The word problem for x-terms over the

pseudovariety of local groups

J. C. Costa C. Nogueira M. L. Teixeira

June 17, 2021

Abstract

In this paper we study the x-word problem for the pseudovariety LG of local groups,
where k is the canonical signature consisting of the multiplication and the pseudoinversion.
We solve this problem by transforming each arbitrary x-term « into another one a* called
the LG-canonical form of o and by showing that different canonical forms have different
interpretations over LG. The procedure of construction of these canonical forms consists
in applying reductions determined by a set X of x-identities. As a consequence, X is a
basis of k-identities for the x-variety generated by LG.
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1 Introduction

The notion of a pseudovariety has played a key role in the classification of finite semigroups.
Recall that a pseudovariety of semigroups is a class of finite semigroups closed under tak-
ing subsemigroups, homomorphic images and finite direct products. The semidirect product
operator on pseudovarieties of semigroups has received particular attention, as it allows to
decompose complicated pseudovarieties into simpler ones, and which in turn is central to the
applications of semigroup theory in computer science. Among the most studied semidirect
products of pseudovarieties are those of the form V x D, where V is any pseudovariety and
D is the pseudovariety of finite semigroups whose idempotents are right zeros [20, 22, 4]. If
V is a pseudovariety, then LV denotes the pseudovariety of finite semigroups S whose lo-

cal submonoids are in V (i.e., eSe € V for all idempotents e of S). In general, V x« D is
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a subpseudovariety of LV but under certain conditions on the pseudovariety V the equality
holds [20, 21, 22]. In particular, for the pseudovariety G of finite groups, LG is the class of
finite local groups and it is well-known that LG = G « D [19].

Many applications involve solving the membership problem for specific pseudovarieties. A
pseudovariety for which this is possible is said to be decidable. However, the semidirect product
does not preserve decidability [11, 17], and thus it is worth investigating stronger properties
of the factors under which decidability of the semidirect product is guaranteed. This is the
approach followed by Almeida and Steinberg that lead to the notion of tameness [6, 7].

For a signature (or a type) o of algebras and a class C of algebras of type o (i.e., o-
algebras), the o-word problem for C consists in determining whether two given elements of
the term algebra of type o (i.e., o-terms) over an alphabet have the same interpretation over
every og-algebra of C. In the context of the study of tameness of pseudovarieties of semigroups,
it is necessary to study the decidability of the o-word problem over a pseudovariety V, where
o is a set of implicit operations on semigroups containing the multiplication, called an implicit
signature, since that is one of the properties required for V to be tame. For pseudovarieties
of aperiodic semigroups it is common to use the signature w consisting of the multiplication
and the w-power. For instance, the w-word problem is already solved for the pseudovarieties
A of finite aperiodic semigroups [16, 23], J of J-trivial semigroups [1], LI of locally trivial
semigroups [9], R of R-trivial semigroups [10] and LSI of local semilattices [12]. For non-
aperiodic cases it is common to use the signature k consisting of the multiplication and the
(w — 1)-power, usually called the canonical signature. We will use an extension of x, denoted
k (and called the completion of k in [5]), consisting of the multiplication and all the (w + g)-
powers with ¢ integer. It is easy to realize that the k-word problem is equivalent to the k-word
problem. As examples of pseudovarieties for which the x-word problem is solved, we cite the
pseudovarieties S of finite semigroups [13] and CR of completely regular semigroups [8].

This paper is a continuation of the work initiated in [14]. In that paper, the authors
have shown that LG and S verify exactly the same identities involving k-terms of rank 0 or
1, and have given a proof (alternative to that contained in [13]) of the decidability of those
R-identities. The present paper completes the proof of the decidability of the k-word problem
(and, as a consequence, of the k-word problem) over the pseudovariety LG. We prove first
that this problem can be reduced to consider only identities involving k-terms from a certain
set S whose elements have rank at most 2. Next, a canonical form for rank 2 K-terms over
LG is defined, thus extending the notion of canonical k-terms over LG given in [14] for rank
0 and 1. Finally, for canonical k-terms « and 3, we show that the k-identity o = (8 holds
over LG if and only if a and S are the same k-term. Since it is shown that each &-term can
be algorithmically transformed into a unique canonical form with the same value over LG, to
test whether a k-identity o = 8 holds over LG it then suffices to verify if the canonical forms
of the k-terms a and [ are equal.

A fundamental tool in our work is that of g-root of a k-term « from the set S. We start

by computing a certain parameter (., which is a positive integer and depends only on «a.
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Then, for any given q > q,, the g-root of « is an effectively computable word wq(«), over a
finite alphabet V U V™!, which is reduced in the free group Fyy generated by V. A pertinent
property is that, if a, 5 € S and ( is large enough, then LG satisfies « = § if and only if
wqg(a) = wg(B). This result provides an alternative criterion to decide the k-word problem
for LG. Moreover, each word wg(a) is obtained as the reduced form in the free group Fy of
another word wg(a), called the g-outline of a. The reduction process of an outline wq(c) into
the root wq(a) was fundamental to us in the definition of a canonical form for rank 2 R-terms
over LG since it served as a guide to some of the simplifications that should be operated at
the k-term level. Informally speaking, if LG satisfies « = 8 and the outline wqg(f) is “closer”
than the outline wg(a) to their common reduced form wq(a)(= wq(3)), then S should be
considered to be “simpler” than «. The notion of g-outline, introduced here for k-terms over
LG, plays a similar role as a more general notion of superposition homomorphism that was
used by Almeida and Azevedo [3] to provide a representation of the free pro-(V D) semigroup
over A (see [2, Theorem 10.6.12]).

2 Preliminaries

This section introduces some terminology and notation. We assume familiarity with basic
results of the theory of pseudovarieties and implicit operations. For further details and general
background see [2, 18]. For the main definitions and basic results about combinatorics on

words, the reader is referred to [15].

2.1 k-terms

In this paper, we consider a finite alphabet A provided with a total order. The free semigroup
(resp. the free monoid) generated by A is denoted by AT (resp. A*). An element w of A* is
called a (finite) word and the empty word is denoted by e. A word is said to be primitive if it
cannot be written in the form u™ with n > 1. Words u and v are conjugate if there are words
w1, ws € A* such that u = wiwy and v = wowy. A Lyndon word is a primitive word which is
minimal in its conjugacy class for the lexicographic order.

Given an element s of a compact semigroup, the closed subsemigroup generated by s
contains a unique idempotent, denoted s* or s*T9. For ¢ € N, s¥T7 = s¥s? belongs to
the maximal closed subgroup containing s“, and its group inverse is denoted by s“~¢. The
following examples of implicit operations play an important role in the next sections: the
binary implicit operation multiplication interpreted as the semigroup multiplication and, for
each ¢ € Z, the unary implicit operation (w + ¢)-power which, for a finite semigroup S, sends
s €S to s¥ta,

We denote by & the implicit signature consisting of the multiplication and the (w+¢q)-powers
with ¢ € Z. The free k-algebra generated by A in the variety defined by the identity z(yz) =
(zy)z will be denoted by T% and its elements are called R-terms. Every finite semigroup

has a natural structure of an associative k-algebra (also known as a k-semigroup), via the
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interpretation of implicit operations as operations on finite semigroups. When referring to a
term we will mean either a k-term or the empty word e. A k-term of the form 779 is called
a limit term, and m and w + ¢ are called, respectively, its base and its exponent. Notice that
7“*0 is usually written as 7 to make the notation more compact. If a term « can be written
in the form a = ajas, then the terms o and ao are said to be, respectively, a prefix and a

suffiz of a.

2.2 Portions of a k-term

The rank of a term « is the maximum number rank(a) of nested exponents in it. So, the
terms of rank 0 are the words from A* and, for ¢ > 0, a k-term of rank 7 + 1 is an expression
« of the form

+q1 wq
- 7Tn n

o= pory T pr Pns

where n > 1, p; is a term with rank at most 7, 7, is a rank ¢ k-term and ¢, € Z. This
expression is uniquely determined and we call it the rank configuration of a. The number n
is said to be the (i 4 1)-length of a.. The subterms pory ™, 7 9" p,, and W;+qujﬁjjfj+l are
called, respectively, the initial portion, the final portion and the crucial portions of a. For a

positive integer p, the p-expansion of « is the rank i R-term
a®) = porfpy -+ 78y,

Suppose that ¢ = 0, whence rank(«) = 1. The w-terms pon{’, 7% p,, and 7T;»')pj71';-')+1 are said
to be, respectively, the initial w-portion, the final w-portion and the crucial w-portions of «.
In case i = 1, so that rank(a)) = 2, the (rank 1) initial w-portion, final w-portion and crucial
w-portions of « are, respectively, the initial w-portion, final w-portion and crucial w-portions
of the 2-expansion a!® of a. For example, if a = b(ab?a) 'be(¢?Laa(be)?—2)¥Lawt!,
then bab“ and a“ are the initial and the final w-portions, respectively, and b*aab®, b*abec®,

?aa(be)®, (be)¥c and (be)“a” are the crucial w-portions of .

2.3 k-identities

A R-identity over A is a formal equality m = p with m,p € T%. For a pseudovariety V, the
R-word problem for V consists in determining, for each given g-identity m = p, whether 7 and
p have the same interpretation over every semigroup of V. If so, we write V | 7 = p, as
usual. Analogous definitions can be formulated for the signature k.

Note that the following R-identities hold over every finite semigroup: a%t9 = g« 1ga+!
(¢ € Ng) and 2#77 = (29)*~" = (2#~1)7 (¢ € N). This means that the signatures x and &
have the same expressive power and, consequently, the k-word problem is equivalent to the

k-word problem.
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2.4 Rewriting rules for k-terms over S

The following set g of k-identities
(29 HP)He = gtpa,
(xn)erq — warnq’

xnmw—&—q — xw—&—q—l—n’ $w+qxn — 3jf,u—l—q—&-n’

(
(
E e e (
(
(

N N N NN
T W N =

1)
2)
3)
4)
(zy)“F iz = z(yx)* ™, 5)

holds in the pseudovariety S, where x and y represent arbitrary k-terms, n € N and p,q € Z.
Notice that, using (2.3)—(2.5), it is easy to deduce the k-identities

o (@ TPy = (@ TPy) T (TP ) T = (o Pya) T,

2.6
(yxw+p)w+qxw — (yxw+p)w+q, mw(yxw+p)w+q — (xwyxw+p)w+q. ( )

Each k-identity r = (u = v) can be seen as two rewriting rules 7: v — v and 7 : v — u. If
we rewrite a k-term 7 interpreting a k-identity (2.7), with ¢ € {1,2, 3,4}, as a rewriting rule
from left to right, we say that we make a (2.7)-contraction. The transformations resulting from
interpreting the k-identities as rewriting rules on the opposite direction are called expansions.
We will distinguish between left and right contractions/expansions of type (2.4) depending on
whether the left or right identity (2.4) is used. An application of the identity (2.5) from left
to right or from right to left is called a shift right and a shift left, respectively.

We will talk about the rank of a transformation of k-terms using a k-identity o = [ as
the number max{rank(a),rank(8)}. For example, if we rewrite ab*!b(ca”t1)“~Lea®*! as
ab“*tb(ca* T, or as ab“T2(ca*t1)*~Lea“ T making right (2.4)-contractions, we say that it
was made a rank 2 contraction in the first case, and a rank 1 contraction in the second one.

In what follows, we assume that the alphabet A is not a singular set since, otherwise, every
R-term with not null rank is equivalent to a rank 1 limit term with base the only letter of A,

and the k-word problem is trivial in that case.

2.5 Local groups

A local group S is a semigroup such that eSe is a group for each idempotent e of S. Equiv-
alently, we may say that S is a local group if and only if S has no idempotents or S has a
completely simple minimal ideal containing all its idempotents [14, Proposition 2.1]. Groups
and completely simple, locally trivial and nilpotent semigroups are examples of local groups.

Recall that LI is the join of D with its dual K, the pseudovariety of finite semigroups
whose idempotents are left zeros. Therefore, a k-identity o = [ holds in LI if and only if it
holds in both K and D. In particular, when « and 8 are rank 1 or rank 2 k-terms, o = 3
holds in LI if and only if @ and S have the same initial and final w-portions. We also recall
that G and LI are subpseudovarieties of LG, but LG is not the join of G with LI. Hence, if
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a k-identity a = 8 holds in LG, then it holds in both G and LI but the converse implication
is not valid. It is well known that, if a pseudovariety V contains LI and V | o = 3, then
either o and 3 are the same word or they both are k-terms of rank at least 1.

In [14] the authors defined a class of local groups denoted by S(G, L,f) in which G is a
group, L C A" is a factorial language (i.e., a language that is closed under taking non-empty
factors) and f : L U L — G is a map that serves to define the semigroup operation, where L
is the subset of AT\ L formed by the words whose proper factors belong to L. We have also
constructed a finite local group Sy, of the form S(G, L,f), associated to each pair (m,p) of
rank 1 canonical A-terms, such that LG |= 7 = p if and only if Sy , =7 = p.

So, by the above considerations, it remains to deal with &-identities o = S such that

rank(a) > 1 and rank(/3) > 1 where at least one of these inequalities is strict.

3 Some properties of k-terms over LG

In this section, we show some features of k-terms interpreted on finite local groups. Notice

that LG is the pseudovariety of finite semigroups that satisfy the k-identity
(xyx?)¥ = a*. (3.1)

Let us consider the set of k-identities ¥ = Xg U {(z¥yz*)¥ = z“}. Observe that the left side
of the R-identity (3.1) is a rank 2 R-term while the R-term in the right side has rank 1. This
is the key k-identity for the transformation of k-terms into other ones of rank at most 2 in
Section 5.1. In Section 5.2, using the set X, we will further reduce any k-term to a canonical
form over LG.

Two R-terms « and § are X-equivalent when ¥ F o = 3, that is, when the k-identity a =
is a syntactic consequence of ¥. Obviously, if @ and 8 are ¥-equivalent, then LG = a = .
One of the main goals is to prove that the converse implication also holds.

Let 7 be a k-term of rank at least 1. Then 7 is of the form 7 = uz“*%w for some integer
q and some terms u, z and w. By (2.3), it follows that m may be transformed into uz*z*%w.
Therefore 7 is Y-equivalent (it is Y.g-equivalent to be more precise) to some k-term of the
form uz®“v and we will often use this fact without further reference. In particular, using
notably (2.6) and (3.1), we may derive

7T = u(z¥ou)Y ¥y = u(a®vur® ) v = ur¥v = 7. (3.2)

Notice that the k-identities (z“ya®)* = z¥(yz*)¥ = (z¥y)“z* are derived from g and
that, for arbitrary integers p and ¢, (x*“TPyz*T4)¥ = 2 is a consequence of . It is useful to

point out the following consequences of this &-identity and (2.6),
TP (Y@ T = TP = (9T 0y)“ ¥ TP, (3.3)
Now, from these ones we deduce, as explained below, the following property of exponents,
where 7 is an arbitrary integer,

xw—&—p(yxw—&-q)w—l — l.w—l—p—T(yxw—i-q—T)w—l (xw-i—qy)w—lmw—f—p — (xw—&—q—ry)w—lxw-i—p—r‘ (3‘4)

I
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Indeed, we deduce the first identity as follows (the second one being proved by symmetry)

warp(ywarq)wfl — gwtp—r xw+ry$w+q71ﬂ)w71xw+r

(
_ :L,w—l—p—r (xw—i-ryl,w—&-q—r)w—lxw—&—r (ymw—&-q—r)w
— xw—l—p—r (l,w-l-ryxw—&-q—r)w (yxw—i-q—r)w—l

(

— mw+pfr ya;erqfr)wfl.

We gather in the following proposition a few k-identities exhibiting cancelation properties

that are important in the reduction process.

Proposition 3.1 The following k-identities are consequences of X3, for all p,q,r,s € Z,

$w—i—py(Zw+qwa:w—&-7"y)cu—IZu}—i-s — xw+p(zw+qwxw+r)w—lzw+s 3.5
y .

l,w—l—py(l,w—i—qy)w—lmw-‘rs — l,w—i—p—q-‘,—s, 3.6

e O G g (3.7)

Proof.  The deduction of (3.5) can be made using Xg and (3.3) as follows

l,w—&—py(zw—i-qwxw—l-ry)w—lzw—&—s — xw—Q—p(Zw—i—qwxw+r)wy(zw+qwmw+ry)w—lzw—l—s
— xw+p(zw+qwxw+r)wfl (Zw+qwxw+ry)wzw+s

— xw—&-p(zw—i—qwxw—i—r)w—lzw—l—s.
The identity (3.6) is an immediate consequence of (3.5). For the identity (3.7), we prove

(x9y)@~ta@td(za@)@ ! = 29 (22~ 9y2?)¥~! which is a simpler and, clearly, equivalent condi-

tion. Using (3.4) in the first identity below, we have

(@)1 (20 = (a0 (a0

= () e
= (:c”y)“’*l(w“zxw*q)wfl(x“za:“’*qy:vw)”
R e ) T e e
= (a¥y)* taya® (o za T Iya? )0
= 2 (2% 22 Tya)~ !
= 2% (za% Iy )@ !

This proves the proposition. [ ]

It is also useful to emphasize the following properties.
Corollary 3.2 Let 7 and o be r-terms.
(a) If LI =7 =0, then ¥+ o(ro)* ! = 771,
(b) If K =T =0, then ¥ o 1@~ = (£2g)w 11,

(c) IfDET =0, then X F o* " 17%71 = g(r02)~ 71,
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Proof.  Suppose that LI = 7 = 0. Then 7 and o are the same word (and the result is
trivial), or they both have rank at least 1. In this case, 7 and o are Yg-equivalent, respectively,
to R-terms of the form wz“7'y“v and wa®o’y“v with u,z,y,v words. Therefore, using Xg

and (3.5), one derives

o(ro)* ™ = ua¥o’ (y“vua® 'y vua?o’ )y o = ur ! (yF vua Ty vur T ) Ty = 70T
thus showing (a).

Now suppose that K = 7 = . Then, as above, 7 and o are the same word (in which
case the result is immediate), or both 7 and o have rank at least 1. In this case, 7 and o are
Ys-equivalent, respectively, to k-terms of the form uz“7’ and uz“o’ with u,z words. So, the

deduction of (b) can be done, using Xg and (3.7), as follows

w—1 w—l_( w !

wr O_)w—l(uwa/uwa/)w—l w /!

oWl — uzT
= u(x¥o’u) e (T ua? T ua? )
= ua® (' ur® ' ua o’ uz® ) 7/
= (t%0)“ Lr.

The proof of (¢) can be made analogously. [

4 Canonical forms for s-terms over LG

In this section, we present the definitions of canonical forms for k-terms over LG. The rank 0
and rank 1 canonical F-terms over LG were already introduced in [14], coincide with, respec-
tively, rank 0 and rank 1 canonical k-terms over S defined in [13]. According to Proposition 5.1
below, in order to complete the definition of the canonical forms over LG it remains to intro-
duce rank 2 LG-canonical forms.

Let a be a R-term and, if rank(a)) > 1, let

_ w+q1 w+
a=pomy preemy Ty

be its rank configuration.
(Co) If rank(a) = 0, then « is said to be in LG-canonical form.
(C1) If rank(a) = 1 and, for each j € {1,...,n},

(a) m; is a Lyndon word;
(b) m; is not a suffix of pj_1;
(¢) m; is not a prefix of any word pjwfﬂ with £ > 0, where 7,41 is the empty word;

then « is said to be in LG-canonical form. Notice that every rank 1 R-term can be
effectively converted into a rank 1 canonical form by the reduction algorithm for rank 1

R-terms, defined in [14, Section 4] as follows:
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(C2)

(52)

(1) apply all possible (2.2)-contractions;

(2) turn the base of each limit term in the &-term into a Lyndon word, by means of a

(2.4)-expansion (with n = 1) and a shift;
(3) apply all possible (2.4)-contractions;

(4) apply all possible (2.3)-contractions;

(5) replace each crucial portion z*+Puy“T9 not in canonical form by z@tPHmyy~+a—t

where £ is the minimum integer such that |uy?| > |z|, m is the maximum integer such
that 2™ is a prefix of uy’ and 2™v = uy’, by means of applying a left (2.4)-expansion

with n = ¢ and a right (2.4)-contraction with n = m.

If rank(a) € {1,2}, then « is said to be in semi-canonical form (over S) whenever the
2-expansion a(?) = pgw%pl e ﬂ%pn is in canonical form. Notice that every rank 1 k-term
is in semi-canonical form. We refer the reader to [13, Section 4.3] for the algorithm of
calculation of the semi-canonical form of any rank 2 R-term. We will be particularly
interested in rank 2 semi-canonical forms « such that ¢; = —1 for all j, and denote by

Sy the set of those k-terms.

If a € S and « is irreducible for the rewrite system R defined in Section 5.2 below,

then « is said to be in LG-canonical form.

The set of LG-canonical forms of rank ¢ (with ¢ € {0,1,2}) is denoted C;. By [13] and

Section 5.2, the following conditions are equivalent for a k-term a:

« is in semi-canonical /LG-canonical form;
every subterm of « is in semi-canonical /LG-canonical form;
the initial, final and crucial portions of « are in semi-canonical/LG-canonical form;

the initial, final and crucial w-portions of a are in semi-canonical /LG-canonical form.

5 Canonical form algorithm

In this section, we describe an algorithm to compute a canonical form o* of any given k-term

a with rank(«) > 1. This algorithm consists in two major steps, presented in Sections 5.1

and 5.2. In step 1, we reduce a to a Y-equivalent k-term «° in the set S, mentioned in the
Introduction. This set S is now identified as being C; U So. If a® € Cq, then a° is in rank 1

canonical form and so a® = a°. If a° € Sy, then step 2 turns a° into an element o of C; UCo

and we let o = a®. By Theorem 7.1 below, it follows that the K-term o* is unique and so we

call it the LG-canonical form of a.
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5.1 Step 1: reduce to an element of S

The first step consists in three sequential substeps.

Step 1.1. If rank(a) < 2, let o/ = . Otherwise, let o/ be a rank 2 R-term obtained by

recursively applying the procedure described in the proof of the following proposition.

Proposition 5.1 Let v be an arbitrary k-term such that rank(y) = i+ 1 with i > 2. It is
possible to effectively compute a R-term ~' such that v is Y-equivalent to vy and rank(v') = 1.

1

Proof.  We begin by assuming that v is of the form v = 7#“~". The proof of this case is

made by induction on the i-length m of 7. Since 7 has rank 4, it is of the form m = woo“Pw;

with rank(c) =i — 1 and wg and wy with rank at most ¢. Using (3.4) and (3.2), one deduces
v = 7.‘.w—17.‘.7.[.w—1
— wo(O,w+pw1wo)wflo.erp(wleanrp)wflwl

w+1w1w0)w710w+27p( w+1)w71w1

w—1

= ’wo(d w1woeo

w—1

= (woowy)*~ Lweo® T2 Pw; (woowy )

If m = 1, this last &-term has rank ¢ and, so, we take it to be +'. Suppose now that m > 1.

The k-term p = woow; is rank ¢ and has i-length m — 1. So, by induction hypothesis, the

R-term § = p¥~! is Y-equivalent to some rank i A-term ¢’. Therefore, v is Y-equivalent to the

w—1

rank i R-term 4 = §'woo“ 2 Pw,§’. The proof of the case v = 7 is complete.

In general, by means of expansions of rank i + 1 of types (2.2) and (2.4), if necessary, 7

can be reduced to a RK-term with rank configuration powf_l p1--- @ 1p,. The k-term ' is
obtained from this by applying the above procedure to each subterm 7r;9_1. ]

Step 1.2. If rank(o/) = 1, let o = /. Otherwise, let &” be a k-term obtained from o by
the application of the first step of the S canonical form reduction algorithm described in [13,

Section 4.3], and observe that o is a semi-canonical &-term such that rank(a’) € {1, 2}.

Step 1.3. If rank(a”) = 1, then we apply the rank 1 canonical form reduction algorithm [13,
14], described in Section 4, to compute the canonical form of o”. This is an element of C; and
so it is chosen to be a°.

If rank(a’) = 2, then, by means of expansions of rank 2 of types (2.2) and (2.4) if necessary,
we obtain from o” a k-term whose exponents of rank 2 limit subterms are equal to w — 1.
This k-term is taken to be «a°, since it is a semi-canonical form with rank configuration

pgwf_lpl - %~1p, meaning that it is an element of Ss.

5.2 Step 2: compute the canonical form

Now, we complete the computation of the canonical form of «. If o° is rank 1, then it is in

LG-canonical form and so let a* = a°.
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To treat the remaining case, we define a rewriting system R with set of objects S and
whose rules are described below. By Propositions 5.2 and 5.3, starting with the k-term a°, R
produces, after a finite number of reductions, an irreducible (meaning that no rewriting rule
can be applied to it) k-term a® of S. Then a® € C; UCy and we let a* = «°.

The system R consists of rewriting rules of four types, called “shifts right”, “eliminations”,
“agglutinations” and “shortenings”. We do not include shifts left in R but they are used
implicitly in the last three types of rules. The justification for this option is for the system to
be terminating and for the canonical form to be unique. We list below the rewriting rules and
justify that they transform &-terms into Y-equivalent r-terms. The rank of terms x,y, z, u, v
and w in every rule is bounded by assuming that the left side of each rule is a rank 2 k-term.
The shift identity (2.5) is often used without reference.

Shifts right:

(sr.1) (uv)*tu — u(vu)*~!, where rank(uv) = 1 and u # e

(57.2) (uv)* H(uw)*! = u(vw)* tw(uwuw)* !, where v € At, rank(v) = rank(w) = 1,
K [~ v = w and v and w do not have a common non-empty prefix.
Rule (sr.1) is a rank 2 shift right and rule (sr.2) is a result of applying the &-identity

7=t = 1(72)*~1 which is a consequence of ¥, followed by a rank 2 shift right.

Eliminations:

(e.1) ztPy(zwtay)w=lgwtr 5 gwip—atr,
(€.2) ¥t Pypatay(vatiu) 1t — g tPy;

(e.3) (uz®tPu)o=lyzawttyy(zav+ivy)o =1 — (ua+P)«=ly;

(e4) (ua“tPuy)@ =L@ tay(yza9tav)o =1 — wa@tPy(yur TPoyuaPo) ! with y # €.

Rule (e.1) is a direct application of identity (3.6), while rule (e.2) also results from this
identity but previously applying a rank 2 shift left. In its turn, rule (e.3) results from making
a right (2.4)-expansion, followed by an application of (e.2) and ending with a right (2.4)-
contraction. At last, rule (e.4) is obtained by applying the &-identity 7*~! = (x2)“~Ir,
followed by an application of (e.2) and ending with a rank 2 shift right.

Agglutinations:
(a.1) (x9tPy)@=lg@tay(yatry)o=t — g (ya@ Pt yzv)o =1,
(a.2) (uz®tPv)* = (uz®tay)* =1 — yz@ iy (uzHyuz rPousvtay)« =1
(a.3) (ux®Pv)*~ly(zz“Tlvy)* =1 — ua Py (2o vur T Pour TPoy)~ 1.
Rule (a.1) is derived from identity (3.7), whereas (a.2) and (a.3) follow from Corol-
lary 3.2 (b) and (c) respectively.

Shortenings:
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(s.1) o(ro)*~! — 79~! where rank(c) = rank(7) = 1 and LI |= 0 = 7;
(5.2) @ Pu(ve@tiu)o=1 — g tP= 0y (vavu)? ! with ¢ # 0;

(43) (912540 S (L4 ith p 20

(s.4) a¥tPu(z oyatru)o =20 50 = 6(x, 2,p, ¢, 7, 8);

(5.5) @ Puztao(ya T uzt )"t — (2, 2, p, 4,7, 9);

where

e )(z,z,p,q,r,s) is the following &-term

TFP (0 Tyt ety if 2*2% is in canonical form (5.1)
2Py (yaTry)e ! ifr=zandg=s

(2 Iy~ L@ty ifx=z2,q¢g#sandp=r

2 Pa, (2T oyr®ta, )* 12 50 otherwise (5.2)

with ag . the least letter of the alphabet A such that 2*a, .2* is in canonical form

(note that such letter exists since we are assuming A not singular);
e u # € in rules (s.4) and (s.5);

e rules (s.4) and (s.5) apply in case (5.2) only if u # a, ..

Rule (s.1) is a consequence of Corollary 3.2 (a). Rules (s.2) and (s.3) are derived from
identities (3.4). In rules (s.4) and (s.5), applying identity (3.5) and shifts eventually, one gets
from the left side of the rule the term

w—l—p( w—l—r)w—lzw—i-sv_

dg== 2y

The, possibly new, crucial w-portion 8 = %2 of §g may be not in canonical form and so dg
may be not in semi-canonical form. If 6 is in canonical form, then §(z, z,p, ¢, r, s) = do.
Suppose now that 6 is not a canonical term. Hence, as conditions (a) and (b) of the rank
1 canonical form definition hold, z must be a prefix of z¢ for some ¢ > 0. So z = 2122 and
_ -1
x = (2122)

have a proper prefix which is also a suffix), it follows that £ = 1. We conclude that z is a

z1 for some words z1, zo with z1 # €. Since z is a Lyndon word (and, so, it cannot

prefix of z. Note that, conversely, if = is a prefix of z then 6 is not in canonical form. This case
is split into three subcases. If either z = z and ¢ = s, or x = 2z, ¢ # s and p = r, then §y is X-
equivalent to the semi-canonical terms 2P (vyz**t")*~ 1y and (z*+9vy)“ 12 +5v respectively.
Otherwise, g is S-equivalent to the semi-canonical term z%Pa, ,(2“Tlvyz“T"a, )~ t29 5.
In this case, we impose that v # a, . to guarantee that the application of the rule does not

return as a result the original k-term.

Proposition 5.2 Let v € Sy and let 7' be a k-term obtained from v by applying a rule of R.
Then v € S.
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Proof. By the hypothesis of the proposition, v = v1927y3 with rank(y2) = 2, v = 119573
and v2 — 74 is a rule of R, since the rules apply only to rank 2 F-terms and rank(y) = 2.
Moreover 2 € Sp since v € Sa.

Each w-portion o of 44 is an w-portion of 4 for every rewriting rules with the only possible
exceptions where o = 2%z or 0 = a2%a, 2% and rule v2 — 74 is one of (s.4) and (s.5), with
o(x,z,p,q,r,s) given by (5.1) and (5.2) respectively. However, ¢ is in canonical form in both
cases. Therefore 74 € S in all cases, since y2 € Sy by hypothesis. As 7, and 74 always have
the same initial and final w-portions, it follows that 7 € S. [
<1J+Q1u

w+qy
Ty

For a rank 1 k-term o, with rank configuration o = ugx up, we define the

Lo
size of o, denoted s(o), as the 4-tuple of non-negative integers

S(U) = (é’ |q1’ + |(]2‘ R |q€,a ‘uoul e 'uf|’2uou1'"u2)

where ¥ = 0 and, if upu; - - u¢ = a1a2 - - - a, and ay, az, ..., a, € A, Yygu,-..u, is the sum of the
order of each letter a; in the ordered alphabet A. We consider the image of the function size
ordered by the lexicographic order. With this definition it can be seen that in a shortening
t — t, the size of the base of the rank 2 limit term which occurs in t' is always strictly less
than the size of that which occurs in t.

Now, the size of a rank 2 k-term «, with rank configuration a = pmr‘f‘l p1-- T p,, s

introduced as the m-tuple
s(a) = (s(m), ce s(ﬂ'm))

consisting of the sizes of bases of the limit subterms of a. We consider sizes of rank 2 g-terms
ordered by the shortlex order, that is, if @ and § are rank 2 R-terms with 2-lengths m and
n respectively, then s(a) < s(3) if and only if m < n or m = n and s(a) <'*% s(3) for the
lexicographic order <'**. Notice that this ordering is a well-order on the set of sizes of rank 2
R-terms.

Let v be a k-term from Sy with 2-length ¢ and let 7/ be a k-term obtained from ~ by
applying a rewriting rule (r) of R. Then v = y172y3 where rank(y2) = 2, v/ = 19473 and (r)
is 72 — 5. We say that the rule is applied in position j € {1,...,¢} if the 2-length of 71 is

j — 1 (where we assume the 2-length of ;1 to be 0 in case its rank is lower than 2).
Proposition 5.3 The rewriting system R is Noetherian.
Proof. Let v € S and let £ be the 2-length of «v. Suppose that

Y=" 772 773"

is a chain of k-terms obtained from ~ by the application of rewriting rules from R. We want
to show that this chain is finite. Suppose it is infinite. Since eliminations and agglutinations
strictly decrease the rank or the 2-length of the R-term, and no rule increases rank or 2-

length, they can be used at most ¢ times in the above chain. Without loss of generality, we
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may therefore assume that the chain uses only shifts right and shortenings. This means in
particular that every k-term <; of the chain has the same 2-length /.

Now, as shortenings strictly decrease the size of rank 2 k-terms, there must be an infinite
number of steps where the sizes of the kK-terms do not decrease, and so shifts right must
be applied an infinite number of times. On the other hand, rule (sr.1) can only be applied
consecutively a finite number of times and preserves the size of rank 2 k-terms. It follows that
shortenings and (sr.1) can only be applied consecutively a finite number of times. Therefore,
rule (sr.2) must be applied an infinite number of times.

Let j € {1,...,¢} be the least position in which (sr.2) is applied an infinite number of
times. Whence, in positions less than j, (sr.2) is applied only a finite number of times.
Observe that shortenings and shifts right applied on a position i preserve the sizes of all the
bases (of limit subterms) with the only exception of the base on position i (in case the rule
is a shortening) and the base on position ¢ + 1 (in case the rule is (sr.2)). Consequently,
shortenings and shifts right are used only a finite number of times in positions less than j.
So, without loss of generality, we may assume that no rule is used in those positions. We
may further assume that only rules (sr.1) and (sr.2) are used in position j. We claim that
rule (sr.2) may be used in position j only once. This contradicts the arguments that support
the choice of j, so the proof of the claim concludes the proof of the proposition.

In order to prove the claim, suppose that (sr.2) is used in some step, say k, in po-
sition j (of 7). So v, and 7ry1 are respectively of the forms pi(uv)?~!(uw)“~1py and
pru(vu

and w do not have a common non-empty prefix. Let k' be the first step after step & in which

)~ Lw(uwuw)“~Lpg, where u € AT, rank(v) = rank(w) = 1, K £ v = w and v

a rule is used in position j. Then, it is clear that vz is of the form pyu(vu)?~!p3 where p3 and
w have the same initial w-portion, since shifts right and shortenings preserve such portions.
Hence, from the assumption above on v and w, it is not possible to apply any shift right on
position j of v,. In particular, it is not possible to apply (sr.2) again in position j, which

means that in position j rule (s7.2) could be applied only once. |

It is easy to verify that the following conditions are equivalent for any k-term «:

« is in LG-canonical form;

no intermediate step of the algorithm modifies «;

o of = q;

every subterm of « is in LG-canonical form.

Example 5.4 Consider the following k-terms of So,

a= b(ab)“’_5cb(ab)‘“‘mc(b(ab)‘*’*‘QC)w_lac”_3 (bwaw_lc>w_lbwaw+lc<b‘”_2acaw+40)w_lb‘”'l

B = db(ad"ed3bad=b) o (ab(edy2a) “
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The LG canonical forms of o and 8 can be computed as follows:
5 3 A 1 2 4 Nl
@ 7oy (ab)cac”™ (bwa“’_ c) bat c(b“’_ aca“* c) bt

w—1 w—1
W b(ab)w—5cacw—3bw (aw—lcbw> aw+1c<bw—2acaw+46) bw-i—l

w—1
D’ b(ab)“’*f’cac“*:sbwa“c(b“’*Qacachb“a“’c) pett

w—1
w—>5 w—3 [ pw—2 w2 w1
i b(ab)“°cac (b aca c) b

w—1
w—5 w—3 [ pw w2 w+3 k.
oM b(ab)“°cac (b aca c) b =t

Wl w—1
B oy dba(@ ed* Phad ba) " b(ed)*a(ab(ed)* aab(cd)*a)

w—1 w—1
w—1_, qw+3 w—2 w—2 w—2
= (d cd ba) b(cd) a(ab(cd) aab(cd) a)
w—1 w1l
w—1_, qw+3 w w—2 w o
DM (d cd ba) b(cd) a(ab(cd) aab(cd) a) = f3*.

6 Characterizing k-terms of § with finite words

In [14], the authors show that, for rank 1 canonical &-terms 7 and p, the &-identity m = p
holds over LG only when 7 and p are the same k-term. This is done by associating to the pair
(m, p), when 7 and p are distinct rank 1 canonical R-terms, an alphabet V and a pair (wx,w,)
of distinct words over V. Afterwards, a finite local group Sy , is built from (wr,w,) and it is
shown that Sr , does not satisfy m = p.

In this section, we slightly improve the above construction and extend it to the elements

of 8. To each element a of S is assigned a positive integer ¢, defined by

{ 1 + max{|q| : w+q occurs in a} when o € C;

1 4+ max{|q| : w+q occurs in M} when o € Sy

We will associate to o and any integer ¢ > g, a word over an alphabet of the form VU V™!,
denoted by wg(a) and called the g-outline of «. Its reduced form in the free group Fy is
denoted by wg(a) and named the g-root of a.

6.1 Outlines and roots

We begin by recalling the definition of a g-outline of a k-term « € Cy, introduced (without

a name) in [14]. We will make minor adjustments on that notion and on the notations. Let

a= uoa:‘fﬂlul oo g%ty be the rank configuration of o and notice that « is Yg-equivalent

to the r-term

;JJrqz . xW‘HInfl (xw

(woaf)a} ™ (afwas)e et (@ un 1) 2 (a5 )
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The R-terms wor{, 5 un, viu;zy, | and x; are the initial w-portion, the final w-portion,
the crucial w-portions and the bases of limit terms of a. We will represent them by symbols
lug,z1 > L uns Copugzig, and bxj of an alphabet V, called respectively an initial, a final, a crucial
and a base variable. We associate to o and q the word wg(a) over V, called the g-outline of
a, given by

W (@) = ug,a1 b3} Corur,22DF3 DI} Con 1,00 DI Lt
where g; = g+ ¢;. The condition q > ¢, was introduced in [14] in order to avoid non-
positive exponents in wq(a). Let wg(a) = b Coy g o D92 - DA ey a1 b, SO that
Wq(Q) = iug 2y Wq(Q)ts, u,. We remark that the initial and final variables were not used in [14],
where the initial and final w-portions of a were taken into account by the introduction of
two other variables. These two approaches are perfectly homologous but the (minor) changes
introduced here seem to be more natural.

The g-outline wq(c), of any element a of Sz, can be obtained by the application of the two

following recursive steps.

+qi,, . $%+qn

1) Consider a = 7%~ !, with 7 = upzy  Muy uy,. Notice that, for every positive integer

k: the k-expansion a(¥) (= TI'k) belongs to Cq; the initial and final w-portions, ugz{ and

x¥uy,, of m are the initial and final w-portions of a and of a®); and

k)Y — a1 02 q E—=1pa: 02 q
Wq(a( )) - IU07x1(b11C1’17u17x2 bl’g e bxzcinyunuoﬂﬁl) bmlcxlyulny bwg e bwzt$n7un

Furthermore, in the free group Fy,

(k)Y — (of a2 q k.—1
Wq(a ) - |u07x1(bmlcx1,u175’32 bxg T bwzcxnyunu07xl) C:pn,unuo,:pltﬂﬁmun'

Each finite group G verifies ¢° = 1¢ for some positive integer ¢ > 2. Therefore, over G,

(e=1)y _; (of 2 Un -1 _—1
Wq (Oé ) = lug,z1 (bmlcthLIQ bxg e bmncéf?nyunUmIl) xn,unuo,xltxmun
— q1 dz2 ... Kan -1 -1
- Iuo,xl (bmlcxlyuhfh bxg bmncfﬁnyunUmIl) Cmn,unu0,11txn7un
_ -1 —On ... K021 —O1,.—1
= lug,x1Cyy upug,a; bxn bl"z Coyu1,z2 bxl an,unuo,wltxnvun'

In this case, we define the g-outline of o as the following word over the alphabet VU V™!,

— -1 —On~—1 —On-1,,.p 2,1 —01—1
Wq(a) = lug,z, C n,UnU0,T1 bﬂﬂn Cmnfl,unflyl'nbxnfl bmz C$1,u1,z2b$1 an,unuo,mtfnvun'

: _ ~—1 —Qn —1 —On-1 =02 —1 =01 -1
Denotmg V—Vq(a) - an,unuo,x1 bl’n an_l,un_l,xnbxnfl b$2 Crl,ul,xgbml an,unuo,l‘p WQ(a)

may be written as wq(a) = iyg,z,Wq(@)ts, u, also in this case.

2) Suppose that @ = ajaz and notice that, as observed in Section 4, each subterm «; is a
semi-canonical form. If ¢ is rank 1 or rank 2, then a; € C; U Sy and we assume wq(coy;)

already defined and of the form wq(cj) = iw; 2, Wq(@;)ty; v, -

If o is rank 0, then we let wg(a) be the word ialu%mv_vq(ag)ty%w. Symmetrically, if oo

is rank 0, then we take wq(a) = iy, Wq(@1)ty, via,- Finally, for rank(a;) € {1,2}, let



The k-word problem for LG 17

Wq (@) = iuy 2y Wq (1) Cyy vyug 20 Wg(Q2)ty, vp- In this case, the crucial variable ¢y, vjuy 2, are

also denoted by c(a1, o), whence wq(or) = iy, oW q(al) c(aq, ag)fq(og)ty%w.
Observe that two different factorizations (ajag)as and ag(agag) of o determine the same

word wg(a), so the above definition is correct.

Let o € § and let uz® and y“v be, respectively, the initial and the final w-portions of a.
The variables i, , and t, , are also denoted respectively by i(«) and t(«). Then, by the above

definition, it is clear that wq(a) may be written as

wg(a) = i(@)wg(a)t(a) (6.1)

for some word wg(a). Moreover each of i(a) and t(«) has exactly one occurrence in the word
wg(a). Now, let wg(a) be the reduced form of wq(c) in the free group Fy generated by V.
The word wq(«) is called the g-root of a. By (6.1),

wg(a) = i(@)wq(a@)t(a) (6.2)

where W, () is the reduced form of wy(a) in Fy/. In particular, when a € C; the outline wq(a)

is a word of V* and, so, wq(a) = wg(e).

Example 6.1 Consider the k-term « of Example 5.4. We have Qo = 6 and so, for any q > 6,
the g-outline and the q-root of a are the following

@+2) - 3 -1 ,—(a-1)
Wq(a) = |b abb ab Cab cb, abb ab Cab cb abcab cb, abb ab cb,abCab,ca, cbq CC6bCaCbb
q q+1 -1 (9+4) —1 (9-2) —1 q+1

cbeabb CachaCbb Cbeab CaCbCacbb Cb acabb CachaCbb the

~ . - -3 -1 p(@+2) -1 3
WQ(a) - |b,abbab Cabvc%cbg ccvevbcacbb Cb ac, ab tb>5’

The LG canonical form of a is o = b(ab)* Scac®3 (bwaca“”r%)w*lb“”r3 and, so,

: -5 -3 -1 gq+2) —1 +
Wq(a*) = Ibuabbgb Cab,ca’cbg Ccve’bca C, bb ( ) b ac, abb qc bca‘ C, bbq E

Wg(a™) = wg(a).

Notice that the g-outline of a k-term is a well-defined expression involving the parameter g.
Therefore, for a, 8 € S and q,q" > max{Qa, 03}, wg(a) = wg(5) if and only if wg (o) = wy (5).
The condition wg(a) = wq(3) implies that, either o and S are the same R-term, or one
of them is obtained from the other applying a finite number of rank 2 shifts of the form
(uww)* lu = u(vu)*~! with u € A*. In case a and 3 are canonical forms, they are both

irreducible for rule (sr.1) and, so, a = 3 if and only if wq(a) = wq(8).

6.2 A necessary condition for the identity of two k-terms over LG

In this section we show that a necessary condition for the equality over LG of two kK-terms of

S is the equality of their roots.
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Proposition 6.2 Let o, € S and let @ > max{Qq,0g}. If LG | a = 3, then wg(a) =
wq(8).

Proof.  Assume that LG = a = 8. Then LI = a = 3, which means, by (6.2), that the g-
roots wWq(c) and wq(3) have the same initial and final variables, say i, , and t,, respectively.
Suppose, by way of contradiction, that wq(a) # wq(8). The case in which «,8 € C; was
already treated in [14, Theorem 5.1]. So, we assume without loss of generality that a € Ss.
We adapt the tools and results of [14] to manage the present situation by using expansions of
a and of f in case € S (see Section 2.5 and [14] for more details and missing definitions).

We begin by building a finite local group S, g of the form S, g = S(G, L, f) as follows. As
Wq(a) # wq(B), there exists a finite group G that fails the identity wq(a) = wq(3). Hence, there
is a homomorphism 7 : (VUV™1)* — G such that n(wg(a)) # n(wq(8)) and n(v=1) = n(v)~!
for each v € V. For each variable v, of V occurring in wq(a) or wg(f), denote 7(vy) by gy «.
By [14, Claim 1 of Section 5], the order of g, . may be taken greater than max{|wq(c)|, [wg(8)|}.
By (6.1) and the fact that 7 is a homomorphism,

N(wg(@)) = Giuan(Wg(@)) gty  and  n(wg(B)) = Giuzn(Wg(3))gty,0- (6.3)

Next, let L and f be the ones that would be chosen by the process of [14, Theorem 5.1] for
the rank 1 canonical forms o and 1 such that oy = a® and 8; = 8@ when rank(3) = 2 or
f1 = 8 when rank(3) = 1. This completes the definition of the semigroup S, g = S(G, L, f).

Since S, is a finite semigroup, there is a positive integer £ > 2 such that s = st for
every s € S, 5. In particular, as G is isomorphic to a subgroup of S, g, ¢ =1g forall g € G.
Let @ = oV and let 8 = B¢~Y in case rank(3) = 2 and B = B otherwise. Therefore, since
Sap € LG and LG |= o = 8, S satisfies a = a = = B On the other hand, g3z = q, and
05 = 0g, s0 that @ > max{qg, qg}. By the choice of £, one can verify easily from the definition
of g-outline that the equalities n(wq(@)) = n(wq(a)) and n(wq(B)) = n(wq(B)) hold.

Now, let ¢ : Th — S, 5 be the homomorphism of F-semigroups defined by ¢(a) = a for
a € A. Since a7 and @ (resp. 51 and 3) have the same portions and the parameters L and f
of the semigroup S, 3 = S(G, L,f) depend only on those portions and on the homomorphism

~

n, one can verify by the proof of [14, Theorem 5.1] that ¢(a) and ¢(3) are triples of the

form (_, hon(wg(@))h1,-) and (-, hon(wg(B))h1, ) where hq is gp, when u # € and it is 1g

otherwise, and hq is gy, when v # € and it is 1 otherwise. Since S, g satisfies & = B , it follows

~

that 1(wq(@)) = 7(wq(B). As n(we(@)) = (wq(a)) and n(wq(B)) = n(wa(8)), it follows that
n(wq(a)) = n(wy(B)), whence, by (6.3), n(wq(a)) = n(wg(3)). However, we affirmed above
that n(wg(a)) # n(wg(B)) as a consequence of assuming that wq(o) # wq(3). Hence, this

condition does not hold, thus concluding the proof of the proposition. |

An immediate consequence of Proposition 6.2 is that, for any a € Sa, wg(a) = wg(a®),

where o is the canonical form of a and q > max{Qq, Jo* }
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6.3 Properties of the g-root of a k-term

In the remaining of the paper, for a given a € Ss with 2-length m, we will usually consider its

rank configuration of the form
a=apay  ag- a5t o, (6.4)
Notice that the g-outline wq(«) may be written as

WQ(a) = Wq,0Wq,1Wa,2 * * * Wa,2m—1Wa 2m

where: wg 2,1 = wq(ag’;ll) is a non-empty word on V~! for each odd index 2i — 1 €
{1,3,...,2m — 1}; w2 is a non-empty word on V for each even index 2i’ € {0,2,...,2m}.

We then call each wq 2;—1 a negative block and each wq 2y a positive block of wg(a). Observe
that, in each wq; (j € {0,1,...,2m}), crucial variables alternate with powers of base vari-

-1

2> and for an

ables. More precisely, for an odd j the alternation is of the form ¢ }_b; "c
even j it is of the form ¢ _,blc, , where r is a positive integer. Moreover, w, ; begins and
ends with a crucial variable except for j = 0, in which case it begins with the initial variable
i(a), and for j = 2m, in which case it ends with the final variable t(«).

Although, for the calculation of the g-root wq(c), the occurrences of spurs (i.e., products
of the form vv™! or v™1v with v € V) in wq(a) may be canceled in any order, we will assume
that each cancelation step consists in deleting the leftmost occurrence of a spur. With this
assumption, the process of cancelation of wq(«) transforms each block w, ; into a unique and

well-determined (possibly empty) word, called the remainder of w, j and denoted r, j, so that

Wq(@) = raofa,1fe2 " fa,2m—1fa,2m-

In particular, the reduction process can, possibly, eliminate completely some of the negative
blocks of wq(cr) or gather into a unique negative block of wq(c) some factors occurring in
distinct negative blocks of wg(c), in which case the intermediate positive blocks are completely
deleted.

For a finite word w over the alphabet V U V™!, we define the crucial length of w as
the number of occurrences of crucial variables in w, and denote it by |w|c.. For each j €
{0,1,...,2m}, we denote by C, ; the number of occurrences of crucial variables in w, ; that

are canceled in the computation of wq(c), that is,

Ca,j = [Wajlc = [rajlc-

Note that |wq j|c is the 1-length of «; in case j € {0,2m} and it is equal to the 1-length
of o plus one otherwise. Since the cancelations in w, ; are performed from the extremes,
Wa,j = Wa,jla,jWa,j Where W, ; (resp. Wy ;) is the longest prefix (resp. suffix) of w, ; that is
canceled by variables occurring on its left side (resp. right side). The following lateral versions

of ¢, ; will be convenient. We let

Ca,j = |[Wajles  Cayj = [Wajlc,
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and notice that Co j = Co,j + Cq,j and o ; = 0 (resp. Cq; = 0) if and only if w, ; = € (resp.
Wy,,; = €) since each intermediate block begins and ends with a crucial variable.

The following lemma presents important properties of the g-root of « in case a € Cs.

Lemma 6.3 Let « be a k-term of Co with rank configuration of the form (6.4) and let j €
{1,2,...,2m — 1}.

(a) If j is odd, then € j; <2 and Coj; <1 with Co; < 2.

(0) Ira.jle # 0.

Remark 6.4 Note that, in the context of Lemma 6.3, for all j € {1,2,...,2m — 1}, ro; is
non-empty by (b). Therefore, the number of negative blocks of wq(cr) is equal to the 2-length
m of a. Moreover, the cancelation of the prefix wq j (resp. the suffic Wy, ;) of wq j is caused
only by the adjacent block wq j—1 (resp. Wq jy1). That is, informally speaking, each block has
only a “local influence”. This means that, for each j € {1,2,...,2m}, Wy j—1 and wq,; are

mutually inverse words in F\y and, therefore, Co j—1 = Ca ;.

Proof of Lemma 6.3.  The proof is made by induction on m. Assume first that m =1

w—1 +q1 . :L,‘;;‘H]n

and so j = 1, @ = apaf ™ az and wg(a) = Wa,0Wa,1Wa2. Let a; = uoz] "y u, be

the rank configuration of a1, whence
_ 1 —Gn o —1 Cp-G2el —qi —1
Wavl - C$n7unu07$1 bmn anflvunflaxn be leauth bml anvu"u07x1'

Supposing that <y is a generic rank 1 k-term with n > 1 and ¢, = 0, we define the term

Y Up—12% Uy to be the final w2-portion of ay. To prove condition (a), we consider two cases.

CASE 1. ag has not ugzy as initial w-portion.

Hence ¢y, w,uo,z; 1S not the initial variable of wq 2 and, so, Co;1 = 0. If ap has not final
w-portion x¥u,, then ¢z, u,uoz 1S not the final variable of w9, whence ¢, = 0 and
Ca,1 = 0.

Now, suppose that ag has final w-portion x%u,,. Since « is irreducible for shortenings (s.2),
gn = 0 and g is of the form o5 Pu, with p € Z. On the other hand, wao =
i(ao)wq(ao)c(ao, @1), whence wq g is of the form w;,ObEn Can unuo,z1 - SUppose p # 0. Hence,
Wo 1 = c;j)umo,mlb;f/ (and Wy o = bﬁ;cxmun%m) where p’ is @ when p > 0 and it is q + p

when p < 0. Therefore ¢, =1 and so Co1 = 1.

w=loy and

Let now p = 0, so that g = apz¥u,. If n = 1, then a = ajafu;(uoriur)
z{urug cannot be the final w-portion of af since otherwise an elimination (e.2) could be
applied. So, arguing as above one deduces that ¢, 1 = Co,1 = 1. These equalities hold also
forn > 1 and a6 having not final w-portion ¥_;u,—;. It remains to treat the instance in

which n > 1 and oy, has final w-portion #%_;u,—_1. In this case, ¢,—1 = 0, o is of the form
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agx;‘l’ffun,lmﬁun and Co1 > 2. If r # 0, then o1 = €41 = 2. Suppose now that r = 0

and notice that the k-term

T8 _oup_o if n>2
V= w .
T5uzug ifn=2

cannot be the final w-portion of «f since, otherwise, it would be possible to apply a
shortening (s.5), with v = u,_22%_;u,—_1, and an elimination (e.2) respectively. Whence

Ca,1 = ,Ca,l =2

CASE 2. ag has initial w-portion upxy .

Since « is irreducible for shifts right and shortenings (s.3), ug = €, ¢ = 0 and a9 is of
the form ag = :c‘f“aé with s # 0. On the other hand, w2 = c(al,ag)wq(ag)t(az),
whence w2 is of the form w, 2 = cxmun,xlbgfsw/ag. Therefore wy, 1 = b;f/c;nl’umxl (and

Wa2 = an,un,rlbi/l) where s’ is g when s > 0 and it is q + s when s < 0. It follows that
Ca1 = 1.

If o has not final w-portion z¥u,, then c;, 4, », is not the final variable of w, o and, as a
consequence, Co1 = 0 and C, 1 = 1. Suppose now that ag has final w-portion ziu,. Hence
n > 1 since « is irreducible for eliminations (e.1). On the other hand, as « is irreducible
for shortenings (s.2), g, = 0 and oy = a6x‘,’i+pun with p € Z. If p # 0, then one derives
as above that ¢, = 1 and concludes that ¢, 1 = 2. Suppose now that p = 0 and notice
that 2% u,_173u, can not be the final w2-portion of . Indeed, otherwise, it would
be possible to apply an elimination (e.l) if n = 2 and a shortening (s.4) if n > 2, with
U = Up_12%u, in both cases. As a consequence, Cy, ,.u, .o Can .z 1S DOt a suffix of

Wq,0 and, so, the equalities ¢, 1 = 1 and C,,1 = 2 also hold for p = 0.

The above analysis shows that, in all possible cases, ¢, ; <2 and C, ; < 1 with ¢, ; < 2, thus
proving (a) for m = 1.

Condition (b) follows easily from (a). Indeed, |wq 1lc > 2. So, by (a), |ra,1|lc = 0 if and
only if [wq,1]c = Co,1 = 2, in which case n = 1. Since, by the proof of (a), Co,1 = 2 only for
n > 1, it follows that |ry,1]|c > 0, thus proving (b) for m = 1.

Let now m > 1 and suppose, by induction hypothesis, that the result holds for &-
terms of Co with 2-length at most m — 1. Let & = aoofl"_lag . -'04‘5’7;£3a2m,2ux“ and & =
y”vagm,Qa‘;T;ilagm, where uz® and y“v are, respectively, the initial w-portion of asg,,_1 and

the final w-portion of agy,—3. As q > g, and g, = max{Qg, g5}, we can write

Wq(Oé) = Wq,0Wq,1Wa,2Wa,3 * * - Wa 2m

QL

Wq (@) = Wg oWa 1 Wg2m—2 = Wa,0Wa,1 * * * Wa,2m—2b0ts ¢

of

wq (@) = Wg,0Wa,1Wa,2 = ieybiWa 2m—2Wa,2m—1Wa 2m-

The R-terms @ and & are clearly in So. Moreover, as « is a canonical form, & is necessarily

in Co. Indeed, & is irreducible for shifts right because « is irreducible for shifts right and
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agglutinations. Given the shape of the rewriting rules of R, the only rules that could eventually
be applied to @ are (e.1), (s.3) and (s.4). However in these cases it would be possible to apply
the same rule or an agglutination in a.

The R-term & may not be in Cs. Although, analyzing the possible reductions, as done for

a, we conclude that the only rewriting rule that can be applied to & is shortening (s.1). This

I/ w—1

happens when v = v/v” and @ is of the form y“v'o(70)“ tag, with v” € AT, 0 = v"ag,_2
and LI = 7 = 0. In such case y“v’ is not the final w-portion of 7 since agglutination (a.3) does
not apply on a. Moreover, the canonical form of @&, obtained by applying the shortening (s.1),
is @* = y“v'7“ ag,,. The respective g-outline wq(&*) is such that

— Xk _ _
wg(a*) = Wa* 0Wa* 1Wa* 2 = ra* ofa* 1 Wa* 1 Wa* 2ra* 2,

and |z« olc = |Ws* glc = 1. Since q > ga > 0z*, Wq(@") = Wg(@) by Proposition 6.2, and so
ra*i = ra, for i =0,1,2.

By the induction hypothesis, the statement holds for both & and @*. In particular, the
occurrences of crucial variables in wg 9,,,—3 (= Wa,2m—3 ) are not all canceled in the computation
of wg(d), and so [rg2m—3lc > 1. Analogously, there exist occurrences of crucial variables in
wg+ 1 that are not canceled in the reduction of wg(@*), which implies that |rs i|c > 1 since
Ira,1lc = |rax 1]c. Putting together these two facts, we deduce that |rq 2m—3|c and |ra,2m—1|c are
both positive, thus showing, in particular, that each block has only a “local influence” in the
reduction process. Furthermore, rg 2,3 = ra,2m—3, because we begin deleting the leftmost
spurs, and Cq 2m—1 < Cs,1. Therefore, statement (a) follows immediately from the induction
hypothesis applied to @ and a*.

To conclude the proof of statement (b), and of the lemma, it remains to show that
Ifa2m—2|c # 0. From |ro2m—2lc < |ra,2m—2], we get Cqom—1 = Cz1 as an immediate con-
sequence. We know already that the cancelations on wq 2,,—2 are determined only by the
adjacent blocks wq 2;m—3 and wg 2,m,—1. So, it suffices to consider the subterm ag,,—32m—1 =
agn_1£3a2m_2a§7;171 of o which, as one recalls, is a canonical form. To begin with, notice
that |wq2m—2/c = ¢ + 1 where £ is the 1-length of as,,—2. On the other hand, by (a),
Ca2m—2 = Ca2m-3 < 1 and Co2m-2 = Ca2m—1 < 2 so that Coom—2 < 3. Suppose by
way of contradiction that |ry 2m—2|c = 0 and, so, that £ < 2. Let us analyse, for each of the
three possible values of ¢, what could hypothetically be the forms of ag,,—32,m—1 and verify

that, actually, those possibilities are not compatible with ao,,—3 2,1 being a canonical form.

1) ¢ = 0, that is, agm—2 = wo € A*. In this case |wq2m—2|c = 1 and so, by hypothesis,
Ca,2m—2 = 1. Hence, either €y 2/,—2 = 1 and Cy 2m—2 = 0, or C4 2pp—2 = 0 and Cy 2m—2 = 1.

Then ag,,—3,2m—1 is of one of the forms agp—32m—1 = (woux“ P p1 ) Lwg (uxvtipz)“~1 or

w—1

aom—32m-1 = (p1y*TPv)* Lwo(p3y” T lvwp)

+q1

2) { =1, say with ag,;,_o = wozf wi. Then ’Wa,Zm—2|c = Ca2m-2 = 2 and either ’Ca72m_2 =

1 and Co 2m—2 = 1, or Ty 2m—2 = 0 and Cy 2,,—2 = 2. In this circumstance, aop,—32m—1 is of

one of the forms agm—32m—1 = (zijpl)wflzfﬂlwl (p32¥w1)*~L, in which case wg must be

w—1

empty, or 2m—32m—1 = (P12 P)* Ly 24 w1 (p3y“ T vwez¥wr )¥ L, in which case ¢ = 0.
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3) ¢ =2, with agy—o = woszrqlwlz;’Jquwg. Hence |Wq 2m—2|c = Ca,2m—2 = 3 with Cy 2m—2 =

1 and Ca,2m72 = 2. In this case wo = €, q2 = 0 and Q2m—32m—1 is of the form a29m—32m—1 =

(Ziupl)w—lztlu-i-lh w—l'

w125 wa (p325 w125 w2)
In all of the above situations it is possible to make a shift right or an agglutination on
Q2m—32m—1 and, so, this A-term is not a canonical form. Consequently, |rq 2m—2|c > 0 and the

proof is complete. [

It is useful, for later reference, to state the following facts shown in the proof of Lemma 6.3.

Remark 6.5 For an integer p let p' denote q when p > 0 and let it denote q + p other-

wise. For a k-term « in the conditions of Lemma 6.3, let j be an odd position and let

+a1,, . .l,(;;‘i’(In

w
o = upx] Ul Uy. Then,

(a) Cuy =1 if and only if up = €, 1 = 0 and ajq1 is of the form ajy = w‘fﬂ’agH with
f -1

. . L —p'
p # 0. Moreover, in this case, Wu j = by C vy 0

(b) ta,j =2 if and only if n > 1, gn—1 = qn =0 and

a;-_lx::ffx‘;jun if 29 x% is in canonical form
Q51 =
J .
a;_lx:‘;jlfaxn_lwnxﬁun otherwise.
— _ —p . .. .
Therefore, wg, ; = c. 1 bydc1 bz? ifx¥ . x¥ is in canonical form and Wy ;i =
) )] T UnUQ,T1 = Tn “Tp_1,6,Tn ~LTn—1 n—1%n 5]

-1 —q.—1

e .
Ca tim i, 31 P cggnilmnil’wnwnbgc,,k1 otherwise.

/ +p

J up and, when n > 1, ¥ up_125 U, s

P
not the final w2-portion of aj_1. In this case, Wy j = cm_nl,unuo’ml bxr .

(¢) taj; =1if and only if g, =0, aj—1 = o/;_yay

(d) forcaj = ta; =1, up, =€ if a2y is in canonical form and u, = ay, », otherwise.

7 Uniqueness of the canonical forms

This section is dedicated to prove the following fundamental theorem, that shows the unique-

ness of the canonical forms over LG.

Theorem 7.1 Let o and 3 be canonical k-terms. If LG | a = 8, then o = 3.
We begin by showing a preliminary result.

Proposition 7.2 Let o and 8 be canonical forms such that LG = o = 3.

(a) The k-terms o and 8 have the same rank.

(b) If rank(a) < 1, then a = f3.
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Proof. By hypothesis LG = o = . Hence, as LI is a subpseudovariety of LG that
separates different words and words from k-terms with rank at least 1, if one of @ and 3 is a
rank 0 K-term then they are the same k-term. We may therefore assume that o and S have
at least rank 1. Then wg(a) = wg(8) for g > max{dq, s}, by Proposition 6.2. Thus o and
B must have the same rank, since the g-root of a rank 1 k-term is a word from V' and, by
Lemma 6.3, the g-root of a rank 2 canonical form contains negative blocks. This proves (a).

Statement (b) is a consequence of (a) and [14, Theorem 5.1]. [

To complete the proof of Theorem 7.1 it remains to treat the instance in which « and

are both rank 2 canonical forms.
Proposition 7.3 Let o, € Co. If LG |E oo = 3, then a = f3.

This proposition is an immediate consequence of Proposition 6.2 and the following lemma.
Lemma 7.4 Let o, € Co and let > max{Qq,dg}. If wg(a) = wq(p), then a = (.

Proof.  Assume that wg(a) = wg(f). By Lemma 6.3, the number of negative blocks in
the g-root of a rank 2 canonical form is precisely its 2-length. Then « and S have the
same 2-length, say m. Consider the rank configurations o = aga$ 'ag--- a4 1 asy, and
B8 = Boﬁ‘fflﬁg : "B%ﬁh@m of @ and . As, for each i € {0,1,...,2m}, the remainders rq;
and rg; are non-empty by Lemma 6.3, the equality wq(a) = wg(f) implies that ro; = rg;.
Since o and 8 are canonical forms, we observed already in the end of Section 6.1 that o = 3
if and only if wq() = wq(8). On the other hand, wg(a) = wq(3) if and only if w, ; = wg; for
all 4. Recall that, for v € {a, B} Wy = Wy iy Wy 45 for @ # 0, wy ;1 and w,; are mutually
inverse words in Fy; w0 = W, 2;, = €. Therefore, to deduce the equality o = 3 it suffices to

prove that, for each odd position j € {1,3,...,2m — 1},

Wa,j = Wg; and Wy j = Wg ;. (7.1)
Throughout, let j € {1,3,...,2m — 1} be an odd integer and let o;; = ugz$ " u

w+ w+
and B; = voyy Tlop---yp

L Hx%Jrqnu

n
vy, be the rank configurations of a;; and 3;. To prove (7.1), let us
show first that w, ; and wg ; admit the same number of right cancelations of occurrences of

crucial variables.
s 4 R ¢ )
Claim 1 ¢4 ; =Cjg;.

Proof. = We know from Lemma 6.3 that C,;,Cg; € {0,1}. Suppose that ¢,; = 1 and
Csj = 0. As observed in Remark 6.5 (a), the equality C,; = 1 gives ug = ¢, g1 = 0 and
jy1 = x‘fﬂ’a;H for some integer p # 0. Hence r,; = r’wbg1 when p < 0, and rqy 11 =
b%, r’a’jJrl when p > 0. The equality Cg ; = 0 implies that rg ; ends with a crucial variable and
that rz j;1 either begins with a crucial variable, or is equal to the final variable t($) (in which
case j + 1 = 2m and fo,, € A*). So, roj 7# rgj Or o j+1 7 rgj+1. This contradicts the fact
that ro; = rg; for all ¢. Therefore C,; = 1 and Cg; = 0 does not apply, and neither does
Ca,j = 0 and Cg; = 1 by symmetry, thus proving that ¢, ; = Cg;. |
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Let us now show the following:
Claim 2 If €, j = g, then wo; = wg; and W, ; = Wy ; (and, so, aj = f3;).

Proof.  Suppose that ¢, ; = Cg j, whence €, ; = Cg ; by Claim 1. Then, from r, ; = rg; it

follows that n = k and that w, ; and wg ; are of the form

1 —0On ~—1 qg -1 a1 -1

Werj = Copumuio,z1 Pn Carn 1 tim 1,2 " Py Caryur 2901 Cor g a
| —pn—1 p2 -1 P11

W8, = Cynunvo,y byn Cyn—1,0n—1,yn " b Cyr,v1,y2 byl Yn,UnV0,Y1 "

We begin by showing the equality wy, ;j = wyg ;. If Co ; = 0 then wy, ; = € = wyg ;. It remains

to consider C,; = 1. In this case ¢, ; < 1 by Lemma 6.3. Moreover, by Remark 6.5 (a),

I L _wt
up =vg =€ qr =p1 =0, ajy1 = 27"

and s, W, j = b;f,c*1 and wg; = b;lslc*1 where, for t € {r,s}, ' = q when t > 0

Tn,Un,T1 Yn,Un,Y1

and t' =+t when ¢ < 0. So, as ro,; = rg j, one deduces that r = s and 1 = y;. To complete

/ . _ ,wts
Oéj_H, 5]4.1 =Y ]+1 for some non-zero 1ntegers r

the proof of wy, ; = wg; it remains to show that z,, = y, and w, = v,. For ¢, ; = 0, this
follows from the equalities r, j = rg ; and ug = vo. In case ¢, j = 1, from the same arguments,
we have also that z,, = y, and one deduces from Remark 6.5 (d) that u, = ay, 4, = vy or
Up = € = Up.

Let us now show the equality w,; = wg ;. By Lemma 6.3, ¢, ; € {0,1,2}. We have

therefore to consider three cases.

1) Cq,; = 0. In this case W, ; = € = wg ;.

2) ¢o; = 1. Then, by Remark 6.5 (¢), g, = pp =0, ajj_1 = oz;- 1T Uy, Biig = 1yﬁ+s
. —g .
for some integers r and s, W, ; = cgﬁn1 Unio, mlsz and wg ; = cynlvnv0 »by,S with '/ and s as

above. The equality w, j = wg ; is now a consequence of the fact that r, jw, ; = rg jwg ;.

3) Co; = 2. In this case Co; = 0 by Lemma 6.3. Moreover, by Remark 6.5 (b), n > 1,

— — — — — w+Tr _ . .

Gn = Gn-1 = Ppn = Pn-1 = 0, j_1 = aj_lmn_lun_lx‘;;un where u,—1 = € if ¥_ x¥ is
. . . . . / w+s w

in canonical form and u,_1 = az,_,z, otherwise, and 3;,_1 = i 1Yn_1Un—1Yy Un where

Up—1 = € if y¥_,y¥ is in canonical form and v,—1 = ay,_ 1yn otherwise. Whence, we have

q.—1 r! q —1 s’

that WO‘] - an ;2 UnUQ,T1 bx" xn 1,Un— lyxnbl'n 1 and WB] - Cyn Vnv0,Y1 by" Yn—1,Vn— l,ynbyn 1° AS

above, one deduces from ry jWy,; = rg jwa ; that Cu, u,ugzr = Cyp,vnvoyn and 77 = s". So,

as Tp, = Yn, tO Prove W, ; = Mg ; in this case, it remains to show that x,_1 = y,—1. Now,

ra,j—1 ends with one of the variables b,, ,, c .. , andi ;. _, and, similarly, rg;_; ends

with one of the variables by, _,,c ., , andi , ,. Since ryj_1 = rg; _1 it follows that

Tpn—1 = Yn—1-

We have proved that w, j = wg ; in all cases. This concludes the proof of the claim. ]

We now show that the number of left cancelations of occurrences of crucial variables

coincides in w,; and wg j which, in view of Claim 2, will be enough to conclude (7.1).
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Claim 3 t., = ts-

Proof.  The proof of this claim uses induction on j. By Lemma 6.3, both ¢, ; and cg ;
belong to {0,1,2}. There are, thus, three cases to look for regarding the value of 'Cg ;.

Case 1. tg; = 0. By contradiction, suppose that 'c, ; # 0. Hence, there are two possibilities.

Case 1.1.  ¢,; = 2. Then, by Remark 6.5 (b), n > 1, ¢g—1 = ¢o = 0 and aj_1 =

a;_lm‘;t’fun_lmﬁun, with w,—1 = € or up—1 = ag, ,4,. As above in the proof of Claim
1, for p # 0 this leads to a contradiction. Hence we assume that p = 0. We have ¢, ; = 0

by Lemma 6.3, whence Cg ; = 0 by Claim 1. So, k =n —2 > 1 and

foj = Cpo “On—2c—1 “On-3,..c~1 —O1—1

a,] Tn—2,Un—-2,Tn—1 " Tn—2 Tn-3,Un—-3,Tn—2 Ln—3 T1,U1,L2°T1  Tn,UnUQ,T1°
1 —Pn—2,—1 —Pn-3 ., . ~—1 —p1—1

V8.9 = Cyn_2,un—2v0,1 byn72 Cyn—3,0n—3,Yn—2 byn73 Cy1,01,y2 by1 Cyn—2,0n—2v0,y1"

As ro ; = rg j, we conclude that =, = yp—2, Tn_1 = Y1, Un—2 = Vp—2V0 = UnUg, and, for

ie{l,...,n—2}, z; = y;, ¢ = p; and, when i #n — 2, u; = v;.

Furthermore, rg ;11 begins with a crucial variable of the form c,, ,, , or it is equal to
a terminal variable of the form t,, ,, . Moreover, either r, ;11 begins with a crucial
variable of the form ¢z, ., , , or it is equal to a terminal variable of the form t, 4, .
As u,ug = vp_2v0, raj+1 = rgj+1 and it is not possible to make a rank 2 shift right at
position j, neither in « nor in S, we must have w, = v,_2 and so ug = vg. We have
also that either rg ;_; ends with a crucial variable of the form c 4, or it is equal to an

initial variable of the form i ,,,,, and that either r, ;_1 ends with a crucial variable of

the form ¢, , or it is equal to an initial variable of the form i . ,. Hence, o/jf’_l =
(uom‘fﬂl ---un,gmﬁﬂ"”unuoxj"un,lx%un)“_l and one of the two following situations
happen:

. , ]
(i) a1 = O UOTT Un—1 23U}
(i) aj—1 = uga¥un—12%uy, j > 1 and v is a non-empty suffix of oo with uy = uguy.

If situation (i) holds, « is not a canonical form as it allows the application of a short-
ening (s.1) with o = wpa§up—12%u, and 7 = u0$f+q1 ey gre T2y Tn particular,

this proves already the impossibility of Case 1.1. for j = 1.

Suppose now that situation (ii) holds. Then j > 1 and we will use the induction hy-
pothesis to obtain a contradiction. Note that z%u,u{, can not be the final w-portion
of aj_o (otherwise it would be possible to make an agglutination (a.3)). Consequently,
Cg,j—2 = Cq,j—2 = 0 and |rg j_1|c = |ra,j—1]c = 1. Furthermore rg ;1 = ro j—1 = Czwup,z:
where z“wuy is the final w-portion of a;_5. Hence, the final w-portion of f;_o is z¥w’
with w’ a prefix of w. Assuming by induction hypothesis that Cg j_o = Cq j—2, we have
from Claim 2 that a;j_o = j_2, and one deduces that w = v’ and uj = €. So, actually,

situation (ii) can not happen either.
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CasE 1.2.  Chj =1. So, k =n—12> 1 and, by Remark 6.5 (¢), aj—1 is of the form
aj_1 = a;_lx%“’un and g, = 0. If p # 0, then we get a contradiction as above. So, we

assume additionally that p = 0. Thereby, we get

1 On—1,—1 On-2 . gz —1 /
Yo j = Cﬂﬁn 1,Un— 1,znb:vn 1 Cavn 2,Un—2,Tn— 1b$n 2 C$21u27$3b$2 CI17U1,$2ra7J’
. -1 Pn-1,.—1 Pn—2 . p2 ~—1
rg,; = Cyn 1,Un—10,Y1 byn 1 CYn—2,0n—2,yn— 1byn 2 Cy2,v2,y3 by2 Cy1,01,y2 rﬁJ’

for some words r, ;. rj ;
/

Mo = rB,j’ Up—1 = Un_1V0, Tn = Y1, T; = Y;, pi = ¢; if i # 1, and u; = v; when i #n — 1.
Whence

e (V' H* Asryj = rg ;, we conclude that, for i € {1,...,n—1},

w—1 _ 1 w+ w+q2 wWtqn—1 w w—1
o105 = a1 v (uoxy  Pugzy  Pug - xy T  up 1 un ),
w—1 _ w4+ w+q2 wWtgn—1 w—1
Bi—1B8; " = Bj—1(vory Pruazy Fug -z I o)

Suppose now that C,; = 1. Hence Cg; = 1, ¢t = p1 = 0 and up = vg = €. So,
Up_1 = Un_1, No crucial variables occur in either r;j or r’ﬁj and aj,loz;?*lajﬂ is of the

form

w+qgn—1 w—1, w+r

w—1 0 w w w /
aj105 " gy = G wup (T2, T U125 un )T 2 oGy

J
with » # 0 and u,, # € since a € Co. Therefore, « is not a canonical form since it is

possible to make a shortening (s.4).

Suppose next that C,; = 0 and so that Cs; = 0. Then r/, ; = by ot gy, A0
r%yj = b c ;nl o 1vo.an. Lherefore x, = xn,_1, 1 = p1 and UpUy = Vp—10g (=

Up—1)- As in Case 1.1, analysing the first crucial variable of the remainder at posi-

tion j + 1 and the last crucial variable of the remainder at position 7 — 1, we conclude

that w, = v,—1 (whence up = vp) and upx¥u, is a suffix of aj_sa;_;. Consequently,
w—1 +q w+q2 w+tqgn—1

a; = (upzh UITy U Ty unuox%un)“’*l and one of the two following situa-

tions happen:

. " w .
(i) aj—1 = Qj_ Uy Un;

(i) aj—1 = ugr¥uy, j > 1 and vy is a non-empty suffix of aj_o where ug = ugug.

If (i

ing (s.1) with o = wpa¥u,, and 7 = ugzy

holds, then « is not a canonical form since it admits the application of a shorten-

w+q1 w+q2 WHqn—1

UITy  “UD - Ty Up. If j = 1, this proves
the impossibility of Case 1.2. If j > 1, it remains to consider situation (ii), in which case
'€3,j—1 = Ca,j—1 = 0 and |rg j_1|c = |ra,j—1|c = 1. Furthermore rg ;1 = raj—1 = Cz wug,zn
where z“wuy is the final w-portion of a;_2. Consequently, the final w-portion of 3;_o is
z“w’ with w’ a prefix of w. Again assuming by induction hypothesis that Cg j_2 = Cq,j—2,
we have from Claim 2 that aj_o = fj_2, and this implies that w = w’ and u(, = €. There-

fore, situation (ii) also does not occur.

In both cases, 1.1 and 1.2, we reached a contradiction. Therefore ¢, ; = 0 when 'cg; = 0.

By symmetry it follows that ¢, ; = 0 if and only if 'cg ; = 0.
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CaAsk 2. cgj = 2. Then C,; = Cg; = 0, and T, ; # 0 by Case 1. Suppose that C,; = 1.
Hence k =n+1, ¢, = pp = pny1 = 0, and a1 and 3;_1 are of the forms, respectively,

) 0 w+q ) _al w+p w
Qj1 = Tn Uy and 3_1 = _1Yn | UnYp 1 Un- Furthermore,
!
_— he 1 ... h 21 —01 -1
rau] - bxncxn—lyun—17$n bx2 Cx17u17$2bz1 anvu’nu()vxl’

/
. — K 1 ... p P21 —p1,.—1
rﬁv] - byncyn—lyvn—lvyn by2 Cy17U17y2 byl Cyn+lavn+1v()7y17

where, for t € {p, ¢}, t' is 0 when ¢ > 0 and it is ¢ when ¢ < 0. From the equality ro j = rg ;
it follows that, for i € {1,--- ,n—1}, ¢ =P/, Tn = Yn = Ynt1, UnUo = Vpt1v0, Ti = Yi,
u; = v; and p; = ¢;. Again, analysing the first crucial variables of ro ;11 and rg i1, we

conclude that wu, = v,41, so that ug = vg. Whence,

w—1 __ gt w+ w w+q1 wWtgn—1 w w w—1
Bj_lﬂj = Bj_17, Popaun (uory  Mug -z, 1T Up—1 X Up T )Y

So, B is not a canonical kK-term, either because v, = € or because v, # € and it allows
the application of a shortening (s.5). This is in contradiction with the hypothesis and so

Caj =2 =TCp;-
CaAsk 3. tg;j = 1. From the previous cases it is now immediate that ¢, ; = cg; = 1.

We have proved in all cases that ¢, ; = Cg ; and, so, the proof of Claim 3 is complete. =

The ending of the proof of the proposition is now clear. By Claim 3, ¢, ; = Cg; and,
so, by Claim 2 (which uses Claim 1) one deduces that w, ; = wg ; and w, j = wg ; for every
odd position j. As observed above this entails that wq(e) = wq(5) and, so, as o and (3 are

canonical forms, that o = . [
The next result, which also follows from Lemma 7.4, is a weaker version of the reciprocal
of Proposition 6.2.

Proposition 7.5 Let o, f € C1 USy and let q > max{Qq,Ja*,0s,ds+}. If Wg(a) = wq(5),
then LG = a = 3.

Proof.  Assume that wq(a) = wq(8). By Proposition 6.2, wg(a) = wg(a*) and wq(8) =
wq(B*), where o* and * are the canonical forms of o and 3. Therefore, wq(a*) = wq(8*)
and, by Lemma 7.4, o* = §*. Hence LG = o* = * and so, as every R-term is Y-equivalent

to its canonical form, LG = o = 3. [

8 Main results
The main results of this paper may now be easily deduced.

Theorem 8.1 The k-word problem for LG is decidable.
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Proof.  The solution of the kK-word problem for LG consists in, given two k-terms « and g,
to compute their respective canonical forms o* and g*. Then, by Theorem 7.1, LG F a =

if and only if o* = §*. |

By the above proof, to test whether a k-identity o = (8 holds over LG, it is necessary
to compute the canonical forms of the F-terms « and S and verify they are the same. An
alternative test requests the calculation of g-roots. If o and S are not finite words, then one
computes R-terms «° and B° using the procedure described in Section 5.1. Their g-outlines
are well-defined expressions wg(a®) and wq(3°) parameterized by q. Making all possible can-
cellations, one obtains well-defined expressions, also parameterized by q, that coincide with
the g-roots wg(a®) and wq(B°) for q large enough (see Example 6.1 as an instance). So,
by Propositions 6.2 and 7.5, LG = o = § if and only if wg(a®) and wg(5°) are the same

expression.
Theorem 8.2 The set ¥ is a basis of k-identities for LG".

Proof. = We have to prove that, for all &-terms o and 8, LG E « = f if and only if
> F a = . The only if part follows from the fact that LG verifies all the k-identities of
3. For the if part recall that, by Section 5, there exist canonical forms a* and * that may
be computed from « and f using the &-identities of 3. Therefore, if LG = a = § then
LG E o = 8* and so, by Theorem 7.1, a* = g*. Since ¥  {a = o*, 8 = f*} it follows by
transitivity that X - a = . [ |
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