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Abstract
In the context of ‘‘TO CHAIR’’ project, this work aims to improve the accuracy of short-term forecasts of maximum air

temperature obtained from the https://weatherstack.com/ website. The proposed methodology is based on a state-space

representation that incorporates the latent process, the state, which is estimated recursively using the Kalman filter. The

proposed model linearly and stochastically relates the forecasts from the website (as a covariate) to the observations of the

maximum temperature recorded at the study site. The specification of the state-space model is performed using the

maximum likelihood method under the assumption of normality of errors, where empirical confidence intervals are

presented. In addition, this work also presents a treatment of outliers based on the ratios between the observed maximum

temperature and the website forecasts.

Keywords State-space models � Temperature � Kalman filter � Time series � Data assimilation

1 Introduction

Today we live in a society where climate change has

brought to the fore a global concern of the population

particularly regarding water availability, since it is a non-

renewable natural resource essential to life. This global

issue can be seen in the investments made to find water

outside planet Earth—for instance, the recent discovery of

water on the Moon and Mars (United Nations 2021).

Population growth, pollution, and climate change are the

major factors contributing to the dwindling of the planet’s

water resources. Furthermore, this natural resource has

been heavily exploited due to economic growth, and water

mismanagement has also become a global concern.

According to the United Nations World Water Devel-

opment Report (United Nations 2021), agriculture con-

sumes about 69% of the world’s available fresh water,

which is practically used for irrigation, and this proportion

can reach 95% in some developing countries. The tem-

perature increases that have occurred in recent years have

contributed to the decrease of available water. Therefore, it

is crucial to find the best technical solutions to improve

water management, particularly in irrigation systems.

This work is carried out in the context of project ‘‘TO

CHAIR—The Optimal Challenges in Irrigation’’ (https://

systec.fe.up.pt/projects/FCT-TOCHAIR/) and aims to

ensure efficient water management in irrigation systems

through mathematical/statistical modeling. This project’s

main challenge is to study how to manage irrigation

problems as an optimal control problem: the daily irriga-

tion problem of minimizing water consumption. For that, it

is necessary to measure and forecast meteorological vari-

ables in real time at each monitoring area of irrigation.

One solution for obtaining forecasts of weather variables

for a specific location is to consider self-service-based

weather information web services that are available. But

however friendly and affordable this solution is, these
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forecasts contain increased uncertainties because they are

the result of spatial interpolation procedures, such as the

geostatistical interpolation technique known as Kriging or

other (Costa and Alpuim 2011; Berndt and Haberlandt

2018). Although these platforms may adopt diverse

methodologies, the forecasts for a given location are

derived from the observations obtained from a network of

previously existing fixed meteorological stations that have

an irregular distribution and density in space.

This work aims both to establish a statistical modeling

approach based on meteorological variables and in state-

space modeling and to improve the forecasts obtained from

an easily accessible online website. In this context, forecast

improvement aims to improve the quality indicators usu-

ally considered, such as the square root of the mean square

error (RMSE), among others, as mentioned later.

This approach aims to establish a model that can model

and calibrate or correct in real time the predictions

obtained from the website. It is intended that a dynamic

model calibrates the forecasts that are assumed to have a

forecast error increased by the interpolation error of the

website by incorporating the values observed at the study

site through a portable weather station.

The framework proposed in this work can be seen as a

method of Data Assimilation (DA), since the proposed

approach combines forecasts across time and from differ-

ent sources. DA is in general a sequential time-stepping

procedure, in which forecasts from a source are compared

with newly received observations to produce optimal

forecasts. These methods have been widely applied in

several areas, but most often in meteorology, where

meteorological forecasts are improved by combining

forecasts and observations (Navon 2009), or by combining

several remote sensing data sources that might be used for

automated prediction of forest variables, such as growing

stock volume (Lindgren et al. 2021).

This approach is developed for the maximum air tem-

perature in order to improve the accuracy of the forecasts

obtained from the website https://weatherstack.com/. This

variable was selected because it is a meteorological vari-

ables that most interferes in the evapotranspiration process

(Rodrigues and Braga 2021) and it is useful to calculate

crop reference evapotranspiration (ETo) (Allan et al.

1998). Although the maximum temperature is an extreme

variable and therefore has specific characteristics (Lead-

better et al. 1983), the approach proposed in this work

based on the DA method avoids the generality of the

problems associated with this type of variables.

In the literature there are several research studies based

on temperature data analysis using different methodolo-

gies. For instance, Ksiksi and Al Blooshi (2019) employed

the ARIMA modeling approach coupled with STI (Stan-

dardized Temperature Index) to predict temperature

anomalies using average monthly temperatures across four

United Arab Emirates bio-climatic regions: Abu Dhabi, Al-

Ain, Dubai, and Sharjah. An application of TBATS and

regression models with correlated errors methods to the

minimum air temperature were considered in Gonçalves

et al. (2021) to deal with time series with complex seasonal

patterns. Citakoglu (2021) investigated four different

machine learning-based approaches in estimating monthly

maximum temperature, average temperature, and minimum

temperature between 1974 and 2020, recorded in 275

meteorological stations in Turkey. Glynis et al. (2021)

studied the temporal evolution of near-surface air temper-

ature extremes, having found that these meteorological

variables showed a much more complex behavior than

usually modeled by classical statistics. In this study, Glynis

et al. (2021) states that the climacogram and the K-mo-

ments present several advantages compared to autoco-

variance and the power-spectrum and as a variant of

probability weighted moments. The analysis and modeling

of extreme environmental series can be a real challenge,

because in many cases, when observations are subject to

greater uncertainties, the solutions obtained by the Kalman

filter may suffer from conditional biases, i.e., a quantity

that shows how the estimates differ on the average from a

given true observation, and thus negatively influence the

estimation and prediction of extremes (Seo et al. 2018).

In this work, a linear state-space model, which belongs

to a general and flexible class of stochastic models (Woody

et al. 2020), is applied to study the time series of maximum

air temperature. We selected this class of models due to

both their efficiency from a stochastic point of view and

their Markovian nature, which allows working with sam-

ples of variable size, where the predictions are recursively

updated as new observations are incorporated into the

model, updating it and making it more efficient by pro-

ducing the improved predictions and forecasts.

In the literature there are several papers that analyze

meteorological time series through state-space models. In

particular, Costa and Monteiro (2019) analyzed long-term

time series of monthly average air temperature of three

Portuguese cities—Lisbon, Oporto, and Coimbra—through

periodic mixed linear state-space model associated with the

Kalman filter, which incorporates fixed effects (seasonality

with fixed level effects) and stochastic effects (dynamic

slopes throughout the months of the year). Parameter

estimation was done using the maximum likelihood

method. The mean quarterly temperature and rainfall time

series were studied by Prokosch et al. (2019) to analyze the

relationship between temperature and body mass in a

population of ‘‘mountain wagtails’’ in KwaZulu-Natal,

South Africa, between 1976 and 1999, where the time

series were decomposed into trend and seasonal effects

using a state-space model. Adedotun et al. (2020) modeled
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the temperature and rainfall dataset using the state-space

model associated with the univariate Kalman filter to both

identify the pattern of the trend movement in the occur-

rence of climatic change and to evaluate the forecasting

power of the proposed models. Parameter estimation was

also conducted using the maximum likelihood method.

In many applications (environmental, economic, etc.)

whose series tend to have complex seasonality or strong

temporal correlation, the normality of the errors is not

always guaranteed or is rejected in the model validation

procedure by analyzing the normality of the residuals.

Thus, in the literature there are alternative non-parametric

estimation methods to parameterize the state-space models,

such as the quasi-likelihood and asymptotic quasi-likeli-

hood methods proposed in Alzghool and Lin (2008),

Bayesian approaches (Kitagawa 2021), estimators for uni-

variate state-space models based on the generalized method

of moments that do not depend on the distribution of errors

proposed in Costa and Alpuim (2010) and subsequently

generalized to multivariate models in Gonçalves and Costa

(2013), and deep learning-based methods (Rangapuram

et al. 2018) for which, according to Aghelpour et al.

(2021), time series and machine learning models have

shown a good performance in estimating and predicting

meteorological variables.

The paper is organized as follows: in Sect. 2 we present

a brief description of the model, the Kalman filter,

parameter estimation, and how to compute h-steps pre-

dictions for the state vector. Section 3 presents an

exploratory analysis of the series under study, as well as the

imputation of missing values and the treatment of outliers.

In Sect. 4, the proposed model is applied to the data.

Finally, Sect. 5 presents the conclusions.

2 Methodology

State-space models are very flexible models due to their

ability to integrate several data features, and to recursively

update predictions in real time as new observations become

available. Because of their formulation, it is possible to

analyze dynamic phenomena that vary significantly over

time. According to Petris et al. (2009), they are much more

flexible than ARIMA models in dealing with non-station-

ary time series and modeling structural changes and are

generally easier to interpret.

2.1 The time-varying linear state-space model

In general, the time-varying linear state-space model is

characterized by two equations: the observation and state

equations. In this work, the proposed model is given by

Yt ¼ btWt;ðhÞ þ et; ð1Þ

bt ¼ lþ /ðbt�1 � lÞ þ et; ð2Þ

where Eq. (1) is the observation equation, which relates to

the observed variable Wt;ðhÞ, which is the h-days ahead

forecasts coming from the https://weatherstack.com/ web-

site collected at time t � h, with the unobserved variable bt,
called the state vector, through a linear relation. Equa-

tion (2) translates the stochastic model underlying the state

vector. Yt is the observed maximum temperature on the

farm at day t, with t ¼ 1; . . .; n.

The process fbtg follows a stationary autoregressive

process of order one, that is, fbtg�ARð1Þ and j/j\1. It is

assumed that EðbtÞ ¼ l and varðbtÞ ¼ r2
e=ð1 � /2Þ.

Moreover, processes fetg and fetg are uncorrelated white

noise processes, i.e., EðetÞ ¼ 0, EðetesÞ ¼ 0, EðetÞ ¼ 0,

EðetesÞ ¼ 0, and EðetesÞ ¼ 0, 8t; s. In view of statistical

inferences, it is assumed that errors processes are normally

distributed, i.e., et �Nð0; r2
eÞ and et �Nð0; r2

e Þ.
The parameters of the model H ¼ fl;/; r2

e ;r
2
eg can be

known or must be estimated for each time horizon

h ¼ 1; 2; . . .; 6. In this case, for the specification of the

state-space model it is necessary to estimate H according to

an estimation method presented in Sect. 2.3. As the state

process bt is a latent process, it must be predicted based on

the observed variables Yt through the Kalman filter

algorithm.

2.2 The Kalman filter

The most common procedure to predict the state vector is

the Kalman filter algorithm proposed by Kalman (1960),

which is a recursive algorithm that, at each time, computes

the optimal predictions of the state vector, in the sense that

it has the minimum mean square error (MSE), based on the

information available up to instant t, if normality is veri-

fied. Nevertheless, according to Harvey (2009), even when

the normality assumption of errors is not verified, the

Kalman filter still returns optimal predictions within the

class of all linear predictors, i.e., the estimates are rela-

tively robust to small deviations from normality (Kokic

et al. 2011). However, these optimal properties of the

Kalman filter predictors can only be guaranteed when all

the parameters of state-space model are known (Rodrı́guez

and Ruiz 2012; Costa and Monteiro 2016).
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Let bbtjt�1 denote the predictor of bt based on the

observations Y1; Y2; . . .; Yt�1 and Ptjt�1 its MSE, this is,

Ptjt�1 ¼ E½ðbbtjt�1 � btÞ2�. Considering the model defined

by Eqs. (1) and (2), the linear Kalman filter algorithm is

expressed by a set of iterative equations presented in

Fig. 1. In step 1 it is computed bYtjt�1, the one-step ahead

forecast by the linearity of Eq. (1).

When Yt is observed in time t, steps 3 and 4 allow

updating the forecast bbtjt�1 based on the one-step ahead

forecast’s error Yt � bYtjt�1 and Kalman gain (step 3). With

the best prediction of state in time t, bbtjt, the forecast of

state to time t þ 1, bbtþ1jt is computed in step 5.

The success of the Kalman filter lies in the fact that it is

a real-time estimation procedure, updating and improving

the predictions of the state vector when new observations

become available. Moreover, it can be applied to both

stationary and non-stationary processes, depending on

whether the autoregressive parameter / is inside or outside

the unit circle, respectively.

2.3 Parameter estimation

In practice, some or even all parameters H ¼ fl;/; r2
e ; r

2
eg

of the state-space model Eqs. (1)–(2) are unknown and

must be estimated (Durbin and Koopman 2001).

By assuming the normality of noise processes, the

estimation of the unknown parameters is usually performed

using the maximum likelihood method. So, in general,

under the assumption of normality and independence of the

noise processes and the initial state b1, the log-likelihood

depends of H, given the data ðY1; Y2; . . .; YnÞ, and can be

written through conditional distributions, given by:

log LðH; Y1; Y2; . . .; YnÞ ¼
X
n

t¼1

log f
bYtjt�1

ðYt j Y1; Y2; . . .; Yt�1Þ

¼ � n

2
logð2pÞ � 1

2

X
n

t¼1

logðRtÞ

� 1

2

X
n

t¼1

g2
t R

�1
t

where Rt ¼ W2
t;ðhÞPtjt�1 þ r2

e and gt ¼ Yt � bYtjt�1.

Parameter estimation is done by maximizing the log-

likelihood function (3). However, since this function is

highly non-linear, the optimization is done through

numerical methods, such as the Expectation–Maximization

algorithm or the Newton–Raphson method. Generally,

these algorithms start from an initial set of values H0,

realize a set of iterations, and a new value for the log-

likelihood function is calculated for each iteration. When

the log-likelihood function’s increments are smaller than a

small value d defined according to a certain tolerance level,

the algorithm ends.

2.4 Forecast correction procedure

After fitting the models to time horizons h ¼ 1; 2; . . .; 6,

that is, after the training procedure, the goal is to correct or

’’calibrate’’ the website’s forecasts Wt;ðhÞ regarding the

maximum temperature at time t þ h based on the infor-

mation available at time t, i.e., the observed temperature Yt
by the portable station. To correct the forecasts to improve

their accuracy, a procedure based on both the Kalman filter

predictions and the AR(1) properties is designed.

The forecast of Ytþh at time t can be performed directly

from bbtþhjt taking the linearity of Eq. 1 into account. In

fact, taking the expected value of the observation equation

at time t þ h it comes

bYtþhjt ¼E Ytþh j Y1; . . .; Ytð Þ
¼E btþhWtþh;ðhÞ þ etþh j Y1; . . .; Yt

� �

¼ bbtþhjtWtþh;ðhÞ;

and its mean square error is given by

Rtþhjt ¼ var btþhWtþh;ðhÞ þ etþh

� �

¼W2
tþh;ðhÞPtþhjt þ r2

e :

The forecast of the state for time t þ h given the present, t,

bbtþhjt can be computed through filtered prediction of the

state at time t, bbtjt given by the Kalman filter algorithm

(Fig. 1). In fact, according the autoregressive structure of

Eq. 2, the state at time t þ h, btþh, can be rewritten from bt
by

1. Start with initial values

β̂1|0 P1|0

2. Compute the predictor for the observable vector Yt

Ŷt|t−1 = Wt,(h)β̂t|t−1

3. Compute the Kalman gain

Kt = Pt|t−1Wt,(h)(W 2
t,(h)Pt|t−1 + σ2

e)
−1

4. Update the estimate of the state vector βt and the MSE of the
updated estimator Pt when the observation Yt becomes available

β̂t|t = β̂t|t−1 + Kt(Yt − Ŷt|t−1) Pt|t = Pt|t−1 − KtWt,(h)Pt|t−1

5. Predict the state vector βt+1 and its respective MSE Pt+1

β̂t+1|t = μ + φ(β̂t|t − μ) Pt+1|t = φ2Pt|t + σ2
ε

Fig. 1 The Kalman filter algorithm for the model Eqs. (1)–(2)
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btþh � l ¼ /hðbt � lÞ þ
X
h�1

j¼1

/h�jetþj þ etþh:

Thus, the predictor of btþh at time t is the expected value

bbtþhjt ¼E btþh j Y1; . . .; Yt
� �

¼ lþ /h E bt j Y1; . . .; Ytð Þð Þ � l
�

¼ lþ /h
bbtjt � l

� �

:

The mean square error of bbtþhjt is given by

Ptþhjt ¼E btþh � bbtþhjt

� �2
� �

¼/2hPtjt þ
X
h�1

j¼0

/2jr2
e :

Thus, the h-steps ahead forecast of Ytþh is computed with

the filtered prediction of the state at time t, bbtjt and its mean

square error Ptþhjt with the mean square error of the filtered

prediction of the state, Ptjt obtained by the Kalman filter

equations (Fig. 1).

The 95% asymptotic confidence interval of Ytþhjt is

given by

bYtþhjt � 1:96
ffiffiffiffiffiffiffiffiffiffiffi

Rtþhjt

q

; bYtþhjt þ 1:96
ffiffiffiffiffiffiffiffiffiffiffi

Rtþhjt

qi h

: ð3Þ

To evaluate and compare the performance of the applied

model to h ¼ 1; 2; . . .; 6, some evaluation measures are

considered, namely the root mean square error (RMSE),

the mean absolute error (MAE), and the mean absolute

percentage error (MAPE)

RMSEðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X
n

t¼1

Yt � bYtjt�h

� �2

s

; ð4Þ

MAEðhÞ ¼
1

n

X
n

t¼1

jYt � bYtjt�hj; ð5Þ

MAPEðhÞ ¼
1

n

X
n

t¼1

Yt � bYtjt�h

Yt

	

	

	

	

	

	

	

	

	

	

� 100; ð6Þ

where Yt is the observed maximum temperature recorded

by the portable weather station and bYtjt�h is its forecast at

time t � h.

3 Dataset description

The dataset used in this study comes from two different

databases. The first corresponds to daily maximum tem-

perature (�C) obtained from a portable weather station

installed in a farm called Senhora da Ribeira (Fig. 2), in

Carrazeda de Ansiães, located in the district of Bragança,

in the northern region of Portugal. These observations were

collected in the period between February 20, 2019 and

October 11, 2019, totaling 234 records. The second data-

base refers to the forecasts obtained from the website

https://weatherstack.com/, with a time horizon up to 6 days

for the same meteorological variable and for the same

location and time period.

3.1 Exploratory data analysis

The database corresponding to observations recorded at the

farm by the portable station, Yt, has missing values

between April 24 and May 1, 2019, and on September 29

and 30, 2019. To deal with this problem, a complementary

dataset was considered to perform a data imputation for

missing values. This dataset is related to the same period

with the maximum temperature measured by a fixed

meteorological station in Vila Real, located about 50 km

from the farm under study. The imputation procedure

consists in establishing a linear interpolation model fitting a

simple linear regression model given by

Tt;CA ¼ aþ bTt;VR þ ft, where Tt;CA and Tt;VR are the

maximum air temperature recorded in Carrazeda de

Ansiães and Vila Real, respectively. In fact, the Vila Real

dataset is a good predictor of farm location, since these

data have a strong linear correlation The model was fitted

to data from January 1 to December 31, 2019, and its

estimates are ba ¼ 0:1538 and bb ¼ 1:1241, with a coeffi-

cient of determination equal to 0.9340.

Figure 3 shows (in black) the observed maximum tem-

perature measured in the farm, the website’s 1-step ahead

forecasts (top) and 6-steps ahead forecasts (bottom) coming

from the website (in blue), and the imputed values (in red)

between February 20 and October 11, 2019. The analysis

of the website’s forecasts for h ¼ 1; 2; . . .; 6 and the

Fig. 2 Senhora da Ribeira farm in Bragança, Portugal
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observed values indicate that, as a rule, the website’s pre-

dictions tend to underestimate the observed values at the

farm for all values of forecasting time horizons h. On the

one hand, some forecasts have large forecasting errors, the

greatest being equal to 22.8 degrees on July 21, 2019 for

h ¼ 5.

Despite these discrepancies, there is a global linear

relationship between forecasts and observations. Table 1

shows sample Pearson’s linear correlation coefficients

between the observations of maximum temperature recor-

ded at the farm and the website’s h-steps ahead forecasts,

bqðYt;Wt;ðhÞÞ, whose correlations are greater than 0.86 and

statistically significant (p values\0:01), i.e., the forecasts

show a strong linear correlation with their respective

observations. Nevertheless, the linear correlation decreases

as the forecasts’ time horizon increases.

3.2 Modeling and assessment strategy

The adopted strategy consists of dividing the dataset into

two subsets: the training and test sets. The training set is

composed of data from February 20 to September 10, 2019

(203 days); the test set is composed of data from

September 11 to October 11, 2019 (31 days), which cor-

responds to 1 month for the quality evaluation of the

forecast correction procedure in a online framework. The

training set is used to fit the model and the test set is used to

evaluate the fitted models in the training dataset.

Figure 4 shows the boxplots of the ratios between the

observed maximum temperature and the respective website

forecasts in the training period. The increase of the dis-

persion is visible as the time horizon of the forecasts

increases, where 1-step ahead forecasts tend to be more

accurate given the lower variability. It is also identified that

medians have values close to 1.2, indicating that the

website’s forecasts underestimate the observations by

about 20%, in the median perspective, and the presence of

moderate and severe outliers is evidenced by the boxplots.

The presence of outliers can have an impact on

parameter estimates, forecasting and on inference results

(You et al. 2020). It is common practice to remove them

completely from the series, but sometimes it may not be the

most correct choice. Such decision depends on the origin of

the outliers, which may be an error or a genuine extreme

value (Chatfield and Xing 2019). In this context, we

remove these outliers in the series of maximum tempera-

ture forecasts from the website, Wt;ðhÞ, and replace them

with estimates through linear interpolation, denoted by

W�
t;ðhÞ, based on the observation at time t � 1 and the

observation at time t þ 1, since these data are non-seasonal

(Hyndman and Athanasopoulos 2018). Moritz et al. (2015)

compared several interpolation methods in time series, but

the linear interpolation was one of the methods that showed

the best results.

Thus, we replaced the outliers with their linear inter-

polation estimates only in the training subset, keeping the

real observations in the test series for a more adequate

evaluation of the performance of the proposed methodol-

ogy in a online framework.

4 Results and discussion

Table 2 shows the parameters estimates and respective

standard errors for each of the six models, h ¼ 1; . . .; 6.

First, the estimates of / are between � 1 and 1, and

therefore state processes are stationary.

The estimates of the state mean, l, for each of the

models are greater than 1 for all time horizons. This
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Fig. 3 Observed maximum temperature (in black), website’s 1-step

ahead (top) and 6-steps ahead (bottom) forecasts (in blue), and

imputed values (in red) between February 20 and October 11, 2019

Table 1 Sample Pearson linear correlation coefficients, bqðYt;Wt;ðhÞÞ,
between the observed maximum temperature and the website’s h-

steps ahead forecasts

h 1 2 3 4 5 6

bqðYt;Wt;ðhÞÞ 0.96 0.95 0.93 0.92 0.89 0.86
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indicates that the website’s forecasts tend to underestimate

the observed temperature in its forecasts. Estimates of l for

maximum temperature (Table 2) are between 1.13 and

1.14, which means that, on average, the observed maxi-

mum temperature is about 13% and 14% higher compared

to the forecasts. This bias can be justified by taking into

consideration that Carrazeda de Ansiães lies on an inter-

fluvial plain, demarcated to the South and West by the deep

valleys of the Douro and Tua rivers, and to the North and

Northeast by a plateau. These characteristics of the farm’s

location justify the poor quality of the website’s

predictions.

The state equation errors show low variability compared

to the observation equation error, whose variability tends to

increase with the increase of the forecasts’ time horizon.

This happens because the error of the state equation is

dimensionless or has no units, since it is a calibration factor

between Yt and Wt;ðhÞ, while the error of the observation

equation is in �C.

The Schwarz information criterion (BIC) is a measure of

the goodness of fit that is smaller for the model with h ¼ 1

and is therefore considered the best model.

Figure 5 shows the observed maximum temperature, h-

steps ahead forecasts, and the corrected h-steps ahead

forecasts with the 95% empirical confidence intervals in

the training period for h ¼ 1; 6, where the range of confi-

dence intervals are larger for h ¼ 6 compared to h ¼ 1.

Although uncertainty is higher for the corrected 6-steps

ahead forecasts, the point estimates are accurate.

Table 3 shows sample Pearson’s linear correlation

coefficients between the observations of maximum tem-

perature recorded at the farm and the corrected h-steps

ahead forecasts, bqðYt; bY tÞ, whose in-sample correlations

are greater than 0.90. In the out-of-sample correlations

there is a clear decrease from h ¼ 5, thus corroborating the

impact of the time horizon on the forecasts.

To validate the models, the residuals analysis was per-

formed to verify if they have a similar behavior to white

noise. The normality assumption was verified for all 6

models using the Kolmogorov–Smirnov test (all p values

[ 0:05). To verify the assumption of independence, the

Ljung–Box portmanteau test was performed taking k ¼ 10

as the maximum lag to be considered (Hyndman and

Athanasopoulos 2018), whose hypothesis of independence

h=1 h=2 h=3 h=4 h=5 h=6

1.
0

1.
5

2.
0

1.
0

1.
5

2.
0

Fig. 4 Boxplots of the ratio

between the observed maximum

temperature and the respective

forecasts at h-steps ahead, h ¼
1; . . .; 6 the in training period

Table 2 Parameters estimates

and respective standard errors of

the applicated models to h-days

ahead (h ¼ 1; . . .; 6) of the

maximum temperature

h 1 2 3 4 5 6

/

Estimate 0.9757 0.9445 0.9795 0.9677 0.8886 0.6557

Std. error 0.0360 0.0386 0.0218 0.0291 0.2016 0.2223

l

Estimate 1.1421 1.1432 1.1335 1.1315 1.1263 1.1256

Std. error 0.0367 0.0284 0.0370 0.0281 0.0201 0.0179

re
Estimate 0.0102 0.0217 0.0100 0.0122 0.0282 0.0738

Std. error 0.0071 0.0069 0.0037 0.0049 0.0310 0.0331

re
Estimate 1.3491 1.3333 1.9962 2.2864 2.6444 2.5710

Std. error 0.0966 0.1101 0.1067 0.1240 0.3007 0.4954

logL - 180.3209 - 196.4321 - 252.6198 - 280.1320 - 318.1104 - 346.8648

BIC 381.8946 414.1169 526.4925 581.5169 657.4737 714.9823
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was rejected for the maximum temperature models with

h ¼ 4 (p value = 0.017) and h ¼ 6 (p value = 0.004), and

checked by autocorrelation function (ACF) and partial

autocorrelation function (see Fig. 6). For example, the

significant correlations in the partial ACF for h = 6 are

lags 10 and 11, and the rejection hypothesis depends on the

maximum lag being considered. In these cases, only a few

lags have a significant correlation and do not represent any

kind of underlying correlation structure. Therefore, we can

consider that globally the residuals have a white noise

behavior for all h ¼ 1; 2; . . .; 6.

To evaluate the quality of the forecasts obtained by the

models, the last part of the series was reserved without any

outliers replaced by imputation, that is, the original out-of-

sample (September 11 to October 11, 2019). For each of

the models, which are identified by the time horizons of the

forecasts from 1 to 6 days, forecasts were obtained

according to the data available in real time respecting their

time horizons, i.e., on day t the observation of the

portable station at the farm, Yt, is registered and the web-

site’s forecasts, Wtþh;ðhÞ, h ¼ 1; . . .; 6, become available.

So, for example, for the model with h ¼ 1 fitted to the

training sample, the forecasts for September 11 were

obtained; on September 11, the observation of this day was

included in the model and the website’s 1-step ahead

forecast was used to predict the maximum temperature for

September 12, and so on. Considering the time horizon of 6

days and its model fitted to the training sample, the web-

site’s forecast for September 16 was obtained on Septem-

ber 10. So, a new observation on September 11 by the

portable station located in the farm is available and allows

obtaining the filtered state prediction on September 11,

which, associated to the website’s 6-steps ahead forecast,

produces the calibrated maximum temperature for

September 17, and so on (Fig. 7).

To evaluate the predictive quality of the models, two

absolute measures, RMSE and MAE and a relative mea-

sure, MAPE, were compared (Table 4). These results are

also represented in Figs. 8 and 9 for a better comparative

analysis.

As overall evaluation measures and to characterize the

initial errors between the website’s forecasts and the

observed temperatures at the farm, we find that the web-

site’s forecasts are significantly inaccurate, as the RMSE

varies from 4.1504 for h ¼ 1 to 5.0082 for h ¼ 6,

increasing when the temporal horizon of the forecast

increases. For h ¼ 4, we see that the website’s predictions

have a slightly lower RMSE than the RMSE for h ¼ 3, i.e.,

the original forecasts for h ¼ 4 are globally and slightly

more accurate than for h = 3. For the original data, MAE

does not show an overall trend. In fact, the MAE varies

from 3.7231 for h ¼ 2 to 4.0919 for h ¼ 6, becoming clear

that it is smaller for h ¼ 1; 2. The relative MAPE indicator

ranges from a minimum of 16.9248% for the 1-step ahead

forecasts to a maximum of 19.3711% for the 6-steps ahead

forecasts.

It can be seen that the evaluation measures in the

training period (in-sample uncorrected) are very similar to

the evaluation measures for the overall available period.

Naturally, this fact was already expected, given that the

training period encompasses a large part of the available

observations (203 out of 234 available). It is noted that all

measures tend to increase with the increase of the time

horizon, considering the entire observation period. In the

training period, there was a reduction greater than 64% in

the RMSE, MAE, and MAPE of the corrected 1-step ahead

0

20

40

60

80

M
ar

−0
1

M
ar

−3
1

Ap
r−

30

M
ay

−3
1

Ju
n−

30

Ju
l−

31

Au
g−

31

Time (days)

Te
m

pe
ra

tu
re

 (º
C

)

0

20

40

60

80

M
ar

−0
1

M
ar

−3
1

Ap
r−

30

M
ay

−3
1

Ju
n−

30

Ju
l−

31

Au
g−

31

Time (days)

Te
m

pe
ra

tu
re

 (º
C

)

Fig. 5 Observed maximum temperature (in black), h-steps ahead

forecasts (in blue) and corrected h-steps ahead forecasts (in red)

between February 20 and September 10, 2019 (training period); top:

h ¼ 1, bottom: h ¼ 6. Shadow: 95% empirical confidence intervals

Table 3 Sample Pearson linear correlation coefficients, bqðYt; bYtÞ,
between the observed maximum temperature and the corrected h-

steps ahead forecasts

h 1 2 3 4 5 6

bqðYt; bY tÞ in-sample 0.98 0.98 0.96 0.95 0.92 0.90

bqðYt; bY tÞ out-of-sample 0.86 0.83 0.81 0.83 0.69 0.35
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forecasts, and a reduction greater than 33% in the corrected

6-steps ahead forecasts compared to the website’s initial

forecasts.

However, by analyzing the quality measures regarding

the evaluation period (out-of-sample uncorrected) we find

that for the various time horizons the website’s forecasts

present values of RMSE, MAE and MAPE globally lower

than the same measures in the overall available period.

That is, regarding the last 31 days, the website’s forecasts

present lower forecast errors in relation to the global series

for the 234 days. In particular, for h ¼ 4, in the evaluation

period, the website’s forecasts present an RMSE that cor-

responds to 89% of the global RMSE, while for h ¼ 3 this

value is 94%. And even in nominal terms, the RMSE for

h ¼ 4 is lower than for h ¼ 3, both in the overall period

and particularly in the evaluation period (out-of-sample). In

the test period there was a reduction greater than 57% in

the RMSE, MAE, and MAPE of the corrected 1-step ahead

forecasts, and a reduction greater than 17% in the RMSE,

MAE, and MAPE of the corrected 6-steps ahead forecasts
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h=6

h=5

h=4

h=3

h=2

h=1

11 12 13 14 15 16 17 18 4 5 6 7 8 9 10 11…
September October

noziroh
e

miT

Time (days)

Fig. 7 Forecast period

considering the forecasts’ time

horizon

Stochastic Environmental Research and Risk Assessment (2023) 37:219–231 227

123



in comparison with the website’s initial forecasts. How-

ever, a slight improvement is noted for the corrected 4-

steps forecasts compared to the corrected forecasts with

h ¼ 1; 2; 3 in the test period. Furthermore, as the time

horizon of the predictions increases, the reduction in

evaluation measures tends to be greater in out-of-sample

than in in-sample, except for h ¼ 6. The good performance

of the correction model for the 4-day time horizon

Table 4 Evaluation measures between the observed maximum temperature and the respective h-steps ahead forecasts before and after in-sample,

out-of-sample, and global correction

h ¼ 1 h ¼ 2 h ¼ 3

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Global uncorrected Yt versus Wt;ðhÞ 4.1504 3.7795 16.9248 4.1962 3.7231 16.9718 4.5165 3.8893 18.0913

In-sample uncorrected Yt versus Wt;ðhÞ 4.1882 3.7951 17.3181 4.2158 3.7118 17.2955 4.5540 3.8640 18.4159

In-sample corrected Yt versus W�
t;ðhÞ 3.7905 3.5759 15.7690 3.7442 3.4847 15.6868 3.9419 3.5719 16.0571

In-sample corrected Yt versus bYt
1.4776 1.0856 4.1737 1.5994 1.1728 4.5296 2.1104 1.6152 6.2547

In-sample reduction (%) Wt;ðhÞ versus bYt
64.72 71.39 75.90 62.06 68.40 73.81 53.66 58.20 66.04

Out-of-sample uncorrected Yt versus Wt;ðhÞ 3.8936 3.6774 14.3497 4.0657 3.7968 14.8525 4.2626 4.0548 15.9657

Out-of-sample corrected Yt versus bYt
1.6469 1.2724 4.4941 1.7203 1.4058 4.8399 1.9701 1.4948 5.3969

Out-of-sample reduction (%) Wt;ðhÞ versus bYt
57.70 65.40 68.68 57.69 62.97 67.41 53.78 63.14 66.20

h ¼ 4 h ¼ 5 h ¼ 6

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Global uncorrected Yt versus Wt;ðhÞ 4.4462 3.8457 17.6187 4.6234 3.8077 17.3027 5.0082 4.0919 19.3711

In-sample uncorrected Yt versus Wt;ðhÞ 4.5157 3.8512 18.0687 4.7099 3.8113 17.7174 5.0849 4.1557 20.0726

In-sample corrected Yt versus W�
t;ðhÞ 3.9775 3.5448 15.8816 4.1698 3.5828 16.0467 4.4181 3.8291 17.4869

In-sample corrected Yt versus bYt
2.4181 1.8587 7.1440 2.9098 2.2855 8.8806 3.3755 2.6602 10.2684

In-sample reduction (%) Wt;ðhÞ versus bYt
46.45 51.74 60.46 38.22 40.03 49.88 33.62 35.99 48.84

Out-of-sample uncorrected Yt versus Wt;ðhÞ 3.9611 3.8097 14.6723 4.0108 3.7839 14.5875 4.4731 3.6742 14.7775

Out-of-sample corrected Yt versus bYt
1.6812 1.1953 4.2094 2.1675 1.7608 6.1404 3.5127 3.0179 10.6064

Out-of-sample reduction (%) Wt;ðhÞ versus bYt
57.56 68.62 71.31 45.96 53.47 57.91 21.47 17.86 28.23
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compared to h ¼ 2; 3 is largely due to the improved quality

of the original website’s forecasts for this time horizon. All

the RMSE, MAE and MAPE of the website’s forecasts are

lower for h ¼ 4 relative to the values for h ¼ 2; 3.

Figure 10 shows the observed maximum temperature (in

black), the website’s h-steps ahead forecasts (in blue), and

corrected h-steps ahead forecasts (in red) in the test period

(out-of-sample) for h ¼ 1; 6. Through graphical analysis, it

is noted that the corrected forecasts at h ¼ 6 show greater

variability than the corrected forecasts at h ¼ 1, and

therefore are more accurate.

5 Conclusions

The present study aims to study and analyze the observed

maximum temperature and the respective forecasts for

different time horizons from 1 to 6 days obtained from the

https://weatherstack.com/ website. Improving the website’s

forecasts by combining accurate data from a portable sta-

tion to minimize the forecasts’ quality measures, allows

obtaining more accurate data that will serve as inputs to

other mathematical models. In particular, corrected fore-

casts will be considered in the optimization models to

better manage the availability of water for irrigation within

the paradigm of sustainability, as advocated in the TO

CHAIR project.

For this purpose, a model with a state-space represen-

tation was introduced to model and forecast the daily

maximum temperature to improve the forecasts for the
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Fig. 10 Observed maximum

temperature (in black), h-steps

ahead forecasts (in blue), and

corrected h-steps ahead

forecasts (in red) in the test

period (out-of-sample); top:

h ¼ 1, bottom: h ¼ 6. Shadow:

95% confidence intervals
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farm, for each h ¼ 1; . . .; 6 days, and was evaluated using

evaluation measures such as RMSE, MAE, and MAPE.

The model’s parameters were obtained using the maximum

likelihood method. The normality assumption was verified

for all models; the independence assumption was rejected

for two models (h ¼ 4; 6).

Overall, the proposed model significantly reduced the

RMSE, MAE, and the MAPE both in-sample and out-of-

sample compared to the website’s initial forecasts, where it

was observed that these forecasts underestimated, on

average, the observed maximum temperature by about

13–14%.

Although the confidence intervals of the corrected 6-

steps ahead forecasts had higher ranges, the point forecasts

proved accurate. It was also found that the 4-steps ahead

corrected forecasts were more accurate than the 1, 2 and 3-

steps ahead corrected forecasts in the test period (out-of-

sample), although the models with h ¼ 1; 2; 3 showed

better fit, as evidenced by the BIC values. But sometimes a

model with a better goodness of fit does not entail it will

give the best forecasts. In addition, the out-of-sample

reduction was greater than the in-sample reduction for the

models with h ¼ 3; 4; 5, thus indicating that these models

perform better in terms of forecasting.

Overall, improved forecasts will lead to improved use of

water resources, namely by planning irrigation more

efficiently.
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