specialized treatment
of exponentially distributed r.v.’s which lead to the interpretation of the project
as a continuous time Markov chain. Such analysis may provide upper bound on
the expected cost of the project, which may be useful in the budgeting/bidding
process.

Finally, the DP approach is very demanding computationally, in whichever form
it is used. So we are compelled to try to apply other compu-search approaches to
this problem. These approaches will involve the use of various techniques such as
Monte Carlo Simulation combined with CPM evaluation, and a global optimization
technique based on the ‘Electromagnetism Algorithm’ designed by Birbil and Fang[5].
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A Example Networks and Parameters

A.1 Network 1

Figure 3: Network 1

The ..rst network has 5 activities (see ..gure 3). T'= 120 and ¢, = 8. In table 2
are the remaining parameters.

Table 2: Parameters for n rk 1
Activity || 1 2 3 |4 [5
Origin 1 1 2 2 3
Target 2 3 3 4 4

A 0.02 [ 0.03 | 0.04 | 0.024 | 0.025
Xmin 05 |05 |05 [05 0.5
X max 15 |15 [15 [ 15 1.5

A.2 Network 2

Network 2 (see ..gure 4) is of larger dimension (11 activities). For this network,
T =28 and ¢, = 8. The remaining parameters are presented in table 3.

Table 3: Parameters for network 2
Activity [ 1 | 2 |4 |5 |6 |7 [8 |9 |[10]|11

Origin |1 |1 |1 |2 |3 |2 |3 |4 |3 [5 |4
Target ||2 |3 |4 |3 |4 |5 |[5 |5 [6 [6 |6

w

A 01)00(04)02(03]008)04(0.2]0.1]03]0.3
Xmin 05/05 [05]05({05]05 |05([05|05]05([05
Xmax 15({15 | 15151515 |15]15]15[15]|15
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A.3 Network 3

Figure 4: Network 2

Figure 5: Network 3

Network 3 has one more activity than the last one (see ..gure 5), and dicerent
topology. T' =47 and ¢z, = 4. The remaining parameters are presented in table 4.

Table 4: Parameters for network 3
Activity [1 [2 [3 [4 |5 6 |7 |8 |9 J10]11 |12
Origin 1 1 1 1 2 2 3 3 4 5 6 7
Target 2 3 4 5 4 7 5 7 6 7 8 8
A 0.1]0.09|1008(0.1]009(0.08101]10.09]0.08|0.1]0.09]0.1
Xmin 05105 |05 |05)05 |05 05105 |05 [05(05 (0.5
Xinax 1515 |15 (15|15 |15 [15[15 |15 |15]|15 [15
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A.4 Network 4

Figure 6: Network 4

To ..nish this set of tests, we used the network of ..gure 6, which has a considerable

size compared to the previous ones. Here, T = 110 and ¢; = 10. The remaining
parameters are presented in table 5.

Table 5: Parameters for network 4

Activity | 1 2 3 4 5 6 7 8 9
Origin 1 1 1 |2 3 3 4 4 |5
Target 2 3 4 5 5 6 7 8 9

A 0.06 |1 0.04]0.1(0.07|0.08|0.04]0.08|10.2]0.07
Xrmin 05 (05 05105 |05 |05 |05 |05]05
X max 15 |15 (1515 (15 |15 |15 1515
Activity || 10 11 12 |13 14 15 |16 17 18
Origin 6 7 8 9 11 10 10 12 13
Target 11 13 10 11 12 12 13 14 14
A 0.05]0.08 | 0.07 [ 0.09 | 0.09]| 0.05]0.09]| 0.04 | 0.06
Xpnin 05 (05 |05 |05 |05 |05 |05 |05 |05
Xmax 15 |15 (15 |15 (15 [15 |15 [15 |15
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B Solutions

B.1

B.2

Network 1

Table 6: Results for network 1
Network 1 [ DP Model | Approx. 1 | Approx. 2 | Approx. 3
X1 1.0 1.0 1.25 1.03
X9 1.0 1.0 0.5 0.51
X3 0.87
Xy 1.5 1.0 0.5 0.59
X5 0.96
EV (Cost) 304.62 279.14 148.79 152.82
Run Time 9.6 sec. 8.4 sec. 6 sec. 1 sec.
Network 2

Table 7: Results for network 2
Network 2 [ DP Model | Approx. 1 | Approx. 2 | Approx. 3
X1 1.25 1.25 0.75 1.15
Xy 1.0 1.0 1.0 0.8
X3 0.5 0.5 0.5 0.5
X4 0.95
X5 1.16
Xg 1.0 0.5 1.0 0.82
X7 0.5 0.5 0.5 0.5
X8 0.72
Xo 1.0 0.5 1.0 0.9
X10 0.82
X11 1.0 0.5 0.5 0.5
EV (Cost) 106.76 75.04 58.94 58.75
Run Time [ 30 min. 13 min. 6 min. 1 sec.
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Network 3

Table 8: Results for network 3
Network 3 | DP Model | Approx. 1| Approx. 2 | Approx. 3

X1 1.25 1.25 0.75 0.93
X9 1.0 0.5 1.0 0.81
Xs 1.0 1.0 0.5 0.55
Xy 0.5 0.5 0.5 0.5
X5 0.93
Xg 1.0 0.5 0.5 0.5
7 1.0 0.5 1.0 0.82
Xg 0.5 0.5 0.5 0.5
Xg 0.97
X10 1.0 0.5 1.0 0.82
X11 0.97
X192 1.5 1.0 1.0 1.15
EV(Cost) | 182.91 117.92 103.26 91.53
Run Time | 23 h. 7 h. 3 h. 1 sec.
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Network 4

Table 9: Results for network 4
Network 4 | DP Model | Approx. 1| Approx. 2 | Approx. 3

X1 0.75 1.25 0.5 0.69
X2 1.25 1.25 0.75 1.3
X3 1.25 0.75 0.75 0.5
Xy 0.67
X5 0.75 0.75 0.75 0.5
X6 1.25 1.25 0.75 1.29
X7 0.75 0.75 0.75 0.5
X8 1.25 0.75 0.75 0.5
Xg 0.66
X190 1.25 0.75 0.75 1.14
X1 1.25 0.75 0.75 0.5
X12 0.75 0.75 0.75 0.59
X13 0.73
X14 1.02
X1 0.75 0.75 0.75 0.58
X16 1.25 0.75 0.75 0.55
X17 15
X1 0.75 0.75 0.75 0.56
EV(Cost) | 339.07 271.38 210.19 144.07
Run Time || 5 days 9 h. 2 h. 1 sec.
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