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Abstract

The risk of occurrence of atypical phenomena is a cross-cutting concern in several areas, such as engineering,

climatology, �nance, actuarial, among others. Extreme value theory is the natural tool to approach this theme.

Many of these random phenomena carry variables de�ned in time and space, usually modeled through random

�elds. Thus, the study of random �elds in the context of extreme values becomes imperative and has been developed

especially in the last decade. In this work, we propose a new random �eld, called pMAX, designed for modeling

extremes. We analyze its dependence and pre-asymptotic dependence structure through the corresponding bivariate

tail dependence coe�cients. Estimators for the model parameters are obtained and their �nite sample properties

analyzed. Examples with simulations illustrate the results.
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1 Introduction

Modeling non-deterministic phenomena in a space-time context, such as precipitation values in a territory over a

given period of time, can be done through random �elds

{Y (x, t) : x ∈ R2, t ∈ R+},

where x can be interpreted as the location and t the instant at which the random amount Y was recorded (see e.g.

Buishand et al. [1] 2008, Hristopulos [8] 2020 and references therein).

Considering time discretization t ∈ N, we can write the previous stochastic process as

{Y (x, n) : x ∈ R2, n ∈ N} ≡ {Yn(x) : x ∈ R2, n ∈ N} =
⋃
n≥1

{Yn(x) : x ∈ R2} .

Thus, modeling through a sequence of random �elds

{Yn(x) : x ∈ R2}n≥1

and studying their dependence and their �nite marginal distributions is an approach for the space-time analysis of

random phenomena.
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In this work, we intend to analyze the simultaneous occurrence of extreme values for the random variables

(r.v.'s) Yn(x) and Ym(x′), corresponding to any two locations x and x′ and instants n and m, for a sequence of

random �elds {Yn(x) : x ∈ R2}n≥1, designated by pMAX �elds. We say that a variable Yn(x) is pMAX, where p

is a reference to power, when it is of the form

Yn(x) = Xn(x) ∨ Zn(x)1/α(x), x ∈ R2, (1)

where Xn(x) and Zn(x) are r.v.'s and α(x) > 0. In the literature there are models involving pMAX variables, as

can be seen, for example, in Ferreira and Ferreira ([5] 2014), He�ernan et al. ([6] 2017) and references therein.

In the following section, we present the assumptions on the sequences of random �elds {Xn(x) : x ∈ R2}n≥1,

{Zn(x) : x ∈ R2}n≥1 and on the parameter function α : R2 → R+, considered along the paper. In Sections 3 and

4 we study the temporal, spatial and spatio-temporal dependence, as well as the tendency for oscillations in the

high values. Events related to extremes of Yn(x), x ∈ R2, n ≥ 1, will concern �exceedances of a real level y� de�ned

by {Yn(x) > y}. The joint occurrence of high values for Yn(x) and Ym(x′) will be studied using bivariate tail

dependence coe�cients (Joe [10] 1997). Section 4 addresses, in particular, asymptotic independence in the sense of

Ledford and Tawn ([12] 1996). This is a kind of weak or residual tail dependence vanishing at increasingly extreme

quantiles and important for inferential purposes in order to avoid biased results. In section 5, we exemplify the

results, strengthening the hypotheses for concrete models that we will simulate. Section 6, brie�y presents a simple

procedure to estimate the model parameters α(x) > 0, x ∈ R2.

2 Presenting the model

The pMAX random �eld that we propose is de�ned by (1), and satis�es conditions (i), (ii) and (iii) described below:

(i) {Xn(x) : x ∈ R2}n≥1 = {Xn}n≥1 is a stationary sequence of random �elds with standard Fréchet marginals

(i.e., P (Xn(x) ≤ z) = exp(−1/z), z > 0);

(ii) {Zn(x) : x ∈ R2}n≥1 = {Zn}n≥1 is a sequence of independent and identically distributed (i.i.d.) random

�elds, with standard Fréchet marginals and independent of the previous sequence;

(iii) α(x), x ∈ R2, is a positive real valued function.

For any locations x, x′ ∈ R2, z, z′ > 0 and n,m ≥ 1, we have:

P (Yn(x) ≤ z) = e−z
−1

e−z
−α(x)

,

P (Yn(x) ≤ z, Yn+m(x′) ≤ z′) = P (Xn(x) ≤ z,Xn+m(x′) ≤ z′)e−z
−α(x)

e−z
−α(x′)

,

P (Yn(x) ≤ z, Yn(x′) ≤ z′) = P (Xn(x) ≤ z,Xn(x′) ≤ z′)P (Zn(x) ≤ z, Zn(x′) ≤ z′).

A sequence of pMAX random �elds, {Yn(x) : x ∈ R2}n≥1 = {Yn}n≥1, presents temporal and spatial dependence

regulated by the function α and by the spatial and temporal dependence structure of {Xn}n≥1 and {Zn}n≥1, as

we shall see.

3 Tail dependence

We describe the spatial and temporal dependence of the pMAX model through the tail dependence coe�cient

(Sibuya [17] 1960, Joe [10] 1997):

λ(Yn+r(x
′)|Yn(x)) = lim

y→∞
P (Yn+r(x

′) > y | Yn(x) > y), (2)

with r ≥ 0, n ≥ 1, x, x′ ∈ R2.

It will be said that (Yn(x), Yn+r(x
′)) is upper tail dependent when λ(Yn+r(x

′)|Yn(x)) > 0 and upper tail

independent if λ(Yn+r(x
′)|Yn(x)) = 0.
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When r > 0 and x = x′, λ(Yn+r(x)|Yn(x)) summarizes the tail temporal dependence in location x. If r = 0 and

x 6= x′, then λ(Yn(x
′)|Yn(x)) measures the tail spatial dependence between locations x and x′. When r > 0 and

x 6= x′, λ(Yn+r(x
′)|Yn(x)) evaluates tail dependence in time and in space.

Proposition 3.1. In a pMAX random �eld {Yn}n≥1, for r > 0, we have

λ(Yn+r(x
′)|Yn(x)) =


0 , α(x) < 1
1
2
λ(Xn+r(x

′)|Xn(x)) , α(x) = 1

λ(Xn+r(x
′)|Xn(x)) , α(x) > 1

,

and, if r = 0 and x 6= x′, then

λ(Yn(x
′)|Yn(x)) =


λ(Zn(x

′)1/α(x
′)|Zn(x)1/α(x)) , α(x) < 1

1
2

(
λ(Xn(x

′)|Xn(x)) + λ(Zn(x
′)1/α(x

′)|Zn(x)1/α(x))
)

, α(x) = 1

λ(Xn(x
′)|Xn(x)) , α(x) > 1

.

Proof. Observe that

P (Yn+r(x
′) > y | Yn(x) > y) =

1− P (Yn+r(x
′) ≤ y)− P (Yn(x) ≤ y) + P (Yn(x) ≤ y, Yn+r(x′) ≤ y)

1− P (Yn(x) ≤ y)

= 1− e−y
−1−y−α(x′)

− P (Xn(x) ≤ y,Xn+r(x′) ≤ y)P (Zn(x) ≤ yα(x), Zn+r(x′) ≤ yα(x
′))

1− e−y−1−y−α(x)

= 1− e−y
−1−y−α(x′)

− [P (Xn+r(x
′) ≤ y)− P (Xn(x) > y,Xn+r(x

′) ≤ y)]P (Zn(x) ≤ yα(x), Zn+r(x′) ≤ yα(x
′))

1− e−y−1−y−α(x)

= 1− e−y
−1−y−α(x′) 1−

P (Zn(x)≤yα(x),Zn+r(x
′)≤yα(x′))

e−y
−α(x′)

1− e−y−1−y−α(x)

− P (Xn+r(x
′) ≤ y | Xn(x) > y)

1− e−y
−1

1− e−y−1−y−α(x)
P (Zn(x) ≤ yα(x), Zn+r(x′) ≤ yα(x

′)),

where we have

lim
y→∞

P (Xn+r(x
′) ≤ y | Xn(x) > y)

1− e−y
−1

1− e−y−1−y−α(x)
P (Zn(x) ≤ yα(x), Zn+r(x′) ≤ yα(x

′))

=


0 , α(x) < 1
1
2
(1− λ(Xn+r(x′)|Xn(x))) , α(x) = 1

1− λ(Xn+r(x′)|Xn(x)) , α(x) > 1

.

If r > 0, then Zn(x) and Zn+r(x
′) are independent and

lim
y→∞

1− P (Zn(x)≤yα(x),Zn+r(x
′)≤yα(x′))

e−y
−α(x′)

1− e−y−1−y−α(x)
= lim
y→∞

1− e−y
−α(x)

1− e−y−1−y−α(x)
=


1 , α(x) < 1
1
2

, α(x) = 1

0 , α(x) > 1

.

If r = 0 and x 6= x′, then

lim
y→∞

e−y
−1−y−α(x′) 1−

P (Zn(x)≤yα(x),Zn+r(x
′)≤yα(x′))

e−y
−α(x′)

1− e−y−1−y−α(x)

= lim
y→∞

e−y
−1−y−α(x′) 1−

P (Zn+r(x
′)≤yα(x′))−P (Zn(x)>y

α(x),Zn+r(x
′)≤yα(x′))

e−y
−α(x′)

1− e−y−1−y−α(x)

=
P (Zn+r(x

′) ≤ yα(x
′)|Zn(x) > yα(x))(1− e−y

−α(x)

)

1− e−y−1−y−α(x)
e−y

−1
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=


1− λ(Zn(x′)1/α(x

′)|Zn(x)1/α(x)) , α(x) < 1
1
2
(1− λ(Zn(x′)1/α(x

′)|Zn(x)1/α(x))) , α(x) = 1

0 , α(x) > 1

.

The previous result shows that the pMAX random �eld {Yn}n≥1 is temporal or spatial-temporal upper tail

independent when α(x) < 1, whereas upper tail dependence is regulated by the upper tail dependence of {Xn}n≥1.

On the other hand, spatial upper tail dependence is regulated by the spatial dependence structure of {Xn}n≥1 and

{Zn}n≥1.

The case r > 0 above was already stated in Ferreira and Ferreira ([5] 2014; Proposition 2.5).

4 Pre-asymptotic dependence

Previously we have seen that tail dependence can be assessed through coe�cient λ(Yn+r(x
′)|Yn(x)), where a unit

value means total dependence and a null value corresponds to tail independence. In the latter case, there may be

a residual or pre-asymptotic dependence captured by the velocity of convergence of the limit in (2) towards zero.

More precisely, if

P (Xn+r(x
′) > y | Xn(x) > y) ∼ y−1/η

(X,r)

(x′|x)−1L(X,r)

(x′|x)(y) (3)

as y → ∞, where function L(X,r)

(x′|x)(y) is slow varying (L(y) is a slow varying function if L : R+ → R and

L(ty)/L(y) → 1, as y → ∞, t > 0), we say that η
(X,r)

(x′|x) ∈ (0, 1] is a residual tail dependence coe�cient usu-

ally denoted in literature as Ledford and Tawn tail dependence coe�cient (see, e.g., Ledford and Tawn [12] 1996,

He�ernan et al. [6] 2007, Ferreira and Ferreira [5] 2014 and references therein). Notation a(y) ∼ b(y) in (3) stands

for a(y)/b(y)→ 1, as y →∞. Observe that η
(X,r)

(x′|x) is a space-time measure if r > 0 and x 6= x′, a temporal measure

if r > 0 and x = x′ and a spatial measure if r = 0 and x 6= x′ (we denote η
(X)

(x′|x) ≡ η
(X,0)

(x′|x)). Observe that tail de-

pendence (λ > 0) corresponds to η = 1 and η < 1 means asymptotic tail independence. Under exact independence

we have η = 1/2. A classical example is assigned to Gaussian random pairs with correlation coe�cient ρ, where

η = (1 + ρ)/2.

Proposition 4.1. In a pMAX random �eld satisfying (3) with r > 0, we have

η
(Y,r)

(x′|x) =


α(x)max

(
η
(X,r)

(x′|x),
1

1+min(α(x′),1)

)
, α(x) < 1

max
(
η
(X)

(x′|x),
1

1+α(x)
, 1
1+α(x′)

)
, α(x) ≥ 1

.

If r = 0 and, in addition,

P (Zn(x
′)1/α(x

′) > y | Zn(x)1/α(x) > y) ∼ y−1/η
(Z)

(α(x′)|α(x))
−1L(Z)

(α(x′),α(x))(y) (4)

holds, as y →∞, where L(Z)

(α(x′),α(x))(y) is a slowly varying function and η
(Z)

(α(x′)|α(x)) ∈ (0, 1], then

η
(Y )

(x′|x) = min (1, α(x))max

(
η
(X)

(x′|x), η
(Z)

(α(x′)|α(x)),
1

1 + α(x)
,

1

1 + α(x′)

)
.

Proof. Observe that

P (Yn+r(x
′) > y, Yn(x) > y)

= P (Xn+r(x
′) > y,Xn(x) > y)

(
1− P (Zn+r(x

′) > yα(x
′))− P (Zn(x) > yα(x))

)
+ P (Zn+r(x

′) > yα(x
′), Zn(x) > yα(x))

(
1− P (Xn+r(x

′) > y)− P (Xn(x) > y)
)

+ P (Xn+r(x
′) > y,Xn(x) > y)P (Zn+r(x

′) > yα(x
′), Zn(x) > yα(x))
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+ P (Xn(x) > y)P (Zn+r(x
′) > yα(x

′)) + P (Xn+r(x
′) > y)P (Zn(x) > yα(x))

and thus, as y →∞,

P (Yn+r(x
′) > y, Yn(x) > y)

∼ P (Xn+r(x
′) > y,Xn(x) > y) + P (Zn+r(x

′) > yα(x
′), Zn(x) > yα(x)) + y−1

(
y−α(x

′) + y−α(x)
)
.

If r > 0, under condition (3), we have

P (Yn+r(x
′) > y, Yn(x) > y) ∼ y−1/η

(X)

(x′|x)L(X)

(x′|x)(y) + y−α(x
′)−α(x) + y−1

(
y−α(x

′) + y−α(x)
)
.

and therefore

P (Yn+r(x
′) > y, Yn(x) > y)

P (Yn(x) > y)
1/η

(Y )

(x′|x)

∼
y
−1/η

(X)

(x′|x)L(X)

(x′|x)(y) + y−α(x
′)−α(x) + y−1−α(x′) + y−1−α(x)

(y−1 + y−α(x))
1/η

(Y )

(x′|x)

.

If r = 0, just observe that, by (3) and (4), we have

P (Yn(x
′) > y, Yn(x) > y)

∼ y
−1/η

(X)

(x′|x)L(X)

(x′|x)(y) + y
−1/η

(Z)

(α(x′)|α(x))L(Z)

(α(x′)|α(x))(y) + y−1
(
y−α(x

′) + y−α(x)
)
.

The case r > 0 in the previous result was already derived in Ferreira and Ferreira ([5] 2014; Proposition 2.6)

5 Examples

For the pMAX model de�ned in (1) we shall now consider particular cases of {Xn(x), x ∈ R2}n≥1 and {Zn(x), x ∈
R2}n≥1 to illustrate the several types of dependence captured by the previously presented coe�cients. {Xn(x), x ∈
R2}n≥1 will be taken as a sequence of moving maxima random �elds, �rst of a sequence of i.i.d. random �elds with

unit Fréchet margins and second of a sequence of i.i.d. random �elds with unit Fréchet margins exhibiting spatial

dependence. In the latter case the dependence between the margins are given by the Schlather model (Schlather

[16] 2002).

Example 5.1. Let {X̂n(x), x ∈ R2}n≥1 be an i.i.d. sequence of random �elds of unit Fréchet independent margins.

Consider

Xn(x) =
2

3
X̂n(x) ∨

1

3
X̂n−1(x), n ≥ 1,

and {Zn(x) = Zn, x ∈ R2}n≥1. Thus we have a stationary sequence of random �elds {Xn(x), x ∈ R2}n≥1 with

independent margins and {Zn}n≥1 i.i.d.. The marginal distributions FXn(x) remain standard Fréchet.

In each location x ∈ R2, the temporal dependence of {Yn(x)}n≥1 will be induced by the 1-dependence of

{Xn(x)}n≥1, whereas the spatial dependence will be induced by common Zn to every locations, regulated by α(x).

More precisely, we have temporal dependence given by

λ(Yn+r(x)|Yn(x)) =


0 , α(x) < 1 ∨ r > 1

1/6 , α(x) = 1 ∧ r = 1

1/3 , α(x) > 1 ∧ r = 1,

(5)

space-time dependence

λ(Yn+r(x
′)|Yn(x)) = 0, r ≥ 1, n ≥ 1,
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for x 6= x′, and spatial dependence

λ(Yn(x
′)|Yn(x)) =


1 , α(x′) ≤ α(x) < 1

1/2 , α(x′) ≤ α(x) = 1

0 , otherwise.

Since the tail dependence coe�cient is invariant to increasing transformations, one can rather consider

λ(F (Yn+r(x
′))|F (Yn(x))), n ≥ 1, r ≥ 0, x, x′ ∈ R2, where F is the standard Fréchet distribution function. Ob-

servations of pairs (F (Yn(x)), F (Yn+r(x
′))), n ≥ 1, r ≥ 0, x, x′ ∈ R2, are plotted in Figures 1, 2 and 3 to highlight,

respectively, the spatial (r = 0 and x 6= x′), temporal (r > 0 and x = x′) and spatial-temporal (r > 0 and x 6= x′)

dependence.

For pre-asymptotic dependence, we have temporal

η
(Y,r)

(x) =


max(1/2, α(x)) , α(x) < 1 ∧ r = 1

1 , α(x) ≥ 1 ∧ r = 1

1/2 , otherwise.

space-time η
(Y,r)

(x′|x) = 1/2 and spatial

η
(Y )

(x′|x) =



1 , α(x′) ≤ α(x) ≤ 1
α(x)

1+α(x)
, α(x) < 1 < α(x′)

α(x)
α(x′) , α(x) < 1, α(x) < α(x′) < 1 + α(x)

max
(

1
2
, 1
α(x′)

)
, 1 < α(x) < α(x′)

1
1+α(x′) , α(x′) < 1 < α(x)
1

α(x)
, α(x′) < 1 < α(x) < 1 + α(x′)

max
(

1
2
, 1
α(x)

)
, 1 < α(x′) < α(x) .

Example 5.2. Let us now modify the previous example, so that {X̂n(x), x ∈ R2}n≥1 is an i.i.d. sequence of random

�elds with unit Fréchet margins exhibiting spatial dependence. More precisely, with the dependence between the

margins X̂n(x) and X̂n(x
′) given by the Schlather model. Hence, according to Schlather ([16] 2002), X̂n(x)

d
= X̂(x)

where

X̂(x) = max
i≥1

ξimax{0, Ui(x)}, x ∈ R,

with {Ui(x), x ∈ R}i≥1 a sequence of independent stationary standard Gaussian processes. For each i ≥ 1,

{Ui(x), x ∈ R}i≥1 has correlation function ρ(h), scaled so that E[max{0, Yi(x)}] = 1 and {ξi}i≥1 are the points of

a Poisson process on R+ with intensity measure ξ−2dξ. It is a max-stable process (de Haan [4] 1984).

Once again we shall consider {Xn(x) = 2
3
X̂n(x) ∨ 1

3
X̂n−1(x), x ∈ R2}n≥1 and {Zn(x) = Zn, x ∈ R2}n≥1

independent of the previous sequence. For each location x ∈ R2, the temporal dependence of {Yn(x) = Xn(x) ∨
Z

1/α(x)
n }n≥1 is regulated by the 1-dependence of {Xn(x)}n≥1, while the spatial dependence is induced by the common

value of Zn in every location and by the correlation ρ(h), where h ∈ R+ is the Euclidean distance between locations

x and x′.

For the temporal dependence we �nd again λ(Yn+r(x)|Yn(x)), r ≥ 1, given in (5), as expected. As to what

concerns space-time dependence, for x 6= x′, r > 1, n ≥ 1, λ(Yn+r(x
′)|Yn(x)) = 0, from the 1-dependence of

{Yn}n≥1. On the other hand, since

P (X̂n(x) ≤ z, X̂n(x′) ≤ z′) = exp

[
−1

2

(
1

z
+

1

z′

)(
1 +

√
1− 2(ρ(h) + 1)

zz′

(z + z′)2

)]
,

for x, x′ ∈ R2 and h = ‖x− x′‖, we �nd, for x 6= x′, n ≥ 1,

λ(Yn+1(x
′)|Yn(x)) =


0 , α(x) < 1

1
2

(
1−
√

1− 4
9
(ρ(h)+1)

2

)
, α(x) = 1

1−
√

1− 4
9
(ρ(h)+1)

2
, α(x) > 1

(6)
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Figure 1: Observations of (F (Yn(x)), F (Yn(x
′))) n ≥ 1, x, x′ ∈ R2, x 6= x′ for di�erent values of α(x′) and α(x)
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Figure 2: Observations of (F (Yn(x)), F (Yn+r(x))) n ≥ 1, r ≥ 1, x ∈ R2, for di�erent values α(x)

and spatial dependence given by

λ(Yn(x
′)|Yn(x)) = lim

y→∞

 1

1 + y1−α(x)

1−
√

1− 1
2
(ρ(h) + 1)

2

+
y−(α(x′)∨α(x))

y−1 + y−α(x)



=



1−
√

1− 1
2
(ρ(h)+1)

4
+ 1

2
, α(x) = 1 ∧ α(x′) < 1

1−
√

1− 1
2
(ρ(h)+1)

4
, α(x) = 1 ∧ α(x′) > 1

0 , α(x) < 1 ∧ α(x′) > α(x)

1 , α(x) < 1 ∧ α(x′) ≤ α(x)
1−
√

1− 1
2
(ρ(h)+1)

2
, α(x) > 1

.

When x = x′ the result in (6) leads again to (5).

In the forthcoming simulations we shall consider ρ(h) belonging to the powered exponential parametric family,

i.e. ρ(h) = exp[−(h/c2)ν ], where c2 ∈]0,+∞[ is the range parameter and ν ∈]0, 2] is the smooth parameter, more

precisely we shall consider ρ(h) = exp(−h).
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Figure 3: Observations of (F (Yn(x)), F (Yn+r(x
′))) n ≥ 1, r > 1, x, x′ ∈ R2, for di�erent values of α(x′) and α(x)

6 Estimation of model parameters

The pMAX random �eld de�ned in (1) sets on parameters α(x) > 0 which vary with locations x ∈ R2. The

estimation of these parameters is essential for practical applications of the model. We shall therefore present a

possible simple way to estimate α(x) at a given location x ∈ R2.

As previously pointed out, for any location x ∈ R2 the distribution function of Yn(x), n ≥ 1, is given by

F (z) ≡ FYn(x)(z) = e−z
−1−z−α(x)

, for all z > 0. We can then write

α(x) =
ln(− ln(F (z))− 1

z
)

ln
(
1
z

) , x ∈ R2, 0 < z 6= 1. (7)

The parameter α(x) �controls� the tail of the distribution F (z), z > 0, of Yn(x), n ≥ 1. Thus, values of α(x)

smaller or equal to one lead to lighter tail distributions than values greater than one.

Expression (7) provides a simple way to estimate the parameter α(x), x ∈ R2, involved in model (1). Therefore,

if (Y1, . . . , Yn) is a random sample of Yn(x), n ≥ 1, for a given x ∈ R2, α(x) > 0 can be estimated with

α̂n(x) =
1

n

n∑
i=1

ln(− ln(F̂n(zi))− 1/zi)

ln(1/zi)
(8)

where F̂n(y), y ∈ R, denotes the empirical distribution function, associated to the n−sample (Y1, . . . , Yn), de�ned

as

F̂n(y) =
1

n

n∑
j=1

1I{Yj≤y},

with 1IA the indicator of an event A. The n values (z1, . . . , zn) are such that zi > 1 and F̂n(zi) < 1, i = 1, . . . , n.

Although F̂n(y) is an unbiased and consistent estimator for F (y), we can plug in smoother estimators of the

d.f. F, such as kernel estimators, on (8). This will naturally result in di�erent estimators for α(x).

In what follows, we explore through simulations the �nite sample properties of the proposed estimator (8) for

parameter α(x) at a given location x ∈ R2.

Each simulated data set consists of 1000 independent realizations of a random sample (Y1, . . . , Yn) of (1), with

Xn(x) and Zn(x), at a location x ∈ R2, de�ned as in Examples 5.1 and 5.2, for di�erent values of α(x) > 0. Four

di�erent sample sizes are considered for each data set. The sample means µ̂(α̂n,i(x)) and the sample standard

deviations σ̂(α̂n,i(x)) of the estimates α̂n,i(x), i = 1, . . . , 1000, depending on the sample size n, were computed.

The bias and the root mean squared errors (RMSE(α̂n,i(x))) were also determined. The n values (z1, . . . , zn) were

9



Table 1: Estimation results for α(x) > 0 in model (1) of Example 5.1

95th percentile

α(x) n µ̂(α̂n(x)) BIAS(α̂n(x)) σ̂(α̂n(x)) RMSE(α̂n(x))
0.10 n = 100 0.1010 0.0010 0.0306 0.0306

n = 500 0.0995 -0.0005 0.0071 0.0071
n = 1000 0.1002 0.0002 0.0048 0.0048
n = 5000 0.1000 3.59× 10−5 0.0020 0.0020

0.50 n = 100 0.5027 0.0027 0.0808 0.0808
n = 500 0.4981 -0.0019 0.0317 0.0317
n = 1000 0.4994 -0.0006 0.0221 0.0221
n = 5000 0.5000 2.34× 10−5 0.0095 0.0095

1.00 n = 100 1.0212 0.0212 0.2108 0.2118
n = 500 1.0079 0.0079 0.0884 0.0887
n = 1000 1.0041 0.0041 0.0604 0.0605
n = 5000 1.0003 0.0003 0.0254 0.0254

1.50 n = 100 1.5308 0.0308 0.4014 0.4024
n = 500 1.5387 0.0387 0.2243 0.2275
n = 1000 1.5253 0.0253 0.1658 0.1676
n = 5000 1.5045 0.0045 0.0711 0.0712

2.00 n = 100 1.9379 -0.0621 0.6186 0.6214
n = 500 1.9982 -0.0018 0.3579 0.3577
n = 1000 2.0063 0.0063 0.2971 0.2970
n = 5000 2.0327 0.0327 0.1916 0.1943

75th percentile

α(x) n µ̂(α̂n(x)) BIAS(α̂n(x)) σ̂(α̂n(x)) RMSE(α̂n(x))
0.10 n = 100 0.1008 0.00081 0.0367 0.0367

n = 500 0.1000 4.42× 10−5 0.0084 0.0084
n = 1000 0.1000 4.85× 10−5 0.0056 0.0056
n = 5000 0.1000 2.39× 10−5 0.0024 0.0024

0.50 n = 100 0.5060 0.0060 0.1319 0.1320
n = 500 0.5040 0.0040 0.0527 0.0528
n = 1000 0.5012 0.0012 0.0372 0.0372
n = 5000 0.5008 0.0008 0.0161 0.0161

1.00 n = 100 1.0387 0.0387 0.2927 0.2951
n = 500 1.0051 0.0051 0.1173 0.1174
n = 1000 1.0003 0.0003 0.0806 0.0805
n = 5000 1.0001 9.61× 10−5 0.0349 0.0349

1.50 n = 100 1.5452 0.0452 0.4753 0.4772
n = 500 1.5124 0.0124 0.1866 0.1869
n = 1000 1.5029 0.0029 0.1289 0.1289
n = 5000 1.4994 -0.0006 0.0566 0.0566

2.00 n = 100 2.1143 0.1143 0.6962 0.7052
n = 500 2.0322 0.0322 0.2734 0.2752
n = 1000 2.0222 0.0222 0.1914 0.1926
n = 5000 2.0005 0.0005 0.0843 0.0843

considered to be an arithmetic sequence of n numbers from 1.1 to the kth percentile of (y1, . . . , yn), with k = 95

and k = 75. Tables 1 and 2 summarize the estimation results obtained for the two percentile choices, respectively

the 95th and the 75th percentile.

The results of Tables 1 and 2 show that the proposed estimator for α(x) has an overall good performance.

Due to the tail weight of F (z) the estimator has a better behavior for α(x) ≤ 1 (light tail) when the empirical

distribution function is evaluated to higher percentiles of the data, whereas for α(x) > 11 (heavy tail) better results

are obtained when the empirical distribution function is evaluated to lower percentiles of the data.

Note that when α(x) ≤ 1, its value a�ects the measures of dependence, λ(Yn(x
′)|Yn(x)) and η(Y )

(x′|x), previously

considered, and it corresponds to the tail index of the marginal Yn(x), so it can be estimated as such. Several

estimators for the tail index can be found in the literature, being the most known the Hill, Pickands and moments

(Hill [7] 1975, Pickands [11] 1975, Dekkers et al. [2] 1989). The consistency and asymptotic normality of these
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Table 2: Estimation results for α(x) > 0 in model (1) of Example 5.2

95th percentile

α(x) n µ̂(α̂n(x)) BIAS(α̂n(x)) σ̂(α̂n(x)) RMSE(α̂n(x))
0.10 n = 100 0.0994 -0.0006 0.0311 0.0311

n = 500 0.1001 0.0001 0.0069 0.0069
n = 1000 0.1001 0.0001 0.0047 0.0047
n = 5000 0.0999 -6.28×10−5 0.0021 0.0021

0.50 n = 100 0.5027 0.0027 0.0822 0.0822
n = 500 0.4993 -0.0007 0.03199 0.03120
n = 1000 0.4999 -8.34 0.0208 0.0208
n = 5000 0.5000 2.39×10−5 0.0096 0.0096

1.00 n = 100 1.0345 0.0345 0.2294 0.2319
n = 500 1.0057 0.0057 0.0851 0.0853
n = 1000 1.0013 0.0013 0.0576 0.0576
n = 5000 1.0005 0.0005 0.0264 0.0264

1.50 n = 100 1.5286 0.0286 0.4206 0.4214
n = 500 1.5336 0.0336 0.2315 0.2338
n = 1000 1.5316 0.0316 0.1739 0.1766
n = 5000 1.5048 0.0048 0.0715 0.0716

2.00 n = 100 1.9551 -0.0449 0.6755 0.6767
n = 500 2.0069 0.0069 0.3582 0.3580
n = 1000 2.0242 0.0242 0.2998 0.3006
n = 5000 2.0378 0.0378 0.1904 0.1941

75th percentile

α(x) n µ̂(α̂n(x)) BIAS(α̂n(x)) σ̂(α̂n(x)) RMSE(α̂n(x))
0.10 n = 100 0.1000 4.33×10−5 0.0369 0.0368

n = 500 0.1002 0.0002 0.0086 0.0086
n = 1000 0.1003 0.0003 0.0056 0.0057
n = 5000 0.1001 8.43×10−5 0.0022 0.0022

0.50 n = 100 0.5078 0.0078 0.1366 0.1367
n = 500 0.5013 0.0013 0.0530 0.0530
n = 1000 0.5011 0.0011 0.0365 0.0365
n = 5000 0.5006 0.0006 0.0160 0.0160

1.00 n = 100 1.0403 0.0403 0.2974 0.3000
n = 500 1.0011 0.0011 0.1159 0.1159
n = 1000 1.0032 0.0032 0.0820 0.0820
n = 5000 1.0014 0.0014 0.0371 0.0371

1.50 n = 100 1.5511 0.0511 0.4414 0.4442
n = 500 1.5099 0.0099 0.1764 0.1766
n = 1000 1.5037 0.0037 0.1270 0.1269
n = 5000 1.5029 0.0029 0.0571 0.0572

2.00 n = 100 2.0734 0.0734 0.6760 0.6797
n = 500 2.0269 0.0269 0.2774 0.2785
n = 1000 2.0119 0.0119 0.1861 0.1864
n = 5000 2.0068 0.0068 0.0843 0.0845

estimators was proved under various regularity conditions, some not easy to verify, and in an i.i.d. context.

Nevertheless, there are some studies considering a stationary framework (see, for instance, Rootzén et al. [15] 1990,

Hsing [9] 1991, Resnick and Starica, [13] [14] 1995 and 1998, Drees [3] 2003).

7 Discussion

The pMAX model presented in this work is another contribution to the modeling of heavy tail random �elds. The

α(x) parameter allows for an encompassing extreme dependency structure, including asymptotic and pre-asymptotic

dependence. If α(x) is less than or equal to 1, its value a�ects the measures of dependence, λ(Yn(x
′)|Yn(x)) and

η
(Y )

(x′|x), that were considered here. In this case, α(x) also corresponds to the tail index of the marginal Yn(x), so it
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can be estimated as such.
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