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1 Introduction

There is a remarkable connection between the theories of finite semigroups

and regular languages. At its basis is the well known and simple fact of

the finiteness of the syntactic semigroups of such languages, which may be

effectively computed as the transition semigroups of their minimal automata.

This suggests a method for testing whether a regular language has a certain

combinatorial property, namely by verifying whether its syntactic semigroup

enjoys an associated algebraic property. A general framework for this kind of

problems and a characterization of which properties may be handled in this

way was given by Eilenberg [16]. On the semigroup side, the relevant algebraic

properties define so-called pseudovarieties, which are nonempty classes of finite

semigroups closed under taking homomorphic images, subsemigroups and finite
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direct products. In particular, Eilenberg’s result prompted considerable interest

in studying pseudovarieties.

For the above method to be successful for a suitable combinatorial property,

one needs to be able to test membership of a given finite semigroup in the

corresponding pseudovariety. Thus, a key question on a pseudovariety is to

determine whether its membership problem admits an algorithmic solution, in

which case the pseudovariety is said to be decidable. It turns out that several

combinatorial constructions on classes of languages correspond to operations

on pseudovarieties that are known not to preserve decidability in general [1, 14].

This fact has led to the search for stronger algorithmic properties that may

be preserved by such operations. The notion of a tame pseudovariety, in its

various flavors, has emerged from this approach [10], inspired by seminal work

of Ash [13]. A quick introduction to this line of ideas and its applications may

be found in [4].

Tameness is intimately connected with profinite topologies. Roughly speak-

ing, tameness of a pseudovariety V means that there is a natural algebraic

structure on profinite semigroups, with the same homomorphisms, enjoying

special properties. Profinite semigroups are then naturally viewed as algebras

of that kind and one may speak of the variety of such algebras generated by V.
One of the key properties is the word problem in such relatively free algebras.

The other key property has to do with the solution, modulo V, of finite systems

of semigroup equations with clopen constraints: should the system admit a

solution, does it also have a solution in the restricted algebraic language?

Even rather simple systems of equations as that reduced to the single

equation 𝑥 = 𝑦 lead to highly nontrivial problems on pseudovarieties of interest.

Determining whether that equation with clopen constraints has a solution

modulo V is equivalent to the following V-separation problem: given two regular

languages, determine whether there is a language whose syntactic semigroup

belongs to V which contains one of them and is disjoint from the other; in

topological terms, this means that the closures in the free pro-V semigroup of

the given languages are disjoint [3]. The algorithmic solution of this problem

for various pseudovarieties turns out to have numerous applications (see, for

instance, [18]).

Among pseudovarieties that have deserved a lot of attention, for their

connections with formal language theory or for their inherent algebraic interest,

is the pseudovariety R of all finite R-trivial semigroups, that is, finite semigroups

in which every principal right ideal admits only one element as a generator. Its

word problem for the signature consisting of multiplication and the 𝜔-power

(which, in a finite semigroup, gives the idempotent power of the base) has
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a particularly nice solution [12] (see also [17]). Moreover, R has very strong

tameness properties [7] with respect to this signature.

The main contribution of this paper is to show that the pro-R closure

of a regular language in the free 𝜔-semigroup relatively to the pseudovariety

R is recognized by a homomorphism into a finite 𝜔-semigroup. The proof is

constructive: starting from a finite automaton recognizing the given regular

language, we construct a finite recognizer for the pro-R closure of the language,

in which the image of the language is effectively computable. As a consequence,

we obtain a new algorithm to test whether the intersection of the pro-R closures

of finitely many regular languages is empty or not. Indeed, this property is

clearly decidable given finite recognizers for these closures. This problem is

known to be equivalent to testing whether a subset of a finite semigroup is

R-pointlike [3]. Therefore, our result provides an algorithmic solution for it, and

also for testing whether such a subset is R-idempotent pointlike. In particular,

we solve the R-separation problem for regular languages.

The paper is organized as follows. In Section 2, we introduce the neces-

sary terminology and background. Section 3 serves to construct a first finite

approximation to a semigroup modeling the 𝜔-words in the closure of a regular

language. A suitable (but unnatural) 𝜔-power and a natural partial order on

such a finite semigroup are considered respectively in Sections 4 and 5. Finally,

in Section 6, it is shown that the previously constructed unary semigroup

recognizes the topological closure of the given regular language, and some

decidability applications are drawn.

2 Preliminaries

The reader is referred to [4, 5] for quick introductions to the topics of this

paper. Nevertheless, we briefly recall the notions involved in our discussions.

Finite semigroups are viewed as discrete topological spaces. A profinite

semigroup is an inverse limit of an inverse system of finite semigroups; equiva-

lently, it is a (multiplicative) semigroup with a topology for which the multi-

plication is continuous and such that the topology is compact (Hausdorff) and

zero-dimensional. Given an element 𝑠 of a profinite semigroup and an integer 𝑘,

the sequence (𝑠𝑛!+𝑘)𝑛 converges to an element, denoted 𝑠𝜔+𝑘. In particular,

for 𝑘 = 0, we get the element 𝑠𝜔 = 𝑠𝜔+0, which is idempotent.

By a pseudovariety we mean a (nonempty) class V of finite semigroups that

is closed under taking homomorphic images, subsemigroups and finite direct

products. The pseudovariety of all finite semigroups is denoted S. A profinite
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semigroup 𝑆 is said to be pro-V if distinct points may be separated by continuous

homomorphisms into semigroups from V. For a finite set 𝐴, a pro-V semigroup

𝑆 is said to be free pro-V over 𝐴 if there is a mapping 𝜄 : 𝐴 → 𝑆 whose image

generates a dense subsemigroup of 𝑆 and such that, for every function 𝜙 :
𝐴 → 𝑇 into a pro-V semigroup 𝑇 , there is a unique continuous homomorphism

𝜙 : 𝑆 → 𝑇 such that 𝜙 ∘ 𝜄 = 𝜙. Such a pro-V semigroup 𝑆 always exists and it

is clearly unique up to homeomorphic isomorphism. It is denoted Ω𝐴V. The
elements of Ω𝐴V are called pseudowords over V or simply pseudowords if V = S.
The unique continuous homomorphism Ω𝐴S → Ω𝐴V induced by the generating

mapping 𝐴 → Ω𝐴V is denoted 𝑝V.

Consider the pseudovariety Sl of all finite semilattices, commutative semi-

groups in which all elements are idempotents. As is well known, we may

view Ω𝐴Sl as the semigroup of nonempty subsets of 𝐴 under the operation of

union. The continuous homomorphism 𝑝Sl : Ω𝐴S → Ω𝐴Sl that sends each free

generator 𝑎 ∈ 𝐴 to {𝑎} is also denoted 𝑐 and it is called the content function.

A key pseudovariety in our study is the class R of all finite semigroups in

which Green’s relation R is trivial, that is, if two elements generate the same

right ideal then they are equal.

The cumulative content �⃗�(𝑤) of a pseudoword 𝑤 ∈ Ω𝐴S consists of all letters

𝑎 ∈ 𝐴 for which there exists a factorization 𝑤 = 𝑢𝑣 with 𝑝R(𝑣) idempotent

and 𝑎 ∈ 𝑐(𝑣). The terminology comes from [11], where it was used in a more

restrictive sense, and [12], where the definition is easily recognized to be

equivalent to the one adopted here.

This paper deals specially with unary semigroups, that is semigroups with

an additional unary operation, which will be usually denoted as an 𝜔-power.

Such unary semigroups will, therefore, often be called 𝜔-semigroups. As we have

observed above, profinite semigroups have a natural structure of 𝜔-semigroups.

In particular, we may consider the variety of 𝜔-semigroups generated by the

semigroups of a given pseudovariety V; it is denoted V𝜔. The 𝜔-semigroup in V𝜔

freely generated by a (finite) set 𝐴 may be obtained as the 𝜔-subsemigroup

of Ω𝐴V generated by 𝐴; it is denoted Ω𝜔
𝐴V. Elements of the free 𝜔-semigroup

are called (semigroup) 𝜔-terms.

The generating mapping 𝜄 : 𝐴 → Ω𝐴V extends uniquely to a homomorphism

𝐴+ → Ω𝐴V defined on the semigroup 𝐴+ freely generated by 𝐴; it is also

denoted 𝜄. For a language 𝐿 ⊆ 𝐴+, we denote cl𝜔,V(𝐿) the topological closure

of 𝜄(𝐿) in the subspace Ω𝜔
𝐴V. A property of a pseudovariety V introduced in [10]

that plays an important role is that of being 𝜔-full. We take as the definition

the equivalent formulation given in [9, Proposition 4.3]: a pseudovariety V is

𝜔-full if and only if the equality 𝑝V(cl𝜔,S(𝐿)) = cl𝜔,V(𝐿) holds for every regular

language 𝐿 ⊆ 𝐴+.
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The main result of this paper (Theorem 6.1) is that cl𝜔,R(𝐿) is recognized

by a homomorphism onto an effectively constructible finite 𝜔-semigroup. In

contrast, it should be noted that the analogous result does not hold for the

pseudovariety G of all finite groups. Indeed, the variety of 𝜔-semigroups G𝜔

satisfies the identities 𝑥𝜔𝑦 = 𝑦 = 𝑦𝑥𝜔, which forces the interpretation of the

𝜔-power in finite members of G𝜔 to be the natural one. It follows that the

members of G𝜔 are finite groups and the subsets of Ω𝜔
𝐴G = 𝐴+ ∪{1} recognized

by homomorphisms into members of G𝜔 are the closures of G-languages. Thus,
members of G𝜔 cannot recognize the closures in Ω𝜔

𝐴G of arbitrary regular

languages of 𝐴+.

Similar considerations apply to the language in which the 𝜔-power is

replaced by the (𝜔 − 1)-power, which is more suitable to capture group phe-

nomena. It is not excluded though that there is some even richer language

that will be sufficient to obtain a result similar to our main theorem for the

pseudovariety of groups. A somewhat related phenomenon is that G is not

tame for the language of (𝜔 −1)-semigroups for arbitrary finite systems of word

equations [15]. The quest for a richer language capturing tameness is also open.

We do not know if there is a connection between the two properties, namely

recognition of closures of regular languages in Ω𝜎
𝐴V by homomorphisms into

finite 𝜎-algebras and 𝜎-tameness with respect to arbitrary finite systems of

equations.

3 A semigroup modeled after R

We introduce in this section a finite semigroup which is meant to capture

certain parameters of pseudowords over R. The precise connection is delayed

until Section 5, where it plays an important role.

Let 𝐴 be a finite alphabet. Consider the following pseudovarieties of bands:

LRB = [[𝑥𝑦𝑥 = 𝑥𝑦, 𝑥2 = 𝑥]] (left regular bands)
MNB = [[𝑥𝑦𝑥𝑧𝑥 = 𝑥𝑦𝑧𝑥, 𝑥2 = 𝑥]] (regular bands).

Note that the solution of the word problem in the relatively free semigroup

Ω𝐴LRB, that is the identity problem for LRB, is obtained by reducing each

word 𝑤 to the canonical form which retains from 𝑤 only the leftmost occurrence

of each letter.

In the following result, we consider a first approximation to the behavior

of pseudowords over R. This is done taking a pair where the first component
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models the cumulative content, while the second registers the order of the first

occurrences of letters.

Lemma 3.1. Let L𝐴 be the subset of the Cartesian product P(𝐴) × (Ω𝐴LRB)1

consisting of all pairs (𝐵, 𝑢) such that 𝐵 ⊆ 𝑐(𝑢). For (𝐵, 𝑢) and (𝐶, 𝑣) in L𝐴,

let (𝐵, 𝑢)(𝐶, 𝑣) = (𝐷, 𝑢𝑣), where

𝐷 =

{︃
𝐵 if 𝑐(𝑣) ⊆ 𝐵

𝐶 otherwise.

This defines an associative operation on L𝐴 which turns it into a band.

Proof. We first check that the operation is associative. Consider three elements

(𝐵, 𝑢), (𝐶, 𝑣), and (𝐷, 𝑤) of L𝐴. We verify that

(𝐵, 𝑢)(𝐶, 𝑣) · (𝐷, 𝑤) = (𝐵, 𝑢) · (𝐶, 𝑣)(𝐷, 𝑤). (3.1)

If 𝑐(𝑣𝑤) ⊆ 𝐵, then (𝐵, 𝑢)(𝐶, 𝑣) = (𝐵, 𝑢𝑣), and so (𝐵, 𝑢)(𝐶, 𝑣) · (𝐷, 𝑤) =
(𝐵, 𝑢𝑣𝑤), while (𝐵, 𝑢) · (𝐶, 𝑣)(𝐷, 𝑤) = (𝐵, 𝑢)(𝐸, 𝑣𝑤) = (𝐵, 𝑢𝑣𝑤), independently
of the value of 𝐸. In the remaining cases, namely when 𝑐(𝑣𝑤) ⊈ 𝐵, one of the

following must hold:

(𝑖) 𝑐(𝑣) ⊆ 𝐵;

(𝑖𝑖) 𝑐(𝑣) ⊈ 𝐵 and 𝑐(𝑤) ⊈ 𝐶;

(𝑖𝑖𝑖) 𝑐(𝑣) ⊈ 𝐵 and 𝑐(𝑤) ⊆ 𝐶;

In case (𝑖), we have 𝑐(𝑤) ⊈ 𝐵 and, since 𝐶 ⊆ 𝑐(𝑣), we conclude that 𝑐(𝑤) ⊈ 𝐶,

which entails that both sides of (3.1) give (𝐷, 𝑢𝑣𝑤). In case (𝑖𝑖), both sides

of (3.1) also give (𝐷, 𝑢𝑣𝑤) while in case (𝑖𝑖𝑖), they both give (𝐶, 𝑢𝑣𝑤).
It is immediate that every element of L𝐴 is idempotent, so that L𝐴 is a

band.

One may ask how low L𝐴 falls in the lattice of pseudovarieties of bands. It is

not hard to show that, whenever |𝐴| ≥ 2, the pseudovariety generated by L𝐴

is precisely MNB.
For a word 𝑣 ∈ 𝐴* and a subset 𝐵 of 𝐴, we let i𝐵(𝑣) denote the leftmost

letter of 𝑣 that does not belong to 𝐵, if such a letter exists, or else the empty

word.
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For a finite alphabet 𝐴, let 𝐴1 = 𝐴 ⊎ {1}. Given two elements (𝐵, 𝑢) and

(𝐶, 𝑣) of L𝐴, we define a function

𝜒𝐵
𝑢,𝑣 : 𝐴1 → 𝐴1 × 𝐴1

𝑎 ↦→

{︃
(𝑎, i𝐵(𝑣)) if 𝑎 ∈ 𝑐(𝑢) ∨ 𝑐(𝑣) ⊆ 𝐵

(1, 𝑎) if 𝑎 ∈ 𝐴1 ∖ 𝑐(𝑢) ∧ 𝑐(𝑣) ⊈ 𝐵.

Given two functions 𝑓 : 𝑋 → 𝑋𝑚 and 𝑔 : 𝑋 → 𝑋𝑛 with respective

components 𝑓𝑖 (𝑖 = 1, . . . , 𝑚) and 𝑔𝑗 (𝑗 = 1, . . . , 𝑛), let (𝑓, 𝑔) : 𝑋 × 𝑋 → 𝑋𝑚+𝑛

be defined by the formula

(𝑓, 𝑔)(𝑥, 𝑦) = (𝑓1(𝑥), . . . , 𝑓𝑚(𝑥), 𝑔1(𝑦), . . . , 𝑔𝑛(𝑦)).

Further, let Id𝑋 denote the identity function on the set 𝑋.

Lemma 3.2. Let (𝐵, 𝑢), (𝐶, 𝑣), and (𝐷, 𝑤) be elements of L𝐴. Then, the fol-

lowing equality holds, where (𝑋, 𝑢𝑣) = (𝐵, 𝑢)(𝐶, 𝑣):

(𝜒𝐵
𝑢,𝑣, Id𝐴1) ∘ 𝜒𝑋

𝑢𝑣,𝑤 = (Id𝐴1 , 𝜒𝐶
𝑣,𝑤) ∘ 𝜒𝐵

𝑢,𝑣𝑤. (3.2)

Proof. Both sides of Equation (3.2) are functions 𝐴1 → 𝐴1 ×𝐴1 ×𝐴1. We show

that they coincide on each 𝑎 ∈ 𝐴1. Consider the following function values:

(𝑥, 𝑎3) = 𝜒𝑋
𝑢𝑣,𝑤(𝑎) (𝑎1, 𝑎2) = 𝜒𝐵

𝑢,𝑣(𝑥)
(𝑏1, 𝑦) = 𝜒𝐵

𝑢,𝑣𝑤(𝑎) (𝑏2, 𝑏3) = 𝜒𝐶
𝑣,𝑤(𝑦).

We verify that (𝑎1, 𝑎2, 𝑎3) = (𝑏1, 𝑏2, 𝑏3). This is a somewhat tedious case-by-case

calculation which is summarized in the following table.

𝑐(𝑣) ⊆ 𝐵 𝑐(𝑣) ⊈ 𝐵 𝑐(𝑣𝑤) ⊈ 𝐵

𝑐(𝑤) ⊆ 𝐵
𝑐(𝑤) ⊈ 𝐵

𝑎 ∈ 𝑐(𝑢)
𝑐(𝑤) ⊆ 𝐶 𝑐(𝑤) ⊈ 𝐶

𝑎 ∈ 𝑐(𝑢) 𝑎 /∈ 𝑐(𝑢) 𝑎 ∈ 𝑐(𝑣) ∖ 𝑐(𝑢) 𝑎 /∈ 𝑐(𝑢𝑣)

𝑋 𝐵 𝐶

(𝑥, 𝑎3) (𝑎, i𝐵(𝑤)) (𝑎, i𝐶(𝑤)) (1, 𝑎)

(𝑎1, 𝑎2) (𝑎, i𝐵(𝑣)) (1, 𝑎) (1, 1)

(𝑏1, 𝑦) (𝑎, i𝐵(𝑣𝑤)) (1, 𝑎)

(𝑏2, 𝑏3) (1, 1) (1, i𝐵(𝑤)) (i𝐵(𝑣), i𝐶(𝑤)) (𝑎, i𝐶(𝑤)) (1, 𝑎)

(𝑎1, 𝑎2, 𝑎3)
(𝑎, 1, i𝐵(𝑤)) (𝑎, i𝐵(𝑣), i𝐶(𝑤)) (1, 𝑎, i𝐶(𝑤)) (1, 1, 𝑎)

(𝑏1, 𝑏2, 𝑏3)
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The conditions in each column in the top part of the table define a partition of

all relevant cases and, with only one exception, where the value of 𝑋 remains

undetermined, are sufficient to determine the values corresponding to the

entries in the first column in the remainder of the table. Those values are

obtained by simply applying the definition of the 𝜒 functions. In the last

column, although, except for the value of 𝑋, the remaining values obtained do

not depend on whether or not 𝑐(𝑣) is contained in 𝐵, it is useful to distinguish

the two cases in the calculation. We leave it to the reader to check that all the

values are correct.

Consider a finite set 𝑄. Let B(𝑄) be the monoid of all binary relations on 𝑄.

Given two functions 𝐹, 𝐺 ∈ B(𝑄)𝐴1
, we denote by 𝐹 × 𝐺 the function

𝐴1 × 𝐴1 → B(𝑄) defined by (𝐹 × 𝐺)(𝑎, 𝑏) = 𝐹 (𝑎)𝐺(𝑏).

Definition 3.3. Let 𝑅𝜔(𝑄, 𝐴) denote the set of all triples (𝐹, 𝐵, 𝑢) such that

𝐹 ∈ B(𝑄)𝐴1
, 𝐵 ∈ P(𝐴), 𝑢 ∈ Ω𝐴LRB, 𝐹 (𝑎) = 1 for all 𝑎 ∈ 𝐴1 ∖ 𝑐(𝑢), and

𝐵 ⊆ 𝑐(𝑢). For two elements (𝐹, 𝐵, 𝑢) and (𝐺, 𝐶, 𝑣) of 𝑅𝜔(𝑄, 𝐴), we define their

product to be

(𝐹, 𝐵, 𝑢)(𝐺, 𝐶, 𝑣) =
(︀
(𝐹 × 𝐺) ∘ 𝜒𝐵

𝑢,𝑣, 𝐷, 𝑢𝑣
)︀
,

where the product (𝐷, 𝑢𝑣) = (𝐵, 𝑢)(𝐶, 𝑣) is computed in L𝐴.

The triples in Definition 3.3 provide a refined model of pseudowords over R,
where we add a first component to the two that were previously considered.

The underlying idea is to capture the action on the states a finite automaton of

the suffix of a pseudoword starting with the first occurrence of a given letter.

The following result is a first requirement for the above definition to be a

good choice.

Proposition 3.4. The set 𝑅𝜔(𝑄, 𝐴) is a semigroup for the above multiplication.

Proof. In view of Lemma 3.1, associativity is expressed by the formula(︁(︀
(𝐹 × 𝐺) ∘ 𝜒𝐵

𝑢,𝑣

)︀
× 𝐻

)︁
∘ 𝜒𝑋

𝑢𝑣,𝑤 =
(︁

𝐹 ×
(︀
(𝐺 × 𝐻) ∘ 𝜒𝐶

𝑣,𝑤

)︀)︁
∘ 𝜒𝐵

𝑢,𝑣𝑤,

where (𝑋, 𝑢𝑣) = (𝐵, 𝑢)(𝐶, 𝑣). Under the natural extension of the notation 𝐹 ×𝐺

to three factors, the above equality may be rewritten as

(𝐹 × 𝐺 × 𝐻) ∘ (𝜒𝐵
𝑢,𝑣, Id𝐴1) ∘ 𝜒𝑋

𝑢𝑣,𝑤 = (𝐹 × 𝐺 × 𝐻) ∘ (Id𝐴1 , 𝜒𝐶
𝑣,𝑤) ∘ 𝜒𝐵

𝑢,𝑣𝑤.

The proposition now follows from Lemma 3.2.

The following result amounts to a simple calculation in the semigroup 𝑅𝜔(𝑄, 𝐴).
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Lemma 3.5. For an arbitrary element (𝐹, 𝐵, 𝑢) of 𝑅𝜔(𝑄, 𝐴), its natural 𝜔-

power is given by (𝐹, 𝐵, 𝑢)𝜔 = (𝐹𝜔, 𝐵, 𝑢), where

𝐹𝜔(𝑎) =

{︃
1 if 𝑎 ∈ 𝐴1 ∖ 𝑐(𝑢)
𝐹 (𝑎)𝐹 (i𝐵(𝑢))𝜔−1 if 𝑎 ∈ 𝑐(𝑢).

Proof. One can easily show by induction on 𝑛 that, for 𝑛 > 1, we have

(𝐹, 𝐵, 𝑢)𝑛 = (𝐹𝑛, 𝐵, 𝑢), where

𝐹𝑛(𝑎) =

{︃
1 if 𝑎 ∈ 𝐴1 ∖ 𝑐(𝑢)
𝐹 (𝑎)

(︀
𝐹 (i𝐵(𝑢))

)︀𝑛−1
if 𝑎 ∈ 𝑐(𝑢).

In case the base of the 𝜔-power is given as the product of two elements

of 𝑅𝜔(𝑄, 𝐴), the formula becomes somewhat more complicated. We only sketch

the routine proof, leaving the details to the reader.

Lemma 3.6. For arbitrary elements (𝐹, 𝐵, 𝑢) and (𝐺, 𝐶, 𝑣) of 𝑅𝜔(𝑄, 𝐴), the
natural 𝜔-power of their product is given by

(︀
(𝐹, 𝐵, 𝑢)(𝐺, 𝐶, 𝑣)

)︀𝜔 = (𝐻, 𝐷, 𝑢𝑣),
where 𝐷 = 𝐵 if 𝑐(𝑣) ⊆ 𝐵 while 𝐷 = 𝐶 otherwise, and

𝐻(𝑎) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 𝑎 ∈ 𝐴1 ∖ 𝑐(𝑢𝑣)
𝐹 (𝑎)𝐺(i𝐵(𝑣))

(︀
𝐹 (i𝐷(𝑢))𝐺(i𝐵(𝑣))

)︀𝜔−1

if 𝑎 ∈ 𝑐(𝑢) ∧
(︀
𝑐(𝑣) ⊆ 𝐵 ∨ i𝐷(𝑢) ∈ 𝑐(𝑢)

)︀
𝐹 (𝑎)𝐺(i𝐵(𝑣))𝐺(i𝐶(𝑣))𝜔−1

if 𝑎 ∈ 𝑐(𝑢) ∧ i𝐶(𝑢𝑣) /∈ 𝑐(𝑢) ∧ 𝑐(𝑣) ⊈ 𝐵

𝐺(𝑎)
(︀
𝐹 (i𝐶(𝑢))𝐺(i𝐵(𝑣))

)︀𝜔−1

if 𝑎 ∈ 𝑐(𝑣) ∖ 𝑐(𝑢) ∧ i𝐶(𝑢) ∈ 𝑐(𝑢)
𝐺(𝑎)𝐺(i𝐶(𝑣))𝜔−1 if 𝑎 ∈ 𝑐(𝑣) ∖ 𝑐(𝑢) ∧ i𝐶(𝑢𝑣) /∈ 𝑐(𝑢).

Proof. Taking into account that i𝐶(𝑢) ∈ 𝑐(𝑢) if and only if i𝐶(𝑢𝑣) ∈ 𝑐(𝑢), in
which case i𝐶(𝑢) = i𝐶(𝑢𝑣), it is easy to check that the conditions defining

each case in the expression for 𝐻(𝑎) given in the statement of the lemma are

mutually exclusive and cover all possibilities. It requires then only a simple

calculation using Lemma 3.5 to verify that the values of 𝐻(𝑎) are correctly

given in each case.

4 An alternative 𝜔-power

Consider next an 𝐴-labeled digraph G = (𝑄, 𝐴, 𝛿), with finite set of vertices

𝑄, and labeling given by a function 𝛿 : 𝐴 → B(𝑄), which is to be interpreted
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as meaning that there is an edge 𝑝
𝑎−→ 𝑞 if and only if (𝑝, 𝑞) ∈ 𝛿(𝑎). The

function 𝛿 determines a continuous homomorphism (Ω𝐴S)1 → B(𝑄), which is

also denoted 𝛿. We also write 𝑞 ∈ 𝑝𝑤 to indicate that (𝑝, 𝑞) ∈ 𝛿(𝑤).
Given a subset 𝐵 of 𝐴, we let 𝜀(𝐵) =

⋃︀
𝛿(𝐵*); in other words, a pair (𝑝, 𝑞)

of elements of 𝑄 belongs to 𝜀(𝐵) if and only if there is some 𝑤 ∈ 𝐵* such that

𝑞 ∈ 𝑝𝑤. For 𝑢 ∈ (Ω𝐴S)1, we also let 𝜀(𝑢) = 𝜀(𝑐(𝑢)).

Definition 4.1. We associate with the finite 𝐴-labeled digraph G = (𝑄, 𝐴, 𝛿) an

interpretation of the 𝜔-power in 𝑅𝜔(𝑄, 𝐴) as follows. For (𝐹, 𝐵, 𝑢) ∈ 𝑅𝜔(𝑄, 𝐴),
let (𝐹𝜔, 𝐵, 𝑢) be the natural 𝜔-power of (𝐹, 𝐵, 𝑢) in the finite semigroup

𝑅𝜔(𝑄, 𝐴). Then (𝐹, 𝐵, 𝑢)[𝜔] is defined to be the triple (𝐺, 𝑐(𝑢), 𝑢), where

𝐺(𝑎) = 𝐹𝜔(𝑎)𝜀(𝑢) for each 𝑎 ∈ 𝑐(𝑢) and 𝐺(𝑎) = 1 for all 𝑎 ∈ 𝐴 ∖ 𝑐(𝑢). This
defines a unary semigroup structure on 𝑅𝜔(𝑄, 𝐴), which depends on the choice

of labeling 𝛿. We denote this unary semigroup 𝑅𝜔(G).

A word of warning is perhaps needed at this point. In a unary semigroup, we

most often use the notation 𝑥 ↦→ 𝑥𝜔 to denote the unary operation and we also

use it for the abstract operation. However, in a finite semigroup, the standard

notation is to indicate 𝑥𝜔 as the idempotent power of 𝑥. Since, in the unary

semigroup 𝑅𝜔(G), we consider a different unary operation, the notation 𝑥[𝜔]

has been adopted. From hereon, we talk about 𝜔-semigroups instead of unary

semigroups.

For a triple 𝑥 in 𝑅𝜔(𝑄, 𝐴), let 𝜋𝑖(𝑥) denote its 𝑖th component. The following

proposition shows that the 𝜔-semigroup 𝑅𝜔(G) has some nice properties.

Proposition 4.2. For every finite 𝐴-labeled digraph G = (𝑄, 𝐴, 𝛿), the 𝜔-

semigroup 𝑅𝜔(G) satisfies the following identities of 𝜔-semigroups:

(𝑥𝜔)𝜔 = (𝑥𝑟)𝜔 = 𝑥𝜔 (𝑟 ≥ 2),
(𝑥𝑦)𝜔𝑥 = (𝑥𝑦)𝜔𝑥𝜔 = (𝑥𝑦)𝜔.

Proof. Let (𝐹 ′, 𝑐(𝑢), 𝑢) = 𝑥[𝜔]. We first note that, from the definition of the

multiplication it follows that (𝐹 ′, 𝑐(𝑢), 𝑢)(𝐻, 𝐷, 𝑤) = (𝐹 ′, 𝑐(𝑢), 𝑢) for every

element (𝐻, 𝐷, 𝑤) of 𝑅𝜔(G) such that 𝑐(𝑤) ⊆ 𝑐(𝑢). In particular, we obtain the

identities (𝑥𝑦)[𝜔]𝑥 = (𝑥𝑦)[𝜔]𝑥[𝜔] = (𝑥𝑦)[𝜔] and that 𝑥[𝜔] is idempotent. Hence,

for 𝑎 ∈ 𝑐(𝑢), 𝜋1
(︀
(𝑥[𝜔])[𝜔])︀(𝑎) is 𝐹 ′(𝑎)𝜀(𝑢)2 while it is 1 at 𝑎 ∈ 𝐴 ∖ 𝑐(𝑢). Since

the relation 𝜀(𝑢) is idempotent, it follows that (𝑥[𝜔])[𝜔] = 𝑥[𝜔]. Finally, that

(𝑥𝑟)[𝜔] = 𝑥[𝜔] follows from the fact (𝑥𝑟)𝜔 = 𝑥𝜔 in every finite semigroup.
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We now consider the subset �̃�𝜔(G) of 𝑅𝜔(𝑄, 𝐴) consisting of the triples (𝐹, 𝐵, 𝑢)
such that the following conditions hold for every 𝑎 ∈ 𝑐(𝑢):

𝐹 (𝑎) ⊆ 𝜀(𝑢); (4.1)

𝐹 (𝑎)𝜀(𝐵) = 𝐹 (𝑎). (4.2)

Note that Property (4.1) implies that the inclusion 𝐹 (𝑎)𝜀(𝑢) ⊆ 𝜀(𝑢) holds.

Lemma 4.3. The set �̃�𝜔(G) is a subsemigroup of 𝑅𝜔(𝑄, 𝐴).

Proof. We verify only that Property (4.2) is preserved by multiplication, leav-

ing it to the reader to verify that the same is true for Property (4.1). Let

(𝐹, 𝐵, 𝑢) and (𝐺, 𝐶, 𝑣) be arbitrary elements of �̃�𝜔(G) and consider the product

(𝐻, 𝐷, 𝑢𝑣) = (𝐹, 𝐵, 𝑢)(𝐺, 𝐶, 𝑣). We need to show that 𝐻(𝑎)𝜀(𝐷) = 𝐻(𝑎) for

every 𝑎 ∈ 𝑐(𝑢𝑣).
In case 𝑐(𝑣) ⊆ 𝐵, we have 𝐷 = 𝐵, i𝐵(𝑣) = 1, and we may compute

𝐻(𝑎) = 𝐹 (𝑎)𝐺(i𝐵(𝑣)) = 𝐹 (𝑎) = 𝐹 (𝑎)𝜀(𝐵) = 𝐻(𝑎)𝜀(𝐷).

Assume next that 𝑐(𝑣) ⊈ 𝐵, so that 𝐷 = 𝐶 and i𝐵(𝑣) ∈ 𝑐(𝑣). In case, addition-

ally, 𝑎 ∈ 𝑐(𝑢), we obtain

𝐻(𝑎) = 𝐹 (𝑎)𝐺(i𝐵(𝑣)) = 𝐹 (𝑎)𝐺(i𝐵(𝑣))𝜀(𝐶) = 𝐻(𝑎)𝜀(𝐷).

Finally, otherwise, that is when, additionally, 𝑎 ∈ 𝑐(𝑢𝑣) ∖ 𝑐(𝑢), we get

𝐻(𝑎) = 𝐺(𝑎) = 𝐺(𝑎)𝜀(𝐶) = 𝐻(𝑎)𝜀(𝐷).

Note that, for every (𝐹, 𝐵, 𝑢) ∈ �̃�𝜔(G), its 𝜔-power (𝐹, 𝐵, 𝑢)[𝜔] belongs to �̃�𝜔(G).
Hence, �̃�𝜔(G) is in fact an 𝜔-subsemigroup of 𝑅𝜔(G). In particular, �̃�𝜔(G)
satisfies all the identities of Proposition 4.2.

Lemma 4.4. Let G = (𝑄, 𝐴, 𝛿) be a finite 𝐴-labeled digraph, 𝐵 a subset of 𝐴,

and 𝑠, 𝑡 ∈ B(𝑄) be relations contained in 𝜀(𝐵). Then, the following equality

holds: (𝑠𝑡)𝜔𝑠 𝜀(𝐵) = (𝑠𝑡)𝜔𝜀(𝐵).

Proof. We have already observed that the definition of 𝜀(𝐵) implies that

𝑠 𝜀(𝐵) and 𝑡 𝜀(𝐵) are both contained in 𝜀(𝐵). Hence, the relation (𝑠𝑡)𝜔𝑠 𝜀(𝐵)
is certainly contained in (𝑠𝑡)𝜔𝜀(𝐵). The reverse inclusion is obtained by noting

that (𝑠𝑡)𝜔𝜀(𝐵) = (𝑠𝑡)𝜔𝑠 · 𝑡(𝑠𝑡)𝜔−1𝜀(𝐵) ⊆ (𝑠𝑡)𝜔𝑠 𝜀(𝐵).

While the 𝜔-semigroup 𝑅𝜔(G) in general fails the identity (𝑥𝑦)𝜔 = 𝑥(𝑦𝑥)𝜔, it

turns out that the 𝜔-subsemigroup �̃�𝜔(G) does satisfy it.

Proposition 4.5. The 𝜔-semigroup �̃�𝜔(G) satisfies the identity (𝑥𝑦)𝜔 = 𝑥(𝑦𝑥)𝜔.
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Proof. Let (𝐹, 𝐵, 𝑢) and (𝐺, 𝐶, 𝑣) be arbitrary elements of �̃�𝜔(G) and consider

the corresponding expressions

(�̃�, 𝑐(𝑢𝑣), 𝑢𝑣) =
(︀
(𝐹, 𝐵, 𝑢)(𝐺, 𝐶, 𝑣)

)︀[𝜔]

(𝐼, 𝑐(𝑢𝑣), 𝑣𝑢) =
(︀
(𝐺, 𝐶, 𝑣)(𝐹, 𝐵, 𝑢)

)︀[𝜔]

(𝐽, 𝑐(𝑢𝑣), 𝑢𝑣) = (𝐹, 𝐵, 𝑢)
(︀
(𝐺, 𝐶, 𝑣)(𝐹, 𝐵, 𝑢)

)︀[𝜔]
.

Then, taking into account Lemma 3.6, we may compute

�̃�(𝑎) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 𝑎 ∈ 𝐴1 ∖ 𝑐(𝑢𝑣)
𝐹 (𝑎)𝐺(i𝐵(𝑣))

(︀
𝐹 (i𝐷(𝑢))𝐺(i𝐵(𝑣))

)︀𝜔−1
𝜀(𝑢𝑣)

if 𝑎 ∈ 𝑐(𝑢) ∧
(︀
𝑐(𝑣) ⊆ 𝐵 ∨ i𝐷(𝑢) ∈ 𝑐(𝑢)

)︀
𝐹 (𝑎)𝐺(i𝐵(𝑣))𝐺(i𝐶(𝑣))𝜔−1𝜀(𝑢𝑣)

if 𝑎 ∈ 𝑐(𝑢) ∧ i𝐶(𝑢𝑣) /∈ 𝑐(𝑢) ∧ 𝑐(𝑣) ⊈ 𝐵

𝐺(𝑎)
(︀
𝐹 (i𝐶(𝑢))𝐺(i𝐵(𝑣))

)︀𝜔−1
𝜀(𝑢𝑣)

if 𝑎 ∈ 𝑐(𝑣) ∖ 𝑐(𝑢) ∧ i𝐶(𝑢) ∈ 𝑐(𝑢)
𝐺(𝑎)𝐺(i𝐶(𝑣))𝜔−1𝜀(𝑢𝑣) if 𝑎 ∈ 𝑐(𝑣) ∖ 𝑐(𝑢) ∧ i𝐶(𝑢𝑣) /∈ 𝑐(𝑢)

and, dually,

𝐼(𝑎) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 𝑎 ∈ 𝐴1 ∖ 𝑐(𝑣𝑢)
𝐺(𝑎)𝐹 (i𝐶(𝑢))

(︀
𝐺(i𝐸(𝑣))𝐹 (i𝐶(𝑢))

)︀𝜔−1
𝜀(𝑢𝑣)

if 𝑎 ∈ 𝑐(𝑣) ∧
(︀
𝑐(𝑢) ⊆ 𝐶 ∨ i𝐸(𝑣) ∈ 𝑐(𝑣)

)︀
𝐺(𝑎)𝐹 (i𝐶(𝑢))𝐹 (i𝐵(𝑢))𝜔−1𝜀(𝑢𝑣)

if 𝑎 ∈ 𝑐(𝑣) ∧ i𝐵(𝑣𝑢) /∈ 𝑐(𝑣) ∧ 𝑐(𝑢) ⊈ 𝐶

𝐹 (𝑎)
(︀
𝐺(i𝐵(𝑣))𝐹 (i𝐶(𝑢))

)︀𝜔−1
𝜀(𝑢𝑣)

if 𝑎 ∈ 𝑐(𝑢) ∖ 𝑐(𝑣) ∧ i𝐵(𝑣) ∈ 𝑐(𝑣)
𝐹 (𝑎)𝐹 (i𝐵(𝑢))𝜔−1𝜀(𝑢𝑣) if 𝑎 ∈ 𝑐(𝑢) ∖ 𝑐(𝑣) ∧ i𝐵(𝑣𝑢) /∈ 𝑐(𝑣)

from which it follows that

𝐽(𝑎) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 𝑎 ∈ 𝐴1 ∖ 𝑐(𝑢𝑣)
𝐹 (𝑎) if 𝑎 ∈ 𝑐(𝑢𝑣) = 𝐵

𝐹 (𝑎)𝐺(i𝐵(𝑣))𝐹 (i𝐶(𝑢))
(︀
𝐺(i𝐸(𝑣))𝐹 (i𝐶(𝑢))

)︀𝜔−1
𝜀(𝑢𝑣)

if 𝑎 ∈ 𝑐(𝑢) ∧ 𝑐(𝑣) ⊈ 𝐵

𝐹 (𝑎)𝐹 (i𝐵(𝑢))𝜔𝜀(𝑢𝑣)
if 𝑎 ∈ 𝑐(𝑢) ∧ i𝐵(𝑣𝑢) ∈ 𝑐(𝑢) ∖ 𝑐(𝑣)

𝐺(𝑎)𝐹 (i𝐶(𝑢))
(︀
𝐺(i𝐸(𝑣))𝐹 (i𝐶(𝑢))

)︀𝜔−1
𝜀(𝑢𝑣)

if 𝑎 ∈ 𝑐(𝑣) ∖ 𝑐(𝑢) ∧
(︀
𝑐(𝑢) ⊆ 𝐶 ∨ i𝐸(𝑣) ∈ 𝑐(𝑣)

)︀
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It remains to show that 𝐽(𝑎) = �̃�(𝑎) for every 𝑎 ∈ 𝐴. We test this equality

following the separation in cases in the above description of 𝐽 .

Case 1. In case 𝑎 ∈ 𝐴1 ∖ 𝑐(𝑢𝑣), we get 𝐽(𝑎) = 1 = �̃�(𝑎).
Case 2. Suppose now that 𝑎 ∈ 𝑐(𝑢𝑣) = 𝐵. Since 𝐵 ⊆ 𝑐(𝑢), it follows that

𝑐(𝑣) ⊆ 𝐵 = 𝑐(𝑢), which yields 𝐷 = 𝐵 and i𝐷(𝑢) = i𝐵(𝑣) = 1. Hence, the only

possible alternative in the above description of �̃� is the second one. Moreover,

it gives �̃�(𝑎) = 𝐹 (𝑎)𝜀(𝑢𝑣). Since (𝐹, 𝐵, 𝑢) belongs to �̃�𝜔(G) and 𝐵 = 𝑐(𝑢𝑣), we
do have �̃�(𝑎) = 𝐹 (𝑎)𝜀(𝑢𝑣) = 𝐹 (𝑎) = 𝐽(𝑎).

Case 3. Suppose next that 𝑎 ∈ 𝑐(𝑢) and 𝑐(𝑣) ⊈ 𝐵. The latter assumption

implies that 𝐷 = 𝐶 and i𝐵(𝑣𝑢) = i𝐵(𝑣). There are now two possibilities, the

first of which is to fall in the second alternative of the formula for comput-

ing �̃�, with i𝐷(𝑢) ∈ 𝑐(𝑢), that is, 𝑐(𝑢) ⊈ 𝐷 = 𝐶, which entails 𝐸 = 𝐵. In

this case, we obtain 𝐽(𝑎) = 𝐹 (𝑎)𝐺(i𝐵(𝑣))𝐹 (i𝐶(𝑢))
(︀
𝐺(i𝐵(𝑣))𝐹 (i𝐶(𝑢))

)︀𝜔−1
𝜀(𝑢𝑣)

while �̃�(𝑎) = 𝐹 (𝑎)𝐺(i𝐵(𝑣))
(︀
𝐹 (i𝐶(𝑢))𝐺(i𝐵(𝑣))

)︀𝜔−1
𝜀(𝑢𝑣) so that the equal-

ity 𝐽(𝑎) = �̃�(𝑎) follows from Lemma 4.4. The other possibility is to fall

in the third alternative of the formula for �̃�, with i𝐶(𝑢𝑣) /∈ 𝑐(𝑢), which

yields 𝑐(𝑢) ⊆ 𝐶, so that 𝐸 = 𝐶, and i𝐶(𝑢) = 1. Hence, we obtain directly

𝐽(𝑎) = 𝐹 (𝑎)𝐺(i𝐵(𝑣))𝐺(i𝐶(𝑣))𝜔−1𝜀(𝑢𝑣) = �̃�(𝑎).
Case 4. Assume now that 𝑎 ∈ 𝑐(𝑢) and i𝐵(𝑣𝑢) ∈ 𝑐(𝑢)∖𝑐(𝑣). The second con-

dition implies that i𝐵(𝑣) = 1, that is, 𝑐(𝑣) ⊆ 𝐵, whence 𝐷 = 𝐵, and i𝐵(𝑣𝑢) =
i𝐵(𝑢). This means that we are in second alternative of the formula for �̃� and

we obtain �̃�(𝑎) = 𝐹 (𝑎)𝐹 (i𝐵(𝑢))𝜔−1𝜀(𝑢𝑣) while �̃�(𝑎) = 𝐹 (𝑎)𝐹 (i𝐵(𝑢))𝜔𝜀(𝑢𝑣)
and so the equality �̃�(𝑎) = 𝐽(𝑎) follows from Lemma 4.4.

Case 5a. Here, we consider the case where 𝑎 ∈ 𝑐(𝑣) ∖ 𝑐(𝑢) and 𝑐(𝑢) ⊆ 𝐶.

The latter condition means that i𝐶(𝑢) = 1 and implies that 𝐸 = 𝐶. This

falls in the third alternative of the formula for �̃� and we obtain �̃�(𝑎) =
𝐺(𝑎)𝐺(i𝐶(𝑣))𝜔−1𝜀(𝑢𝑣) = 𝐽(𝑎).

Case 5b. Assume finally that 𝑎 ∈ 𝑐(𝑣) ∖ 𝑐(𝑢), 𝑐(𝑢) ⊈ 𝐶, and i𝐸(𝑣) ∈ 𝑐(𝑣).
Since 𝑐(𝑢) ⊈ 𝐶, we have 𝐸 = 𝐵. Taking into account that i𝐸(𝑣) ∈ 𝑐(𝑣),
we deduce that 𝐷 = 𝐶. We fall in the fourth alternative of the formula

for �̃�, which gives the equality �̃�(𝑎) = 𝐺(𝑎)
(︀
𝐹 (i𝐶(𝑢))𝐺(i𝐵(𝑣))

)︀𝜔−1
𝜀(𝑢𝑣)

while the fifth alternative of the formula for 𝐽 provides the equality 𝐽(𝑎) =
𝐺(𝑎)𝐹 (i𝐶(𝑢))

(︀
𝐺(i𝐵(𝑣))𝐹 (i𝐶(𝑢))

)︀𝜔−1
𝜀(𝑢𝑣). Applying Lemma 4.4, we conclude

that �̃�(𝑎) = 𝐽(𝑎).

Combining Proposition 4.5 with Proposition 4.2, we are led to the following

key result.

Proposition 4.6. The 𝜔-semigroup �̃�𝜔(G) belongs to the variety R𝜔.
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Proof. It remains to invoke the result from [12, Theorem 6.1] that the identities

in Propositions 4.2 and 4.5 define the variety R𝜔.

We introduce a further restriction on the elements of �̃�𝜔(G), namely we consider

the subset 𝑆𝜔(G) consisting of the elements (𝐹, 𝐵, 𝑢) of �̃�𝜔(G) such that

𝑋 ⊆ 𝑌 ⊆ 𝐴 =⇒ 𝐹 (i𝑋(𝑢)) ⊆ 𝜀(𝑌 )𝐹 (i𝑌 (𝑢)). (4.3)

Proposition 4.7. The set 𝑆𝜔(G) is an 𝜔-subsemigroup of 𝑅𝜔(G).

Proof. Consider two elements (𝐹, 𝐵, 𝑢) and (𝐺, 𝐶, 𝑣) of 𝑅𝜔(𝑄, 𝐴) and their

product (𝐻, 𝐷, 𝑢𝑣) = (𝐹, 𝐵, 𝑢)(𝐺, 𝐶, 𝑣).
Suppose that (𝐹, 𝐵, 𝑢) and (𝐺, 𝐶, 𝑣) satisfy Property (4.3). We claim that

so does their product (𝐻, 𝐷, 𝑢𝑣).
Consider subsets 𝑋 and 𝑌 of 𝐴 such that 𝑋 ⊆ 𝑌 . Assume first that

𝑐(𝑣) ⊆ 𝐵, so that 𝑐(𝑣) ⊆ 𝑐(𝑢), i𝑌 (𝑢𝑣) = i𝑌 (𝑢), and

𝐻(i𝑋(𝑢𝑣)) = 𝐹 (i𝑋(𝑢𝑣))𝐺(i𝐵(𝑣)) and 𝐻(i𝑌 (𝑢𝑣)) = 𝐹 (i𝑌 (𝑢𝑣))𝐺(i𝐵(𝑣)).

If i𝑋(𝑢𝑣) /∈ 𝑐(𝑢), then i𝑌 (𝑢𝑣) /∈ 𝑐(𝑢) must also hold and 𝐹 (i𝑋(𝑢𝑣)) = 1 =
𝐹 (i𝑌 (𝑢𝑣)), whence 𝐻(i𝑋(𝑢𝑣)) = 𝐻(i𝑌 (𝑢𝑣)) ⊆ 𝜀(𝑌 )𝐻(i𝑌 (𝑢𝑣)). On the other

hand, if i𝑋(𝑢𝑣) ∈ 𝑐(𝑢), then we have i𝑋(𝑢𝑣) = i𝑋(𝑢). Hence, we may apply the

assumption that (𝐹, 𝐵, 𝑢) satisfies Property (4.3) to deduce that

𝐻(i𝑋(𝑢𝑣)) = 𝐹 (i𝑋(𝑢))𝐺(i𝐵(𝑣)) ⊆ 𝜀(𝑌 )𝐹 (i𝑌 (𝑢))𝐺(i𝐵(𝑣)) = 𝜀(𝑌 )𝐻(i𝑌 (𝑢𝑣)).

Assume next that 𝑐(𝑣) ⊈ 𝐵. In case i𝑋(𝑢𝑣) /∈ 𝑐(𝑢), then i𝑌 (𝑢𝑣) /∈ 𝑐(𝑢) also

holds, and we obtain

𝐻(i𝑋(𝑢𝑣)) = 𝐺(i𝑋(𝑣)) ⊆ 𝜀(𝑌 )𝐺(i𝑌 (𝑣)) = 𝜀(𝑌 )𝐻(i𝑌 (𝑢𝑣)).

We may, therefore, assume that i𝑋(𝑢𝑣) ∈ 𝑐(𝑢). The additional assumption that

i𝑌 (𝑢𝑣) /∈ 𝑐(𝑢) entails that 𝑐(𝑢) ⊆ 𝑌 and so 𝐵 ⊆ 𝑌 , as 𝐵 ⊆ 𝑐(𝑢). Since both

(𝐹, 𝐵, 𝑢) and (𝐺, 𝐶, 𝑣) satisfy Property (4.3), we may deduce the following

relations:

𝐻(i𝑋(𝑢𝑣)) = 𝐹 (i𝑋(𝑢))𝐺(i𝐵(𝑣)) ⊆ 𝜀(𝑌 )𝐹 (i𝑌 (𝑢))𝐺(i𝐵(𝑣)) = 𝜀(𝑌 )𝐺(i𝐵(𝑣))
⊆ 𝜀(𝑌 ) · 𝜀(𝑌 )𝐺(i𝑌 (𝑣)) = 𝜀(𝑌 )𝐻(i𝑌 (𝑢𝑣)).

It remains to consider the case where both i𝑋(𝑢𝑣) and i𝑌 (𝑢𝑣) belong to 𝑐(𝑢).
Taking into account that (𝐹, 𝐵, 𝑢) satisfies Property (4.3), we obtain:

𝐻(i𝑋(𝑢𝑣)) = 𝐹 (i𝑋(𝑢))𝐺(i𝐵(𝑣)) ⊆ 𝜀(𝑌 )𝐹 (i𝑌 (𝑢))𝐺(i𝐵(𝑣)) = 𝜀(𝑌 )𝐻(i𝑌 (𝑢𝑣)).



Recognizing pro-R closures of regular languages 15

To conclude the proof, we must show that the 𝜔-power (𝐼, 𝑐(𝑢), 𝑢) =
(𝐹, 𝐵, 𝑢)[𝜔] satisfies Property (4.3) if so does (𝐹, 𝐵, 𝑢). Let (𝐹𝜔, 𝐵, 𝑢) =
(𝐹, 𝐵, 𝑢)𝜔, so that the function 𝐼 is given by the formula 𝐼(𝑎) = 𝐹𝜔(𝑎)𝜀(𝑢) if

𝑎 ∈ 𝑐(𝑢) and 𝐼(𝑎) = 1 otherwise. Let 𝑋 and 𝑌 be such that 𝑋 ⊆ 𝑌 ⊆ 𝐴. In

case 𝑐(𝑢) ⊆ 𝑋, we get

𝐼(i𝑋(𝑢)) = 1 ⊆ 𝜀(𝑌 )1 = 𝜀(𝑌 )𝐼(i𝑌 (𝑢)).

For the remainder of the proof, we assume that 𝑐(𝑢) ⊈ 𝑋. From the assumption

that (𝐹, 𝐵, 𝑢) satisfies Property (4.3) and the previous step of the proof, we

know that (𝐹𝜔, 𝐵, 𝑢) = (𝐹, 𝐵, 𝑢)𝜔, which is a finite power of (𝐹, 𝐵, 𝑢), also
satisfies Property (4.3). Hence, we obtain

𝐼(i𝑋(𝑢)) = 𝐹𝜔(i𝑋(𝑢))𝜀(𝑢) ⊆ 𝜀(𝑌 )𝐹𝜔(i𝑌 (𝑢))𝜀(𝑢).

In case 𝑐(𝑢) ⊈ 𝑌 , the rightmost expression in the preceding inclusion is equal

to 𝜀(𝑌 )𝐼(i𝑌 (𝑢)). Otherwise, that expression reduces to 𝜀(𝑌 )𝜀(𝑢) and

𝜀(𝑌 )𝜀(𝑢) ⊆ 𝜀(𝑌 )𝜀(𝑌 ) = 𝜀(𝑌 ) = 𝜀(𝑌 )𝐼(i𝑌 (𝑢)),

which concludes the proof.

5 A natural partial order and generators

Given two elements 𝑥 and 𝑦 of 𝑅𝜔(𝑄, 𝐴), we write 𝑥 ≤ 𝑦 if 𝜋1(𝑥) ⊆ 𝜋1(𝑦),
𝜋2(𝑥) ⊆ 𝜋2(𝑦), and 𝜋3(𝑥) = 𝜋3(𝑦). This defines a partial order on 𝑅𝜔(𝑄, 𝐴).

Proposition 5.1. The order ≤ is stable under multiplication on the left. The

restriction of the order ≤ to 𝑆𝜔(G) is stable under multiplication on the right.

Proof. Let (𝐹, 𝐵, 𝑢), (𝐺, 𝐶, 𝑣), and (𝐻, 𝐷, 𝑤) be elements of 𝑅𝜔(𝑄, 𝐴).
Suppose that the inequality (𝐹, 𝐵, 𝑢) ≤ (𝐺, 𝐶, 𝑣) holds so that, in particular,

we have 𝑢 = 𝑣. Let

(𝐼, 𝑋, 𝑤𝑢) = (𝐻, 𝐷, 𝑤)(𝐹, 𝐵, 𝑢) and (𝐽, 𝑌, 𝑤𝑢) = (𝐻, 𝐷, 𝑤)(𝐺, 𝐶, 𝑢).

In case 𝑐(𝑢) ⊆ 𝐷, we get 𝑋 = 𝐷 = 𝑌 and

𝐼(𝑎) = 𝐻(𝑎)𝐹 (i𝐷(𝑢)) ⊆ 𝐻(𝑎)𝐺(i𝐷(𝑢)) = 𝐽(𝑎);

note that the conditions in the previous line also hold if 𝑎 ∈ 𝑐(𝑤). We now

assume that 𝑐(𝑢) ⊈ 𝐷, which yields 𝑋 = 𝐵 ⊆ 𝐶 = 𝑌 . It remains to consider
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the case where 𝑎 /∈ 𝑐(𝑤), in which we obtain 𝐼(𝑎) = 𝐹 (𝑎) ⊆ 𝐺(𝑎) = 𝐽(𝑎). This
completes the proof of left stability.

For the proof of right stability within 𝑆𝜔(G), we assume that the triples

(𝐹, 𝐵, 𝑢), (𝐺, 𝐶, 𝑣), and (𝐻, 𝐷, 𝑤) are elements of 𝑆𝜔(G) such that the inequality

(𝐹, 𝐵, 𝑢) ≤ (𝐺, 𝐶, 𝑣) holds, so that 𝑢 = 𝑣. Consider the products

(𝐼, 𝑋, 𝑢𝑤) = (𝐹, 𝐵, 𝑢)(𝐻, 𝐷, 𝑤) and (𝐽, 𝑌, 𝑢𝑤) = (𝐺, 𝐶, 𝑢)(𝐻, 𝐷, 𝑤).

Suppose first that 𝑐(𝑤) ⊆ 𝐵, whence also 𝑐(𝑤) ⊆ 𝐶 holds. It follows that

𝑋 = 𝐵 ⊆ 𝐶 = 𝑌 and

𝐼(𝑎) = 𝐹 (𝑎)𝐻(i𝐵(𝑤)) = 𝐹 (𝑎) ⊆ 𝐺(𝑎) = 𝐺(𝑎)𝐻(i𝐶(𝑤)) = 𝐽(𝑎).

From hereon, we suppose that 𝑐(𝑤) ⊈ 𝐵. In case 𝑐(𝑤) ⊆ 𝐶, we get 𝑋 = 𝐷 ⊆
𝑐(𝑤) ⊆ 𝐶 = 𝑌 . In case 𝑐(𝑤) ⊈ 𝐶, we obtain 𝑐(𝑤) ⊈ 𝐵 and 𝑋 = 𝐷 = 𝑌 .

Next, we assume that 𝑎 ∈ 𝑐(𝑢), so that

𝐼(𝑎) = 𝐹 (𝑎)𝐻(i𝐵(𝑤)) ⊆ 𝐺(𝑎)𝜀(𝐶)𝐻(i𝐶(𝑤)) = 𝐺(𝑎)𝐻(i𝐶(𝑤)) = 𝐽(𝑎),

where the inclusion uses the inequality 𝐹 ⊆ 𝐺 and the assumption that

(𝐻, 𝐷, 𝑤) satisfies Property (4.3), and the second equality comes from the

hypothesis that (𝐺, 𝐶, 𝑣) satisfies Property (4.2).

Finally, consider the case where 𝑎 /∈ 𝑐(𝑢). In case 𝑐(𝑤) ⊆ 𝐶, since 𝑐(𝑤) ⊆
𝐶 ⊆ 𝑐(𝑢), we get 𝐼(𝑎) = 𝐻(𝑎) = 1, while we also have 𝐽(𝑎) = 𝐺(𝑎)𝐻(i𝐶(𝑤)) = 1.
Otherwise, that is in the case where 𝑐(𝑤) ⊈ 𝐶, we simply get 𝐼(𝑎) = 𝐻(𝑎) =
𝐽(𝑎). This concludes the proof of right stability.

Let T𝜔
𝐴 denote the algebra of 𝜔-terms over 𝐴, that is, the unary algebra freely

generated by 𝐴, in which the unary operation is represented by the 𝜔-power.

Next, we choose special elements in 𝑅𝜔(𝑄, 𝐴).

Definition 5.2. Consider a finite 𝐴-labeled digraph G = (𝑄, 𝐴, 𝛿). For each

letter 𝑎 ∈ 𝐴, let the triple 𝜈[𝜔](𝑎) = (𝐹𝑎, ∅, 𝑎) be determined by

𝐹𝑎(𝑏) =

{︃
𝛿(𝑎) if 𝑏 = 𝑎,

1 otherwise.

Note that (𝐹𝑎, ∅, 𝑎) belongs to 𝑆𝜔(G). We define two homomorphisms T𝜔
𝐴 →

𝑆𝜔(G) of 𝜔-semigroups by letting 𝜈𝜔(𝑎) = 𝜈[𝜔](𝑎) = (𝐹𝑎, ∅, 𝑎) for each 𝑎 ∈ 𝐴:

for 𝜈𝜔, we consider the natural structure of 𝜔-semigroup of 𝑆𝜔(G) while, for

𝜈[𝜔], we take its alternative 𝜔-power defined in Section 4.

The unique homomorphism of 𝜔-semigroups T𝜔
𝐴 → Ω𝜔

𝐴S mapping each generator

𝑎 ∈ 𝐴 to itself is denoted 𝜂. In view of Proposition 4.6, we may consider the
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unique homomorphism of 𝜔-semigroups 𝜌G : Ω𝜔
𝐴R → 𝑆𝜔(G) that maps each

generator 𝑎 ∈ 𝐴 to the triple (𝐹𝑎, ∅, 𝑎).
The following result further explains our choice of multiplication in L𝐴.

Lemma 5.3. For each 𝛼 ∈ T𝜔
𝐴, the following properties hold:

(𝑖) 𝑐(𝜋3(𝜈[𝜔](𝛼))) = 𝑐(𝜂(𝛼));
(𝑖𝑖) 𝜋2(𝜈[𝜔](𝛼)) = �⃗�(𝜂(𝛼)).

Proof. The proof is done by induction on the construction of the 𝜔-term 𝛼. If

𝛼 is a letter, then the result is obtained by direct inspection. Assuming that

𝛼 = 𝛽𝛾, the definitions and the induction hypothesis for both 𝛽 and 𝛾 yield

𝑐(𝜋3(𝜈[𝜔](𝛼))) = 𝑐(𝜋3(𝜈[𝜔](𝛽𝛾))) = 𝑐(𝜋3(𝜈[𝜔](𝛽))) ∪ 𝑐(𝜋3(𝜈[𝜔](𝛾)))
= 𝑐(𝜂(𝛽)) ∪ 𝑐(𝜂(𝛾)) = 𝑐(𝜂(𝛼)).

Similarly, since �⃗�(𝜂(𝛼)) is equal to �⃗�(𝜂(𝛽)) = 𝜋2(𝜈[𝜔](𝛽)) if 𝑐(𝜂(𝛾)) ⊆ �⃗�(𝜂(𝛽)),
and to �⃗�(𝜂(𝛾)) = 𝜋2(𝜈[𝜔](𝛾)) otherwise, we get �⃗�(𝜂(𝛼)) = 𝜋2(𝜈[𝜔](𝛼)) by defini-

tion of the multiplication in L𝐴.

Suppose next that the induction hypothesis holds for the 𝜔-term 𝛼.

By definition of the [𝜔]-power and since 𝜈[𝜔](𝛼𝜔) = 𝜈[𝜔](𝛼)[𝜔], we must

have 𝜋2(𝜈[𝜔](𝛼𝜔)) = 𝑐(𝜋3(𝜈[𝜔](𝛼𝜔))) = 𝑐(𝜋3(𝜈[𝜔](𝛼))). As 𝛼 satisfies (𝑖) and

�⃗�(𝜂(𝛼𝜔)) = 𝑐(𝜂(𝛼)), we deduce that 𝛼𝜔 still satisfies both (𝑖) and (𝑖𝑖).

In particular, we obtain the following result.

Proposition 5.4. An 𝜔-term 𝛼 ∈ T𝜔
𝐴 is such that 𝑝R(𝜂(𝛼)) is idempotent if and

only if the equality 𝜋2(𝜈[𝜔](𝛼)) = 𝑐(𝜋3(𝜈[𝜔](𝛼))) holds.

Further properties of the order relation are established in the following lemma.

Lemma 5.5. For a finite 𝐴-labeled digraph G, the following conditions hold for

all elements 𝑥 and 𝑦 of the 𝜔-semigroup 𝑆𝜔(G), every 𝜔-term 𝛼 ∈ T𝜔
𝐴, and

every letter 𝑎 ∈ 𝐴:

(𝑖) 𝑥𝜔 ≤ 𝑥[𝜔];

(𝑖𝑖) 𝑥 ≤ 𝑦 implies 𝑥[𝜔] ≤ 𝑦[𝜔];

(𝑖𝑖𝑖) 𝜈𝜔(𝛼) ≤ 𝜈[𝜔](𝛼).

Proof. Properties (𝑖) and (𝑖𝑖) follow immediately from the interpretation of

the 𝜔-power given by Definition 4.1. Property (𝑖𝑖𝑖) can then be deduced easily

by induction on the construction of the 𝜔-term 𝛼 in terms of the application

of the operations of multiplication and 𝜔-power taking into account that the

order ≤ in 𝑆𝜔(G) is stable under multiplication by Proposition 5.1.
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Following standard terminology, we say that (𝑆, ≤) is an ordered 𝜔-semigroup

if 𝑆 is an 𝜔-semigroup and ≤ is a partial order on 𝑆 which is compatible with

multiplication and 𝜔-power.

Proposition 5.6. The pair (𝑆𝜔(G), ≤) is an ordered 𝜔-semigroup.

Proof. The order is compatible with multiplication by Proposition 5.1 and

with 𝜔-power by Lemma 5.5(𝑖𝑖).

6 Recognition of R-closures

Given two 𝜔-semigroups 𝑆 and 𝑇 , a relational morphism 𝑆 → 𝑇 is a binary

relation 𝜇 ⊆ 𝑆 × 𝑇 with domain 𝑆 which is an 𝜔-subsemigroup of 𝑆 × 𝑇 . For a

finite 𝐴-labeled digraph G = (𝑄, 𝐴, 𝛿), let 𝑆(G) be the semigroup 𝛿(𝐴+). The
relational morphism of 𝜔-semigroups 𝜇G : 𝑆(G) → 𝑆𝜔(G) is the composite

relation 𝜌G ∘ 𝑝R ∘ (𝛿|Ω𝜔
𝐴

S)−1.

Note that the composite mapping 𝜌G = 𝜌G ∘ 𝑝R is a homomorphism of

𝜔-semigroups. On the other hand, the restriction of 𝜌G to 𝐴 extends to a

continuous homomorphism Ω𝐴S → 𝑆𝜔(G). Its restriction to Ω𝜔
𝐴S is denoted 𝜁.

For an 𝜔-term 𝛼 ∈ T𝜔
𝐴 on the alphabet 𝐴 representing the 𝜔-word 𝑤 ∈ Ω𝜔

𝐴S,
note that 𝜈𝜔(𝛼) = 𝜁(𝑤) and 𝜈[𝜔](𝛼) = 𝜌G(𝑤).

Denote by 𝑆𝜔
𝐴(G) the subsemigroup of 𝑆𝜔(G) generated by 𝜌G(𝐴). Note

that 𝑆𝜔
𝐴(G) consists of elements of 𝑆𝜔(G) of the form (𝐹, ∅, 𝑢). There is another

mapping that plays a role in our construction. It is the mapping 𝜉 : 𝑆𝜔
𝐴(G) →

B(𝑄) which sends the triple (𝐹, 𝐵, 𝑢) to the binary relation 𝐹 (i∅(𝑢)). It follows
from the definition of the multiplication in 𝑅𝜔(𝑄, 𝐴) that the restriction

𝜉′ = 𝜉|𝑆𝜔
𝐴

(G) is a homomorphism of semigroups, taking its values in 𝑆(G).
The relevant mappings are depicted in the following diagram:

T𝜔
𝐴

𝜈𝜔

��
𝜂

��

𝜈[𝜔]

��

𝑆𝜔
𝐴(G)

𝜉′
##

� _

��

Ω𝜔
𝐴S

𝜁oo

𝛿|Ω𝜔
𝐴

S��

𝑝R //

𝜌G

##

Ω𝜔
𝐴R

𝜌G

��
𝑆𝜔(G)

𝜉 ##

𝑆(G)
𝜇G

//
� _

��

𝑆𝜔(G).

B(𝑄)
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Note that the diagram commutes. In view of Lemma 5.5(𝑖𝑖𝑖), the inequality

𝜁(𝑤) ≤ 𝜌G(𝑤) holds for every 𝑤 ∈ Ω𝜔
𝐴S.

Assuming that the language 𝐿 ⊆ 𝐴+ is recognized by some automaton

obtained from the 𝐴-labeled digraph G by adding an appropriate choice of sets

𝐼 and 𝑇 , respectively of initial and terminal vertices, the language 𝐿 is also

recognized by the transition homomorphism 𝛿|𝐴+ : 𝐴+ → B(𝑄), namely

𝐿 = (𝛿|𝐴+)−1{𝜃 ∈ B(𝑄) : 𝜃 ∩ (𝐼 × 𝑇 ) ̸= ∅}.

It follows that the homomorphism 𝛿|Ω𝜔
𝐴

S : Ω𝜔
𝐴S → B(𝑄) recognizes cl𝜔,S(𝐿) as

cl𝜔,S(𝐿) = (𝛿|Ω𝜔
𝐴

S)−1{𝜃 ∈ B(𝑄) : 𝜃 ∩ (𝐼 × 𝑇 ) ̸= ∅}.

whence so does 𝜁.

Theorem 6.1. Let A = (𝑄, 𝐴, 𝛿, 𝐼, 𝑇 ) be a finite automaton and consider the

underlying 𝐴-labeled digraph G = (𝑄, 𝐴, 𝛿) and the set

𝑃 = {𝑥 ∈ 𝑆𝜔(G) : 𝜉(𝑥) ∩ (𝐼 × 𝑇 ) ̸= ∅}.

Then the equality 𝜌−1
G (𝑃 ) = cl𝜔,R(𝐿) holds for the language 𝐿 recognized by A.

Proof. Let 𝑤 be an arbitrary element of cl𝜔,R(𝐿). Since R is 𝜔-full [9, Theo-

rem 7.4], there is some 𝑣 ∈ cl𝜔,S(𝐿) such that 𝑝R(𝑣) = 𝑤. Let 𝛼 ∈ T𝜔
𝐴 be an

𝜔-term such that 𝜂(𝛼) = 𝑣 and let 𝑣𝑛 be the word that is obtained from 𝛼

by replacing each subterm of the form 𝑢𝜔 by 𝑢𝑛!. Then lim 𝑣𝑛 = 𝑣. Since the

closure of 𝐿 in Ω𝐴S is an open set [2, Theorem 3.6.1], it follows that 𝑣𝑛 ∈ 𝐿

for all sufficiently large 𝑛. For each 𝑛, 𝜌G(𝑣𝑛) is an element of 𝑆𝜔
𝐴(G). Since

𝑆𝜔(G) is finite, there is some subsequence (𝑣𝑛𝑘 )𝑘 such that 𝑠 = 𝜌G(𝑣𝑛𝑘 ) ∈ 𝑃

is independent of 𝑘. Note that the sequence (𝜌G(𝑣𝑛))𝑛 is eventually constant

with value 𝜈𝜔(𝛼). In particular, that value must be 𝑠. On the other hand,

𝜌G(𝑤) = 𝜌G(𝑣) = 𝜈[𝜔](𝛼). In view of Lemma 5.5(𝑖𝑖𝑖), it follows that 𝜌G(𝑤) ∈ 𝑃

since 𝑃 is upward closed with respect to the order ≤. We have thus established

the inclusion cl𝜔,R(𝐿) ⊆ 𝜌−1
G (𝑃 ).

For the reverse inclusion, let 𝑤 be an arbitrary element of 𝜌−1
G (𝑃 ). We

claim that there is 𝑣 ∈ cl𝜔,S(𝐿) such that 𝑝R(𝑣) = 𝑝R(𝑤), which shows that

𝜌−1
G (𝑃 ) ⊆ cl𝜔,R(𝐿). Since 𝜁 recognizes cl𝜔,S(𝐿), it suffices to show that there is

𝑣 ∈ Ω𝜔
𝐴S such that 𝜁(𝑣) ∈ 𝑃 and 𝑝R(𝑣) = 𝑝R(𝑤). More generally, suppose that

𝛼 ∈ T𝜔
𝐴 is such that the pair of states (𝑝, 𝑞) belongs to 𝜉(𝜈[𝜔](𝛼)). We claim

that there is some 𝛽 ∈ T𝜔
𝐴 such that 𝑝R(𝜂(𝛼)) = 𝑝R(𝜂(𝛽)) and (𝑝, 𝑞) ∈ 𝜉(𝜈𝜔(𝛽)).

We prove the claim by induction on the construction of the 𝜔-term 𝛼 in terms

of the operations of multiplication and 𝜔-power.

If 𝛼 = 𝛼1𝛼2, then there exists 𝑟 ∈ 𝑄 such that (𝑝, 𝑟) ∈ 𝜉(𝜈[𝜔](𝛼1)) and

(𝑟, 𝑞) ∈ 𝜉(𝜈[𝜔](𝛼2)). Assuming the claim holds for both 𝛼𝑖, there is 𝛽𝑖 ∈ T𝜔
𝐴 such
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that 𝑝R(𝜂(𝛼𝑖)) = 𝑝R(𝜂(𝛽𝑖)) (𝑖 = 1, 2), (𝑝, 𝑟) ∈ 𝜉(𝜈𝜔(𝛽1)), and (𝑟, 𝑞) ∈ 𝜉(𝜈𝜔(𝛽2)).
Then the 𝜔-term 𝛽 = 𝛽1𝛽2 has the required properties.

Suppose next that 𝛼 = 𝛼𝜔
0 , where the claim holds for the 𝜔-term 𝛼0.

By hypothesis, the pair of states (𝑝, 𝑞) belongs to the relation 𝜉(𝜈[𝜔](𝛼)) =
𝜉(𝜈[𝜔](𝛼0)[𝜔]). Let 𝑛 ≥ 1 be such that 𝑆𝜔(G) satisfies the identity 𝑥𝜔 = 𝑥𝑛 for

the natural 𝜔-power. In view of the definition of the [𝜔]-power in 𝑆𝜔(G), it
follows that there is some state 𝑟 ∈ 𝑄 such that (𝑝, 𝑟) ∈ 𝜉(𝜈[𝜔](𝛼𝑛

0 )), where
𝜈[𝜔](𝛼0)𝜔 = 𝜈[𝜔](𝛼0)𝑛 = 𝜈[𝜔](𝛼𝑛

0 ), and there is a path in G from 𝑟 to 𝑞 labeled

by some word 𝑢 of 𝑐(𝜂(𝛼0))*. Since 𝜈[𝜔](𝛼𝑛
0 ) is idempotent, by the pigeonhole

principle there is some state 𝑟′ ∈ 𝑄 such that each of the pairs (𝑝, 𝑟′), (𝑟′, 𝑟′),
and (𝑟′, 𝑟) belongs to 𝜉(𝜈[𝜔](𝛼𝑛

0 )). By the case of the product, already handled

in the preceding paragraph, since 𝛼0 is assumed to satisfy the claim, so does 𝛼𝑛
0 .

Hence, there are 𝜔-terms 𝛽𝑖 ∈ T𝜔
𝐴 such that 𝑝R(𝜂(𝛽𝑖)) = 𝑝R(𝜂(𝛼𝑛

0 )) (𝑖 = 1, 2, 3),
(𝑝, 𝑟′) ∈ 𝜉(𝜈𝜔(𝛽1)), (𝑟′, 𝑟′) ∈ 𝜉(𝜈𝜔(𝛽2)), and (𝑟′, 𝑟) ∈ 𝜉(𝜈𝜔(𝛽3)). Since elements

of Ω𝐴S with the same image under 𝑝R have the same content, we obtain the

equalities

𝑝R(𝜂(𝛽1𝛽𝜔
2 𝛽3𝑢)) = 𝑝R(𝜂(𝛽1𝛽𝜔

2 𝛽3)) = 𝑝R(𝜂(𝛼𝜔
0 )) = 𝑝R(𝜂(𝛼)).

We have thus shown that the 𝜔-term 𝛽 = 𝛽1𝛽𝜔
2 𝛽3𝑢 has all the required

properties, thereby concluding the induction step and the proof of the theorem.

Note that we may use the same labeled digraph to recognize several languages.

Corollary 6.2. Let 𝐿1, . . . , 𝐿𝑛 be regular languages over the same finite alphabet

𝐴 and suppose that, for each 𝑖 ∈ {1, . . . , 𝑛}, a suitable choice of initial and

terminal states in the 𝐴-labeled digraph G = (𝑄, 𝐴, 𝛿) yields an automaton

recognizing 𝐿𝑖. Then 𝑆𝜔(G) recognizes every Boolean combination of the sets

cl𝜔,R(𝐿𝑖).

Proof. It suffices to apply Theorem 6.1 and note that inverse functions behave

well with respect to Boolean operations.

For instance, one may take the same labeled digraph G to recognize several given

regular languages over the same finite alphabet 𝐴, such as the disjoint union

of their minimal automata where, naturally, the choice of initial and terminal

states depends on the language. Corollary 6.2 then provides an algorithm to

compute the intersection of the pro-R closures of the given languages in Ω𝜔
𝐴R.

Since R is completely tame for the signature 𝜔, we thus obtain an algorithm

to test whether the intersection of the pro-R closures of the given languages

in Ω𝐴R is empty. The case of a pair of regular languages gives an algorithmic

solution of the problem of separation by R-languages.
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Recall that a subset 𝑃 of a finite semigroup 𝑆 is said to be V-pointlike if,

for every relational morphism 𝜇 : 𝑆 → 𝑇 into a semigroup from V, there is some

𝑡 ∈ 𝑇 such that 𝑃 × {𝑡} ⊆ 𝜇. Equivalently, one may consider an arbitrary onto

homomorphism 𝜙 : 𝐴+ → 𝑆, where 𝐴 is a finite alphabet, and require that the

closures of the regular languages 𝜙−1(𝑠) (𝑠 ∈ 𝑆) in Ω𝐴V have some point in

common. Again, since R is completely tame for the signature 𝜔, the preceding

property for the pseudovariety R is equivalent to the sets cl𝜔,R(𝜙−1(𝑠)) (𝑠 ∈ 𝑆)

having some point in common. In view of Corollary 6.2, we obtain an algorithm

establishing the following result.

Corollary 6.3. It is decidable whether a given subset of a finite semigroup is

R-pointlike.

The previous corollary is not new. It was first proved in [6]. The proof may also

be derived from much more general results from [7] and yet another approach

to compute R-pointlike sets was obtained in [8].

We next consider a further algorithmic property associated with a pseu-

dovariety V, which is important in the computation of Mal’cev products with V.
A subset 𝑃 of a finite semigroup 𝑆 is said to be a V-idempotent-pointlike subset

if, for every relational morphism 𝜇 : 𝑆 → 𝑇 into a semigroup from V, there is

an idempotent 𝑒 ∈ 𝑇 such that 𝑃 × {𝑒} ⊆ 𝜇.

Corollary 6.4. It is decidable whether a given subset of a finite semigroup is

R-idempotent pointlike.

Proof. Choose a finite alphabet 𝐴 and an onto homomorphism 𝜙 : 𝐴+ → 𝑆,

where 𝑆 is a given finite semigroup. Let 𝑃 be a finite subset of 𝑆. By tameness

[7], 𝑃 is R-idempotent pointlike if and only if there is, for each 𝑠 ∈ 𝑃 , some 𝜔-

word 𝑤𝑠 ∈ cl𝜔,S(𝜙−1(𝑠)) such that 𝑝R(𝑤𝑠) is the same idempotent independent

of 𝑠. Since 𝑝R(cl𝜔,S(𝜙−1(𝑠))) = cl𝜔,R(𝜙−1(𝑠)) by fullness, we conclude that 𝑃 is

R-idempotent pointlike if and only if the intersection 𝐼 =
⋂︀

𝑠∈𝑃 cl𝜔,R(𝜙−1(𝑠))
contains some idempotent.

By Corollary 6.2, there is a finite 𝐴-labeled digraph G such that 𝑆𝜔(G)
recognizes 𝐼. In view of Proposition 5.4, 𝐼 contains an idempotent if and only

if the image of 𝐼 under 𝜌G contains some triple (𝐹, 𝐵, 𝑢) such that 𝐵 = 𝑐(𝑢), a
condition that may be effectively tested.

Again, Corollary 6.4 follows from the general tameness results of [7] but

the algorithms that may be derived from tameness are merely theoretical,

depending on enumerating in parallel all favorable and unfavorable cases, until

our instance of the problem is produced [10]. The algorithm described in the

proof of Corollary 6.4 is much more effective.
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Proposition 6.5. For a given finite labeled digraph G = (𝑄, 𝐴, 𝛿), let 𝑚 = |𝑄|
and 𝑛 = |𝐴|. Then, the cardinality of 𝑆𝜔(G) is bounded above by 2(𝑚2+1)𝑛 ·3 ·𝑛!.

Proof. Recall that the elements of 𝑆𝜔(G) are triples (𝐹, 𝐵, 𝑢) where 𝐹 is a

function 𝐴1 → B(𝑄), 𝐵 ⊆ 𝐴, and 𝑢 ∈ Ω𝐴LRB. The cardinality |Ω𝐴LRB| is
the number of different words in 𝑛 letters without repeated letters. It is well

known to be equal to 𝑛!
∑︀𝑛

𝑟=0
1
𝑟! = ⌊𝑒 · 𝑛!⌋, whence it is bounded above by

3 · 𝑛!. For an element (𝐹, 𝐵, 𝑢) of 𝑆𝜔(G), the function 𝐹 : 𝐴1 → B(𝑄) is such

that 𝐹 (1) = 1. There are 2𝑚2𝑛 such functions.

Note that in general, the cardinality of the transition semigroup 𝑆(G) of G

also grows exponentially with 𝑚 and 𝑛. We do not know whether |𝑆𝜔(G)| may

grow exponentially with |𝑆(G)|. A finer analysis taking into account Properties

(4.1)–(4.3) may lead to better estimates than those provided by Proposition 6.5.

Even better estimates may perhaps hold for the 𝜔-subsemigroup Im 𝜌G.
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