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Centro de Matemática, Universidade do Minho,
Portugal

msferreira@math.uminho.pt

Abstract. The propensity of data to cluster at extreme values is im-
portant for risk assessment. For example, heavy rains that last over time
lead to catastrophic floods. The extremal index is a measure of Extreme
Values Theory that allows measuring the degree of high values clustering
in a time series. Inference about the extremal index requires the prior
choice of values for tuning parameters which impacts the efficiency of
existing estimators. In this work we propose an algorithm that avoids
these constraints. Performance will be evaluated based on simulation.
We also illustrate with real data.
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1 Introduction

The occurrence of extreme values can lead to risky situations. Climate change
and the global economic and financial crisis resulting from the COVID19 pan-
demic situation and the war in Ukraine have contributed to a continuous growing
attention from analysts, namely, to the risk of extreme phenomena. The dura-
tion of extreme values in time means the generation of clusters, whose extension
can aggravate the phenomenon. Extreme Values Theory (EVT) presents a set of
adequate tools in this context. The extremal index is a measure of serial depen-
dence assessing the propensity of data for the occurrence of clusters of extreme
values. Figure 1 shows the maximum of sea-surge heights, where clusters of high
values are visible.

More precisely, considering X = {Xn}n≥1 a stationary sequence of random
variables (r.v.) with common marginal distribution function (d.f.) F and de-
noting Mn = max(X1, ..., Xn), then X has extremal index θ ∈ (0, 1] if for
each real τ > 0 there exists a sequence of normalized levels un, i.e., satisfy-
ing n(1 − F (un)) → τ , as n → ∞, such that P (Mn ≤ un) → exp(−θτ). In the
independent and identically distributed (i.i.d.) case, we have P (Mn ≤ un) →
exp(−τ) and thus θ = 1. On the other hand, if θ = 1 then the tail behavior of X
resembles an i.i.d. sequence. Clustering of extreme values takes place whenever
θ < 1 and the smaller the θ the larger the propensity for clusters to appear.
Under some dependence conditions, θ is stated as the arithmetic inverse of the
mean cluster size (Hsing et al. [15] 1988).

Assuming F continuous, we have Ui = F (Xi), i = 1, ..., n standard uni-
form r.v. and P (−n log(F (Mn)) ≥ τ) ≈ P (n(1 − F (Mn)) ≥ τ) = P (Mn ≤
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Fig. 1. Hourly maximum sea-surge heights in years 1971-1976 at the Newlyn coast,
Cornwall, UK.

un) → exp(−θτ), with F (Mn) = max(U1, ..., Un). Thus, Yn = −n log(F (Mn))
and Zn = n(1− F (Mn)) follow asymptotically an exponential distribution with
parameter θ. The maximum likelihood estimator was considered in Northrop
([19] 2015) based on Yn. More precisely, dividing the time series, X1, ..., Xn, into
kn blocks of length bn, with n = bnkn and consideringMni = M((i−1)bn+1):(ibn) =
max(X(i−1)bn+1, ..., Xibn), i = 1, ..., kn, the maximum of the i-th block in the
disjoint blocks case and Mni = M((i−1)):(i+bn−1) = max(Xi−1, ..., Xi+bn−1),
i = 1, ..., n− bn+1 the maximum of the i-th block in the sliding blocks case, the
Northrop estimator is given by

θ̃N =

(
1

tn

tn∑
i=1

Ŷni

)−1

, (1)

where Ŷni = −bn log(F̂ (Mni)) and F̂ denotes the empirical d.f. estimating the
usually unknown F , with tn = kn or tn = n − bn + 1, whether we are using
disjoint or sliding blocks, respectively. In Berghaus and Bücher ([2] 2018) it was
considered

θ̃B =

(
1

tn

tn∑
i=1

Ẑni

)−1

, (2)

with Zni = bn(1− F̂ (Mni)), a more amenable formulation to derive the asymp-
totic properties. Here we consider the Berghaus and Bücher estimator with bias
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adjustment given by

θ̂ = θ̃B − 1/bn. (3)

We also consider the sliding blocks version since it usually performs better
(Northrop [19] 2015, Berghaus and Bücher [2] 2018).

Observe that the estimators above only depend on a tuning parameter: the
block length b ≡ bn. This is an advantage of these methods since most estimators
of θ presented in literature have two sources of uncertainty and thus two param-
eters to be defined in advance: the clustering generation of high values and the
choice of a high threshold above which the clusters occur. To mention the best
known ones, there is the Nandagopalan ([17] 1990), Runs and Blocks (Weissman
& Novak, [22] 1998 and references there in), K-gaps (Süveges & Davison, [16]
2010), censored/truncated (Holěsovský & Fusek, [13, 14] 2020/22), cycles Esti-
mator (Ferreira & Ferreira, [7] 2018). We also refer other estimators that require
a single tuning parameter, like the Intervals estimator which needs to fix a high
threshold Ferro & Segers, [9] 2003), and similar to the Northop estimator above,
where we only choose the block length for maxima, we cite Gomes ([11] 1993),
Ancona-Navarrete & Tawn ([1] 2000) and Ferreira & Ferreira ([8] 2022).

As already highlighted in the literature, there is no simple optimal method-
ology for the best choice of block length and a single estimate for θ. In EVT
we have a typical bias-variance trade-off observed in sample paths estimates of
rare events parameters. For blocks estimators, the bias decreases with b while
the variance increases. A recurrent method is to plot the estimates obtained for
successive block size values and visually identify case-by-case plateau zones of
these estimates. The stability around a value is an indicator of a reasonable esti-
mate, and this stability region, in general, should not be neither in too small nor
in too large values of b, due to the trade-off between bias and variance already
mentioned. In Figure 2, it is plotted a trajectory of estimates (full line) along
with 95% confidence intervals (CI) (dashed line) obtained for each block length
b from 1 to 100, in a random sample of dimension 1000 generated from a moving
maximum model with standard Fréchet margins. We can see a plateau region in
the estimates around the true value (horizontal line) θ = 0.5 for the block sizes
between 25 and 45. Observe the large variability occurring for large values of b
and the higher bias for small values of b.

Some methods have been proposed in the literature to help in the choice
of tuning parameters based on the stability regions of the estimates graph. See,
e.g., Frahm et al. ([10] 2005), Gomes & Neves ([12] 2020) and their references. In
particular, the algorithm proposed in Frahm et al. ([10] 2005) was implemented
in the context of estimating the bivariate tail dependence and in Ferreira ([6]
2018) it was applied to extremal index estimators requiring the choice of a high
threshold. In this work, our objective is to propose an adaptation of the algorithm
developed in Frahm et al. ([10] 2005) applied to estimator (3) in order to find
a suitable plateau of estimates taking into account the bias-variance trade-off.
As a by product, this will allow us to circumvent the unique tuning parameter
selection corresponding to the block size of where the sequence of maximums
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Fig. 2. Estimates of θ̂ given in (3) for successive values of block size b = 1, ..., 100
(full line) obtained for a sample simulated from a moving maxima Fréchet model with
θ = 0.5 (horizontal line). The dashed lines correspond to 95% CI.

will be extracted, as described above. The method will be detailed in Section 2
and analyzed through simulation in Section 3. We end with an application to
real data.

2 Estimation method

Our proposal estimation of θ is based on the bias corrected estimator θ̂ in (3)
by considering sliding blocks and on the heuristic plateau-finding algorithm of
Frahm et al. ([10] 2005).

The algorithm is described in the following steps:

Step 1. Calculate estimates θ̂b from estimator (3), for 1 ≤ b ≤ t < n;
Step 2. Smooth the results of the previous step by taking means of 2w+1 successive

estimates; we have considered bandwidth w = ⌊0.02t⌋;
Step 3. Define plateaus of length m = ⌊

√
t− 2w⌋, i.e., pj =

(
θ̂j , ..., θ̂j+m−1

)
, j =

1, ..., t− 2w −m+ 1;

Step 4. Compute the standard deviation s of θ̂1, ..., θ̂t−2w and choose the first plateau

pj satisfying
∑j+m−1

i=j+1

∣∣∣θ̂i − θ̂j

∣∣∣ ≤ 2s;
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Step 5. The extremal index is estimated through 1
m

∑m
i=1 θ̂j+i−1, i.e., taking the

average of the estimates that constitute the plateau chosen in the previous
step. This will be denoted plateau estimator.

The estimators (1), (2) and (3) are already implemented in package exdex
of software R (Northrop & Christodoulides [20] 2019) with respective CI. We
use package exdex to compute estimator (3) under sliding blocks and respective
upper and lower 95% CI bounds. We also apply steps 1, 2 and 3 to the lower
and upper bounds of CI. Once the plateau of theta estimates is chosen in step
4, we pick the corresponding plateau in the CI limits and in step 5 we apply the
average to the plateau values of the lower limit of the CI as well as the average
of the plateau values of the upper limit of the CI.

We are going to analyze the estimation method described above through
simulation. The models that will be used are the following:

– 1st order auto-regressive model with Cauchy standard marginals (ARC),
Xi = ρXi−1+ ϵi, {ϵi} i.i.d. having Cauchy d.f. with mean 0 and scale 1− |ρ|
and θ = 1 − ρ if ρ > 0 (Chernick et al. [4], 1991); we consider ρ = 0.9 and
θ = 0.1;

– m-dependent model (MMU), Xi = max(Ui, Ui+1, ..., Ui+m−1), i ≥ 1, where
{Ui} is an i.i.d. sequence of r.v. (Newell [18] 1964), with θ = 1/m; we consider
Ui, i ≥ 1, standard uniform r.v., m = 3 and thus θ = 1/3;

– moving maxima Fréchet model (MMF), Xi = maxj=0,...,d ajZi−j with aj ≥
0,
∑d

j=0 aj = 1 and {Zi} i.i.d. standard Fréchet where θ = maxj=0,...,d aj
(Weissman & Cohen [21] 1995); we consider d = 2 and parameters a0 = 1/3,
a1 = 1/6, a2 = 1/2, and thus θ = 1/2;

– ARCH(1) process, Xi = (β + αX2
i−1)

1/2ϵi, with i.i.d. Gaussian innovations
{ϵi}, α = 0.7 and β = 2 · 10−5, where θ = 0.721 (Cai, [3] 2019);

– 1st order max auto-regressive (MAR), Xi = max(ϕXi−1, ϵi), i ≥ 1, X0 =
ϵ1/(1− ϕ), {ϵi} i.i.d. with standard Fréchet marginals and θ = 1− ϕ (Davis
and Resnick [5] 1989); we consider ϕ = 0.1, θ = 0.9;

– an i.i.d. sequence (Ind) of Fréchet r.v. where θ = 1.

3 Simulation study and application

The simulation study is based on random generation of samples with size 1000
replicated 1000 times, within each of the models described above. We consider
different models with different values of θ. We apply the estimation plateau
method of Section 2 both to estimate θ and respective 95% CI lower and upper
bounds. In Table 1 are the estimation global results of the plateau method. See
also the simulation results of θ̂ given in (3) for each block size b in Figure 3 as
well as the results of plateau method. We can observe in each model that the
plateau estimate (thicker gray horizontal full line) is located in a plateau zone
of the sample path of estimates plotted as a function of block size b (full black
line), as expected. We can also see that the plateau estimate is close to the true
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value (blue horizontal full line). In all cases it is verified that the limits of 95% CI
estimated by the plateau method (thicker gray horizontal dotted-dashed lines)
include the true value of θ. In the ARCH case, the estimates closest to the true
value of θ occur for large values of b where the variability is very high, which
makes it difficult to apply the plateau methodology. Even so, the root mean
squared error (rmse) of 0.1126 is not very expressive. The independent model
(Ind) has θ = 1 and, therefore, constitutes a frontier value of the parameter
support, which typically leads to difficulties in statistical estimation. Still, the
plateau method showed relatively low bias and rmse. Observe also that in the
MAR model we have θ = 0.9, quite near to boundary value 1, and the plateau
method does a very good job.

Table 1. Simulation results of plateau method: average of θ estimates (mean), average
of lower and upper 95% CI bounds estimates, bias, root mean squared error (rmse)
and standard deviation of θ estimates (sd).

mean lower upper bias rmse sd

ARC (θ = 0.1) 0.1106 0.0841 0.1372 0.0106 0.0218 0.0190

MMU (θ = 1/3) 0.3587 0.3042 0.4139 0.0254 0.0494 0.0424

MMF (θ = 0.5) 0.5160 0.4379 0.5940 0.0160 0.0636 0.0616

ARCH (θ = 0.721) 0.7634 0.6267 0.8920 0.0424 0.1126 0.1044

MAR (θ = 0.9) 0.9017 0.7779 0.9763 0.0017 0.0827 0.0827

Ind (θ = 1) 0.9709 0.8756 0.9969 -0.0291 0.0643 0.0573

3.1 Application to real data

We illustrate the method with the real data newlyn available in R package exdex,
consisting of 2894 sea-surge heights measured at the coast at Newlyn, Cornwall,
UK, over years 1971-1976. The observations correspond to the maximum hourly
surge heights during periods of 15 hours. See the left plot in Figure 4. Previous
analysis of this data can be seen in Northrop ([19] 2015) and references therein.
The sample path of estimates from (3) as a function of block size b and respective
95% confidence limits are plotted on the right graph of Figure 4. The horizon-
tal full line corresponds to the plateau estimate of θ given by 0.2577 and the
horizontal dotted-dashed lines to the plateau 95% CI estimate (0.2206, 0.2948).

4 Conclusion

This work addresses the estimation of the extremal index θ. This is an important
measure in time series, namely in assessing risky phenomena, as it measures the
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Fig. 3. Simulation results: average of estimates of θ for each block size b = 2, ..., 200
using θ̂ in (3) (full black line) and average of respective 95% CI upper and lower bounds
(dotted lines); plateau estimation of θ (thicker gray horizontal full line) and respective
plateau estimates of 95% CI upper and lower bounds (thicker gray horizontal dotted-
dashed lines). The true value of θ corresponds to the blue horizontal full line.
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Fig. 4. Left: Maximum hourly (within successive 15 hours periods) surge heights time
series at Newlyn cost, Cornwall, UK in years 1971-1976; Right: Sample path estimates
obtained from estimator in (3) (full line) and respective 95% CI limits (dotted lines)
for successive values of block size b, plateau estimate of θ (horizontal full line) and
respective 95% CI plateau estimate limits (horizontal dotted-dashed lines).

propensity for occurrence of clusters of extreme values. The estimation of θ
requires the prior setting of tuning parameters values that impact the precision
of estimates. In this work we present an algorithm that allows to estimate θ free
of tuning parameters. We applied this methodology to diverse models and the
results are encouraging in several cases. In the future it is intended to continue
the study of this methodology and develop it in order to improve its applicability
to different types of models.
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