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ABSTRACT
Modeling and accurately forecasting trend and seasonal patterns
of a time series is a crucial activity in economics. The main pro-
pose of this study is to evaluate and compare the performance of
three traditional forecastingmethods, namely theARIMAmodels and
their extensions, the classical decomposition time series associated
with multiple linear regression models with correlated errors, and
the Holt–Winters method. Thesemethodologies are applied to retail
time series from seven different European countries that present
strong trend and seasonal fluctuations. In general, the results indi-
cate that all the forecasting models somehow follow the seasonal
pattern exhibited in the data. Based on mean squared error (MSE),
root mean squared error (RMSE), mean absolute percentage error
(MAPE), mean absolute scaled error (MASE) and U-Theil statistic, the
results demonstrate the superiority of the ARIMA model over the
other two forecasting approaches. Holt–Winters method also pro-
duces accurate forecasts, so it is considered a viable alternative to
ARIMA. The performance of the forecasting methods in terms of
coverage rates matches the results for accuracy measures.
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1. Introduction

Forecasting methods are a key tool in decision-making processes in many areas, such as
Economics, Management, Finance, or Environment, and over the past several decades
much effort has been devoted to the development and improvement of time series fore-
casting models.

In today’s competitive global economy, accurate forecasting is crucial for profitable retail
operations, since it supports most of the strategic planning decisions of any retail business,
directly affecting revenue and competitive position [33]. Retail time series often exhibit
strong trend and seasonal patterns. How to best model and forecast these patterns has been
a long-standing issue in time series analysis.

There are several different approaches to deal with trend and seasonal time series,
which can be divided into linear and nonlinear models. The available traditional statistical
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approaches include time series decomposition, exponential smoothing, time series regres-
sion, and autoregressive integrated moving average (ARIMA) models. These are linear
models, in which predictions of future values are constrained functions of past observa-
tions. Because of their relative simplicity in terms of understanding and implementation,
linear models have been widely used for time series forecasting [36]. An extensive review
of the existing forecasting methods can be found in [15].

Although several comparative studies of forecastingmodels have been conducted in the
literature, the findings are mixed as to the most suitable approach for accurate retail series
forecasting.

In turn, [19,37] investigated the use of neural networks in forecasting aggregate retail
sales, and both teams of researchers have concluded that the overall out-of-sample fore-
casting performance of neural networks does not outperform the traditional ARIMA
models without appropriate data preprocessing. Aras et al. [5] also found that neural net-
works do not outperform the traditional forecasting techniques. In a global perspective,
[22] evaluated eight widely used machine learning (nonlinear) models versus eight tradi-
tional statistical ones, including ARIMA and Holt–Winters models, all applied to a set of
3003 time series of M3. The authors found that traditional statistical methods are more
accurate than nonlinear models, and that their computational requirements are consider-
ably lower than those of machine learning methods. In fact, many observed time series
exhibit non-linear characteristics, but nonlinear models do not necessarily produce better
out-of-sample forecasts than linear models [11,23].

In the food retail segment, [32] compared ARIMA and Holt–Winters models for pre-
dicting demand data from a group of perishable dairy products, having concluded that
Holt–Winters outperforms MAPE and Theil’s U-statistic, has better adjustment, and cap-
tures the linear behavior of the series. Subsequently, [33] assessed the accuracy of demand
forecasting between those two linear forecasting methods and two nonlinear forecasting
models based on natural computing approaches. In general, the results showed that all the
forecasting models somehow follow the seasonal pattern exhibited by the data, although
nonlinear approaches performed better. Additionally, nonlinear methods also achieved
more accurate results. The performance of themodels was also tested byMAPE and Theil’s
U-statistic. Arunraj and Ahrens [6] developed a seasonal autoregressive integrated mov-
ing averagewith external variables (SARIMAX)model to forecast daily sales of a perishable
food. The results showed that SARIMAX models yield better forecasts compared to sea-
sonal naïve forecasting, traditional SARIMA, and multilayer perceptron neural network
models.

Suhartono et al. [31] also proposed a SARIMAX model to forecast clothing monthly
sales, which yielded better results compared to the SARIMA model. Ramos et al. [28]
compared the forecasting performance of state space models and ARIMAmodels through
a case study of retail sales of five categories of women’s footwear. The results showed
that the forecasting performance of these two models presented no significant difference
via RMSE, MAE, and MAPE for both one-step and multi-step forecasts. Both models
produced coverage probabilities that were close to the nominal rates.

Pillo et al. [25] introduced the support vector machine (SVM) in sales forecasting,
establishing a comparison with some traditional statistical methods, namely ARIMA, sim-
ple exponential smoothing, and Holt–Winters models. Based on the mean squared error
(MSE), the authors concluded that SVM provides better forecasts than the other applied
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methodologies. Aye et al. [7] evaluated the performance of 26 forecasting models, includ-
ing ARIMA and Holt–Winters, in forecasting aggregate seasonal retail sales. The authors
underlined the difficulty in identifying a specific model as the best one for forecasting
aggregate retail sales. Finally, [18] verified the accuracy of models in predicting revenue
in the service sector based on 6 criteria to determine if the use of certain criteria could lead
to the adoption of particular models.

In some cases, combining different models can increase the chance to capture different
patterns in the data and thus improve forecasting performance. Several empirical studies
have already suggested that combining several different models can often improve fore-
casting accuracy over the individual model [1,5,7,24]. Furthermore, the combined model
is more robust regarding possible structure changes in the data [36].

An extended review of the research literature on the retail forecasting field is available
in [16].

It follows from the foregoing that all commonly used forecasting models (linear or
nonlinear) have their own characteristics, strengths and weaknesses [7]. In fact, different
models capture different aspects of the series, and therefore none of them was identified
as the universal model that fits every forecasting situation. The purpose of this work is to
compare the forecasting performance of three traditional methods, namely the ARIMA
models and their extensions, the classical decomposition time series associated with mul-
tiple linear regression models, and the exponential smoothing methods. These methods
are selected due to their ability to model trend and seasonal fluctuations present in eco-
nomic data, particularly retail sales data. The nonlinear approaches were not evaluated
since the claims of their superiority were found to be exaggerated. According to [24], lin-
earmodels should be the preferred ones if they are able to efficiently capture the underlying
data-generating process. Moreover, linear models have the important practical advantage
of easy interpretation and implementation in addition to their simplicity and low cost [33].

The remainder of the paper is organized as follows. The next section describes the time
series used in the study. Section 3 describes the seasonal ARIMA model, Holt–Winters
method, andmultiple linear regression approach used for retail series forecast. The perfor-
mance measures selected to evaluate and compare the accuracy of the forecasting models
are also presented. The empirical results obtained in the research study are discussed in
Section 4 based on a significant dataset of seven time series of European countries. The
last section offers the concluding remarks.

2. Motivation for the analysis and data description

The data was collected from the Statistical Office of the European Union (Eurostat [30]),
which provides official, harmonized statistics in the European Union and the euro area,
offering a comparable, reliable and objective portrayal of European society and economy.

The trade sector is a key sector in the European economy. According to Eurostat, in
2015, this sector employed around 33 million people and represented 9.9% of the Euro-
pean Union’s total gross value added. In terms of turnover, in 2016 the sector produced
around 9.9 trillion euros, of which 57.8% corresponded to wholesale trade (−1% com-
pared to 2015), 28.9% to retail trade (as in 2015), and the remaining 13.3% to automotive
trade (+1%).
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Retail trade is a dynamic and complex sector encompassing different types of compa-
nies whose structure reflects the cultural characteristics of the society in which it operates,
bearing the impact of sociological, economic and technological evolution. Thus, from an
economic point of view, it is paramount to study the retail trade sector to assess the per-
formance of any national economy. In fact, in addition to representing almost 1/3 of the
turnover of the commerce sector in 2015, retail trade held 58.4% of commercial companies
and employed 8.7% of the EU’s working population, which corresponds to approximately
18.8 million jobs.

In 2016, retail trade in Europe amounted approximately to 2.9 trillion euros. In terms
of turnover, the most important retail markets in Europe were Germany (roughly 537.5
billion euros), the United Kingdom (roughly 480.3 billion euros), and France (roughly
440.9 billion euros). In addition to these countries, Italy and Spain also featured promi-
nently, presenting values in the range of 300 and 200 billion euros, respectively. All these
major markets, with the exception of Germany (−4.9%) and the United Kingdom (−7%),
recorded an increase in retail turnover in 2016.

The economic situation caused by the 2008 crisis predictably impacted the trade trade
sector, having influenced indicators such as turnover. In fact, in 2009 there was a reduction
of more than 5% in European turnover, followed by an improvement of equal dimension
in 2010. Thereafter, the turnover did not reach such low values again and presented a very
positive evolution, having registered minimal decreases (−0.9%) only in 2013 and 2016.

In this study, time series for seven European countries are analyzed. These seven coun-
tries include Portugal (PT) and theirmain trading partners according to theContemporary
Portugal Database (PORDATA), namely Germany (DE), Spain (ES), France (FR), Italy
(IT), the Netherlands (NL), and the United Kingdom (UK). Moreover, this group of coun-
tries has significant economic relations with each other, primarily because they share the
European area and because of their geographical proximity. The variable analyzed is TOVT,
which corresponds to indexes of total turnover in the context of retail trade. The objective
of the turnover index is to show the development of the market for goods and services.
Turnover comprises the totals invoiced by the observation unit during the reference period,
and this corresponds tomarket sales of goods or services supplied to third parties. Turnover
also includes all other charges (transport, packaging, etc.) passed on to the customer, even if
these charges are listed separately in the invoice. Turnover excludes value added tax (VAT)
and other similar deductible taxes directly linked to turnover, as well as all duties and taxes
on the goods or services invoiced by the unit. Note that these indexes should be compared
with the base year, in this case 2015, which corresponds to the index 100. The dataset used
concerns the period from January 2000 to February 2018. Figure 1 presents the time series
of the seven countries under analysis.

A seasonal variation is detected in an exploratory analysis of the observed values of
TOVT in the time series these seven countries. The Christmas season has a marked
influence on the retail trade. Every December, retail trade figures spike upwards and
then contractions occur in January. Some of the countries under study present similar
trends, namely France and the United Kingdom, showing rising trends over time. Por-
tugal and Spain show decreasing trends between 2009 and 2014, thus corroborating the
above-mentioned negative effect of the 2008 economic crisis.

Table 1 summarizes the descriptive statistics for the monthly measurements of the
TOVT variable in the seven European countries under study in 2009–2014.
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Figure 1. Index of total turnover in the context of retail trade for the seven countries under study
between January 2000 and February 2018: (a) Portugal, (b) Germany, (c) Spain, (d) France, (e) Italy, (f )
Netherlands, (g) United Kingdom. The base year is 2015 (TOVT = 100).

The Netherlands, Italy, and Germany present the lowest TOVT dispersion, with some
constant periods during the period under observation, as graphical analysis suggests.
Portugal and Spain present mean values slightly higher than 100, which means that the
turnover is, on average, higher than that recorded in 2015. Regarding the countries with
increasing trends, the mean of TOVT is widely lower than 100 due to the number of years
registered before 2015, when the turnover was lower.
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Table 1. Descriptive statistics of TOVT in seven European countries.

Country Range Mean Sd 1st quartile 3rd quartile

Portugal 84.00–158.10 108.58 13.41 99.93 113.80
Germany 74.70–127.90 92.06 9.33 86.13 97.08
Spain 70.50–143.40 102.17 12.50 94.38 108.80
France 53.70–135.30 86.94 15.60 75.43 96.80
Italy 73.20–131.30 96.45 11.48 89.80 100.48
Netherlands 77.30–124.20 99.27 8.39 94.10 104.43
United Kingdom 59.60–137.70 85.49 14.93 73.70 95.30

3. Methods

3.1. Seasonal ARIMAmodels

The seasonal autoregressive integrated moving average (SARIMA) models, introduced by
Box and Jenkins [10], are one of the most versatile linear models for forecasting seasonal
time series, capable of representing both stationary and non-stationary data. Thesemodels
are based on identifying the structure of the autocorrelations inherent to time data, describ-
ing the series as a linear combination of its own seasonal and nonseasonal lagged values
and errors [5]. As most seasonal time series exhibit trends and/or seasonal variations, both
seasonal and nonseasonal differencing are often used to stabilize the time series. In fact, in
many important application areas, like engineering, economics, and environment, station-
arity is really rare, and so the introduction of differencing to deal with nonstationarity was
particularly important because it allowed applying research developed for stationary time
series to nonstationary series [20].

There is a huge variety of SARIMA models. The general SARIMA model can be
expressed as [37]

�p(B)NP(Bs)(1 − B)d(1 − Bs)DYt = �q(B)HQ(Bs)εt , (1)

with �p(B) = 1 − φ1B − · · · − φpBp, NP(Bs) = 1 − ν1Bs − · · · − νPBPs, �q(B) = 1 +
θ1B + · · · + θqBq, HQ(Bs) = 1 + η1Bs + · · · + ηQBQs, where s is the seasonal length (e.g.
s = 12 for monthly data), B is the backshift operator defined by BkYt = Yt−k, �p(B) and
�q(B) are the regular autoregressive and moving average polynomials of orders p and q,
respectively, NP(Bs) andHQ(Bs) are the seasonal autoregressive and moving average poly-
nomials of orders P andQ, respectively, and εt is a sequence of white noises with zeromean
and constant variance σ 2. (1 − B)d and (1 − Bs)D are the nonseasonal and seasonal dif-
ferencing operators, respectively. The roots of the polynomials �p(B),�q(B),NP(Bs), and
HQ(Bs) should lie outside a unit circle to ensure causality and invertibility [28]. Model (1)
is often referred to as the SARIMA(p, d, q)(P,D,Q)s model.

The selection of an appropriate SARIMAmodel is based on the Box-Jenkins methodol-
ogy, a three-step iterativemodeling approach consisting ofmodel identification, parameter
estimation, and diagnostic checking [20]. After identifying the model, the associated
parameters are estimated and the residuals are obtained. It is important to check the resid-
uals structure, since, for satisfactory models, the residuals should resemble independent
and identically distributed (i.i.d.) or white noise process [35]. These three stages of the
modeling process are typically repeated several times until an adequate model is selected.
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In order to make a careful choice, neighbor models must be explored. The choice
between two or more SARIMA models was based on the Akaike Information Criterion
(AIC). The general formulation of the AIC can be expressed by AIC = −2 log(L) + 2m,
where L is themaximum likelihood of themodel andm is the number of estimated param-
eters [2]. The model that minimizes the AIC is considered to be the most appropriate one.
However, if the differences between the models’ AIC were residual (≤ 2), the most parsi-
monious model among all the representative ones – i.e. the one with the lowest number of
parameters – should be selected as the final model for forecasting.

After model selection, point forecasts are readily calculated by replacing parameters
with their estimates, and errors with the available residuals. Recursions can be used to
obtain the forecasts for h steps ahead [20]. The forecast intervals for SARIMA models are
based on the σh that denotes the standard deviation of the h-step ahead forecast errors.
Assuming that the residuals are uncorrelated and normally distributed, the (1 − α)100%
prediction interval for the h-step ahead forecast is

]
Ŷt+h|t − z1−α/2σ̂h, Ŷt+h|t + z1−α/2σ̂h

[
, (2)

where ŷt+h|t is the h-step ahead point forecast, z is the appropriate quantile for the standard
Normal distribution, 1 − α is the confidence level of the interval, and σ̂h is the estimated
standard deviation of the h-step ahead forecast errors. For a 95%prediction interval, zmust
be replaced with 1.960.

3.2. Exponential smoothingmethods

Exponential smoothing refers to a set of methods that, in a versatile way, can be used to
smooth and forecast a time series without the need to fit a parametric model. These meth-
ods belong to a class of local models that automatically adapt their parameters to the data
during the estimation procedure, and therefore implicitly account for (slow) structural
changes in level, trend, and seasonal patterns. The exponential smoothing forecasts are
weighted combinations of past observations, with the weights decreasing exponentially as
the observations come from further in the past – the smallest weights are associated with
the oldest observations [17].

If the data have no trend or seasonal patterns, then simple exponential smoothing is
appropriate. On the other hand, if the data exhibit a linear trend, then Holt’s linear model
should be used. The Holt–Winters (HW) method is an extension of the Holt’s method,
and is applied whenever data behavior is trendy and seasonal. Seasonality can be modeled
in an additive or multiplicative way, depending on the oscillatory movement along the
time period under observation. The additive version should be considered whenever the
seasonal pattern of a series presents constant amplitude over time, while the multiplicative
version is preferred when the amplitude of the seasonal pattern varies with the series level.
In both versions, forecasts will depend on level, trend, and seasonal coefficient.

The Holt–Winters model is based on three smoothing equations: one for the level, one
for trend, and one for seasonality. The recursive equations for both the multiplicative and
the additive HWmethods, with h+

s = [(h − 1)mod s] + 1, are presented in Table 2, where
Yt is the observed data at time t, s is the length of seasonality (number of months in a
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Table 2. Holt–Winters method recursive equations.

Additive HWmethod Multiplicative HWmethod

Level: lt = α(Yt − st−s) + (1 − α)(lt−1 + bt−1) Level: lt = α Yt
st−s

+ (1 − α)(lt−1 + bt−1)

Trend: bt = β(lt − lt−1) + (1 − β)bt−1 Trend: bt = β(lt − lt−1) + (1 − β)bt−1
Seasonal: st = γ (Yt − lt) + (1 − γ )st−s Seasonal: st = γ Yt

lt
+ (1 − γ )st−s

Forecast: Ŷt+h|t = lt + hbt + st−s+h+
s

Forecast: Ŷt+h|t = (lt + hbt)st−s+h+
s

season), h = 1, 2, . . . is the forecast horizon, and θ = (α,β , γ )T is the vector of smoothing
parameters for level, trend and seasonality, respectively [17].

The initial states l1, b1, st−s, . . . , s1 and the smoothing parameters α,β , γ are estimated
from the observed data using computer software. The smoothing parameters are con-
strained between 0 and 1, so that the equations can be interpreted as weighted averages.
Simple exponential smoothing and Holt’s method are derived from the above equations
considering that the corresponding exponential parameters β and γ are to be set to zero
[13].

The exponential smoothing methods are algorithms which ignore the error component
and consequently only generate point forecasts. However, the error can be added to the
model both in an additive or multiplicative way, which is extremely relevant for calculating
the prediction intervals, [8]. In this study, additive errors were considered. After estimating
both HWmethods, the one with the lowest one-step mean squared error (in-sample) was
selected.

Computing prediction intervals is an important part of the forecasting process, intended
to indicate the likely uncertainty in point forecasts. However, the Holt–Winters methods
do not provide good prediction intervals. In fact, a lot of different formulae have been
proposed for obtaining prediction intervals, but several studies have shown that proposed
intervals tend to be too narrow or unreasonably wide [9]. For this study, the forecast inter-
vals are based on the mean squared error (MSE) that denotes the variance of the h-step
ahead forecast errors [21]. The (1 − α)100% empirical prediction interval (if the nor-
mally assumption is verified) for the h-step ahead forecast when the time series presents a
seasonal component with period s is

]
Ŷt+h|t − z1−α/2

√
MSEh, Ŷt+h|t + z1−α/2

√
MSEh

[
, (3)

where Ŷt+h|t is the h-step ahead point forecast, z1−α/2 is the appropriate quantile for the
standardGaussian distribution, andMSEh = 1

n−h−s+1
∑n

t=h+s[ε
(h)
t ]2 denotes the variance

of the h-step ahead errors.

3.3. Multiple linear regressionmodels with autocorrelated errors

Multiple linear regression can also be used to model time series with trend and seasonal
patterns. The trend component is deterministic and can be modeled by polynomials of
time t of some low orders. In the simplest case, the trend is modeled as a linear function of
time, which corresponds to a linear regression model with a single explanatory variable

Yt = β0 + β1t + εt , (4)
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where β0 is the level of the series when t = 0, β1 is the amount of change in the time series
associated with a one unit increase in time, t is the time variable (e.g. 1 to 90 for 90 equally
spaced observations), and εt is the random error. However, some time series present a non-
linear behavior that is not fully explained by the above model. In these cases, a polynomial
trend from a higher order should be fitted to the data, that is

Yt = β0 + β1t + β2t2 + · · · + βptp + εt , (5)

where t is the time variable, and p is the order of the polynomial that describes the trend
component. For quadratic or cubic trends, p should be set to 2 or 3, respectively.

Economic time series are frequently influenced by real-world events (e.g. the economic
crisis of 2008). In time series methodology, the impact of an event can be analyzed through
segmented regression analysis, in which the time series is partitioned in specific points in
time (change-points) – also known as interrupted time series. In the simplest case, there
is only one event, and linear regressions are estimated for the two parts of the time series
(the pre- and post-event segments), using two distinct parameters for each part: the level
(intercept) and the trend (slope). A change in these parameters represents an effect of the
event: a significant change in the level of a series indicates an immediate change, and a
change in trend reflects a more gradual change in the outcome [34]. This model can be
expressed as

Yt = β0 + β1t + β2 × Eventt + β3t × Eventt + εt , (6)

where t is the time variable, β0 and β1 are the intercept and the slope for the pre-event
trend, andβ2 andβ3 represent the post-event changes in the intercept and the slope. There-
fore, the sum of the pre-event intercept (β0) and its change (β2) results in the post-event
intercept, while the sum of β1 with β3 corresponds to the post-event slope. The dummy
variable eventt codes represent for whether or not each time point occurred before or after
the event (0 for all points prior to the event; 1 for all points after, including the change-
point). According to the time series under study, polynomial trends can also be included,
as well as more change-points (events), which will increase the complexity of the model.
When two or more events are considered, they are mutually exclusive, i.e. the first event
does not extend its effect to the next event.

The seasonal component can be modeled either by seasonal dummy variables in a qual-
itative way or harmonic seasonal models that use trigonometric functions to describe the
pattern of fluctuations seen across periods. In this study, the seasonal component was
modeled by harmonic seasonalmodels. In fact, seasonal effects often vary in a smooth, con-
tinuous way, and instead of estimating a discrete intercept for each season, this approach
can provide a more realistic model of seasonal change [14]. Also, using sine/cosine waves
as independent variables is advantageous because, in most cases, several of these variables
are not statistically significant, which allows for the adjustment of a more parsimonious
model [4]. The harmonic seasonal model is formally expressed as [14]

Yt = Tt +
s/2∑
i=1

(αi cos(2π it/s) + βi sin(2π it/s)) + εt , (7)

where Tt is the trend model, αi and βi are the unknown parameters of interest, s is the
number of seasons within the time period (e.g. 12 months for a yearly period), i is an index
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ranging from 1 to s/2, and t is the time variable. When slopes vary over time, [4] suggest
that a new term is added to the harmonic seasonal model. For these cases, the model can
be written as

Yt = Tt +
s/2∑
i=1

[
αi cos

(
2π it
s

)
+ βi sin

(
2π it
s

)]

+
s/2∑
i=1

[
γit cos

(
2π it
s

)
+ δit sin

(
2π it
s

)]
+ εt , (8)

where Tt is the trend model, the first summation describes the seasonal variation, and the
second summation describes the variation of slopes over the time period.

However, time series often exhibit strong autocorrelation which often manifests in
correlated residuals after a regression model has been fitted. This violates the standard
assumption of independent (i.e. uncorrelated) errors. Thus, with correlated residuals, the
standard deviations of the coefficients given by the linear model are not correct. This, of
course, may lead to a wrong decision given by the t-test. Also, in general, the Ordinary
Least Squares (OLS) estimators may lose their optimality properties if the residuals are not
independent [4]. To overcome the autocorrelation problem, [4] propose a linear model of
the form

Yt = β0 + β1X1
t + β2X2

t + · · · + βpX
p
t + εt , (9)

where the error component, εt , follows an autoregressive Gaussian stationary process of
order k, AR(k), that is,

εt = φ1εt−1 + · · · + φkεt−k + at ,

or, alternatively,

�(B)εt = at ,

where at is a sequence of zero mean, uncorrelated normal variables, and �(B) is the
autoregressive polynomial of order k.

When the residuals follow any autoregressive stationary process, Alpuim and El-
Shaarawi [3] show that, under certain conditions of the design matrix X, the OLS and
Maximum Likelihood (ML) estimators are asymptotically equivalent and fully efficient.
For this to be so, the set of p independent variables in time t, XT

t = (X1
t ,X2

t , . . . ,X
p
t ), must

verify a linear recursive relationship of the type

Xt = �Xt−1, (10)

where � is a p × p matrix of constant coefficients. Most of the time varying regressors
used in linear models verify this recursive relationship, as in cases of linear and polynomial
trends, sin/cosine waves, dummy variables, etc. [4].

Also, for the linear model (9) with the condition (10), Alpuim and El-Shaarawi [3] show
that the vector of OLS estimators is asymptotically normal with the variance/covariance
matrix given by

Var(β̂) = σ 2
a [�(B)XT�(B)X]−1, (11)

withX representing thematrix that contains thewhole set of the independent variables, and
�(B)X representing the matrix where each element is obtained by applying the operator
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�(B) to the corresponding element of the matrixX. More precisely, the generic element of
the matrix �(B)X is given by

Xj∗
t = �(B)Xj

t = Xj
t − φ1X

j
t−1 − · · · − φkX

j
t−k,

for j = 1, . . . , p and t = k + 1, . . . , n. In practice, the values for the autoregressive coeffi-
cients (φi, i = 1, . . . , p) and the variance of the white noise sequence, σ 2

a , are unknown.
However, if n is large, we may replace them by consistent estimators, which allows obtain-
ing an asymptotic test for the significance of each variable, based on the normal distribution
(z-test) [4].

In harmonic seasonalmodels, a cosine curvewith a certain period should be included or
eliminated together with the corresponding sine with the same period, and vice versa, i.e.
they should be included or eliminated in pairs. On one hand, this practice ensures that the
OLS estimators are optimal and, on the other hand, that the formula for the variances (11)
of the estimators can be applied. For the same reason, the time multiplied by the cosine
with a certain period should be included or eliminated together with the time multiplied
by the corresponding sine. Also, this variable should not be included without the cosine
and sine with the same period [4].

After removing the non-significant explanatory variables from the full models, the
selection between two or more final models is based on the adjusted coefficient of deter-
mination, R2a, corrected to take into account the autoregressive parameters (if applicable).

Just like the model needs corrections in the presence of correlated residuals, the predic-
tion intervals should also be updated. The limits of a (1 − α)100% prediction interval for
a general linear regression model are

Ŷi − t1− α
2 ;n−p−1

√
σ̂ 2

(
1 + xTi (XTX)−1xi

)
(12)

and

Ŷi + t1− α
2 ;n−p−1

√
σ̂ 2

(
1 + xTi (XTX)−1xi

)
, (13)

where Ŷi is the point forecast, t is the appropriate quantile for the t distributionwithn−p−1
degrees of freedom, and σ̂ 2 is the estimated variance of the errors. To obtain the correct
prediction intervals, the matrix (XTX)−1 should be replaced by (�(B)XT�(B)X)−1.

3.4. Performancemeasures

Errormetrics are the traditional way of quantifying the accuracy of a forecast [29]. To eval-
uate the predictive accuracy of the forecastingmethodswe applied theMSE (Mean Squared
Error), the RMSE (Root Mean Squared Error), the MAPE (Mean Absolute Percentage
Error), the MASE (Mean Absolute Scaled Error), and the Theil’s U-statistic.

MSE is one of the most commonly used scale-dependent metrics. Based on squared
errors, it is defined as

MSE = 1
n

n∑
t=1

(Yt − Ŷt)
2, (14)

whereYt represents the actual value, Ŷt is the point forecast, and n is the sample size. Often,
the RMSE = √

MSE is preferred to the MSE as it is on the same scale as the data.
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Percentage errors have the advantage of being scale-independent, so they are frequently
used to compare forecast performance between different data series. The most frequently
used is MAPE

MAPE = 1
n

n∑
t=1

∣∣∣∣∣
Yt − Ŷt

Yt

∣∣∣∣∣ × 100. (15)

MASE uses scaled errors as an alternative to percentage errors when comparing forecast
accuracy across series with different units. For non-seasonal time series, MASE is defined
as

MASE = 1
n

n∑
t=1

∣∣∣∣∣
Yt − Ŷt

1
n−1

∑n
t=2 |Yt − Yt−1|

∣∣∣∣∣ . (16)

For seasonal time series, MASE takes into account the seasonal period s

MASE = 1
n

n∑
t=1

∣∣∣∣∣
Yt − Ŷt

1
n−s

∑n
t=s+1 |Yt − Yt−s|

∣∣∣∣∣ . (17)

Theil’s U statistic allows a relative comparison of forecasting methods with naïve
approaches and also squares the errors involved so that large errors are given much more
weight than small errors. It is defined as

U − Theil =

√√√√√√
∑n−1

t=1

(
Ŷt+1−Yt+1

Yt

)2
∑n−1

t=1

(
Yt+1−Yt

Yt

)2 . (18)

Since there is no universally agreed-upon performance measure that can be applied
to every forecasting situation, multiple criteria are therefore often needed to provide a
comprehensive assessment of forecasting models [12].

4. Application to retail sales data

The data collected for the seven countries under study was divided into two sets, train-
ing data (in-sample data) and testing data (out-of-sample data) to test the accuracy of the
three suggested forecasting models. The selected training period was from January 2000
to December 2016 (first 204 observations), and the test period was from January 2017 to
February 2018 (last 14 observations).

The time series analysis was carried out using the statistical software R programming
language and the packages stats, forecast, andMetrics [27]. Three linear models –SARIMA,
Holt–Winters, and multiple linear regression – were built using the in-sample data. Each
model’s forecasting performance was evaluated in terms of the results obtained from the
out-of-sample data that was excluded from the fitting and the model selection process.
During the model selection, a 5% significance level was used.

A time series with heteroscedasticity often needs a logarithm transformation (generally,
a Box-Cox transformation can be applied). In this work, such transformation was applied
to the retail series before using SARIMA and multiple linear regression methodologies.
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The models were fitted to the transformed data, and finally the forecasts were scaled back
to their original units. However, the process of using a transformation, such as logarithm,
and then applying an inverse transformation (as exponentiation) introduces a bias in the
forecasts of the mean values. The e

1
2σ 2

correction factor can be used when the residual
series of the fitted log-regression model is Gaussian white noise. In general, the distribu-
tion of the residuals from the log-regression is often negatively skewed, and in such a case
a correction factor can be empirically determined using the mean of the anti-log of the
residual series. In this approach, adjusted forecasts can be obtained from

eŶt
n∑

t=1
ezt/n,

where {Ŷt : t = 1, 2, . . . , n} is the predicted series given by the fitted log-regression model,
and {zt} is the residual series from this fitted model [14]. In this study, the empirical
correction factor was used because of its versatility and applicability to all cases.

To evaluate and compare the forecasting performance of different models, five error
measures were selected – mean squared error (MSE), root mean squared error (RMSE),
mean absolute percentage error (MAPE), mean absolute scaled error (MASE), and Theil’s
U-statistic. The coverage rates of the nominal 95% forecast intervals were also analyzed.

4.1. Model selection

As mentioned in Section 3, the selection of an appropriate SARIMA model follows the
Box-Jenkins methodology, consisting of model identification, parameter estimation, and
diagnostic checking. In the model identification stage, the autocorrelation function (ACF)
and the partial autocorrelation function (PACF) are examined to help specify the model
orders for both nonseasonal (p, d, q) and seasonal (P,D,Q) parts. Then, themodel parame-
ters were estimated iteratively via computer software, using either themethod ofmaximum
likelihood or conditional least squares. Diagnostic checking is applied to detect inadequa-
cies in the fitted model and to suggest suitable modifications. In this stage, the significance
of the model parameters is analyzed, and the residuals and their autocorrelations are
inspected.

Selected models for each of the seven time series are presented in Table 3. Note that this
model takes into account the transformed data – we applied a logarithm transformation to
stabilize the variance.

The Holt–Winters method was applied in both additive and multiplicative seasonal
approaches. In the German, Italian and Dutch cases, the additive model was the selected
one, since it presented the lowest one-step MSE in-sample compared to the multiplicative
model. In the other cases, the model selected was the multiplicative model (Table 4).

As regards the multiple linear regression, the model selection starts with trend compo-
nent estimation. As previously mentioned, economic time series are frequently influenced
by real-world events and so, when modeling the trend component, it may be necessary to
partition the time series considering some change-points.

The general methodology of modeling using linear regression models with correlated
errors is explained in detail bymodeling the time series of Portugal. This methodology was
adopted in the remaining six time series, whose results are presented above.
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Table 3. Models’ selection for the seven countries under study (with the logarithm transformation).

Portugal model: SARIMA(2, 1, 0)(1, 0, 1)12 AIC= −933.72 σ̂a = 0.0211
Parameter φ1 φ2 ν1 η1
Estimate −0.6810 −0.3283 0.9967 −0.5448
s.d. 0.0676 0.0665 0.0017 0.0661

Germany model: SARIMA(2, 1, 1)(0, 1, 1)12 AIC= −903.65 σ̂a = 0.0216
Parameter φ1 φ2 θ1 η1
Estimate −0.6687 −0.5167 −0.3182 −0.6963
s.d. 0.1006 0.0830 0.1164 0.0598

Spain model: SARIMA(2, 1, 0)(0, 1, 1)12 AIC= −919.23 σ̂a = 0.0210
Parameter φ1 φ2 η1
Estimate −0.7339 −0.3786 −0.6376
s.d. 0.0683 0.0676 0.0722

France model: SARIMA(2, 1, 0)(0, 1, 1)12 AIC= −979.38 σ̂a = 0.0180
Parameter φ1 φ2 η1
Estimate −0.7112 −0.4841 −0.5893
s.d. 0.0644 0.0651 0.0683

Italy model: SARIMA(0, 1, 1)(1, 0, 1)12 AIC= −915.76 σ̂a = 0.0225
Parameter θ1 ν1 η1
Estimate −0.7051 0.9894 −0.2578
s.d. 0.0591 0.0047 0.0794

Netherlands model: SARIMA(2, 1, 0)(0, 1, 2)12 AIC= −920.53 σ̂a = 0.0202
Parameter φ1 φ2 η1 η2
Estimate −0.8869 −0.6425 −0.5899 −0.2967
s.d. 0.0585 0.0568 0.0902 0.0868

United Kingdom model: SARIMA(0, 1, 1)(0, 1, 1)12 AIC= −1104.60 σ̂a = 0.0129
Parameter θ1 η1
Estimate −0.5942 −0.7162
s.d. 0.0597 0.0628

Based on the visual analysis of the decompose output in R applied to the Portuguese case
(Figure 2), we identified two possible models for the trend component. The first half of
the time series can be easily explained by a linear trend, with a change-point occurring
between January 2007 and December 2009. The remainder of the time series presented
a quadratic behavior, which can be represented by two different trend models: one with
a quadratic trend, or one with two linear trends, considering the occurrence of an event
between January 2013 and December 2015. The selection of the change-points is made by
comparing the adjustment quality (maximizing R2a) of several models that consider all the
possible change-points within the defined time interval. For the Portuguese case, we iden-
tified two possible events: one in January 2008 and the other in April 2014 (see Figure 2).
Note that those events match the beginning and the end of the financial crisis in Portugal.
In fact, the European economic crisis began in 2008, although it was felt more intensely
the following year, and it began to be overcome in Portugal in 2014.

Thus, the model for the trend component can be represented by

Tt =
{
b0 + b1t, t < t1
(b0 + b2) + (b1 + b3)t + b4t2, t ≥ t1

,
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Table 4. Initialization of level, trend, seasonal and exponential smoothing parameters of the best HW
model for the seven countries under study.

Country Portugal Germany Spain France Italy Netherlands United Kingdom
model mult. add. mult. mult. add. add. mult.

α̂ 0.3469 0.2087 0.3641 0.3365 0.1798 0.2168 0.3093
β̂ 0.0610 0.0336 0.0749 0.0329 0.0157 0.2238 0.0000
γ̂ 0.6259 0.3024 0.4829 0.5433 0.8463 0.2854 0.4881
l̂1 100.3229 87.2678 80.9233 63.4961 86.4834 89.6482 64.2994
b̂1 0.5067 0.1001 0.4557 0.4436 0.1541 0.3861 0.2271
ŝ1 0.8818 −5.5146 1.0563 0.9467 −10.7736 −9.6632 0.9261
ŝ2 0.8554 −11.4562 0.8748 0.8419 −10.8153 −13.5924 0.9302
ŝ3 0.9579 2.4354 0.9783 0.9663 −3.7694 1.6701 0.9419
ŝ4 0.9521 −0.6896 0,9378 0.9777 −1.9278 −2.4174 0.9743
ŝ5 0.9685 1.9646 0.9833 0.9908 2.3431 6.7868 0.9916
ŝ6 0.9834 −4.2562 1.0165 0.9955 0.8431 3.6868 0.9793
ŝ7 1.0252 −3.9729 1.0596 0.8704 −0.7403 −1.4590 0.9793
ŝ8 1.0220 −3.3646 0.9205 1.0695 −13.6861 −3.2674 0.9652
ŝ9 0.9946 −1.9313 0.9721 0.9818 −0.2986 1.1910 0.9581
ŝ10 1.0021 0.8187 0.9949 1.0406 4.4014 −0.5715 0.9948
ŝ11 1.0136 5.9562 0.9673 1.0232 3.9181 2.5410 1.0842
ŝ12 1.3434 20.0104 1.2387 1.2955 30.5056 15.0951 1.2750
MSE 6.1686 4.3834 5.5033 2.5204 4.4141 6.5603 1.4084

Figure 2. Trend component of the Portuguese time series (with logarithm transformation) usingdecom-
pose in R. Identification of the two possible change-points: January 2008 and April 2014.

if we consider only one event (t1), or

Tt =
⎧⎨
⎩
b0 + b1t, t < t1
(b0 + b2) + (b1 + b3)t, t1 ≤ t < t2
(b0 + b2 + b4) + (b1 + b3 + b5)t, t ≥ t2

,

if two events are identified, with t1 and t2 representing January 2008 and April 2014,
respectively.

After this pre-selection of the trend model, we applied both full models (with trend and
seasonal components, Equation (8)) to the Portuguese training data. However, this time
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Table 5. Results for the adjustment of the final reduced model with two events to the Portuguese case
(with logarithm transformation).

Model: Multiple regression, corrected with AR(3) R2a = 0.9781 σ̂ = 0.0208
Variables Coeffs Std. Dev. z-Statistic p-value

Intercept 4.607472 0.012937 356.1515 < 0.0001
Time 0.001739 0.000204 8.5454 < 0.0001
Event1 0.502848 0.036470 13.7878 < 0.0001
Event2 −0.325701 0.028562 −11.4031 < 0.0001
Cos12 0.042203 0.003478 12.1345 < 0.0001
Sin12 −0.053926 0.003572 −15.0984 < 0.0001
Cos6 0.056111 0.002390 23.4814 < 0.0001
Sin6 −0.029016 0.002373 −12.2271 < 0.0001
Cos4 0.072531 0.002585 28.0625 < 0.0001
Sin4 −0.028205 0.002618 −10.7746 < 0.0001
Cos3 0.063109 0.003598 17.5389 < 0.0001
Sin3 0.002070 0.003568 0.5800 0.5619
Cos2.4 0.061775 0.003285 18.8044 < 0.0001
Sin2.4 0.013402 0.003310 4.0487 0.0001
Cos2 0.015813 0.000976 16.1958 < 0.0001
tEvent1 −0.004794 0.000355 −13.5107 < 0.0001
tCos12 −0.000210 0.000029 −7.1494 < 0.0001
tSin12 −0.000077 0.000030 −2.5452 0.0109
tCos6 −0.000041 0.000020 −2.0221 0.0432
tSin6 0.000158 0.000020 7.7950 < 0.0001
tCos4 0.000009 0.000022 0.3979 0.6907
tSin4 0.000047 0.000022 2.1139 0.0345
tCos3 −0.000128 0.000030 −4.2705 < 0.0001
tSin3 0.000031 0.000030 1.0489 0.2942
tCos2.4 −0.000067 0.000028 −2.4136 0.0158
tSin2.4 0.000042 0.000028 1.5249 0.1273
AR(3) φ̂1 = 0.1579 φ̂2 = 0.2704 φ̂3 = 0.2863 σ̂a = 0.0162

series exhibits strong autocorrelation, whichmanifests in correlated residuals after a regres-
sion model has been fitted. This could bring negative consequences for the model, since it
could lead to wrong decision by the t-test. To overcome the autocorrelation problem, an
autoregressive model of order 3, AR(3), is fitted to the residuals, following the methodol-
ogy described in Section 3, to determine the new standard deviations of the coefficients,
z-test statistics, and p-values.

The non-significant variables were removed from both models (one by one, or two
by two in the case of trigonometric variables), and the final reduced models were com-
pared according to adjustment quality, i.e.maximizing theR2

a corrected for autocorrelation.
The results for the selected reduced model, which has two change-points and three linear
trends, are presented in Table 5.

The methodology illustrated with the data for Portugal was applied to the remaining
time series. Some aspects of the modeling are presented in Table 6. With the exception
of the time series for Italy, the AR(3) model was the model selected to model the time-
correlation structure of the errors. Table 7 presents some results and estimates of some
parameters of the regression models fitted to the seven countries under study. The values
of the fitted coefficients of determination of the final regressionmodels are high, indicating
a good fit to the time series. Regarding the residuals of the regressionmodels, they generally
comply with the assumptions of normality, null mean and constant variance of the errors.

As an illustration of model fits and predictions, Figure 3 presents the empirical results
of the model fitting, point forecasting and prediction intervals for the Portuguese case,
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Table 6. Characterization of the regressionmodels fitted to the logarithm of the retail trade series (with
logarithm transformation).

Country Trend Events Error model Variables removed

Portugal Three linear trends Jan 2008, Apr 2014 AR(3) t:event2; t:cos2
Germany Two linear trends Feb 2009 AR(3) t:cos3; t:sin3; t:cos2.4;

t:sin2.4; t:cos2
Spain Three linear trends Mar 2008, Sep 2012 AR(3) event2; cos2; t:cos4;

t:sen4; t:cos2
France Two linear trends Nov 2008 AR(3) t:cos3; t:sin3; t:cos2
Italy Four linear trends Oct 2008, Apr 2012, Sep 2014 white noise t:event1
Netherlands One linear trend and Jul 2002, Apr 2008 AR(3) t:cos12; t:sin12; t:cos4;

Two quadratic trends t:sen4; t:cos3; t:sin3;
t:cos2.4; t:sin2.4; t:cos2

United Kingdom Two linear trends Oct 2008 AR(3) t:cos2.4; t:sin2.4

Table 7. Some results and estimates of the regression models fitted to the time series of the seven
European countries under study (R2ac – adjusted determination coefficient).

Country Portugal Germany Spain France Italy Netherlands United Kingdom

Intercept 4.607472 4.454630 4.375235 4.151694 4.440673 4.471481 4.151591
time 0.001739 0.000379 0.004421 0.003168 0.001609 0.003656 0.002865
event1 0.502848 −0.207794 0.567825 0129318 −0.051117 0.276732 0.055154
event2 −0.325701 – – – 0.310524 0.605970 –
event3 – – – – 0.184447 – –
φ̂1 0.1579 −0.0758 0.1412 0.2070 – −0.1141 0.2546
φ̂2 0.2704 0.1095 0.1658 0.1966 – 0.1422 0.1787
φ̂3 0.2863 0.4837 0.2588 0.4422 – 0.6031 0.1732
σ̂a 0,0162 0.0174 0.2588 0.0148 0.0186 0.0171 0.0101
R2ac 0.9781 0.9594 0.9819 0.9920 0.9743 0.9530 0.9957

considering the three forecasting approaches under study. All the forecasting models are
able to forecast trendmovement and seasonal fluctuations exhibited by the data. According
to the five evaluationmeasures, the most accurate model for explaining the behavior of the
training sample is the multiple linear regression model. However, its predictive quality is
not the best, since it is easily overcome by the two other forecasting approaches.

4.2. Accuracymeasures of forecastingmethods

Figure 4 illustrates the empirical results of three different forecasting models for the seven
retail series under study. In general, all the forecasting models are capable of forecasting
the trend movement and seasonal fluctuations exhibited by the data.

For each retail series, Tables 8 and 9 present the forecasting accuracy measures for
in-sample and out-of-sample data, where the smaller values correspond to better forecast-
ing accuracy. It can be observed from Table 8 that the multiple linear regression model
outperforms the remaining methods in the training sample, for it is the one that better
explains the behavior of TOVT for every country under study. However, a good fit (in-
sample) does not necessarily translate into good out-of-sample forecasts [11]. In fact, in
the out-of-sample period multiple linear regression was identified as the worst forecast-
ing methodology (Table 9). Although the implemented models have taken into account
some autocorrelation present in the data by including an autoregressive component, the
regressionmodels are still deterministic andmay not be themost appropriatemethodology
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Figure 3. Model fitting and forecasting for the Portuguese case (from January 2014 to February 2018):
(a) SARIMA; (b) Holt–Winters; (c) Multiple Regression.

for forecasting economic time series whose trend and seasonal components are constantly
changing, [12].

In contrast, both SARIMA and Holt–Winters models performed well. SARIMA fore-
casted the series more accurately for Germany, Spain, France, Netherlands, and the United
Kingdom than Holt–Winters and multiple linear regression models, regardless of the
forecast error measure considered. For the remaining series (Portugal and Italy), the
Holt–Winters method displays the best performance. Also, as stated by Kolkova [18], one
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Figure 4. Out-of-sample fixed forecasting comparison for the retail series (between January 2017 and
February 2018): (a) Portugal; (b) Germany; (c) Spain; (d) France; (e) Italy; (f ) Netherlands; (g) United
Kingdom.

accuracy measure could have been enough to select between different models, since the
five criteria produced the same conclusions.

Thus, according to the order of accuracy shown in detail in Table 9, starting with the
most accurate one, the forecasting models can be classified as follows: (1) SARIMA, (2)
Holt–Winters, and (3) multiple linear regression. Similarly, [26] point out the Box-Jenkins
as the best traditional methodology to forecast retail time series, with the multiple linear
regression model producing the poorest forecasts.
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Table 8. Forecast accuracy measures for the in-sample period from January 2000 to December 2016.

Country Model MSE RMSE MAPE (%) MASE U-Theil

Portugal SARIMA 5.6295 2.3726 1.6541 0.5207 0.1653
Holt–Winters 6.1686 2.4837 1.7152 0.5693 0.1730
Regression 3.3792 1.8382 1.2996 0.4108 0.1277

Germany SARIMA 3.5726 1.8901 1.6206 0.6070 0.2193
Holt–Winters 4.3834 2.0937 1.8743 0.6940 0.2412
Regression 2.5055 1.5829 1.4000 0.5256 0.1803

Spain SARIMA 4.4262 2.1039 1.4716 0.3440 0.1877
Holt–Winters 5.5033 2.3459 1.7175 0.4096 0.2088
Regression 2.6503 1.6280 1.2160 0.2838 0.1452

France SARIMA 2.1863 1.4786 1.3319 0.4068 0.1159
Holt–Winters 2.5204 1.5876 1.4447 0.4665 0.1238
Regression 1.5557 1.2473 1.1979 0.3625 0.0967

Italy SARIMA 4.5915 2.1428 1.6587 0.7731 0.1541
Holt–Winters 4.4141 2.1010 1.6224 0.7578 0.1506
Regression 2.5749 1.6047 1.3380 0.6133 0.1152

Netherlands SARIMA 3.8120 1.9524 1.5271 0.4997 0.2109
Holt–Winters 6.5603 2.5613 2.0494 0.6911 0.2746
Regression 2.9233 1.7098 1.3610 0.4435 0.1849

United Kingdom SARIMA 1.2947 1.1379 0.9401 0.3272 0.1368
Holt–Winters 1.4084 1.1868 1.0176 0.3550 0.1426
Regression 0.8291 0.9106 0.7858 0.2703 0.1101

Table 9. Forecast accuracymeasures for the out-of-sample period from January 2017 to February 2018.

Country Model MSE RMSE MAPE (%) MASE U-Theil

Portugal SARIMA 18.5049 4.3017 3.7368 0.8401 0.3768
Holt–Winters 9.0174 3.0029 2.3260 0.5262 0.2604
Regression 13.7755 3.7115 3.0270 0.6782 0.3339

Germany SARIMA 4.9641 2.2280 1.7134 0.5977 0.2380
Holt–Winters 5.3537 2.3138 1.7875 0.6320 0.2586
Regression 10.3858 3.2227 2.4758 0.8791 0.3333

Spain SARIMA 3.4618 1.8606 1.4417 0.6024 0.1905
Holt–Winters 4.6211 2.1497 1.6898 0.6957 0.2122
Regression 7.3954 2.7195 2.1809 0.9292 0.2729

France SARIMA 4.4263 2.1039 1.5323 0.4602 0.1382
Holt–Winters 4.8154 2.1944 1.6128 0.4859 0.1458
Regression 5.2163 2.2839 1.6972 0.5074 0.1471

Italy SARIMA 2.0572 1.4343 1.2118 2.1898 0.1368
Holt–Winters 1.5008 1.2251 1.0207 1.8622 0.1176
Regression 6.2250 2.4950 2.2637 4.0110 0.2375

Netherlands SARIMA 3.2817 1.8115 1.3797 0.3795 0.1944
Holt–Winters 5.7452 2.3969 1.8355 0.4966 0.2683
Regression 7.1199 2.6683 1.9896 0.5587 0.2934

United Kingdom SARIMA 4.2713 2.0667 1.7094 0.4876 0.1857
Holt–Winters 4.4513 2.1098 1.7335 0.5024 0.1912
Regression 6.8310 2.6136 1.9652 0.5837 0.2471

4.3. Forecast interval coverage

The performance of the forecasting methodologies can also be evaluated by their ability to
produce forecast intervals that provide coverages close to the nominal rates [28]. Table 10
shows the percentage of times that the nominal 95% forecast intervals contain the true
observations, as well as the mean percentage for each forecasting method.

The results indicate that SARIMA and Holt–Winters models produce coverage proba-
bilities that are close to the nominal rate for almost all of the retail series under study. The
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Table 10. Forecast interval coverage for out-of-
sample period from January 2016 to February 2018.
Nominal coverage of 95%.

Country SARIMA Holt–Winters Regression

Portugal 100.0 100.0 78.6
Germany 100.0 100.0 85.7
Spain 100.0 100.0 85.7
France 100.0 92.9 92.9
Italy 100.0 100.0 92.9
Netherlands 100.0 100.0 92.9
United Kingdom 85.7 85.7 71.4
Global 98.0 96.9 85.7

SARIMAmodels slightly overestimate the coverage probabilities of nominal forecast inter-
vals in 6 of the 7 retail series, with a mean coverage of 98%. The Holt–Winters method also
provides good coverage rates, underestimating them in 2 of the 7 retail series, and over-
estimating in the remaining ones. On the other hand, multiple linear regression has the
less accurate forecast intervals. It underestimates the coverage probabilities of the nominal
95% forecast intervals in 100% of the retail series, with coverage probabilities ranging from
71.4% to 92.9%.

However, it is important to notice that only the test period (14 observations) was used
in the calculation of the coverage rates, and so one observation outside the correspon-
dent interval is enough to drop the coverage rate to 92.9% (below the nominal 95%). Also,
coverage rates can reach high values due to the wide amplitudes of the forecast intervals.
Thus, the comparison between forecastingmodels should be done in a global way, with the
coverage rate being just one more, and not the only one, performance indicator.

In this case, the performance of the forecasting methods in terms of coverage rates
matches the results for accuracy measures, also leading to the following classification: (1)
SARIMA, (2) Holt–Winters, and (3) multiple linear regression.

5. Concluding remarks

Many business and economic time series exhibit strong trend and seasonal variations, and
retail time series are no exception. Since retailing is a widely competitive industry, accurate
forecasts are extremely important to ensure the quality of the decision-making process,
which greatly impacts effective management of retail business. This study compared the
forecasting accuracy of three traditional linear forecasting models applied to retail time
series of seven European countries from January 2000 to February 2018. Five accuracy
measures were selected: MSE, RMSE, MAPE, MASE, and Theil’s U-statistic. The perfor-
mance of the forecasting methods was also evaluated in terms of coverage rates of the
forecast intervals.

The five accuracy measures led to the same conclusions regarding the forecasting per-
formance of the methodologies under study. Based on the empirical results, this study
confirmed the previous works by [12,26], showing that multiple linear regression was not
the most recommended approach to forecast retail time series. The SARIMAmodels pro-
vided superior point forecasts over the remaining methodologies, with the Holt–Winters
model proving to be a viable alternative. In fact, these two methodologies have performed
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well for forecasting retail time series, both in terms of accuracy forecasting and coverage
rates.

For future work, it is possible to choose the traditional ARIMAmodels as a benchmark
for forecasting retail time series and then evaluate the performance of new methods by
comparison.
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