
SecureQNN: Introducing a Privacy-Preserving
Framework for QNNs at the Deep Edge⋆

Miguel Costa1[0000−0003−2046−4569], Tiago Gomes1[0000−0002−4071−9015], Jorge
Cabral1[0000−0001−9954−9746], João Monteiro1[0000−0002−3287−3995], Adriano

Tavares1[0000−0001−8316−6927], and Sandro Pinto1[0000−0003−4580−7484]

ALGORITMI Research Centre, Universidade do Minho, PT
miguel.costa@dei.uminho.pt

Abstract. Recent concerns about real-time inference and data privacy
are making Machine Learning (ML) shift to the edge. However, training
efficient ML models require large-scale datasets not available for typical
ML clients. Consequently, the training is usually delegated to specific
Service Providers (SP), which are now worried to deploy proprietary
ML models on untrusted edge devices. A natural solution to increase
the privacy and integrity of ML models comes from Trusted Execution
Environments (TEEs), which provide hardware-based security. However,
their integration with heavy ML computation remains a challenge. This
perspective paper explores the feasibility of leveraging a state-of-the-art
TEE technology widely available in modern MCUs (TrustZone-M) to
protect the privacy of Quantized Neural Networks (QNNs). We propose
a novel framework that traverses the model layer-by-layer and evaluates
the number of epochs an attacker requires to build a model with the same
accuracy as the target with the information disclosed. The set of layers
whose information makes the attacker spend less training effort than the
owner training from scratch is protected in an isolated environment, i.e.,
the secure-world. Our framework will be evaluated in terms of latency
and memory footprint for two ANNs built for the CIFAR-10 and Visual
Wake Words (VWW) datasets. In this perspective paper, we establish a
baseline reference for the results.

Keywords: Machine Learning · Artificial Neural Networks · Quantized
Neural Networks · ML Model Privacy · TEE · TrustZone-M · Armv8-M.

1 Introduction

Advances in computing processing and the availability of vast amounts of data
have propelled Machine Learning (ML) to the forefront of various domains, in-
cluding healthcare [1], finance [2], and mobility [3], [4]. Among the wide range
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of algorithms used in ML, Artificial Neural Networks (ANNs) have emerged as
a prominent choice. However, training ANNs often requires access to large-scale
private datasets, which are not typically held by ML clients. To address this chal-
lenge, big data companies introduced Machine Learning as a Service (MLaaS),
enabling clients to use proprietary models for inference tasks using personal data.

Typical MLaaS follow a centralized computing paradigm where the client
sends its data to the cloud to get the results. However, heavy reliance on the cloud
induces unpredictable latency due to network overload which may render ML
services useless in real-time scenarios [5], [6]. This combined with rising concerns
about data privacy is making ML shift to the edge of the network [5], [6]. If this
increases privacy for the user as its data is not transferred over the network,
the same does not apply to Service Providers (SPs) as their models would be
deployed in untrusted edge devices. Unauthorized access to these models can
lead to the exposure of proprietary algorithms [7], reverse engineering [7], or even
the extraction of sensitive training data [7], [8]. Moreover, recent attacks have
demonstrated that malicious manipulation of ANN parameters can compromise
the integrity of decision-making processes [9], [10]. All these issues combined gave
rise to a still open research question: ”Is it possible to transfer a proprietary ML
model to the edge while providing privacy guarantees to the SP?”.

A primary response to this concern comes from hardware-based security
mechanisms, such as Trusted Execution Environments (TEEs). TEEs enforce
memory isolation between applications running in a Rich Execution Environ-
ment (REE) and smaller critical applications isolated by hardware [11]. Conse-
quently, researchers have started to adapt off-the-shelf TEEs, such as Intel-SGX
[12] and ARM TrustZone [13], [14], to protect ML computations at the edge of
the network. However, TEEs are designed to execute small critical operations
and tend to pose severe memory constraints to resource-hungry ML computa-
tion [15]–[20]. Furthermore, they do not extend to accelerators such as GPUs or
ASICs [15], [17]–[19], [21]. As a consequence, developing privacy-enhanced ML
frameworks on top of TEEs remains an open challenge.

Prior works [15], [18], [22], [23] propose to encrypt the model and store it
in unprotected memory. When the inference process starts, the model is loaded
and decrypted into the enclave, typically layer-by-layer to overcome the memory
limits. If the activations can not be stored within the enclave to serve as input to
the next layer, they are encrypted before being stored into an unprotected mem-
ory region. Despite the novelty, these approaches suffer from increased latency
disrupted by the decryption of all ANN parameters and the frequent context
switch from the secure-world to the normal-world. To counteract these issues,
some works propose to (i) perform loading in parallel with prediction [20]; (ii)
execute only sensitive layers within the enclave [16], [19], [21]; (iii) obfuscate only
relevant ANN weights [17]; or (iv) refactor a model in a bident structure [24].

Despite their novelty, prior works target x86 and Arm Cortex-A processors,
letting out Arm Cortex-M processors, which are at the forefront development of
IoT applications. The recent support for friendly ML APIs (CMSIS-NN and Ten-
sorFlow Lite Micro) is pushing Arm Cortex-M processors even further [5], [25].
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As some Arm Cortex-M processors are now being shipped with TrustZone-M
technology, a new question arises: can TEEs be leveraged to protect the privacy of
ANNs on resource-constrained Arm Cortex-M MCUs? Although previous works
show impressive results for the Intel-SGX and Arm Cortex-A architectures, they
may not hold to Arm Cortex-MMCUs as these devices only hold a few megabytes
of memory and much lower throughput. The integration of Quantized Neural
Networks (QNNs), which operate with reduced precision and memory require-
ments, and TrustZone-M may hold great promise for advancing ML capabilities
on these devices while ensuring the privacy and security of sensitive ML models.

In this perspective paper, we dig into this topic by providing an initial
overview of the feasibility of leveraging the Arm TrustZone-M technology to
protect the privacy of a QNN. Previous work [26] has found that the last layers
of a neural network are the ones that reveal more sensitive information about
the classification task, while the first ones reveal more information about the
input itself. We borrow this finding to develop a novel framework that splits the
execution of a QNN between the secure and normal worlds while minimizing
the number of layers delegated to the secure-world to the bare minimum. As
the last layers tend to be smaller than the first ones, we believe this approach
could be a good starting point to tackle the severe memory constraints imposed
by TrustZone-M. To abstract the implementation details of TrustZone-M, our
framework works on top of Trusted Firmware-M (TF-M). By combining the
built-in capabilities of TF-M for secure storage and by minimizing the number
of layers within the TEE, we envision reducing the need for frequent context
switches, while optimizing the access to critical data.

To evaluate our framework, we consider the most challenging scenario where
the adversary has access to everything in the (untrusted) normal-world. In such
a scenario, the attacker can freeze the non-protected layers, while iteratively
designing and training possible adjacent layers till he gets a substitute model
with an accuracy equal to or greater than the target model. In this context, we
consider the privacy of the target model protected when the effort required to
build the substitute model is, at least, equal to the effort required to train the
target model from scratch. We measure the training effort in training epochs. We
evaluate our framework (SecureQNN) in terms of TEE memory footprint and
inference latency. The evaluation suite includes two QNNs designed and trained
for the CIFAR-10 and Visual Wake Words (VWW) datasets. In this perspective
paper, we establish the baseline reference for future evaluation. To the best of
our knowledge, we are the first to propose this ANN splitting strategy to enhance
privacy while utilizing a TEE. Furthermore, no previous works have specifically
targeted Arm Cortex-M MCUs.

2 Background

2.1 Arm TrustZone-M

Arm TrustZone-M is a technology designed to enhance the security of MCUs
following the Armv8-M architecture [11], [13]. TrustZone-M employs hardware-
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based isolation to establish two distinct execution states: (i) the secure-world
and (ii) the normal-world. The secure-world is the host for software components
that are critical from the integrity or privacy perspective, while the normal-
world accommodates less sensitive applications. The division between the two
worlds is memory-based, meaning that when the processor is running from se-
cure memory, the processor state is secure, and when the processor is running
from non-secure memory, the processor state is normal. The secure-world has
access to every memory region, while the normal-world only has access to the
non-secure memory. For this purpose, TrustZone-M relies on two attribution
units. The Security Attribution Unit (SAU) is programmable, allowing dynamic
address partitioning. The Implementation-Defined Attribution Unit (IDAU) par-
titions memory statically and is defined at design time by the chip maker. To
determine if a given address is secure or not, TrustZone-M performs a logical
OR between the output of SAU and IDAU. By preventing unauthorized access
to secure resources, TrustZone-M prevents malicious applications in the normal-
world from impacting the integrity and privacy of the applications running in
the secure-world.

2.2 Trusted Firmware-M (TF-M)

TF-M is an open-source firmware implementation that uses the TrustZone-M
hardware capabilities, providing trusted firmware for Arm Cortex-M devices. It
supports the Armv8-M and Armv8.1-M architectures and incorporates various
security features, including (i) secure boot, (ii) software component isolation,
(iii) protected storage of sensitive information, and (iv) secure firmware update.

TF-M uses MCUboot, as its secure bootloader, enabling the verification and
authentication of applications running in the secure and normal worlds during
the system startup. This prevents the execution of malicious code and helps
establish a trusted foundation for the entire system. Furthermore, TF-M enforces
isolation between the secure and normal worlds, as well as between applications
within the secure-world if required. To partition the memory as secure and non-
secure, TF-M relies on the hardware-enforced isolation provided by TrustZone-M
through the SAU and IDAU units, as well as system-wide protections units, such
as Peripheral Protection Controllers (PPCs), used to partition peripherals. To
partition the secure memory between different Trusted Applications (TAs), TF-
M relies on the secure memory protection unit.

Protected storage and firmware update are two important services provided
by TF-M. The former relies on the hardware isolation provided by TrustZone-M
to isolate a given fraction of the flash memory from the normal-world. This mech-
anism enables the secure storage and management of cryptographic keys, certifi-
cates, and other confidential data. Additionally, TF-M enables secure firmware
updates, allowing devices to securely receive and install new firmware binaries.
More specifically, it provides the device with the ability to verify digital signa-
tures of received binaries, preventing unauthorized modifications or malicious
code injection.
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3 Related Work

Several mechanisms to ensure the confidentiality of a proprietary ML model have
been proposed over the last few years. Table 1 reviews and puts into perspective
the most relevant works in this area. In this paper, we restrict the scope to works
that use TEEs to protect the privacy of the ML model. Works that employ TEEs
to protect the confidentiality of user input data or enable collaborative learning
from multiple-edge devices are out of the scope of this review. For a review
including these subjects, we refer to the work [27].

Table 1. Gap Analysis

Architecture
TEE

Trusted
Execution

Needs to fit
on TEE?

Integrity
Check

Description

VanNostrand et al. [15]
2019

Arm Cortex-A
OP-TEE

All layers Largest layer No
The computation of every layer is performed on the
TEE. Loads the model layer-by-layer, requiring
frequent context switches.

OMG [22]
2020

Arm Cortex-A
SANCTUARY

All layers Full model No
The computation of every layer is performed on the
TEE. Loads the model in a single iteration, not
requiring context switches during inference.

SecDeep [18]
2021

Arm Cortex-A
OP-TEE

All layers
Conf. functions

Largest layer No
Splits Arm-NN into confidential and non-confidential
functions. Confidential functions deal with private
user and model data and are delegated to the TEE.

Nakai et al. [20]
2021

Arm Cortex-A
OP-TEE

All layers Largest layer Yes
Uses the shared memory between the REE and the
TEE to load the model in parallel with prediction.

MLCapsule [23]
2021

x86
Intel-SGX

All layers Largest layer No
The computation of every layer is performed on the
TEE. Loads the model layer-by-layer, requiring
frequent context switches.

Slalom [21]
2019

x86
Intel-SGX

Selected
layers

Largest layer Yes
Outsources the computation of linear layers from
TEE to GPU without revealing weights and user
data. Non-linear layers are executed within the TEE.

DarkneTZ [16]
2020

Arm Cortex-A
OP-TEE

Selected
layers

Largest layer No
Delegates the execution of the layers most sensitive
to MIAs to a TEE.

ShadowNet [19]
2023

Arm Cortex-A
OP-TEE

Selected
layers

Largest layer Yes
Outsources the computation of linear layers from
TEE to GPU without revealing weights and user
data. Non-linear layers are executed within the TEE.

Hou et al. [17]
2022

x86
Intel-SGX

Selected
neurons

Selected neurons
Largest layer I/O

No
Obfuscates strategical weights to outsource most
of the inference to the REE. The output of each layer
is denoised within the TEE.

Lin et al. [24]
2020

-
Small

asymetric
model

Small
asymetric
model

No
Refactors the model into two asymmetric models,
one on the TEE and the other on the REE. The model
on the TEE has more weight in the final prediction.

Costa et al.
2023

Arm Cortex-M
TF-M

Selected
layers

Selected layers
or largest layer

No
Delegates the execution of the layers containing
the most sensitive information about the
classification task and training data to the TEE.

3.1 All Layers Running Inside the TEE

A first approach consists in embedding all layers inside the TEE. This is the
most basic but also the most effective technique to protect the privacy of a
neural network. Nevertheless, it is the least optimized in terms of latency as it
involves frequent context switches between the secure and normal worlds and
typically requires cryptography to be executed over all ANN parameters.

OMG [22] is the only work relying on the SANCTUARY security architecture
developed for Arm Cortex-A processors. OMG follows a very simple approach:
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after the initialization phase, the full model is loaded and decrypted in a single
iteration within the enclave and the inference process starts. Given the limited
memory footprint of TEEs, OMG does not scale to large models.

The works [15], [23] tackle this issue by splitting the inference process layer-
by-layer. For each layer, the weights are loaded from the non-secure to the secure
memory and decrypted afterward. The inference process is fully confined to the
TEE. However, if the outputs of a given layer do not fit in the secure memory,
they are encrypted and offloaded to the non-secure region being loaded and de-
crypted within the TEE when the computation of the following layer starts. The
process is repeated till the output layer, where the result of the classification
is returned in plain text to the normal-world. Despite the similar ANN split-
ting process, these works have some differences. While MLCapsule [23] targets
x86 processors with support to Intel-SGX, the work [15] targets Arm Cortex-A
processors with OP-TEE. In addition to layer-based partitioning, the work [15]
proposes sub-layer and branched partitioning. In the former technique, the layer
is partitioned into sub-layers, which helps to deal with the memory limits of the
enclave; however, at the cost of increased decision latency. Sub-layer partitioning
requires the inputs of the current layer to be loaded and decrypted more than
once to calculate the full set of layer outputs. Branched partitioning solves this
problem by splitting the last layers of a neural network into independent lay-
ers with independent connections to the forward layers. However, this involves
changes to the model architecture. Despite the novelty and potential of these
splitting strategies, VanNostrand et al. [15] does not evaluate them.

The work [20] improves over the previous works by reducing the need for
context switches anytime the parameters of a new layer have to be loaded into
the TEE. For this purpose, Nakai et al. [20] uses the shared memory between
the secure and normal worlds to load the parameters and execute the decryption
and the prediction in parallel. The work targets Arm Cortex-A processors with
support to OP-TEE.

When analyzing the source code of Arm-NN, an API tailored for the exe-
cution of ANNs in Arm Cortex-A processors, Liu et al. [18] found that more
than 90% of the code implementing layer functions is dedicated to tensor prepa-
ration or performance optimization, while only less than 10% is dedicated to
mathematical tensor computation with sensitive user and model data. Based on
this finding, Liu et al. [18] proposed SecDeep, a framework that reformulates
the Arm-NN functions implementing ANN layers into two types: (i) confidential
functions and (ii) non-confidential functions.

3.2 Selected Layers Running Inside the TEE

A second approach reported in the literature resorts to running a set of selected
layers only inside the TEE. When compared to the previous approach, this strat-
egy is intended to reduce the memory footprint of TEEs, while also reducing the
number of context switches between the secure and normal worlds.

Slalom [21] was one the first works to explore this technique by outsourcing
the computation of linear layers from the enclave to an untrusted GPU. The
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inference process starts and is managed from the enclave. However, whenever
Slalom finds a linear layer on the pipeline, Slalom encrypts both the inputs and
the layer parameters with a pre-computed pseudorandom stream and outsources
the computation to a co-located GPU. The result is then decrypted within the
enclave and the integrity is verified using the Freivalds’ algorithm. Slalom targets
x86 processors with support to Intel-SGX. Sun et al. [19] borrowed the idea
behind this work and developed ShadowNet, a framework similar to Slalom but
for mobile devices powered by Arm Cortex-A MCUs with support to OP-TEE.

DarkneTZ [16] proposes a different approach to speed up the inference la-
tency on Arm Cortex-A processors. Nevertheless, DarkneTZ does not protect
the model parameters like the previous works. Instead, DarkneTZ protects the
privacy of the training data by offering robustness against membership inference
attacks (MIAs). DarkneTZ traverses the model layer-by-layer and uses all the
information available till the layer under analysis as input to a strong white-box
MIA. The set of layers to which the attack succeeds is delegated to the TEE.

3.3 Selected Neurons

A third approach reported in the literature proposes to delegate the computation
of critical neurons to the TEE. Hou et al. [17] propose a framework to design a
secure version of the ML model with crafted random weights. More specifically,
the framework adds crafted values to obfuscate strategical weights within the
ANN. The crafted noise must change the predicted label of the query sample,
rendering the accuracy of the obfuscated model useless. In this framework, the
inference process is mostly carried out in the normal-world, being the TEE re-
sponsible for denoising the outputs of each layer. The framework distorts the top
percentage weights with the highest absolute value. The distortion must force
the attackers to pay at least the same machine training hours on retraining the
crafted model with high accuracy as the model owner trains from scratch. The
framework targets x86 processors with support for Intel-SGX.

3.4 Model Refactoring

Lin et al. [24] addressed the limitations of TEEs with a different strategy. The
authors propose to refactor the model to be protected into two asymmetric
models, one to be executed within a TEE and another within an untrusted
computation unit. The output of both models is then fused by a few public
layers. The protected model is expected to have a smaller memory footprint
and contribute the most to the final prediction. The model deployed in the
normal-world must not enable the attacker to reconstruct the model within the
TEE or the original model. Despite reducing the memory footprint of the secure
application, the examples and evaluation given in the original work suggest that
the strategy may increase the memory footprint of the overall ML system, as the
sub-model deployed in the normal-world can be bigger than the original one.



8 Miguel Costa et al.

3.5 Gap Analysis

When compared to works that run all layers inside the TEE, SecureQNN has
the potential to reduce the number of context switches between the secure and
normal worlds. To reduce the TEEmemory footprint, most works in this category
encrypts the model parameters and save them in non-secure memory. During
inference, the parameters are decrypted and loaded layer-by-layer to the secure-
world. This strategy reduces the TEE memory footprint to the size of the largest
layer but requires a context switch every time a new layer is processed.

Compared to other works in the same category, DarkneTZ also reduces the
computation within the TEE to sensitive layers. However, DarkneTZ protects
ANNs against MIAs, which has different requirements from protecting the pri-
vacy of model parameters. Slalom and ShadowNet work by offloading linear
layers to a GPU. However, as the linear layers compose most of the layers of an
ANN and the parameters used by the GPU are obfuscated, the outputs of linear
layers always need to be denoised within the TEE, requiring frequent context
switches between the normal and secure worlds. These two works are not easily
portable to devices powered by Arm Cortex-M as they do not feature GPUs.

Works that delegate the computation of selected neurons to the TEE are the
most efficient in terms of TEE memory footprint. The work [17] only requires
space to save the selected neurons and the output of the layer under process.
Despite performing most of the computation outside the TEE, this work still
requires the outputs of each layer to be denoised within the TEE, which signifi-
cantly increases the number of context switches compared to our framework.

The only work that relies on model refactoring [24] requires the same num-
ber of context switches as we envision for our framework. In terms of memory
footprint, the results and the description of the model refactoring strategy are
not deep enough to hold strong assumptions.

SecureQNN is the only work targeting Arm Cortex-M MCUs. Other works
either target Arm Cortex-A or x86 processors, which are far more powerful and
frequently coupled with GPUs, which can be used to overcome the performance
bottleneck imposed by frequent context switches and cryptography operations.
In addition, works that apply fine-grain techniques to select the layers (Dark-
neTZ [16]) or the neurons [17] to be performed within the TEE do not consider
the impact of quantization. It is worth noting that while previous works target
ANNs with floating-point precision, our work targets QNNs.

4 SecureQNN

4.1 Scope

SecureQNN targets IoT devices powered by Arm Cortex-M MCUs following
the latest Armv8-M architecture and supported by TF-M. These tiny and low-
power devices typically have a single central processing unit and feature a wide
range of peripherals. However, GPU acceleration is not supported. The most
advance Armv8-M MCUs support the TrustZone-M technology, which enables
the programmer to create two execution environments: secure and normal.
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4.2 Threat Model

Our threat model considers two agents: (i) an SP and a (ii) client. The SP uses
its big data infrastructure to provide the client with a highly accurate ANN. The
SP is concerned about the privacy of its model as it constitutes its intellectual
property. Training an accurate model may require years of data storage and
treatment and weeks to months of training. Furthermore, recent studies have
shown that ANNs are vulnerable to MIAs [16], attacks specifically designed
to understand if a data point is part of the training data. As ANNs are usually
trained on private data belonging to a myriad of users, the SP wants to maintain
the training data private, as leaking data would undermine the users’ trust in
the SP. Our work focuses on maintaining the privacy of ANN critical layers to
reduce the risk of these threats.

The client gets the ANN trained by the SP on its local device, which is
powered by an Arm Cortex-M MCU and must support TruztZone-M and TF-M.
The client is an honest but curious adversary. He follows the protocol required by
the SP but tries to learn about the ANN. In this context, we consider the client
has access to everything in the normal-world, including memory and operating
system. We consider the model provided by the SP as a gray-box, where part
of it is executed and stored within the normal-world and the other part in the
secure-world. The user has full access to the public part of the model and can
use it to try to disclose the private part. We consider the user has no access to
the training data. As data is the most valuable asset of an ML model, there is
no interest in stealing the model if the attacker already has access to data.

4.3 Model Partitioning

Previous research [26] discovered that the initial layers of ANNs contain crucial
information for breaking down the input data, while the subsequent layers play a
more significant role in the classification task. We leverage this insight to divide
a given ANN into secure and normal worlds. Figure 1 illustrates the overall
process for model partitioning. The model partitioning framework will be built
in Python using the Tensorflow v2 API as the basis. Tensorflow v2 provides
seamless conversion from floating-point to integer precision models compatible
with the TensorFlow Lite Micro and CMSIS-NN, the most prominent APIs for
ML development in Arm Cortex-M MCUs.

Our framework systematically traverses the model layer-by-layer, starting
from the final layer. At each layer, we expose the parameters of the current
and forward layers to a training process. During this training process, we freeze
the parameters of the disclosed layers and attempt to reconstruct the unknown
ones. We consider the most challenging scenario, assuming that the attacker
possesses complete knowledge of the model’s architecture and training hyper-
parameters. For every layer, we measure the number of epochs needed for the
reconstructed model to achieve an accuracy equal to or higher than the model
to be safeguarded. The minimum set of frozen layers that require, at least, the
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Fig. 1.Overview of the model partitioning technique. The example describes the second
trial, where it is evaluated the criticality of the last two layers.

same epochs as those needed by the model owner to train from scratch will be
allocated to the secure-world.

Since the attacker lacks access to the original training dataset, they must con-
struct a substitute dataset. Our framework emulates this situation by employing
data augmentation techniques on the original test dataset. Specifically, it uti-
lizes three data augmentation methods: (i) image transformations, (ii) Genera-
tive Adversarial Networks (GANs), and (iii) Variational Auto-Encoders (VAEs).
The augmented dataset is then used to simulate the training attempts conducted
by a potential attacker.

4.4 Trusted Execution

Figure 2 details the architecture of an edge device running an ANN provisioned
by SecureQNN. As depicted, we leverage the TrustZone-M technology to create
two distinct execution environments: (i) normal and (ii) secure. Both environ-
ments feature privileged and non-privileged execution. The blocks running at the
privileged level are depicted in gray, while the non-privileged blocks are depicted
in green (secure-world) and red (normal-world).

Within the privileged level of secure-world, the Secure Boot is essential to
detect any attempt of tampering with the firmware image and therefore with
the ANN itself. For this purpose, the Secure Boot process verifies the digital
signature of the firmware during the device startup. If the firmware is found
modified, the boot process is aborted. For a reference implementation of secure
firmware, we use TF-M. From the panoply of secure services offered by TF-M,
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Fig. 2. Overview of the ANN trusted execution

the Firmware Update is the most relevant for our framework, as it enables secure
over-the-air updates of the ANN. Whenever the SP wants to deploy a new ANN,
it wraps the updates in a new firmware and sends it to the edge device. As the
firmware is downloaded and stored in a secure memory space, the authenticity
and integrity of the new firmware are verified. If the digital signature is valid,
the new firmware starts to run. The Firmware Update service also features an
anti-rollback mechanism to prevent an attacker from installing an older firmware
image, and consequently, an outdated ANN.

Regarding the non-privileged environment of the secure-world, SecureQNN
relies on two main TAs. The Protected Storage is a service implemented by TF-
M and is responsible to store in a secure memory region the parameters of the
private ANN layers. The Private ANN is the TA responsible for computing the
output of the set of private layers. Whenever this TA is called, it interacts with
the Protected Storage to load the ANN parameters and then proceeds with the
inference process. The final output is sent in plain text to the Public ANN CA.

Within the normal-world, most of the software blocks are optional, except
for the Input Sensors and the Public ANN CAs. The former is responsible for
collecting the ANN input data, while the latter is responsible for starting and
coordinating the inference process until a private layer is found.

4.5 QNN Execution Flow

As the inference process starts, the Input Sensors CA transfers the collected
user/sensor data to the Public ANN CA, which controls the overall inference
process. We do not make assumptions about the confidentiality and integrity of
the user data, as this is out of the scope of our work. Although protecting the
privacy of an ANN reduces the vulnerability to white-box adversarial attacks,
our system would still be vulnerable to gray-box and black-box attacks. As the
Public ANN CA finds a private layer, it uses the TF-M communication channels
to send the output of the last public layer to the Private ANN TA.

As the RAM available in the secure-world is allocated during the boot and
maintained static afterward, optimizing the amount of RAM required by the
Private ANN TA is fundamental to not undermine the applications running in
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the normal-world. For this purpose, the ANN parameters will be stored in the
flash memory and loaded layer-by-layer to the RAM. The Protected Storage TA
handles the memory read process, while maintaining the privacy of the ANN
parameters. In this context, we estimate that the maximum amount of RAM
required by the Private ANN TA equals the parameter size of the largest private
layer plus the size of the auxiliary buffer required in the im2col process of con-
volutional layers. The output of the last private layer (prediction vector) is sent
in plain text to the Public ANN CA using the TF-M communication channel.

5 Preliminary Results

We evaluate SecureQNN in terms of latency and TEE memory footprint for two
distinct QNNs. To provide a fair evaluation of our framework, we first need to
establish the baseline reference values for the scenario where the full computation
of the QNN is delegated to the secure-world.

SecureQNN pretends to address current or future applications of ML in
IoT. Consequently, we evaluate our framework on two QNNs borrowed from
the TinyML benchmark [28] - an open-source benchmark for ML workloads on
emerging low-power hardware. These QNNs are trained to perform inference on
the CIFAR-10 and VWW datasets. CIFAR-10 comprises 60,000 RGB images
measuring 32x32 pixels. These images are categorized into 10 distinct classes,
each representing a different object. The dataset is divided into 50,000 training
images and 10,000 testing images. On the other hand, the VWW dataset is bi-
nary and contains 115,000 RGB images measuring 96x96 pixels. Its purpose is to
identify whether a person is present in the image or not. The training subset of
VWW consists of 98,568 images, while the testing subset contains 10,961 images.
The results are extracted for an STM Nucleo-L552ZE-Q board, powered by an
Arm Cortex-M33 MCU running at 120 MHz.

5.1 Baseline Reference Values

Table 2 shows the baseline reference of latency and TEE memory footprint for
the two QNNs described above. As expected, the memory footprint of the TEE
when running a full QNN is incredibly high. Regarding RAM, when the TEE runs
the full CIFAR-10 and VWW QNNs, it requires 55.51% and 69.43% of the total
RAM available on the board, respectively. Regarding flash memory, CIFAR-10
and VWW QNNs take 22.49% and 55.51% of the space available. Under this
umbrella, we can securely argue that fully delegating the computation of a QNN
to the secure-world is unfeasible in a real-world scenario, as this puts severe
restrictions on the memory available in the normal-world. TF-M allocates the
secure and non-secure memory regions during the boot process and the amount
of memory allocated is maintained statically afterward. Consequently, allocating
too much memory for the secure-world severy limits the number of applications
that can be deployed in the normal-world, which might jeopardize the purpose
of having ML privacy mechanisms in IoT and put the model owner at risk. Our
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Table 2. Baseline reference values

TEE Memory Footprint (kB) Latency

RAM Flash Clock Cycles Milliseconds

CIFAR-10 142.09 (55.51%) 125.36 (24.49%) 99483061 829.03

VWW 177.90 (69.43%) 284.21 (55.51%) 75017684 625.15

framework tackles this issue by reducing the computation performed within the
TEE to the bare minimum while maintaining the privacy of the critical layers.

Regarding latency, the values in Table 2 already consider two context switches
between the normal and secure worlds, one before and one after the inference pro-
cess. We envision our framework will keep up with these values, as the QNN split-
ting strategy that we propose also requires no more than two context switches.

6 On the Road

SecureQNN’s development is still at an embryonic stage. As of this writing, we
are developing the Python framework that evaluates the privacy leaking of each
layer in a QNN. Our framework requires the following inputs: (i) the QNN to be
protected, (ii) the number of training epochs, and (iii) the test accuracy. It then
identifies which layers should operate within the secure-world. In the first stage
of development, we will perform the evaluation layer-by-layer, starting from the
last layer. As our framework targets resource-constrained Arm Cortex-M MCUs,
we don’t expect QNNs to have a large number of layers. Nevertheless, to speed
up the process, in the second stage of development, we might consider the use
of group-layer sorting strategies - instead of evaluating each layer individually,
we evaluate a given set of layers at each iteration.

The last stage of development addresses the implementation of a mechanism
to trade off privacy and TEE memory footprint. More specifically, SecureQNN
will return the TEE memory footprint for different sets of private layers along
with the number of epochs they require to achieve the same accuracy as the
target model. This will allow the user to evaluate if it is worth increasing the
privacy at the cost of memory footprint. Whenever the minimum privacy guar-
antee is achieved before the memory footprint reaches the limit, SecureQNN will
continue to evaluate the additional privacy guarantee by iteratively extending
the set of protected layers till the maximum memory footprint is met.

7 Conclusion

In this paper, we present SecureQNN, a framework to protect the privacy of
QNNs in Arm Cortex-M MCUs featuring TrustZone-M technology. Although
development is still embryonic, we already outline the testing scenario and the
baseline reference values for the TEE memory footprint (RAM and flash) and
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decision latency. We outline SecureQNN’s development roadmap, which includes
two fundamental stages to determine which layers are more privacy-critical and
to trade off TEE memory footprint and privacy. One additional step will attempt
to speed up the QNN splitting strategy. Once completed, we will open-source
the SecureQNN framework.
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