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Abstract: This paper presents a solution for an autonomously driven vehicle (a robotic car) based on
artificial intelligence using a supervised learning method. A scaled-down robotic car containing only
one camera as a sensor was developed to participate in the RoboCup Portuguese Open Autonomous
Driving League competition. This study is based solely on the development of this robotic car, and
the results presented are only from this competition. Teams usually solve the competition problem by
relying on computer vision algorithms, and no research could be found on neural network model-
based assistance for vehicle control. This technique is commonly used in general autonomous driving,
and the amount of research is increasing. To train a neural network, a large number of labelled images
is necessary; however, these are difficult to obtain. In order to address this problem, a graphical
simulator was used with an environment containing the track and the robot/car to extract images for
the dataset. A classical computer vision algorithm developed by the authors processes the image data
to extract relevant information about the environment and uses it to determine the optimal direction
for the vehicle to follow on the track, which is then associated with the respective image-grab. Several
trainings were carried out with the created dataset to reach the final neural network model; tests
were performed within a simulator, and the effectiveness of the proposed approach was additionally
demonstrated through experimental results in two real robotics cars, which performed better than
expected. This system proved to be very successful in steering the robotic car on a road-like track,
and the agent’s performance increased with the use of supervised learning methods. With computer
vision algorithms, the system performed an average of 23 complete laps around the track before
going off-track, whereas with assistance from the neural network model the system never went off
the track.

Keywords: artificial intelligence; AI in engineering; autonomous driving; robotics; simulation;
computer vision; neural network; supervised learning

1. Introduction

Mobility is essential these days, whether for people’s or goods transportation. The cur-
rent land transport system suffers from several major problems, including limited access
(accessible only to certain people), the heavy ecological footprint of pollution generated by
vehicles, the high rate of vehicle accidents and fatalities, increased vehicle consumption,
proportional increase in travel time with the increasing number of vehicles, serious public
health concerns (stress, respiratory problems, etc.), and increased road maintenance costs,
among others.

Most of these problems can be reduced by the use of autonomously driven vehicles.
The technology is being developed to improve transportation safety, efficiency, and acces-
sibility. Autonomous driving technology is rapidly advancing, and has made significant
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progress in recent years. Most car manufacturers are investing in research for autonomous
driving, as it is the next step in modern transportation. There are several levels of autonomy
that have been defined by the Society of Automotive Engineers (SAE), ranging from Level
0 (no automation) to Level 5 (full automation) [1]. It is important to mention that most
autonomous vehicles are presently able to achieve Level 3 autonomy. The ultimate goal
of many companies and researchers working in this field is to achieve Level 5 autonomy,
which refers to fully autonomous vehicles. However, reaching this level of autonomy is a
very challenging task, and it is difficult to know when it will be achieved.

Wang et al. utilized a Convolutional Neural Network (CNN) to predict steering and
velocity in autonomous cars [2]. The objective of their study was to replicate human
actions; to accomplish this, the Udacity Self-Driving simulator [3] was employed to gather
images for the dataset, train the model, and conduct testing. The system takes input
from three car cameras to capture images from different angles (left-facing, center-facing,
and right-facing). Training was conducted under specific road conditions, while testing
was performed under different conditions. The duration for which the car remained within
the lane without human intervention was recorded, demonstrating promising results with
improved accuracy and a reduced loss rate compared to previous models. However, it
is important to note that this solution is insufficient for real-world scenarios due to the
increased complexity of actual driving situations involving actions such as reversing,
braking, etc. Moreover, the model does not account for obstacles such as pedestrians or
other vehicles.

With the help of 20 cameras and a few more sensors, Dutta and Chakraborty [4]
proposed the use of a Convolutional Neural Network (CNN) trained with a dataset from
real images captured by these cameras. The output of the model is able to control vehicle
motion such as steering and speed. The CNN was trained in all sorts of terrain and weather
during 10 h of driving by a human being. The system then used these trained data as the
basis for testing the CNN in a self-driving manner. The data generated during testing were
used to improve the model’s training.

Detecting the road to be navigated is one of the most relevant tasks in autonomous
driving. T. Almeida et al. [5] combined multiple techniques, each specialized in a differ-
ent characteristic, to achieve the optimal solution through the integration of individual
contributions. To represent the road space effectively, their proposed solution merges
the outputs of two Deep Learning-based techniques, utilizing adaptations of the ENet
model. These adaptations focus on road segmentation and road line detection, respectively.
The results demonstrate that the combination of these techniques successfully addresses
the shortcomings and limitations of each individual model, resulting in a more dependable
road detection outcome. This approach outperforms the results obtained by each technique
in isolation. Moreover, with this solution employing multiple techniques, the number of
simultaneous algorithms can be increased and these algorithms can be updated or replaced
without affecting the final detection outcome, as it is not reliant on any specific algorithm.
As a final remark, the authors asserted that their Deep Learning approach showcases
superior performance compared to most traditional techniques, although a single Deep
Learning network may not be universally capable of handling all scenarios effectively.
Using LiDAR techniques instead of cameras, it is possible to detect roads and recognize
objects on the path [6,7]. These sensors provide improved sensing depth, allowing for the
construction of a 3D perception system that can provide an increased amount of informa-
tion for the assessment of road positioning and obstacles. Although a promising technique
for the future of Level 5 autonomy, the price of these sensor is very high compared to
conventional cameras.

Other sensors, such as radars, thermal cameras, and even audio can be used; in these
cases, data fusion becomes a core problem. Ignatius et al. [8] proposed a framework
in which data from different sources (thermal, LiDAR, RADAR, GPS, RGB camera, and
audio) are fused to aid in the decision level for autonomous driving. A Regional Proposal
Network (RPN) and a CNN model are used for object detection and classification, and
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fusion is achieved through a Hybrid Image Fusion model developed by the authors which
involves 2D to 3D conversions based on vector projections and matrix transformations.
This framework provides a mechanism and models to create the context of the perceived
environment for autonomous vehicles.

A more in-depth literature survey of the technologies applied to autonomous vehicles
can be found in [9–11], including analyses of research on environment and pedestrian
detection, path planning and motion control, and cybersecurity and networking.

As can be seen, the use of neural network models for autonomous driving is not new,
and in the case of camera-only systems, model training can be achieved by using a simulator
in order to build the image dataset. The Car Learning to Act (CARLA) platform [12] was
created to provide developers with support for the development, training, and validation
of autonomous systems for urban scenarios. Jang et al. [13] used this platform for dataset
generation. The images created by the simulator are realistic and can be used to simulate
real-life camera images without the constraint of having to drive a car around. Therefore,
a dataset can be easily created with cars, people, obstacles, etc., in motion such the images
are not just assorted stills but a sequence of events. Tools have been developed for automatic
labelling of the generated images for traffic lights and signs, vehicles, and pedestrians [14]
using the CARLA platform. Dataset generation using simulators is common as well [15],
as it provides data collection in a faster and cheaper way. For autonomous driving, there
are open-access datasets such as Waymo [16], the Leddar PixSet [17] that includes both
camera images and Lidar data, and the Udacity dataset [18], among others, none of which
are adapted to the specifications of the present project. The necessary specifications are
related to the Portuguese Open competition, and due to its specificities (size and track
shape, special traffic signs, obstacles, etc.) these open-access datasets do not provide the
needed data for training. Therefore, it was necessary to use a simulator to generate these
specific details for the intended dataset along with automatic labelling for steering.

A 3D graphical simulation (CoppeliaSim) was used to generate the intended images
of a road track and obstacles. This simulation framework allowed for automatic generation
of images, simulating the vehicle on the road in uncommon and different situations,
and generating as many images as necessary for training the model. The supervised
learning model that we used was developed in Python with the OpenCV library for
Computer Vision algorithms, and Robot Operating System (ROS) was used as middleware
to interact with the simulator. The neural network implementation and training were
carried out using the NVIDIA Jetson NanoTM developer kit. This work demonstrates that
a neural network model trained in a simulation environment can drive a robotic vehicle
better than a conventionally programmed counterpart, with similar performance in a
real scenario.

This document is structured in eight parts, with this introduction first describing
the problem and main objectives and providing an analysis of the existing related re-
search. The second part covers the theoretical foundations required for a better under-
standing of this work. Sections 3–5 describe the practical work that was carried out and
respectively consider the simulation framework, computer vision and control algorithms,
and neural network development. The results are presented in Section 6, and the following
Section 7 presents a discussion of the tests carried out both in the simulator and with
a real car. Finally, Section 8 presents the main conclusions of this project and suggests
further improvements.

2. Methodologies

This work presents a system capable of steering a car to complete a road-like track in
both a simulated and a controlled environment. The agent’s performance was increased
through machine learning methods based on a simplistic control computer vision algorithm.
To focus on the algorithm’s development, initial tests and experiments were performed us-
ing a simulation environment. Developed for the RoboCup Portuguese Open Autonomous
Driving competition rules and environment, this project included a simulated environment
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with all the necessary items (car, track, etc.), computer vision software used to collect im-
ages and respective values in order to create a complete integrated dataset, and a network
model trained through a supervised learning method.

2.1. RoboCup Portuguese Open—The Autonomous Driving League

The RoboCup Portuguese Open [19] (Festival Nacional de Robótica) is a robotics
event. Held since 2001, it is a competitive event that brings together students, educators,
researchers, and industry professionals from different backgrounds (mechanics, electronics,
computer science, etc.) to work with and demonstrate the latest innovations and advance-
ments in robotics technology. The event features demonstrations, workshops, presentations
on a wide range of topics related to robotics, and competitions. The festival’s goal is to
promote the development and application of robotics in different fields in order to inspire
future generations of robotic engineers. The event has different competition leagues, in-
cluding one very relevant for this project: Autonomous Driving, in which a robotic car has
to follow a 19 metre “figure-eight” track with two continuous external lines and a dashed
centre line. In addition, the track contains a zebra crossing, a traffic light, road signs, and
parking areas.

A team’s robot has to follow the track while reading/acting according to traffic lights,
reading/interpreting vertical traffic signs, avoiding obstacles, parking in different areas
with and without obstacles, and passing through a construction area. Our project deals
with the first part of the challenge, which is following the track.

2.2. Computer Vision and Algorithms

As in a human brain, images can be processed, manipulated, and displayed by a
computer to interpret visual information. A vision system can be used for the acquisition
of different types of information from the same image based on colour, shape, contrast,
dimensions, morphology, etc., and to allow the use of mathematical models to perceive and
improve the quality and reliability of the information gathered. Most of these mathematical
procedures can be applied with the use of computer vision libraries to simplify the task
of perceiving and processing data. There are many extensive and open-source libraries
available for all kinds of applications. In this work, the choice was OpenCV.

2.3. Supervised Learning, Transfer Learning, and ResNet18

Supervised learning involves training via labelled examples, such as an input in which
the desired output is known. The learning algorithm receives a set of inputs along with
the corresponding correct outputs and learns by comparing the self-made output with the
correct outputs to find errors, then modifying the model accordingly [20]. The purpose
of this type of learning is for the system to deduce and hypothesize ways of correctly
responding to situations outside the training set. Methods such as classification, regression,
and gradient boosting can allow the algorithm to predict patterns and apply label values
to additional unlabelled data. This method is commonly applied to situations in which
historical data predict probable future events.

ResNet18 is a convolutional neural network (CNN) model developed by Microsoft
for image classification tasks. It is a smaller version of the ResNet architecture, which was
introduced in 2015 [21] and has become a widely used model for image classification and
other vision tasks. ResNet18 has eighteen layers, making it a relatively small and efficient
model, which is beneficial in image classification tasks where computational resources are
limited. It has achieved good results on various image classification benchmarks, including
ImageNet. ResNet18 is a residual network, meaning it uses residual connections to allow
the network to learn easier and faster. In a residual network, the output of a layer is added
to the input of the same layer before passing it through the next layer, rather than being
passed directly to the next layer. This helps the network learn more easily by allowing it to
retain features learned in earlier layers.
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2.4. Other Algorithms

Random Sample Consensus (RANSAC), proposed by Martin Fischler and Robert
Bolles [22], is an algorithm that suggests a parameter estimation approach to cope with a
large segment of input data dispersion and variance. It consists of using a resampling tech-
nique to create possible solutions while only taking into consideration the bare minimum
amount of data needed to estimate the model parameters. Unlike traditional sampling
techniques that use as much data as possible and then proceed to remove the outliers,
this technique uses the minimum set of necessary data and then proceeds to improve the
solution using the most compatible datapoints.

In this case study, RANSAC is used to estimate the continuous lines on the track.
A random set of two points is selected (bearing in mind that not all points belong to the
line) to calculate a linear model, then repeating this process a predefined number of times
to obtain the single model that best suits the largest amount of points.

3. Simulation Environment

For testing purposes, a full simulation environment was created prior to software
development using CopppeliaSim. The simulation included all of the necessary elements
to ensure a close resemblance to the real track described above used in the RoboCup
Portuguese Open.

Figure 1 shows the full environment, containing:

• The car (Figure 2), the main agent, which only uses primitive shapes and contains all
of the necessary actuators and sensors. A cuboid of 60 × 30 × 2 cm is used for the
base and four cylinders with 15 cm radius and 3 cm height for the wheels; these are
connected to the base through joints. The back wheels use one joint each to work as
motors, while the front wheels use two joints each; one works as a slipping joint and
the other is responsible for steering and is perpendicular to the floor.

• The track, consisting of a digitally created image with a black background and white
lines, two continuous white lines delimiting the track, a dashed line in the middle to
separate the lanes, a zebra crossing, and two parking areas.

• A traffic light placed over the zebra crossing, with two screens (25 × 25 cm CoppeliaSim
planes) facing opposite directions in order to be seen from both directions.

• Obstacles, consisting of 40 × 40 × 60 cm green cuboids randomly placed on the track.

Figure 1. Full view of the environment and its components.

Figure 2. Basic car model used in simulation.
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To gather the necessary track information from the simulation environment, a vision
sensor (camera) is located in the car’s front side, tilted slightly downwards for a better view
of the track, with a perspective angle of 75 degrees and a resolution of 512 × 256 pixels.
This camera collects the images to be interpreted. The car contains other sensors that are
not used for neural network purposes.

Connecting to the Simulation

In order to work in real time, a connection was established between the simulated
environment (CoppeliaSim) and the control software (Pycharm) using the ROS protocol.
The protocol consists of two ROS nodes, one for the simulator, called/sim_ros_interface,
and another for the control script, named /vision_control. Both work via six ROS topics.

Four of the topics are meant to transfer information gathered in the simulation envi-
ronment to the control software, while the other three are used to receive information in
the simulated environment. Figure 3 shows the relationship between the nodes and topics.

Figure 3. RQT graphic structure.

4. Computer Vision Control Algorithm

An algorithm was developed using classical computer vision to convert the input
image to an angle/direction that the car should take.

4.1. Image Interpretation

The track consists of a black background and continuous or dashed white lines, as seen
in Figure 4. Classical segmentation was implemented to extract the track lines based on
minimum and maximum HSV values, resulting in a new image. The same technique was
used for the green obstacles. Separating the information allows for easier interpretation,
as the different colours might generate different outcomes.

Figure 4. Example of image collected from the simulation environment (view seen by the agent).

Focusing on the white segmented image, the main objective is to find the location
and orientation of the delimiting lane lines. As depicted in Figure 5, the system searches
pixel-by-pixel for the first black to white transition in radial scanning lines centered at the
bottom center every 2.5 degrees, saving these coordinates in two arrays: one array for the
values on the left side, and another array for the values on the right side.

The RANSAC algorithm [22] is then applied to both groups of points, resulting in two
slopes and interception lines being obtained from the left and right sides (the dark blue
lines in Figure 5). Should the array contain fewer than five points, the system assumes no
line. At this point, the lane limits viewed by the car are fully known and characterized.
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Figure 5. Road image with radial scanning lines and calculated slope lines.

4.2. Constant Multiplier

The two slope lines cross a defined horizon, shown as a green line in Figure 5, with
the middle point (yellow circle) defining the lane center. The vehicle’s deviation is the
distance between the horizontal image center and the calculated lane center. The defined
horizon unit is measured in pixels from the bottom of the image, and was obtained by trial
and error.

The direction to be taken by the car (d) is calculated with a simple constant multiplier
(k) and the car’s deviation angle (ang) using the equation

d = ang ∗ k. (1)

4.3. Special Situations

In addition to the ideal case where two lines are detected, special situations can occur
that carry more or less information than intended.

4.3.1. Single Line Detected

In the situation where only a single line is found, the solution is based on that line.
A constant distance from the detected line is used to determine the car’s heading direction.

4.3.2. Zebra Crossing

When the car faces the zebra crossing, the camera grabs more information than is
required to extract the lane delimiting lines. This increases the complexity of finding the
transitions between the black background and white lines during the line extraction task.
The zebra crossing is easily detectable; thus, when this happens the horizontal lines of the
zebra crossing are automatically cleaned from the image and the algorithm returns to the
usual search for black–white transitions (Figure 6).

(a) (b)

Figure 6. Zebra crossing: (a) original image and (b) image to be interpreted without horizontal lines.

4.3.3. Intersection

This situation involves changing lanes, which consequently, involves “ignoring” a lane
delimiting line, making it another exception (Figure 7). The simulation car’s coordinates
indicate the presence of an intersection. In terms of interpretation, the system saves the
coordinates of the second transition found in the radial lines. The car maintains its direction
until only one delimiting lane line is found.
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(a) (b)

Figure 7. Intersection overview: (a) movement representation to be performed and (b) car’s perspective.

5. Neural Network Model Development

All the training was carried out using the NVIDIA Jetson NanoTM developer kit [23].
This single-board computer developed by NVIDIA was designed to be use in embedded
systems, and is particularly well-suited for applications in robotics and intelligent machines.
The Jetson NanoTM is powered by a quad-core ARM Cortex-A57 processor and comes with
4 GB of LPDDR4 memory. It has a 128-core NVIDIA Maxwell GPU, which makes it capable
of running modern artificial intelligence models. This kit’s characteristics provide great
efficiency and fast training, and with its use the computer keeps most of its processing
power available while the training occurs. Afterwards, the model was exported and used
on the same computer used to run the simulation.

The main problem at hand involves the prediction of a numerical value for the an-
gle/direction; for this type of predictive modeling problem, a regression model is typically
used. Error metrics have been specifically designed to evaluate predictions made on
regression models, and can accurately characterize how close the predictions are to the
expected values.

Herein, the Mean Squared Error (MSE) metric is chosen for reviewing the results and
for evaluating and reporting the performance of the regression model:

MSE =
1
N

N

∑
i=1

(ei − pi)
2 (2)

where ei is the ith expected value in the dataset and pi is the ith predicted value. The dif-
ference between these two values is squared, which has the effect of removing the sign,
resulting in the error value always being positive. As a result, this value is inflated, mean-
ing that the greater the difference between these values, the greater the resulting squared
error value.

The purpose of this project was to study the neural network, its functionality, and
its ability to learn through a supervised learning method. A transfer learning method
was used for greater efficiency and faster training. The main aim of transfer learning is to
implement a model quickly. Therefore, instead of creating a neural network to solve the
current problem, the model transfers the features it has learned from a different dataset
that has performed a similar task.

The network was ResNet-18, a residual convolutional neural network with eighteen
layers. A pretrained model of ResNet18 was used. The pretrained model received input
images normalized in the same way, i.e., mini-batches of RGB images with shape size
(3 × H × W), with the height (H) and width (W) expected to be at least 224 pixels. The im-
age pixel values ranged between [0, 1] and were normalized using mean = [0.485, 0.456,
0.406] and std = [0.229, 0.224, 0.225].

5.1. Creating the Dataset

A collection of images and their corresponding characterizations formed the base of the
dataset. All of the images used to train the neural network model were exclusively obtained
from the computer vision algorithm, as explained earlier. While the control algorithm is
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running, each frame is processed and saved as a 224 × 224 pixels image, and the calculated
values of direction and velocity are logged in the image filename for simplicity.

It took a considerable amount of time to collect all of the images and generate a
complete dataset, as data collection was performed in real-time and the CoppeliaSim
software has no acceleration mode.

The dataset was created by grabbing images while the car was being controlled by
the computer vision algorithm, as explained earlier. However, the dataset lacked more
complex situations, and the car had difficulties in cases involving small path corrections.
In order to obtain more images from different and unexpected situations, it was decided
to apply lateral forces to the car, causing the car’s front to deviate to the side (alternating
sides every 3 s) and consequently provoking a deviation from its path. Furthermore, these
new images were captured using the computer vision algorithm, thereby expanding the
range of possible situations. The intensity and time period between forces was adjustable,
allowing us to further increase the variety of data collected.

In addition, for thorough and precise training purposes, a greater incidence in special
cases that require a different correction (such as crosswalks and intersections) facilitated
the collection of more images.

5.2. Training

The first model used 1289 images, a batch size of eight, and a number of epochs of ten,
taking 32 min and 33 s to train, and had a final loss value of approximately 0.007412. In
practical terms, this model represents a system that can successfully navigate turns and
straight sections while staying within the lane boundaries. However, it tends to fail in more
challenging scenarios, such as intersections, zebra crossing, and lane changes. Figure 8
shows the loss graphic during model training.
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Increasing the number of images to more than double (3490) and the epochs number
to twenty, the training time went up to 2 h and 12 min and the final loss value dropped to
almost half, approximately 0.00313.

Considering only the final loss value, a better result was expected when using the
network with the environment directly; however, this was not the case, as all the withdrawn
images used to train the network were all correct results of the vision software. After testing
these models in the simulation environment, it was verified that the car performance was
satisfactory for large corrections, for example in curves; however, whenever the car was
posed in an unknown position or required a slight correction, the returned value was not
always successful due to overfitting.

To counteract this problem, a deviation force routine was implemented in the simu-
lation environment. This routine applied a lateral force, slightly deviating the car’s front
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left to right and vice versa, then alternating sides every 3 s. Furthermore, capturing these
new images expanded the range of possible situations. The force intensity and the pe-
riod between them was adjustable, allowing for the variety of collected data to be further
increased.

As the previously described training contained only correct situations, the network
did not have the ability to correct should the wrong position be encountered. After adding
the images collected using the deviation force implementation to the training set, a total of
5906 images was obtained. Maintaining the same epochs and batch size values, it took 3 h
and 32 min to retrain the network and obtain a final loss value of approximately 0.00207,
as seen in Figure 9.
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Figure 9. Loss graphic of the training of the model with 5906 images.

In this latest model, the car was able to follow the track, straight lines, and curves,
and managed to complete all the special cases with minor error rates. As these results were
considered satisfactory, the training trials were concluded and a comprehensive analysis
was conducted.

6. Results

As a first test, a sequence of assorted images were picked up from the simulation
camera and the output from the computer vision algorithm was compared to the output of
the neural network model. Figure 10 shows the results of this test for the steering angle on
a sequence of 100 images.

The dashed line represents the CV outputs, while the continuous line represents
the NNM outputs. The reaction of both outputs can be ascertained from this graph;
however, because there is no ideal line for the steering angle it is difficult to perform a
quantitative evaluation.

To quantify the results, we evaluated the maximum number of consecutive laps that
the car successfully completed before going off-track as well as the time taken to complete
one lap around the track. As several tests were conducted, we assessed the average number
of laps. These tests were carried out for different speeds ranging from 10 to 20 rad/s,
respectively corresponding to 0.75 m/s and 1.5 m/s in the simulation.

For this application, an exact/perfect match is not needed to accomplish good results;
therefore, in the discussion section, an overall analysis of the robotic car’s behaviour is
provided. Notably, a limit of 100 laps was defined to end the test if this situation occurred.

• Average—corresponds to the average number of successful consecutive laps before
the car went off-track. The average was used because a large number of tests was
carried out, with many different results.
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• Maximum—corresponds to the maximum number of successful consecutive laps
among all tests.
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The dashed line represents the CV outputs and the continuous line represents the 374

NNM outputs. From this graph one can assertain the reaction of both outputs, but since 375

there is no ideal line for the steering angle it is difficult to do a quantitative evaluation. 376
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Figure 10. Output steering angles: CV vs. NNM.

In Table 1 are presented the results for the Vision Control Algorithm.

Table 1. Vision control algorithm results.

Velocity (rad/s) Average Track
Completion Time (s)

Average Number
of Laps

Maximum Number
of Laps

10 26.70 23.5 82
12.5 22.37 13.5 43
15 18.62 7 20

17.5 15.70 4.5 10

As expected, the track completion time decreased as the velocity increased, as did
the maximum number of laps. This is because the the instability grows higher with the
velocity; thus, when a small deviation occurs, the car has less time to react and correct
its path. However, with higher velocities the repeatability improves when instability is
not present. For velocities above 17.5 rad/s, the car could not complete any laps around
the track.

The tests carried out for the NNM were the same as those for the computer vision
algorithm; therefore the same range of velocities were used and the same variables were
logged, specifically, the time taken to complete a single lap and the number of laps until
the car went off-track. Table 2 contains a summary of the test results.

Table 2. NNM results.

Velocity (rad/s) Average Track
Completion Time (s)

Average Number
of Laps

Maximum Number
of Laps

10 33.78 100 100
12.5 27.15 100 100
15 22.94 65 100

17.5 19.65 41 71
20 16.48 5.33 10

7. Discussion

From Figure 10, it can be seen that a quantitative evaluation of the performance
comparison between both solutions (CV vs. NNM) is difficult to assess. The behaviour of
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both solutions is very similar all the way through. Only after quite a long time is it possible
to see the differences, as the CV solution goes off-track and the NNM solution does not.

In the CV solution, the car goes off-track frequently near intersection or crosswalk
areas, which is due to line detection confusion on the part of the CV algorithm. As this
algorithm is based on the detection of delimiting lane lines, whenever this fails the car’s
behaviour is unpredictable, and most of the time it goes off-track.

In order to evaluate the quality of the neural network, it is necessary to compare it
with the classical computer vision solution. This section contains an initial evaluation for
each solution followed by a comparison between both, stating their respective advantages
and disadvantages. The best solution is then applied to a real robotic car. In the video in
Appendix A, it is possible to see a sample of these results.

For easier result interpretation and evaluation, 2D top view track representation
figures are presented; the red dots represent the car’s position on the track at every 0.15 s.

7.1. Computer Vision Algorithm Results

Figure 11 presents the results for 10 rad/s velocity for 1, 10 and the maximum number
of laps reached (82).

In Figure 11a, the car appears highly consistent and centered. Figure 11b demonstrates
good repeatability over the course of 10 laps, aside from slight shifts at intersections; these
are primarily due to uncertainty, as a variation of just one pixel can lead to a different
outcome. Figure 11c reveals more details, with the uncertainty becoming more apparent at
intersections and the zebra crossing. The repeatability further deteriorates at intersections
where the car needs to change lanes, as there are instances when the car fails to detect either
of the two lines.

(a) (b) (c)

Figure 11. Track top view and car’s position with a maximum velocity of 10 rad/s for: (a) 1 lap,
(b) 10 laps, and (c) maximum laps (82).

The same tests were carried out for velocities of 12.5 rad/s, 15 rad/s (Figure 12), and
17.5 rad/s. These results are summarized in Table 1.

It is worth emphasizing that in this algorithm, when the road is clearly defined the car
behaves successfully regardless of its speed. This is understandable, as a different value for
the constant multiplier was used. Issues begin to appear in special cases (zebra crossing
and intersections), where the constant has minimum influence.
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(a) (b) (c)
Figure 12. Track top view and car’s position with a maximum velocity of 15 rad/s for: (a) 1 lap,
(b) 10 laps, and (c) maximum laps (20).

7.2. Neural Network Model (NNM) Results

To provide a comprehensive description and analysis of these tests and results,
Figure 13 presents the results for 1 and 100 laps at a velocity of 10 rad/s.

It is easy to see the accuracy and consistency of the path followed by the car, which is
always in the centre of the lane. This is the case on the 1 lap test as well as on the 100 laps
test, proving very high repeatability.

(a) (b)
Figure 13. Track top view and car’s position with a maximum velocity of 10 rad/s for: (a) 1 and
(b) 100 laps.

When increasing the velocity to 12.5 rad/s and 15 rad/s (Figure 14), the consistency
and accuracy of the path followed by the car were kept approximately the same as in
the previous test, with small variations seen near the zebra crossing and intersections.
However, as the NNM was trained with still images, a steering adjustment was required
for higher speeds; calculated on a percentage basis to work similarly for different velocities,
this adjustment was applied to the deviated angle calculated.
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(a) (b) (c)
Figure 14. Track top view and car’s position with a maximum velocity of 15 rad/s for: (a) 1 lap,
(b) 10 laps, and (c) 100 laps.

At velocities of 17.5 rad/s or faster the car sometimes changes lanes due to the its
speed and consequent lower reaction time. These occurrences were not considered as
ending the test, because the car did not go entirely off-track and was able to return to the
correct lane.

7.3. Comparison Between Systems

After assessing the tests carried out using each approach and analyzing the figures
and tables above, several conclusions can be reached.

It is easy to conclude that using the neural network to drive the car shows much better
performance. When the neural network is used, the robot manages to achieve a much
higher number of consecutive laps compared to the classical solution (Table 3).

The neural network uses all the information on the image, and all pixels are used
to obtain a solution, instead of the classic approach, which processes a part of the image
to search for relevant and useful data. In frames where the classical vision algorithm
fails to detect lines or where there are no lines to be detected, it only uses the acquired
information, meaning that it lacks information, while the neural network takes advantage
of the entire image. Although the network was trained using images created from classical
programming, the neural network approach has the ability to calculate/predict situations
based on similar images, meaning that it is able to cover a greater space of possible results.

Table 3. Comparison table: showing average and maximum number of laps.

Velocity
(rad/s)

CV
Algorithm NNM

Average
number of laps

10 23.5 100
12.5 13.5 100
15 7 65

17.5 4.5 41
20 - 5.33

Maximum
number of laps

10 82 100
12.5 43 100
15 20 100

17.5 10 71
20 - 10
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The solution that uses classic computer vision is more complex in terms of program-
ming, and is not able to cover all possible cases encountered on the road. With the neural
network approach, the car performs much more fluidly and coherently in special cases
such as intersections and zebra crossing, resulting in fewer deviations.

In Table 4, is noticeable that the time required for the car to drive around the track in
the simulator is longer in the solution with neural networks. This happens not because it
takes longer to process the image, as the time frame was previously defined as 100 ms for
both cases, but because the simulator takes longer to display it graphically. This is due to
the fact that the processor is much more busy in computational terms due to the amount
of resources that the neural network requires. On average, the CV solution takes 98 ms to
complete a single frame and the NNM solution takes 90 ms.

Table 4. Comparison of completion times (s).

Velocity
(rad/s)

CV
Algorithm NNM

10 26.7 33.78
12.5 22.37 27.15
15 18.62 22.94

17.5 15.7 19.65
20 16.48

The computer vision approach takes 121.3% of the processor and the CoppeliaSim
software takes 91.4%. The NNM approach takes 194.4% of the processor, while the Cop-
peliaSim takes 88.7%. As the times per lap were read in real time, and because CoppeliaSim
is slower when using the NNM approach, the simulated lap times were longer than the
real ones.

It is crucial to highlight the significant success achieved in our tests using the NNM,
very much surpassing the solution developed with the computer vision algorithm. These
excellent results motivated us to test the developed neural network in a real robotic car.

7.4. Autonomous Driving Competition

The Laboratory of Automation and Robotics of Minho University (LAR) participated
in the Autonomous Driving challenge at the RoboCup Portuguese Open, as described in
Section 2.1, with two teams each using their own robotic car. These cars were developed by
other team members, wich are also LAR students, as part of a proposed laboratory project.
Figure 15 shows the real competition track.

Figure 15. Real competition track.

Regarding the hardware used in the competition, the two robots differed in terms
of their size/dimensions, maximum steering angle, camera characteristics, and camera
location and orientation within the car, as shown in Figure 16.

As the robot cameras grab real images from the track and the training dataset is created
with virtual images, it was necessary to adapt the images from the car in order to make
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them compatible with the neural network model. First, a Region of Interest similar to
the one used in the simulation dataset was selected (see Figure 17a); then, the image was
segmented to highlight only the white lines on the track (see Figure 17b).

From here, the neural network received the filtered images in real time and the car
moved normally on the track, behaving as in the simulation. Different speeds were tried;
this required a correction identical to the one performed on the neural network in the
simulation. Maximum speeds were not attempted in order to avoid accidents with the
robotic car; however, at reasonable speeds the tests with the robot car proved that the neural
network’s performance is similar to that in the simulation, with the car rarely leaving the
track. The few cases in which the car left the track can be justified by external factors that
influenced its behaviour, such as slight bumps on the track (irregular floor) changing the
Region of Interest and the camera viewing angle, the frequent variation of the lighting in the
room influencing the segmentation threshold, visual noise external to the test (people’s feet
passing next to the track deceiving the network into interpreting them as white lines), etc.

(a) (b)

Figure 16. Different robotic cars (a,b) used in the competition.

(a) (b)

Figure 17. Car camera view: (a) original and (b) after processing.

The good results obtained in this test motivated us to pursue this project with other
students in the Laboratory of Automation and Robotics.

8. Conclusions

This work presents a system that autonomously drives a robotic car on a road-like
track using a neural network. A classical computer vision algorithm was used to classify
images extracted from a simulator and create a large number of very diverse road situations,
resulting in a unique dataset that was used to train the neural network.

This neural network model was able to complete dozens of laps around the track at
different speeds without going off-track, and showed improved its performance compared
to the image collection algorithm.

Our final tests were carried out at a robotic autonomous driving competition on a
real-world track. To test the neural network model, two different robotic cars were used,
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with different dimensions and different cameras and placed at different locations and
orientations on the cars. These tests proved that the robotic cars were capable of staying
within the track limits at various speeds and with minimal adjustments, behaving better
than expected.

The video in Appendix A demonstrates the tests carried out within the simulation and
with the real robot/car.

Regarding the NNM, future work and research could focus on its expansion to include
obstacle avoidance and lane change abilities. This could be achieved by complementing the
dataset and by further training with images containing obstacles within the lane, including
information on the system’s response.

Even though the track used to train the algorithm was designed to contain both
slight and sharp turns to each side, straight lines with and without interruptions, and
intersections, in order to further demonstrate the potential of this work new and more
sophisticated tracks could be designed. For example, Formula 1-style tracks with many
varied turns could be simulated.
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Appendix A. Video Link

Link to a LAR video displaying simulated tests and results and the real robotic car
performance test: https://youtu.be/13uP0egD4c0 (accessed on 10 August 2023).

Note that the keyboard seen in the video is merely used as a safety break.

https://github.com/LARobotics/Autonomous-Driving
https://github.com/LARobotics/Autonomous-Driving
https://youtu.be/13uP0egD4c0
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