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Abstract

In this paper we study the κ-word problem for the pseudovariety LG of local groups,

where κ is the canonical signature consisting of the multiplication and the pseudoinversion.

We solve this problem by transforming each arbitrary κ-term α into another one α∗ called

the LG-canonical form of α and by showing that different canonical forms have different

interpretations over LG. The procedure of construction of these canonical forms consists

in applying reductions determined by a set Σ of κ-identities. As a consequence, Σ is a

basis of κ-identities for the κ-variety generated by LG.

Keywords. Local group, pseudovariety, finite semigroup, implicit signature, word prob-

lem, κ-term, canonical form.

1 Introduction

The notion of a pseudovariety has played a key role in the classification of finite semigroups.

Recall that a pseudovariety of semigroups is a class of finite semigroups closed under tak-

ing subsemigroups, homomorphic images and finite direct products. The semidirect product

operator on pseudovarieties of semigroups has received particular attention, as it allows to

decompose complicated pseudovarieties into simpler ones, and which in turn is central to the

applications of semigroup theory in computer science. Among the most studied semidirect

products of pseudovarieties are those of the form V ∗D, where V is any pseudovariety and

D is the pseudovariety of finite semigroups whose idempotents are right zeros [20, 22, 4]. If

V is a pseudovariety, then LV denotes the pseudovariety of finite semigroups S whose lo-

cal submonoids are in V (i.e., eSe ∈ V for all idempotents e of S). In general, V ∗ D is
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a subpseudovariety of LV but under certain conditions on the pseudovariety V the equality

holds [20, 21, 22]. In particular, for the pseudovariety G of finite groups, LG is the class of

finite local groups and it is well-known that LG = G ∗D [19].

Many applications involve solving the membership problem for specific pseudovarieties. A

pseudovariety for which this is possible is said to be decidable. However, the semidirect product

does not preserve decidability [11, 17], and thus it is worth investigating stronger properties

of the factors under which decidability of the semidirect product is guaranteed. This is the

approach followed by Almeida and Steinberg that lead to the notion of tameness [6, 7].

For a signature (or a type) σ of algebras and a class C of algebras of type σ (i.e., σ-

algebras), the σ-word problem for C consists in determining whether two given elements of

the term algebra of type σ (i.e., σ-terms) over an alphabet have the same interpretation over

every σ-algebra of C. In the context of the study of tameness of pseudovarieties of semigroups,

it is necessary to study the decidability of the σ-word problem over a pseudovariety V, where

σ is a set of implicit operations on semigroups containing the multiplication, called an implicit

signature, since that is one of the properties required for V to be tame. For pseudovarieties

of aperiodic semigroups it is common to use the signature ω consisting of the multiplication

and the ω-power. For instance, the ω-word problem is already solved for the pseudovarieties

A of finite aperiodic semigroups [16, 23], J of J -trivial semigroups [1], LI of locally trivial

semigroups [9], R of R-trivial semigroups [10] and LSl of local semilattices [12]. For non-

aperiodic cases it is common to use the signature κ consisting of the multiplication and the

(ω − 1)-power, usually called the canonical signature. We will use an extension of κ, denoted

κ̄ (and called the completion of κ in [5]), consisting of the multiplication and all the (ω + q)-

powers with q integer. It is easy to realize that the κ̄-word problem is equivalent to the κ-word

problem. As examples of pseudovarieties for which the κ-word problem is solved, we cite the

pseudovarieties S of finite semigroups [13] and CR of completely regular semigroups [8].

This paper is a continuation of the work initiated in [14]. In that paper, the authors

have shown that LG and S verify exactly the same identities involving κ̄-terms of rank 0 or

1, and have given a proof (alternative to that contained in [13]) of the decidability of those

κ̄-identities. The present paper completes the proof of the decidability of the κ̄-word problem

(and, as a consequence, of the κ-word problem) over the pseudovariety LG. We prove first

that this problem can be reduced to consider only identities involving κ̄-terms from a certain

set S whose elements have rank at most 2. Next, a canonical form for rank 2 κ̄-terms over

LG is defined, thus extending the notion of canonical κ̄-terms over LG given in [14] for rank

0 and 1. Finally, for canonical κ̄-terms α and β, we show that the κ̄-identity α = β holds

over LG if and only if α and β are the same κ̄-term. Since it is shown that each κ̄-term can

be algorithmically transformed into a unique canonical form with the same value over LG, to

test whether a κ̄-identity α = β holds over LG it then suffices to verify if the canonical forms

of the κ̄-terms α and β are equal.

A fundamental tool in our work is that of q-root of a κ̄-term α from the set S. We start

by computing a certain parameter qα, which is a positive integer and depends only on α.
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Then, for any given q ≥ qα, the q-root of α is an effectively computable word w̃q(α), over a

finite alphabet V ∪ V−1, which is reduced in the free group FV generated by V. A pertinent

property is that, if α, β ∈ S and q is large enough, then LG satisfies α = β if and only if

w̃q(α) = w̃q(β). This result provides an alternative criterion to decide the κ̄-word problem

for LG. Moreover, each word w̃q(α) is obtained as the reduced form in the free group FV of

another word wq(α), called the q-outline of α. The reduction process of an outline wq(α) into

the root w̃q(α) was fundamental to us in the definition of a canonical form for rank 2 κ̄-terms

over LG since it served as a guide to some of the simplifications that should be operated at

the κ̄-term level. Informally speaking, if LG satisfies α = β and the outline wq(β) is “closer”

than the outline wq(α) to their common reduced form w̃q(α)(= w̃q(β)), then β should be

considered to be “simpler” than α. The notion of q-outline, introduced here for κ̄-terms over

LG, plays a similar role as a more general notion of superposition homomorphism that was

used by Almeida and Azevedo [3] to provide a representation of the free pro-(V∗D) semigroup

over A (see [2, Theorem 10.6.12]).

2 Preliminaries

This section introduces some terminology and notation. We assume familiarity with basic

results of the theory of pseudovarieties and implicit operations. For further details and general

background see [2, 18]. For the main definitions and basic results about combinatorics on

words, the reader is referred to [15].

2.1 κ̄-terms

In this paper, we consider a finite alphabet A provided with a total order. The free semigroup

(resp. the free monoid) generated by A is denoted by A+ (resp. A∗). An element w of A∗ is

called a (finite) word and the empty word is denoted by ε. A word is said to be primitive if it

cannot be written in the form un with n > 1. Words u and v are conjugate if there are words

w1, w2 ∈ A∗ such that u = w1w2 and v = w2w1. A Lyndon word is a primitive word which is

minimal in its conjugacy class for the lexicographic order.

Given an element s of a compact semigroup, the closed subsemigroup generated by s

contains a unique idempotent, denoted sω or sω+0. For q ∈ N, sω+q = sωsq belongs to

the maximal closed subgroup containing sω, and its group inverse is denoted by sω−q. The

following examples of implicit operations play an important role in the next sections: the

binary implicit operation multiplication interpreted as the semigroup multiplication and, for

each q ∈ Z, the unary implicit operation (ω + q)-power which, for a finite semigroup S, sends

s ∈ S to sω+q.

We denote by κ̄ the implicit signature consisting of the multiplication and the (ω+q)-powers

with q ∈ Z. The free κ̄-algebra generated by A in the variety defined by the identity x(yz) =

(xy)z will be denoted by T κ̄A and its elements are called κ̄-terms. Every finite semigroup

has a natural structure of an associative κ̄-algebra (also known as a κ̄-semigroup), via the
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interpretation of implicit operations as operations on finite semigroups. When referring to a

term we will mean either a κ̄-term or the empty word ε. A κ̄-term of the form πω+q is called

a limit term, and π and ω + q are called, respectively, its base and its exponent. Notice that

πω+0 is usually written as πω to make the notation more compact. If a term α can be written

in the form α = α1α2, then the terms α1 and α2 are said to be, respectively, a prefix and a

suffix of α.

2.2 Portions of a κ̄-term

The rank of a term α is the maximum number rank(α) of nested exponents in it. So, the

terms of rank 0 are the words from A∗ and, for i ≥ 0, a κ̄-term of rank i+ 1 is an expression

α of the form

α = ρ0π
ω+q1
1 ρ1 · · ·πω+qn

n ρn,

where n ≥ 1, ρj is a term with rank at most i, π` is a rank i κ̄-term and q` ∈ Z. This

expression is uniquely determined and we call it the rank configuration of α. The number n

is said to be the (i+ 1)-length of α. The subterms ρ0π
ω+q1
1 , πω+qn

n ρn and π
ω+qj
j ρjπ

ω+qj+1

j+1 are

called, respectively, the initial portion, the final portion and the crucial portions of α. For a

positive integer p, the p-expansion of α is the rank i κ̄-term

α(p) = ρ0π
p
1ρ1 · · ·πpnρn.

Suppose that i = 0, whence rank(α) = 1. The ω-terms ρ0π
ω
1 , πωnρn and πωj ρjπ

ω
j+1 are said

to be, respectively, the initial ω-portion, the final ω-portion and the crucial ω-portions of α.

In case i = 1, so that rank(α) = 2, the (rank 1) initial ω-portion, final ω-portion and crucial

ω-portions of α are, respectively, the initial ω-portion, final ω-portion and crucial ω-portions

of the 2-expansion α(2) of α. For example, if α = b(abωa)ω−1bc(cω−1aa(bc)ω−2)ω−1aω+1,

then babω and aω are the initial and the final ω-portions, respectively, and bωaabω, bωabccω,

cωaa(bc)ω, (bc)ωcω and (bc)ωaω are the crucial ω-portions of α.

2.3 κ̄-identities

A κ̄-identity over A is a formal equality π = ρ with π, ρ ∈ T κ̄A. For a pseudovariety V, the

κ̄-word problem for V consists in determining, for each given κ̄-identity π = ρ, whether π and

ρ have the same interpretation over every semigroup of V. If so, we write V |= π = ρ, as

usual. Analogous definitions can be formulated for the signature κ.

Note that the following κ̄-identities hold over every finite semigroup: xω+q = xω−1xq+1

(q ∈ N0) and xω−q = (xq)ω−1 = (xω−1)q (q ∈ N). This means that the signatures κ and κ̄

have the same expressive power and, consequently, the κ̄-word problem is equivalent to the

κ-word problem.
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2.4 Rewriting rules for κ̄-terms over S

The following set ΣS of κ̄-identities

(xω+p)ω+q = xω+pq, (2.1)

(xn)ω+q = xω+nq, (2.2)

xω+pxω+q = xω+p+q, (2.3)

xnxω+q = xω+q+n, xω+qxn = xω+q+n, (2.4)

(xy)ω+qx = x(yx)ω+q, (2.5)

holds in the pseudovariety S, where x and y represent arbitrary κ̄-terms, n ∈ N and p, q ∈ Z.

Notice that, using (2.3)–(2.5), it is easy to deduce the κ̄-identities

xω(xω+py)ω+q = (xω+py)ω+q, (xω+py)ω+qxω = (xω+pyxω)ω+q,

(yxω+p)ω+qxω = (yxω+p)ω+q, xω(yxω+p)ω+q = (xωyxω+p)ω+q.
(2.6)

Each κ̄-identity r = (u = v) can be seen as two rewriting rules ~r : u→ v and ~r : v → u. If

we rewrite a κ̄-term π interpreting a κ̄-identity (2.i), with i ∈ {1, 2, 3, 4}, as a rewriting rule

from left to right, we say that we make a (2.i)-contraction. The transformations resulting from

interpreting the κ̄-identities as rewriting rules on the opposite direction are called expansions.

We will distinguish between left and right contractions/expansions of type (2.4) depending on

whether the left or right identity (2.4) is used. An application of the identity (2.5) from left

to right or from right to left is called a shift right and a shift left, respectively.

We will talk about the rank of a transformation of κ̄-terms using a κ̄-identity α = β as

the number max{rank(α), rank(β)}. For example, if we rewrite abω+1b(caω+1)ω−1caω+1 as

abω+1b(caω+1)ω, or as abω+2(caω+1)ω−1caω+1, making right (2.4)-contractions, we say that it

was made a rank 2 contraction in the first case, and a rank 1 contraction in the second one.

In what follows, we assume that the alphabet A is not a singular set since, otherwise, every

κ̄-term with not null rank is equivalent to a rank 1 limit term with base the only letter of A,

and the κ̄-word problem is trivial in that case.

2.5 Local groups

A local group S is a semigroup such that eSe is a group for each idempotent e of S. Equiv-

alently, we may say that S is a local group if and only if S has no idempotents or S has a

completely simple minimal ideal containing all its idempotents [14, Proposition 2.1]. Groups

and completely simple, locally trivial and nilpotent semigroups are examples of local groups.

Recall that LI is the join of D with its dual K, the pseudovariety of finite semigroups

whose idempotents are left zeros. Therefore, a κ̄-identity α = β holds in LI if and only if it

holds in both K and D. In particular, when α and β are rank 1 or rank 2 κ̄-terms, α = β

holds in LI if and only if α and β have the same initial and final ω-portions. We also recall

that G and LI are subpseudovarieties of LG, but LG is not the join of G with LI. Hence, if
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a κ̄-identity α = β holds in LG, then it holds in both G and LI but the converse implication

is not valid. It is well known that, if a pseudovariety V contains LI and V |= α = β, then

either α and β are the same word or they both are κ̄-terms of rank at least 1.

In [14] the authors defined a class of local groups denoted by S(G,L, f) in which G is a

group, L ⊆ A+ is a factorial language (i.e., a language that is closed under taking non-empty

factors) and f : L ∪ L̈ → G is a map that serves to define the semigroup operation, where L̈

is the subset of A+ \ L formed by the words whose proper factors belong to L. We have also

constructed a finite local group Sπ,ρ of the form S(G,L, f), associated to each pair (π, ρ) of

rank 1 canonical κ̄-terms, such that LG |= π = ρ if and only if Sπ,ρ |= π = ρ.

So, by the above considerations, it remains to deal with κ̄-identities α = β such that

rank(α) ≥ 1 and rank(β) ≥ 1 where at least one of these inequalities is strict.

3 Some properties of κ̄-terms over LG

In this section, we show some features of κ̄-terms interpreted on finite local groups. Notice

that LG is the pseudovariety of finite semigroups that satisfy the κ̄-identity

(xωyxω)ω = xω. (3.1)

Let us consider the set of κ̄-identities Σ = ΣS ∪ {(xωyxω)ω = xω}. Observe that the left side

of the κ̄-identity (3.1) is a rank 2 κ̄-term while the κ̄-term in the right side has rank 1. This

is the key κ̄-identity for the transformation of κ̄-terms into other ones of rank at most 2 in

Section 5.1. In Section 5.2, using the set Σ, we will further reduce any κ̄-term to a canonical

form over LG.

Two κ̄-terms α and β are Σ-equivalent when Σ ` α = β, that is, when the κ̄-identity α = β

is a syntactic consequence of Σ. Obviously, if α and β are Σ-equivalent, then LG |= α = β.

One of the main goals is to prove that the converse implication also holds.

Let π be a κ̄-term of rank at least 1. Then π is of the form π = uxω+qw for some integer

q and some terms u, x and w. By (2.3), it follows that π may be transformed into uxωxω+qw.

Therefore π is Σ-equivalent (it is ΣS-equivalent to be more precise) to some κ̄-term of the

form uxωv and we will often use this fact without further reference. In particular, using

notably (2.6) and (3.1), we may derive

πω+1 = u(xωvu)ωxωv = u(xωvuxω)ωv = uxωv = π. (3.2)

Notice that the κ̄-identities (xωyxω)ω = xω(yxω)ω = (xωy)ωxω are derived from ΣS and

that, for arbitrary integers p and q, (xω+pyxω+q)ω = xω is a consequence of Σ. It is useful to

point out the following consequences of this κ̄-identity and (2.6),

xω+p(yxω+q)ω = xω+p = (xω+qy)ωxω+p. (3.3)

Now, from these ones we deduce, as explained below, the following property of exponents,

where r is an arbitrary integer,

xω+p(yxω+q)ω−1 = xω+p−r(yxω+q−r)ω−1, (xω+qy)ω−1xω+p = (xω+q−ry)ω−1xω+p−r. (3.4)
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Indeed, we deduce the first identity as follows (the second one being proved by symmetry)

xω+p(yxω+q)ω−1 = xω+p−r(xω+ryxω+q−r)ω−1xω+r

= xω+p−r(xω+ryxω+q−r)ω−1xω+r(yxω+q−r)ω

= xω+p−r(xω+ryxω+q−r)ω(yxω+q−r)ω−1

= xω+p−r(yxω+q−r)ω−1.

We gather in the following proposition a few κ̄-identities exhibiting cancelation properties

that are important in the reduction process.

Proposition 3.1 The following κ̄-identities are consequences of Σ, for all p, q, r, s ∈ Z,

xω+py(zω+qwxω+ry)ω−1zω+s = xω+p(zω+qwxω+r)ω−1zω+s, (3.5)

xω+py(xω+qy)ω−1xω+s = xω+p−q+s, (3.6)

(xω+py)ω−1xω+q(zxω+r)ω−1 = xω(zxω+p−q+ryxω)ω−1. (3.7)

Proof. The deduction of (3.5) can be made using ΣS and (3.3) as follows

xω+py(zω+qwxω+ry)ω−1zω+s = xω+p(zω+qwxω+r)ωy(zω+qwxω+ry)ω−1zω+s

= xω+p(zω+qwxω+r)ω−1(zω+qwxω+ry)ωzω+s

= xω+p(zω+qwxω+r)ω−1zω+s.

The identity (3.6) is an immediate consequence of (3.5). For the identity (3.7), we prove

(xωy)ω−1xω+q(zxω)ω−1 = xω(zxω−qyxω)ω−1 which is a simpler and, clearly, equivalent condi-

tion. Using (3.4) in the first identity below, we have

(xωy)ω−1xω+q(zxω)ω−1 = (xωy)ω−1xω(zxω−q)ω−1

= (xωy)ω−1(xωzxω−q)ω−1xω

= (xωy)ω−1(xωzxω−q)ω−1(xωzxω−qyxω)ω

= (xωy)ω−1(xωzxω−q)ωyxω(xωzxω−qyxω)ω−1

= (xωy)ω−1xωyxω(xωzxω−qyxω)ω−1

= xω(xωzxω−qyxω)ω−1

= xω(zxω−qyxω)ω−1.

This proves the proposition.

It is also useful to emphasize the following properties.

Corollary 3.2 Let τ and σ be κ̄-terms.

(a) If LI |= τ = σ, then Σ ` σ(τσ)ω−1 = τω−1.

(b) If K |= τ = σ, then Σ ` σω−1τω−1 = (τ2σ)ω−1τ .

(c) If D |= τ = σ, then Σ ` σω−1τω−1 = σ(τσ2)ω−1.
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Proof. Suppose that LI |= τ = σ. Then τ and σ are the same word (and the result is

trivial), or they both have rank at least 1. In this case, τ and σ are ΣS-equivalent, respectively,

to κ̄-terms of the form uxωτ ′yωv and uxωσ′yωv with u, x, y, v words. Therefore, using ΣS

and (3.5), one derives

σ(τσ)ω−1 = uxωσ′(yωvuxωτ ′yωvuxωσ′)ω−1yωv = uxωτ ′(yωvuxωτ ′yωvuxωτ ′)ω−1yωv = τω−1,

thus showing (a).

Now suppose that K |= τ = σ. Then, as above, τ and σ are the same word (in which

case the result is immediate), or both τ and σ have rank at least 1. In this case, τ and σ are

ΣS-equivalent, respectively, to κ̄-terms of the form uxωτ ′ and uxωσ′ with u, x words. So, the

deduction of (b) can be done, using ΣS and (3.7), as follows

σω−1τω−1 = (uxωσ′)ω−1(uxωτ ′uxωτ ′)ω−1uxωτ ′

= u(xωσ′u)ω−1xω(τ ′uxωτ ′uxω)ω−1τ ′

= uxω(τ ′uxωτ ′uxωσ′uxω)ω−1τ ′

= (τ2σ)ω−1τ.

The proof of (c) can be made analogously.

4 Canonical forms for κ̄-terms over LG

In this section, we present the definitions of canonical forms for κ̄-terms over LG. The rank 0

and rank 1 canonical κ̄-terms over LG were already introduced in [14], coincide with, respec-

tively, rank 0 and rank 1 canonical κ̄-terms over S defined in [13]. According to Proposition 5.1

below, in order to complete the definition of the canonical forms over LG it remains to intro-

duce rank 2 LG-canonical forms.

Let α be a κ̄-term and, if rank(α) ≥ 1, let

α = ρ0π
ω+q1
1 ρ1 · · ·πω+qn

n ρn

be its rank configuration.

(C0) If rank(α) = 0, then α is said to be in LG-canonical form.

(C1) If rank(α) = 1 and, for each j ∈ {1, . . . , n},

(a) πj is a Lyndon word;

(b) πj is not a suffix of ρj−1;

(c) πj is not a prefix of any word ρjπ
`
j+1 with ` ≥ 0, where πn+1 is the empty word;

then α is said to be in LG-canonical form. Notice that every rank 1 κ̄-term can be

effectively converted into a rank 1 canonical form by the reduction algorithm for rank 1

κ̄-terms, defined in [14, Section 4] as follows:
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(1) apply all possible (2.2)-contractions;

(2) turn the base of each limit term in the κ̄-term into a Lyndon word, by means of a

(2.4)-expansion (with n = 1) and a shift;

(3) apply all possible (2.4)-contractions;

(4) apply all possible (2.3)-contractions;

(5) replace each crucial portion xω+puyω+q not in canonical form by xω+p+mvyω+q−`,

where ` is the minimum integer such that |uy`| ≥ |x|, m is the maximum integer such

that xm is a prefix of uy` and xmv = uy`, by means of applying a left (2.4)-expansion

with n = ` and a right (2.4)-contraction with n = m.

(C2) If rank(α) ∈ {1, 2}, then α is said to be in semi-canonical form (over S) whenever the

2-expansion α(2) = ρ0π
2
1ρ1 · · ·π2

nρn is in canonical form. Notice that every rank 1 κ̄-term

is in semi-canonical form. We refer the reader to [13, Section 4.3] for the algorithm of

calculation of the semi-canonical form of any rank 2 κ̄-term. We will be particularly

interested in rank 2 semi-canonical forms α such that qj = −1 for all j, and denote by

S2 the set of those κ̄-terms.

(S2) If α ∈ S2 and α is irreducible for the rewrite system R defined in Section 5.2 below,

then α is said to be in LG-canonical form.

The set of LG-canonical forms of rank i (with i ∈ {0, 1, 2}) is denoted Ci. By [13] and

Section 5.2, the following conditions are equivalent for a κ̄-term α:

• α is in semi-canonical/LG-canonical form;

• every subterm of α is in semi-canonical/LG-canonical form;

• the initial, final and crucial portions of α are in semi-canonical/LG-canonical form;

• the initial, final and crucial ω-portions of α are in semi-canonical/LG-canonical form.

5 Canonical form algorithm

In this section, we describe an algorithm to compute a canonical form α∗ of any given κ̄-term

α with rank(α) ≥ 1. This algorithm consists in two major steps, presented in Sections 5.1

and 5.2. In step 1, we reduce α to a Σ-equivalent κ̄-term α◦ in the set S, mentioned in the

Introduction. This set S is now identified as being C1 ∪ S2. If α◦ ∈ C1, then α◦ is in rank 1

canonical form and so α∗ = α◦. If α◦ ∈ S2, then step 2 turns α◦ into an element α◦· of C1 ∪ C2

and we let α∗ = α◦·. By Theorem 7.1 below, it follows that the κ̄-term α∗ is unique and so we

call it the LG-canonical form of α.
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5.1 Step 1: reduce to an element of S

The first step consists in three sequential substeps.

Step 1.1. If rank(α) ≤ 2, let α′ = α. Otherwise, let α′ be a rank 2 κ̄-term obtained by

recursively applying the procedure described in the proof of the following proposition.

Proposition 5.1 Let γ be an arbitrary κ̄-term such that rank(γ) = i + 1 with i ≥ 2. It is

possible to effectively compute a κ̄-term γ′ such that γ′ is Σ-equivalent to γ and rank(γ′) = i.

Proof. We begin by assuming that γ is of the form γ = πω−1. The proof of this case is

made by induction on the i-length m of π. Since π has rank i, it is of the form π = w0σ
ω+pw1

with rank(σ) = i− 1 and w0 and w1 with rank at most i. Using (3.4) and (3.2), one deduces

γ = πω−1ππω−1

= w0(σω+pw1w0)ω−1σω+p(w1w0σ
ω+p)ω−1w1

= w0(σω+1w1w0)ω−1σω+2−p(w1w0σ
ω+1)ω−1w1

= (w0σw1)ω−1w0σ
ω+2−pw1(w0σw1)ω−1.

If m = 1, this last κ̄-term has rank i and, so, we take it to be γ′. Suppose now that m > 1.

The κ̄-term ρ = w0σw1 is rank i and has i-length m − 1. So, by induction hypothesis, the

κ̄-term δ = ρω−1 is Σ-equivalent to some rank i κ̄-term δ′. Therefore, γ is Σ-equivalent to the

rank i κ̄-term γ′ = δ′w0σ
ω+2−pw1δ

′. The proof of the case γ = πω−1 is complete.

In general, by means of expansions of rank i + 1 of types (2.2) and (2.4), if necessary, γ

can be reduced to a κ̄-term with rank configuration ρ0π
ω−1
1 ρ1 · · ·πω−1

n ρn. The κ̄-term γ′ is

obtained from this by applying the above procedure to each subterm πω−1
j .

Step 1.2. If rank(α′) = 1, let α′′ = α′. Otherwise, let α′′ be a κ̄-term obtained from α′ by

the application of the first step of the S canonical form reduction algorithm described in [13,

Section 4.3], and observe that α′′ is a semi-canonical κ̄-term such that rank(α′′) ∈ {1, 2}.

Step 1.3. If rank(α′′) = 1, then we apply the rank 1 canonical form reduction algorithm [13,

14], described in Section 4, to compute the canonical form of α′′. This is an element of C1 and

so it is chosen to be α◦.

If rank(α′′) = 2, then, by means of expansions of rank 2 of types (2.2) and (2.4) if necessary,

we obtain from α′′ a κ̄-term whose exponents of rank 2 limit subterms are equal to ω − 1.

This κ̄-term is taken to be α◦, since it is a semi-canonical form with rank configuration

ρ0π
ω−1
1 ρ1 · · ·πω−1

n ρn meaning that it is an element of S2.

5.2 Step 2: compute the canonical form

Now, we complete the computation of the canonical form of α. If α◦ is rank 1, then it is in

LG-canonical form and so let α∗ = α◦.
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To treat the remaining case, we define a rewriting system R with set of objects S and

whose rules are described below. By Propositions 5.2 and 5.3, starting with the κ̄-term α◦, R
produces, after a finite number of reductions, an irreducible (meaning that no rewriting rule

can be applied to it) κ̄-term α◦· of S. Then α◦· ∈ C1 ∪ C2 and we let α∗ = α◦·.

The system R consists of rewriting rules of four types, called “shifts right”, “eliminations”,

“agglutinations” and “shortenings”. We do not include shifts left in R but they are used

implicitly in the last three types of rules. The justification for this option is for the system to

be terminating and for the canonical form to be unique. We list below the rewriting rules and

justify that they transform κ̄-terms into Σ-equivalent κ̄-terms. The rank of terms x, y, z, u, v

and w in every rule is bounded by assuming that the left side of each rule is a rank 2 κ̄-term.

The shift identity (2.5) is often used without reference.

Shifts right:

(sr.1) (uv)ω−1u→ u(vu)ω−1, where rank(uv) = 1 and u 6= ε;

(sr.2) (uv)ω−1(uw)ω−1 → u(vu)ω−1w(uwuw)ω−1, where u ∈ A+, rank(v) = rank(w) = 1,

K 6|= v = w and v and w do not have a common non-empty prefix.

Rule (sr.1) is a rank 2 shift right and rule (sr.2) is a result of applying the κ̄-identity

πω−1 = π(π2)ω−1, which is a consequence of Σ, followed by a rank 2 shift right.

Eliminations:

(e.1) xω+pu(xω+qu)ω−1xω+r → xω+p−q+r;

(e.2) xω+puvxω+qu(vxω+qu)ω−1 → xω+pu;

(e.3) (uxω+pv)ω−1yzxω+qvy(zxω+qvy)ω−1 → (uxω+pv)ω−1y;

(e.4) (uxω+pvy)ω−1zxω+qv(yzxω+qv)ω−1 → uxω+pv(yuxω+pvyuxω+pv)ω−1 with y 6= ε.

Rule (e.1) is a direct application of identity (3.6), while rule (e.2) also results from this

identity but previously applying a rank 2 shift left. In its turn, rule (e.3) results from making

a right (2.4)-expansion, followed by an application of (e.2) and ending with a right (2.4)-

contraction. At last, rule (e.4) is obtained by applying the κ̄-identity πω−1 = (π2)ω−1π,

followed by an application of (e.2) and ending with a rank 2 shift right.

Agglutinations:

(a.1) (xω+pu)ω−1xω+qv(yxω+rv)ω−1 → xωv(yxω+p−q+ruxωv)ω−1;

(a.2) (uxω+pv)ω−1(uxω+qy)ω−1 → uxω+qy(uxω+qyuxω+pvuxω+qy)ω−1;

(a.3) (uxω+pv)ω−1y(zxω+qvy)ω−1 → uxω+pvy(zxω+qvuxω+pvuxω+pvy)ω−1.

Rule (a.1) is derived from identity (3.7), whereas (a.2) and (a.3) follow from Corol-

lary 3.2 (b) and (c) respectively.

Shortenings:
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(s.1) σ(τσ)ω−1 → τω−1, where rank(σ) = rank(τ) = 1 and LI |= σ = τ ;

(s.2) xω+pu(vxω+qu)ω−1 → xω+p−qu(vxωu)ω−1 with q 6= 0;

(s.3) (xω+pu)ω−1xω+q → (xωu)ω−1xω+q−p with p 6= 0;

(s.4) xω+pu(zω+qvyxω+ru)ω−1zω+sv → δ(x, z, p, q, r, s);

(s.5) xω+puzω+qv(yxω+ruzω+qv)ω−1 → δ(x, z, p, q, r, q);

where

• δ(x, z, p, q, r, s) is the following κ̄-term

xω+p(zω+qvyxω+r)ω−1zω+sv if xωzω is in canonical form (5.1)

xω+pv(yxω+rv)ω−1 if x = z and q = s

(xω+qvy)ω−1xω+sv if x = z, q 6= s and p = r

xω+pax,z(z
ω+qvyxω+rax,z)

ω−1zω+sv otherwise (5.2)

with ax,z the least letter of the alphabet A such that xωax,zz
ω is in canonical form

(note that such letter exists since we are assuming A not singular);

• u 6= ε in rules (s.4) and (s.5);

• rules (s.4) and (s.5) apply in case (5.2) only if u 6= ax,z.

Rule (s.1) is a consequence of Corollary 3.2 (a). Rules (s.2) and (s.3) are derived from

identities (3.4). In rules (s.4) and (s.5), applying identity (3.5) and shifts eventually, one gets

from the left side of the rule the term

δ0 = xω+p(zω+qvyxω+r)ω−1zω+sv.

The, possibly new, crucial ω-portion θ = xωzω of δ0 may be not in canonical form and so δ0

may be not in semi-canonical form. If θ is in canonical form, then δ(x, z, p, q, r, s) = δ0.

Suppose now that θ is not a canonical term. Hence, as conditions (a) and (b) of the rank

1 canonical form definition hold, x must be a prefix of z` for some ` > 0. So z = z1z2 and

x = (z1z2)`−1z1 for some words z1, z2 with z1 6= ε. Since x is a Lyndon word (and, so, it cannot

have a proper prefix which is also a suffix), it follows that ` = 1. We conclude that x is a

prefix of z. Note that, conversely, if x is a prefix of z then θ is not in canonical form. This case

is split into three subcases. If either x = z and q = s, or x = z, q 6= s and p = r, then δ0 is Σ-

equivalent to the semi-canonical terms xω+p(vyxω+r)ω−1v and (xω+qvy)ω−1xω+sv respectively.

Otherwise, δ0 is Σ-equivalent to the semi-canonical term xω+pax,z(z
ω+qvyxω+rax,z)

ω−1zω+sv.

In this case, we impose that u 6= ax,z to guarantee that the application of the rule does not

return as a result the original κ̄-term.

Proposition 5.2 Let γ ∈ S2 and let γ′ be a κ̄-term obtained from γ by applying a rule of R.

Then γ′ ∈ S.
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Proof. By the hypothesis of the proposition, γ = γ1γ2γ3 with rank(γ2) = 2, γ′ = γ1γ
′
2γ3

and γ2 → γ′2 is a rule of R, since the rules apply only to rank 2 κ̄-terms and rank(γ) = 2.

Moreover γ2 ∈ S2 since γ ∈ S2.

Each ω-portion σ of γ′2 is an ω-portion of γ2 for every rewriting rules with the only possible

exceptions where σ = xωzω or σ = xωax,zz
ω and rule γ2 → γ′2 is one of (s.4) and (s.5), with

δ(x, z, p, q, r, s) given by (5.1) and (5.2) respectively. However, σ is in canonical form in both

cases. Therefore γ′2 ∈ S in all cases, since γ2 ∈ S2 by hypothesis. As γ2 and γ′2 always have

the same initial and final ω-portions, it follows that γ′ ∈ S.

For a rank 1 κ̄-term σ, with rank configuration σ = u0x
ω+q1
1 u1 · · ·xω+q`

` u`, we define the

size of σ, denoted s(σ), as the 4-tuple of non-negative integers

s(σ) =
(
`, |q1|+ |q2|+ · · ·+ |q`|, |u0u1 · · ·u`|,Σu0u1···u`

)
where Σε = 0 and, if u0u1 · · ·u` = a1a2 · · · ar and a1, a2, . . . , ar ∈ A, Σu0u1···u` is the sum of the

order of each letter ai in the ordered alphabet A. We consider the image of the function size

ordered by the lexicographic order. With this definition it can be seen that in a shortening

t → t′, the size of the base of the rank 2 limit term which occurs in t′ is always strictly less

than the size of that which occurs in t.

Now, the size of a rank 2 κ̄-term α, with rank configuration α = ρ0π
ω−1
1 ρ1 · · ·πω−1

m ρm, is

introduced as the m-tuple

s(α) =
(
s(π1), . . . , s(πm)

)
consisting of the sizes of bases of the limit subterms of α. We consider sizes of rank 2 κ̄-terms

ordered by the shortlex order, that is, if α and β are rank 2 κ̄-terms with 2-lengths m and

n respectively, then s(α) ≤ s(β) if and only if m < n or m = n and s(α) ≤lex s(β) for the

lexicographic order ≤lex. Notice that this ordering is a well-order on the set of sizes of rank 2

κ̄-terms.

Let γ be a κ̄-term from S2 with 2-length ` and let γ′ be a κ̄-term obtained from γ by

applying a rewriting rule (r) of R. Then γ = γ1γ2γ3 where rank(γ2) = 2, γ′ = γ1γ
′
2γ3 and (r)

is γ2 → γ′2. We say that the rule is applied in position j ∈ {1, . . . , `} if the 2-length of γ1 is

j − 1 (where we assume the 2-length of γ1 to be 0 in case its rank is lower than 2).

Proposition 5.3 The rewriting system R is Noetherian.

Proof. Let γ ∈ S2 and let ` be the 2-length of γ. Suppose that

γ = γ1 → γ2 → γ3 · · ·

is a chain of κ̄-terms obtained from γ by the application of rewriting rules from R. We want

to show that this chain is finite. Suppose it is infinite. Since eliminations and agglutinations

strictly decrease the rank or the 2-length of the κ̄-term, and no rule increases rank or 2-

length, they can be used at most ` times in the above chain. Without loss of generality, we
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may therefore assume that the chain uses only shifts right and shortenings. This means in

particular that every κ̄-term γj of the chain has the same 2-length `.

Now, as shortenings strictly decrease the size of rank 2 κ̄-terms, there must be an infinite

number of steps where the sizes of the κ̄-terms do not decrease, and so shifts right must

be applied an infinite number of times. On the other hand, rule (sr.1) can only be applied

consecutively a finite number of times and preserves the size of rank 2 κ̄-terms. It follows that

shortenings and (sr.1) can only be applied consecutively a finite number of times. Therefore,

rule (sr.2) must be applied an infinite number of times.

Let j ∈ {1, . . . , `} be the least position in which (sr.2) is applied an infinite number of

times. Whence, in positions less than j, (sr.2) is applied only a finite number of times.

Observe that shortenings and shifts right applied on a position i preserve the sizes of all the

bases (of limit subterms) with the only exception of the base on position i (in case the rule

is a shortening) and the base on position i + 1 (in case the rule is (sr.2)). Consequently,

shortenings and shifts right are used only a finite number of times in positions less than j.

So, without loss of generality, we may assume that no rule is used in those positions. We

may further assume that only rules (sr.1) and (sr.2) are used in position j. We claim that

rule (sr.2) may be used in position j only once. This contradicts the arguments that support

the choice of j, so the proof of the claim concludes the proof of the proposition.

In order to prove the claim, suppose that (sr.2) is used in some step, say k, in po-

sition j (of γk). So γk and γk+1 are respectively of the forms ρ1(uv)ω−1(uw)ω−1ρ2 and

ρ1u(vu)ω−1w(uwuw)ω−1ρ2, where u ∈ A+, rank(v) = rank(w) = 1, K 6|= v = w and v

and w do not have a common non-empty prefix. Let k′ be the first step after step k in which

a rule is used in position j. Then, it is clear that γk′ is of the form ρ1u(vu)ω−1ρ3 where ρ3 and

w have the same initial ω-portion, since shifts right and shortenings preserve such portions.

Hence, from the assumption above on v and w, it is not possible to apply any shift right on

position j of γk′ . In particular, it is not possible to apply (sr.2) again in position j, which

means that in position j rule (sr.2) could be applied only once.

It is easy to verify that the following conditions are equivalent for any κ̄-term α:

• α is in LG-canonical form;

• no intermediate step of the algorithm modifies α;

• α∗ = α;

• every subterm of α is in LG-canonical form.

Example 5.4 Consider the following κ̄-terms of S2,

α = b(ab)ω−5cb(ab)ω+2c
(
b(ab)ω+2c

)ω−1
acω−3

(
bωaω−1c

)ω−1
bωaω+1c

(
bω−2acaω+4c

)ω−1
bω+1

β = dωb
(
adω−1cdω+3badωb

)ω−1(
ab(cd)ω−2a

)ω−1
.
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The LG canonical forms of α and β can be computed as follows:

α −−−−→
(e.2)

b(ab)ω−5cacω−3
(
bωaω−1c

)ω−1
bωaω+1c

(
bω−2acaω+4c

)ω−1
bω+1

−−−−→
(sr.1)

b(ab)ω−5cacω−3bω
(
aω−1cbω

)ω−1
aω+1c

(
bω−2acaω+4c

)ω−1
bω+1

−−−−−→
(a.1)

b(ab)ω−5cacω−3bωaωc
(
bω−2acaω+2cbωaωc

)ω−1
bω+1

−−−−→
(s.4)

b(ab)ω−5cacω−3
(
bω−2acaω+2c

)ω−1
bω+1

−−−−→
(s.3)

b(ab)ω−5cacω−3
(
bωacaω+2c

)ω−1
bω+3 = α∗;

β −−−−→
(sr.2)

dωba
(
dω−1cdω+3badωba

)ω−1
b(cd)ω−2a

(
ab(cd)ω−2aab(cd)ω−2a

)ω−1

−−−−→
(s.1)

(
dω−1cdω+3ba

)ω−1
b(cd)ω−2a

(
ab(cd)ω−2aab(cd)ω−2a

)ω−1

−−−−→
(s.2)

(
dω−1cdω+3ba

)ω−1
b(cd)ωa

(
ab(cd)ω−2aab(cd)ωa

)ω−1
= β∗.

6 Characterizing κ̄-terms of S with finite words

In [14], the authors show that, for rank 1 canonical κ̄-terms π and ρ, the κ̄-identity π = ρ

holds over LG only when π and ρ are the same κ̄-term. This is done by associating to the pair

(π, ρ), when π and ρ are distinct rank 1 canonical κ̄-terms, an alphabet V and a pair (wπ,wρ)

of distinct words over V. Afterwards, a finite local group Sπ,ρ is built from (wπ,wρ) and it is

shown that Sπ,ρ does not satisfy π = ρ.

In this section, we slightly improve the above construction and extend it to the elements

of S2. To each element α of S is assigned a positive integer qα defined by

qα =

{
1 + max{|q| : ω+q occurs in α} when α ∈ C1

1 + max{|q| : ω+q occurs in α(1)} when α ∈ S2

.

We will associate to α and any integer q ≥ qα a word over an alphabet of the form V ∪ V−1,

denoted by wq(α) and called the q-outline of α. Its reduced form in the free group FV is

denoted by w̃q(α) and named the q-root of α.

6.1 Outlines and roots

We begin by recalling the definition of a q-outline of a κ̄-term α ∈ C1, introduced (without

a name) in [14]. We will make minor adjustments on that notion and on the notations. Let

α = u0x
ω+q1
1 u1 · · ·xω+qn

n un be the rank configuration of α and notice that α is ΣS-equivalent

to the κ̄-term

(u0x
ω
1 )xω+q1

1 (xω1u1x
ω
2 )xω+q2

2 · · ·xω+qn−1

n−1 (xωn−1un−1x
ω
n)xω+qn

n (xωnun).
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The κ̄-terms u0x
ω
1 , xωnun, xωi uix

ω
i+1 and xj are the initial ω-portion, the final ω-portion,

the crucial ω-portions and the bases of limit terms of α. We will represent them by symbols

iu0,x1 , txn,un , cxi,ui,xi+1 and bxj of an alphabet V, called respectively an initial, a final, a crucial

and a base variable. We associate to α and q the word wq(α) over V, called the q-outline of

α, given by

wq(α) = iu0,x1b
q1
x1cx1,u1,x2b

q2
x2 · · · b

qn−1
xn−1

cxn−1,un−1,xnb
qn
xntxn,un ,

where qj = q + qj . The condition q ≥ qα was introduced in [14] in order to avoid non-

positive exponents in wq(α). Let w
¯q(α) = bq1

x1cx1,u1,x2b
q2
x2 · · · b

qn−1
xn−1cxn−1,un−1,xnb

qn
xn , so that

wq(α) = iu0,x1w¯q(α)txn,un . We remark that the initial and final variables were not used in [14],

where the initial and final ω-portions of α were taken into account by the introduction of

two other variables. These two approaches are perfectly homologous but the (minor) changes

introduced here seem to be more natural.

The q-outline wq(α), of any element α of S2, can be obtained by the application of the two

following recursive steps.

1) Consider α = πω−1, with π = u0x
ω+q1
1 u1 · · ·xω+qn

n un. Notice that, for every positive integer

k: the k-expansion α(k) (= πk) belongs to C1; the initial and final ω-portions, u0x
ω
1 and

xωnun, of π are the initial and final ω-portions of α and of α(k); and

wq(α(k)) = iu0,x1(bq1
x1cx1,u1,x2b

q2
x2 · · · b

qn
xncxn,unu0,x1)k−1bq1

x1cx1,u1,x2b
q2
x2 · · · b

qn
xntxn,un .

Furthermore, in the free group FV,

wq(α(k)) = iu0,x1(bq1
x1cx1,u1,x2b

q2
x2 · · · b

qn
xncxn,unu0,x1)kc−1

xn,unu0,x1txn,un .

Each finite group G verifies g` = 1G for some positive integer ` > 2. Therefore, over G,

wq(α(`−1)) = iu0,x1(bq1
x1cx1,u1,x2b

q2
x2 · · · b

qn
xncxn,unu0,x1)`−1 c−1

xn,unu0,x1txn,un

= iu0,x1(bq1
x1cx1,u1,x2b

q2
x2 · · · b

qn
xncxn,unu0,x1)−1 c−1

xn,unu0,x1txn,un

= iu0,x1c
−1
xn,unu0,x1b

−qn
xn · · · b

−q2
x2 c−1

x1,u1,x2b
−q1
x1 c−1

xn,unu0,x1txn,un .

In this case, we define the q-outline of α as the following word over the alphabet V ∪ V−1,

wq(α) = iu0,x1c
−1
xn,unu0,x1b

−qn
xn c−1

xn−1,un−1,xnb
−qn−1
xn−1

· · · b−q2
x2 c−1

x1,u1,x2b
−q1
x1 c−1

xn,unu0,x1txn,un .

Denoting w
¯q(α) = c−1

xn,unu0,x1b
−qn
xn c−1

xn−1,un−1,xnb
−qn−1
xn−1 · · · b

−q2
x2 c−1

x1,u1,x2b
−q1
x1 c−1

xn,unu0,x1 , wq(α)

may be written as wq(α) = iu0,x1w¯q(α)txn,un also in this case.

2) Suppose that α = α1α2 and notice that, as observed in Section 4, each subterm αj is a

semi-canonical form. If αj is rank 1 or rank 2, then αj ∈ C1 ∪ S2 and we assume wq(αj)

already defined and of the form wq(αj) = iuj ,xjw¯q(αj)tyj ,vj .

If α1 is rank 0, then we let wq(α) be the word iα1u2,x2w¯q(α2)ty2,v2 . Symmetrically, if α2

is rank 0, then we take wq(α) = iu1,x1w¯q(α1)ty1,v1α2 . Finally, for rank(αj) ∈ {1, 2}, let
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wq(α) = iu1,x1w¯q(α1)cy1,v1u2,x2w¯q(α2)ty2,v2 . In this case, the crucial variable cy1,v1u2,x2 are

also denoted by c(α1, α2), whence wq(α) = iu1,x1w¯q(α1)c(α1, α2)w
¯q(α2)ty2,v2 .

Observe that two different factorizations (α1α2)α3 and α1(α2α3) of α determine the same

word wq(α), so the above definition is correct.

Let α ∈ S and let uxω and yωv be, respectively, the initial and the final ω-portions of α.

The variables iu,x and ty,v are also denoted respectively by i(α) and t(α). Then, by the above

definition, it is clear that wq(α) may be written as

wq(α) = i(α)w
¯q(α)t(α) (6.1)

for some word w
¯q(α). Moreover each of i(α) and t(α) has exactly one occurrence in the word

wq(α). Now, let w̃q(α) be the reduced form of wq(α) in the free group FV generated by V.

The word w̃q(α) is called the q-root of α. By (6.1),

w̃q(α) = i(α)w̃
¯q(α)t(α) (6.2)

where w̃
¯q(α) is the reduced form of w

¯q(α) in FV. In particular, when α ∈ C1 the outline wq(α)

is a word of V+ and, so, w̃q(α) = wq(α).

Example 6.1 Consider the κ̄-term α of Example 5.4. We have qα = 6 and so, for any q ≥ 6,

the q-outline and the q-root of α are the following

wq(α) = ib,abb
q−5
ab cab,cb,abb

q+2
ab cab,cb,abc

−1
ab,cb,abb

−(q+2)
ab c−1

ab,cb,abcab,ca,cb
q−3
c cc,ε,bc

−1
a,c,bb

−(q−1)
a

c−1
b,ε,ab

−q
b c−1

a,c,bca,c,bb
q
bcb,ε,ab

q+1
a ca,c,bc

−1
a,c,bb

−(q+4)
a c−1

b,ac,ab
−(q−2)
b c−1

a,c,bca,c,bb
q+1
b tb,ε

w̃q(α) = ib,abb
q−5
ab cab,ca,cb

q−3
c cc,ε,bc

−1
a,c,bb

−(q+2)
a c−1

b,ac,ab
3
btb,ε.

The LG canonical form of α is α∗ = b(ab)ω−5cacω−3
(
bωacaω+2c

)ω−1
bω+3 and, so,

wq(α∗) = ib,abb
q−5
ab cab,ca,cb

q−3
c cc,ε,bc

−1
a,c,bb

−(q+2)
a c−1

b,ac,ab
−q
b c−1

a,c,bca,c,bb
q+3
b tb,ε

w̃q(α∗) = w̃q(α).

Notice that the q-outline of a κ̄-term is a well-defined expression involving the parameter q.

Therefore, for α, β ∈ S and q, q′ ≥ max{qα, qβ}, wq(α) = wq(β) if and only if wq′(α) = wq′(β).

The condition wq(α) = wq(β) implies that, either α and β are the same κ̄-term, or one

of them is obtained from the other applying a finite number of rank 2 shifts of the form

(uv)ω−1u = u(vu)ω−1 with u ∈ A+. In case α and β are canonical forms, they are both

irreducible for rule (sr.1) and, so, α = β if and only if wq(α) = wq(β).

6.2 A necessary condition for the identity of two κ̄-terms over LG

In this section we show that a necessary condition for the equality over LG of two κ̄-terms of

S is the equality of their roots.
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Proposition 6.2 Let α, β ∈ S and let q ≥ max{qα, qβ}. If LG |= α = β, then w̃q(α) =

w̃q(β).

Proof. Assume that LG |= α = β. Then LI |= α = β, which means, by (6.2), that the q-

roots w̃q(α) and w̃q(β) have the same initial and final variables, say iu,x and ty,v respectively.

Suppose, by way of contradiction, that w̃q(α) 6= w̃q(β). The case in which α, β ∈ C1 was

already treated in [14, Theorem 5.1]. So, we assume without loss of generality that α ∈ S2.

We adapt the tools and results of [14] to manage the present situation by using expansions of

α and of β in case β ∈ S2 (see Section 2.5 and [14] for more details and missing definitions).

We begin by building a finite local group Sα,β of the form Sα,β = S(G,L, f) as follows. As

w̃q(α) 6= w̃q(β), there exists a finite groupG that fails the identity wq(α) = wq(β). Hence, there

is a homomorphism η : (V ∪ V−1)∗ → G such that η(wq(α)) 6= η(wq(β)) and η(v−1) = η(v)−1

for each v ∈ V. For each variable v∗ of V occurring in wq(α) or wq(β), denote η(v∗) by gv,∗.

By [14, Claim 1 of Section 5], the order of gv,∗ may be taken greater than max{|wq(α)|, |wq(β)|}.
By (6.1) and the fact that η is a homomorphism,

η(wq(α)) = gi,u,xη(w
¯q(α))gt,y,v and η(wq(β)) = gi,u,xη(w

¯q(β))gt,y,v. (6.3)

Next, let L and f be the ones that would be chosen by the process of [14, Theorem 5.1] for

the rank 1 canonical forms α1 and β1 such that α1 = α(2) and β1 = β(2) when rank(β) = 2 or

β1 = β when rank(β) = 1. This completes the definition of the semigroup Sα,β = S(G,L, f).

Since Sα,β is a finite semigroup, there is a positive integer ` > 2 such that sω = s` for

every s ∈ Sα,β. In particular, as G is isomorphic to a subgroup of Sα,β, g` = 1G for all g ∈ G.

Let α̂ = α(`−1) and let β̂ = β(`−1) in case rank(β) = 2 and β̂ = β otherwise. Therefore, since

Sα,β ∈ LG and LG |= α = β, Sα,β satisfies α̂ = α = β = β̂. On the other hand, qα̂ = qα and

q
β̂

= qβ, so that q ≥ max{qα̂, qβ̂}. By the choice of `, one can verify easily from the definition

of q-outline that the equalities η(w
¯q(α̂)) = η(w

¯q(α)) and η(w
¯q(β̂)) = η(w

¯q(β)) hold.

Now, let φ : T κ̄A → Sα,β be the homomorphism of κ̄-semigroups defined by φ(a) = a for

a ∈ A. Since α1 and α̂ (resp. β1 and β̂) have the same portions and the parameters L and f

of the semigroup Sα,β = S(G,L, f) depend only on those portions and on the homomorphism

η, one can verify by the proof of [14, Theorem 5.1] that φ(α̂) and φ(β̂) are triples of the

form ( , h0η(w
¯q(α̂))h1, ) and ( , h0η(w

¯q(β̂))h1, ) where h0 is gb,x when u 6= ε and it is 1G

otherwise, and h1 is gb,y when v 6= ε and it is 1G otherwise. Since Sα,β satisfies α̂ = β̂, it follows

that η(w
¯q(α̂)) = η(w

¯q(β̂)). As η(w
¯q(α̂)) = η(w

¯q(α)) and η(w
¯q(β̂)) = η(w

¯q(β)), it follows that

η(w
¯q(α)) = η(w

¯q(β)), whence, by (6.3), η(wq(α)) = η(wq(β)). However, we affirmed above

that η(wq(α)) 6= η(wq(β)) as a consequence of assuming that w̃q(α) 6= w̃q(β). Hence, this

condition does not hold, thus concluding the proof of the proposition.

An immediate consequence of Proposition 6.2 is that, for any α ∈ S2, w̃q(α) = w̃q(α∗),

where α∗ is the canonical form of α and q ≥ max{qα, qα∗}.
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6.3 Properties of the q-root of a κ̄-term

In the remaining of the paper, for a given α ∈ S2 with 2-length m, we will usually consider its

rank configuration of the form

α = α0α
ω−1
1 α2 · · ·αω−1

2m−1α2m. (6.4)

Notice that the q-outline wq(α) may be written as

wq(α) = wα,0wα,1wα,2 · · ·wα,2m−1wα,2m

where: wα,2i−1 = w
¯q(αω−1

2i−1) is a non-empty word on V−1 for each odd index 2i − 1 ∈
{1, 3, . . . , 2m − 1}; wα,2i′ is a non-empty word on V for each even index 2i′ ∈ {0, 2, . . . , 2m}.
We then call each wα,2i−1 a negative block and each wα,2i′ a positive block of wq(α). Observe

that, in each wα,j (j ∈ {0, 1, . . . , 2m}), crucial variables alternate with powers of base vari-

ables. More precisely, for an odd j the alternation is of the form c−1
x, , b

−r
x c−1

, ,x, and for an

even j it is of the form c , ,xb
r
xcx, , , where r is a positive integer. Moreover, wα,j begins and

ends with a crucial variable except for j = 0, in which case it begins with the initial variable

i(α), and for j = 2m, in which case it ends with the final variable t(α).

Although, for the calculation of the q-root w̃q(α), the occurrences of spurs (i.e., products

of the form vv−1 or v−1v with v ∈ V) in wq(α) may be canceled in any order, we will assume

that each cancelation step consists in deleting the leftmost occurrence of a spur. With this

assumption, the process of cancelation of wq(α) transforms each block wα,j into a unique and

well-determined (possibly empty) word, called the remainder of wα,j and denoted rα,j , so that

w̃q(α) = rα,0rα,1rα,2 · · · rα,2m−1rα,2m.

In particular, the reduction process can, possibly, eliminate completely some of the negative

blocks of wq(α) or gather into a unique negative block of w̃q(α) some factors occurring in

distinct negative blocks of wq(α), in which case the intermediate positive blocks are completely

deleted.

For a finite word w over the alphabet V ∪ V−1, we define the crucial length of w as

the number of occurrences of crucial variables in w, and denote it by |w|c. For each j ∈
{0, 1, . . . , 2m}, we denote by cα,j the number of occurrences of crucial variables in wα,j that

are canceled in the computation of w̃q(α), that is,

cα,j = |wα,j |c − |rα,j |c.

Note that |wα,j |c is the 1-length of αj in case j ∈ {0, 2m} and it is equal to the 1-length

of αj plus one otherwise. Since the cancelations in wα,j are performed from the extremes,

wα,j = −wα,jrα,j
−wα,j where −wα,j (resp. −wα,j) is the longest prefix (resp. suffix) of wα,j that is

canceled by variables occurring on its left side (resp. right side). The following lateral versions

of cα,j will be convenient. We let

’cα,j = |−wα,j |c, c‘α,j = | −wα,j |c,
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and notice that cα,j = ’cα,j + c‘α,j and ’cα,j = 0 (resp. c‘α,j = 0) if and only if −wα,j = ε (resp.
−wα,j = ε) since each intermediate block begins and ends with a crucial variable.

The following lemma presents important properties of the q-root of α in case α ∈ C2.

Lemma 6.3 Let α be a κ̄-term of C2 with rank configuration of the form (6.4) and let j ∈
{1, 2, . . . , 2m− 1}.

(a) If j is odd, then ’cα,j ≤ 2 and c‘α,j ≤ 1 with cα,j ≤ 2.

(b) |rα,j |c 6= 0.

Remark 6.4 Note that, in the context of Lemma 6.3, for all j ∈ {1, 2, . . . , 2m − 1}, rα,j is

non-empty by (b). Therefore, the number of negative blocks of w̃q(α) is equal to the 2-length

m of α. Moreover, the cancelation of the prefix −wα,j (resp. the suffix −wα,j) of wα,j is caused

only by the adjacent block wα,j−1 (resp. wα,j+1). That is, informally speaking, each block has

only a “local influence”. This means that, for each j ∈ {1, 2, . . . , 2m}, −wα,j−1 and −wα,j are

mutually inverse words in FV and, therefore, c‘α,j−1 = ’cα,j.

Proof of Lemma 6.3. The proof is made by induction on m. Assume first that m = 1

and so j = 1, α = α0α
ω−1
1 α2 and wq(α) = wα,0wα,1wα,2. Let α1 = u0x

ω+q1
1 u1 · · ·xω+qn

n un be

the rank configuration of α1, whence

wα,1 = c−1
xn,unu0,x1b

−qn
xn c−1

xn−1,un−1,xn · · · b
−q2
x2 c−1

x1,u1,x2b
−q1
x1 c−1

xn,unu0,x1 .

Supposing that α1 is a generic rank 1 κ̄-term with n > 1 and qn = 0, we define the term

xωn−1un−1x
ω
nun to be the final ω2-portion of α1. To prove condition (a), we consider two cases.

Case 1. α2 has not u0x
ω
1 as initial ω-portion.

Hence cxn,unu0,x1 is not the initial variable of wα,2 and, so, c‘α,1 = 0. If α0 has not final

ω-portion xωnun, then cxn,unu0,x1 is not the final variable of wα,0, whence ’cα,1 = 0 and

cα,1 = 0.

Now, suppose that α0 has final ω-portion xωnun. Since α is irreducible for shortenings (s.2),

qn = 0 and α0 is of the form α′0x
ω+p
n un with p ∈ Z. On the other hand, wα,0 =

i(α0)w
¯q(α0)c(α0, α1), whence wα,0 is of the form w′α,0b

p
xncxn,unu0,x1 . Suppose p 6= 0. Hence,

−wα,1 = c−1
xn,unu0,x1b

−p′
xn (and −wα,0 = bp

′
xncxn,unu0,x1) where p′ is q when p > 0 and it is q + p

when p < 0. Therefore ’cα,1 = 1 and so cα,1 = 1.

Let now p = 0, so that α0 = α′0x
ω
nun. If n = 1, then α = α′0x

ω
1u1(u0x

ω
1u1)ω−1α2 and

xω1u1u0 cannot be the final ω-portion of α′0 since otherwise an elimination (e.2) could be

applied. So, arguing as above one deduces that cα,1 = ’cα,1 = 1. These equalities hold also

for n > 1 and α′0 having not final ω-portion xωn−1un−1. It remains to treat the instance in

which n > 1 and α′0 has final ω-portion xωn−1un−1. In this case, qn−1 = 0, α0 is of the form
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α′′0x
ω+r
n−1un−1x

ω
nun and ’cα,1 ≥ 2. If r 6= 0, then cα,1 = ’cα,1 = 2. Suppose now that r = 0

and notice that the κ̄-term

γ =

{
xωn−2un−2 if n > 2

xω2u2u0 if n = 2

cannot be the final ω-portion of α′′0 since, otherwise, it would be possible to apply a

shortening (s.5), with u = un−2x
ω
n−1un−1, and an elimination (e.2) respectively. Whence

cα,1 = ’cα,1 = 2.

Case 2. α2 has initial ω-portion u0x
ω
1 .

Since α is irreducible for shifts right and shortenings (s.3), u0 = ε, q1 = 0 and α2 is of

the form α2 = xω+s
1 α′2 with s 6= 0. On the other hand, wα,2 = c(α1, α2)w

¯q(α2)t(α2),

whence wα,2 is of the form wα,2 = cxn,un,x1b
q+s
x1 w′α,2. Therefore −wα,1 = b−s

′
x1 c−1

xn,un,x1 (and

−wα,2 = cxn,un,x1b
s′
x1) where s′ is q when s > 0 and it is q + s when s < 0. It follows that

c‘α,1 = 1.

If α0 has not final ω-portion xωnun, then cxn,un,x1 is not the final variable of wα,0 and, as a

consequence, ’cα,1 = 0 and cα,1 = 1. Suppose now that α0 has final ω-portion xωnun. Hence

n > 1 since α is irreducible for eliminations (e.1). On the other hand, as α is irreducible

for shortenings (s.2), qn = 0 and α0 = α′0x
ω+p
n un with p ∈ Z. If p 6= 0, then one derives

as above that ’cα,1 = 1 and concludes that cα,1 = 2. Suppose now that p = 0 and notice

that xωn−1un−1x
ω
nun can not be the final ω2-portion of α0. Indeed, otherwise, it would

be possible to apply an elimination (e.1) if n = 2 and a shortening (s.4) if n > 2, with

u = un−1x
ω
nun in both cases. As a consequence, cxn−1,un−1,xnb

q
xncxn,un,x1 is not a suffix of

wα,0 and, so, the equalities ’cα,1 = 1 and cα,1 = 2 also hold for p = 0.

The above analysis shows that, in all possible cases, ’cα,j ≤ 2 and c‘α,j ≤ 1 with cα,j ≤ 2, thus

proving (a) for m = 1.

Condition (b) follows easily from (a). Indeed, |wα,1|c ≥ 2. So, by (a), |rα,1|c = 0 if and

only if |wα,1|c = cα,1 = 2, in which case n = 1. Since, by the proof of (a), cα,1 = 2 only for

n > 1, it follows that |rα,1|c > 0, thus proving (b) for m = 1.

Let now m > 1 and suppose, by induction hypothesis, that the result holds for κ̄-

terms of C2 with 2-length at most m − 1. Let ~α = α0α
ω−1
1 α2 · · ·αω−1

2m−3α2m−2ux
ω and ~α =

yωvα2m−2α
ω−1
2m−1α2m, where uxω and yωv are, respectively, the initial ω-portion of α2m−1 and

the final ω-portion of α2m−3. As q ≥ qα and qα = max{q~α, q ~α}, we can write

wq(α) = wα,0wα,1wα,2wα,3 · · ·wα,2m

wq(~α) = w~α,0w~α,1 · · ·w~α,2m−2 = wα,0wα,1 · · ·wα,2m−2b
q
xtx,ε

wq( ~α) = w ~α,0w ~α,1w ~α,2 = iε,yb
q
ywα,2m−2wα,2m−1wα,2m.

The κ̄-terms ~α and ~α are clearly in S2. Moreover, as α is a canonical form, ~α is necessarily

in C2. Indeed, ~α is irreducible for shifts right because α is irreducible for shifts right and
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agglutinations. Given the shape of the rewriting rules ofR, the only rules that could eventually

be applied to ~α are (e.1), (s.3) and (s.4). However in these cases it would be possible to apply

the same rule or an agglutination in α.

The κ̄-term ~α may not be in C2. Although, analyzing the possible reductions, as done for

~α, we conclude that the only rewriting rule that can be applied to ~α is shortening (s.1). This

happens when v = v′v′′ and ~α is of the form yωv′σ(τσ)ω−1α2m with v′′ ∈ A+, σ = v′′α2m−2

and LI |= τ = σ. In such case yωv′ is not the final ω-portion of τ since agglutination (a.3) does

not apply on α. Moreover, the canonical form of ~α, obtained by applying the shortening (s.1),

is ~α∗ = yωv′τω−1α2m. The respective q-outline wq( ~α∗) is such that

wq( ~α∗) = w ~α∗,0w ~α∗,1w ~α∗,2 = r ~α∗,0r ~α∗,1
−w ~α∗,1 −w ~α∗,2r ~α∗,2,

and |r ~α∗,0|c = |w ~α∗,0|c = 1. Since q ≥ q ~α ≥ q ~α∗ , w̃q( ~α∗) = w̃q( ~α) by Proposition 6.2, and so

r ~α∗,i = r ~α,i for i = 0, 1, 2.

By the induction hypothesis, the statement holds for both ~α and ~α∗. In particular, the

occurrences of crucial variables in w~α,2m−3 (= wα,2m−3 ) are not all canceled in the computation

of w̃q(~α), and so |r~α,2m−3|c ≥ 1. Analogously, there exist occurrences of crucial variables in

w ~α∗,1 that are not canceled in the reduction of wq( ~α∗), which implies that |r ~α,1|c ≥ 1 since

|r ~α,1|c = |r ~α∗,1|c. Putting together these two facts, we deduce that |rα,2m−3|c and |rα,2m−1|c are

both positive, thus showing, in particular, that each block has only a “local influence” in the

reduction process. Furthermore, r~α,2m−3 = rα,2m−3, because we begin deleting the leftmost

spurs, and ’cα,2m−1 ≤ ’c ~α,1. Therefore, statement (a) follows immediately from the induction

hypothesis applied to ~α and ~α∗.

To conclude the proof of statement (b), and of the lemma, it remains to show that

|rα,2m−2|c 6= 0. From |rα,2m−2|c ≤ |rα,2m−2|, we get ’cα,2m−1 = ’c ~α,1 as an immediate con-

sequence. We know already that the cancelations on wα,2m−2 are determined only by the

adjacent blocks wα,2m−3 and wα,2m−1. So, it suffices to consider the subterm α2m−3,2m−1 =

αω−1
2m−3α2m−2α

ω−1
2m−1 of α which, as one recalls, is a canonical form. To begin with, notice

that |wα,2m−2|c = ` + 1 where ` is the 1-length of α2m−2. On the other hand, by (a),

’cα,2m−2 = c‘α,2m−3 ≤ 1 and c‘α,2m−2 = ’cα,2m−1 ≤ 2 so that cα,2m−2 ≤ 3. Suppose by

way of contradiction that |rα,2m−2|c = 0 and, so, that ` ≤ 2. Let us analyse, for each of the

three possible values of `, what could hypothetically be the forms of α2m−3,2m−1 and verify

that, actually, those possibilities are not compatible with α2m−3,2m−1 being a canonical form.

1) ` = 0, that is, α2m−2 = w0 ∈ A∗. In this case |wα,2m−2|c = 1 and so, by hypothesis,

cα,2m−2 = 1. Hence, either ’cα,2m−2 = 1 and c‘α,2m−2 = 0, or ’cα,2m−2 = 0 and c‘α,2m−2 = 1.

Then α2m−3,2m−1 is of one of the forms α2m−3,2m−1 = (w0ux
ω+pρ1)ω−1w0(uxω+qρ3)ω−1 or

α2m−3,2m−1 = (ρ1y
ω+pv)ω−1w0(ρ3y

ω+qvw0)ω−1.

2) ` = 1, say with α2m−2 = w0z
ω+q1
1 w1. Then |wα,2m−2|c = cα,2m−2 = 2 and either ’cα,2m−2 =

1 and c‘α,2m−2 = 1, or ’cα,2m−2 = 0 and c‘α,2m−2 = 2. In this circumstance, α2m−3,2m−1 is of

one of the forms α2m−3,2m−1 = (zω1 ρ1)ω−1zω+q1
1 w1(ρ3z

ω
1w1)ω−1, in which case w0 must be

empty, or α2m−3,2m−1 = (ρ1y
ω+pv)ω−1w0z

ω
1w1(ρ3y

ω+rvw0z
ω
1w1)ω−1, in which case q1 = 0.
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3) ` = 2, with α2m−2 = w0z
ω+q1
1 w1z

ω+q2
2 w2. Hence |wα,2m−2|c = cα,2m−2 = 3 with ’cα,2m−2 =

1 and c‘α,2m−2 = 2. In this case w0 = ε, q2 = 0 and α2m−3,2m−1 is of the form α2m−3,2m−1 =

(zω1 ρ1)ω−1zω+q1
1 w1z

ω
2w2(ρ3z

ω
1w1z

ω
2w2)ω−1.

In all of the above situations it is possible to make a shift right or an agglutination on

α2m−3,2m−1 and, so, this κ̄-term is not a canonical form. Consequently, |rα,2m−2|c > 0 and the

proof is complete.

It is useful, for later reference, to state the following facts shown in the proof of Lemma 6.3.

Remark 6.5 For an integer p let p′ denote q when p ≥ 0 and let it denote q + p other-

wise. For a κ̄-term α in the conditions of Lemma 6.3, let j be an odd position and let

αj = u0x
ω+q1
1 u1 · · ·xω+qn

n un. Then,

(a) c‘α,j = 1 if and only if u0 = ε, q1 = 0 and αj+1 is of the form αj+1 = xω+p
1 α′j+1 with

p 6= 0. Moreover, in this case, −wα,j = b−p
′

x1 c−1
xn,un,x1.

(b) ’cα,j = 2 if and only if n > 1, qn−1 = qn = 0 and

αj−1 =

{
α′j−1x

ω+p
n−1x

ω
nun if xωn−1x

ω
n is in canonical form

α′j−1x
ω+p
n−1axn−1,xnx

ω
nun otherwise.

Therefore, −wα,j = c−1
xn,unu0,x1b

−q
xn c
−1
xn−1,ε,xnb

−p′
xn−1 if xωn−1x

ω
n is in canonical form and −wα,j =

c−1
xn,unu0,x1b

−q
xn c
−1
xn−1,axn−1,xn ,xn

b−p
′

xn−1 otherwise.

(c) ’cα,j = 1 if and only if qn = 0, αj−1 = α′j−1x
ω+p
n un and, when n > 1, xωn−1un−1x

ω
nun is

not the final ω2-portion of αj−1. In this case, −wα,j = c−1
xn,unu0,x1b

−p′
xn .

(d) for c‘α,j = ’cα,j = 1, un = ε if xωnx
ω
1 is in canonical form and un = axn,x1 otherwise.

7 Uniqueness of the canonical forms

This section is dedicated to prove the following fundamental theorem, that shows the unique-

ness of the canonical forms over LG.

Theorem 7.1 Let α and β be canonical κ̄-terms. If LG |= α = β, then α = β.

We begin by showing a preliminary result.

Proposition 7.2 Let α and β be canonical forms such that LG |= α = β.

(a) The κ̄-terms α and β have the same rank.

(b) If rank(α) ≤ 1, then α = β.



24 J. C. Costa, C. Nogueira, M. L. Teixeira

Proof. By hypothesis LG |= α = β. Hence, as LI is a subpseudovariety of LG that

separates different words and words from κ̄-terms with rank at least 1, if one of α and β is a

rank 0 κ̄-term then they are the same κ̄-term. We may therefore assume that α and β have

at least rank 1. Then w̃q(α) = w̃q(β) for q ≥ max{qα, qβ}, by Proposition 6.2. Thus α and

β must have the same rank, since the q-root of a rank 1 κ̄-term is a word from V+ and, by

Lemma 6.3, the q-root of a rank 2 canonical form contains negative blocks. This proves (a).

Statement (b) is a consequence of (a) and [14, Theorem 5.1].

To complete the proof of Theorem 7.1 it remains to treat the instance in which α and β

are both rank 2 canonical forms.

Proposition 7.3 Let α, β ∈ C2. If LG |= α = β, then α = β.

This proposition is an immediate consequence of Proposition 6.2 and the following lemma.

Lemma 7.4 Let α, β ∈ C2 and let q ≥ max{qα, qβ}. If w̃q(α) = w̃q(β), then α = β.

Proof. Assume that w̃q(α) = w̃q(β). By Lemma 6.3, the number of negative blocks in

the q-root of a rank 2 canonical form is precisely its 2-length. Then α and β have the

same 2-length, say m. Consider the rank configurations α = α0α
ω−1
1 α2 · · ·αω−1

2m−1α2m and

β = β0β
ω−1
1 β2 · · ·βω−1

2m−1β2m of α and β. As, for each i ∈ {0, 1, . . . , 2m}, the remainders rα,i

and rβ,i are non-empty by Lemma 6.3, the equality w̃q(α) = w̃q(β) implies that rα,i = rβ,i.

Since α and β are canonical forms, we observed already in the end of Section 6.1 that α = β

if and only if wq(α) = wq(β). On the other hand, wq(α) = wq(β) if and only if wα,i = wβ,i for

all i. Recall that, for γ ∈ {α, β}: wγ,i = −wγ,irγ,i
−wγ,i; for i 6= 0, −wγ,i−1 and −wγ,i are mutually

inverse words in FV; −wγ,0 = −wγ,2m = ε. Therefore, to deduce the equality α = β it suffices to

prove that, for each odd position j ∈ {1, 3, . . . , 2m− 1},

−wα,j = −wβ,j and −wα,j = −wβ,j . (7.1)

Throughout, let j ∈ {1, 3, . . . , 2m− 1} be an odd integer and let αj = u0x
ω+q1
1 u1 · · ·xω+qn

n un

and βj = v0y
ω+p1
1 v1 · · · yω+pk

k vk be the rank configurations of αj and βj . To prove (7.1), let us

show first that wα,j and wβ,j admit the same number of right cancelations of occurrences of

crucial variables.

Claim 1 c‘α,j = c‘β,j.

Proof. We know from Lemma 6.3 that c‘α,j , c‘β,j ∈ {0, 1}. Suppose that c‘α,j = 1 and

c‘β,j = 0. As observed in Remark 6.5 (a), the equality c‘α,j = 1 gives u0 = ε, q1 = 0 and

αj+1 = xω+p
1 α′j+1 for some integer p 6= 0. Hence rα,j = r′α,jb

p
x1 when p < 0, and rα,j+1 =

bpx1r
′
α,j+1 when p > 0. The equality c‘β,j = 0 implies that rβ,j ends with a crucial variable and

that rβ,j+1 either begins with a crucial variable, or is equal to the final variable t(β) (in which

case j + 1 = 2m and β2m ∈ A∗). So, rα,j 6= rβ,j or rα,j+1 6= rβ,j+1. This contradicts the fact

that rα,i = rβ,i for all i. Therefore c‘α,j = 1 and c‘β,j = 0 does not apply, and neither does

c‘α,j = 0 and c‘β,j = 1 by symmetry, thus proving that c‘α,j = c‘β,j .



The κ-word problem for LG 25

Let us now show the following:

Claim 2 If ’cα,j = ’cβ,j, then −wα,j = −wβ,j and −wα,j = −wβ,j (and, so, αj = βj).

Proof. Suppose that ’cα,j = ’cβ,j , whence cα,j = cβ,j by Claim 1. Then, from rα,j = rβ,j it

follows that n = k and that wα,j and wβ,j are of the form

wα,j = c−1
xn,unu0,x1b

−qn
xn c−1

xn−1,un−1,xn · · · b
−q2
x2 c−1

x1,u1,x2b
−q1
x1 c−1

xn,unu0,x1

wβ,j = c−1
yn,vnv0,y1b

−pn
yn c−1

yn−1,vn−1,yn · · · b
−p2
y2 c−1

y1,v1,y2b
−p1
y1 c−1

yn,vnv0,y1 .

We begin by showing the equality −wα,j = −wβ,j . If c‘α,j = 0 then −wα,j = ε = −wβ,j . It remains

to consider c‘α,j = 1. In this case ’cα,j ≤ 1 by Lemma 6.3. Moreover, by Remark 6.5 (a),

u0 = v0 = ε, q1 = p1 = 0, αj+1 = xω+r
1 α′j+1, βj+1 = yω+s

1 β′j+1 for some non-zero integers r

and s, −wα,j = b−r
′

x1 c−1
xn,un,x1 and −wβ,j = b−s

′
y1 c−1

yn,vn,y1 where, for t ∈ {r, s}, t′ = q when t > 0

and t′ = q + t when t < 0. So, as rα,j = rβ,j , one deduces that r = s and x1 = y1. To complete

the proof of −wα,j = −wβ,j it remains to show that xn = yn and un = vn. For ’cα,j = 0, this

follows from the equalities rα,j = rβ,j and u0 = v0. In case ’cα,j = 1, from the same arguments,

we have also that xn = yn and one deduces from Remark 6.5 (d) that un = axn,x1 = vn or

un = ε = vn.

Let us now show the equality −wα,j = −wβ,j . By Lemma 6.3, ’cα,j ∈ {0, 1, 2}. We have

therefore to consider three cases.

1) ’cα,j = 0. In this case −wα,j = ε = −wβ,j .

2) ’cα,j = 1. Then, by Remark 6.5 (c), qn = pn = 0, αj−1 = α′j−1x
ω+r
n un, βj−1 = β′j−1y

ω+s
n vn

for some integers r and s, −wα,j = c−1
xn,unu0,x1b

−r′
xn and −wβ,j = c−1

yn,vnv0,y1b
−s′
yn with r′ and s′ as

above. The equality −wα,j = −wβ,j is now a consequence of the fact that rα,j
−wα,j = rβ,j

−wβ,j .

3) ’cα,j = 2. In this case c‘α,j = 0 by Lemma 6.3. Moreover, by Remark 6.5 (b), n > 1,

qn = qn−1 = pn = pn−1 = 0, αj−1 = α′j−1x
ω+r
n−1un−1x

ω
nun where un−1 = ε if xωn−1x

ω
n is

in canonical form and un−1 = axn−1xn otherwise, and βj−1 = β′j−1y
ω+s
n−1vn−1y

ω
nvn where

vn−1 = ε if yωn−1y
ω
n is in canonical form and vn−1 = ayn−1yn otherwise. Whence, we have

that −wα,j = c−1
xn,unu0,x1b

−q
xn c
−1
xn−1,un−1,xnb

−r′
xn−1

and −wβ,j = c−1
yn,vnv0,y1b

−q
yn c
−1
yn−1,vn−1,ynb

−s′
yn−1

. As

above, one deduces from rα,j
−wα,j = rβ,j

−wβ,j that cxn,unu0,x1 = cyn,vnv0,y1 and r′ = s′. So,

as xn = yn, to prove −wα,j = −wβ,j in this case, it remains to show that xn−1 = yn−1. Now,

rα,j−1 ends with one of the variables bxn−1 , c , ,xn−1 and i ,xn−1 and, similarly, rβ,j−1 ends

with one of the variables byn−1 , c , ,yn−1 and i ,yn−1 . Since rα,j−1 = rβ,j−1 it follows that

xn−1 = yn−1.

We have proved that −wα,j = −wβ,j in all cases. This concludes the proof of the claim.

We now show that the number of left cancelations of occurrences of crucial variables

coincides in wα,j and wβ,j which, in view of Claim 2, will be enough to conclude (7.1).
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Claim 3 ’cα,j = ’cβ,j.

Proof. The proof of this claim uses induction on j. By Lemma 6.3, both ’cα,j and ’cβ,j
belong to {0, 1, 2}. There are, thus, three cases to look for regarding the value of ’cβ,j .

Case 1. ’cβ,j = 0. By contradiction, suppose that ’cα,j 6= 0. Hence, there are two possibilities.

Case 1.1. ’cα,j = 2. Then, by Remark 6.5 (b), n > 1, qn−1 = qn = 0 and αj−1 =

α′j−1x
ω+p
n−1un−1x

ω
nun, with un−1 = ε or un−1 = axn−1,xn . As above in the proof of Claim

1, for p 6= 0 this leads to a contradiction. Hence we assume that p = 0. We have c‘α,j = 0

by Lemma 6.3, whence c‘β,j = 0 by Claim 1. So, k = n− 2 ≥ 1 and

rα,j = c−1
xn−2,un−2,xn−1

b−qn−2
xn−2

c−1
xn−3,un−3,xn−2

b−qn−3
xn−3

· · · c−1
x1,u1,x2b

−q1
x1 c−1

xn,unu0,x1 ,

rβ,j = c−1
yn−2,vn−2v0,y1b

−pn−2
yn−2

c−1
yn−3,vn−3,yn−2

b−pn−3
yn−3

· · · c−1
y1,v1,y2b

−p1
y1 c−1

yn−2,vn−2v0,y1 .

As rα,j = rβ,j , we conclude that xn = yn−2, xn−1 = y1, un−2 = vn−2v0 = unu0, and, for

i ∈ {1, . . . , n− 2}, xi = yi, qi = pi and, when i 6= n− 2, ui = vi.

Furthermore, rβ,j+1 begins with a crucial variable of the form cyk,vk , or it is equal to

a terminal variable of the form tyk,vk . Moreover, either rα,j+1 begins with a crucial

variable of the form cxn,un , , or it is equal to a terminal variable of the form txn,un .

As unu0 = vn−2v0, rα,j+1 = rβ,j+1 and it is not possible to make a rank 2 shift right at

position j, neither in α nor in β, we must have un = vn−2 and so u0 = v0. We have

also that either rβ,j−1 ends with a crucial variable of the form c , v0,y1 or it is equal to an

initial variable of the form i v0,y1 , and that either rα,j−1 ends with a crucial variable of

the form c , ,xn−1 or it is equal to an initial variable of the form i ,xn−1 . Hence, αω−1
j =

(u0x
ω+q1
1 · · ·un−3x

ω+qn−2
n unu0x

ω
1un−1x

ω
nun)ω−1 and one of the two following situations

happen:

(i) αj−1 = α′j−1u0x
ω
1un−1x

ω
nun;

(ii) αj−1 = u′′0x
ω
1un−1x

ω
nun, j > 1 and u′0 is a non-empty suffix of αj−2 with u0 = u′0u

′′
0.

If situation (i) holds, α is not a canonical form as it allows the application of a short-

ening (s.1) with σ = u0x
ω
1un−1x

ω
nun and τ = u0x

ω+q1
1 · · ·un−3x

ω+qn−2
n un. In particular,

this proves already the impossibility of Case 1.1. for j = 1.

Suppose now that situation (ii) holds. Then j > 1 and we will use the induction hy-

pothesis to obtain a contradiction. Note that xωnunu
′
0 can not be the final ω-portion

of αj−2 (otherwise it would be possible to make an agglutination (a.3)). Consequently,

c‘β,j−2 = c‘α,j−2 = 0 and |rβ,j−1|c = |rα,j−1|c = 1. Furthermore rβ,j−1 = rα,j−1 = cz,wu0,x1
where zωwu′0 is the final ω-portion of αj−2. Hence, the final ω-portion of βj−2 is zωw′

with w′ a prefix of w. Assuming by induction hypothesis that ’cβ,j−2 = ’cα,j−2, we have

from Claim 2 that αj−2 = βj−2, and one deduces that w = w′ and u′0 = ε. So, actually,

situation (ii) can not happen either.
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Case 1.2. ’cα,j = 1. So, k = n − 1 ≥ 1 and, by Remark 6.5 (c), αj−1 is of the form

αj−1 = α′j−1x
ω+p
n un and qn = 0. If p 6= 0, then we get a contradiction as above. So, we

assume additionally that p = 0. Thereby, we get

rα,j = c−1
xn−1,un−1,xnb

−qn−1
xn−1

c−1
xn−2,un−2,xn−1

b−qn−2
xn−2

· · · c−1
x2,u2,x3b

−q2
x2 c−1

x1,u1,x2r
′
α,j ,

rβ,j = c−1
yn−1,vn−1v0,y1b

−pn−1
yn−1

c−1
yn−2,vn−2,yn−1

b−pn−2
yn−2

· · · c−1
y2,v2,y3b

−p2
y2 c−1

y1,v1,y2r
′
β,j ,

for some words r′α,j , r
′
β,j ∈ (V−1)∗. As rα,j = rβ,j , we conclude that, for i ∈ {1, . . . , n− 1},

r′α,j = r′β,j , un−1 = vn−1v0, xn = y1, xi = yi, pi = qi if i 6= 1, and ui = vi when i 6= n− 1.

Whence

αj−1α
ω−1
j = α′j−1x

ω
nun(u0x

ω+q1
n u1x

ω+q2
2 u2 · · ·xω+qn−1

n−1 un−1x
ω
nun)ω−1,

βj−1β
ω−1
j = βj−1(v0x

ω+p1
n u1x

ω+q2
2 u2 · · ·xω+qn−1

n−1 vn−1)ω−1.

Suppose now that c‘α,j = 1. Hence c‘β,j = 1, q1 = p1 = 0 and u0 = v0 = ε. So,

un−1 = vn−1, no crucial variables occur in either r′α,j or r′β,j and αj−1α
ω−1
j αj+1 is of the

form

αj−1α
ω−1
j αj+1 = α′j−1x

ω
nun(xωnu1 · · ·xω+qn−1

n−1 un−1x
ω
nun)ω−1xω+r

n α′j+1

with r 6= 0 and un 6= ε since α ∈ C2. Therefore, α is not a canonical form since it is

possible to make a shortening (s.4).

Suppose next that c‘α,j = 0 and so that c‘β,j = 0. Then r′α,j = b−q1
xn c−1

xn,unu0,xn and

r′β,j = b−p1
xn c−1

xn−1,vn−1v0,xn . Therefore xn = xn−1, q1 = p1 and unu0 = vn−1v0 (=

un−1). As in Case 1.1, analysing the first crucial variable of the remainder at posi-

tion j + 1 and the last crucial variable of the remainder at position j − 1, we conclude

that un = vn−1 (whence u0 = v0) and u0x
ω
nun is a suffix of αj−2αj−1. Consequently,

αω−1
j = (u0x

ω+q1
n u1x

ω+q2
2 u2 · · ·xω+qn−1

n unu0x
ω
nun)ω−1 and one of the two following situa-

tions happen:

(i) αj−1 = α′′j−1u0x
ω
nun;

(ii) αj−1 = u′′0x
ω
nun, j > 1 and u′0 is a non-empty suffix of αj−2 where u0 = u′0u

′′
0.

If (i) holds, then α is not a canonical form since it admits the application of a shorten-

ing (s.1) with σ = u0x
ω
nun and τ = u0x

ω+q1
n u1x

ω+q2
2 u2 · · ·xω+qn−1

n un. If j = 1, this proves

the impossibility of Case 1.2. If j > 1, it remains to consider situation (ii), in which case

’cβ,j−1 = ’cα,j−1 = 0 and |rβ,j−1|c = |rα,j−1|c = 1. Furthermore rβ,j−1 = rα,j−1 = cz,wu0,xn
where zωwu′0 is the final ω-portion of αj−2. Consequently, the final ω-portion of βj−2 is

zωw′ with w′ a prefix of w. Again assuming by induction hypothesis that ’cβ,j−2 = ’cα,j−2,

we have from Claim 2 that αj−2 = βj−2, and this implies that w = w′ and u′0 = ε. There-

fore, situation (ii) also does not occur.

In both cases, 1.1 and 1.2, we reached a contradiction. Therefore ’cα,j = 0 when ’cβ,j = 0.

By symmetry it follows that ’cα,j = 0 if and only if ’cβ,j = 0.
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Case 2. ’cβ,j = 2. Then c‘α,j = c‘β,j = 0, and ’cα,j 6= 0 by Case 1. Suppose that ’cα,j = 1.

Hence k = n + 1, qn = pn = pn+1 = 0, and αj−1 and βj−1 are of the forms, respectively,

αj−1 = α′j−1x
ω+q
n un and βj−1 = β′j−1y

ω+p
n vny

ω
n+1vn+1. Furthermore,

rα,j = bq
′
xnc
−1
xn−1,un−1,xn · · · b

−q2
x2 c−1

x1,u1,x2b
−q1
x1 c−1

xn,unu0,x1 ,

rβ,j = bp
′
ync
−1
yn−1,vn−1,yn · · · b

−p2
y2 c−1

y1,v1,y2b
−p1
y1 c−1

yn+1,vn+1v0,y1 ,

where, for t ∈ {p, q}, t′ is 0 when t ≥ 0 and it is t when t < 0. From the equality rα,j = rβ,j

it follows that, for i ∈ {1, · · · , n − 1}, q′ = p′, xn = yn = yn+1, unu0 = vn+1v0, xi = yi,

ui = vi and pi = qi. Again, analysing the first crucial variables of rα,j+1 and rβ,j+1, we

conclude that un = vn+1, so that u0 = v0. Whence,

βj−1β
ω−1
j = β′j−1x

ω+p
n vnx

ω
nun(u0x

ω+q1
1 u1 · · ·xω+qn−1

n−1 un−1x
ω
nvnx

ω
nun)ω−1.

So, β is not a canonical κ̄-term, either because vn = ε or because vn 6= ε and it allows

the application of a shortening (s.5). This is in contradiction with the hypothesis and so

’cα,j = 2 = ’cβ,j .

Case 3. ’cβ,j = 1. From the previous cases it is now immediate that ’cα,j = ’cβ,j = 1.

We have proved in all cases that ’cα,j = ’cβ,j and, so, the proof of Claim 3 is complete.

The ending of the proof of the proposition is now clear. By Claim 3, ’cα,j = ’cβ,j and,

so, by Claim 2 (which uses Claim 1) one deduces that −wα,j = −wβ,j and −wα,j = −wβ,j for every

odd position j. As observed above this entails that wq(α) = wq(β) and, so, as α and β are

canonical forms, that α = β.

The next result, which also follows from Lemma 7.4, is a weaker version of the reciprocal

of Proposition 6.2.

Proposition 7.5 Let α, β ∈ C1 ∪ S2 and let q ≥ max{qα, qα∗ , qβ, qβ∗}. If w̃q(α) = w̃q(β),

then LG |= α = β.

Proof. Assume that w̃q(α) = w̃q(β). By Proposition 6.2, w̃q(α) = w̃q(α∗) and w̃q(β) =

w̃q(β∗), where α∗ and β∗ are the canonical forms of α and β. Therefore, w̃q(α∗) = w̃q(β∗)

and, by Lemma 7.4, α∗ = β∗. Hence LG |= α∗ = β∗ and so, as every κ̄-term is Σ-equivalent

to its canonical form, LG |= α = β.

8 Main results

The main results of this paper may now be easily deduced.

Theorem 8.1 The κ̄-word problem for LG is decidable.
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Proof. The solution of the κ̄-word problem for LG consists in, given two κ̄-terms α and β,

to compute their respective canonical forms α∗ and β∗. Then, by Theorem 7.1, LG |= α = β

if and only if α∗ = β∗.

By the above proof, to test whether a κ̄-identity α = β holds over LG, it is necessary

to compute the canonical forms of the κ̄-terms α and β and verify they are the same. An

alternative test requests the calculation of q-roots. If α and β are not finite words, then one

computes κ̄-terms α◦ and β◦ using the procedure described in Section 5.1. Their q-outlines

are well-defined expressions wq(α◦) and wq(β◦) parameterized by q. Making all possible can-

cellations, one obtains well-defined expressions, also parameterized by q, that coincide with

the q-roots w̃q(α◦) and w̃q(β◦) for q large enough (see Example 6.1 as an instance). So,

by Propositions 6.2 and 7.5, LG |= α = β if and only if w̃q(α◦) and w̃q(β◦) are the same

expression.

Theorem 8.2 The set Σ is a basis of κ̄-identities for LGκ̄.

Proof. We have to prove that, for all κ̄-terms α and β, LG |= α = β if and only if

Σ ` α = β. The only if part follows from the fact that LG verifies all the κ̄-identities of

Σ. For the if part recall that, by Section 5, there exist canonical forms α∗ and β∗ that may

be computed from α and β using the κ̄-identities of Σ. Therefore, if LG |= α = β then

LG |= α∗ = β∗ and so, by Theorem 7.1, α∗ = β∗. Since Σ ` {α = α∗, β = β∗} it follows by

transitivity that Σ ` α = β.
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