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A B S T R A C T

Classical quantum simulators are essential tools for studying quantum systems and
simulating quantum algorithms. The hardware limitations of NISQ (Noisy Intermediate-
Scale Quantum) devices make being able to build, test and run a quantum circuit/algorithm
many times, and even test it under various noise scenarios, in a classical computer, extremely
useful. Currently, the most prominent technique for classically simulating quantum circuits
is known as Schrödinger type simulation. The memory usage of simulations using this
technique increases exponentially with the number of qubits in a circuit, reaching prohibitive
memory values relatively fast. This serves as motivation to investigate complementary
classical quantum simulation techniques. The present work offers an investigation on how
to improve the runtime of the Feynman path-sum approach for classical simulation of
quantum circuits, taking into account the computational basis input and output states given
and the branching structure generated by branching gates in a quantum circuit. The main
contributions of this dissertation are two Feynman path-sum based simulation algorithms.
These algorithms were able to successfully simulate quantum circuits with a large number of
qubits (> 30) using polynomial space and it was demonstrated that the time complexity of
these algorithms is more strongly influenced by the circuit structure rather than the circuit
size.

Keywords: Quantum computing Quantum simulation Feynman
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R E S U M O

Os simuladores quânticos clássicos são ferramentas essenciais para o estudo de sistemas
quânticos e simulação de algoritmos quânticos. As limitações de hardware dos dispositivos
NISQ (Noisy Intermediate-Scale Quantum) tornam extremamente útil a possibilidade de
construir, testar e executar um circuito/algoritmo quântico muitas vezes, e mesmo testá-
lo sob vários cenários de ruı́do, num computador clássico. Actualmente, a técnica mais
proeminente de simulação clássica de circuitos quânticos é conhecida como simulação
do tipo Schrödinger. A utilização de memória das simulações que utilizam esta técnica
aumenta exponencialmente com o número de qubits num circuito, atingindo valores de
memória proibitivos com relativa rapidez. Este facto serve de motivação para investigar
técnicas complementares de simulação quântica clássica. O presente trabalho oferece uma
investigação sobre a forma de melhorar o tempo de execução do método de soma de
caminhos de Feynman para a simulação clássica de circuitos quânticos, tendo em conta os
estados, na base computacional, de entrada e saı́da e a estrutura de ramificação gerada pelas
portas de ramificação num circuito quântico. As principais contribuições desta dissertação
são dois algoritmos de simulação baseados na soma de caminhos de Feynman. Estes
algoritmos foram capazes de simular com sucesso circuitos quânticos com um grande
número de qubits (> 30) usando espaço polinomial e foi demonstrado que a complexidade
temporal destes algoritmos é mais fortemente influenciada pela estrutura do circuito do que
pelo tamanho do circuito.

Palavras chave: Computação quântica Simulação quântica Feynman
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1

I N T R O D U C T I O N

This dissertation focuses on the study and implementation of two simulator algorithms
based on the Feynman path-sum method of classical simulation of quantum computers.
Its structure and contributions are detailed in section 1.3 Before that, however, the whole
area of work is put into context in sections 1.1 and 1.2. The first starts with a brief history
of quantum computation, which aims at motivating a discussion on classical quantum
simulation in section 1.2.

1.1 brief history of quantum computing

The modern understanding of computer science was firstly proposed by Turing (1937),
where he developed a mathematical model of computation, which is now called a Turing
machine. These abstract machines are the mathematical groundwork of programmable
computers, and Turing showed that there is a Universal Turing Machine that can be used to
simulate any arbitrary Turing Machine. One of the many implications of this result is known
as the Church-Turing thesis, which connects the concept of what classes of algorithms can
be run in some physical device with the mathematical framework of a Universal Turing
Machine. This article published by Turing instigated a sequence of events, which led to the
rapid advancement of computer science.

However, the real turning point that marked the explosion of innovation in this field
and the birth of modern electronics came with the invention of the transistor in 1947 by
John Bardeen and Walter Brattain, paving the way for the digital age. This invention led
to an unprecedented growth quantified by Moore (1965), known as Moore’s law, stating
that the number of transistors in a dense integrated circuit and ,therefore, its computational
power doubles about every two years. Moore’s law has roughly held true throughout the
decades, due to the rapid scaling technology of the transistor. Nevertheless, in recent years,
conventional fabrication methods are running into a problem of scale, as quantum effects
begin to interfere more and more as the size of the devices becomes smaller.

In his 1959 lecture at the annual American Physical Society meeting at Caltech, titled
”There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics”,

1



1.1. Brief History of Quantum Computing 2

Feynman (1959) recognized such a miniaturization was the way forward for computational
hardware, and even predicted the problems quantum effects presented to computers with
significantly small components. With an incredible stroke of insight, Feynman imagined
that these effects could be exploited given the right computational paradigm.

Quantum computing began to assume its form in later work developed by Benioff (1980),
where the earliest quantum mechanical model of a computer was described. In this article,
Benioff showed that a computer working under the laws of quantum mechanics could be
used to express a Schrodinger equation description of a Turing machine. Shortly after,
Feynman (1982) hinted that the simulation of quantum systems was an exceedingly difficult
task for a classical computer and proposed that, if it were possible to prepare a different,
more controllable, quantum system, this could act as a specialized computer that could be
used to determine the desired properties of the original system.

Three years later David Deutsch (1985) suggested that quantum computers could bring an
advantage not only to the specific task of simulating quantum systems, but also to more
general computational tasks, and proposed a quantum generalization of the Turing machine.
Driven by the work of Turing, Deutsch questioned if a stronger version of the Church-Turing
thesis could be derived from the laws of physics. The strong Church-Turing thesis states that
any algorithmic process can be simulated efficiently using a probabilistic Turing machine,
and Deutsch was set to define some device that could efficiently simulate an arbitrary
physical system. Is still an open question whether Deutsch’s formulation of a Universal
Quantum Computer is sufficient for this purpose. However, what he accomplished, was a
challenge to the strong Church-Turing thesis.

Following the work of the brilliant physicists aforementioned, excitement grew on what
could be achieved with quantum computers and since the 1990’s there have been extremely
promising theoretical results. Even though of little practical use, one of the first examples of
possible advantages a quantum computer may have over a classical one was presented by
Deutsch and Jozsa (1992) when they developed a quantum algorithm, which determines if a
function is constant or balanced, that is exponentially faster than its classical counterpart.
Not much time after, Shor (1994) showed that the problem of finding prime factors of an
integer and the discrete logarithm problem can be efficiently solved by a quantum computer.
Most modern popular algorithms used for cryptography rely on the fact that the integer
factorization or discrete logarithm problems are not solvable in time that grows polynomially
with the size of the problem. Since this is no longer the case, a new field has emerged
called post-quantum cryptography, whose purpose is to find suitable classical protocols for
cryptography that cannot be efficiently broken by quantum computing. In parallel, Lov
Grover (n.d.), would invent his Grover’s algorithm, a quantum computer based algorithm
able to speed up an unstructured database search quadratically. Due to their real world
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applications, Shor’s and Grover’s algorithms brought a flood of intellectual curiosity to the
area.

From then onwards, progress has been vast. From the first experimental demonstration of
a quantum algorithm, realized in a working 2-qubit nuclear magnetic ressonance (NMR)
quantum computer created by Chuang et al. (1998) and used to solve Deutsch’s problem, to
Google’s claim (Arute et al. (2019)), to have achieved ”Quantum Supremacy” (a term coined
in 2012 by Preskill (2012) to express the goal of demonstrating that a programmable quantum
device can solve a problem that no classical computer can solve in any feasible amount of
time) with its 53-qubit Sycamore Processor. Currently quantum computation is living its
NISQ (Noisy Intermediate-Scale Quantum) era, another term made up by Preskill (2018) to
describe this pivotal new era in quantum technology. “Intermediate scale” indicates the size
of quantum computers which will be available in the next few years, ranging from 50 to a
few hundred qubits. “Noisy” emphasizes the imperfect control over these qubits, mainly due
to their exquisitely sensitive nature. The technology to move beyond the NISQ era is unlikely
to be available in the near future, but there are still many promising applications to delve
deeper into using the NISQ technology, such as the development of hybrid algorithms that
use NISQ devices, but make the best use of the limited quantum resources by implementing
some parts of the algorithm in usual classical processors. Finally, another area of interest,
and the subject of this dissertation, which is worth investigating is the classical simulation of
quantum computers.

1.2 the importance of classical quantum simulation

A classical quantum simulator is a software program which enables us to run quantum
circuits on a classical computer as though they were running on a quantum computer. Nowa-
days, many of these simulators are available in the quantum ecosystem, as they have become
increasingly popular tools in the world of quantum computing. Run-it-yourself simulators
utilizing open-source tools like IBM’s Software Development Kit Qiskit and Google’s Circ,
standalone, hardware-optimized packages such as Intel-QS and NVIDIA’s cuQuantum, and
cloud-based simulators from most major quantum cloud providers, including the 29 qubit
cloud simulator provided by The IonQ Quantum Cloud, constitute examples of these.

Real quantum computer time, as well as the number of qubits available in today’s quantum
computers are scarce resources. Additionally, the noise in real quantum machines prevents
them from running deep circuits. These limitations make being able to build, test and run
a quantum circuit/algorithm many times, and even test it under various noise scenarios,
without having to wait until the quantum computer is available after every change made in
the circuit, extremely useful. Moreover, classical simulation of quantum computers helps
shine more light on the incredibly puzzling computing power boundary between classical

https://qiskit.org/documentation/
https://quantumai.google/cirq
https://intel-qs.readthedocs.io/en/docs/
https://developer.nvidia.com/cuquantum-sdk
https://ionq.com/quantum-cloud
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and quantum computing. Simulators can also do things for developers that real quantum
computers can’t, such as look into a computation as it’s occurring. In a real quantum system,
it is not possible to see the complex state evolution that takes place during computation.
All that can be done is initializing the qubits, perform gates and make a measurement. If
we decide to try and peek at what’s happening, not only do we destroy the in-progress
computation by measuring it, we still don’t see the “full” state, but just the measurement
outcome. However, because a simulator is simulating this state classically, it’s easy to
pause it and look inside at any point to see the full quantum state, in a variety of different
representations, as long as it’s been programmed to do so.

The circumvention of all these hardware limitations doesn’t mean that classical quantum
simulators serve as any type of replacement of real quantum machines. A classical quantum
simulator works by simulating the quantum operations of a computer, doing the same
type of math, but at great computational cost. Where a quantum computer handles these
operations natively, a classical computer must resort to perform complex and lengthy
numerical calculations. In most simulators, every time a qubit is added, the state vector
stored doubles its size. The growth is exponential and prohibitive memory complexity is
reached very fast. This type of simulators are also known as Schrödinger-type simulators
and currently, despite their inefficiency, they are the most prominent type of simulators.
Consequently, classical computers performing Schrödinger-type simulations are only able to
simulate quantum computers up to a point.

It is impossible for a simulator in any classical supercomputer in the world to match the
performance of a real quantum computer with a sufficiently large number of qubits and,
with the expected growth in the number of high quality qubits available in the industry’s
quantum computers, this difference will only become more palpable. Nevertheless, even
then, classical quantum simulators will still be valuable isolated environments in which to
test algorithms, debug code and learn how to think in quantum terms, and efforts must
be made to further optimize and develop new simulation algorithms, so that they become
even more powerful and useful. This serves as motivation to study other classical quantum
simulation techniques.

This is where the Feynman path-sum method comes in as an alternative approach that
allows for a more memory efficient simulation of large quantum systems. The Feynman
path-sum method is based on the idea that the time evolution of a quantum system can be
represented as a sum over all possible paths that the particles, or qubits, in the system can
follow, and that each path is weighted according to its corresponding probability amplitude.
Unlike a Schrödinger-type simulator, a Feynman path-sum simulator does not require
memory that increases exponentially with the number of qubits.
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1.3 objectives , contributions and structure

The motivation behind the contents in this dissertation is to create an expanded overview
on the topic of classical quantum simulation, by focusing on techniques to optimize the
Feynman path-sum simulation approach. The techniques developed in this work are put
into practice in the implementation of two different classical quantum simulators.

Chapter 2 gives a brief overview over some of the most used techniques for classical
simulation of quantum computers. It begins with a discussion about weak and strong
simulation, providing an introduction to the concepts, highlighting their differences and
contextualizing Feynman path-sum based simulation algorithms in this framework of
classical quantum simulation approaches. The simulation techniques included in this
chapter are: Schödinger-type simulation, Feynman path-sum simulation, tensor network
techniques, efficient classical simulation of restricted circuits, and ZX-calculus applied to the
optimization of quantum circuits. For each of these techniques there is a brief introduction,
with more focus on the Feynman path-sum approach, and important results in these fields
are presented.

In chapter 3, an optimization method of the Feynman path-sum approach for classical
simulation of quantum computers, that explores the structure of quantum circuits and the
branching nature of quantum gates, is presented. Then, using this optimization method,
the main original contributions of this thesis are presented and thoroughly discussed:
two simulation algorithms, PathNB and PathRec. At last, the potential benefits of a pre-
compilation step are discussed, and important results regarding this topic are presented.

Based on these two simulation algorithms, two quantum computer classical simulators
were implemented, SimulatorNB and SimulatorRec. In chapter 4 the experimental setup
and the results regarding the performance of these simulators are presented. This chapter
provides results of correctness tests as well as a detailed performance comparison of the
two simulators, with and without pre-compilation, for different types of quantum circuits,
culminating in the presentation of results of the performance comparison of these two
simulators when simulating circuits where a Schrödinger-type simulator would consume
excessive amounts of memory.



2

T E C H N I Q U E S F O R C L A S S I C A L S I M U L AT I O N O F Q UA N T U M
C O M P U T E R S

The structure of this chapter is as follows. The first section presents a brief introduction
to the concepts of weak and strong simulation, highlighting the advantages and disadvan-
tages of each and contextualizing Feynman path-sum based simulation algorithms in this
framework of classical quantum simulation approaches.

Sections 2.2 to 2.6 give a brief introduction to some of the most used and important
techniques for classical simulation of quantum computers, except for section 2.3, where the
Feynman path-sum approach is introduced with more detail. The techniques featured in
these sections are the Schrödinger type simulation, Feynman path-sum simulation, tensor
network techniques, efficient classical simulation of restricted circuits and ZX-calculus and
its use in circuit optimization, respectively. For each of these, important research results are
presented.

2.1 weak and strong simulation

The notion of classical simulation of quantum computers encompasses two fundamentally
different types of simulation approaches with different levels of accuracy and efficiency in
simulating quantum systems: weak and strong simulation.

• In weak simulation, the goal is to efficiently sample from the output probability
distribution of a quantum computation using classical algorithms.

• In strong simulation, the goal is to compute the measurement probabilities or expecta-
tion values of a quantum computation using classical algorithms with high precision.

The main advantage of strong simulation is its ability to reproduce the entire quantum state
of a system with high accuracy, including all complex quantum effects such as entanglement.
This makes it a valuable tool for understanding the behavior of quantum systems and verify-
ing the correctness of quantum algorithms. However, strong simulation is computationally
demanding and requires exponentially more resources as the size of the system grows,

6



2.2. Schrödinger type simulation 7

making it impractical for large-scale simulations. The Feynman path-sum based simulators
implemented and discussed throughout this thesis fall into the strong simulation category.

In contrast, the main advantage of weak simulation is its computational efficiency, which
allows for the simulation of large-scale quantum systems. Because quantum mechanics is
inherently probabilistic, it is reasonable to argue that weak simulation is the more intuitive
concept for classical simulation. Examples of quantum circuit classes for which strong
simulation is intractable whereas weak simulation is achieved by elementary sampling
methods are presented by den Nest (2009). However, weak simulation cannot reproduce the
entire quantum state of a system with perfect accuracy and cannot capture the full range of
quantum effects.

2.2 schrödinger type simulation

In quantum computing, the basic unit of information is stored in a qubit, described in
Dirac’s bra-ket notation as α |0⟩+ β |1⟩ for complex numbers α, β satisfying |α|2 + |β|2 =

1. The values α and β, and |α|2 and |β|2 correspond to the probability amplitudes and
probabilities of the qubit being in the state |0⟩ and |1⟩, respectively. Since every qubit has a
probability of being either in state |0⟩ or state |1⟩, a system of n qubits has an associated
amplitude for each of the 2n possible bit string combinations of n bits.

When simulating a quantum algorithm running on n qubits, a Schrödinger type simulator,
such as the Statevector Simulator from the BasicAer module of Qiskit, stores the quantum
state of these qubits in a 2n-size vector of complex valued amplitudes. This vector is
updated successively, in place, by applying quantum transformations due to quantum gates
for the case of quantum circuits, using linear algebra operations and other mathematical
techniques. The following example illustrates how a naive and unoptimized implementation
of a Schrödinger type simulator could carry out a simulation. Figure 1 shows a two-qubit
circuit with two Hadamard gates around a CNOT gate. One could evaluate the effect of this

Figure 1: Quantum circuit diagram.

circuit on the input state vector by, first, ordering the gates left to right (parallel gates can be
ordered arbitrarily), padding each gate with an identity matrix of an appropriate dimension

https://qiskit.org/documentation/apidoc/providers_basicaer.html
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via Kronecker products to obtain a 22 × 22 matrix, and then multiply all those matrices in
order.

(I ⊗ H)CNOT(I ⊗ H) (1)

With I =

[
1 0
0 1

]
, H = 1√

2

[
1 1
1 −1

]
and CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

The resulting operator, U

U =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2)

represents the entire circuit and can be multiplied by the input state vector to find the output
state vector. While mathematically simple, this method is enormously wasteful and usually
infeasible in practice. Instead, one applies each gate to the state vector, to avoid matrix-matrix
multiplications. A key insight in high-performance Schrödinger type simulation is how not
to pad gates with identity matrices (Fatima and Markov (2020)).

Applying each gate to the state vector requires iteration over all 2n elements of the vector,
therefore, for a n-qubit circuit consisting of l gates, the time and space complexities of this
algorithm are O(l2n) and O(2n), respectively. The exponential growth in time and spatial
complexity with the number of qubits makes this type of simulation classically inefficient.
Nonetheless, Schrödinger type simulation is the mainstream technique for general-case
simulation of quantum algorithms, circuits and physical devices, because

• it is commonly used for small and mid-size quantum-circuits and device/technol-
ogy simulations because its unoptimized variants are relatively straightforward to
implement;

• dominates supercomputer-based quantum circuit simulations because it can leverage
distributed memory (De Raedt et al. (2019));

• has been extended for better scalability via layered simulation (Pednault et al. (2019)).
For example, combining Schrödinger simulation with Feynman path-sum simulation
enables scaling tradeoffs between circuit depth and width (Aaronson and Chen (2016)).

2.3 feynman path-sum simulation

Feynman path integrals are a mathematical technique that can be used to classically
simulate the behavior of quantum systems. This formulation of quantum dynamics was
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developed by physicist Richard Feynman (1948) as a way to understand the quantum-
mechanical behavior of particles and systems, and it has since become a widely used tool in
quantum physics and quantum computing. The technique is based on the idea that the time
evolution of a quantum system can be represented as a sum over all possible paths that the
particles, or qubits, in the system can follow, and that each path is weighted according to its
corresponding probability amplitude.

For a given circuit, C, with n qubits and d layers of unitary gates, the goal in a Feynman
path-sum simulation is to find the probability amplitude of a certain state |y⟩ being an
output of C with a given input state |x⟩, or:

⟨y|C |x⟩ = ⟨y|UdUd−1...U2U1 |x⟩ . (3)

A ”path”, ω, in a Feynman path-sum simulation of a quantum circuit connects the input
state with the output state. As an example, figure 2a represents a random path in a 3-qubit
circuit with 3 layers of unitary gates connecting the input state |000⟩ to the output state
|100⟩, while figure 2b represents all possible paths for the same 3-layer circuit, and with the
same fixed input, |x⟩, and output, |y⟩.

(a) A possible path. (b) All possible paths.

Figure 2: Paths in a 3-qubit circuit with 3 layers of unitary gates connecting the initial state |000⟩ to
the final state |100⟩.

Each path is associated with a probability amplitude, αωi , that can be calculated as follows:

αωi =
d

∏
j=1

〈
Zij+1

∣∣∣Uj

∣∣∣Zij

〉
. (4)

In this case, Zi1 corresponds to the input state and Zid+1 corresponds to the output state.
Zi2 to Zid correspond to the intermediate states traversed by the path ωi. U1 to Ud correspond
to the layers of unitary gates in the circuit. The probability amplitude, αω1 , corresponding to
the configuration and path shown in figure 2a, but now with the specific quantum circuit
shown in figure 3, can be calculated as follows:
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αω1 =
3

∏
i=1

〈
Z1j+1

∣∣∣Uj

∣∣∣Z1j

〉
= (⟨1|H |0⟩ ⟨1|X |0⟩ ⟨0|H |0⟩)(⟨1| S |1⟩ ⟨1| S |1⟩ ⟨1|X |0⟩)(⟨0|H |1⟩ ⟨0|X |1⟩ ⟨1| S |1⟩)

=
i
√

2
4

(5)

with H = 1√
2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
and S =

[
1 0
0 i

]
.

Figure 3: Quantum circuit with initial state |000⟩, final state |101⟩ and intermediate states correspond-
ing to those in figure 1(a).

To find the probability amplitude ⟨y|UdUd−1...U2U1 |x⟩, the previous calculation must be
done and summed across for all possible paths. For a circuit on n qubits, with d unitary
layers, an initial state |x⟩ and a final state |y⟩, there are 2n(d−1) possible paths, each with an
associated probability amplitude, αω.

⟨y|UdUd−1...U2U1 |x⟩ =
2n(d−1)

∑
i=1

d

∏
j=1

〈
Zij+1

∣∣∣Uj

∣∣∣Zij

〉
. (6)

For a quantum circuit with n qubits and m gates, eq.(6) shows that the Feynman path-sum
simulation algorithm calculates an amplitude as a sum of terms. It does so using ∼ 4m time
and ∼ m + n space (Bernstein and Vazirani (1993)). Unlike the Schrödinger type simulation,
the Feynman path-sum simulation does not require exponential memory with the number
of qubits. In most cases m ≫ n, and the difference between m and n can have significant
practical implications. For instance, in Google’s Sycamore quantum advantage experiment
(Arute et al. (2019)), n had a value of 53, while m had a value of over 1500, which means
that 2n time is reasonable whereas 4m time is not. This shows that, although the canonical
version of the Feynman path-sum simulation algorithm, explained in this section, is more
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memory-efficient than the Schrödinger type simulation algorithm, due to the exponential
growth of paths with the number of gates, it becomes exponentially more computationally
expensive with increasing circuit depth.

In fact, Google’s Sycamore experiment used a hybrid Schrödinger–Feynman (Markov et al.
(2018)) algorithm for circuits with more than 43 qubits that breaks the circuit up into two
sub-circuits of qubits and efficiently simulates each sub-circuit using a Schrödinger method,
performing a full wave-function evolution of the sub-circuits for all the paths defined by
the partition, before connecting them using an approach similar to that of the Feynman
path-integral. Another example of the use of the Feynman path-sum approach for simulating
quantum circuits is described by Boixo et al. (2017), where circuits are described using the
Feynman path-sum notation, similar to eq.(6), then mapped to an undirected graphical
model with complex factors and simulated using a variable elimination algorithm. Huang
and Love (2021), presented an algorithm that also uses the Feynman path-sum approach,
but using stabilizer projector decomposition of unitaries. More specifically, this algorithm
uses a recursive form of the Feynman path-sum approach, detailed below.

Finally, an algorithm that will be relevant for later discussion is the Feynman path-sum
recursive algorithm proposed by Aaronson and Chen (2016). To reduce the time cost of
the Feynman path-sum approach, one can notice that there is a large number of repeated
calculations in eq.(6), if the terms in the sum are calculated path by path. For example, if
two of the paths are the same for the first d− 1 steps of the product, but only differ at the
last step. In eq.(6), these two paths will give two terms that only differ on one factor of the
product. However, naive evaluation of eq.(6) results in redundant computation of the d− 1
factors. One can avoid these repeated calculation as follows. By first slicing a circuit into
two sub-circuits, C1 and C2:

⟨y|C |x⟩ = ∑
z∈(0,1)n

⟨y|C2 |z⟩ · ⟨z|C1 |x⟩ (7)

one can obtain a recursion relation for the time cost of calculating the whole sum from the
results of the two sub-circuits:

T(d) = 2n+1T(d/2) (8)

assuming the depth of the whole circuit is d and the depth of both C1 and C2 is d/2.
Following this relation, one can recursively divide the two sub-circuits further until getting
down to single-layer circuits. In this way, the sum can be calculated more efficiently than
it would be with the canonical Feynman approach, without sacrificing much of the space
cost advantages of the Feynman approach. In fact, there are only O(log2(d)) steps to reach
the last level of recursion, where the sub-circuits haven depth d = 1 (single layer), and at
each step a n-bit string y is needed to label the term that is being computed. Therefore,
this algorithm needs O(nlog2(d)) space to recursively return a single term to the whole
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summation. Meanwhile, one can see the total time cost is brought down to O(n2nlog2(d))

by solving the recursion relation in eq.(8). The idea of this algorithm will be used later,
in section 3.3, in the development of a different version of a recursive Feynman path-sum
algorithm.

2.4 tensor network techniques

A common approach for applying gates is to do so in the form of matrix multiplications.
For example, the effect of applying a unitary operator, A, followed by a unitary operator,
B, on a given state, ψ, can be done in a naive way using B× A and then multiplying the
result with the state vector, |ψ⟩. In a state with n qubits, the amplitudes may be represented
by a 2n-sized state vector, |ψ⟩, and A and B by two 2n × 2n matrices. The best known
asymptotic complexity of multiplying two 2n × 2n matrices is O(n2.37188) (Duan et al. (2022)).
An improved way to perform this operation is to start by multiplying the 2n × 2n unitary
operator A with the 2n-sized state vector |ψ⟩ and then, multiply the 2n × 2n unitary operator
B with the 2n-sized modified state vector. Although the time complexity decreases by
performing the operations in this order, it still reaches a prohibitive number of instructions
relatively fast, with the increase in the number of qubits. For a 20 qubit state, the state vector
has 220 = 1048576 elements. Applying a unitary operator to this state is done by multiplying
a 220 × 220 matrix with the state vector with 220 elements.

The exponential growth with the number of qubits detailed above served as motivation
to develop new, more efficient representations of quantum states and quantum circuits.
One of such representations are tensor networks. A tensor is a multi-dimensional array
of numerical values. Tensors can be of any rank, with rank-0 being a scalar, rank-1 being
a vector, and rank-2 being a matrix. Higher-rank tensors are simply multi-dimensional
arrays of numbers, with the dimensionality determined by the rank. Tensor networks are a
mathematical framework for representing and manipulating large quantum systems using
tensors. They are based on the idea of representing quantum states and quantum operations
as tensors. These tensors are then manipulated and contracted to simulate the application of
quantum gates to quantum states, allowing for the efficient simulation of large quantum
systems. A given quantum circuit can always be represented as a tensor network, where a
quantum state of n qubits can be represented using a rank-n tensor, where each index of the
tensor corresponds to a qubit. The elements of the tensor are the amplitudes of the state
in the computational basis. One-qubit gates are rank-2 tensors (tensors of 2 indices with
dimension 2 each), two-qubit gates are rank-4 tensors (tensors of 4 indices with dimension 2
each), and in general n-qubit gates are rank-2n tensors. The computational and memory cost
for the contraction of such networks is exponential with the number of open indices and,
for large enough circuits, the network contraction is unpractical; nonetheless, it is always
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possible to specify input and output configurations in the computational basis through
rank-1 Kronecker deltas over all qubits, which can vastly simplify the complexity of the
tensor network. This representation of quantum circuits gives rise to a high performance
simulation technique, first introduced by Markov and Shi (2008), where the contraction of
the network gives amplitudes of the circuit at specified input and output configurations.

An essential problem in tensor network contraction is to determine an order for contracting
tensors pair by pair, which is referred to as contraction order. The tensor networks associated
with quantum circuits are usually irregular, so it is a difficult problem to find an optimal
order for contracting the whole network. Markov and Shi (2008) showed that one can use
the optimal tree decomposition of the line graph associated with the tensor network to
find the optimal contraction order. However, finding the optimal tree decomposition for a
general graph is a NP-hard problem. Pan and Zhang (2021) developed a tensor network
method for simulating quantum circuits, which they called Big Head simulation, that uses an
order-finding algorithm with reduced computational cost and using this method the authors
managed to simulate the Google Quantum AI experiment on quantum computational
advantage, using the Sycamore chip.

There are several types of tensor networks, each with their own unique properties and
applications. Some of the most well-known types include:

• Matrix Product States (MPS): A method for representing a quantum state as a net-
work of tensors, where each tensor represents a quantum state of a subsystem, and
the indices of the tensors are connected to represent the entanglement between the
subsystems. The MPS formalism is described in detail by Vidal (2003). An example
of a simulation using MPS is given by Dang et al. (2019) where they optimised high-
level classical simulations of Shor’s quantum factoring algorithm and performed a
matrix product state simulation of a 60-qubit instance of Shor’s algorithm that would
otherwise be infeasible to complete without an optimised entanglement mapping.

• Projected Entangled Pair States (PEPS): A method for representing a quantum state as
a two-dimensional network of tensors, where each tensor represents a quantum state
of a region in a two-dimensional lattice, and the indices of the tensors are connected to
represent the entanglement between the regions. Guo et al. (2019) developed a general
purpose quantum simulator that uses PEPS.

• Multi-scale Entanglement Renormalization Ansatz (MERA): A method for representing
a quantum state as a network of tensors, where each tensor represents a quantum
state of a subsystem, and the indices of the tensors are connected to represent the
entanglement between the subsystems in different scales. A protocol for MERA-based
classical simulation of arbitrary quantum circuits is presented by Luchnikov et al.
(2021). They demonstrated that their approach can be used for successful simulation
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of intermediate-size quantum circuits n = 27 qubits. They also discussed estimations
showing that the MERA tends to outperform MPS-based simulators for a large number
o qubits.

2.5 efficient classical simulation of restricted circuits

Efficient classical simulation of restricted circuits is a topic of research in quantum
computing that aims to find efficient algorithms for simulating the behavior of certain
restricted classes of quantum circuits on a classical computer. One such type of restricted
circuits are the stabilizer circuits.

Theorem 1 (Gottesman-Knill Gottesman (1998)) A quantum circuit using only the following
elements can be simulated efficiently, that is, in time that scales polynomially with the circuit size, on
a classical computer:

1. Preparation of qubits in computational basis states,

2. Clifford gates (Hadamard gates, CNOT gates, phase gate S), and

3. Measurements in the computational basis.

Such circuits can generate huge amounts of entanglement, and can be used for superdense
coding, quantum teleportation, quantum error-correcting codes, etc. Stabilizer circuits are
circuits corresponding to the description given above, in the statement of the Gottesman-
Knill theorem. This group of gates is called the Clifford group. Aaronson and Gottesman
(2004) showed that these type of circuits can be simulated efficiently in polynomial time
(O(n2)). Aaronson and Gottesman also leverage their classical simulation algorithm for
Clifford circuits to simulate general quantum circuits, with a slow-down that is exponential
in the number of non-Clifford gates. Based on this idea, Bravyi et al. (2019), developed a
simulation algorithm that can decompose a quantum circuit constituted by Clifford gates
and arbitrary diagonal gates in stabilizer circuits, with the computational cost scaling with
the number of non-Clifford gates. This latter approach is the starting point of other recent
developments, known as stabilizer-rank methods for classical simulation of general circuits.

Another type of circuits with efficient classical simulation are circuits with limited entan-
glement. For example, pure states of n qubits, which are always unentangled, can easily be
simulated classically, since one only needs to write 2n amplitudes, rather than 2n, on each
time step. Considering a pure state |ψ⟩ ∈ H⊗n

2 of an n-qubit system, where A denotes a
subset of the n qubits and B the rest of them, entanglement in a such a state can be measured
in the following way:

|ψ⟩ =
χA

∑
α=1

λα

∣∣∣Φ[A]
α

〉
⊗

∣∣∣Φ[B]
α

〉
(9)
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where the vector
∣∣∣Φ[A]

α

〉
(
∣∣∣Φ[B]

α

〉
) is an eigenvector with eigenvalue |λα|2 > 0 of the reduced

density matrix ρ[A](ρ[B]), whereas the coefficient λα follows from the relation
〈

Φ[A]
α

∣∣∣ψ〉 =

λα

∣∣∣Φ[B]
α

〉
. The Schmidt rank χA is a natural measure of the entanglement between the qubits

in A and those in B (Vidal (2003)). Accordingly, the entanglement of state |ψ⟩ is quantified
by χ,

χ = maxAχA (10)

that is, by the maximal Schmidt rank over all possible bipartite splittings A:B of the n qubits.
It turns out that the Schmidt rank can be computed efficiently by diagonalizing the density
matrix on one of the two sides, and finding how many different eigenvalues it has (this will
not be efficient in the number of qubits, as the reduced density matrix is exponential-size
with relation to this number). In general, the Schmidt rank may be as high as 2n/2. In some
cases, when it is small (polynomially bounded) one can efficiently simulate the circuit. This
is the main theorem of Vidal’s paper.

Theorem 2 (Vidal (2003)) Suppose a quantum computation involves nearest-neighbor interactions
only among qubits on a line, and that χmax is polynomially bounded at every step, then the computa-
tion can be efficiently simulated on a classical computer.

The simulation is essentially carried out via dynamic programming – for each qubit, a χ× χ

matrix encoding how each qubit interacts with the other qubits is stored (using contraction
of tensors to obtain a more compact representation). This compact representation can be
locally updated for nearest-neighbor operations, and the probabilities can be obtained from
them. Thus, one only needs to store O(nχ2) amplitudes on each time step to simulate these
circuits. This algorithm is not meant for simulating physical systems, but rather quantum
circuits, i.e., applying nearest-neighbor unitaries. Vidal later developed a related algorithm
for simulating physical systems with nearest-neighbor Hamiltonians, or for estimating the
ground states where there is limited entanglement (Corboz et al. (2010)), and then was able
to use this algorithm to solve some problems in condensed-matter physics where the states
of interest had dimensions too high to deal with using existing techniques. It turns out that
cases with low entanglement encompass most cases that physicists care about, since creating
entanglement is hard— this is, after all, what makes building quantum computers so hard
in the first place.

A class of restricted circuits introduced by Valiant (2002) is another example of circuits
with efficient classical simulation. The class includes a special set of unitary 2-qubit gates
on nearest-neighbor qubits, called matchgates. Terhal and DiVincenzo (2002) presented a
slightly restricted version of the main theorem of Valiant’s paper:
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Theorem 3 (Valiant (2002)) Let M be the unitary transformation representing a quantum circuit
on n qubits that consists of 2-qubit gates U on qubits xi and xi+1, i = 0, ..., n− 1, where eiϕU is of
the form

eiϕU =


U1

11 0 0 U1
12

0 U2
11 U2

12 0
0 U2

21 U2
22 0

U1
21 0 0 U1

22


where U1 and U2 are arbitrary elements of SU(2) and ϕ is an arbitrary phase. There exist
polynomial-time classical algorithms that evaluate (1) | ⟨y|M |x⟩ |2 for arbitrary bitstrings x and y,
(2) Tr⟨y∗|M |x⟩ ⟨x|M† |y∗⟩, where y∗ corresponds to an assignment of an arbitrary k-bit subset for
any k, and (3) sample, given an arbitrary input string |x⟩, the probability distribution over outcomes
y∗ of a measurement (in the computational basis) on an arbitrary k-bit subset of the qubits.

Terhal and DiVincenzo (2002) showed that this class of efficiently simulatable quantum
computations corresponds to a physical model of non-interacting fermions in one dimension.
Another interesting result in regard to circuits constituted by matchgates was presented by
Jozsa et al. (2009). In this paper, Jozsa and his collaborators showed an equivalence between
matchgate circuits on n qubits and general quantum circuits on O(log(n)), by presenting
the following theorem and its proof.

Theorem 4 (Jozsa et al. (2009)) The following equivalence between matchgate circuits and general
quantum circuits holds:

• Given a matchgate circuit, MG, of nearest-neighbor matchgates with an n-qubit input |x1...xn⟩,
m gates, and final measurement on qubit k, there exists an equivalent quantum circuit, C,
with an input of [log(n)] + 3 qubits initialized in the 0 state, composed of O(mlog(n)) gates,
and with final measurement on the first qubit. Moreover, the encoding of the circuit C can
be computed from the encoding of the matchgate circuit MG by means of a classical space
O(log(n)) computation.

• Conversely, given any quantum circuit, C with an n-qubit input |y1...yn⟩, m gates, and final
measurement on the first qubit, there exists an equivalent matchgate circuit, MG, with an
input of 2n − 1 qubits initialized in the 0 state, composed of O(m22n) gates and with final
measurement on the first qubit. Moreover, the encoding of matchgate circuit MG can be
computed from the encoding of the circuit C by means of a classical space O(n) computation.

The interested reader is referred to Brod (2014) for an in depth review on matchgates and
matchgate circuits, and more recent results related to this model of quantum computation.
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2.6 zx-calculus

The ZX-calculus is a graphical language and formalism for quantum computing and
quantum information, which was introduced by Coecke and Duncan (2008). It provides
a way to reason about linear maps between qubits using diagrams called ZX-diagrams.
These diagrams consist of nodes, which are either green or red and represent quantum
states connected by wires that represent quantum operations. These nodes are called spiders.
The wires can curve and cross each other, and multiple wires can connect to the same
node. Wires entering the diagram from the left are inputs, while wires exiting to the right
are outputs. In addition, there are also special nodes called Hadamard nodes, which are
represented by yellow boxes and always connect to exactly two wires.

ZX-diagrams can represent linear maps between qubits in a graphical format in a similar
way as quantum circuits represent unitary maps between qubits, but these two models differ
in two main ways. Firstly, ZX-diagrams are not bound to the rigid topological structure
of circuits and can be deformed in any way. Secondly, ZX-diagrams come with a set of
rewrite rules, called the ZX-calculus, which enable calculations to be performed directly on
the graphical language itself. This means that the ZX-calculus allows for calculations to be
performed using simple, visual transformations of the diagram. This can make complex
calculations easier to perform and can lead to insights that might not be immediately obvious
in traditional mathematical notation. For a complete review on ZX-calculus and its rules the
interested reader is referred to van de Wetering (2020). The core rules of the ZX-calculus give
a sound and complete theory for Clifford circuits (Backens (2014)) and, more interestingly,
Jeandel et al. (2018) have shown that the ZX-calculus expanded with four new axioms
becomes complete for the universal family of circuits Clifford + T.

In recent years, there has been a surge of interest in the field of circuit optimization
utilizing the ZX-calculus. Duncan et al. (2020) present an approach to quantum circuit
optimization, based on the ZX-calculus, in which the authors first interpret quantum circuits
as ZX-diagrams and then, using the rules of the ZX-calculus, they give a simplification
strategy for ZX-diagrams based on the two graph transformations of local complementation
and pivoting and show that the resulting reduced diagram can be transformed back into
a quantum circuit. The underlying graph of their simplified ZX-diagram always has a
graph-theoretic property called generalised flow, which in turn yields a classical circuit
extraction procedure. Kissinger and van de Wetering (2022) combined this optimization
method with the sum-of-stabilisers method to develop an enhanced technique for strong
classical simulation of quantum circuits. With this technique the authors were able to
successfully simulate random 50 and 100-qubit Pauli exponential circuits with up to 70 T
gates. as well as 50-qubit hidden shift circuits with up to 1400 T gates.
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The ZX-calculus is a powerful tool for reasoning about quantum circuits and has demon-
strated significant potential for circuit optimization. By representing quantum circuits as
ZX-diagrams and applying the rewrite rules of the ZX-calculus, researchers can manipulate
circuits in a graphical and intuitive manner, leading to the discovery of new optimization
techniques and insights into the properties of quantum circuits. However, while the ZX-
calculus has shown promising results for certain types of circuits, there is still much work
to be done in order to fully leverage its potential for optimizing complex quantum circuits.
Further research is needed to explore the limits of the ZX-calculus and to identify new
applications for this powerful tool in the field of quantum computing.



3

C L A S S I C A L S I M U L AT I O N B A S E D O N F E Y N M A N PAT H S U M S

In this chapter, the first section presents an optimization method of the Feynman path-
sum approach for classical simulation of quantum computers, that explores the structure
of quantum circuits and the branching nature of quantum gates. Throughout section 3.2
the development of a simulation algorithm, PathNB, based on the optimization method
discussed in the previous section, is presented and exemplified. In section 3.3 a recursive
simulation algorithm, PathRec, also based on the optimization method discussed in section
3.1, is explained and exemplified. In the last section there is a discussion about the potential
benefits of a pre-compilation step. Important research results regarding this topic are
presented and discussed.

3.1 optimization method

In section 2.3 the canonical version of the Feynman path sum algorithm for simulation
of a general quantum computer was described. In this section we will discuss ways to
optimize this algorithm, having in mind circuits with certain specific characteristics. The
first optimization of the canonical version of the Feynman path-sum simulation algorithm
was to note that, for a given circuit, there can be many paths that contribute with a null
amplitude and therefore, the goal is to compute only the path amplitudes that effectively
contribute to the path sum, and not lose computational time calculating amplitudes with
null contribution.

Considering again the example presented in section 2.3, it is straightforward to identify
paths that contribute with null probability amplitude- the key point here is to look at the

19
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specific form of single- and two-qubit gates used. Figure 4 shows some of these. Because of
the effect of the X gate:

X =

[
0 1
1 0

]

X |0⟩ =
[

0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1⟩

X |1⟩ =
[

0 1
1 0

] [
0
1

]
=

[
1
0

]
= |0⟩

⟨0|X |0⟩ = ⟨0|1⟩ = 0

⟨0|X |1⟩ = ⟨0|0⟩ = 1

⟨1|X |0⟩ = ⟨1|1⟩ = 1

⟨1|X |1⟩ = ⟨1|0⟩ = 0

(11)

every path connecting the initial state of the second qubit, |0⟩, with an intermediate state of
the second qubit in state |0⟩ is going to contribute with a null probability amplitude, as it
would if both the initial and intermediate state were in state |1⟩.

Figure 4: Example of paths with null amplitude contribution in a 3-qubit circuit with 3 layers of
unitary gates connecting the initial state |000⟩ to the final state |101⟩.

The X gate maps a single classical state to another single classical state. The output state
of an X gate acting on a classical input state is, therefore, classical. This effect is a result of
the gate matrix having only one non-zero entry per row, and all the gates with this matrix
property can be defined as non-branching. Examples of these include the identity, Pauli
gates, CNOT and Toffoli gates, meaning that each of these gates map a single classical state
to another single classical state (while possibly introducing a phase factor). On the other
hand, when the gate matrix has more than one non-zero entry per row, then the gate is
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capable of mapping a given state to a superposition of states, and all the gates with this
matrix property can be defined as branching. A simple and common example of a branching
gate is the Hadamard gate:

H =
1√
2

[
1 1
1 −1

]

H |0⟩ = 1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
=

1√
2
(|0⟩+ |1⟩)

H |1⟩ = 1√
2

[
1 1
1 −1

] [
0
1

]
=

1√
2

[
1
−1

]
=

1√
2
(|0⟩ − |1⟩)

(12)

As shown in eq.(12), the Hadamard gate takes each of the |0⟩ and |1⟩ states into an equal
superposition of both states, and therefore ”branches” a given computational basis state into
a superposition of more than a single computational basis state.

For the following discussion only the Clifford + T gate set will be considered. In this
gate set the only branching gate is the H gate. The notion of branching and non-branching
gates is intimately related to the notion of contributing paths in a given circuit. Based on
this interpretation of quantum gates, a visualization of the possible contributing paths can
be achieved using a circuit graph representation. The input state |x⟩ is drawn as a single
node. Traversing the layers of unitary gates in the circuit, in order, from input to output, the
graph is drawn taking into account the effect of each gate of the layer on their corresponding
qubits, but without considering phase factors. If a layer is comprised only of non-branching
gates, a single edge is drawn representing the single mapping of the gates on the previous
state. However, if the layer has a number n of one-qubit branching gates, then 2n edges are
drawn corresponding to the number of states the previous state was mapped to as a result
of the action of these gates. The counting 2n assumes that the branching is always two-fold,
which is true for the H gate and, consequently, for the gate set we are considering, but won’t
be true in general. At the end of each edge, another node is drawn and labeled with the
single classical state produced as a result of traveling down that edge. After traversing all
the layers of gates, the single classical states labeling the nodes drawn after the last layer
represent some of the possible output states, |y0⟩ to |ym⟩, for a given input state. It can be
possible to have different nodes with the same classical state label, after the last layer of
gates. The number of paths in the graph connecting the input state |x⟩ node to nodes with
the same classical state label |yi⟩ after the last layer of gates, represents the number of paths
connecting the input state, |x⟩, to the output state, |yi⟩. An important remark is that not all
the nodes drawn after the last layer of gates correspond necessarily to output states that
yield ⟨yi|C |x⟩ ̸= 0, because some pairs of paths have symmetric probability amplitudes
and thus cancel out. As an example, considering the circuit shown in figure 4, a graph
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representing the circuit and highlighting the possible contributing paths from its input state,
|000⟩, to its output state, |100⟩, is drawn in figure 5.

Figure 5: Graph representing the circuit shown in figure 3 and highlighting the contributing paths
from its input state, |000⟩, to its output state, |100⟩.

In the analysis made in section 2.3, it was noted that a general circuit on n qubits and with
m layers of unitary gates has 2n(m−1) possible paths connecting its input state to its output
state. For the circuit shown in figure 4, n=3 and m=3, which gives a total of 64 possible
paths. The graph representation shown in figure 5 indicates that a maximum of only 2 of
the possible 64 paths effectively contribute with a non-null probability amplitude. This
means that a simulation of this circuit using the canonical version of the Feynman path-sum
algorithm would spend approximately 97% of its time calculating probability amplitudes
that do not contribute to the sum show in eq.(6).

Taking this into consideration, an algorithmic method that approximates the number
of paths whose amplitude is calculated, to the number of effectively contributing paths,
was developed. This method makes use of the circuit structure and explores the notion of
propagation of certainty, or classicality, throughout the circuit. The concept of ”propagation
of classicality” refers to the process by which a quantum operation acts on a classical state
and generates another classical state as the output. Given an arbitrary circuit, constituted
of both branching and non-branching gates, the first step is to distinguish intermediate
states, i.e. qubit states in the computational basis between unitary layers of gates, that are
fixed at the outset, and intermediate states that are not. To achieve this, the circuit is swept
forwards, from the input to the output, layer after layer, identifying intermediate states that
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are fixed because of i) fixed global circuit input configuration, and ii) non-branching gate
action. These intermediate states are colored green. The remaining intermediate states are
colored red. The circuit’s input state can be thought of as a green-colored state, since it is
fixed. Figure 6 shows the rules for the coloring sweep, for one and two-qubit gates.

Figure 6: Rules for the coloring sweep for non-branching gates (NB), branching gates (B), and 2-qubit
gates controlled−U, where U is a non-branching gate (2Q G).

The output state of a non-branching gate acting on a single qubit with a classical input
state (green) is also classical, so it is colored green. Since the output state of a non-branching
gate acting on a single qubit depends only on its input state, if its input state is not
fixed, or classical, (red), its output state is not classical, and so it is colored red. The
superposition states that result from applying a branching gate to a single qubit are not
classical by definition, therefore, the output state of a branching gate acting on a single
qubit is always not classical, so it is colored red regardless of its input state. The two-qubit
gates controlled−U, where U is a non-branching gate, such as the CNOT, CZ or CY are
non-branching, so if both their input states are fixed, so are their output states, resulting in
a green coloration. If the input state of the control qubit is not classical, the output states
of the control and target qubits are also not classical, since both these states depend on the
input state of the control qubit, so they are colored red. If the input state of the control qubit
is classical, so is its output state and, therefore, it is colored green. If the input state of the
target qubit is not classical, neither is its output state and, therefore, it is colored red. Finally,
if the input states of both the control and target qubits are not classical, neither are their
outputs, and so they are colored red. Figure 7 presents the evolution of sweeping forwards
the circuit represented in figure 4, from input to output.

The goal in a Feynman path-sum simulation is to find the probability amplitude presented
in eq.(3), which shows that the output state is fixed and can also be thought of as a green-
colored state. This means that it is also possible to propagate classicality from output to
input, sweeping the circuit backwards and following the coloring rules shown in figure 6.
Figure 8 presents the evolution of sweeping backwards the circuit represented in figure 3.

Assuming the user does not know if the chosen output state is indeed an output state
which gives a non-zero value to eq.(6), it is not computationally efficient to carry out
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Figure 7: Evolution of a forward sweep of the circuit, using colors to identify the propagation of
classicality.

Figure 8: Evolution of a backwards sweep of the circuit, using colors to identify the propagation of
classicality.

the whole algorithm with the possibility of ending up with a null probability amplitude.
Considering this, a routine that searches for inconsistencies between the input and output
states propagation was implemented and should be used at this point. By inspecting the
graph represented in figure 6, one can note that, if the output state is different from any of
the states at the nodes after the last layer, then eq.(6) will surely be zero. In the following
example, it is assumed the user has chosen the output state |111⟩. The first step of this
routine is to calculate the fixed intermediate states that were a result of sweeping the circuit
forward, starting from the input state and mapping successively each qubit state according
to the action of the gates whose output state is colored green. The non-classical states, i.e.
states in superposition, are represented as |nd⟩. In this example, the result of carrying out
this step is shown in figure 9.

Then, this step is repeated, but this time calculating the fixed intermediate states that
were a result of sweeping the circuit backwards, starting from the output state and mapping
successively each qubit state according to the action of the gates whose, in this case, input
state is colored green. The not classical states are not defined, |nd⟩, as well. In this example,
the result of carrying out this step is shown in figure 10.

Finally, a check for inconsistencies between the two sets of intermediate states calculated
is carried out. This is done by comparing the intermediate states of each set, in order. If
a certain intermediate state has two different values, this represents an inconsistency and
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Figure 9: Calculation of the classical intermediate states after the forward sweep of the circuit, starting
from the input.

Figure 10: Calculation of the classical intermediate states after the backwards sweep of the circuit,
starting from the output.

it implies that the output state chosen makes the amplitude eq.(6) zero. The non-classical
states, |nd⟩, are compatible with both |0⟩ and |1⟩. In this example it is immediate to see
that the intermediate states of the second qubit have different values in each set - |1⟩ in the
forward sweep set and |0⟩ in the backwards sweep set. This is an inconsistency and implies
that the output state |111⟩ is not an output of this circuit with input state |000⟩.

At this point, the values of the intermediate states are already determined. If no in-
consistencies were detected in the steps above, the intermediate states are obtained when
comparing the intermediate states of each set. If a certain intermediate state is |0⟩ or |1⟩ in,
at least, one of the sets, then that is its real state, therefore, the fixed intermediate states of
the circuit can be thought of as the union of the sets of intermediate states calculated in the
steps above. With the classical intermediate states determined , the amplitudes of all the
gates that have classical input states and output states can be computed once and for all.
Multiplied together they will be a multiplying factor for the overall amplitude calculation.
Assuming the user has chosen the state |100⟩ as output, the comparison and union of the
sets of intermediate states calculated in the previous routine is presented in figure 11, with
the gates whose amplitude can be computed at this point highlighted.

Finally, an iteration over all possible values of the intermediate states that are |nd⟩ is
carried out. For l intermediate states |nd⟩ there would be 2l possible values, and for each of
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Figure 11: Comparison and union of the sets of intermediate states calculated in the routine that
searches for inconsistencies. The gates whose amplitude can be computed at this point are
highlighted.

these values it would be necessary to calculate each of the amplitudes of the remaining gates,
multiplying them in place with the multiplying factor defined above. After each iteration
step, the total amplitude calculated is added to a cumulative variable which, after the final
iteration step, will represent the summation shown in eq.(6). The 2l possible values to be
iterated correspond to the paths that are effectively being computed. In this example there
are two intermediate states |nd⟩, corresponding to four paths to compute, using this method.
These paths are shown in figure 12.

Figure 12: Paths left to compute using the green-red coloring method.

With this algorithmic method and in this example, the number of paths to compute has
dropped to four, instead of the canonical version’s 64. However, the graph representation of
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figure 5 indicates that, in this example, there are only two paths connecting the input state,
|000⟩, to the output state, |100⟩, that contribute with non-null probability amplitude.

For a circuit with depth d on n qubits, the worst case scenario for this algorithm is when
all intermediate states are not classical. In this case, the probability amplitude of all the gates
in the circuit must be calculated for every possible value of the intermediate states. There is
a maximum of n× d gates and 2n(d−1) possible values of intermediate states. The time spent
pre-processing the circuit, with the coloring sweeps is negligible when compared to the
time spent iterating over all possible values for the intermediate states and calculating the
amplitudes. Therefore, the time complexity of this algorithm is O(nd2n(d−1)). The memory
needed in a simulation using this algorithm is linear with the number of qubits and the
depth of the circuit, O(n + d).

3.2 pathnb : path sums with non-branching optimization

By inspecting figure 12, it is straightforward to notice that two of the four paths that were
a result of applying the method described in section 3.1 have a null probability amplitude. In
this example, an S gate has both the input and output state not determined, so an iteration
over all possible input/output combinations is carried out. Because of the effect of the S
gate:

S =

[
1 0
0 i

]

S |0⟩ =
[

1 0
0 i

] [
1
0

]
=

[
1
0

]
= |0⟩

S |1⟩ =
[

1 0
0 i

] [
0
1

]
= i

[
0
1

]
= i |1⟩

⟨0| S |0⟩ = ⟨0|0⟩ = 1

⟨0| S |1⟩ = i ⟨0|1⟩ = 0

⟨1| S |0⟩ = ⟨1|0⟩ = 0

⟨1| S |1⟩ = i ⟨1|1⟩ = i

(13)

the combinations that imply the calculation of the amplitudes ⟨0| S |1⟩ and ⟨1| S |0⟩ represent
non-contributing paths and are therefore, a waste of computational time. Taking this into
account, an improvement of this method was derived.

The first steps of the PathNB algorithm are exactly the same as those detailed in section
3.1: forward and backwards green-red coloring sweeps are performed and, after that, so is
the routine that checks for inconsistencies.

In the example presented in figure 12, both the input and output states of an S gate are
not classical (|nd⟩). However, if a classical state is assigned to its input state, the output
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becomes classical too, because of the non-branching property of the S gate. This suggests
that the nature of these intermediate states is not the same: the S gate is a non-branching
gate, therefore if the input state is classical, the output state is immediately known and is
also classical, while the input state is not classical because of the branching property of
the H gate that precedes the S gate. Therefore, a different color scheme could be used to
highlight this difference.

After the forward and backwards coloring sweep of the circuit, detailed in 3.1, two
different color schemes emerge, as exemplified in figure 7 and figure 8. These two different
color schemes can be compared, by performing a logical OR operation between each colored
position, where the green positions can be thought of as ones and the red positions as zeros.
The result is a coloring scheme that has some positions representing fixed, classical states,
colored green, and the others representing non-fixed, not classical states, colored red. Using
the same example once again, this process is shown in figure 13.

Figure 13: Comparison and result of the logical OR operation between the two color schemes obtained
after sweeping the circuit forward and backwards. Positions that are colored green
represent fixed, classical states and positions that are colored red represent non-fixed, not
classical states.

The next step is to take the resulting color scheme and reprocess it, traversing the circuit
from input to output and coloring pink all the positions that represent not classical states (i.e.
colored red), and that are immediately after branching gates. All the remaining positions
that represent not classical states are colored blue. With these new coloring rules, this
coloring scheme is altered. The new, resulting coloring scheme is shown in 14.

After the coloring step, the fixed intermediate states can be determined with the same
procedure as they were in section 3.1, but now there are two types of non-classical interme-
diate states: the ones colored pink and the ones colored blue. The next step is to calculate
the amplitudes of all the gates that have both input states and output states determined and
to multiply them together to form a multiplying factor for the overall amplitude calculation.
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Figure 14: New coloring scheme of the example presented throughout this chapter, after coloring
pink all the positions that represent not classical states and that are immediately after
branching gates, and coloring blue all the remaining positions that represent not classical
states.

Finally, an iteration over all possible values for the intermediate states that are colored pink
is carried out. For n intermediate states colored pink there would be 2n possible values.
For each of these values it would be necessary to propagate the certainty, by way of action
of a non-branching gate, from the states represented by the positions colored pink to the
states represented by the positions colored blue, and calculate each of the amplitudes of
the remaining gates, multiplying them in place with the multiplying factor defined above.
After each iteration step, the total amplitude calculated is added to a cumulative variable
which, after the final iteration step, will represent the summation shown in eq.(6). The 2n

possible values to be iterated correspond to the paths that are effectively being computed. In
this example there is one intermediate state colored pink, corresponding to two paths to
compute, using this method. These paths are shown in figure 15.

Figure 15: Paths left to compute using the blue-pink coloring method.

With this algorithmic method and in this example, the number of paths to compute has
dropped to two, instead of the canonical version’s 64, and the four paths of the method
described in section 3.1. As expected, the paths left to compute using this method correspond
exactly to those highlighted in the graph representation of figure 5.
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Any quantum circuit comprised of layers of unitary gates can be written in matrix form.
The resulting matrix, U, is unitary

U†U = UU† = I. (14)

Here, U† is the conjugate transpose of U. Eq.(14) implies that the unitary transformations
that occur in such quantum circuits, with an input state |x⟩ and an output state |y⟩ are
reversible:

⟨y|U |x⟩ = ⟨x|U† |y⟩ . (15)

The goal in a Feynman path-sum simulation of a quantum circuit is to calculate the amplitude
represented by the first term in eq.(15). However, the equality shown in eq.(15) implies that
the practical effect of calculating the second term instead is the same, which means that the
”temporal” order of the quantum circuit can be reversed without affecting the result of the
simulation. This interesting property is taken into account in the PathNB algorithm. The
pink-blue coloring step described above is done in the input-output direction. But, since
the ”temporal” order of the circuit is reversible, this step can be done in the output-input
direction, as long as, in the amplitude calculation step, the gates are substituted by their
conjugate transpose. The utility of considering this direction is that, for some circuits, the
resulting number of pink colored positions is different, if the circuit is reversed. Most of
the computational time required by this algorithm is spent iterating over the possible state
values for the pink positions, and calculating amplitudes. Since, for n intermediate states
colored pink there are 2n possible values to iterate, the computational time is approximately
halved for each position that is no longer colored pink, in a given direction. For big enough
circuits this difference may have a huge impact in the performance of the algorithm. The
circuit presented in figure 16 is an example of a circuit where this phenomenon takes place.

Figure 16: Example of a quantum circuit where the pink-blue coloring in the direction output-input
results in a smaller number o pink colored positions.

For a better understanding of this property, the coloring process for this circuit will be
presented step by step. The first step is the forward and backwards green-red coloring sweep
of the circuit, following the rules shown in figure 6, that can be seen in figure 17. The next
step is to compare the two resulting coloring schemes shown in figure 17 by performing
the logical OR operation between them. The resulting coloring scheme is presented in
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Figure 17: Resulting coloring schemes of the forward and backwards sweep steps applied to the
circuit presented in figure 15.

figure 18. Finally the pink-blue coloring can be carried out. Figure 19 shows the result of

Figure 18: Resulting coloring scheme after performing the logical OR operation between the two
coloring schemes depicted in figure 17.

performing this step in both directions. In this circuit, the number of pink colored positions
in the input-output direction is larger than the number of pink colored positions in the
output-input direction, meaning that, when simulating this circuit, it is advantageous to
reverse its ”temporal” order, substituting its gates by their conjugate transpose. The CNOT
and H gates, used in this circuit, are their own conjugate transpose, while the S gate would
be substituted by the S† gate

S† =

[
1 0
0 i

]†

=

[
1 0
0 −i

]
(16)

For a circuit with depth d on n qubits, the worst case scenario for this algorithm is when
all intermediate states are not classical and their corresponding position is colored pink. In
this case, the probability amplitude of all the gates in the circuit must be calculated for every
possible value of the intermediate states. There are is a maximum of nd gates and 2n(d−1)

possible values of intermediate states. The time spent pre-processing the circuit, with the
coloring sweeps is negligible when compared to the time spent iterating over all possible
values for the intermediate states and calculating the amplitudes. Therefore, and in this case,
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Figure 19: Resulting coloring schemes after performing the pink-blue coloring step in both directions.

the time complexity of this algorithm is O(nd2n(d−1)). Although the time complexity for the
worst case is the same on this algorithm and in the algorithm described in section 3.1, the
time complexity of the typical case scenario is lower in this algorithm, because the number
of pink colored positions tends to be lower, and can never be larger, than the number of red
colored positions. The memory needed in a simulation using this algorithm is linear with
the number of qubits and the depth of the circuit, O(n + d).

3.3 pathrec : recursive version of path sum algorithm

In addition to the PathNB algorithm detailed in section 3.2, a recursive Feynman path-sum
simulation algorithm that makes use of the coloring process detailed in section3.1 and
inspired by the recursive algorithm proposed by Aaronson and Chen (2016) mentioned in
section2.3, was also implemented.

For a circuit C, with depth d > 1 of layers of unitary gates, the first steps are exactly the
same as those in the method described in section 3.1. First, the coloring sweep of circuit, both
forward and backwards, then the check for inconsistencies and, finally, the determination of
the fixed intermediate states due to certainty propagation from input and output and the
action of non-branching gates. The quantum circuit shown in figure 20 will be used as an
example throughout this section.

Figure 20: Quantum circuit to be used as an example throughout this section.
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Assuming the user has chosen the state |110⟩ as input, and the state |111⟩ as output, after
these first steps, some intermediate states are fixed and defined, while others are not. The
result of carrying out the steps described above, for this input/output pair, can be seen in
figure 21, with the non-defined intermediate states highlighted.

Figure 21: Intermediate states after applying the green-red coloring method.

For a circuit with depth d there are d− 1 ”columns” of intermediate states and it is useful
to index them in the input-output direction. The next step of the PathRec algorithm is
to iterate over all possible values of the non-defined intermediate states of the innermost
column of intermediate states and recursively call the algorithm on the two sub-circuits
divided by this column of intermediate states, until the base case is reached where d ≤ 2. In
the base case, the total amplitude of the sub-circuit is calculated. If d = 1, this probability
amplitude calculation is trivial. If d = 2, the green-red coloring method is used to find the
total probability amplitude. Given a quantum circuit C with depth d > 2, an input state |x⟩
and an output state |y⟩ the following equation represents the recursive calls of the algorithm:

⟨y|C |x⟩ = ∑
z∈(0,1)n

⟨y|C2 |z⟩ · ⟨z|C1 |x⟩ (17)

Here, |z⟩ is the intermediate state of the innermost column of intermediate states, C1 is
the sub-circuit delimited by the input state |x⟩ and the intermediate state |z⟩, and C2 is the
sub-circuit delimited by the intermediate state |z⟩ and the output state |y⟩. In the specific
case of this example, the innermost column of intermediate states is the second one. Figure
21 shows that this column has one non-defined state, meaning that there are two possible
values for the intermediate state |z⟩ to iterate through. Figure 22 shows how the circuit
is divided, and the resulting sub-circuits, C1 and C2, in the first iterative step and level of
recursion.

The sub-circuit C1 has depth d = 2, so it corresponds to the base case. The probability
amplitude ⟨z|C1 |x⟩ is calculated at once using the green-red method and stored. On the
contrary, the sub-circuit C2 has depth d = 3 and, therefore, the steps to determine its
intermediate states are carried out and, afterwards, there is another recursive call of the
algorithm, dividing this sub-circuit into two other sub-circuits. An illustration of this process
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Figure 22: Division of the original circuit into two sub-circuits, C1 and C2, in the first iterative step
and level of recursion.

can be seen in figure 23. Both resulting sub-circuits, C2,1 and C2,2, correspond to base cases.
The sub-circuit C2,1 has depth d = 1, so its corresponding probability amplitude is calculated
trivially and stored. The sub-circuit C2,2 has depth d = 2 and, therefore, its corresponding
probability amplitude is calculated using the green-red method and multiplied by the
probability amplitude calculated with the sub-circuit C2,1. The sub-circuit C2 has two non-
defined states in the intermediate state |z⟩, meaning that there are four possible values of |z⟩
to iterate through, generating four probability amplitude values to be summed over and,
then, multiplied by the probability amplitude calculated with the sub-circuit C1. Then, going
back to the division the original circuit, where it was noticed that the innermost intermediate
state, |z⟩, had two possible values to iterate through, this whole process is repeated for the
second of these values. In the end, after all the sums and multiplications of probability
amplitudes, the resulting amplitude corresponds to ⟨y|C |x⟩.

For a circuit with depth d on n qubits, the worst case scenario for this algorithm is when
all intermediate states are not classical and their corresponding position is colored red. In
this case, the intermediate state, |z⟩, of every circuit in every level of recursion is completely
non-classical. Figure 24 shows that there is a maximum of log2(d) levels of recursion and
d/2 sub-circuits in the last level of recursion. In the original circuit, in level 1, there are
n non-classical intermediate states and 2n possible values to iterate through. For each of
these 2n possible values, there are 2n possible values to iterate through in each of the two
circuits in level 2. At this point there are 2× 2n × 2n possible values to iterate through.
Carrying out this procedure through to the last level of recursion results in d/2× 2nlog2(d)

possible values to iterate through. For each of these values, the probability amplitude
of all the 2n gates of every sub-circuit in the last level of recursion must be calculated.
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Figure 23: Division of the C2 circuit into two sub-circuits, C21 and C22 , using the first value of the
non-defined intermediate state.

Figure 24: Levels of recursion of the PathRec algorithm.

The time spent pre-processing the circuit, with the coloring sweeps is negligible when
compared to the time spent iterating over all possible values for the intermediate states and
calculating the amplitudes. Therefore, and in this case, the time complexity of this algorithm
is O(2n× d/2× 2nlog2(d)), or O(nd2nlog2(d)). This time complexity is lower than PathNB’s,
O(nd2n(d−1)), because nlog2(d) < n(d− 1), for every value of n and d > 1. The memory
needed in a simulation using this algorithm is linear with the number of qubits, O(n).
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3.4 pre-compilation

Most of the computational time running a simulation in both algorithms is spent iterating
over all possible values of the non-defined intermediate states and calculating amplitudes.
The numbers of iterations to carry out scales exponentially with the number of non-defined
intermediate states which, in turn, are related to the circuit structure. Some quantum gate
identities can be incorporated in both algorithms in a pre-compilation step to change the
structure of the circuit, reducing the number of non-defined intermediate states, and making
the circuit simulation more efficient.

The H gate matrix is unitary
H†H = HH† = I (18)

and hermitian
H† = H (19)

therefore, combining equations eq.(18) and eq.(19) results in the following identity.

HH = I (20)

This identity can be particularly useful for circuits with a large number of H gates. Con-
sidering the extreme example of a quantum circuit, C, on n qubits and with depth d of
layers of H gates and the computational basis states |x⟩ and |y⟩, the green-red and pink blue
coloring methods described in sections 3.1 and 3.2, respectively, would result in a number
n× (d− 1) of non-defined intermediate states. This corresponds to the worst case scenario
for both PathNB and PathRec, because all the intermediate states would be non-defined, and
the number of possible values to iterate through, 2n(d−1), is the maximum for a circuit with
this configuration. If, before carrying out the simulation, a pre-compilation of the circuit
was performed, applying the identity shown in eq.(20), C would be transformed into a new
circuit, with either d/2 layers of identity (I) gates, in the case where d is even, or (d− 1)/2
layers of I gates and a layer of H gates, in the case where d is odd. The layers of I gates can
be removed without affecting the probability amplitude ⟨y|C |x⟩, meaning that, if d is even,
there would be no circuit at all, and, if d is odd, the circuit would be just a layer of H gates.
Therefore, the probability amplitude ⟨y|C |x⟩ could be trivially computed in O(1), if d is
even, or O(n) time, if d is odd, with both algorithms.

Likewise, other identities that reduce the H-count can be incorporated. Figure 25 shows
some identities to be incorporated in a pre-compilation step.

Considering again the circuit used as an example throughout section 3.3, shown in figure
20. Applying a pre-compilation to this circuit results in a transformation that can be seen in
figure 26. The resulting circuit is classical and can be simulated trivially.
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Figure 25: Quantum gate identities to incorporate in a pre-compilation step.

The identification and application of the quantum gate identities shown in figure 25 are a
rather simplistic approach to circuit optimization and compilation, although the result of
their application might yield a considerable speedup in the simulation of quantum circuits
using the PathNB and PathRec algorithms. For a more profound knowledge on how to
reduce the H-count, Abdessaied et al. (2014) introduces a scheme to optimize the T-depth
of quantum circuits based on H gate reductions. Reducing the T-depth and T-count holds
special interest, because implementing T gates is expensive (Mooney et al. (2021)), and
recent research is aiming at minimizing the use of such gates. Heyfron and Campbell (2018)
developed a circuit compiler and benchmarked it on random circuits, from which they
determined that it yields the lowest T counts on average. They also benchmarked it on
a library of reversible logic circuits that appear in quantum algorithms and found that it
reduced the T count for 97% of the circuits with an average T-count saving of 20% when
compared against the best of all previous circuit decompositions.
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Figure 26: Pre-compilation step for the circuit presented in figure 19.



4

E X P E R I M E N TA L R E S U LT S

Based on the simulation algorithms presented in chapter 3, two classical simulators of
quantum computers were implemented, SimulatorNB and SimulatorRec. All the code, CSV
files with test results and circuits tested are made publicly available in Github1. This chapter
is dedicated to the experimental process regarding the performance comparison tests made
using both simulators. Section 4.1 features the descriptions of the gate set accepted by both
simulators, the ensemble of circuits on which experimental tests were conducted, the pre-
compilation step implemented, and the metrics measured and used in each experiment. This
section is concluded with the presentation of the pseudocode of both simulators. Throughout
section 4.2 several experimental results are presented regarding the correctness verification
of both simulators, the effect of the pre-compilation step on the structure of different circuit
types from the ensemble of circuits used and, finally, the performance comparison between
both simulators. Tests were made for different types of quantum circuits, culminating in
the presentation of results of the performance comparison when simulating circuits where a
Schrödinger-type simulator would consume excessive amounts of memory.

4.1 experimental setup and implementation

Based on the algorithms PathNB and PathRec presented in sections 3.2 and 3.3, respec-
tively, two classical quantum simulators designed for simulating quantum circuits were
implemented, SimulatorNB and SimulatorRec. Both simulators were implemented in Python
3.9.0. and designed to simulate quantum circuits from Qiskit.

Originally the set of gates was composed only by the generators of the Clifford group - H,
CNOT and S gates - augmented with the T gate, which is known to be an universal set of
gates, meaning that any other unitary operation can be approximated, with arbitrarily high
precision, with a sequence of gates from this set. However, to take into account the quantum
gate identity shown in eq.(20) in a pre-compilation step, this set was augmented with the
identity gate. These simulators compute the probability amplitude ⟨y|C |x⟩ for circuits, C,

1 https://github.com/DavidACFerreira/Feynman-Path-sum-Classical-Quantum-Simulator
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constituted by this set of gates, input state, |x⟩, in the computational basis, and output state,
|y⟩, in the computational basis. The full set of gates supported by both simulators is shown
in Table 1.

Gate Matrix

H 1√
2

[
1 1
1 −1

]
S

[
1 0
0 −i

]

CNOT


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


T

[
1 0
0 eiπ4

]
I

[
1 0
0 1

]
Table 1: Set of gates supported by SimulatorNB and SimulatorRec

The ensemble of circuits used to test both simulators consisted of randomly generated
Qiskit quantum circuits with the set of gates limited to that in table 1. Random circuits
are often used in benchmarking classical simulation, since some other benchmark circuits
use more elaborate gates not included in our set of gates. This ensemble of circuits is
defined by three variables - i) the number of qubits, n, ii) the depth of the circuit, d, and
iii) the probability of a given gate in the circuit being the H gate, h probability. The third
variable was defined to study the influence of the number of branching gates on the time
the simulators take to compute ⟨y|C |x⟩. The probability of a given gate in the circuit being
one of the remaining gates from the set is the same for every gate type and its value is
(1− h probability)/4. The depth corresponds to the number of unitary layers of gates acting
on n qubits. A circuit C of this ensemble is built by probabilistically choosing the gates
in accordance with the h probability, and the probability defined above for the remaining
gates, for each layer of the circuit. The qubits each of the chosen gates act on are chosen in a
random, uniform way, over all the qubits that still haven’t been assigned to a gate. Control
conditions were implemented to make it impossible to choose a 2-qubit gate in the case
where there is only one qubit that still has not been assigned to a gate.

After randomly generating a Qiskit quantum circuit, qc, a user can carry out a simulation
for any n-sized computational basis input state and output state. For a quantum circuit
acting on n qubits, the input and output computational basis states are merely n-sized
binary vectors. Other important data structures that are used during a simulation, in both
simulators, include:
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• The list of quantum operations that represents the circuit, qc.data. It is generated using
an attribute of Qiskit’s quantum circuits, QuantumCircuit.data. Each element of this
list is a list corresponding to each layer of gates, ordered in the input-output direction.
This list has information about the gates that appear in the circuit, the qubits they
act on and the order in which they appear. Figure 27 shows the qc.data for a Qiskit
quantum circuit.

• The list that contains the intermediate states, inter states. For a circuit on n qubits with
depth d, this list will have d− 1 n-sized vectors each containing the state of the qubits
after a given layer of gates, ordered in the input-output direction.

• The lists that contain color schemes, such as green red and blue pink. For a circuit on n
qubits with depth d, these lists will have the same structure as the inter states list, but
their n-sized vectors will contain the color code of each qubit instead.

Figure 27: A Qiskit quantum circuit and its corresponding list of quantum operations.

The pre-compilation step is done by searching for two consecutive H gates acting on the
same qubit and substituting them by an I gate. For the quantum circuit presented in figure
27, the effect of the pre-compilation step is shown in figure 28.

Several performance tests were made on various input - n, d and h probability - combina-
tions, for both simulators. Each circuit was simulated before and after the pre-compilation
step, to study the effect of this step on the performance of both simulators. In each simulation
various parameters were measured. These parameters include:

• The percentage of H gates in the circuit, since the H gate is the only branching gate in
the set of gates supported by both simulators, and therefore, the number of H gates in

https://qiskit.org/documentation/stable/0.19/stubs/qiskit.circuit.QuantumCircuit.data.html#qiskit.circuit.QuantumCircuit.data
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Figure 28: Effect of the pre-compilation step for the quantum circuit presented in figure 27.

a circuit is related with the number of paths to compute and the time complexity of
the simulation;

• The number of red-colored intermediate states;

• The number of pink-colored intermediate states, to study the effect of the blue-pink
coloring method on the number of paths to compute and on the time complexity of a
simulation using the SimulatorNB;

• The runtime of a simulation;

• The memory usage of a simulation;

• The output of the simulation, i.e., the amplitude ⟨y|C |x⟩, to compare it with the
expected output, to validate the correctness of both simulators.
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Finally the pseudocode for SimulatorNB and SimulatorRec is presented.

Algorithm 1: SimulatorNB

procedure SimulatorNB(qc.data, input state, output state, pre compilation f lag)
if pre compilation f lag then

qc.data←pre compilation(qc.data)
end if
depth←len(qc.data)
n←len(input state)
f s←forwardSweep(qc.data)
bs←backwardsSweep(qc.data)
if inconsistencyCheck(qc.data, input state, output state, f s, bs) then

return 0

end if
green red←greenRedColoring(qc.data, f s, bs)
if n reds in green red = 0 then

inter states←interStatesCalc(qc.data, input state, output state, green red)
return amplitude(qc.data, input state, output state, inter states)

end if
blue pink←bluePinkColoring(qc.data, green red)
inter states←interStatesCalc(qc.data, input state, output state, blue pink)
amp f inal ← 0
mult f actor ←amplitude(qc.data, input state, output state, inter states)
for i← 0 to 2n pinks − 1 do

bitstring← bin(i, n pinks) ▷ n pinks-sized binary representation of i
bitstring index ← 0
mult aux ← 1
all states← input state + inter states + output state
for j← 0 to depth− 1 do

for gate in qc.data[j] do
if gate[0] = H and all states[j + 1][gate[1]] = pink then

all states[j + 1][gate[1]]← bitstring[bitstring index]
bitstring index += 1
mult aux +=Hgate[all states[j][gate[1]]][all states[j + 1][gate[1]]]

end if
if gate[0] = H and j > 0 and blue pink[j− 1][gate[1]] ̸= green then

mult aux +=Hgate[all states[j][gate[1]]][all states[j + 1][gate[1]]]
end if
if gate[0] = CX and all states[j + 1][gate[1]] = blue then
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all states[j + 1][gate[1]]← all states[j][gate[1]]
mult aux +=CXgate[(all states[j][gate[1]], all states[j][gate[2]])][(all states[j+

1][gate[1]], all states[j + 1][gate[2]])]
end if
if gate[0] = CX and all states[j + 1][gate[2]] = blue then

all states[j + 1][gate[2]]← |all states[j][gate[2]]− all states[j][gate[1]]|
mult aux +=CXgate[(all states[j][gate[1]], all states[j][gate[2]])][(all states[j+

1][gate[1]], all states[j + 1][gate[2]])]
end if
if gate[0] = S and all states[j + 1][gate[1]] = blue then

all states[j + 1][gate[1]]← all states[j][gate[1]]
mult aux +=Sgate[all states[j][gate[1]]][all states[j + 1][gate[1]]]

end if
if gate[0] = T and all states[j + 1][gate[1]] = blue then

all states[j + 1][gate[1]]← all states[j][gate[1]]
mult aux +=Tgate[all states[j][gate[1]]][all states[j + 1][gate[1]]]

end if
if gate[0] = I and all states[j + 1][gate[1]] = blue then

all states[j + 1][gate[1]]← all states[j][gate[1]]
mult aux +=Igate[all states[j][gate[1]]][all states[j + 1][gate[1]]]

end if
end for

end for
mult aux ∗= mult f actor
amp f inal += mult aux

end for
return amp f inal

end procedure
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Algorithm 2: SimulatorRec

procedure SimulatorRec(qc.data, input state, output state, pre compilation f lag)
if pre compilation f lag then

qc.data←pre compilation(qc.data)
end if
depth←len(qc.data)
n←len(input state)
if depth = 1 then

return amplitude(qc.data, input state, output state)
end if
f s←forwardSweep(qc.data)
bs←backwardsSweep(qc.data)
if inconsistencyCheck(qc.data, input state, output state, f s, bs) then

return 0

end if
green red←greenRedColoring(qc.data, f s, bs)
inter states←interStatesCalc(qc.data, input state, output state, green red)
if n reds in green red = 0 then

return amplitude(qc.data, input state, output state, inter states)
end if
all states← input state + inter states + output state
if depth > 2 then

for i← 0 to n do
if green red[len(green red/2)][i]= red then

n reds mid += 1
end if

end for
amp f inal ← 0
for i← 0 to 2n reds mid − 1 do

bitstring← bin(i, n reds mid) ▷ n reds mid-sized binary representation of i
bitstring index ← 0
for i← 0 to n do

if all states[len(all states/2)][i]= red then
all states[len(all states/2)][i]← bitstring[bitstring index]

end if
end for
amp f inal ← amp f inal ▷ Recursive call
+ SimulatorRec(qc.data[0 : depth/2], all states[0], all states[(len(all states)−1)])
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+ SimulatorRec(qc.data[depth/2 : depth], all states[(len(all states)−1)/2],
all states[len(all states)−1])

end for
end if
if depth ≤ 2 then

amp f inal ← 0
for i← 0 to 2n reds − 1 do

inter states aux ← inter states
bitstring← bin(i, n reds) ▷ n reds-sized binary representation of i
bitstring index ← 0
for j← 0 to len(inter states aux)− 1 do

for state in inter states aux[j] do
if state = red then

state← bitstring[bitstring index]
bitstring index += 1

end if
end for

end for
amp f inal += amplitude(qc.data, input state, output state, inter states aux)

end for
end if
return amp f inal

end procedure

4.2 results

In this section, the results regarding the tests of validation and performance comparison
of SimulatorNB and SimulatorRec, with and without the pre-compilation step, are presented,
with special focus on the time and memory usage. The results that follow were all obtained
using Python 3.9.0. in a single workstation. For reference the machine used has an 8-core
AMD Ryzen 7 4700U processor @ 2 GHz - 4.1 GHz and 16GB RAM.

4.2.1 Correctness Validation

The metric used to validate the algorithms of both simulators was the total variation
distance (TVD), which is commonly used to to measure the distance between two probability
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distributions. Formally, given two discrete probability distributions P and Q over the same
sample space X, the TVD may be defined as:

TVD(P, Q) =
1
2 ∑

x
|P(x)−Q(x)| (21)

where the sum is taken over all possible outcomes x ∈ X. In the context of the task of
validating the correctness of both simulators, the TVD may be used to compare the output
probabilities of the implemented simulators with the expected probabilities obtained from a
trusted quantum computing library. If the TVD between the two probability distributions is
below a certain threshold, ϵ, it is considered that the simulator algorithm produces correct
results.

To this end, tests over all possible combinations of computational basis input and output
states for several quantum circuits were carried out. For each quantum circuit and each
possible input state, the TVD between the output distribution obtained from our simulators
and the expected output distribution obtained from the Statevector Simulator, from Qiskit’s
BasicAer module, was calculated. The resulting TVD values were then analyzed to determine
whether they met a predefined threshold for correctness.

As the number of qubits in a quantum circuit grows, the number of possible input and
output states also increases exponentially. For a circuit on n qubits, there are 2n possible input
states and 2n possible output states, resulting in a total of (2n)2 = 22n possible combinations
of input and output states to consider. This can quickly become computationally infeasible
for circuits with a large number of qubits. Furthermore, a circuit with a large depth is bound
to have a larger number of H gates, resulting in an also large number of paths to compute,
for each of the 22n possible combinations of input and output states. Considering this a
choice was made to run these tests on circuits acting on a maximum of 8 qubits and with a
maximum depth d = 8. Given these restrictions, a reasonable value for the threshold, ϵ, was
defined to be ϵ = 1× 10−12, compatible with the expected numerical round-off error.

As the behaviour of both simulators is heavily influenced by the number of H gates in the
circuit, the first tests were run on circuits from the ensemble of circuits described in section
4.1, on 4 qubits, with depth d = 4 and with varying H gate probability. This input parameter
was forced to vary between the limit cases, h probability = 0, where there are no H gates in
a circuit, and h probability = 1, where all the gates in a circuit are H gates. The step was
chosen to be 0.25, which holds five values of h probability: 0, 0.25, 0.5, 0.75 and 1. For each of
these values, 20 different circuits were simulated, resulting in a total of 100 circuits. Each of
these was simulated using both simulators, with and without the pre-compilation step. For
each of these simulations, the TVDs associated with each possible computational basis input
state were calculated and compared with ϵ. Table 2 summarizes these results, presenting the
TVD with highest value calculated for both simulators, before and after the pre-compilation
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step. By inspecting table 2 it is clear that the TVD with highest value calculated in this set of
tests is, by a comfortable margin, smaller than the threshold value ϵ.

SimulatorNB SimulatorNB PC SimulatorRec SimulatorRec PC

Highest TVD 3.23× 10−15 2.25× 10−15 3.08× 10−15 2.25× 10−15

% of H gates 80.00 26.67 80.00 26.67

Table 2: Highest total variation distance (TVD) calculated for SimulatorNB and SimulatorRec, after
tests on 100 different random circuits on 4 qubits, with depth d = 4 and with h probability
varying between 0 and 1. Each circuit was also simulated by both simulators after the
pre-compilation step (PC).

To verify the correctness of both simulators for a varying number of qubits and circuit
depth, tests were run on random circuits with the number of qubits and the depth of the
circuit varying between 2 and 8. The h probability was fixed with a value h probability = 0.05
to limit the runtime of these tests. With these restrictions, for each possible pair (n, d),
ten different circuits were simulated, resulting in a total of 490 circuits. Each of these was
simulated using both simulators, with and without the pre-compilation step. For each of
these simulations, the TVDs associated with each possible computational basis input state
were calculated and compared with ϵ. Table 3 summarizes these results, presenting the TVD
with highest value calculated for both simulators, before and after the pre-compilation step.
By inspecting table 3 it is clear that the TVD with highest value calculated in this set of tests
is, once again, by a comfortable margin, smaller than the threshold value ϵ.

SimulatorNB SimulatorNB PC SimulatorRec SimulatorRec PC

Highest TVD 2.25× 10−15 2.25× 10−15 2.25× 10−15 2.25× 10−15

# qubits 5 5 5 5

depth 6 6 6 6

Table 3: Highest total variation distance (TVD) calculated for SimulatorNB and SimulatorRec, after
tests on 490 different random circuits with h probability = 0.05, with the number of qubits
2 ≤ n ≤ 8 and with depth 2 ≤ d ≤ 8. Each circuit was also simulated by both simulators
after the pre-compilation step (PC).

The results shown in tables 2 and 3 present a fairly rigorous validation of the correctness
of both quantum simulators. The TVD tests demonstrated that the behaviour of SimulatorNB
and SimulatorRec is in line with what was predicted, with all TVD values falling below the
chosen threshold, ϵ, for correctness. This provides strong evidence for the validity and
reliability of the simulators, and gives us confidence in its ability to accurately simulate the
behaviour of any quantum circuit from the ensemble defined in section 4.1.
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4.2.2 Effect of the pre-compilation step

Next, the impact of the pre-compilation step on the structure of random circuits is
examined. As mentioned in section 3.4, the pre-compilation step aims to optimize the circuit
structure, which can significantly speed up the simulation process. In the context of our
simulators, the goal of the pre-compilation step is to reduce the H count. In chapter 3 the
concept of colored intermediate states was introduced. It was concluded that the runtime of
a simulation, using any of the implemented simulators, is predominantly determined by
the number of intermediate states colored red, or pink. To put it simply, from now on, the
number of intermediate states colored red after pre-processing a quantum circuit will be
referred to as n reds and the number of intermediate states colored pink as n pinks. Tests
were made in which, for each circuit, the percentages of H gates, of intermediate states
colored red, and of intermediate states colored pink were measured, before and after the
pre-processing step. These last two percentages are calculated as follows:

%reds =
n reds

n(d− 1)
× 100 (22a)

%pinks =
n pinks
n(d− 1)

× 100 (22b)

while the percentage of H gates is simply:

%Hgates =
n Hgates
n gates

× 100 (23)

where n Hgates and n gates are the number of H gates and the total number of gates in a
circuit, respectively. These tests were run on two types of random circuits:

• shallow circuits with a large number of qubits - with d = 4 and n = 100;

• deep circuits with a small number of qubits - with d = 100 and n = 4.

In this way one is allowed to assess the characteristics of the circuit structure as a function
of d and n. For each of these random circuit types, the input parameter h probability was
forced to vary between the limit cases, h probability = 0 and h probability = 1. The step
was chosen to be 0.01, which holds 101 values of h probability. For each of these values, 10
different circuits were simulated, resulting in a total of 1010 circuits.

Figure 29 presents the results concerning the effect of the pre-compilation step on the
percentage of H gates in a circuit. By inspecting the graphs of figure 29, one can see the
effectiveness of the pre-compilation approach in reducing the number of H gates in the
circuits tested. Furthermore, the relation between the percentage of H gates before and
after the pre-compilation step is very similar in both circuit types. This relation is expected
because:
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(a) Percentage of H gates after the pre-compilation
step for 1010 random shallow circuits (d = 4
and n = 100).

(b) Percentage of H gates after the pre-compilation
step for 1010 random deep circuits (d = 100
and n = 4).

Figure 29: Percentage of H gates after the pre-compilation step for 1010 random shallow and deep
circuits with h probability varying between 0 and 1.

• for a low percentage of H gates (< 20%) in the circuit, not many HH = I substitutions
are carried out, so the percentage of H gates after the pre-compilations grows linearly;

• for a percentage of H gates between 20% and 80% the percentage of H gates after the
pre-compilation step starts to flatten out, eventually reaching a maximum;

• for a high percentage of H gates (> 80%) more and more adjacent H gates start to
appear in the circuits, which leads to a big number of HH = I substitutions, and
therefore, to a decrease of the percentage of H gates after the pre-compilation step.

The results concerning the effect of the pre-compilation step on n reds are presented in
fig 30. The graphs of figure 30 show that the pre-compilation approach is very effective in

(a) Percentage of n reds before and after the pre-
compilation step for 1010 random shallow cir-
cuits (d = 4 and n = 100).

(b) Percentage of n reds before and after the pre-
compilation step for 1010 random deep circuits
(d = 100 and n = 4).

Figure 30: Percentage of n reds before and after the pre-compilation step for 1010 random shallow
and deep circuits with h probability varying between 0 and 1.

reducing n reds in shallow circuits, for a percentage of H gates greater than 20%, while in
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deep circuits this reduction only begins to accentuate for a percentage of H gates greater
than 60%. This result is expected because in shallow circuits most of n reds will exist between
adjacent H gates, as there is not enough depth for them to exist elsewhere. Figure 30a
confirms this as it shows an almost linear relation between the percentage of H gates and
n reds. This implies that each HH = I substitution is very likely to eliminate a red colored
intermediate state.

Finally, the results comparing n pinks before and after the pre-compilation step are shown
in figure 31.

(a) Percentage of n pinks before and after the pre-
compilation step for 1010 random shallow cir-
cuits (d = 4 and n = 100).

(b) Percentage of n pinks before and after the pre-
compilation step for 1010 random deep circuits
(d = 100 and n = 4).

Figure 31: Percentage of n pinks before and after the pre-compilation step for 1010 random shallow
and deep circuits with h probability varying between 0 and 1.

The graphs of figure 31 show that the pre-compilation approach is very effective in
reducing n pinks for both shallow circuits and deep circuits. Due to the low percentage of
n reds shown in figure 30a in comparison with that in figure 30b, the percentage of n pinks is
lower for shallow circuits than it is for deep circuits. However, by comparing figures 30b and
31b, one can note that, for deep circuits, the ratio n pinks/n reds is very low. This shows
that the advantage associated with the PathNB algorithm described in section 3.2, when
compared to the algorithmic method described in section 3.1, is accentuated in deep circuits.

Overall the results presented above provide a quantitative evaluation of the pre-compilation
approach and demonstrate its effectiveness in reducing the H count, and therefore, n reds and
n pinks. The results presented in figures 30 and 31 imply that applying the pre-compilation
step will speed up the simulation process of just about any circuit from the ensemble of
circuits used, but the best results, i.e. the highest speedup will be had for shallow circuits
with a percentage of H gates greater than around 50%.
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4.2.3 Performance results

Additional tests were run to compare the performance of both simulators, in which, for
each quantum circuit C simulated, a single amplitude ⟨y|C |x⟩ was calculated for a single
computational basis input state and a single computational basis output state. Each circuit
was first simulated using Qiskit’s AerSimulator. This simulator supports multiple simulation
methods and configurable options for each simulation method. For circuits with a number
of qubits lower than 29 the Statevector method was used. For circuits with a number of
qubits larger than 29 the Matrix Product State simulation method was used. Then, using
the results obtained in those simulations, an output state, |y⟩, for which ⟨y|C |x⟩ holds a
value greater than zero, was chosen. The input state |x⟩ was chosen to be an all zero n-sized
bitstring.

In section 3.2 it was shown that the number of iterations and, consequently, the runtime
of SimulatorNB grows exponentially with n pinks. To confirm this, square circuits 10× 10
(n = depth = 10) were simulated, one for each value of n pinks between 6 and 23. The time
of each of these simulations was measured and then plotted. These results are presented in
figure 32. Figure 32 shows that the time of a simulation using SimulatorNB does indeed grow

Figure 32: Simulation time using SimulatorNB for 10× 10 square circuits, with n pinks varying between
6 and 23.

exponentially with n pinks. Moreover, it shows that, in this workstation, for n pinks = 23,
a 10× 10 square circuit, takes approximately 33 minutes to complete a simulation. For an
experimental testing context where hundreds of circuits are simulated, this value is relatively
high. With the results from figures 31 and 32, one can estimate the maximum number
n pinks in a circuit, and therefore, its simulation time using SimulatorNB, given its size and
h probability. The simulation time of SimulatorRec, on the other hand, does not depend so

https://qiskit.org/documentation/stable/0.39/stubs/qiskit_aer.AerSimulator.html
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much on the number n reds, but rather, on where do those red colored intermediate states
appear in the circuit.

To compare the runtime of simulations using the two simulators, tests were performed on
N × N (n = d = N) square circuits, with N ranging from 2 to 10. For each value of N, 50
different circuits were simulated by both simulators with and without the pre-compilation
step. Each of these circuits had the parameter h probability set to 0.3. The average over the
50 different circuit simulation times was calculated, for each value of N, and then plotted.
Figure 33 presents these results. The graph in figure 33 shows that, for simulations on

Figure 33: Average simulation time over 50 different square circuits (n = depth = N), with
h probability set to 0.3, for each value of N.

circuits without pre-compilation, the simulation time of the SimulatorNB is the longest for
large enough circuits (N > 5), and the difference between this and the SimulatorRec time
tends to increase with increasing circuit size. This is expected as the exponential relation
between the simulation time of SimulatorNB and n pinks in a circuit makes this simulator
more susceptible to an increase in circuit depth. The effectiveness of the pre-compilation step
is also evidenced by these results. For N = 10 the average simulation time of SimulatorNB
is, approximately, 160 times shorter for pre-compiled circuits. These results confirm that
for large enough circuits, it is always advantageous to incorporate the pre-compilation step.
Therefore, for the following tests, the simulations were carried out only for pre-compiled
circuits.

Next, tests were run on shallow circuits with fixed depth and a varying number of qubits,
and on deep circuits with a fixed number of qubits and a varying depth, to study the
difference in response of these simulators to circuits with the same volume but different
form. In the context of these simulator implementations the volume of a circuit, C, on n
qubits and with depth d may be defined as:

V(C) = nd. (24)
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In the first of these tests, n was set to 4 and the depth d was set to vary between 1 and 50.
For each value of d, 51 different quantum circuits were simulated with h probabiliy varying
between 0 and 1. For each simulated circuit, the simulation time and the memory usage
were measured and their average values calculated. By inspecting figures 31 and 32, one
can estimate the simulation time of a simulation on deep circuits using the SimulatorNB.
Figure 32 shows that for values of n pinks > 23 the simulation time is bigger than an hour.
Figures 31a and 31b suggest that 10 ≤ %pinks ≤ 20 for the worst case scenario, where
%Hgates ≈ 50, in pre-compiled circuits. Rearranging eq.(22b) to solve for the depth, d,
results in:

d = 1 +
100

%pinks
n pinks

n
. (25)

Considering a circuit on four qubits, substituting these values into eq.(25) results in d = 58
and d = 29, for %pinks = 10 and %pinks = 20, respectively. Indeed when running the
test described above, many circuits with n pinks > 23 were generated, for values of d
greater than 29, thus resulting in impractical simulation times in the context of the this test.
Therefore, it was opted to only run this test with the SimulatorRec. It is then concluded that
SimulatorNB is not suitable for simulating deep circuits. The average simulation time and
memory usage of SimulatorRec were plotted for each value of d. The results are shown in
figure 34.

(a) SimulatorRec’s average simulation time over 51
different circuits on 4 qubits, with h probability
ranging from 0 to 1, for each value of d between
1 and 50.

(b) SimulatorRec’s average simulation memory us-
age over 51 different circuits on 4 qubits, with
h probability ranging from 0 to 1, for each value
of d between 1 and 50.

Figure 34: SimulatorRec’s average simulation time and memory usage over 51 different circuits on 4
qubits, with h probability ranging from 0 to 1, for each value of d between 1 and 50.

Finally, to study how the simulation time and the memory usage evolve with an increasing
number of qubits, tests were run on quantum circuits with the number of qubits ranging
from 1 to 50. The depth d was set to 4 and, for each value of n, 51 different quantum circuits
were simulated with h probabiliy varying between 0 and 1. For each simulated circuit, the
simulation time and the memory usage were measured and their average values calculated.
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The average simulation time and memory usage of SimulatorRec and SimulatorNB were
plotted for each value of n. The results are shown in figure 35.

(a) Average simulation time over 51 different cir-
cuits with d = 4 and h probability ranging
from 0 to 1, for each value of n between 1 and
50.

(b) Average simulation memory usage over 51 dif-
ferent circuits with d = 4 and h probability rang-
ing from 0 to 1, for each value of n between 1
and 50.

Figure 35: Average simulation time and memory usage over 51 different circuits with d = 4 and
h probability ranging from 0 to 1, for each value of n between 30 and 49.

Figures 34 and 35 present important results regarding the performance of SimulatorNB
and SimulatorRec. While there is certainly room for improvement in terms of speed for these
simulations, as discussed in section 5, the experiments conducted demonstrate that these
simulators are capable of simulating shallow circuits on a large number of qubits in practical
time. Specifically, for n = 50 and d = 4, both simulators were able to simulate these circuits
in an average time of approximately 1 second. Although these simulators have proven
effective in simulating shallow circuits, their performance on deep circuits is less satisfactory.
This outcome was anticipated and is attributed to the higher percentage of n reds and n pinks
observed in deep circuits compared to shallow circuits, as illustrated in figures 30 and 31.
The irregular lines plotted in figures 34 and 35 provide evidence that the time and spatial
complexities do not depend solely on the circuit dimensions, but also on the circuit structure.
Arguably the most significant finding is illustrated in the graph of figure 35b, which
demonstrates that the memory usage of both simulators does not increase exponentially
with n, in contrast to Schrödinger-type simulators. Additionally, these simulators can
simulate circuits with n = 50 while utilizing minimal memory (approximately 80 Mb),
which is a substantial improvement compared to the memory requirements of a Schrödinger-
type simulator, which would need to store all 250 amplitudes. The graph presented in figure
34b indicates that the memory usage of a simulation utilizing SimulatorRec also does not
exhibit exponential growth with circuit depth. Overall, these findings suggest that these
simulators have significant potential for simulating shallow circuits with a large number of
qubits (n > 30). Nonetheless, there remains considerable room to improve the simulation
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time of both simulators. Such enhancements are likely to enable these simulators to simulate
circuits with a large number of qubits and higher depths in practical time.



5

C O N C L U S I O N A N D F U T U R E W O R K

Chapter 1 began with a brief historical overview of the origins of quantum computation,
starting with the early days of Computer Science. An overview of the importance of the
importance of classical quantum simulation is presented later as well as the motivations
for studying and improving the existing Feynman path-sum approaches for simulating
quantum computers. This introduction is closed with an overview of the following chapters
and main contributions.

The goal of chapter 2 was to give an overview of the state of the art of techniques for clas-
sical simulation of quantum computers. The Feynman path-sum simulation approach was
contextualized as a technique for strong simulation. Other techniques were discussed high-
lighting the differences between them and providing relevant literature for the development
of the work presented in this dissertation.

Chapter 3 was devoted to the study of an optimization method of the Feynman path-sum
simulation approach and the development of two simulation algorithms, PathNB and PathRec,
based on this method. These simulation algorithms are the main original contributions of
this work and were carefully explained, discussed and visually exemplified in this chapter.
The chapter is closed with a brief overview of the benefits of pre-compilation of quantum
circuits in general, and specifically in the context of the developed simulators.

Lastly, chapter 4 was dedicated to showcasing experimental results regarding the perfor-
mance comparison of the simulators implemented with the aforementioned algorithms. The
chapter began with the description of the experimental setup, encompassing the set of gates
supported by both simulators, the ensemble of circuits on which the experimental tests were
made and the implemented pre-compilation rules. Then, the experimental results are pre-
sented, starting with the correctness verification of both algorithms. Although the scaling of
the tests was limited, the results suggest that both algorithms are correct and the simulation
outputs are the same as those in trustworthy simulators. Tests to study the effect of the
pre-compilation step on the structure of different circuit types from the ensemble of circuits
used, were also carried out. These tests showed how effective a simple pre-compilation
step is in reducing the H count, suggesting that an expansion of the pre-compilation rules
incorporated in this step would result in a considerable speedup of the simulations. Finally,
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tests concerning the performance comparison between both simulators were carried out,
focusing on the simulation time and memory usage. These results present evidence of the
potential of these simulators. They were able to simulate shallow circuits with n = 50 and
d = 4, where a Schrödinger-type simulator would consume excessive amounts of memory,
in practical time (approximately 1 second per circuit) and using low memory. The time
complexity was proven to depend mainly on the circuit structure, rather than the circuit
volume. The memory complexity also depends on the circuit structure but appears to grow
linearly with n and d. Tests for deep circuits were not as satisfactory, as expected, but there
is still space for improvement, especially regarding the simulation time. This indicates that
there is potential to improve the efficiency of these simulators in simulations on these types
of circuits.

Based on what was achieved in this dissertation, in order to further improve the efficiency
and expand the capabilities of the current implementations of SimulatorNB and SimulatorRec,
several potential paths for future work are suggested. These include:

• Code optimization: Fine-tuning the simulation algorithm to optimize for the specific
gate set being used. This could involve identifying specific types of circuits or gate
combinations that are particularly computationally expensive, and developing targeted
optimizations to reduce the overhead of these operations. During the calculation of
amplitudes for two different paths, it is possible that many computations may be
repeated. To improve efficiency, the algorithms can be optimized to identify and avoid
redundant calculations. Additionally, there can be an investigation of whether or not
the recursive algorithm used in SimulatorRec should be re-implemented as an iterative
algorithm. Trade-offs between efficiency, readability, and maintainability should be
considered in this potential optimization.

• Faster programming language: Re-implementing the simulators in a faster program-
ming language, such as C++. While the existing implementation in Python is flexible
and easy-to-use, it may not be ideal for computationally intensive tasks involving large
circuits.

• Larger gate set: Expanding the gate set used by the simulator to include additional
types of gates beyond the current set would enable simulation of more complex circuits.
It could also facilitate the incorporation of new gate identities in a pre-compilation
step.

• More pre-compilation identities: As shown throughout 4.2, the power of a pre-
compilation step is immense, even when using only a single identity. By incorporating
more identities that decrease the number of H gates in a circuit, such as those presented
in figure 25, or identities that decrease the number of other branching gates in a circuit,
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in the case such gates are added to the gate set, a great speedup in the simulation
times of both simulators is expected.

• Parallel and/or distributed computation: Explore the use of parallel and distributed
computation to further speed up simulations. Feynman path-sum based algorithms
are inherently parallelizable. This is because these algorithms involve performing a
large number of similar calculations on different paths, which makes it suitable to
split the simulation workload across multiple processors or computers. Parallelization
can significantly speed up the computation of simulations using both implemented
simulators, especially for circuits with a large number of qubits and/or large depth.

• Hybrid Schrödinger/Feynman approach: Finally, future work could be made to
study, implement and test simulators that combine SimulatorNB and SimulatorRec
with a Schrödinger type simulator. Aaronson and Chen (2016) described an hybrid
Schrödinger/Feynman simulator and showed that, by interpolating the two approaches,
one achieves a tradeoff between the memory usage and the simulation runtime.
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