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Abstract
The talocrural and the talocalcaneal articulations collectively form the ankle joint complex
of the human foot and are the focus of investigation of this work. The talocrural articulation
enables plantarflexion and dorsiflexion, while the talocalcaneal articulation allows inver-
sion and eversion of the foot. A comprehensive analysis of the literature suggests that the
ankle joint complex is modeled in different manners considering approaches with varying
complexity levels, which more or less accurately mimic its intrinsic anatomical features.
Several studies assume that the foot articulates with the leg via the talocrural articulation
only, which is modeled as a revolute joint. Other studies consider the movements allowed
by both articulations and model the ankle joint complex as spherical, revolute, or classical
universal joints. Most existing approaches do not consider sufficiently accurate anatomical
modeling of this joint complex. Thus, this work presents a new skeletal model for the an-
kle joint complex of the human foot that considers the actual anatomy and movements of
the talocrural and the talocalcaneal articulations. The proposed approach uses a modified
universal joint, which incorporates a massless link to mimic the actual function of the talus
bone. The developed formulation is compared with a model available in the literature, which
uses a classical universal joint. The outcomes show that modeling the ankle joint complex as
a modified universal joint allows a more realistic representation of the anatomy of the human
foot. The main differences between the two joint models are observed in the mediolateral
direction.
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Nomenclature
Latin symbols

Symbol Units (SI) Description
Ak - Rotation matrix of body k

d m Position vector connecting point Pi on body i to point Pj on
body j

D - Jacobian matrix of the constraint equations
e0, e1, e2, e3 - Euler parameters
g N, N·m External generalized force vector
h - Generic rotational joint h

i - Body i

I kg·m2 Moment of inertia
I - Identity matrix
j - Body j

jh N·m·s Damping coefficient of a generic rotational joint h

l m Length of a segment or link
M kg, kg·m2 Mass matrix
mp, h N·m Maximum moment applied to restrict the motion of a

generic rotational joint h

md
h N·m Joint dissipative moment vector of a generic rotational joint

h

mmr
h N·m Joint motion-restricting moment vector of a generic

rotational joint h

mr
h N·m Joint resistance moment vector of a generic rotational joint h

n - Unit vector normal to the surface of the circumduction cone
Ok - Center of mass of body k

P - Point representing the intersection of the axes of the
classical universal joint

q m Vector containing the system coordinates
rk m Position vector of the center of mass of body k described in

global coordinates
rP
k m Global position vector of point P located on body k

RoM - Range of motion
sP
k m Global position vector of point P located on body k with

respect to local coordinates
sk m Vector placed on the joint axis belonging to body k

t s Time variable
ur,h - Unit vector defined using the moving body’s local reference

frame
ur,h,ξ - Local ξ component of the unit vector ur,h

ur,h,η - Local η component of the unit vector ur,h

ur,h,ζ - Local ζ component of the unit vector ur,h

uξ,h - Unit vector defining the ξ axis of joint h local reference
frame

uη,h - Unit vector defining the η axis of joint h local reference
frame

uζ,h - Unit vector defining the ζ axis of joint h local reference
frame
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v m/s, rad/s Vector containing the system velocities
v̇ m/s2, rad/s2 Vector containing the system accelerations
xyz - Global coordinate system
y m, m/s, rad/s Auxiliary vector containing the system velocities and

positions
ẏ m/s, s−1, Auxiliary vector containing the system accelerations and

velocities
m/s2, rad/s2

Greek symbols

Symbol Units (SI) Description
α - Baumgarte stabilization coefficient
β - Baumgarte stabilization coefficient
γ - Right-hand side vector of the acceleration constraint

equations
ε rad Angle of the talocrural joint axis in the transverse plane
θ rad Angle of the talocalcaneal joint axis in the sagittal plane
κ rad Relative angular motion between the moving body and the

limits of the circumduction cone
λ - Lagrange multipliers vector
ν - Right-hand side vector of the velocity constraint equations
ρ rad Angle of the talocalcaneal joint axis in the transverse plane
σh rad Latitude of a generic rotational joint h

σh,max rad Maximum latitude of a generic rotational joint h

�σh rad Difference between the passive and active range of motion
of a generic rotational joint h

τ rad Angle of the talocrural joint axis in the frontal plane
� - Position constraint equations vector
�̇ - Velocity constraint equations vector
�̈ - Acceleration constraint equations vector
ψh rad Longitude of a generic rotational joint h

ω rad/s Angular velocity vector
ω̇ rad/s2 Angular acceleration vector
ξηζ - Body fixed coordinate system

Subscripts

Symbol Description
0 Initial condition
h Relative to a generic rotational joint h

i Relative to body i

j Relative to body j

k Relative to body k

p Penalty
re Real angle
t Relative to time instant t
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Superscripts

Symbol Description
n Normal constraint
P Generic point P

s Spherical joint
u Relative to the classical universal joint
um Relative to the modified universal joint

Operators

Symbol Description
( )T Matrix or vector transpose
(′) Components of a vector in a body-fixed coordinate system
(′′) Components of a vector in the joint’s coordinate system
(·) First derivative with respect to time
(··) Second derivative with respect to time
(∼) Skew-symmetric matrix of a vector

1 Introduction

Over the last few years, the human movement has been a subject of extensive investigation
by many authors, involving a vast interest in both clinical and sports applications [1–7].
Biomechanical models of the human body can greatly contribute to advancing knowledge
in this scientific field as they provide useful information on several biomechanical parame-
ters that are difficult or even impossible to measure in experimental settings, including joint
reaction forces and moments. The validity of the predicted results strongly relies on the
development of computationally efficient and anatomically accurate biomechanical models
of the human system, which comprehensively model the anatomical segments, articulations,
muscles, and body-environment interaction, such as the contacts that can take place between
the foot and the ground surfaces [7–12]. It is important to note that the reliability of the pa-
rameters provided by biomechanical models is strongly dependent on whether these models
have been validated for the intended purpose, thus preventing incorrect conclusions. Valida-
tion can be achieved through, for instance, comparing the obtained results with previously
validated and published studies. Joint angles and moments-of-force, muscle activations and
forces, or ground reaction forces can be utilized to validate biomechanical models [13, 14].
By providing researchers and healthcare professionals with knowledge of important biome-
chanical parameters, a more in-depth understanding of healthy and pathological conditions
can be achieved, ultimately helping the clinical decision-making process and the develop-
ment of personalized solutions specifically targeted to each patient’s needs [3, 6, 15].

Due to its intricate nature, the ankle joint complex of the human foot is quite a challeng-
ing problem to handle under the umbrella of biomechanics of motion discipline. The foot
is the part of the human body that contacts the ground, and it comprises three major bone
groups, namely, the tarsus, the metatarsus, and the phalanges, as can be observed in Fig. 1a
[16, 17]. The tarsus group is composed of seven bones. One of them is the calcaneus, which
projects posteriorly on the foot, forming the prominence of the heel. The remaining bones
are the talus, the navicular, the cuboid, and the three cuneiform bones, namely medial, in-
termediate, and lateral cuneiforms. The metatarsus group includes five different metatarsal



A new skeletal model for the ankle joint complex

Fig. 1 Schematic representation of the (a) bones and (b) ankle joint complex of the right human foot (Color
figure online)

bones, which do not have specific names, being numbered from one to five with roman nu-
merals, starting from the medial side of the foot. Finally, there are two phalanges in the great
toe (proximal and distal), while the remaining toes comprise three phalanges each (proxi-
mal, middle, and distal) [16] (see Fig. 1a). The intricate interconnections that exist between
the bones of the human foot result in the establishment of 31 articulations [17] that allow
several movements during daily life activities. Amongst these 31 articulations, the talocru-
ral and the talocalcaneal articulations, which collectively form the ankle joint complex of
the human foot [18–20], are the focal points of the present research work. The talocrural
articulation enables plantarflexion and dorsiflexion, and it is located between the superior
surface of the talus of the foot and the distal ends of the tibia and fibula of the leg. The foot
also performs inversion and eversion, which are movements provided by the talocalcaneal
articulation that is located between the tarsal bones of the posterior part of the foot, more
specifically between the superior surface of the calcaneus and the inferior surface of the talus
[17, 21]. While the talocrural and the talocalcaneal articulations are the major contributors
to plantarflexion, dorsiflexion, inversion, and eversion of the human foot, those movements
result from the combination of the different degrees-of-freedom of the ankle joint complex
and the foot in all cardinal planes. A schematic representation of the ankle joint complex is
presented in Fig. 1b.

The ankle joint complex of the human foot has two anatomical particularities. The first
one is associated with the fact that the anatomical axes of the talocrural and the talocalcaneal
articulations do not intersect at a specified point, but instead, they are separated by a certain
distance. Therefore, the joint axes are non-coplanar and the distance between them can be
established as the length of the talus since this bone is inserted between the two articulations
(see Fig. 1b). The second particularity is that the axes of the talocrural and the talocalcaneal
articulations define specific anatomical orientations between each other [22–25], as can be
observed in the schematic representation of Fig. 2. Both the talocrural and the talocalcaneal
axes are composed of two rotations in two cardinal planes and around two anatomical axes.
To determine the axis of the talocrural articulation, a rotation around the superoinferior axis
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Fig. 2 Orientation of the talocrural and the talocalcaneal axes in the (a) transverse, (b) frontal, and (c) sagittal
planes (Color figure online)

in the transverse plane must be completed (see Fig. 2a), followed by a rotation around the
anteroposterior axis in the frontal plane (see Fig. 2b). For the talocalcaneal articulation, a
rotation around the superoinferior axis in the transverse plane (see Fig. 2a) is followed by a
rotation around the mediolateral axis in the sagittal plane (see Fig. 2c). Since the movement
of a human articulation takes place around its axis, accurately modeling the second partic-
ularity of the ankle joint complex of the human foot is of utmost importance. In fact, if the
axis of the articulation is incorrectly determined, the joint of the biomechanical model may
allow movements that are not anatomically expected. Thus, the anatomical accuracy of the
model becomes compromised, which may strongly influence the obtained results.

In general, the human foot and the ankle joint complex can be modeled in distinct man-
ners by considering approaches with a varying degree of complexity, which mimic with
more or less accuracy the anatomical characteristics intrinsic to the foot [2, 3, 6, 26–29].
On the one hand, some models consider only the dorsiflexion and plantarflexion movements
of the human foot. This is achieved by considering that the foot articulates with the leg via
the talocrural articulation only, which is formulated as an ideal revolute joint, either in two-
[9, 30–32] or three-dimensions [33, 34]. On the other hand, some studies have also proposed
more elaborate models considering the movements allowed by both the talocrural and the
talocalcaneal articulations of the human foot. In this sense, the ankle joint complex has been
modeled either as a spherical joint [35–38], as two [39–45] or three [46] separate revolute
joints, as a classical universal joint [22, 47], as two equivalent one degree-of-freedom spa-
tial parallel mechanisms [48–50] or using coupling curves [50]. Other models for the ankle
joint complex, which use two separate revolute joints for the talocrural and the talocalcaneal
joints, can be found in studies using musculoskeletal modeling software, such as OpenSim
or Anybody [51–54]. However, modeling the ankle joint complex as a spherical or a clas-
sical universal joint precludes the possibility of considering that the talus separates the two
articulations, preventing the talocrural and the talocalcaneal axes from intersecting. This
difficulty can be addressed using two separate revolute joints, one for each articulation, and
adding the talus bone as one segment. Nevertheless, including the talus, which has a small
mass and inertia, as a rigid segment on the biomechanical model not only increases the com-
plexity of the model but also potentially leads to numerical issues during the resolution of
the equations of motion due to the calculation of high accelerations, ultimately penalizing
the computational efficiency.
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The motivation behind this work arises from the fact that the available studies have not
yet considered sufficiently anatomically accurate and computationally efficient modeling of
the ankle joint complex, which plays a key role in studying the movement of the human
foot. Thus, this work aims to present a new skeletal model for the ankle joint complex
of the human foot, which considers the two specific and crucial anatomical particularities
described above. The proposed formulation has its foundations in a previously published
work [55, 56], and it relies on the use of a modified universal joint, which considers both the
talocrural and the talocalcaneal joints and is incorporated with a massless link representing
the talus, ensuring the preservation of the distance between the two joint axes. The proposed
approach is compared with the model presented by Anderson and Pandy [22], which is based
on a classical universal joint.

The remaining of this paper is organized as follows. Section 2 briefly describes the
Newton-Euler equations of motion for constrained multibody systems. The complete char-
acterization of two different methodologies to model the ankle joint complex is presented in
Sect. 3. A general methodology to impose some restrictions on the range of motion in hu-
man articulations is provided in Sect. 4. The description of the biomechanical model utilized
to assess and compare the two joint models utilized to formulate the ankle joint complex is
provided in Sect. 5. In the aftermath of this process, the obtained results are discussed in
Sect. 6 to demonstrate the influence of each ankle joint model on the dynamic response of
the human foot. Finally, this work ends with the concluding remarks in Sect. 7.

2 Multibody systems methodology

A multibody system comprises two main features, namely interconnected rigid and/or de-
formable bodies describing large rotational and translational displacements and joints that
kinematically constrain the relative motion of the adjacent bodies. Additionally, multibody
mechanical systems can also be subjected to force or driving elements [57]. Multibody dy-
namics involves the development of mathematical models of the systems under analysis,
as well as the implementation of computational procedures to simulate, analyze, and opti-
mize the global motion produced. The Newton-Euler approach with absolute coordinates is
widely utilized to model multibody mechanical systems due to its simplicity and straightfor-
ward application to general-purpose codes [57–59]. The formulation considered in this work
uses Cartesian coordinates, in which the degrees-of-freedom of the system are described by
three translational (x, y, and z) and four orientational (Euler parameters) coordinates. Us-
ing the Baumgarte stabilization approach, the equation of motion of a general constrained
multibody system can be written as

[
M DT

D 0

]{
v̇
λ

}
=

{
g

γ − 2α�̇ − β2�

}
(1)

in which M is the system mass matrix, D represents the Jacobian matrix of the kinematic
constraint equations,v̇ denotes the vector containing the system accelerations, λ is the La-
grange multipliers vector associated with the reaction forces and moments on the kinematic
joints and it is dependent on the formulation of the constraint equations, g represents the
vector of applied forces and moments, and γ denotes the right-hand side vector of the accel-
eration constraint equations. Parameters α and β are the Baumgarte feedback control coeffi-
cients for velocity and position constraint violations, respectively, and are taken as positive
constants. The vectors � and �̇ represent the position and velocity constraint equations,
respectively [59–63]. These quantities will be explained in detail in the Sect. 3.
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Fig. 3 Flowchart illustrating the computational procedure for the dynamic analysis of multibody systems
based on the Baumgarte stabilization method [60]

When the Baumgarte stabilization method is not considered in Eq. (1), the resulting equa-
tion does not explicitly include the position and velocity constraint equations. In the first
steps of the simulation, the constraint violations are usually small and negligible. However,
for moderate or long simulations, the violation of the original constraints formulated for
the problem cannot be neglected. Thus, after several simulation steps, the results might be
unacceptable [59–62, 64].

Equation (1) may be described as a combination of the differential equations of motion
and the algebraic kinematic constraint equations, often referred to as a set of differential
algebraic equations. The first step in the standard resolution of the equations of motion
deals with the definition of the initial instant of time, t0, and the initial conditions of the
system, specifically the initial positions, q0, and velocities, v0. Subsequently, M, D, γ, g, �

and �̇ are evaluated, and Eq. (1) is solved for the constrained multibody system to obtain v̇
and λ at time instant t . Then, the auxiliary vector ẏt for time t , which contains the velocities
and accelerations of the system, is assembled and numerically integrated for time instant
t + �t to obtain vector yt + �t . Thus, the new velocities and positions of the system are
obtained. In order to proceed with the simulation, the time variable must be updated after
each time step is completed. If the final simulation time has not been reached, the simulation
continues, and the steps described above are repeated for the following time steps. This
procedure continues until the final time of the analysis is reached [60]. The flowchart of
the computational procedure for the dynamic analysis of multibody mechanical systems is
presented in Fig. 3.

3 Kinematic modeling of the ankle joint complex

3.1 Classical universal joint

Anderson and Pandy [22] utilized a classical universal joint to model the ankle joint complex
of the human foot, as can be observed in Fig. 4a. This type of kinematic joint, also known
as Hooke or Cardan joint, consists of a pair of hinge joints, the axes of which intersect at
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Fig. 4 (a) Schematic
representation of the ankle joint
complex of the human foot
modeled as it was considered in
the work of Anderson and Pandy
[22]. In the anatomical reference
position, the x, y, and z

directions correspond to the
anteroposterior, mediolateral, and
superoinferior directions,
respectively. (b) Generic
configuration of a classical
universal joint connecting bodies
i and j (Color figure online)

a given point P , and are oriented 90° relative to each other [59]. A classical universal joint
allows two relative degrees-of-freedom between the bodies i and j that are connected by the
joint. This joint transmits motion through an intermediate body, known as cross or spider,
with reduced inertia and dimensions, which is not modeled per se. Figure 4b shows a general
representation of a classical universal joint connecting bodies i and j , where their centers
of mass are Oi and Oj , respectively. Body-fixed coordinate systems ξηζ are attached to the
center of mass, while xyz represents the global coordinate system [59].

According to Nikravesh, the kinematic constraint equations utilized to model a classical
universal joint are expressed as [59]

�(s,3) ≡ rP
j − rP

i = rj + sP
j − ri − sP

i = 0 (2)

Φ(n,1) ≡ sT
i sj = 0 (3)

in which rP
k represents the global position vector of point P located on body k (k = i, j ), rk

denotes the position vector of the center of mass of body k described in global coordinates,
and sP

k is the global position vector of point P located on body k with respect to the body’s
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local coordinate system [59]. The local and global components of sP
k are related to each

other as

sP
k = Aks′P

k (k = i, j) (4)

where Ak is the rotation matrix of body k, and s′P
k refers to the position of point P on the

body’s local coordinates. In addition, si and sj represent two vectors placed on the joint
axes of the classical universal joint that belong to bodies i and j , respectively, in global
coordinates. Following the Nikravesh formulation,�(s,3)refers to a spherical joint constraint
formulation containing three equations, and Φ(n,1) represents a normal constraint between
two vectors [59].

Equation (2) establishes that the geometric center of the classical universal joint has
constant coordinates with respect to any of the local coordinate systems of the connected
bodies. This means that point Pi on body i must be coincident with point Pj on body j , thus
restricting the relative position between those bodies. In turn, Eq. (3) ensures that the two
vectors si and sj must remain perpendicular [59]. However, instead of considering that the
axes of the ankle joint complex were perpendicular to each other, Anderson and Pandy [22]
considered a specific orientation, as displayed in Fig. 2. As stated in Sect. 1, the orientation
of both joint axes is composed of two rotations in two cardinal planes. In this sense, the
angles shown in Fig. 2 are projected onto the corresponding plane. Therefore, after the first
rotation in one plane using the angle projected on that plane, the second rotation requires
calculating the corresponding angle as the real angle between the transverse plane of the
body and the joint axis. In order to determine the real angles, the following conditions must
be utilized [65, 66]

tan θre = tan θ cosρ (5)

tan τre = tan τ cos ε (6)

for the talocalcaneal and talocrural articulations, respectively. The subscript ‘re’ represents
the real angle. The values of ρ, θ , ε and τ are 19.8°, 35.3°, 6.0°, and 8.0°, respectively,
and represent average angles retrieved from the work of Anderson and Pandy [22]. After
calculating the real angles using Eqs. (5) and (6), the talocalcaneal, si , and the talocrural, sj ,
axes are expressed as (see Fig. 4a)

si = {
cosρ cos θre sinρ cos θre sin θre

}T
(7)

sj = {
sin ε cos τre cos ε cos τre sin τre

}T
(8)

In order to accommodate the fact that the axes of the ankle joint complex are non-
orthogonal and have a specific orientation, Eq. (3) is modified as

Φ(n,1) ≡ sT
i sj − sT

i,0sj,0 = 0 (9)

where si,0 and sj ,0 are the coordinates of vectors si and sj at the initial configuration, respec-
tively.

With the incorporation of Eq. (9), Anderson and Pandy [22] fulfilled only one of the
anatomical particularities of the ankle joint complex, neglecting that the two joint axes are
non-coplanar. Thus, Eqs. (2) and (9) can be combined to establish the kinematic constraint
equations of the classical universal joint utilized by Anderson and Pandy [22] as

�(u,4) ≡
{

rj + sP
j − ri − sP

i = 0
sT
i sj − sT

i,0sj,0 = 0
(10)
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The velocity constraint equations for a classical universal joint can be obtained by taking
the first time derivative of Eq. (10), yielding

�̇
(u,4) ≡

{
ṙj + ṡP

j − ṙi − ṡP
i = 0

sT
j ṡi + sT

i ṡj = 0
(11)

in which the dot represents the derivative with respect to time.
The formulation of the classical universal joint relies exclusively on four kinematic con-

straints that are not explicit functions of time, as can be observed in Eq. (10). Thus, in this
particular case, vector ν, which represents the right-hand side vector of the velocity con-
straint equations, is null.

Equation (11) is not explicitly formulated in terms of the angular velocities of bodies i

and j , which are essential for establishing the Jacobian matrix. In order to address this issue,
a condition that relates the linear and angular velocities should be considered as [59]

ṡ = ω̃s = −s̃ω (12)

where the symbol tilde (∼) represents the skew-symmetric matrix associated with that vec-
tor, and ω is the angular velocity vector in global coordinates. Thus, Eq. (11) can be rewritten
as

�̇
(u,4) ≡

{
ṙj − s̃P

j ωj − ṙi + s̃P
i ωi = 0

−sT
j s̃iωi − sT

i s̃jωj = 0
(13)

or, alternatively, in the matrix form

�̇
(u,4) ≡

[−I s̃P
i I −s̃P

j

0 −sT
j s̃i 0 −sT

i s̃j

]
⎧⎪⎪⎨
⎪⎪⎩

ṙi

ωi

ṙj

ωj

⎫⎪⎪⎬
⎪⎪⎭

= 0 (14)

Thus, observing Eq. (14), the contribution to the Jacobian matrix of the classical universal
joint constraints can be expressed as

D(u,4) =
[−I s̃P

i I −s̃P
j

0 −sT
j s̃i 0 −sT

i s̃j

]
(15)

The time derivative of Eq. (11) yields the acceleration constraint equations of the classical
universal joint as

�̈
(u,4) ≡

{
r̈j + s̈P

j − r̈i − s̈P
i = 0

sT
j s̈i + ṡT

i ṡj + sT
i s̈j + ṡT

j ṡi = 0
(16)

Equation (16) is not expressed in terms of the angular accelerations of bodies i and j ,
which are required to establish the right-hand side vector of the acceleration equations. In
order to address this issue, a condition relating the linear and angular accelerations must be
utilized [59]

s̈ = −s̃ω̇ + ω̃ṡ (17)
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where ω̇ is the angular acceleration vector in global coordinates. Thus, Eq. (16) can be
rewritten as

�̈
(u,4) ≡

{
r̈j − s̃P

j ω̇j + ω̃j ṡP
j − r̈i + s̃P

i ω̇i − ω̃i ṡP
i = 0

sT
j (−s̃iω̇i + ω̃i ṡi ) + sT

i (−s̃j ω̇j + ω̃j ṡj ) + 2ṡT
j ṡi = 0

(18)

By observing Eq. (18), the contribution to the right-hand side of the acceleration equa-
tions of the classical universal joint constraints can be established as

γ(u,4) =
{

ω̃i ṡP
i − ω̃j ṡP

j

−sT
i ω̃j ṡj − sT

j ω̃i ṡi − 2ṡT
j ṡi

}
(19)

3.2 Modified universal joint – proposed formulation

In this section, a modified universal joint, which is incorporated with a massless link that
implicitly models the talus bone and mimics its real function, is utilized to model the ankle
joint complex of the human foot, as can be observed in Fig. 5a. The proposed formulation
closely follows the work developed by Malaquias et al. [55, 56] and incorporates the two
anatomical particularities associated with the ankle joint complex presented in Sect. 1. A
general representation of the proposed modified universal joint connecting bodies i and j is
depicted in Fig. 5b. The centers of mass of the bodies are Oi and Oj . Body-fixed coordinate
systems ξηζ are attached to the center of mass, while xyz represents the global coordinate
system [59].

Similar to the classical universal joint, the modified universal joint allows two degrees of
freedom. Thus, four kinematic constraint equations must be considered, namely:

(i) Establishing a constant length between points Pi and Pj on each of the joint axes (see
Fig. 5). This constraint represents a link connecting the two bodies, which is not modeled as
an actual body but instead as a massless element [57, 59]. The massless link corresponds to
the talus bone of the ankle joint complex, and the constraint equation can be written as

Φ1 ≡ dTd − l2 = 0 (20)

where l is the length of the massless link and vector d is defined as (see Fig. 5)

d = rP
j − rP

i = rj + sP
j − ri − sP

i (21)

(ii) Establishing a constant angle between the non-intersecting si and sj joint axes vec-
tors (see Fig. 5). This constraint ensures that the relative orientation of vectors si and sj of
the modified universal joint at any given configuration is equal to the initial one, and it is
formulated as

Φ2 ≡ sT
i sj − sT

i,0sj,0 = 0 (22)

(iii) Establishing a constant angle between vector d and the si joint axis vector (see
Fig. 5). This constraint is added to the formulation of the modified universal joint to maintain
the relative orientation of the joint axis si and vector d constant in all configurations. The
corresponding kinematic constraint equation can be expressed as

Φ3 ≡ sT
i d − sT

i,0d0 = 0 (23)

where d0 represents the initial coordinates of vector d.
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Fig. 5 (a) Schematic representation of the ankle joint complex of the human foot modeled as proposed in
this work. In the anatomical reference position, the x, y, and z directions correspond to the anteroposterior,
mediolateral, and superoinferior directions, respectively. (b) Generic configuration of a modified universal
joint connecting bodies i and j (Color figure online)

(iv) Establishing a constant angle between vector d and the sj joint axis vector (see
Fig. 5). The constraint is expressed as

Φ4 ≡ sT
j d − sT

j,0d0 = 0 (24)
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In summary, the set of kinematic constraint equations utilized to model the modified
universal joint proposed in this work can be condensed as

�(um,4) ≡

⎧⎪⎪⎨
⎪⎪⎩

dTd − l2 = 0
sT
i sj − sT

i,0sj,0 = 0
sT
i d − sT

i,0d0 = 0
sT
j d − sT

j,0d0 = 0

(25)

The velocity constraint equations for the proposed modified universal joint are obtained
by taking the first time derivative of Eq. (25) yielding

�̇
(um,4) ≡

⎧⎪⎪⎨
⎪⎪⎩

2dT(ṙj + ṡP
j − ṙi − ṡP

i ) = 0
sT
j ṡi + sT

i ṡj = 0
dTṡi + sT

i (ṙj + ṡP
j − ṙi − ṡP

i ) = 0
dTṡj + sT

j (ṙj + ṡP
j − ṙi − ṡP

i ) = 0

(26)

Since the kinematic constraints of Eq. (25) are not explicit functions of time, vector ν is
null.

In a similar manner to the classical universal joint, considering the condition expressed
in Eq. (12), then Eq. (26) can be rewritten as

�̇
(um,4) ≡

⎧⎪⎪⎨
⎪⎪⎩

2dT(ṙj − s̃P
j ωj − ṙi + s̃P

i ωi ) = 0
−sT

j s̃iωi − sT
i s̃jωj = 0

−dTs̃iωi + sT
i ṙj − sT

i s̃P
j ωj − sT

i ṙi + sT
i s̃P

i ωi = 0
−dTs̃jωj + sT

j ṙj − sT
j s̃P

j ωj − sT
j ṙi + sT

j s̃P
i ωi = 0

(27)

or, alternatively, in the matrix form

�̇
(um,4) ≡

⎡
⎢⎢⎣

−2dT

0
−sT

i

−sT
j

2dTs̃P
i

−sT
j s̃i

−dTs̃i + sT
i s̃P

i

sT
j s̃P

i

2dT

0
sT
i

sT
j

−2dTs̃P
j

−sT
i s̃j

−sT
i s̃P

j

−dTs̃j − sT
j s̃P

j

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ṙi

ωi

ṙj

ωj

⎫⎪⎪⎬
⎪⎪⎭

= 0 (28)

Thus, observing Eq. (28), the contribution of the modified universal joint constraints to
the Jacobian matrix can be established as

D(um,4)

(4×12) =

⎡
⎢⎢⎣

−2dT

0
−sT

i

−sT
j

2dTs̃P
i

−sT
j s̃i

−dTs̃i + sT
i s̃P

i

sT
j s̃P

i

2dT

0
sT
i

sT
j

−2dTs̃P
j

−sT
i s̃j

−sT
i s̃P

j

−dTs̃j − sT
j s̃P

j

⎤
⎥⎥⎦ (29)

Finally, the time derivative of Eq. (26) yields the acceleration constraint equations of the
modified universal joint as

�̈
(um,4) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2dT(r̈j + s̈P
j − r̈i − s̈P

i ) + 2ḋTḋ = 0
sT
j s̈i + ṡT

i ṡj + sT
i s̈j + ṡT

j ṡi = 0

dTs̈i + ṡT
i ḋ + sT

i (r̈j + s̈P
j − r̈i − s̈P

i ) + ḋTṡi = 0
dTs̈j + ṡT

j ḋ + sT
j (r̈j + s̈P

j − r̈i − s̈P
i ) + ḋTṡj = 0

(30)
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Taking advantage of Eq. (17), then Eq. (30) can be rewritten as

�̈
(um,4) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2dT(r̈j − s̃P
j ω̇j + ω̃j ṡP

j − r̈i + s̃P
i ω̇i − ω̃i ṡP

i ) + 2ḋTḋ = 0
sT
j (−s̃i ω̇i + ω̃i ṡi ) + ṡT

i ṡj + sT
i (−s̃j ω̇j + ω̃j ṡj ) + ṡT

j ṡi = 0
dT(−s̃i ω̇i + ω̃i ṡi ) + ṡT

i ḋ + sT
i (r̈j − s̃P

j ω̇j + ω̃j ṡP
j − r̈i + s̃P

i ω̇i − ω̃i ṡP
i ) + ḋT ṡi = 0

dT(−s̃j ω̇j + ω̃j ṡj ) + ṡT
j ḋ + sT

j (r̈j − s̃P
j ω̇j + ω̃j ṡP

j − r̈i + s̃P
i ω̇i − ω̃i ṡP

i ) + ḋT ṡj = 0

(31)

Thus, the contribution of the modified universal joint constraints to the right-hand side
of the acceleration equations yields

γ(um,4) =

⎧⎪⎪⎨
⎪⎪⎩

2dT(ω̃i ṡP
i − ω̃j ṡP

j ) − 2ḋTḋ
−sT

i ω̃j ṡj − sT
j ω̃i ṡi − 2ṡT

j ṡi

−dTω̃i ṡi − 2ḋTṡi − sT
i ω̃j ṡP

j + sT
i ω̃i ṡP

i

−dTω̃j ṡj − 2ḋTṡj − sT
j ω̃j ṡP

j − sT
j ω̃i ṡP

i

⎫⎪⎪⎬
⎪⎪⎭

(32)

In comparison with the ankle joint complex models presented in Sect. 1, the use of the
massless link approach has several advantages, namely (i) it is guaranteed that the physio-
logical distance between the talocrural and the talocalcaneal articulations is preserved; (ii)
the specific anatomical orientations of the joint axes are taken into account, (iii) the im-
possibility of measuring the talus motion using non-invasive techniques is avoided, (iv) the
overall complexity of the biomechanical model is not increased as the number of coordi-
nates and constraints is kept unchanged, and (v) the addition of a segment with very small
mass and inertia in the mass matrix is avoided. This last issue is of paramount importance
in the measure that a segment with small mass and inertia would result in the calculation of
significantly high accelerations during the resolution of the equations of motion defined in
Eq. (1). The calculation of such high values for the accelerations would ultimately decrease
the integration time of the system and lower its computational efficiency. Concerning the
advantage (iii), since the talus is an internal bone that is hidden by the surrounding tibia,
fibula, and calcaneus bones, its motion is impossible to measure when acquiring experi-
mental data of the human movement with non-invasive techniques, such as the use of skin
markers [45, 67]. Introducing the massless link in the proposed formulation overcomes this
difficulty, eliminating the need for experimental measurement of talus motion.

4 Methodology to restrict the range of motion in human articulations

This section deals with a methodology to restrict the range of motion in human articulations.
The formulation presented here closely follows the work developed by Silva et al. [68], and
it can be applied to any general rotational joint.

The amplitude of motion allowed in any anatomical articulation is usually known as the
range of motion, and it is strongly influenced by the bony structures adjacent to the articu-
lation, as well as by the physiological properties of the surrounding muscles and ligaments.
Generally, two distinct types of range of motion can be considered, namely normal and lim-
ited. The normal range of motion is associated with healthy articulations, while the limited
range of motion is related to pathological conditions or injuries. It is clear that the normal
range of motion allows the articulation to adjust easily to perturbations imposed by the hu-
man body, reducing the risk of injury. In turn, a limited range of motion impairs function,
mobility, and daily life activities, eventually leading to pain [69–72]. It is also important to
distinguish between active and passive ranges of motion. Both the active and the passive
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ranges of motion allow local movement of the articulations. The active range of motion oc-
curs when the muscles contract and relax, while the passive range of motion occurs when
external loads act on the articulation. The passive range of motion is usually the maximum
range of motion of the articulation, and it is limited by pain and by the resistance due to the
tissues existing around the articulation [23, 73, 74].

From the multibody systems formulation point of view, the kinematic joint models pre-
sented in the previous section do not impose any restrictions on the amplitude of motion
permitted between the adjacent bodies connected by them. Therefore, it is necessary to
incorporate additional restrictions to prevent the joints from performing anatomically and
physiologically unacceptable movements. In what follows, an approach to restrict the range
of motion in human articulations is presented under the umbrella of multibody systems for-
mulation.

Joint resistance moments, which mimic the passive behavior of the tissues surrounding
human articulations [75–77], are applied to prevent unrealistic configurations of the articu-
lations during regular and safe daily activities. The joint resistance moments associated with
a generic rotational joint h can be established as [68]

mr
h = md

h + mmr
h (33)

where md
h is the dissipative moment vector and mmr

h represents the motion-restricting mo-
ment vector. The subscript h denotes de the joint.

In order to better understand the presented methodology, it is important to clarify the
concepts of reference and moving bodies. A schematic representation of bodies i and j ,
which are, respectively, the reference and moving bodies, connected by a generic joint h is
presented in Fig. 6. While the moving body is the one whose range of motion is intended
to be restricted, the reference body enables the definition of the limits inside which the
moving body can freely move without exceeding the joint’s range of motion. It must be
noticed that the joint resistance moments calculated using Eq. (33) are applied on the moving
body, and their symmetrical counterparts are applied on the reference body. In the multibody
systems methodology, these moments are treated as external moments introduced in vector
g of Eq. (1).

The joint dissipative moment can be calculated using a viscous torsional damper as

md
h = −jhωh (34)

in which jh is the rotational damping coefficient of the human articulation, and ωh represents
the joint h angular velocity vector. The joint dissipative moment given by Eq. (34) represents
the energy lost due to the viscoelasticity of the tissues existing around human articulations.

The joint motion-restricting moment acts to restrict the range of motion of the human
articulation, and it is typically modeled as a nonlinear elastic element. The joint motion-
restricting moment is null for normal joint motions, that is, within the allowable range of
motion for that specific joint, and increases rapidly from zero until a maximum value within
a given angular range for unacceptable joint configurations. It should be noticed that the tran-
sition from null to the maximum moment magnitude occurs in a very short angular range.
In the presented methodology, the acceptable configuration of a generic human articulation
is established by the circumduction cone. This cone can be defined as a three-dimensional
surface inside which any configuration of the articulation is possible and physiologically
acceptable. Thus, the range of motion of the human articulations can be associated with the
working space of the circumduction cone [68, 78], as represented in Fig. 6. The circumduc-
tion cone can be established for any joint with rotational degrees-of-freedom, independently
of the number of degrees-of-freedom. Thus, for revolute joints, there are sections of the cone
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Fig. 6 Schematic representation of a system composed of bodies i and j , which represent, respectively, the
reference and moving bodies connected by a general rotational joint h. The circumduction cone, the joint’s
local reference ξhηhζh and the unit vector ur,h are represented (Color figure online)

that are not reached by the moving body due to the kinematic structure of this type of joint.
Furthermore, due to the fact that spherical and classical universal joints allow simultaneous
rotation around more than one joint axis, their range of motion can be restricted by defining
only one circumduction cone. It should be noted that the translational and the internal ro-
tational degrees-of-freedom are not restricted by this methodology. Thus, only the bending
moment is considered, and the torsional moment is neglected. The internal rotation has no
influence on the bending moment.

In order to define the circumduction cone, the local reference frame of the reference body
must be considered, which can be established in an arbitrary manner. The circumduction
cone is described by defining the joint’s local reference frame, which is rigidly attached
to the reference body. Thus, the axes of joint’s local reference frame are defined using the
reference body’s local reference frame. It is important to note that the joint’s and reference
body’s reference frames are not necessarily coincident. In the cone illustrated in Fig. 6, the
unit vectors defining the axes ξ and η of the joint’s local reference frame are established as

u′
ξ,h = {

0 0 −1
}T

and u′
η,h = {

0 1 0
}T

The uζ,h unit vector of the joint’s local reference frame is obtained as the cross product
of the uξ,h and uη,h unit vectors as

u′
ζ,h = ũ′

ξ,hu′
η,h (35)

Subsequently to the definition of the joint’s local reference frame, a unit vector, ur,h, must
be established using the moving body’s local reference frame. This unit vector allows to
know, at every configuration, the orientation of the moving body in the joint’s local reference
frame, except for the internal rotation. Analyzing the cone illustrated in Fig. 6, vector ur,h is
defined as

u′
r,h = {

1 0 0
}T

In order to determine whether the actual position of the moving body is inside (accept-
able configuration) or outside (unacceptable configuration) the circumduction cone, the lon-
gitude, ψh, and latitude, σh, of the unit vector ur,h expressed in the joint’s local reference
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frame must be determined. The longitude is established by the joint’s local axis uξ,h and the
projection of vector ur,h in the plane ξhηh of the joint’s local reference frame (see Fig. 7a).
Therefore, ψh is calculated as

ψh = arctan

(
u′′

r,h,η

u′′
r,h,ξ

)
(36)

where the symbol (′′) represents the components of the unit vector ur,h in the joint’s local
reference frame. It is important to note that, in Eq. (36), the atan2 function, which denotes
the four-quadrant inverse tangent, must be utilized. The atan2 function returns values in the
closed interval [−π, π], and, therefore, whenever ψh calculated using Eq. (36) is negative,
a value of 2π must be added to ψh in order to obtain values in the closed interval [0, 2π].

In addition, the latitude, σh, is established by the joint’s local unit vector uζ ,h and the unit
vector ur,h expressed in the joint’s local reference frame (see Fig. 7b), and it is determined
by

σh = arccos
(
u′′

r,h
Tu′′

ζ,h

)
(37)

It is important to note that vector ur,h can be defined in the most convenient manner
depending on the characteristics of the multibody system under analysis. However, it should
not be defined in such a way that its initial configuration is outside the circumduction cone,
thus being in an unacceptable configuration. Although it is not mandatory, in this example,
the ur,h unit vector and the joint’s local reference frame are defined such that the unit vectors
ur,h, and uζ,h are coincident at the initial configuration (see Fig. 6). Thus, in this situation,
the initial latitude is zero, which avoids an unacceptable configuration of the moving body
and prevents the joint’s range of motion from being exceeded at the initial configuration.

The circumduction cone of a certain joint is defined by specifying the maximum al-
lowable latitude, σ h,max, for certain values of longitude, ψh. The longitude and latitude are
directly associated with the joint’s range of motion and must be defined in the closed inter-
val [0, 2π] and [0, π] radians, respectively. It is important to notice that the definition of the
axes of the joint’s local reference frame influences the definition of the latitude and longitude
values. Then, an interpolation function determines the maximum allowable latitude corre-
sponding to any longitude value. If, for the current longitude, ψh, the current latitude, σh,
exceeds the corresponding maximum allowable latitude, σ h,max, then an unacceptable joint
position is verified, and the joint motion-restricting moment must be applied. This moment
corresponds to a third-degree polynomial function with the behavior depicted in Fig. 8, and
it can be expressed as

mmr
h =

⎧⎪⎪⎨
⎪⎪⎩

0 if σh ≤ σh,max

mp,h

[
3
(

κ
�σh

)2 − 2
(

κ
�σh

)3
]

ũr,hn if σh,max < σh and κ ≤ �σh

mp,hũr,hn if κ > �σh

(38)

where mp, h is the magnitude of the maximum penalty moment applied to restrict the joint’s
motion, �σh denotes the value corresponding to the difference between the passive and ac-
tive ranges of motion of joint h, and it allows to adjust the joint’s stiffness in the model
presented in Eq. (38), κ denotes the relative angular motion between the moving body and
the limits of the circumduction cone, and it allows to quantify the angular displacement that
is exceeded by the moving body with respect to the range of motion of the joint, and n rep-
resents the direction normal to the surface of the circumduction cone for the corresponding
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Fig. 7 Schematic representation of the (a) longitude and (b) latitude utilized in the calculation of the joint
motion-restricting moment. The longitude is defined in the plane ξhηh of the joint’s local reference frame
(top view of the circumduction cone) (Color figure online)

value of σ h,max. It is important to note that, depending on the considered human articulation,
the value of �σh varies due to the fact that both the active and passive ranges of motion vary
from human articulation to human articulation. If the value of �σh is very small, the joint’s
stiffness is very high, and vice-versa.

The expression presented in Eq. (38) can easily be substituted by others existing in the
literature, such as the ones given in the works of Yamaguchi [77] and Nasr et al. [79], while
keeping unchanged the remaining methodology described in the previous sections.

5 Application example: a biomechanical model of the right human foot
and leg

A three-dimensional biomechanical multibody model implemented using an in-house code
developed in Matlab was considered to compare the two ankle joint models presented in
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Fig. 8 Nonlinear behavior of the
joint motion-restricting moment
[68]

Table 1 Initial conditions for the biomechanical multibody model

Body (nr.) x [m] y [m] z [m] e0 e1 e2 e3

Toes (1) 0.2177 0.0000 0.0367 1.0000 0.0000 0.0000 0.0000

Main Foot (2) 0.0907 0.0000 0.0562 1.0000 0.0000 0.0000 0.0000

Leg (3) 0.0544 0.0000 0.3513 1.0000 0.0000 0.0000 0.0000

Sect. 3. The biomechanical model was utilized for forward dynamic analysis, and it is com-
posed of three rigid bodies, namely the toes, the main foot, and the leg. The leg represents
the tibia and fibula, the main foot is constituted by the tarsus and metatarsus, and the toes
encompass the phalanges. The bodies of this biomechanical model are kinematically con-
nected to each other by means of one revolute joint, connecting the toes to the main foot and
representing the metatarsophalangeal articulations, and one universal joint, either classical
or modified, connecting the main foot to the leg and representing the ankle joint complex. A
fixed joint is applied at the center of mass of the leg segment, restraining the translation and
rotation of this body. In addition, a constant angle kinematic constraint, similar to Eq. (22),
is utilized on the metatarsophalangeal joint to lock the joint’s angle. This procedure was
performed to focus the analysis of the results exclusively on the differences between the
joint models considered for the ankle joint complex. The developed biomechanical model
has three degrees of freedom, but, since the metatarsophalangeal joint was subjected to a
constant angle kinematic constraint, in reality, the model has only two functional degrees of
freedom, which arise from the universal joint. The numbers of each body and their corre-
sponding local coordinate systems are shown in Fig. 9.

The generic configuration of the biomechanical model is displayed in Fig. 9 and the the
corresponding initial conditions are listed in Table 1. The location of the center of mass of
each segment was retrieved from the work of Anderson and Pandy [22]. It was assumed
that the locations of all joints and the center of mass of all segments were aligned with the
midline of the foot, therefore resulting in a null y-coordinate. The x, y, and z directions
correspond to the anteroposterior, mediolateral, and superoinferior directions in the three
cardinal planes, respectively. For both biomechanical models presented in Fig. 9, the loca-
tion of the talocrural joint is the same, as well as the orientation of its axis. In addition,
the talocalcaneal joint axis has the same orientation in both models. The main difference
between the models presented in Fig. 9 is the location of the talocalcaneal joint.

The dimensions and inertial properties of each body of the biomechanical model are
listed in Table 2. It is important to note that the local reference frames of the bodies are
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Fig. 9 Schematic representation of the biomechanical model of the right human foot and leg with the ankle
joint complex modeled as a (a) classical and (b) modified universal joint. The body segments are represented
in different colors (Color figure online)

Table 2 Dimensions and inertial properties of the bodies of the biomechanical multibody model

Body (nr.) Length [m] Mass [kg]
Moment of inertia [kg·m2]

Iξξ Iηη Iζζ

Toes (1) 0.0797 0.2051 0.0001003 0.0001003 0.0002006

Main Foot (2) 0.1903 1.2000 0.0013818 0.0038337 0.0037110

Leg (3) 0.4300 3.5100 0.0477209 0.0483791 0.0048000

Table 3 Parameters used in the dynamic simulation of the biomechanical multibody model

Baumgarte coefficient - α 5 Reporting time step 0.00001 s

Baumgarte coefficient - β 5 Integration tolerance 10−10

Integration algorithm ode15s Simulation time 5 s

located at their center of mass (see Fig. 9) and are aligned with the principal axes of inertia.
The model corresponds to a 71 kg and 1.77 m male subject [22]. In addition, the total foot
length was considered to be 0.27 m [22] and the length of the talus, which represents the
length l of the massless link, was taken as 0.0417 m [80].

The simulation parameters utilized in all dynamic simulations and in the numerical meth-
ods required to solve the system dynamics are displayed in Table 3 [81, 82].
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Talocrural maximum range of motion for dorsiflexion and plantarflexion was considered
to be 20° and 35°, respectively. Talocalcaneal maximum inversion and eversion were defined
as 35° and 25°, respectively. These values refer to active ranges of motion, which are based
on in vivo data [83]. The values for �σh and mp, h were retrieved from the work of Silva et
al. [68, 84] for the knee joint as 11.5° and 226 N·m, respectively. The damping coefficient
of the ankle joint complex, jh, was obtained by multiplying the total mass of the subject by
the normalized value 0.008 N·m·s/kg/rad reported in [85, 86]. A value of 0.5680 N·m·s was
utilized.

It should be noted that, in this work, the three-dimensional biomechanical multibody
model is considered for forward dynamics analysis. However, when experimental data of
the human movement acquired at the laboratory is utilized, inverse dynamics analysis must
be considered. In this situation, the masses, lengths, moments of inertia, Euler parameters,
and location and orientation of the local reference system of each body must be adjusted
based on the experimentally acquired data.

6 Results and discussion

In the first dynamic analysis, the biomechanical model is released from the initial position
with null velocities and under the action of the gravitational force only, which is assumed to
act in the negative z-direction. The range of motion of the talocrural and the talocalcaneal
joints is not restricted. The trajectory of the center of mass of the main foot segment in the
sagittal (x-z plane), transverse (x-y plane), and frontal (y-z plane) planes is represented in
the plots of Fig. 10. From the analysis of Fig. 10a, it can be observed that there are no sub-
stantial differences in the type and amplitude of motion performed by the two ankle joint
models in the sagittal plane. This outcome is expected because the talocrural joint, which
is the joint most responsible for the movement in the sagittal plane, has the same location,
and its joint axis has the same orientation on both the classical and modified universal joint
models. Although the talocalcaneal joint has the same orientation in both joint models, its
location differs, as can be observed in Figs. 4, 5, and 9. Thus, in the transverse (Fig. 10b)
and frontal (Fig. 10c) planes, the observed differences in the trajectory of the center of mass
of the main foot segment are considerable, mainly in terms of amplitude of motion and di-
rection of movement. It should be noted that the amplitude of motion in the mediolateral
direction (y-direction) allowed by the proposed approach is greater than the one allowed by
the Anderson and Pandy’s model [22], which is observed by the fact that the blue plot is
wider than the red plot in Fig. 10b and Fig. 10c. In addition, it can be noticed that the foot
tends to move towards the lateral direction (negative y) in the Anderson and Pandy’s model
[22], as opposed to the proposed approach, in which the foot tends to move towards the me-
dial direction (positive y). In order to better understand these differences in the mediolateral
direction, it is important to note that the main distinction between the Anderson and Pandy’s
model [22] and the approach proposed in this work is the location of the talocalcaneal joint.
In the Anderson and Pandy’s model [22], the talocrural and the talocalcaneal joints coincide
at point P , corresponding to the anatomical location of the talocrural articulation. In the
model proposed in this work, the two joint axes are non-coplanar due to the consideration
of the massless link, which represents the talus bone. Thus, the talocalcaneal joint is closer
to the center of mass of the main foot segment than in the Anderson and Pandy’s model
[22]. The fact that the center of mass of the main foot is displaced from the location of
the talocalcaneal joint in both joint models generates a moment of force. The magnitude of
this moment is smaller in the proposed approach than in the Anderson and Pandy’s model
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Fig. 10 Trajectory of the center of mass of the main foot segment allowed by the two joint models considered
in this work to model the ankle joint complex of the human foot in the (a) sagittal, (b) transverse and (c) frontal
planes. The green marker represents the initial position of the center of mass of the main foot segment. The
range of motion of the talocrural and the talocalcaneal joints is not restricted. The x, y, and z directions
correspond to the anteroposterior, mediolateral, and superoinferior directions in the three cardinal planes,
respectively (Color figure online)
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Fig. 11 Snapshots of the movement of the biomechanical model for the first second of simula-
tion using (a) the Anderson and Pandy [22] classical universal joint (See Online Resource 1 –
11044_2023_9955_MOESM1_ESM) and (b) the proposed modified universal joint (See Online Resource
2 – 11044_2023_9955_MOESM2_ESM). The model is subjected to the gravitational action only. The range
of motion of the talocrural and the talocalcaneal joints is not restricted (Color figure online)

[22] because the lever arm is also smaller. Consequently, the amplitude of motion allowed
by the proposed approach in the mediolateral direction is greater than that observed for the
Anderson and Pandy’s model [22]. The incorporation of the massless link explains the dif-
ferences between the two ankle joint models. It is also important to note that the range of
motion for talocrural plantarflexion is violated in both joint models, which is expected be-
cause the methodology to restrict the range of motion, presented in Sect. 4, is not considered
in this analysis. To sum up, a comparison of the amplitude of motion and type of movement
performed by the ankle two joint models is shown in the snapshots of Fig. 11.

The time evolution of the velocity and acceleration of the center of mass of the main foot
segment is depicted in Fig. 12. The most important differences between both ankle joint
models are observed in the mediolateral direction (Fig. 12c and Fig. 12d). The plots differ
in magnitude, in which the proposed approach allows higher velocity and acceleration of
the center of mass of the main foot, and they are inverted, meaning that when a positive ve-
locity/acceleration value is observed in one joint model, the other model presents a negative
value, and vice-versa. This phenomenon is associated with the talocalcaneal joint location,
which is influenced by the consideration or not of the massless link. The results are quite
similar concerning the anteroposterior (Fig. 12a and Fig. 12b) and superoinferior (Fig. 12e
and Fig. 12f) directions. Small differences can be visible in the peaks for the velocity and
acceleration, with the Anderson and Pandy’s model [22] exhibiting higher values.

Figure 13 shows the phase portraits of the two ankle joint models, which include the
x-, y- and z-components of the position of the center of mass of the main foot versus its
velocity and the velocity versus the acceleration. The proposed joint model exhibits a less
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Fig. 12 Influence of the joint model considered for the ankle joint complex of the human foot on the response
of the biomechanical model. Velocity (a), (c), (e), and acceleration (b), (d), (f) of the center of mass of the
main foot segment (Color figure online)

smooth behavior when compared with the Anderson and Pandy’s model [22], which is seen
from the fact that the blue plot tends to be more scattered than the red plot. In the x- and z-
directions, overall, the results show no substantial differences. However, the most substantial
differences are observed in the y-direction, which agrees with the previous results (Fig. 10
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Fig. 13 Phase portraits of the Anderson and Pandy’s ( ) and proposed joint ( ) models: (a) x-position vs.
x-velocity, (b) x-velocity vs. x-acceleration, (c) y-position vs. y-velocity, (d) y-velocity vs. y-acceleration,
(e) z-position vs. z-velocity and (f) z-velocity vs. z-acceleration (Color figure online)

and Fig. 12). This phenomenon is again associated with the difference in the location of the
talocalcaneal joint.

A second analysis is performed, in which the biomechanical model is also released from
the initial position with null velocities and under the action of the gravitational force. In addi-
tion, joint resistance moments are applied to restrict the range of motion of the talocrural and
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Fig. 14 Trajectory of the center of mass of the main foot performed by the two ankle joint models in the
(a)-(b) sagittal, (c)-(d) transverse, and (e)-(f) frontal planes. Figures (a), (c) and (e) represent the results
without energy dissipation, whilst (b), (d) and (f) consider energy dissipation. The green marker represents
the initial position of the center of mass of the main foot segment. The x, y, and z directions correspond to the
anteroposterior, mediolateral, and superoinferior directions in the three cardinal planes, respectively (Color
figure online)
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talocalcaneal joints. This analysis aims to compare the type of movement and the amplitude
of motion performed by the two ankle models using a more realistic application example.
The trajectory of the center of mass of the main foot is subjected to analysis, and it can be
observed in the three cardinal planes in Fig. 14, with and without energy dissipation. When
energy dissipation is not considered in the model, the joint dissipative moment of Eq. (34)
is null, as opposed to the case in which energy dissipation is taken into account. Compared
with the results in which the range of motion methodology was not applied (Fig. 10), the
amplitude of motion of the center of mass of the main foot is significantly reduced in the an-
teroposterior direction (x-direction) for talocrural plantarflexion. This is true for both cases
of the application of the range of motion methodology, that is, with and without energy
dissipation, and for both ankle joint models (Fig. 14a-14d). For the superoinferior direction
(z-direction), the same conclusion is reached (Fig. 14a, Fig. 14b, Fig. 14e, Fig. 14f). For
the mediolateral direction (y-direction), concerning only the results without energy dissipa-
tion, the amplitude of motion for the proposed joint model is higher in the lateral direction
(negative y) when compared with the case in which the range of motion methodology was
not applied (Fig. 10b, Fig. 10c and Fig. 14c, Fig. 14e). This is also true for the Anderson
and Pandy’s model [22], but the amplitude of motion is higher for both the medial and
lateral directions (positive and negative y, respectively). The increase in the amplitude of
motion occurs because, in the analysis in which the range of motion methodology was not
considered, the center of mass of the main foot never exceeded the maximum latitude in the
mediolateral direction (y-direction), therefore not violating the range of motion for inversion
or eversion. When the range of motion methodology (described in Sect. 4) was introduced
in the model, if an unacceptable position of the main foot was verified in any direction, a
joint resistance moment was applied to place the main foot in an acceptable position. The
direction and magnitude of this moment may have caused the main foot to reach an unac-
ceptable position in the mediolateral direction, therefore reaching the maximum latitude for
inversion or eversion. It is important to note that, for both ankle models and for the case of
the range of motion methodology without energy dissipation, the direction of movement of
the center of mass of the main foot in the anteroposterior direction (x-direction) (Fig. 14a)
is similar to the results presented in Fig. 10a. However, for the superoinferior (z-direction)
and mediolateral (y-direction) directions, the movement is non-regular due to the successive
moment applications to prevent range of motion violation (Fig. 10b, Fig. 10c and Fig. 14c,
Fig. 14e). In the results with energy dissipation, the amplitude of motion in the mediolat-
eral direction (y-direction) is reduced when compared with the results without the range of
motion methodology (Fig. 10b, Fig. 10c and Fig. 14d, Fig. 14f). With energy dissipation,
it is clear the maximum latitude for plantarflexion is reached in the sagittal and transverse
planes on both ankle models (Fig. 14b, Fig. 14d), and the center of mass of the main foot
tends to move to the medial direction (positive y) (Fig. 14d, Fig. 14e). This is not consistent
with the conclusions reached in Fig. 10 for the Anderson and Pandy’s model [22], where the
center of mass of the main foot moved to the lateral direction (negative y). The direction and
magnitude of the moment applied to restrict the plantarflexion range of motion may be re-
sponsible for this difference. In order to provide a better comparison between the two ankle
joint models when the range of motion methodology was applied with and without energy
dissipation, the snapshots for the first second of the simulation are presented in Fig. 15 and
Fig. 16, respectively.

The variation of the mechanical energy of both ankle models was also evaluated, and
it is as depicted in Fig. 17. If the range of motion methodology is not considered, there is
no energy dissipation, and, therefore, both systems are conservative. If the range of mo-
tion methodology is applied without energy dissipation, it can be noted that, at every joint
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Fig. 15 Snapshots of the movement of the biomechanical model for the first second of simula-
tion using (a) the Anderson and Pandy’s [22] classical universal joint (See Online Resource 3 –
11044_2023_9955_MOESM3_ESM) and (b) the proposed modified universal joint (See Online Resource
4 – 11044_2023_9955_MOESM4_ESM). The range of motion methodology is considered without energy
dissipation (Color figure online)

resistance moment application, which is visible by the peaks present on the plots of the me-
chanical energy, the system loses energy. However, the system rapidly recovers since the
energy is lost and restored in a short period of time. In this case, the system is conserva-
tive. If energy dissipation is considered, the systems dissipate energy. This analysis is valid
for both ankle joint models. In addition, while the maximum latitude for plantarflexion is
reached at around 0.73 seconds of simulation in the Anderson and Pandy’s model, in the
proposed approach, the maximum latitude is reached earlier, at around 0.43 seconds. This
phenomenon can be observed by the time at which the mechanical energy plateau is reached
in the red plots of Fig. 17, and it means that the proposed approach dissipates energy faster
than the Anderson and Pandy’s model.

The computational cost of the two ankle models analyzed in the biomechanical model
was compared by assessing the number of function evaluations. Considering the cases in
which the range of motion methodology was implemented with energy dissipation, when
the 5-second simulations were used to evaluate the computational cost of the joint models,
it was observed that the system showed numerical issues after it was fully dampened. The
numerical issues are directly associated with the numerical error arising from the integration
process that does not allow to obtain null velocities and, thus, fully stop the motion of the
bodies. In turn, very low velocities are calculated, which provokes variations in the position
and velocity of the bodies of the biomechanical model, leading to the application of a joint
dissipative moment to the system. The dissipative moment causes substantial variations, in
relative terms, of the coordinates of the biomechanical model, which reduce the time step re-
quired to meet the defined tolerances and proceed with the integration process, significantly
decreasing the computational efficiency. Taking this information into consideration, Fig. 18
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Fig. 16 Snapshots of the movement of the biomechanical model for the first second of simula-
tion using (a) the Anderson and Pandy’s [22] classical universal joint (See Online Resource 5 –
11044_2023_9955_MOESM5_ESM) and (b) the proposed modified universal joint (See Online Resource
6 – 11044_2023_9955_MOESM6_ESM). The range of motion methodology is considered with energy dis-
sipation (Color figure online)

Fig. 17 Variation of the mechanical energy for the (a) classical and (b) modified universal joints considered
in the biomechanical model to model the ankle joint complex of the human foot (Color figure online)

shows the computational cost for 1 second of simulation only, representing the simulation
time before the occurrence of these numerical issues. Observing Fig. 18, it can be concluded
that the proposed joint model is slightly less efficient when the range of motion methodology
is not applied. Considering the situation in which the range of motion methodology is ap-
plied without energy dissipation, it can be concluded that the Anderson and Pandy’s model
[22] is clearly more efficient than the proposed approach. The same tendency is observed
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Fig. 18 Computational cost of the two joint models considered for the ankle joint complex of the human foot
for 1 second of simulation time (Color figure online)

Fig. 19 Schematic representation, in the sagittal plane, of the cases tested for the massless link length, namely
(a) 0.0000, (b) 0.0360, (c) 0.0417, and (d) 0.0474 m. The talus bone is highlighted in grey (Color figure
online)

when the range of motion methodology is applied with energy dissipation. In general, the
introduction of energy dissipation to the system decreases the computational cost of both
joint models. It is possible to conclude that the proposed approach does not present benefits
in terms of computational cost, but it reproduces the anatomical location of the talocalcaneal
articulation more realistically.

Finally, a third analysis was carried out, which aimed to determine the influence of the
massless link length (variable l on Eq. (20)) on the response of the biomechanical model.
According to the study of Siegler et al. [80], which used computational tomography data of
26 healthy individuals aged between 18 and 35 years old to quantify the three-dimensional
morphology of the talus, the height of this bone was found to be 0.0417±0.0057 m. Thus,
in this study, four values for massless link length were tested, namely (i) 0.0000 m, which
corresponds to the Anderson and Pandy’s model [22], (ii) 0.0360 m (0.0417−0.0057 m),
(iii) 0.0417 m, representing the proposed approach, and (iv) 0.0474 m (0.0417+0.0057 m).
The location of the talocrural joint was not altered, but the location of the talocalcaneal
joint was adjusted to accommodate the variations in the massless link length. A schematic
representation of these four cases in the sagittal plane is presented in the plots of Fig. 19.

Based on the first and second analyses (without and with the consideration of the range
of motion methodology), it can be concluded that the use of the massless link to model the
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Fig. 20 Influence of the massless link length on the response of the biomechanical model. Trajectory of the
center of mass of the main foot segment in the (a) transverse and (b) frontal planes. The x, y, and z directions
correspond to the anteroposterior, mediolateral, and superoinferior directions in the three cardinal planes,
respectively (Color figure online)

ankle joint complex of the human foot introduces substantial differences primarily on the
mediolateral direction (y-direction) for all parameters studied. Thus, only the mediolateral
direction was studied in the third analysis, and the obtained results for the center of mass of
the main foot segment are depicted in the plots of Fig. 20. The range of motion methodology
was not applied in this analysis. Observing Fig. 20, it can be concluded that, as the length of
the massless link increases, the center of mass of the main foot segment moves progressively
to the medial direction (positive y) on the transverse and frontal planes. The most distinct
plot is the one in which the massless link length is equal to 0.000 m, corresponding to the
Anderson and Pandy’s model [22]. In addition, although this phenomenon is not evidently
identified by the observation of Fig. 20, the amplitude of motion of the center of mass of
the main foot increases with the increase in the massless link length, as concluded by the
successive increase in the width of the plots. With these conclusions in mind, it should be
recognized that altering the initial conditions of the model or the parameters of the modified
universal joint strongly influences the response of the model and leads to different results.

7 Concluding remarks

A new skeletal model for the ankle joint complex of the human foot was presented in this
work, the performance of which was examined and compared with the solution developed
by Anderson and Pandy [22]. The main kinematic modeling aspects of these two joint ap-
proaches were described under the framework of multibody systems methodologies, taking
into account the corresponding kinematic constraints, the resulting Jacobian matrix, and the
right-hand side of the acceleration constraint equations vector. A methodology to restrict the
range of motion in human articulations was explained and utilized. A demonstrative appli-
cation example was considered using a biomechanical model of the right human foot and
leg. The influence of the two joint modeling approaches on the response of the biomechani-
cal model was studied. The two ankle models were compared using two different scenarios.
In the first analysis, the biomechanical model was subjected to the gravitational force only,
and in the second analysis, a methodology to restrict the range of motion in human artic-
ulations was utilized. An additional study was carried out to analyze the influence of the
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massless link length on the response of the biomechanical model. Overall, the introduction
of the massless link resulted in substantial differences in the mediolateral direction for all
variables studied, while the anteroposterior and superoinfoerior directions presented similar
results. It can be concluded that, despite being less computationally efficient, the proposed
joint model represents the anatomical location of the talocalcaneal articulation more real-
istically. Future studies should aim to validate the proposed modified universal joint using
experimental data of the human movement. An appropriate marker set protocol based on the
bony landmarks specified by the recommendations of the International Society of Biome-
chanics [87] must be developed, and the degrees-of-freedom of the considered biomechan-
ical model must be guided utilizing the experimentally acquired data. The proposed joint
model can be utilized to study both healthy and pathological populations. Since the main
differences between the classical and modified universal joints are in the mediolateral di-
rection, tasks that are strongly influenced by the inversion and eversion of the human foot,
such as walking on inclined planes or performing three-point crutch-assisted gait, can be
considered for validation.
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