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Highlights

• We integrate bipolarity and Pythagorean fuzzy theory in marketing as a novel methodology.
• The integration of bipolarity redefines decision-making in digital marketing.
• We enhance the precision of digital marketing strategies by employing bipolarity.
• Our advantage lies in the reshaping of uncertain decisions through a bipolarity-infused approach.
• We apply our methodology to enhance digital marketing strategies on the Facebook platform.
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A B S T R A C T
Decision-making in real-world scenarios often faces the challenge of uncertainty. Traditionally,
fuzzy theory has been a means to represent and navigate such uncertainty. In this study,
we propose a pioneering approach that incorporates a bipolarity analysis into multi-criteria
decision-making processes, with a focus on its application in digital marketing. The proposal
allows the analysis to be more encompassing by considering both the positive and negative
dimensions of data, leading to better-informed decisions. A cornerstone of our contribution is
integrating bipolarity into Pythagorean fuzzy soft matrices, a fresh mathematical framework that
broadens the utility of bipolar fuzzy theory. Through rigorous computational experimentation,
we determine the prioritization of alternatives, ultimately identifying the most effective strategy
for digital marketing platforms. In our study, Facebook emerges as the foremost platform
for implementing digital marketing strategies. When compared to existing techniques, our
approach showcases significant advantages, underlining its potential to improve decision-making
in uncertain scenarios. Our research offers profound insights for businesses aiming to refine their
digital marketing strategies in an ever-evolving digital landscape.

1. Introduction
In a world characterized by pervasive uncertainty, the usage of fuzzy sets provides a framework to handle this

uncertainty, as initially presented in [1]. The subsequent exploration of the role of fuzzy sets in topology, crucial for
grasping their functionality, was tackled later [2]. A groundbreaking advance was the evolution of bipolar fuzzy sets,
a mechanism to differentiate between positive and negative data, as highlighted in [3]. Moreover, the nuanced role of
fuzzy sets has been explored within broader system dynamics, particularly emphasizing their impact in bio-economic
and industrial sectors through control methodologies [4].

Building upon the foundational understanding of bipolar fuzzy sets, research directions have diversified. For
instance, certain studies have considered into numerical solutions of differential systems by considering a pure hybrid
fuzzy neutral delay theory, thus highlighting the broad applications of fuzzy theories in complex mathematical
computations [5]. Furthermore, an extension of bipolar fuzzy sets emphasizes their extended range, allowing
membership degrees to span the interval [-1, 1] from the traditional interval [0,1].
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The dynamic field of digital marketing is intrinsically laden with uncertainties and bipolar tendencies. The task
of pinpointing the ideal social media platform (SMP) often encounters hurdles due to the uncertainties surrounding
aspects such as advertising expenses, audience demographics, engagement metrics, return on investment (ROI),
and user behavior. These complexities necessitate methodologies capable of integrating fuzzy and crisp solutions,
particularly in evolving scenarios such as those modeled by fractional pandemic models [6, 7].

Traditional methodologies, anchored in precise data, occasionally fall short in navigating these aspects, as outlined
in [8]. One can champion a methodology that seamlessly integrates the mentioned uncertainties, leveraging the bipolar
valued fuzzy sets discussed in [9]. The methodology can broaden such uncertainties to encapsulate intuitionistic fuzzy
soft matrices and introduce innovative operations in the soft set paradigm [10–14]. An intuitionistic fuzzy matrix
is a pair of fuzzy matrices, namely, membership and non-membership functions capturing the nuances of universal
elements in relation to certain attributes (characteristics).

The pioneering work presented in [15] applied bipolar intuitionistic fuzzy soft sets to decision-making problems.
The emergence of the complex proportional assessment (COPRAS) method, proposed in [16], provided a new strategy
for handling decision-making frameworks. The COPRAS method was later adapted to intuitionistic fuzzy soft sets
in multi-criteria decision-making problems, as discussed in [17, 18]. Similarly, the introduction of the intercriteria
correlation (CRITIC) method in [19] offered a novel strategy for determining attribute weights in bipolar Pythagorean
fuzzy (BPF) environments, explored further in [20–22]. A Pythagorean fuzzy set is a generalization of an intuitionistic
fuzzy set.

In the evaluation of alternative preferences, the measurement and ranking based on the compromise solution (MAR-
COS) method, developed in [23], provides a valuable tool. Additionally, the multi-attribute ideal-real comparative
analysis (MAIRCA) method, introduced in [24], serves as an effective approach for estimating the gap between ideal
and empirical detections.

With the preceding backdrop, our study is anchored on four objectives as follows: (i) to introduce and articulate
the BPF soft regular generalized matrices; (ii) to present an allied topology, expanding the horizons of the existing
techniques; (iii) to delineate operations specifically designed for these matrices, priming them for tangible real-world
applications; and (iv) to craft and expose algorithms deeply rooted based on the proposed approach with a spotlight
on digital marketing deployments. A distinctive feature of our research domain is the detailed exploration of BPF soft
regular generalized matrices and their operations – a domain unexplored in prior academic endeavors. The significance
of our novel approach becomes even more pronounced within the context of digital marketing, an arena constantly
navigating nuances and uncertainties. Our proposed approach and the resultant algorithms hold the potential to redefine
the decision-making trajectory in digital marketing, bestowing it with fortified resilience in the face of uncertain data.
Also, the growing exploration of topological structures in information landscapes reveals new pathways and insights,
as demonstrated in studies such as [25, 26].

Our new approach offers a decision-making paradigm in digital marketing, integrating fuzzy theory, bipolarity,
and soft settings. This approach allows for the handling of uncertain or imprecise data and the accommodation of
multiple criteria simultaneously through matrix operations, providing a promising contribution to decision-making
methodologies. Therefore, our research addresses a crucial gap in the literature and advances the current understanding
of decision-making under uncertainty.

The article is planned as follows. In Section 2, we introduce the preliminaries and notations ensuring clarity in our
exploration. In Section 3, four algorithms are described tailored for digital marketing, as applications of the bipolar
Pythagorean fuzzy soft matrix (BPFSM) topology. Section 4 presents a multi-criteria decision-making application
utilizing the bipolar Pythagorean fuzzy soft regular generalized matrices, underscored by various methods infused
with BPF data. Lastly, Section 5 offers a comprehensive discussion on our exploration of bipolarity in Pythagorean
fuzzy soft regular generalized matrices, drawing conclusions, limitations, and potential avenues for future research.

2. Preliminaries
The present article draws upon topological concepts, particularly from fuzzy set theory and its bipolar extensions.

To ensure clarity, this section begins by introducing a selection of notations, as detailed in Table 1, which are
fundamental to our work. Subsequently, we provide foundational concepts that are consistently employed throughout
the document.
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Table 1
Acronyms and notations used in the present article.

Acronym/notation Definition

AAI Anti-ideal solution

AI Ideal solution

BPF Bipolar Pythagorean fuzzy

BPFSM Bipolar Pythagorean fuzzy soft matrix

BPFSM𝑚×𝑛 Set of all 𝑚 × 𝑛 BPF soft matrices

BFSM𝑚×𝑛 Set of all 𝑚 × 𝑛 bipolar fuzzy soft matrices

BPFSCM BPF soft closed matrix

BPFSMTS BPF soft matrix topological space

BPFSRCM BPF soft regular closed matrix

BPFSRGCM BPF soft regular generalized closed matrix

BPFSRGOM BPF soft regular generalized open matrix

BPFSOM BPF soft open matrix

BPFSROM BPF soft regular open matrix

FSM𝑚×𝑛 Set of all 𝑚 × 𝑛 fuzzy soft matrices

NDM Normalized decision matrix

ROI Return on investment

SMP Social media platform

WNDM Weighted normalized decision matrix

2.1. Notations
Prior to delving deeper, we lay out the notations pivotal to our discussions. These notations provide the scaffolding

for the terminologies inherent in our proposed algorithms. Table 1 offers a concise guide, introducing concepts like the
BPFSM, soft regular closed and open matrices, and the normalized decision matrix (NDM). Each notation is imperative
for the effective conceptualization of the algorithms and their applications.
2.2. Topological concepts

Topology, which is intrinsically concerned with continuity and boundaries, is fundamental for understanding
various mathematical and information science structures. The advancements of recent literature highlight the escalating
significance of topological concepts in information systems. Within this work, understanding topology is essential to
fully grasp the intricacies of bipolar fuzzy matrices. To further assist the reader, in the next subsection, we present all
requisite definitions, particularly emphasizing the topological concepts at the heart of our exploration. We recommend
that readers familiarize themselves with this foundational content to enhance their understanding of the subsequent
sections.
2.3. Definitions

Next, some definitions are provided to facilitate the reading. Let 𝑈 = {𝑢1,… , 𝑢𝑚} be the universal set, 𝐸 =
{𝑒1,… , 𝑒𝑛} a set of characteristics (attributes or criteria),𝐴 a subset of𝐸 (𝐴 ⊆ 𝐸), ∅ the empty (null) set, 𝜏 a topology
on {𝑈,𝐸}, and the trinity {𝑋, 𝜏, 𝐸} be a topological space over the space set 𝑋 where the attributes 𝐸 are defined.
For example, 𝑋 can be five SMPs as 𝑋 = {Facebook, Instagram; LinkedIn; WhatsApp; YouTube} with attributes
𝐸 = {advertisement cost; demography; marketing goal; monthly active users; product cost}.
Definition 2.1 (Fuzzy soft set and matrix form). The pair {𝐹 ,𝐴} is called a fuzzy soft set over 𝑈 whenever 𝐹 is a
mapping given by 𝐹 : 𝐴 ↦ 𝐼𝑈 , with 𝐼𝑈 denoting the collection of all fuzzy subsets of 𝑈 . If {𝐹 ,𝐴} is a fuzzy soft set
in the fuzzy soft class {𝑈,𝐸}, then {𝐹 ,𝐴} can be represented in a matrix form with 𝐴 = [𝑎𝑖𝑗], where 𝑎𝑖𝑗 = 𝜇𝑗(𝑢𝑖),
if 𝑒𝑗 ∈ 𝐴; otherwise, that is, if 𝑒𝑗 ∉ 𝐴, 𝑎𝑖𝑗 = 0, with 𝜇𝑗(𝑢𝑖) being the membership of 𝑢𝑖 in the fuzzy set 𝐹 (𝑒𝑗), for
𝑖 ∈ {1,… , 𝑚} and 𝑗 ∈ {1,… , 𝑛}.
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Definition 2.2 (Intuitionistic fuzzy soft set and its matrix form). Let {𝐹 ,𝐴} be an intuitionistic fuzzy soft set in the
intuitionistic fuzzy soft class {𝑈,𝐸}, that is, {𝐹 ,𝐴} is a pair of fuzzy matrices with membership and non-membership
functions. Then, 𝐹 is an intuitionistic fuzzy matrix that maps elements in𝐴 to membership and non-membership values
𝜇 and 𝜈, capturing the nuances of elements in 𝑈 in relation to attributes in 𝐴. Thus, {𝐹 ,𝐴} can be represented in a
matrix form with 𝐴 = [𝑎𝑖𝑗], where 𝑎𝑖𝑗 = {𝜇𝑗(𝑢𝑖), 𝜈𝑗(𝑢𝑖)} if 𝑒𝑗 ∈ 𝐴; otherwise, 𝑎𝑖𝑗 = {0, 1}. In this context, for any 𝑢𝑖
in 𝑈 and 𝑒𝑗 in 𝐴, 𝜇𝑗(𝑢𝑖) is the membership of 𝑢𝑖 in the intuitionistic fuzzy set 𝐹 (𝑒𝑗), while 𝜈𝑗(𝑢𝑖) is its non-membership,
with 0 ≤ 𝜇𝑗(𝑢𝑖) + 𝜈𝑗(𝑢𝑖) ≤ 1, for 𝑖 ∈ {1,… , 𝑚} and 𝑗 ∈ {1,… , 𝑛}.

Definition 2.3 (Pythagorean fuzzy soft set and its matrix form). Let {𝐹 ,𝐴} be a Pythagorean fuzzy soft set in the
Pythagorean class {𝑈,𝐸}, that is, {𝐹 ,𝐴} is a generalization of an intuitionistic fuzzy set. Then, {𝐹 ,𝐴} can be
represented in a matrix form with 𝐴 = [𝑎𝑖𝑗], where 𝑎𝑖𝑗 = {𝜇𝑗(𝑢𝑖), 𝜈𝑗(𝑢𝑖)}, if 𝑒𝑗 ∈ 𝐴; otherwise, 𝑎𝑖𝑗 = {0, 1}, with
𝜇𝑗(𝑢𝑖) being the membership of 𝑢𝑖 in the Pythagorean fuzzy set𝐹 (𝑒𝑗) and 𝜈𝑗(𝑢𝑖) the associated non-membership, holding
0 ≤ (𝜇𝑗(𝑢𝑖))2 + (𝜈𝑗(𝑢𝑖))2 ≤ 1, for 𝑖 ∈ {1,… , 𝑚} and 𝑗 ∈ {1,… , 𝑛}.

Definition 2.4 (Bipolar fuzzy soft set and its matrix form). Let {𝐹 ,𝐴} be a bipolar fuzzy soft set in the bipolar
fuzzy soft class {𝑈,𝐸}, that is, {𝐹 ,𝐴} possesses membership degrees that span the interval [-1, 1] departing
from the traditional interval [0,1]. Thus, {𝐹 ,𝐴} can be represented in a matrix form with 𝐴 = [𝑎𝑖𝑗], where
𝑎𝑖𝑗 = {𝜇−𝑗 (𝑢𝑖), 𝜇

+
𝑗 (𝑢𝑖)}, if 𝑒𝑗 ∈ 𝐴; otherwise, 𝑎𝑖𝑗 = {0, 0}. Here, 𝜇−𝑗 (𝑢𝑖) denotes the negative membership of 𝑢𝑖 in

the bipolar fuzzy set 𝐹 (𝑒𝑗), and 𝜇+𝑗 (𝑢𝑖) the positive membership, considering −1 ≤ 𝜇−𝑗 (𝑢𝑖) ≤ 0, 0 ≤ 𝜇+𝑗 (𝑢𝑖) ≤ 1, for
𝑖 ∈ {1,… , 𝑚} and 𝑗 ∈ {1,… , 𝑛}.

Definition 2.5 (BPF set in matrix form). Let {𝐹 ,𝐴} be a BPF soft set in the fuzzy soft class {𝑈,𝐸}. Then, {𝐹 ,𝐴}
may be formulated as a matrix with 𝐴 = [𝑎𝑖𝑗], where 𝑎𝑖𝑗 = {𝜇+𝑗 (𝑢𝑖), 𝜈

+
𝑗 (𝑢𝑖), 𝜇

−
𝑗 (𝑢𝑖), 𝜈

−
𝑗 (𝑢𝑖)}, if 𝑒𝑗 ∈ 𝐴; otherwise,

𝑎𝑖𝑗 = {0, 1, 0,−1}, with 𝜇+𝑗 (𝑢𝑖) being the positive membership of 𝑢𝑖 in the BPF set 𝐹 (𝑒𝑖) and 𝜇−𝑗 (𝑢𝑖) its negative
membership, whereas 𝜈+𝑗 (𝑢𝑖) is the positive non-membership of 𝑢𝑖 ∈ 𝐹 (𝑒𝑖) and 𝜈−𝑗 (𝑢𝑖) its negative non-membership,
for 0 ≤ (𝜇−𝑗 (𝑢𝑖))

2 + (𝜈−𝑗 (𝑢𝑖))
2 ≤ 1, 0 ≤ (𝜇+𝑗 (𝑢𝑖))

2 + (𝜈+𝑗 (𝑢𝑖))
2 ≤ 1, 𝑖 ∈ {1,… , 𝑚}, and 𝑗 ∈ {1,… , 𝑛}.

Definition 2.6 (BPF soft null and universal matrices). Given matrices 𝐴 = [𝑎𝑖𝑗] and 𝐵 = [𝑏𝑖𝑗] in BPFSM𝑚×𝑛,
matrix 𝐴 is termed a BPF soft submatrix of 𝐵, denoted by 𝐴 ⊆ 𝐵, if 𝜇𝐴 ≤ 𝜇𝐵 and 𝜈𝐴 ≥ 𝜈𝐵 for all 𝑖 ∈ {1,… , 𝑚}
and 𝑗 ∈ {1,… , 𝑛}. Within BPFSM𝑚×𝑛: (i) a BPF soft empty (null) matrix, denoted as ∅𝑚×𝑛, is when all elements
are {0, 1, 0,−1}, indicating no positive membership and full negative non-membership; and (ii) a BPF soft universal
matrix, denoted by 𝑈𝑚×𝑛, has its elements as {1, 0,−1, 0}, implying full positive membership and no negative non-
membership.

Definition 2.7 (Operations on the BPFSM set). Let 𝐴 = [𝑎𝑖𝑗] and 𝐵 = [𝑏𝑖𝑗] ∈ BPFSM𝑚×𝑛, with 𝜇𝐴, 𝜇𝐵 be their
corresponding membership functions, for 𝑖 ∈ {1,… , 𝑚}, 𝑗 ∈ {1,… , 𝑛}. Then, we define:

(i) [Addition] 𝐴 + 𝐵 = 𝐶 = [𝑐𝑖𝑗], with 𝑐𝑖𝑗 =
{

max{𝜇+𝐴, 𝜇
−
𝐴, 𝜇

+
𝐵 , 𝜇

−
𝐵}, min{𝜈+𝐴 , 𝜈

−
𝐴 , 𝜈

+
𝐵 , 𝜈

−
𝐵}

}

;
(ii) [Subtraction] 𝐴 − 𝐵 = 𝐶 = [𝑐𝑖𝑗], with 𝑐𝑖𝑗 =

{

min{𝜇+𝐴, 𝜇
−
𝐴, 𝜇

+
𝐵 , 𝜇

−
𝐵}, max{𝜈+𝐴 , 𝜈

−
𝐴 , 𝜈

+
𝐵 , 𝜈

−
𝐵}

}

;
(iii) [Product] 𝐴 × 𝐵 = 𝐶 = [𝑐𝑖𝑗], where

𝑐𝑖𝑗 =
{

max
𝑖,𝑗

min{𝜇+𝐴, 𝜇
+
𝐵},min

𝑖,𝑗
max{𝜈+𝐴 , 𝜈

+
𝐵},min

𝑖,𝑗
max{𝜇−𝐴, 𝜇

−
𝐵},max

𝑖,𝑗
min{𝜈−𝐴 , 𝜈

−
𝐵}

}

.

Here, for each element 𝑐𝑖𝑗 , the indices 𝑖 and 𝑗 run through the entire set of row and column indices of the matrices
𝐴 and 𝐵. This means that each 𝑐𝑖𝑗 considers the combination of all elements from both matrices;

(iv) [Complement] For 𝐴 = [𝑎𝑖𝑗], with 𝑎𝑖𝑗 = {𝜇+𝑗 , 𝜈
+
𝑗 , 𝜇

−
𝑗 , 𝜈

−
𝑗 }, its complement is 𝐴c = [𝑎c𝑖𝑗], with 𝑎c𝑖𝑗 =

{𝜈+𝑖𝑗 , 𝜇
+
𝑖𝑗 , 𝜈

−
𝑖𝑗 , 𝜇

−
𝑖𝑗};

(v) [Union] 𝐴 ∪ 𝐵 = 𝐶 = [𝑐𝑖𝑗], where 𝑐𝑖𝑗 = {𝜇+𝐶𝑖𝑗 , 𝜈
+𝐶
𝑖𝑗 , 𝜇

−𝐶
𝑖𝑗 , 𝜈

−𝐶
𝑖𝑗 }, with 𝜇+𝐶𝑖𝑗 = max{𝜇+𝐴𝑖𝑗 , 𝜇

+𝐵
𝑖𝑗 }, 𝜈+𝐶𝑖𝑗 =

min{𝜈+𝐴𝑖𝑗 , 𝜈
+𝐵
𝑖𝑗 }, 𝜇−𝐶𝑖𝑗 = min{𝜇−𝐴𝑖𝑗 , 𝜇−𝐵𝑖𝑗 }, 𝜈−𝐶𝑖𝑗 = max{𝜈−𝐴𝑖𝑗 , 𝜈

−𝐶
𝑖𝑗 };

(vi) [Intersection] 𝐴 ∩ 𝐵 = 𝐶 = [𝑐𝑖𝑗], with 𝑐𝑖𝑗 = {𝜇+𝐶𝑖𝑗 , 𝜈
+𝐶
𝑖𝑗 , 𝜇

−𝐶
𝑖𝑗 , 𝜈

−𝐶
𝑖𝑗 }, where 𝜇+𝐶𝑖𝑗 = min{𝜇+𝐴𝑖𝑗 , 𝜇

+𝐵
𝑖𝑗 },

𝜈+𝐶𝑖𝑗 = max{𝜈+𝐴𝑖𝑗 , 𝜈
+𝐵
𝑖𝑗 }, 𝜇−𝐶𝑖𝑗 = max{𝜇−𝐴𝑖𝑗 , 𝜇

−𝐵
𝑖𝑗 } and 𝜈−𝐶𝑖𝑗 = min{𝜈−𝐴𝑖𝑗 , 𝜈

−𝐵
𝑖𝑗 }.
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Definition 2.8 (BPFSMTS). A topology 𝜏 on {𝑈,𝐸} is the family of BPFSM𝑚×𝑛 over {𝑈,𝐸}, 𝜏𝑚×𝑛 say, satisfying
the following properties: (i) ∅, 𝑈 ∈ 𝜏𝑚×𝑛; (ii) If 𝐴,𝐵 ∈ 𝜏𝑚×𝑛, then 𝐴 ∪ 𝐵 ∈ 𝜏𝑚×𝑛; and (iii) if 𝐴,𝐵 ∈ 𝜏𝑚×𝑛, then
𝐴 ∩ 𝐵 ∈ 𝜏𝑚×𝑛. The trinity {𝑋, 𝜏𝑚×𝑛, 𝐸} is said to be a BPFSMTS over the space set 𝑋.

As topological structures evolve, we introduce sophisticated constructs like the bipolar Pythagorean fuzzy soft
open matrix (BPFSOM), fundamental to advanced topological domain. This introduction sets the stage for nuanced
discussions essential in this domain.

The roles of certain sets in such a domain, harmonious with traditional topology, are:
∙ [Set 𝑉 ] Analogous to subsets in traditional topology, this is a foundational set subject to interior and closure

operations.
∙ [Set 𝐺] It represents the open conditions within the topology and defines the interior of set 𝑉 by forming unions

that adhere to specific criteria, reminiscent of open sets in traditional topology.
∙ [Set 𝐾] It has functions similar to closed sets in traditional topology, establishing the boundaries or closure for

sets like 𝑉 . The closure is discerned by intersections of sets within 𝐾 under defined closed conditions.
∙ [Set𝑊 ] This is a distinctive set without a direct analog in traditional topology and serves as a reference, ensuring

sets remain compliant with certain topological properties.
These concise roles, extended from usual concepts, navigate through more intricate as non-binary topological
relationships.
Definition 2.9 (BPFSOM). Let 𝐴𝑚×𝑛 be a matrix wherein each element signifies a bipolar fuzzy state within a
topological space. This matrix, crucial for our subsequent operations and relations, is identified as a BPFSOM.

Definition 2.10 (Pythagorean Fuzzy soft interior and closure). In a BPFSMTS {𝑋, 𝜏𝑚×𝑛, 𝐸}, for a set {𝑉 ,𝐸}: (i)
the “interior” is defined as int{𝑉 ,𝐸} =

⋃

{{𝐺,𝐸} | {𝐺,𝐸} ⊆ {𝑉 ,𝐸}}, where each {𝐺,𝐸} is a BPFSRGOM; and
(ii) the “closure” is states as cl{𝑉 ,𝐸} =

⋂

{{𝐾,𝐸} | {𝑉 } ⊆ {𝐾}}, where each {𝐾,𝐸} is a BPFSRGCM. In this
context, “int” and “cl” refer to the interior and closure operations, respectively.

Definition 2.11 (BPF soft regular open matrix —BPFSRGOM). In a BPFSMTS {𝑋, 𝜏𝑚×𝑛, 𝐸}, a set BPFS𝑚×𝑛
defined by {𝐾,𝐸} is called a BPFSRGOM if it satisfies the condition {𝐾,𝐸} = int{cl{𝐾,𝐸}}.

Definition 2.12 (BPF soft regular closed matrix —BPFSRGCM). In a BPFSMTS {𝑋, 𝜏𝑚×𝑛, 𝐸}, a set {𝐾,𝐸} is
called a BPFSRGCM if it satisfies the condition {𝐾,𝐸} = cl{int{𝐾,𝐸}}.

Definition 2.13 (BPFSCM soft closed matrices —BPFSCM). In a BPFSMTS {𝑋, 𝜏𝑚×𝑛, 𝐸}, a set {𝐾,𝐸} is consid-
ered a BPFSCM if cl{𝐾,𝐸} ⊆ 𝑊𝑚×𝑛 under the condition that {𝐾,𝐸} ⊆ 𝑊𝑚×𝑛, where 𝑊𝑚×𝑛 is a BPFSROM within
the space {𝑋, 𝜏𝑚×𝑛, 𝐸}.

2.4. Properties and operations on BPF soft matrices
Theorem 2.14. Let {𝑉 ,𝐸} and {𝑊 ,𝐸} be BPFSRGCM𝑚×𝑛. Then, the disjunction of {𝑉 ,𝐸} and {𝑊 ,𝐸} is also a
BPFSRGCM in the space {𝑋, 𝜏𝑚×𝑛, 𝐸}.

Remark 2.15. The conjunction of two BPFSRGCM𝑚×𝑛 is not guaranteed to be a BPFSRGCM in the space
{𝑋, 𝜏𝑚×𝑛, 𝐸}.

Theorem 2.16. Let {𝑉 ,𝐸} be a BPFSRGCM and {𝑉 ,𝐸} ⊆ {𝑊 ,𝐸} ⊆ clBPFS{𝑉 ,𝐸}. Then, {𝑊 ,𝐸} is a
BPFSRGCM in the space {𝑋, 𝜏𝑚×𝑛, 𝐸}.

After understanding the dynamics of the closed matrices, it is equally pivotal to explore the landscape of the open
matrices. In essence, their definitions provide a contrasting perspective that enhances our topological elements.
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Table 2
Proposed algorithms and their associated method

Algorithm Method
1 BPF CRITIC
2 BPF CRITIC COPRA
3 BPF CRITIC MARCOS
4 BPF CRITIC MAIRCA

Definition 2.17 (BPFSRGOM). Consider a BPFSMTS {𝑋, 𝜏𝑚×𝑛, 𝐸}. A set {𝐾,𝐸} within this space is termed a
BPFSRGOM if its complement {𝐾,𝐸}c is a BPFSRGCM, and for any matrix 𝐺𝑚×𝑛 that is a BPFSRCM satisfying
{𝐾,𝐸} ⊇ 𝐺𝑚×𝑛, we have int{𝐾,𝐸} ⊇ 𝐺𝑚×𝑛, indicating that the interior of {𝐾,𝐸} contains 𝐺𝑚×𝑛.

The properties of the BPFSRGOM bring forward intriguing dynamics, especially when combined with other similar
matrices.
Theorem 2.18. Let {𝑉 ,𝐸} and {𝑊 ,𝐸} be two BPFSRGOM in the space {𝑋, 𝜏𝑚×𝑛, 𝐸}. Then, the conjunction of
{𝑉 ,𝐸} and {𝑊 ,𝐸} is also a BPFSRGOM in the space {𝑋, 𝜏𝑚×𝑛, 𝐸}.

Remark 2.19. The disjunction of any two BPFSRGOM𝑚×𝑛 is not guaranteed to be a BPFSRGOM in the space
{𝑋, 𝜏𝑚×𝑛, 𝐸}.

Beyond the inherent properties and operations on the presented matrices, it is also essential to understand how we
can quantitatively assess them, providing a tangible measure of their characteristics.
Definition 2.20 (Score function). For any BPFSM, the score function of 𝐴𝑚×𝑛 is defined as

𝑆(𝐴𝑚×𝑛) = 𝑆([𝑎𝑖𝑗]) = 1 −
|

|

|

|

|

(𝜇+𝐴)
2 − (𝜈+𝐴)

2 + (𝜇−𝐴)
2 − (𝜈−𝐴)

2

2

|

|

|

|

|

,

where 𝑆(𝐴𝑚×𝑛) ∈ [−1, 1].

To summarize, this section has introduced a robust foundation with definitions, theorems, and remarks around the
BPF soft matrices. The introduced concepts form the core theoretical background for the algorithms discussed in the
next section, demonstrating the practical application of the topological concepts used.

3. Algorithms for BPF soft matrices topology
To prepare the discussions and analyses that follow, we incorporated a comprehensive summary and background

in Section 2. The summary and background defined and elaborated upon recurring terms and concepts throughout
the article, ensuring a fluid and accessible reading experience. This section begins by articulating four algorithms,
which are proposed as applications of a BPFSMTS [29, 30] within the domain of digital marketing. Specific methods
embedded within each algorithm are illustrated in Table 2.
3.1. Context

Next, we introduce algorithms rooted in advanced topological concepts, which have been emphasized for their
growing significance in information systems [25, 26]. Within the scope of the present work, these abstract mathematical
structures are applied to digital marketing. The algorithms offer innovative solutions for tackling real-world challenges
such as customer segmentation, advertising optimization, and ROI calculations.

Consider the complex environments of a digital marketing ecosystem, populated by numerous touchpoints –
ranging from social media engagement and web analytics to customer journey mapping. Traditional data analysis
methods [27] often falter under the weight of the high volume, velocity, and variety of data (often named as big data
[28]) generated in such environments. In contrast, the algorithms discussed in this section provide a robust, data-driven
framework to manage this complexity effectively. They allow for more informed decision-making processes in the field
of digital marketing.
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In the subsequent sections, we detail these algorithms. Each algorithm utilizes topological structures in unique ways
to optimize various facets of digital marketing. As summarized in Table 2, we outline four specific algorithms: BPF
CRITIC, BPF CRITIC COPRA, BPF CRITIC MARCOS, and BPF CRITIC MAIRCA, namely. To cater to a diverse
audience, each algorithm is provided into three detailed formats: either as a textual algorithm with an accompanying
breakdown, as a flowchart, and an accompanying breakdown to assist in understanding their underlying mechanics.
These tailored formats enable readers to understand the complexities of each algorithm in the manner that they find
most accessible.
Remark 3.1. Throughout the following algorithms, whenever we mention the computation of the score values𝑆([𝑎𝑖𝑗]),
refer to the score function previously established.

3.2. BPF CRITIC algorithm
Presented in Algorithm 1, the BPF CRITIC method offers a valuable framework for analyzing data in digital

marketing. Specifically designed for user-friendliness and efficiency, it excels in managing complex datasets. One of
its core functionalities is the normalization of the decision matrix and the estimation of attribute weights, a frequently
encountered aspect in the domain of marketing analytics, thereby providing a structured approach to handle BPFSMs.
This aspect enables a more sophisticated interpretation of customer behavior and engagement metrics. Consequently,
it empowers marketers to make strategically informed decisions based on nuanced data insights.
Algorithm 1 BPF CRITIC method [19]

1: procedure (BEGIN)
2: Input BPFSOM 𝐴𝑚×𝑛 = [𝑎𝑖𝑗], where each 𝑎𝑖𝑗 is a four-tuple {𝜇+𝐴, 𝜈+𝐴 , 𝜇−𝐴, 𝜈−𝐴} indicating positive and negative

feedback ratios.
3: Construct a BPFSMTS {𝑋, 𝜏𝑚×𝑛, 𝐸} such that {𝐸,𝐴} is a BPFSRGOM in the space {𝑋, 𝜏𝑚×𝑛, 𝐸}.
4: Compute the score values, 𝑆([𝑎𝑖𝑗]) say, for each element in the matrix 𝐴𝑚×𝑛.
5: Normalize the decision matrix using

NDM = 𝑎∗𝑖𝑗 =
𝑎𝑖𝑗 − 𝑎worst𝑗

𝑎best𝑗 − 𝑎worst𝑗

,

where 𝑎worst𝑗 = min𝑖{𝑎𝑖𝑗} and 𝑎best𝑗 = max𝑖{𝑎𝑖𝑗}.
6: Calculate the correlation coefficient between the attributes 𝑒𝑖 to 𝑒𝑘 utilizing

𝑟𝑖𝑘 =

∑𝑚
𝑖=1(𝑎

∗
𝑖𝑗 − 𝑎

∗
𝑗 )(𝑎

∗
𝑖𝑘 − 𝑎

∗
𝑘)

√

(

∑𝑚
𝑖=1(𝑎

∗
𝑖𝑗 − 𝑎

∗
𝑗 )2

)

(
∑𝑚
𝑖=1(𝑎

∗
𝑖𝑘 − 𝑎

∗
𝑘)2

)

,

where
𝑎∗𝑗 =

1
𝑚

𝑚
∑

𝑖=1
𝑎∗𝑖𝑗 , 𝑎∗𝑘 =

1
𝑚

𝑚
∑

𝑖=1
𝑎∗𝑖𝑘.

7: Determine the standard deviation 𝑠𝑖 =
√

(1∕𝑚)
∑𝑚
𝑖=1(𝑎

∗
𝑖𝑗 − 𝑎𝑗)2, for 𝑗 ∈ {1,… , 𝑛}.

8: State the deviation degree 𝜙 of criterion 𝑒𝑗 from the other criteria by using 𝜑𝑗 = 𝑠𝑗
∑𝑛
𝑘=1(1 − 𝑟𝑗𝑘), for

𝑗 ∈ {1,… , 𝑛}.
9: Estimate the weights of the attributes by considering 𝑤𝑗 = 𝜑𝑗∕

∑𝑛
𝑗=1 𝜑𝑗 , for 𝑗 ∈ {1,… , 𝑛}.

10: Output Weights 𝑤𝑗 for 𝑗 ∈ {1,… , 𝑛}.
11: END

To assist in understanding the underlying mechanics of the BPF CRITIC method, a breakdown of Algorithm 1 is
provided as:

∙ [Input definition] The algorithm starts by receiving the BPFSOM, which incorporates both positive and negative
feedback ratios and serves as the foundational data from which the rest of the algorithm operates.
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∙ [Topology construction] Here, a BFS matrix topology is fashioned, ensuring compatibility with the BPFSR-
GOM.

∙ [Score valuation] This step calculates the score values for each element in the matrix, allowing us to gauge
variances.

∙ [Data normalization] A fundamental step where the decision matrix is standardized, providing uniformity and
ensuring a balanced data treatment.

∙ [Correlation computation] This measures the inter-dependencies and relationships within the matrix, giving an
understanding of how different attributes interact with each other.

∙ [Standard deviation] This step provides insights into the data’s variability.
∙ [Deviation degree] Here, it is evaluated how each criterion differs from the others, providing a measure of

distinctiveness.
∙ [Attribute weighting] This determines the importance of each attribute, indicating a clear hierarchy.
∙ [Output presentation] Lastly, the computed attribute weights are presented as the algorithm’s output, providing

a concise summary of the attributes’ relative importance.
Our methodology ensures comprehensive data processing, highlighting its significance in making informed digital

marketing decisions. For further clarity and visualization, refer to the schematic representation of the BPF CRITIC’s
workflow in Figure 1.
3.3. BPF CRITIC COPRA algorithm

Expanding on the BPF CRITIC method, the BPF CRITIC COPRA method in Algorithm 2 integrates optimization
indexes for positive and negative criteria, essential for nuanced decision-making in digital marketing. This method is
particularly helpful in scenarios where decisions need to be made considering various attributes’ importance.
Algorithm 2 BPF CRITIC COPRA method

1: procedure (BEGIN)
2: Input BPFSOM 𝐾𝑚×𝑛 with 𝐴𝑚×𝑛 = [𝑎𝑖𝑗]𝑚×𝑛 where 𝑎𝑖𝑗 comprises a four-tuple {𝜇+𝐴, 𝜈

+
𝐴 , 𝜇

−
𝐴, 𝜈

−
𝐴}.

3: Construct BPFSMTS {𝑋, 𝜏𝑚×𝑛, 𝐸} ensuring {𝐾𝑚×𝑛, 𝐴} forms a BPFSRGOM in {𝑋, 𝜏𝑚×𝑛, 𝐸}.
4: Obtain score values 𝑆([𝑎𝑖𝑗]) for each 𝑎𝑖𝑗 in 𝐴𝑚×𝑛.
5: Invoke Algorithm 1 to determine the attribute weight 𝑤𝑗 for each criterion 𝑗.
6: Normalize the matrix, where WNDM = [𝑎̂𝑖𝑗]𝑚×𝑛[𝑤𝑗]⊤, implying that [𝑎̂𝑖𝑗] are the normalized values.
7: Compute optimization indexes using the weights stated as 𝛾+𝑖 =

∑𝑟
𝑗=1𝑤𝑗 𝑎̂𝑖𝑗 for the positive impact criteria

and 𝛾−𝑖 =
∑𝑚
𝑗=𝑟+1𝑤𝑗 𝑎̂𝑖𝑗 for the negative ones, where 𝑎̂𝑖𝑗 represents the normalized score of each criterion.

8: Estimate the priority value 𝐵𝑖 for each alternative, considering both positive and negative criteria impacts by
means of 𝐵𝑖 = ℝ∗(𝛾∗𝑖 ) + (min𝑖{ℝ∗(𝛾−𝑖 )}∕ℝ

∗(𝛾−𝑖 ))
∑𝑛
𝑖=1ℝ

∗(𝛾−𝑖 ), where ℝ∗(𝛾∗𝑖 ) and ℝ∗(𝛾−𝑖 ) are the aggregated
scores from positive and negative criteria, respectively.

9: Calculate utility degree 𝜓𝑖 for each 𝑎𝑖 as 𝜓𝑖 = (𝐵𝑖∕𝐵max) 100%, indicating the performance of each alternative
in comparison to the best performer 𝐵max.

10: Rank values 𝜓𝑖, forming ranking , and make decisions based on this ranking, considering the strategic
implications of each 𝜓𝑖.

11: Output Values 𝜓𝑖 for each alternative, providing nuanced insights for decision-making.
12: END

To elucidate the BPF CRITIC COPRA method’s workflow, a concise breakdown of Algorithm 2 is presented as:
∙ [Input definition] The method starts by receiving the BPFSOM 𝐾𝑚×𝑛 containing the foundational data for

subsequent processing.
∙ [Topology construction] At this stage, the BPFSMTS is constructed, ensuring that the pair {𝐾𝑚×𝑛, 𝐴} forms a

BPFSRGOM in the prescribed space.
∙ [Score valuation] Score values are computed for each entry 𝑎𝑖𝑗 in the matrix 𝐴𝑚×𝑛.
∙ [Attribute weighting via BPF CRITIC] This method invokes Algorithm 1 to determine the weights of attributes
𝑤𝑗 for each criterion 𝑗.
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BEGIN

Input BPFSOM (Km×n,A), where Am×n = [ai j]m×n =
[{µ+

A ,ϑ+
A ,µ−A ,ϑ−A }]m×n

Construct a BPF soft matrix topology (X ,τm×n,E), such that
(Km×n,A) is a BPF soft regular generalized open set in (X ,τm×n,E)

Compute

S(Am×n) = S(ai j) = 1−
∣∣∣∣
((µ+

A )2− (ϑ+
A )2 +(µ−A )2− (ϑ−A )2))

2

∣∣∣∣

Normalize the decision matrix using

NDM = a∗i j =
ai j−aworst

j

abest
j −aworst

j
,

where aworst
j = mini{ai j} and abest

j = maxi{ai j}

Calculate the correlation coefficient between ei and ek utilizing

rik =
∑m

i=1(a
∗
i j−a∗j)(a

∗
ik−a∗k)

∑m
i=1(a

∗
i j−a∗j)2(a∗ik−a∗k)

2 ,

where a∗j = (1/m)∑m
i=1 a∗i j and a∗k = (1/m)∑m

i=1 a∗ik

Determine

si =

√
1
m

m

∑
i=1

(a∗i j−a2
j)

2,

for j ∈ {1, . . . ,n}

State the deviation degree φ of the criterion e j from the other crite-
ria using ϕ j = si ∑n

k=1(1− rik), for j ∈ {1, . . . ,n}

Estimate the weights by means of w j = ϕ j/∑n
j=1 ϕ j, for j ∈

{1, . . . ,n}

Output Weights w j for j ∈
{1, . . . ,n}

END

Figure 1: BPF CRITIC method.

∙ [Matrix normalization] Here, the data matrix is normalized using the determined weights to get the weighted
normalized decision matrix (WNDM).

∙ [Optimization index computation] Optimization indexes for both positive and negative impacts of criteria are
calculated using the derived weights.

∙ [Priority value estimation] The method estimates a priority value 𝐵𝑖 for each alternative, taking into account
both the positive and negative impacts of the criteria.
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∙ [Utility degree calculation] The method computes the utility degree 𝜓𝑖 for each entry 𝑎𝑖, which measures each
alternative’s performance compared to the best performer 𝐵max.

∙ [Ranking and decision-making] Based on the computed values 𝜓𝑖, the alternatives are ranked, forming  and
decisions are made based on this ranking, keeping in mind the strategic implications of each 𝜓𝑖.

∙ [Output presentation] The algorithm concludes by outputting the values 𝜓𝑖 for each alternative, providing a
comprehensive perspective for informed decision-making.

The BPF CRITIC COPRA method offers a nuanced approach to decision-making by not only taking into account the
weights of the criteria but also by providing a comprehensive ranking system based on both positive and negative
impacts of the criteria.
3.4. BPF CRITIC MARCOS algorithm

Building on the BPF CRITIC method, Algorithm 3 provides the BPF CRITIC MARCOS approach, designed
specifically for the intricacies of digital marketing challenges. By integrating both the optimal and non-optimal
solutions in a matrix representation, it offers a comprehensive view of potential decision outcomes. This is especially
vital in digital marketing where professionals must navigate through complex key performance indicators and market
dynamics. Evaluating both the best and worst-case scenarios facilitates efficient strategic decision-making.
Algorithm 3 BPF CRITIC MARCOS method

1: procedure (BEGIN)
2: Input Matrix 𝐾𝑚×𝑛 containing entries 𝑎𝑖𝑗 , where each entry represents the feedback (positive or negative) for

the corresponding criterion, facilitating a comprehensive evaluation.
3: Construct a topological structure {𝑋, 𝜏𝑚×𝑛, 𝐸} compatible with the matrix dimensions of 𝐾𝑚×𝑛 and aligned

with the criteria set 𝐴, ensuring each criterion’s relevance is reflected.
4: Compute the significance scores 𝑆([𝑎𝑖𝑗]) for each element in 𝐴𝑚×𝑛 to capture the relative importance of each

feedback within the decision matrix, enhancing the accuracy of subsequent analysis.
5: Apply Algorithm 1 to ascertain the attribute weight𝑤𝑗 for each criterion 𝑗, thereby differentiating the influence

of each criterion on the final outcome.
6: Expand matrix 𝑥𝑖𝑗 to include ideal (AI) and anti-ideal (AAI) solutions, extracted from the extremities of

feedback scores, providing reference points that signify the best and worst possible scenarios under each criterion.
7: Normalize 𝑥𝑖𝑗 by applying 𝑁𝑖𝑗 = 𝑎𝑖𝑗∕max{𝑎𝑖𝑗}, if 𝑗 pertains to non-benefit criteria; otherwise, 𝑁𝑖𝑗 =

min{𝑎𝑖𝑗}∕𝑎𝑖𝑗 , if 𝑗 pertains to benefit criteria; ensuring scores are dimensionless and comparable, considering
the nature of each criterion for 𝑖 ∈ {1,… , 𝑚} and 𝑗 ∈ {1,… , 𝑛}.

8: Derive 𝑅𝑖𝑗 = 𝑁𝑖𝑗𝑤𝑗 , incorporating the weight 𝑤𝑗 of criterion 𝑗, to obtain a weighted matrix that shows the
compounded influence of criteria preferences and performance scores.

9: Evaluate 𝑒+𝑖 = 𝑆𝑖∕𝑆AAI and 𝑒−𝑖 = 𝑆𝑖∕𝑆AI to ascertain each alternative’s proximity to the anti-ideal and ideal
states, respectively, so indicating their overall desirability or undesirability.

10: Establish utility functions 𝑓 (𝑒+𝑖 ) and 𝑓 (𝑒−𝑖 ) reflecting the desirability (for 𝑓 (𝑒+𝑖 )) and undesirability (for 𝑓 (𝑒−𝑖 ))of each option through the equations stated as 𝑓 (𝑒+𝑖 ) = 𝑒−𝑖 ∕(𝑒
+
𝑖 + 𝑒−𝑖 ) and 𝑓 (𝑒−𝑖 ) = 𝑒+𝑖 ∕(𝑒

+
𝑖 + 𝑒−𝑖 ), highlighting the

trade-off between optimal and suboptimal performance.
11: Compute the aggregated utility score 𝑓 (𝑒𝑖) considering both desirability and undesirability, facilitating

a balanced evaluation as 𝑓 (𝑒𝑖) = (𝑒+𝑖 + 𝑒−𝑖 )∕1 + (1 − 𝑓 (𝑒+𝑖 ))∕𝑓 (𝑒
+
𝑖 ) + (1 − 𝑓 (𝑒−𝑖 ))∕𝑓 (𝑒

−
𝑖 )), and organize the

alternatives based on 𝑓 (𝑒𝑖), with a higher score indicating a more favorable option.
12: Output Utility scores 𝑓 (𝑒𝑖) for each alternative, providing a ranked list that signals their suitability grounded

on the cumulative assessment from multiple criteria.
13: END

Breaking down the workings of the BPF CRITIC MARCOS method, Algorithm 3 consists of:
∙ [Input definition] The process begins by acquiring the matrix𝐾𝑚×𝑛, with each entry 𝑎𝑖𝑗 in this matrix representing

feedback for a respective criterion, offering a comprehensive evaluation platform.
∙ [Topology construction] At this juncture, a topological structure {𝑋, 𝜏𝑚×𝑛, 𝐸} is constructed, ensuring it aligns

with the matrix dimensions of 𝐾𝑚×𝑛 and syncs with the criteria set 𝐴, guaranteeing that the relevance of each
criterion is appropriately captured.
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∙ [Significance score computation] Each element in 𝐴𝑚×𝑛 is assigned a significance score 𝑆([𝑎𝑖𝑗]), whose score
captures the relative importance of each feedback within the decision matrix, which improves the accuracy of
the subsequent evaluations.

∙ [Attribute weighting] Algorithm 1 is employed to determine the weight 𝑤𝑗 of each criterion 𝑗, helping in
differentiating the influence of each criterion on the eventual outcome.

∙ [Inclusion of ideal solutions] The matrix 𝑋𝑖𝑗 is expanded to integrate both the ideal (AI) and anti-ideal (AAI)
solutions, whose solutions, derived from the feedback score extremities, act as reference points that exemplify
the best and worst potential outcomes for each criterion.

∙ [Matrix normalization] Normalizing the matrix 𝑋𝑖𝑗 ensures that the scores are dimensionless and can be
compared, whose normalization also takes into account the nature of each criterion for 𝑖 ∈ {1,… , 𝑚} and
𝑗 ∈ {1,… , 𝑛}.

∙ [Weighted matrix derivation] The matrix is weighted by deriving 𝑅𝑖𝑗 = 𝑁𝑖𝑗𝑤𝑗 , emphasizing the compounded
influence of criteria preferences and performance scores.

∙ [Desirability computation] The proximity of each alternative to the ideal and anti-ideal metrics is ascertained
through 𝑒+𝑖 and 𝑒−𝑖 , respectively, whose metrics shed light on the overall attractiveness or unattractiveness of
each choice.

∙ [Utility function establishment] The utility functions 𝑓 (𝑒+𝑖 ) and 𝑓 (𝑒−𝑖 ) portray the desirability and undesirability
of each option, whose functions underscore the trade-off between optimal and suboptimal performance.

∙ [Aggregated utility score calculation] The aggregated utility score 𝑓 (𝑒𝑖) is computed, considering both
desirability and undesirability, whose balanced score helps in organizing the alternatives, with higher scores
indicating better options.

∙ [Output presentation] Concluding the algorithm, the utility scores 𝑓 (𝑒𝑖) for each alternative are presented, whose
output provides a ranked list based on the combined evaluation from multiple criteria, indicating the suitability
of each alternative.

The BPF CRITIC MARCOS method offers an intricate approach for decision-making by holistically assessing both
the ideal and anti-ideal scenarios. This in-depth evaluation aids in a nuanced differentiation of the options, presenting
a ranked list of alternatives based on a multiplicity of criteria.
3.5. BPF CRITIC MAIRCA algorithm

Building upon the foundation of the BPF CRITIC approach, Algorithm 4 introduces the BPF CRITIC MAIRCA
method, specifically designed for the multifaceted environment of digital marketing. Recognizing that not all decision
criteria hold equal importance, this algorithm emphasizes the priority of certain indicators, adapting to the dynamic
needs of digital marketing where priorities shift based on metrics such as customer engagement, ROI, or brand visibility.

A breakdown of the BPF CRITIC MAIRCA method, as described in Algorithm 4, is provided as:
∙ [Input definition] The algorithm initiates by accepting the BPFSOM {𝐾𝑚×𝑛, 𝐴}. Each 𝑎𝑖𝑗 in 𝐴 depicts a specific

feedback parameter characterized by the tuple {𝜇+𝐴, 𝜈
+
𝐴 , 𝜇

−
𝐴, 𝜈

−
𝐴}.

∙ [Topology formation] At this juncture, a BPFSMTS {𝑋, 𝜏𝑚×𝑛, 𝐸} is formulated, certifying that {𝐾𝑚×𝑛, 𝐴}operates under the BPFSRGOM regime.
∙ [Relevance determination] Here, 𝑆([𝑎𝑖𝑗]) is evaluated, signifying the relevance of every feedback parameter

within 𝐴𝑚×𝑛.
∙ [Criterion significance extraction] The method employs Algorithm 1 to distill𝑤𝑗 , a weighting metric that conveys

the importance of each criterion 𝑗.
∙ [Indicator priority assessment] This step evaluates 𝐽𝑒𝑗 for every indicator 𝑗, underpinned by a uniform

distribution for equity.
∙ [Merging weight with priority] Here, the algorithm integrates the determined priority and weight for each

indicator to obtain 𝐺𝑝𝑖𝑗 .
∙ [Criterion-based adjustments] Every 𝐺𝑟𝑖𝑗 undergoes modifications as per the type of criterion 𝑗, where these

criteria can be classified as either beneficial or non-beneficial; for beneficial ones, adjustments elevate 𝐺𝑟𝑖𝑗 ; and
in contrast, non-beneficial ones lead to reductions in 𝐺𝑟𝑖𝑗 .

∙ [Discrepancy measurement] This stage caculates 𝜌𝑖𝑗 , showcasing the variance between the desired and true
outcomes.
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Algorithm 4 BPF CRITIC MAIRCA method [24]
1: procedure (BEGIN)
2: Input BPFSOM {𝐾𝑚×𝑛, 𝐴}, where each 𝑎𝑖𝑗 in𝐴 represents a specific feedback parameter, defined by the tuple

{𝜇+𝐴, 𝜈
+
𝐴 , 𝜇

−
𝐴, 𝜈

−
𝐴}.

3: Establish a BPFSMTS {𝑋, 𝜏𝑚×𝑛, 𝐸} as a structural configuration ensuring that {𝐾𝑚×𝑛, 𝐴} operates under the
BPFSRGOM framework.

4: Compute 𝑆([𝑎𝑖𝑗]), reflecting the relevance of each feedback parameter in 𝐴𝑚×𝑛.
5: Invoke Algorithm 1 to derive 𝑤𝑗 , the weighting factor expressing the importance of each criterion 𝑗.
6: Evaluate 𝐽𝑒𝑗 as the priority of each indicator 𝑗, established using a uniform distribution for equity given by
𝐽𝑒𝑗 = 1∕𝑚; where 𝑗 ranges from 1 to 𝑛.

7: Determine𝐺𝑝𝑖𝑗 by integrating the priority and weight of each indicator, calculated as𝐺𝑝𝑖𝑗 = 𝐽𝑒𝑗 𝑤𝑗 ; applicable
for 𝑖 and 𝑗 within the range 1 to 𝑛.

8: Adjust each 𝐺𝑟𝑖𝑗 based on the type of criterion 𝑗, where the criteria are considered either beneficial or non-
beneficial to the outcome stated as:

• For a beneficial criterion, where higher values are preferable, adjust 𝐺𝑟𝑖𝑗 using the formula defined as
𝐺𝑟𝑖𝑗 = 𝐺𝑝𝑖𝑗 (𝑎𝑖𝑗 − 𝑎

worst
𝑖 )∕(𝑎best𝑖 − 𝑎worst𝑖 );

• Conversely, for a non-beneficial criterion, where lower values are preferable, use the alternative formulation
stated as 𝐺𝑟𝑖𝑗 = 𝐺𝑝𝑖𝑗 (𝑎𝑖𝑗 − 𝑎

best
𝑖 )∕(𝑎worst𝑖 − 𝑎best𝑖 );

and then apply the respective formula for each criterion, iterating through all 𝑖 from 1 to 𝑚 and 𝑗 from 1 to 𝑛.
9: Calculate 𝜌𝑖𝑗 representing the disparity between the ideal and true performance, expressed as 𝜌𝑖𝑗 = 𝐺𝑝𝑖𝑗 −𝐺𝑟𝑖𝑗 ;with each 𝑖 and 𝑗 spanning from 1 to 𝑚 and 1 to 𝑛, respectively.

10: Obtain 𝜃𝑖 as the consolidated metric reflecting overall performance or suitability, derived from 𝜃𝑖 =
∑𝑛
𝑗=1 𝜌𝑖𝑗 .

11: Rank the alternatives via 𝜃𝑖, identifying the most suitable option as the one with the lowest 𝜃𝑖, succeeded by
others as per ascending values 𝜃𝑖; applied for 𝑖 within 1 to 𝑚.

12: Output A definitive ranking of alternatives through scores 𝜃𝑖, providing a basis for selection or prioritization
in subsequent decision-making processes.

13: END

∙ [Comprehensive metric formation] The algorithm formulates 𝜃𝑖, a metric encapsulating the overall performance.
∙ [Hierarchy establishment] Utilizing 𝜃𝑖, alternatives are organized in a sequence.
∙ [Output generation] The method culminates by delivering a ranking of alternatives via 𝜃𝑖 scores, guiding

subsequent decision-making processes.
Figure 2 states a visual representation of the BPF CRITIC COPRA, MARCOS, and MAIRCA methods.

The BPF CRITIC MAIRCA method offers a systematic approach to multi-criteria decision analysis. By integrating
different evaluation dimensions like feedback parameters, criteria weights, and indicator priorities, the method outputs
a ranked list of alternatives that can guide stakeholders in their decision-making processes.

The algorithms discussed share a common goal: to provide efficient solutions for decision-making in complex
scenarios, with a special focus on digital marketing. They are grounded in the BPFSMTS framework, which enables
systematic interpretation and data analysis, catering to the varied demands of this rapidly changing field.

While these methods vary in their specific methodologies, they are designed to offer comprehensive views across
digital marketing indicators. Each introduces unique considerations and approaches within its structure, collectively
shaping a versatile toolbox for decision-makers in digital marketing. This ensemble of algorithms aids in key processes
such as normalization, weighting, and ranking, ultimately enhancing the decision-making efficiency in a dynamic
landscape.

4. Application of the BPF approach to marketing
In this section, we present a multi-criteria decision-making application of the BPF soft regular generalized matrix

using the BPF CRITIC COPRA, BPF CRITIC MAIRCA and BPF CRITIC MARCOS methods that are equipped with
BPF data. We illustrate our proposed methods with a numerical example.
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Compute the attributes weight with Algorithm 1

BPF CRITIC MARCOS BPF CRITIC MAIRCABPF CRITIC COPRA

Construct

Xi j =




AAI aaa1 . . . aaan

A1 a11 . . . a1n

...
...

...
...

Am am1 . . . amn

AI aai1 . . . aain




,

where

AAI =

{
min{ai j}, if j ∈ benefit criteria;
max{ai j}, if j ∈ non-benefit criteria;

AI =

{
max{ai j}, if j ∈ benefit criteria;
min{xi j}, if j ∈ non - benefit criteria;

for i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}

Normalize the expanded matrix using

Ni j =
ai j

max{ai j}
, if j ∈ non-benefit criteria;

or

Ni j =
min{ai j}

ai j
, if j ∈ benefit criteria,

for i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}

Obtain Ri j = Ni jw j, where w j is the weight of criterion
j, for j ∈ {1, . . . ,n}

Calculate e+i = Si/SAAI and r−i = Si/SAI, where Si,
SAAI and SAI are sum of the values of Ri j, aAAI and
aAI, respectively, for i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}

State f (e+i ) = e−i /(e
+
i + e−i ) and f (e−i ) =

e+i /(e
+
i + e−i ), for i ∈ {1, . . . ,m}

Generate

f (ei) =
e+i + e−i

1+(1− f (e+i ))/ f (e+i )+(1− f (e−i ))/ f (e−i )
,

for i ∈ {1, . . . ,m}, and rank the options based on the
rule that those with the highest value of the f (ei) is
considered the best choice

Normalize the weighted decision matrix with
WNDM = [a∗i j]m×n[w j]

>, i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}

Determine γ+i = ∑r
j=1 w jâi j for i ∈ {1, . . . ,m}, if B+ =

{a1, . . . ,ar}, and γ−i = ∑m
j=r+1 w jâi j, for i ∈ {1, . . . ,m},

if B− = {ar+1, . . . ,am}

Calculate

Bi = R∗(γ∗i )+
mini{R∗(γ−i )}∑n

i=1R∗(γ
−
i )

R∗(γ∗i )∑n
i=1

mini{R∗(γ−i )}
R∗(γ−i )

,

for i ∈ {1, . . . ,n}

Obtain ψi = (Bi/Bmax)×100%, where Bmax 6= 0 is the
largest value of Bi, for i ∈ {1, . . . ,m}

Rank the utility degree in which the highest utility
degree is ranked first, while the least utility degree is
ranked as last. Then, make the decision based on the
utility degree ψi, for i ∈ {1, . . . ,m}

Evaluate the priority for an indicator with Je j = 1/m,
for j ∈ {1, . . . ,n}

Determine Gpi j = Je j w j, where i ∈ {1, . . . ,n} and
j ∈ {1, . . . ,n}

State Gri j according to: if j ∈ benefit criterion, then

Gri j = Gpi j

(
ai j−aworst

i

abest
i −aworst

i

)
;

or if j ∈ non-benefit criterion, then

Gri j = Gpi j

(
ai j−abest

i

aworst
i −abest

i

)

for i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}

Calculate ρi j = Gpi j −Gri j , for i ∈ {1, . . . ,m} and j ∈
{1, . . . ,n}

Obtain θi = ∑n
j=1 ρi j and rank the alternatives by using

the principle that the alternative with the smallest θi
is the best followed by the other alternatives, for i ∈
{1, . . . ,m}

Figure 2: Visual representation of the BPF CRITIC COPRA, MARCOS, and MAIRCA methods
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4.1. Social media platform
An SMP is an internet-based medium of communication that encompasses applications or websites where users

can create and share content and connect with others. SMPs include Facebook, Instagram, Linkedin, Pinterest, Twitter,
WhatsApp, and YouTube. Today, the majority of individuals engage with some form of social media.

An SMP not only allows us to communicate with friends and family but also enables corporations to interact with
their audience, gather customer feedback, and enhance their brands. There are various types of social media sites
available that enrich the digital marketing.
4.2. Empirical example

Next, we apply the BPFSRGOM to address an empirical decision-making scenario, focusing on a company’s
objective to identify the optimal SMP to maximize its ROI. We consider five prominent SMPs as alternatives: [𝑥1]
Instagram; [𝑥2] YouTube; [𝑥3] LinkedIn; [𝑥4] WhatsApp; and [𝑥5] Facebook. The goal is to pinpoint the most effective
platform for business development that also offers substantial reach within the target audience. The process begins by
evaluating each platform based on certain criteria. Think of this as rating each social media on various aspects that
matter to a business, like how many users they can reach or how much it costs to advertise.

The decision-making process involves five evaluation criteria (attributes): [𝑒1] marketing goals; [𝑒2] demographics;
[𝑒3] cost of advertisement; [𝑒4] monthly active users; and [𝑒5] cost of product. Of these, 𝑒1, 𝑒2, and 𝑒4 are considered
benefit criteria, while 𝑒3 and 𝑒5 are viewed as cost criteria.

A point worth noting here is that not all criteria are equal: some are beneficial (the higher, the better), while others,
like costs, are the opposite (the lower, the better).

Given these evaluation criteria, the BPFSMTS approach offers a distinct advantage: it maintains the integrity of
the original data during the decision-making process. Unlike traditional methods where the union or intersection of
various opinions may distort the original dataset, BPFSMTS ensures that the resulting set remains within the initial
data space. This is crucial for making a sound and accurate decision. In simpler terms, the BPFSMTS method respects
the original data given and do not let them to get “watered down” or distort as we process the data.

In the following, we outline the steps for constructing a BPFSMTS and achieving this purpose:
∙ [Step 1] Arrange the given BPFSOM organizing all the ratings and feedback to have about each SMP into a neat

table (or matrix) which is the foundation of our analysis and given by

𝑆5×5 =

⎡

⎢

⎢

⎢

⎢

⎣

(0.3, 0.7,−0.4,−0.8) (0.9, 0.1,−0.9,−0.2) (0.5, 0.4,−0.7,−0.7) (0.6, 0.6,−0.5,−0.7) (0.4, 0.8,−0.4,−0.7)
(0.4, 0.8,−0.3,−0.7) (0.8, 0.1,−0.8,−0.1) (0.4, 0.4,−0.6,−0.6) (0.5, 0.5,−0.6,−0.6) (0.5, 0.9,−0.4,−0.5)
(0.5, 0.3,−0.7,−0.5) (0.3, 0.7,−0.5,−0.7) (0.6, 0.3,−0.3,−0.3) (0.3, 0.4,−0.3,−0.8) (0.4, 0.3,−0.2,−0.3)
(0.3, 0.3,−0.2,−0.7) (0.1, 0.4,−0.6,−0.4) (0.2, 0.7,−0.6,−0.6) (0.5, 0.4,−0.9,−0.3) (0.3, 0.4,−0.5,−0.5)
(0.3, 0.5,−0.5,−0.3) (0.4, 0.3,−0.7,−0.8) (0.7, 0.6,−0.3,−0.6) (0.4, 0.3,−0.8,−0.6) (0.4, 0.4,−0.3,−0.4)

⎤

⎥

⎥

⎥

⎥

⎦

.

∙ [Step 2] Express the score values 𝑆([𝑎𝑖𝑗]), giving each platform a score based on our criteria, with higher scores
being better and stated as:

𝑆([𝑎𝑖𝑗]) =

⎡

⎢

⎢

⎢

⎢

⎣

0.560 0.215 0.955 0.880 0.595
0.800 0.680 0.865 0.690 0.990
0.560 0.370 1.000 1.000 0.675
0.775 0.975 0.775 0.595 0.965
1.000 0.960 0.930 0.825 0.965

⎤

⎥

⎥

⎥

⎥

⎦

,

where Best = {1.000, 0.975, 0.775, 1.000, 0.595} and Worst = {0.560, 0.215, 1.000, 0.595, 0.990}.
∙ [Step 3(i)] Normalize the decision matrix converting scores from different tests to a common scale so they can

be compared easily (it is like changing all currencies to dollars for easy comparison) reaching:

NDM = [𝑎∗𝑖𝑗]5×5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑒1 0.0000 0.0000 0.2000 0.7037 1.0000
𝑒2 0.5455 0.6118 0.6000 0.2346 0.0000
𝑒3 0.0000 0.2039 0.0000 1.0000 0.7975
𝑒4 0.4886 1.0000 1.0000 0.0000 0.0633
𝑒5 1.0000 0.9803 0.3111 0.5679 0.0633

⎤

⎥

⎥

⎥

⎥

⎦

.
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Table 3
Indexes 𝛾+𝑖 and 𝛾−𝑖 obtained with the BPF CRITIC COPRA method for the indicated SMP.

SMP 𝛾+𝑖 𝛾−𝑖
𝑒1 0.1470 0.3029
𝑒2 0.2506 0.1054
𝑒3 0.2454 0.2136
𝑒4 0.2617 0.1925
𝑒5 0.4628 0.0716

∙ [Step 3(ii)] Obtain the correlation coefficient of the attributes 𝑒1 to 𝑒5 to understand how each criterion relates to
the others, where if two criteria often move together (for example, cost and quality), they have a high correlation,
that in our case is stated as:

[𝑟𝑖𝑘] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑒1 1.0000 0.8761 0.4094 −0.4897 −0.8604
𝑒2 0.8761 1.0000 0.7005 −0.7023 −0.9192
𝑒3 0.4094 0.7005 1.0000 −0.9820 −0.7158
𝑒4 −0.4897 −0.7023 −0.9820 1.0000 0.7673
𝑒5 −0.8604 −0.9192 −0.7158 −0.7673 1.0000

⎤

⎥

⎥

⎥

⎥

⎦

.

∙ [Step 3(iii)] Calculate the standard deviation for each attribute that in our case is given by:
𝑠𝑖 =

[

0.4209 0.4509 0.3890 0.3926 0.4753
]

.

∙ [Step 3(iv)] Determine the deviation degree 𝜙 from one criterion to the other criteria, whose step is about
understanding how different each criterion is from the others, it being another way to measure their uniqueness,
and in our case established as:

𝜙𝑗 =
[

1.7110 1.8239 1.7849 2.1227 2.7224
]

.

∙ [Step 3(v)] State the weights of attributes, after understanding the importance and uniqueness of each criterion,
assigning them, where the weights tell us which criteria are more important in our decision-making process, that
in our case are presented as:

𝑤𝑗 =
[

0.1683 0.1794 0.1756 0.2088 0.2678
]

.

Thus, the weightage of each criterion has been evaluated using the BPF CRITIC method. Next, for the BPF
CRITIC COPRA method, follow Step 1, Step 2 and Step 3 as in BPF CRITIC method and then:

∙ [Step 4] Compute the WNDM, adjusting our scores based on the weights of each criterion, giving extra
importance to criteria that matter more to us and is established as WNDM = [𝑎∗𝑖𝑗]𝑚×𝑛 = [𝑤𝑗]⊤ and reported as:

⎡

⎢

⎢

⎢

⎢

⎣

𝑒1 0.0000 0.0000 0.2000 0.7037 1.0000
𝑒2 0.5455 0.6118 0.6000 0.2346 0.0000
𝑒3 0.0000 0.2039 0.0000 1.0000 0.7975
𝑒4 0.4886 1.0000 1.0000 0.0000 0.0633
𝑒5 1.0000 0.9803 0.3111 0.5679 0.0633

⎤

⎥

⎥

⎥

⎥

⎦

.

∙ [Step 5] Establish the optimization indexes 𝛾+𝑖 and 𝛾−𝑖 for 𝐵+ and 𝐵− as in Table 3, where these indexes help us
to understand the performance of each platform compared to the best and worst possible scenarios.

∙ [Steps 6 and 7] Compute the priority values𝐵𝑖, utility degrees 𝜓𝑖, and ranks, where now we rank our SMP based
on all the previous steps. The platform with the highest rank is our best option. The rank of the alternatives,
SMPs in our case, are evaluated using the BPF CRITIC COPRA method. The results are presented in Table 4.
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Table 4
Priority values 𝐵𝑖, utility degrees 𝜓𝑖, and ranks obtained with the BPF CRITIC COPRA method for the indicated
SMP.

SMP 𝐵𝑖 𝜓𝑖 𝜓𝑖 100% Rank

𝑒1 0.4848 0.6055 60.55 5
𝑒2 0.5884 0.7349 73.49 3
𝑒3 0.5833 0.7285 72.85 4
𝑒4 0.5995 0.7488 74.88 2
𝑒5 0.8006 1.0000 100.00 1

Proceeding with our analysis, we apply the BPF CRITIC MARCOS method. Notably, the initial stages (Steps 1, 2,
and 3) of the BPF CRITIC MARCOS method are consistent with those of the BPF CRITIC method, which was designed
to ensure the resulting set remained within the initial data space. This approach assists decision-makers in identifying
the optimal SMP for marketing. The steps associated with the BPF CRITIC MARCOS method are introduced below:

∙ [Step 4] Represent an expanded matrix by adding an ideal solution, AI, and its anti-ideal solution, AAI, as:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

AAI 0.560 0.215 1.000 0.595 0.990
𝑒1 0.560 0.215 0.955 0.880 0.595
𝑒2 0.800 0.680 0.865 0.690 0.990
𝑒3 0.560 0.370 1.000 1.000 0.675
𝑒4 0.775 0.975 0.775 0.595 0.965
𝑒5 1.000 0.960 0.930 0.825 0.965
AI 1.000 0.975 0.775 1.000 0.595

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

This matrix extends the existing data to consider an additional set of criteria, enabling more comprehensive
decision analysis.

∙ [Step 5] Calculate a matrix that extends the existing data to consider an additional set of criteria, enabling more
comprehensive decision analysis, as given by:

𝑁𝑖𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

AAI 0.5685 0.2205 0.7750 0.5950 0.6010
𝑒1 0.5685 0.2205 0.8115 0.8800 1.0000
𝑒2 0.8122 0.6974 0.8960 0.6900 0.6010
𝑒3 0.5685 0.3795 0.7750 1.000 0.8815
𝑒4 0.7868 1.0000 1.0000 0.5950 0.6166
𝑒5 1.000 0.9846 0.8333 0.8250 0.6166
AI 1.000 1.000 1.000 1.000 1.000

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

∙ [Step 5] Move forward by obtaining the weighted normalized expanded matrix, assigning weights to our criteria
to emphasize the importance of certain factors over others, whose expanded matrix is established as:

𝑅𝑖𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

AAI 0.0975 0.0396 0.1361 0.1243 0.1610
𝑒1 0.0957 0.0396 0.1425 0.1838 0.2678
𝑒2 0.1367 0.1251 0.1573 0.1441 0.1610
𝑒3 0.0957 0.0681 0.1361 0.2088 0.2361
𝑒4 0.1324 0.1794 0.1463 0.1723 0.1651
𝑒5 0.1569 0.3261 0.0946 0.1749 0.1148
AI 0.1683 0.1794 0.1756 0.2088 0.2678

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

∙ [Steps 7, 8, 9] Rank the SMPs so that the decision-maker can immediately recognize which platform best suits
the company’s needs, with the rank of the SMP being computed using the BPF CRITIC MARCOS method, and
the results are summarized in Table 5.
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Table 5
Results obtained with the BPF CRITIC MARCOS method for the indicated SMP.

SMP Sum 𝑒+𝑖 𝑒−𝑖 𝑓 (𝑒+𝑖 ) 𝑓 (𝑒−𝑖 ) 𝑓 (𝑒𝑖) Rank

AAI 0.5566 - - - - - -
𝑒1 0.7294 0.7294 1.3105 0.6424 0.3275 0.6083 4
𝑒2 0.7242 0.7242 1.3012 0.6424 0.3275 0.6040 5
𝑒3 0.7448 0.7448 1.3382 0.6424 0.3275 0.6212 3
𝑒4 0.7769 0.7769 1.3958 0.6424 0.3275 0.6479 2
𝑒5 0.8287 0.8287 1.4890 0.6424 0.3275 0.6912 1
AI 1.000 - - - - - -

Continuing our analysis, we now consider into the BPF CRITIC MAIRCA method. Similar to the previous procedures,
the initial stages (Steps 1, 2, and 3) of this method align with those of the BPF CRITIC method. The additional stages
of this method are as follows:

∙ [Step 4] Evaluate the priority for an indicator using a relation 𝐽𝑒𝑗 = 1∕5 = 0.2, for 𝑗 ∈ {1,… , 𝑛}.
∙ [Step 5] Determine the ranking matrix as:

𝐺𝑝𝑖𝑗 = 𝐽𝑒𝑗𝑤𝑗 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑒1 0.0337 0.0359 0.0351 0.0418 0.0536
𝑒2 0.0337 0.0359 0.0351 0.0418 0.0536
𝑒3 0.0337 0.0359 0.0351 0.0418 0.0536
𝑒4 0.0337 0.0359 0.0351 0.0418 0.0536
𝑒5 0.0337 0.0359 0.0351 0.0418 0.0536

⎤

⎥

⎥

⎥

⎥

⎦

.

∙ [Step 6] Normalize the decision matrix as:

NDM =

⎡

⎢

⎢

⎢

⎢

⎣

𝑒1 0.0000 0.0000 0.2000 0.7037 1.0000
𝑒2 0.5455 0.6118 0.6000 0.2346 0.0000
𝑒3 0.0000 0.2039 0.0000 1.0000 0.7975
𝑒4 0.4886 1.0000 1.0000 0.0000 0.0633
𝑒5 1.0000 0.9803 0.3111 0.5679 0.0633

⎤

⎥

⎥

⎥

⎥

⎦

.

∙ [Step 7] Compute the quantity matrix as:

𝐺𝑟𝑖𝑗𝐺𝑟𝑖𝑗 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑒1 0.0000 0.0000 0.0070 0.0294 0.0536
𝑒2 0.0184 0.0220 0.0211 0.0098 0.0000
𝑒3 0.0000 0.0073 0.0000 0.0418 0.0427
𝑒4 0.0164 0.0359 0.0351 0.0000 0.0034
𝑒5 0.0337 0.0352 0.0109 0.0237 0.0034

⎤

⎥

⎥

⎥

⎥

⎦

.

∙ [Step 8] Evaluate the values of 𝜌𝑖𝑗 from the matrix 𝜌𝑖𝑗𝜌𝑖𝑗 = 𝐺𝑝𝑖𝑗 − 𝐺𝑟𝑖𝑗 given by:

⎡

⎢

⎢

⎢

⎢

⎣

𝑒1 0.0337 0.0359 0.0281 0.0124 0.0000
𝑒2 0.0153 0.0139 0.0140 0.0320 0.0536
𝑒3 0.0336 0.0286 0.0351 0.0000 0.0108
𝑒4 0.0172 0.0000 0.0000 0.0418 0.0502
𝑒5 0.0000 0.0007 0.0242 0.0180 0.0502

⎤

⎥

⎥

⎥

⎥

⎦

.

∙ [Step 9] Compute 𝜃𝑖 = ∑𝑚
𝑖=1 𝜌𝑖𝑗 and allocate the rank. The rank of the SMPs can be seen in Table 6.

The results derived from the application of the three distinct methods are compiled in Table 7. As illustrated in this
table and Figure 3, 𝑒5 (representing Facebook) consistently stands out as the premier choice across all methodologies,
highlighting Facebook as the dominant SMP for devising digital marketing strategies.
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Table 6
Values of 𝜃𝑖 and ranks obtained with the BPF CRITIC MAIRCA method for the indicated SMP.

SMP 𝜃𝑖 Rank
𝑒1 0.1100 4
𝑒2 0.1288 5
𝑒3 0.1082 2
𝑒4 0.1092 3
𝑒5 0.0931 1

Table 7
Comparative analysis of the methods.

Method Rank Best SMP
BPF CRITIC COPRA 𝑒5 > 𝑒4 > 𝑒2 > 𝑒3 > 𝑒1 𝑒5
BPF CRITIC MARCOS 𝑒5 > 𝑒4 > 𝑒3 > 𝑒1 > 𝑒2 𝑒5
BPF CRITIC MAIRCA 𝑒5 > 𝑒3 > 𝑒4 > 𝑒1 > 𝑒2 𝑒5

To further elucidate the significance of our proposed method, consider a global digital marketing agency navigating
various international markets, employing multiple SMPs to cater to diverse audience segments. The selection criteria
would encompass audience demographics, user behavior, ad expenses, engagement rates, and ROI. Navigating through
the intricacies and cultural variances across regions, data becomes fraught with uncertainties. Existing methodologies
often falter amidst such uncertainties, demanding precise data, which may be elusive or costly, especially on a global
scale.

Our innovative approach excels by adeptly managing ambiguous or incomplete data. It operates within a
spectrum of possibilities, proving invaluable in complex scenarios characterized by intricate data. By harnessing
matrix operations, it evaluates multiple criteria simultaneously, offering a more nuanced decision-making framework
compared to traditional methods. This sophistication leads to informed decisions, contributing to successful marketing
campaigns and enhanced ROI.

In essence, our method is strategically tailored for the complexities of global SMP selection, overcoming the
shortcomings of traditional methodologies.
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Figure 3: Behavior of five SMP with the indicated method.
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5. Conclusions
In this study, we explored the potential of bipolarity in Pythagorean fuzzy soft regular generalized closed matrices

within the framework of their corresponding topological spaces. This innovative exploration presented a unique
approach to problem-solving in the field of digital marketing.

To select optimal social media strategies, we leveraged three decision-making methods: bipolar Pythagorean
fuzzy CRITIC COPRA, BPF CRITIC MAIRCA, and BPF CRITIC MARCOS namely. Through our analysis,
Facebook consistently emerged as the most suitable platform for digital marketing strategies, thereby underscoring the
applicability of our approach. The contributions of this research are twofold. Firstly, our work provides a comprehensive
understanding and application of bipolar Pythagorean fuzzy soft matrix topological spaces and the BPFSRGOM
method, illuminating their potential in intricate decision-making scenarios. Secondly, we introduced groundbreaking
algorithms tailored for the nuances of digital marketing: bipolar Pythagorean fuzzy CRITIC, CRITIC COPRA, CRITIC
MARCOS, and CRITIC MAIRCA. Together, these methods show the innovative essence of our study in reshaping
digital marketing strategies. However, we must recognize certain limitations. The deployment of our approach requires
an in-depth grasp of bipolar Pythagorean fuzzy sets and soft matrix topological spaces, which might pose challenges
for those unfamiliar with these concepts. Furthermore, while our methodology is tailored for digital marketing, its
application to other domains might necessitate modifications. The efficacy of our methods is intrinsically tied to the
quality of input data, emphasizing the significance of meticulous data collection and analysis.

Looking ahead, we see potential in integrating fuzzy set theory with recent advancements in the field. Models such
as (2,1)-Fuzzy sets, SR-fuzzy sets, (3,2)-Fuzzy sets, and new generalizations of fuzzy soft sets could significantly
enhance the applicability and utility of decision-making methodologies across various fields, including image
processing, pattern recognition, and artificial intelligence [34, 35]. Also, the use of other statistical distributions can be
considered instead of triangular distributions when applying fuzzy theory [36]. Additionally, we plan to develop an R
package or a Python library to encapsulate the proposed algorithms, offering a practical resource for researchers and
practitioners. In conclusion, this work successfully blends theoretical advancements with practical utility, providing
novel tools for making optimal decisions in intricate and uncertain environments. Despite its limitations, this study
shiows the path for further research and applications in fuzzy set theory and digital marketing.
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