

Universität für Bodenkultur Wien Department für Bautechnik + Naturgefahren

Winter School Zell am See Performance-based assessment of Existing Road Bridges

Schriftenreihe des Departments Nr. 25 – August 2018

18th – 21st December, 2017 Hotel St. Hubertushof Zell am See Zell am See, Salzburg, Austria

Organisers: Alfred Strauss Jose Matos Helmut Wenzel Konrad Bergmeister within the COST Action TU1406 "Quality specifications for roadway bridges, standardization at a European level (BridgeSpec)" (http://www.cost.eu/COST_Actions/tud/TU1406) University of Natural Resources and Life Sciences,

Gregor Mendel Strasse 33 A 1180 Wien , Austria ISSN 1811-8747

OBJECTIVES

The objective of the COST TU1406 Winter School – Zell am See is to spread the latest knowledge and developments acquired by the action in the topic of performance-based assessment of existing road bridges. The school aims at teaching the most recent developments of COST Action TU1406 on performance indicators and performance goals, focusing on the findings of WG1, WG2 and WG3.

In the first year of COST Action TU1406 the main focus was on the screening process of existing European documents and establishing a database for PIs. The goal was to explore performance indicators of bridge structures, in the course of international research cooperation, which capture the mechanical and technical properties and its degradation behaviour, already partly covered by code specifications. Considerations also include: natural aging, quality of the material; service life design methods; sustainable indicators; environmental, economic and social based indicators, performance profiles. The findings of this process are incorporated in a PI-KPI database which will be available to the user for its practical use.

The second year focused on technical and non-technical bridge performance goals. The aim was to identify existing performance goals (where the term goal pertains to quantifiable requirement and/or threshold value) for the indicators previously indicated in WG1. The performance goals vary according to technical, environmental, economic and social factors. These goals are already in a report which is now the basis for the objective performance assessment.

The third year of COST TU1406 is focused on establishing a quality control (QC) plan for different types of bridges. The goal is to create a procedure, based on heuristic rules and on WG1 and WG2 findings, which will allow bridge owners to define a QC plan for each individual bridge.

The objective of the Winter School is to spread the latest knowledge and developments acquired by the action in the topic of performance-based assessment of existing road bridges, and has the aim to teach the most recent developments of COST Action TU1406 on performance indicators, performance goals and quality control plans, focusing on the findings of WG1, WG2 and WG3. In this winter school participants will be familiarized with the developed tools and database. The application of the tools to defined bridge structures will be worked out in form of an interactive workshop. Participants will be able to use the tools in their daily practice after attending this training school.

SCOPE

The event is co-organised with the University of Natural Resources and Life Sciences in Vienna. It will cover WG1, WG2 and WG3 topics of COST Action TU1406, which are "the assessment of road bridges through Key Performance Indicators (KPIs)", "the establishment of Performance Thresholds/Goals" and "recommendations for the establishment of QC plans".

Venue: Hotel St. Hubertushof Zell am See, Zell am See, Salzburg. Room: to be assigned Time: 18 – 21 December 2017

Organisers:

COST Action TU1406 "Quality specifications for roadway bridges, standardization at a European level (BridgeSpec)" (http://www.cost.eu/COST_Actions/tud/TU1406) University of Natural Resources and Life Sciences Gregor Mendel Strasse 33, A-1180 Wien, Austria

Trainers list of experts:

- Prof. José C. Matos, Civil Engineering Department, School of Engineering, University of Minho (UMinho), Portugal.
- Prof. Alfred Strauss, University of Natural Resources and Life Sciences (BOKU), Institute of Structural Engineering, Austria.
- Prof. Irina Stipanovic, University of Twente (UTwente), Faculty of Engineering Technology Construction Management and Engineering Department, The Netherlands.
- Prof. Rade Hajdin, Faculty of Civil Engineering, University of Belgrade, Serbia.
- Prof. Helmut Wenzel, VCE Vienna Consulting EngineersZT GmbH, Vienna, Austria.

Content

Performance-based assessment of Existing Road Bridges Sergio Fernandes, Booklet

Overviewon COST ActionTU 1406Performance-basedAssessment of ExistingRoad Bridges Jose Matos

Objectives for Structural Health Monitoring and Asset Management of Bridges *Helmut Wenzel*

Performance-based assessment of Existing Road Bridges WG1 Performance Indicators *Alfred Strauss*

Framework for KPIs bridge assessment *Irina Stipanovic*

Multi-criteria decision making models *Irina Stipanovic*

Quality Control Framework – Implementation and further research *Rade Hajdin*

Monitoring OFFSHORE STRUCTURES Assessment, Inspection and Management Helmut Wenzel

QUALITY SPECIFICATIONS FOR ROADWAY BRIDGES, STANDARDIZATION AT A EUROPEAN LEVEL

COST is supported by the EU Framework Programme

Winter School – Zell am See

Performance-based assessment of Existing Road Bridges

18th – 21st December, 2017 Hotel St. Hubertushof Zell am See Zell am See, Salzburg, Austria

ACTION CONTACTS

Chair of the Action Vice Chair of the Action School Co-Organizer Local organizers

Action websites School webpage Prof. José C. Matos Prof. Joan R. Casas Prof. Alfred Strauss Dr. Alfred Strauss Dr. Helmut Wenzel http://www.tu1406.eu/ http://www.tu1406.eu/zellamsee

chair@tu1406.eu vicechair@tu1406.eu alfred.strauss@boku.ac.at alfred.strauss@boku.ac.at wenzel@vce.at http://www.cost.eu

CONTENTS

1.	Wi	inter School – Zell am See	4
		Objectives	
	1.2.	Scope	4
		Programme	
	1.4.	Location, Dates and Travelling	6
	1.4.1.	Location and Date	6
	1.4.2.	How to get to Zell am See	7
	1.5.	Accommodation	8
	1.6.	Committees	8
	1.6.1.		
	1.6.2.	Organizing Committee	8
	1.6.3.	Secretariat	8
	1.6.4.	Local Organizers	9
2.	Ho	bw to Apply1	0
	2.1.	Application1	0
	2.2.	Funding and Reimbursement1	0

1. WINTER SCHOOL – ZELL AM SEE

1.1.OBJECTIVES

The objective of the COST TU1406 Winter School – Zell am See is to spread the latest knowledge and developments acquired by the action in the topic of performance-based assessment of existing road bridges. The school aims at teaching the most recent developments of COST Action TU1406 on performance indicators and performance goals, focusing on the findings of WG1, WG2 and WG3.

In the first year of COST Action TU1406 the main focus was on the screening process of existing European documents and establishing a database for PIs. The goal was to explore performance indicators of bridge structures, in the course of international research cooperation, which capture the mechanical and technical properties and its degradation behaviour, already partly covered by code specifications. Considerations also include: natural aging, quality of the material; service life design methods; sustainable indicators; environmental, economic and social based indicators, performance profiles. The findings of this process are incorporated in a PI-KPI database which will be available to the user for its practical use.

The second year focused on technical and non-technical bridge performance goals. The aim was to identify existing performance goals (where the term goal pertains to quantifiable requirement and/or threshold value) for the indicators previously indicated in WG1. The performance goals vary according to technical, environmental, economic and social factors. These goals are already in a report which is now the basis for the objective performance assessment.

The third year of COST TU1406 is focused on establishing a quality control (QC) plan for different types of bridges. The goal is to create a procedure, based on heuristic rules and on WG1 and WG2 findings, which will allow bridge owners to define a QC plan for each individual bridge.

The objective of the Winter School is to spread the latest knowledge and developments acquired by the action in the topic of performance-based assessment of existing road bridges, and has the aim to teach the most recent developments of COST Action TU1406 on performance indicators, performance goals and quality control plans, focusing on the findings of WG1, WG2 and WG3. In this winter school participants will be familiarized with the developed tools and database. The application of the tools to defined bridge structures will be worked out in form of an interactive workshop. Participants will be able to use the tools in their daily practice after attending this training school.

1.2. SCOPE

Austria.

The event is co-organised with the University of Natural Resources and Life Sciences in Vienna. It will cover WG1, WG2 and WG3 topics of COST Action TU1406, which are "the assessment of road bridges through Key Performance Indicators (KPIs)", "the establishment of Performance Thresholds/Goals" and "recommendations for the establishment of QC plans".

Venue: Hotel St. Hubertushof Zell am See, Zell am See, Salzburg. Room: to be assigned Time: 18 – 21 December 2017

Local Organizer	Co-Organizer
Prof. Alfred Strauss BOKU, Austria.	Prof. José C. Matos Minho University, School of Engineering, Civil Engineering Department, Guimarães, Portugal.
Dr. Helmut Wenzel VCE – Vienna Consultina Engineers ZT GmbH.	

4

Organisers: COST Action TU1406 "Quality specifications for roadway bridges, standardization at a European level (BridgeSpec)" (<u>http://www.cost.eu/COST_Actions/tud/TU1406</u>)

University of Natural Resources and Life Sciences Gregor Mendel Strasse 33 A-1180 Wien Austria

Trainers list of experts:

- Prof. José C. Matos, Civil Engineering Department, School of Engineering, University of Minho (UMinho), Portugal.
- Prof. Alfred Strauss, University of Natural Resources and Life Sciences (BOKU), Institute of Structural Engineering, Austria.
- Prof. Irina Stipanovic, University of Twente (UTwente), Faculty of Engineering Technology Construction Management and Engineering Department, The Netherlands.
- Prof. Rade Hajdin, Faculty of Civil Engineering, University of Belgrade, Serbia.
- Dr. Helmut Wenzel, VCE Vienna Consulting EngineersZT GmbH, Vienna, Austria.

1.3. PROGRAMME

Monday, 18 December 2017

When	What
09:00 - 10:00	Transfer from Vienna to Zell am See

Tuesday, 19 December 2017

When	What
09:00 - 10:00	Opening
10:00 - 10:15	Coffee-break
10:15 – 12:00	Lecture
12:00 - 13:00	Lunch
13:00 – 15:00	Interactive Workshops and World Cafe
15:00 – 15:15	Coffee-break
15:15 – 16:00	Example cases and reflection

Wednesday, 20 December 2017

When	What	
09:00 - 10:00	Lecture	
10:00 – 10:15		Coffee-break
10:15 – 12:00	Lecture	

12:00 - 13:00	Lunch	
13:00 – 15:00	Interactive Workshops and World Cafe	
15:00 – 15:15	Coffee-break	
15:15 – 16:00	Example cases and reflection	
Thursday, 21 Decen		
When	What	
When 09:00 - 10:00	What Lecture	
When	What	
When 09:00 - 10:00	What Lecture	
When 09:00 - 10:00 10:00 - 10:15	What Lecture Coffee-break	

15:00 – 15:15	Coffee-break
15:15 – 16:00	Example cases and reflection
18:30 –	Social event

Friday, 22 December 2017

When	What
10:00 - 11:00	Transfer from Zell am See to Vienna

1.4. LOCATION, DATES AND TRAVELLING

1.4.1.LOCATION AND DATE

The training school is hosted by Hotel St. Hubertushof Zell am See, Salzburg, Austria and it will be held between the 18th and 21st December 2017. The venue is located in a superb location by the edge of the woods, just a few minutes' walk away from Lake Zell.

Characterised by Lake Zell, the region is picturesquely nestled between the Grasberg Mountains in Kitzbühl in the west, the Central Alps in the south and the Limestone Alps in the north.

Zell am See is a region where are available three top ski resorts with a total of 138 kilometres of slopes: Kitzsteinhorn, Schmittenhöhe and Maiskogel. The region also offers a lot of fun, variety and a large number of alternative sports off-piste. Without a lift or a cable car you can also experience nature in all its variety while winter and snowshoe hiking, tobogganing, curling, cross-country skiing, ice skating and on skiing trips. In order to set out for the most beautiful places, walkers, Nordic walkers and sun worshippers meet on the many winter hiking trails which, amongst other places, pass by the lake promenade.

Hotel St. Hubertushof Zell am See Seeuferstrasse 7 A-5700 Zell am See Tel.: +43 (0)6542 767 Fax: +43 (0)6542 767-71 E-Mail: hubertushof@zellamsee.co

Zell am See has been in existence for centuries. Only a market in the 19th century, the town was originally called "Zelle im Pinzgau", probably because it spreads along the shores of Lake Zell and is the indisputable centre of the entire region; today, especially in terms of tourism. The triumph of tourism in Zell am See was marked by the building of the railway through Zell am See in 1875. This transport connection opened an important link between the town and the region, widely known as a gem of relaxation between mountain and lake. The town has been bearing the name "Zell am See" since 1810 and is home to approx. 9.900 habitants today. Many more "temporary" habitants are accommodated by the town during the touristic seasons in summer and in winter. For a long time, winter sport and especially ski holidays were the main reasons for travelling to Zell am See. The clear air and in particular the crystal-clear water of Lake Zell and the quality of the drinking water made the town at Lake Zell more and more popular with summer holiday makers.

More information: <u>https://www.zellamsee-kaprun.com/en</u>

1.4.2.HOW TO GET TO ZELL AM SEE

The venue of our Winter School is in the middle of the Alps. Major airports are only available at some distance. The closest airport is Salzburg, which has limited international connections.

There are the following options for travel:

1. By Plane

The closest airport is Salzburg (75 km), then Innsbruck (150 km) and Munich (250 km). All airports offer public transportation (rail and bus) as well as rent a car facility.

2. By Rail

Zell am See has a main railway station. It can be reached from Salzburg (1.5 hours), from Innsbruck (2.5 hours) and Munich (4 hours). Please have a look at the following web sites for your rail connection. http://fahrplan.oebb.at/bin/query.exe/en?

3. By Bus

There is a direct bus service from Salzburg Airport to Zell/See (travel time 2 hours). (Bus 260). <u>http://www.postbus.at/de/Flughafenbus/Flughafenbus_Salzburg/index.jsp</u> <u>http://www.postbus.at/en/index.jsp</u>

4. By Car

Zell/See is well connected and situated in an attractive area for excursions. To rent a car or to drive on your own might be interesting. The distance to Salzburg is 75 km (1 hour 15 minutes), to Innsbruck 150 km (2 hours) and to Munich 250 km (3 hours).

5. By Taxi

The taxi charge from the Salzburg airport to Zell/See is approximately $130 \in$ per car. In case of several persons travelling in 1 taxi this might be an option. We are also able to send a taxi or a minibus to the airport where the price reduces with the number of travellers. Driving time is 1 hour 15 minutes.

6. Local Travel

The venue is situated on the other side of the lake. To reach it from the town of Zell/See there is a bus shuttle (6 - 19 h) around the lake. Please exit at Thumersbach Centre where the venue is placed.

1.5. ACCOMMODATION

Local organizers suggest using the hotel where the training school will be lectured.

Hotel St. Hubertushof Zell am See Seeuferstrasse 7 A-5700 Zell am See Tel.:+43 (0)6542 767 Fax: +43 (0)6542 767-71 E-Mail: <u>hubertushof@zellamsee.co</u> <u>https://www.hotel-zellamsee.info/en/</u>

In case that you have a plan and would like to get the best options please let us know. I am sure we will be able to help.

1.6. COMMITTEES

An executive scientific committee as well an organizing committee were defined.

1.6.1. SCIENTIFIC COMMITTEE

Name	TU1406 Position	E-mail
José C. Matos	Chair	chair@tu1406.eu
Alfred Strauss	WG1 Leader	wg1@tu1406.eu
Irina Stipanovic	WG2 Leader	wg2@tu1406.eu
Rade Hajdin	WG3 Leader	wg3@tu1406.eu
Helmut Wenzel	MC member	wenzel@vce.at

1.6.2. ORGANIZING COMMITTEE

Name	TU1406 Position	E-mail
José C. Matos	Chair	chair@tu1406.eu
Alfred Strauss	WG1 Leader	<u>wg1@tu1406.eu</u>
Irina Stipanovic	WG2 Leader	wg2@tu1406.eu
Helmut Wenzel	MC member	wenzel@vce.at

1.6.3. SECRETARIAT

Name	TU1406 Position	E-mail
Eleni Chatzi	Technical Secretariat	tecsec@tu1406.eu
Lara Leite	Administrative Secretariat	adminsec@tu1406.eu

1.6.4. LOCAL ORGANIZERS

Name	TU1406 Position	E-mail
Alfred Strauss	WG1 Leader	wg1@tu1406.eu
Helmut Wenzel	MC member	wenzel@vce.at

2. HOW TO APPLY

2.1. APPLICATION

Interested applicants should submit their personal information and a short Curriculum Vitae through the form available for this purpose and available at https://goo.gl/aq7cjj.

Registrations should be submitted until the 15th October 2017.

Communication of Acceptance will be sent by the 22nd October 2017.

2.2. FUNDING AND REIMBURSEMENT

COST supports the participation of Trainees for their attendance at approved Training Schools. 15 Trainees approved by Organization/Management Committee, based on technical curriculum and on the COST policies on ESR (early stage researcher), gender and inclusiveness country, are entitled to receive a fixed Grant of 650,00 € and free registration.

Trainee grants do not necessarily cover all expenses related to attending the Training School. The Trainee Grant is a contribution to the overall travel, accommodation and meal expenses of the Grantee. Different grants amount can be attributed to each trainee.

The grant will be paid up to one month after the training school and no proof of expenses will be required to make the payment. The only requirement is to sign the attendance list.

WWW.TU1406.EU

COST ACTION TU1406 QUALITY SPECIFICATIONS FOR ROADWAY BRIDGES, STANDARDIZATION AT A EUROPEAN LEVEL

Training School on Bridge Quality Control 19th December, 2017 Zel Am See, Austria

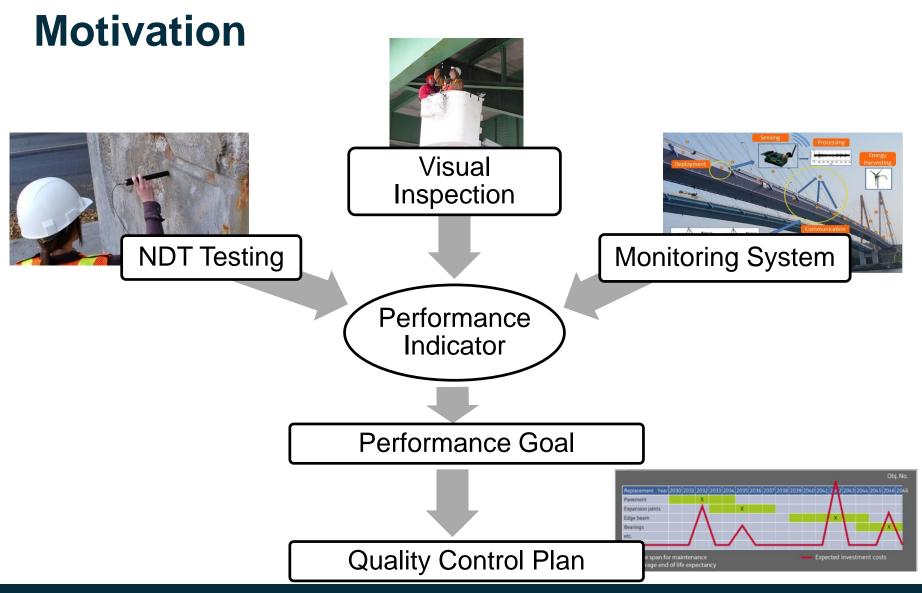
Overview on COST Action TU 1406 Performance-based Assessment of Existing Road Bridges

Jose C. Matos - Chair Minho University (Uminho) - Portugal

ESF provides the COST Office through a European Commission contract

COST is supported by the EU Framework Programme

OUTLINES


- Motivation
- COST Action TU1406
 - Objectives
 - Organization
 - Scientific Program
 - Members
 - Dissemination
- WG1
 - Performance Indicators
 - From PI to KPI
 - Milestone

- WG2
 - Interaction of PI with PG
 - Performance Goals
 - Milestone
- WG3
 - Quality Control for Bridges
- WG4
 - Preliminary Work
 - On-Site Inspection
 - Maintenance Scenarios
 - Comparing Scenarios
- Closing

Motivation Decay Process Efficient Limited Public Management Demands Resources Expectations Service Public Government Service **Expectations** Public Timeline

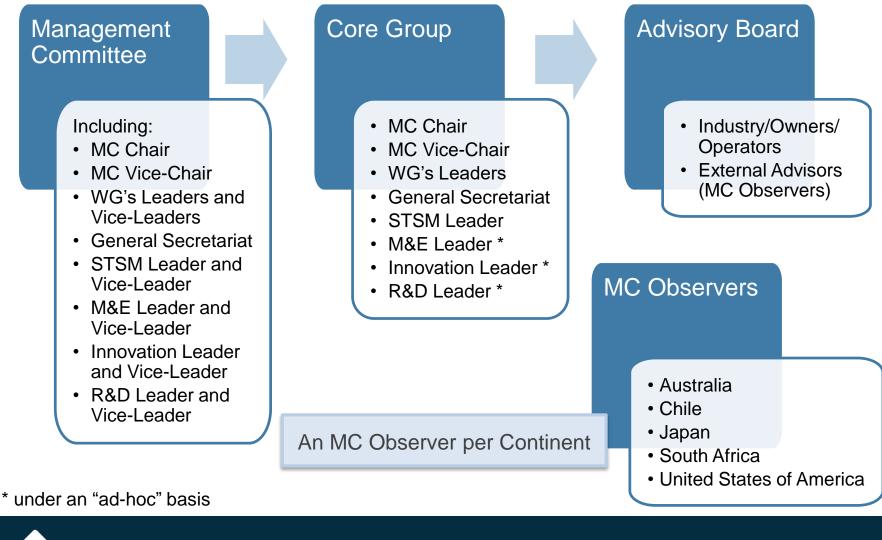
Motivation

There is a **REAL NEED** to standardize the quality assessment of roadway bridges at an European Level

COST ACTION TU1406

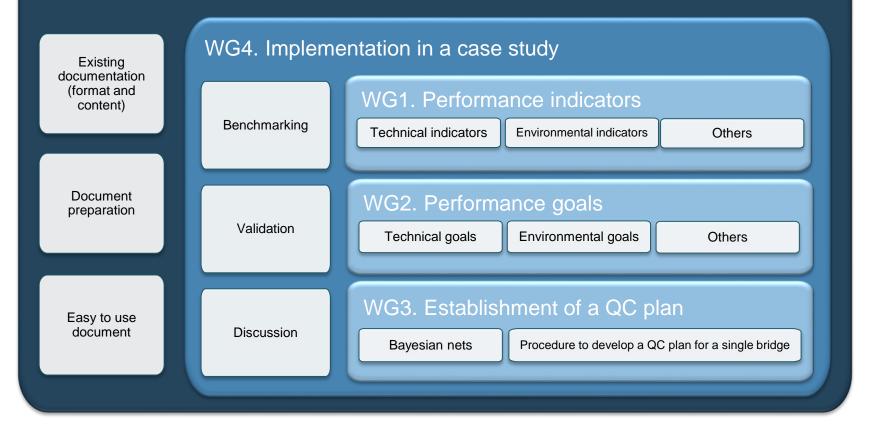
COST Action TU1406. Objectives

The overall intention of the Action is to


develop a guideline for the establishment of Quality Control (QC) plans in roadway bridges

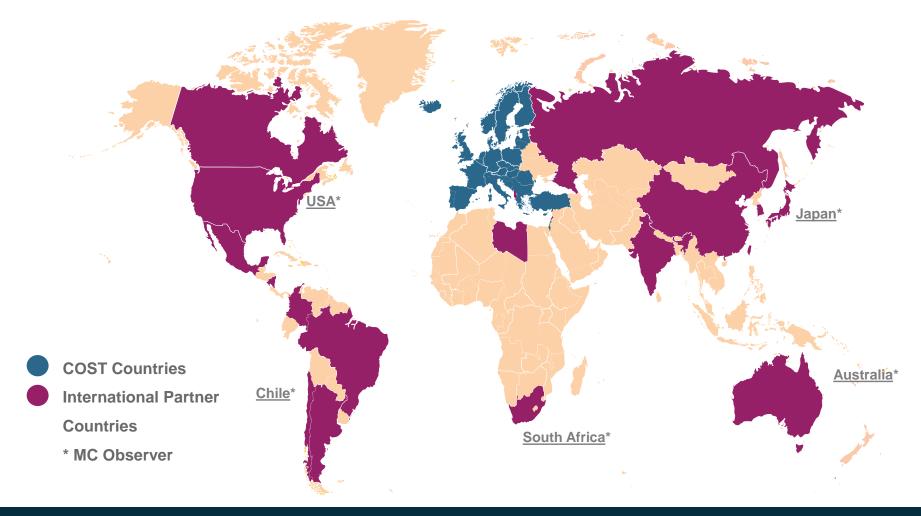
reachable by pursuing the following 5 objectives:

- (i) Systematize knowledge on QC plans for bridges, which will help to achieve a state-of-art report that includes performance indicators and respective goals;
- (ii) Collect and contribute to up-to-date knowledge on performance indicators, including technical, environmental, economic and social indicators;
- (iii) Establish a wide set of quality specifications through the definition of performance goals, aiming to assure an expected performance level;
- (iv) Develop detailed examples for practicing engineers on the assessment of performance indicators as well as in the establishment of performance goals, to be integrated in the developed guideline;
- (v) Create a database from COST countries with performance indicator values and respective goals, that can be useful for future purposes.


COST Action TU1406. Organization

COST Action TU1406. Scientific Program

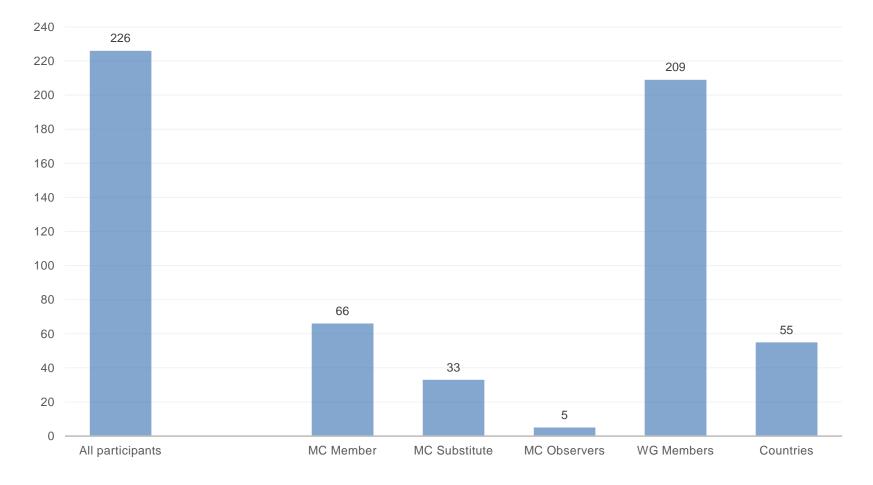
WG5. Drafting of guidelines/recommendations


COST Action TU1406. Scientific Program

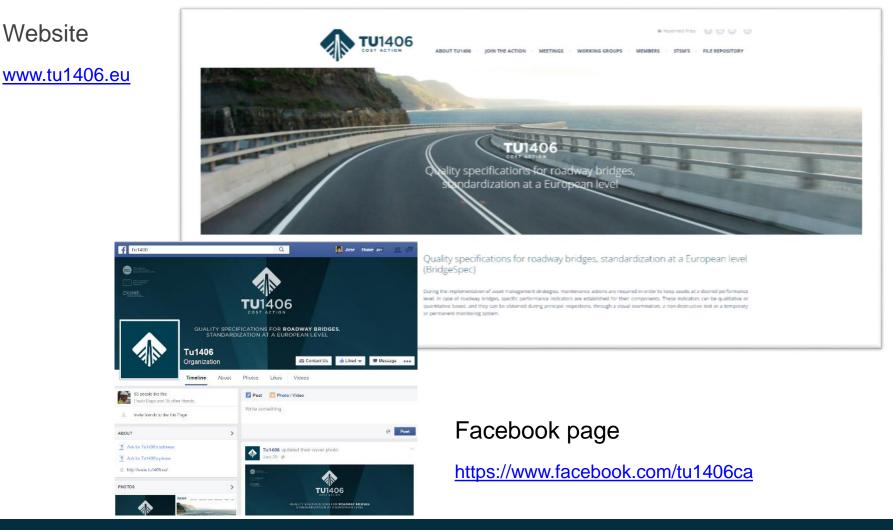
Activity/Months	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48
Milestone				M1				M2		M3				M4		M5

- M1: WG1 Performance indicators Elaborate a report of performance indicators
- M2: WG2 Performance goals Elaborate a report of performance goals
- M3: WG3 Establishment of a QC plan Prepare recommendations for the establishment of Quality Control plan
- M4: WG4 Implementation in a Case Study Prepare database from benchmarking
- M5: WG5 Drafting of guideline/recommendations Prepare guideline/recommendations for the establishment of QC plan

COST Action TU1406. Members



COST ACTION TU1406


SLIDE 10

COST Action TU1406. Members

COST Action TU1406. Dissemination

GUIMARÃES

COST Action TU1406. Dissemination

SAVE THE DATE 27-29 MARCH 2019

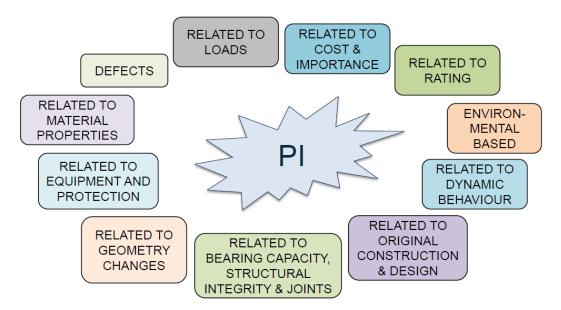
TOWARDS A RESILIENT BUILT ENVIRONMENT RISK AND ASSET MANAGEMENT

27 to 29 March 2019 Vila Flor Cultural Centre, Guimarães, Portugal

Innovative Themes

- 1. Novel Management Tools for the Built Environment
- 2. Lifecycle Quality Control of new and existing Infrastructures
- 3. Advanced Frameworks for a Sustainable Built Environment
- 4. Risk Analysis Procedures, from Theory to Practice
- 5. Future trends in Structural Engineering

www.iabse.org/guimaraes2019 | secretariat@iabse2019.org


COST ACTION TU1406

WG1. Performance Indicators

What is an "Indicator"?

- Something measurable, quantifiable?
- For which there is a target value / goal, available?
- Which is valid for ranking / decision purposes?

And what is a "Performance Indicator"?

WG1. Performance Indicators

Performance Indicator is a ...

Measurable and quantifiable parameter, related to the bridge performance, that can be directly compared with a target measure of a performance goal (absolute measure of performance) or can be used for ranking purposes, among a bridge population (relative measure of performance), in the framework of a Quality Control Plan or life-cycle management (decisions, actions involving economic resources)

WG1. From PI to KPI

1. Survey phase

Screening of national documents

2. Clustering and homogenization of PI (from more than 700 to 385 PI)

WG 1 – Categorization of the PI in clusters

NR – Verifying the PI inputs by comparing it with the homogenized and categorized terms

3. From PI to KPI (from 385 to 108 PI)

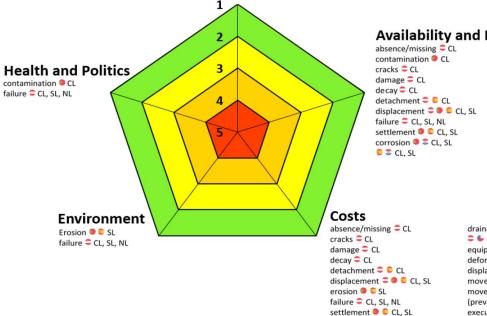
In order to move on with the reduction of the list of Performance Indicators, an Expert Group was asked to specify a reduced list of 108 PIs according to the following points:

- Level (Component Level, System Level or Network Level)
- Is the PI measureable? (Technical, Socio Economical or Sustainable)
- PI belongs to the Key Performance Indicator(s)? (Reliability, Availability, Maintainability, Safety, Security, Environment, Costs, Health, Politics, Rating/Inspection)
- Assessment (Threshold, Goal, Rating)

WG1. From PI to KPI

abrasion ^{DP}, absence/missing ^{PI} 🗢, aggradation (alluviation) ^{DP}, blistering ^{OBS} 🗢 🧶 blocking ^{DP} 🗢, bulging ^{OBS} 🗢, cavitation ^{OBS}, clogged ^{OBS} 🗢, coating loss ^{OBS} 🗢, contamination ^{PI} 🗢, corrosion (state) OBS, crack length OBS S, crack orientation OBS S, crack width OBS S, cracks orientation OBS S, crack width OBS S, cracking P S, cracks - Alligator cracks OBS C, cracks - drying cracks DP C, cracks temperature cracks DP 🗢, cracks distance OBS 🗢 🤹, cracks related to material OBS 🗢, cracks related to origin (e.g. due to loading, due to settlement, due to crumbling of concrete,... DP 🗢 🗢 🕏 ਝ, cracks related to position in a component ^{OBS} 🗢, cracks related to sintering 🕫 🗢, cracks -structural cracks 🕫 🗢, crumbling OBS 🗢, crumbling of concrete cover OBS 🗢 ©, crushing ^{DP} •, damage ^{PI} •, debonding ^{DP} •, debris ^{OBS}, decay ^{PI} •, decomposition/disintegration ^{OBS} •, deepening ^{OBS}, deficiency ^{OBS} •, degradation ^{PI}, delamination ^{OBS} •, destroyed ^{OBS} •, detachment P = S, deterioration P, differential settlement OBS, displacement P = O S, distance between cracks OBS, efflorescence/crypto-florescence OBS + S, erosion P = S, erosion magnitude ^{OBS}, exposure of element ^{OBS}, failure ^{PI} =, falling out of units ^{OBS}, fatigue cracking ^{DP} • • , fire damage ^{OBS} =, foundation deficiency ^{OBS} =, gap ^{OBS}, holes ^{OBS}, humidification ^{OBS}, wholes ^{OBS}, patching ^{OBS} ©, peeling of ^{OBS} ©, pitting ^{DP}, potholes ^{OBS} © (ravelling ^{OBS} ©), rupture ^{OBS} ©, scaling ^{OBS} ©, scaling of cement crust ^{OBS} ©, scaling of treated layer ^{OBS} ©, scour DP \bigcirc \bigcirc \bigcirc scour criticality OBS , scour depth OBS , secretion OBS , segregation OBS , separation OBS , settlement PI \bigcirc \bigcirc , shear OBS , solving ? OBS , silting and vegetation OBS , sliding OBS , soil Failure DP =, spalling OBS = , splitting OBS =, staining OBS, stratification OBS, structural damage PI, surface corrosion OBS, surface damage/deficiency OBS =, surface discoloration OBS =, surface flaking due salting DP =, swelling of structural steel surface OBS, tearing OBS, timber splitting OBS, transverse compression cracks (crushing) OBS =, undermined stability (e.g. of river bank) ^{OBS}, undermining ^{OBS} =, undesirable paintings, graffiti ^{OBS} =, uneven ^{OBS}, unlevelled components ^{OBS}, water leakage ^{OBS} =, water penetrability ^{PI} • • •, wearing and tearing ^{OBS}, weathering ^{DP}, wet spots ^{OBS} $\stackrel{\circ}{=}$, wet spots with corrosive edges ^{OBS}, worn out ^{OBS} $\stackrel{\circ}{=}$, yield ^{OBS}, acids attacks ^{DP}, aggregate segregation ^{OBS}, aging of material ^{DP}, alkali aggregate reaction (alkali-silica reaction) ^{DP}, alkali aluminium reaction ^{DP}, bad concrete compaction ^{OBS} = \$, bedding mortar failure ^{OBS} =, bituminous binder emersion ^{OBS} =, calcification ^{DP}, carbonation ^{DP} 🗢 🔍, chemical attack DP, chemical parameter OBS, chloride action DP, chloride content OBS 🧶 🧟, chloride ions penetration OBS, concrete quality insufficient OBS 🗢 S, corrosion PI 🗢 🤹, corrosion fatigue ^{DP}, corrosion related to prestressing steel ^{OBS}, corrosion related to protective coating ^{OBS}, corrosion related to reinforcement steel ^{OBS}, corrosion related to structural steel ^{OBS}, corrosion related to structural ^{OBS}, corrosion related to structural steel ^{OBS}, corrosion related to structural ^{OBS}, corrosion related to structural steel ^{OBS}, corrosion related to structural ^{OBS}, corrosion related to structural steel ^{OBS}, corrosion related to structural ^{OBS}, corrosion related to structural steel ^{OBS}, corrosion steel steel ^{OBS}, corrosion steel steel ^{OBS}, corrosion steel quality insufficient ^{OBS} =, oxidation ^{DP}, pitted corrosion ^{DP} , porous concrete ^{OBS}, red colour areas ^{OBS}, reinforcement bar yielding ^{OBS} =, reinforcement corrosion ^{DP}, rot fungi attack ^{OBS} + , shrinkage/creep DP , sintering DP , sulphate action DP , termite infestation OBS , wear out DP , white colour areas OBS , woodworm infestation OBS , xylophagous attack OBS , absence (missing) of equipment component ^{OBS} 🗢 🗣 🕏 🏶, approach slab settlement ^{OBS} 🗢 🎈 📚, asphalt pavement cracking ^{OBS} 🗣 🍫, asphalt pavement wearing and tearing (rutting, ravelling) ^{OBS} 🗬 🗣, asphalt pavement wheel tracking and wrinkling and undulation OBS 🗢 🗢 📀, blistering paint OBS 🗢, cladding damages OBS 🗢 🕏, cladding deformations OBS 🗢 🕏, clogged collector OBS 🗢, clogged drain OBS 🗢 🔍, clogged manhole OBS 🗢, clogged pipe OBS 🗢, cornicles and curbs defects OBS 🤤, corrosion related to equipment made of steel OBS 😜, crack over the buried expansion joint OBS 🗢, cracks in covering OBS 🗢, damage of protective coating OBS 🗢, debonding of elastomeric surface OBS 🗢, deterioration of protective coatings (e.g. corrosion protection, impregnate...) OBS 🧶 🔍, deviator deficiency OBS 🗢, drainage/dewatering deficiency PI 🗢 🗣, elastomeric leakage OBS 🗢, equipment fixings deficiency PI 🗢, expansion joint pavement crack ^{OBS} =, functionality of device ^{PI}, hydro-insulation defects ^{OBS} =, incorrect position ^{OBS}, leaking at seepage water tube ^{OBS} =, maintenance equipment defects ^{OBS}, oiling system deficiency ^{OBS} 🗢, pavement lateral displacement ^{OBS} 🗢, protection (cover) deficiency ^{OBS} 🗢, protection duct damage (of prestreesed cable) ^{OBS} 🗢, reduction of embankment cone ^{OBS} , rollers condition (e.g. sliding, fixed, broken,...)^{2°PI}, sliding interface insufficient ^{OBS} , sliding path failure/blocking ^{OBS} , slip of bearing ^{OBS} , special inspection requisite ^{2°PI}, step in transition slab ^{OBS}, waterproofing deterioration ^{OBS} (a) buckling ^{OBS} (cross incline of road ^{OBS}, deformation ^{PI} (cross), deformation ^{OBS} (cross), deformation (cross), displacement ^{PI} \Rightarrow \otimes \otimes , distortion ^{OBS} \Rightarrow , flattening ^{OBS} \Rightarrow , height difference ^{OBS}, inclinations ^{OBS} \Rightarrow \otimes , misalignment ^{OBS} \Rightarrow \otimes , movements ^{PI} \Rightarrow , rotations ^{OBS} \Rightarrow , sag ^{OBS} \Rightarrow \otimes \otimes , torsion

2º Level PIs, 2ºPI; Damage Process, DP_; Non-interceptable processes, NIP; Observation, OBS; Other data, OD; Performance Indicator, PI defects; related to material properties; related to equipment & protection; geometry changes


🗢 🗲 🍮 🍮 ; Austria; Chile; Croatia; Portugal; Spain

WG1. From PI to KPI

Reliability and Safety

absence/missing 🗧 CL	corrosion 🧶 🍣 CL, SL
contamination <a>CL	drainage/dewatering deficiency
cracking 💴 CL	🗢 😉 CL, SL
cracks 🗢 CL	equipment fixings deficiency 🛢 CL
damage 🗢 CL	deformation 🗢 🔍 😉 CL, SL
decay 🗢 CL	displacement 🗢 🔍 🖻 CL, SL
detachment 🗢 💴 CL	movements 🗢
displacement 🗢 🔍 😂 CL, SL	movement ability deficiency
erosion 🧶 😂 SL	(prevented movements) 🗢 CL
failure 🗢 CL, SL, NL	execution defects 🗢 CL
settlement 🧶 😉 CL, SL	vibrations/oscillations 😄 🔍 😂
water penetrability 🧶 🛢 CL, SL	CL, SL

Availability and Maintainabiloity

drainage/dewatering deficiency CL, SL equipment fixings deficiency = CL deformation 🗢 🔍 🔍 CL, SL displacement 🗢 🖲 🗧 CL, SL movements 🛢 movement ability deficiency (prevented movements) = CL execution defects 🗢 CL vibrations/oscillations = 9

water penetrability <a>

 CL, SL corrosion 🧶 🍮 CL. SL

drainage/dewatering deficiency 🛢 🗳 CL, SL equipment fixings deficiency 🗘 CL deformation = 9 CL, SL displacement 🗢 🔍 🔍 CL, SL movements 🛢 movement ability deficiency (prevented movements) = CL execution defects = CL vibrations/oscillations = 9 5 3 CL, SL

COST ACTION TU1406

WG1. Milestone

WG1

Technical Report

Performance Indicators for Roadway Bridges of Cost Action TU 1406

General

Performance Indicators terms after surveying

Operators

Operators list of documents and database per country

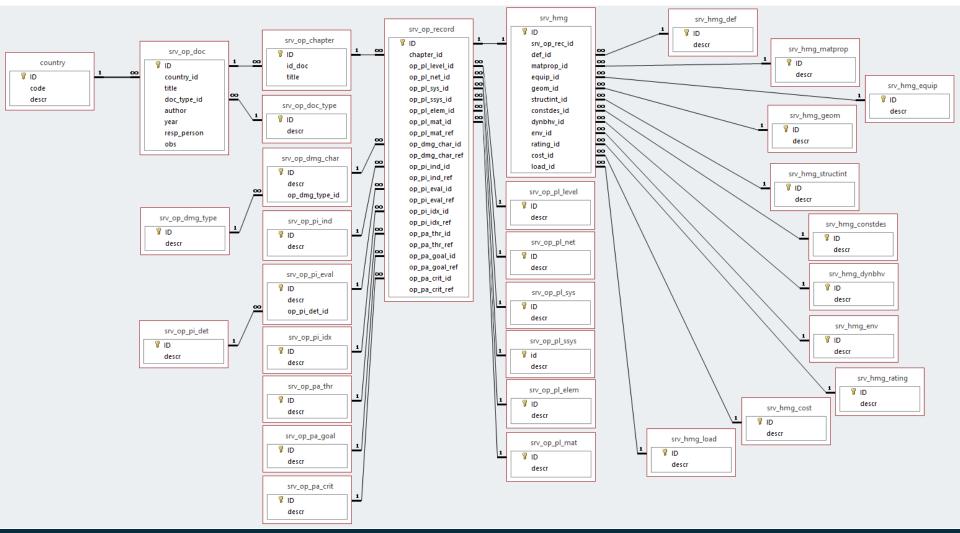
Research

Research list of documents and database per country

Glossary

Glossary and specific term sheet per country

available on website: <u>www.tu1406.eu</u>



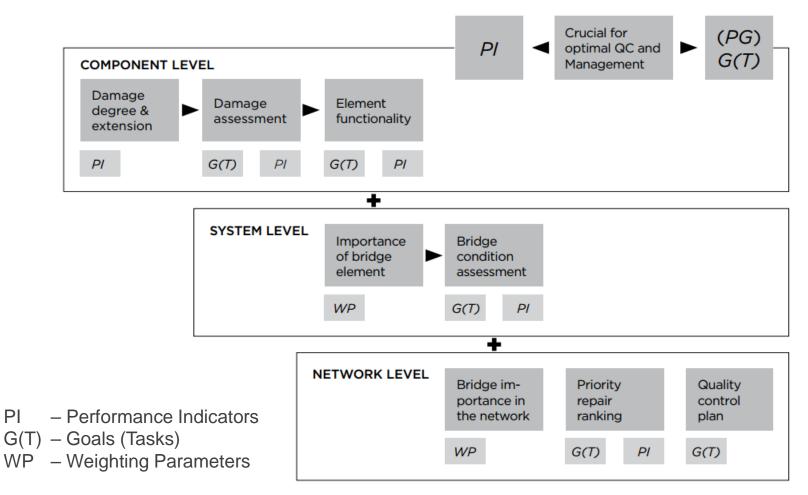
Quality specifications for roadway bridges, standardization at a European level

COST ACTION TU1406

WG1. Milestone

WG1. Milestone

Operators Survey


Research Survey Spider Survey

Documents

Show 10 - entries						Search:					
Country 🍦	Title	÷	Туре	¢	Author \diamondsuit	Year	÷	RespPerson	÷	Obs	÷
AT	Repair of concrete structures - National specifica		Inspection		Austrian Standards Instit	2015					
AT	Repair of concrete structures - National specifica		Inspection		Austrian Standards Instit	2015					
AT	Quality Assurance for Structural Maintenance, Stru		Evaluation		FSV	2009					
AT	Evaluation of load capacity of existing railway an		Evaluation		Austrian Standards Instit	2014					
AT	Quality Assurance for Structural Maintenance - Suv		Inspection		BMVIT	2011					
ВА	UPUTSTVO ZA INSPEKTORE MOSTOVA / INSTRUCTIONS FOR		Evaluation		BCEOM Societe Francaise D	2004		Neven Pavlinovic			
ВА	UPUTSTVO ZA INSPEKTORE MOSTOVA / INSTRUCTIONS FOR		Evaluation		BCEOM Societe Francaise D	2004		Neven Pavlinovic			
CZ	TP72 Diagnostics of road bridges		Inspection		Pontex spol. s r.o.	2008		Pavel Ryjácek			
CZ	TP120 Maintenance, repairs and refurbishment of co		Inspection		Pontex spol. s r.o.	2010		Pavel Ryjácek			
CZ	SŽDC S5 management of bridges(railway)		Inspection		SŽDC TÚDC	2012		Pavel Ryjácek			
All	All		All		All	,		All		All	
Showing 1 to 10 of 74 entries						Previous	1	2 3 4	5	8	Next

WG2. Interaction of PI with PG

PI

WG2. Performance Goals

- The goal of road users is simple: to get from A to B safely in expected time.
- The road connection has to be reliable.
- Operational reliability -> not directly considered
- Structural reliability!
 - EN 1990:

"Ability of a structure or a structural member to fulfil the specified requirements, including the design working life, for which it has been designed. Reliability is usually expressed in probabilistic terms

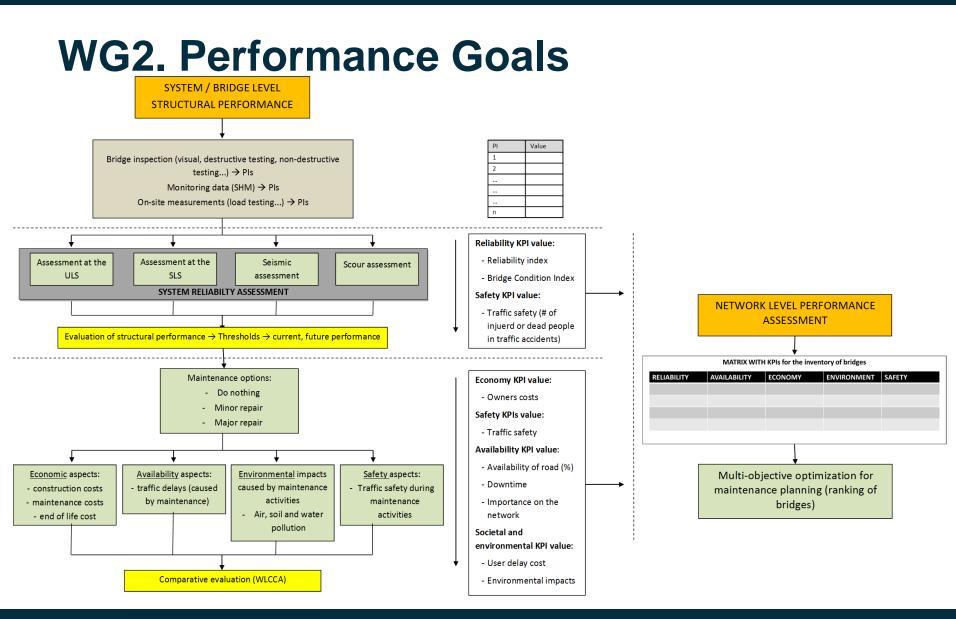
NOTE: Reliability covers safety, serviceability and durability of a structure."

Durability: The structure shall be **designed** such that deterioration over its design working life does not impair the **performance** of the structure below that intended, having due regard to its environment and the anticipated level of maintenance.

– EN 1992:

A design using the partial factors given in this Eurocode (see 2.4) and the partial factors given in the EN 1990 annexes is considered to lead to a structure associated with reliability Class RC2 -> β_{safety} = 3.8, $\beta_{serviceability}$ =1.5 for 50years

WG2. Performance Goals


- **Reliability** include the probability of structural failure (safety) or operational failure (serviceability).
- Availability is the proportion of time a system is in a functioning condition.
 - Somewhat critical: Meet object specific requirements with regard to the fulfilment of object function.
 - For our purposes: Additional travel time due to imposed traffic regime on bridge.
 - Not reliability-related disruption of bridge users
- **Economic efficiency** -> minimizing long term cost
- **Safety** (not structural safety) minimize (eliminate) the **harm people** during the service life of a bridge. Loss of life and limb due to structural failure is normally not included!
- Environmental friendliness -> minimize the harm to environment during the service life of a bridge.

WG2. Performance Goals

- **Maintainability** is the ease with which a product can be maintained in order to correct defects or their cause, repair or replace faulty components without having to replace still working parts and prevent unexpected working condition -> design aspect and is covered with economic efficiency.
- **Security** is degree of protection against vandalism -> *similar to maintainability is design aspect included in economic efficiency*
- Health is absence of non-failure causes of illnesses (e.g. asbestos) ->
 regulated
- Environment -> regulated
- Politics include elimination of causes for public outcry, image protection etc. -> downstream performance goal, i.e., fulfilled if RAS€E (Reliability; Availability; Safety; Economic Efficiency; Environmental Friendliness) goals are met.

WG2. Milestone

WG2 Technical Report

Performance Goals for Roadway Bridges OF COST ACTION TU 1406

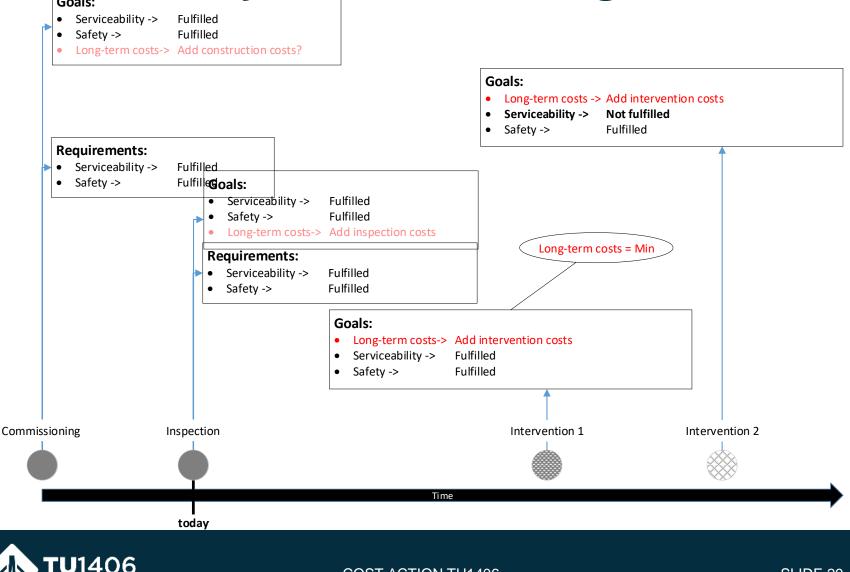
Performance Goals

Reliability Economy, Societal **Performance** and Environmental Assessment Assessment

> Glossary **Multi-Objective Optimization Models**

available soon on website: www.tu1406.eu

Quality specifications for roadway bridges, ardization at a Europear

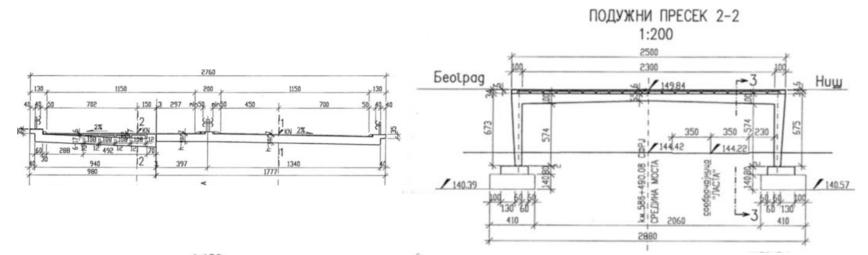


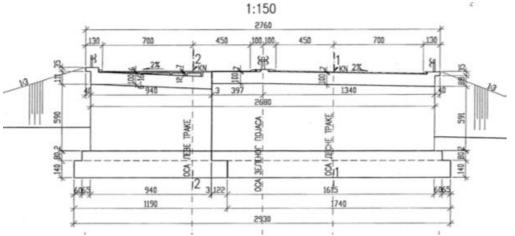
WG3. Quality Control for Bridges

- Static (snap shot) quality control: Inspect and investigate a bridge and determine whether the reliability and safety goals are met.
 - Basis for the decision making on actions
- Dynamic quality control: Static + Plan and execute actions to ensure long term fulfillment of safety and serviceability goals. -> Bridge Management
- There are different ways to ensure that goals are met on the long-term:
 - Preventive action
 - Corrective actions
 - Operational actions
- Maintenance scenarios, which define **costs (economics)** and **availability**
- Assess economics and availability at the time of inspection is not meaningful!

WG3. Quality Control for Bridges

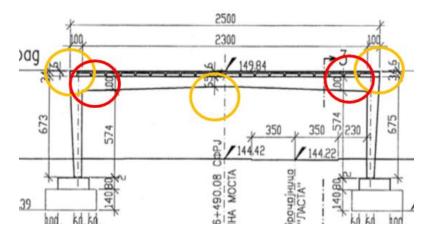
WG3. Quality Control for Bridges


- Within the QC Framework
 - Reliability
 - Availability
 - Safety
 - €conomics


will be assessed for different maintenance scenarios

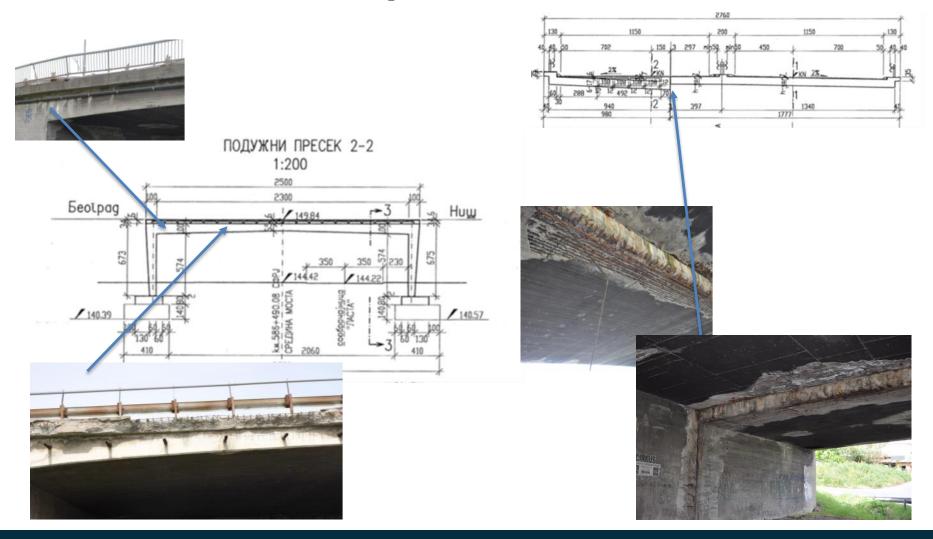
- Environment is mostly regulated, but in some cases can be also included.
- Snapshot or static quality control includes
 - Reliability (structural safety and serviceability) and Safety (not structural safety) regarding loss of life and limb
- Dynamic quality control (bridge management) include feasible maintenance scenarios that define Costs and Availability over certain time frame Reliability and Safety forecasts

WG4. Preliminary Work


RC Frame ADT 10'000 Construction year 1963 Widened in 1977 No natural hazards

COST ACTION TU1406

WG4. Preliminary Work


- No particular weaknesses of original design
- The obvious weakness is longitudinal joint connecting the old and the new parts of bridge
- No particular material weaknesses are known steel bars didn't have any ductility problems
- The traffic load in code of practice did increase since 1963, but the bridge was recalculated in 1977.
- Prior reliability index (safety) is 3.8

HMS-high suging moment zone	orange	ductile
HMH - high hoging moment zone	circle	uucine
HSS - high shear zone	red circle	britle

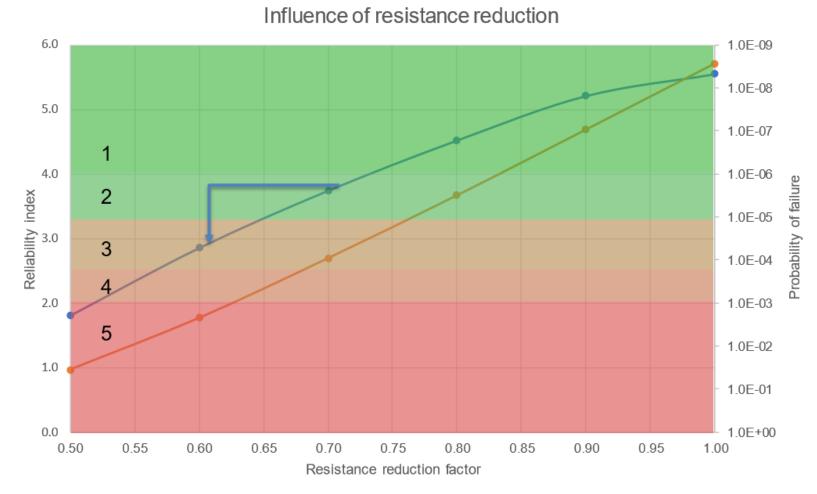
WG4. On-Site Inspection

COST ACTION TU1406

SLIDE 33

WG4. On-Site Inspection

- There is a road beneath the bridge
- It is rural road with low traffic volume
- There is however a danger of falling concrete on vehicles or persons
- Railings can't performed as designed



WG4. Maintenance Scenarios - Reliability

- There are some indication of diminished resistance:
 - Spalling at the width of (in average) 1.5 meters over the whole span.
 - Uncertain bonding
 - Significant corrosion ~10% section loss (old structure)
 - Corrosion to ~5% section loss in vulnerable zone (new structure)
 - Based on the symptoms there is probably corrosion over the piers, which is a vulnerable zone belonging to same failure mechanism
 - Redistribution in perpendicular sense has positive effects.
 - Uncertain cause and development of the diagonal crack.
- Based on experience and elementary statics the resistance reduction has been assessed to 10% (probably conservative)
- There is no urgent necessity to perform in depth investigation.
- Clearly, the assessment is rather rough and based on inspector's experience but so is condition rating.

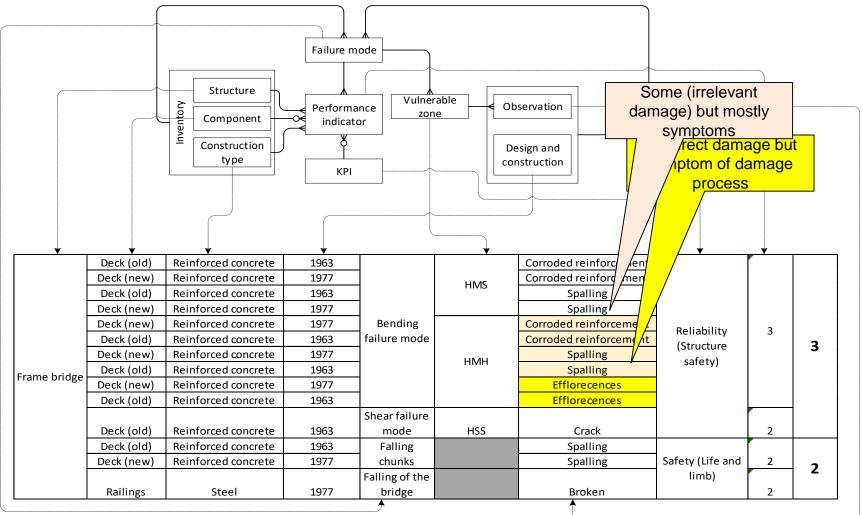
WG4. Maintenance Scenarios - Reliability

--β -- Pf

COST ACTION TU1406

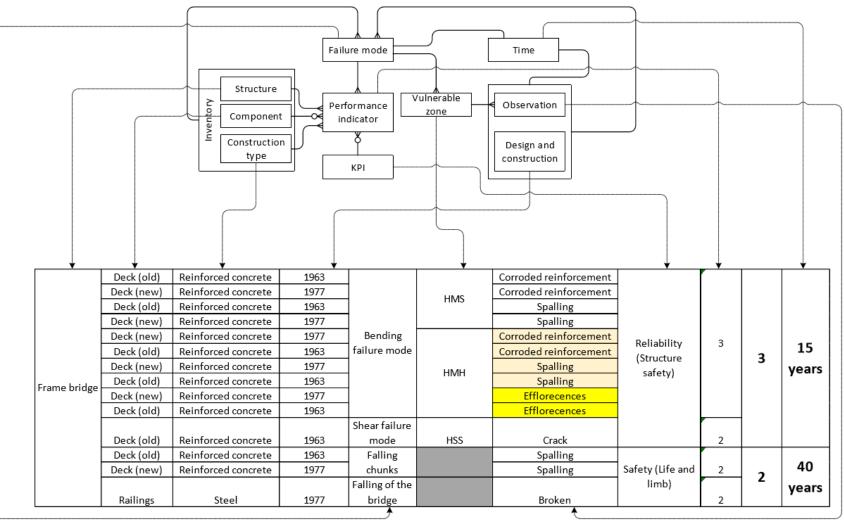
WG4. Maintenance Scenarios - Reliability

- The value of virgin reliability due to current loading is critical!
- It is advisable for old bridges to estimate the real loading by means of axle load measurements. The real traffic loading can be sometimes higher but sometimes significantly lower (less aggressive).
- In this particular case the traffic loading increased from 1977.
- The assessment od reliability is similar to the condition assessment with two crucial differences:
 - It takes into account virgin reliability,
 - focuses on failure modes and
 - related vulnerable zones.
- Most inspection practices focus implicitly on the latter two, but not explicitly.
- Hint: Thinking in failure mechanisms helps since it allows one to estimate the reduction of dissipation work due to damages.
- The example bridge will probably not fail catastrophically but rather experience a warping deformation.

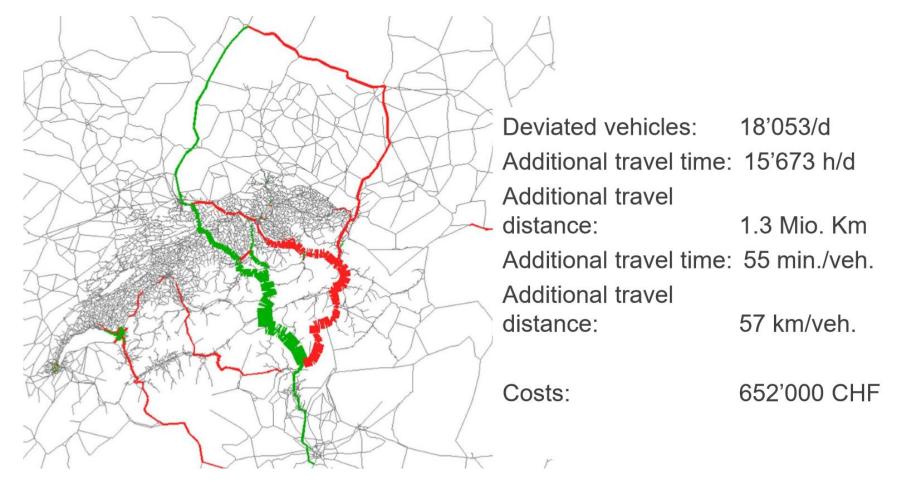


WG4. Maintenance Scenarios - Safety

- The loss and life and limb due to structural failure is **not included**.
- Falling concrete cover can endanger persons in and outside the vehicles.
- It is very unlikely that large chunks are going to fall down.
- The chunks that are found on the street were maximum 10x10x2 cm.
- The traffic volume is very low both pedestrian and vehicles.
- The capacity for spalling has also diminishes as water cannot reach reinforced bars that are still covered with concrete.
- The falling height is relatively small.
- The damaged railings jeopardize traffic safety
- Taking the observations into account and the above reasoning the danger for life and limb is relatively small i.e. 2.
- The performance indicator of 1 is no danger (injury return period > 100 years) and performance indicator of 5 characterizes immediate danger (injury return period < 10 years)

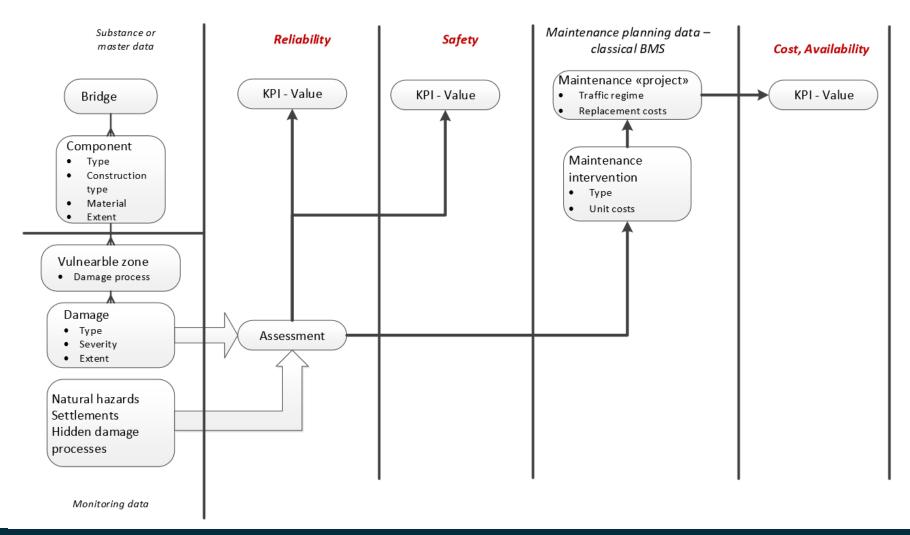


WG4. Maintenance Scenarios

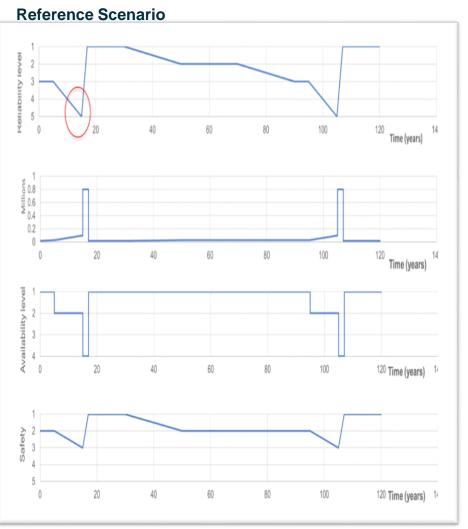


WG4. Maintenance Scenarios – Forecasts

WG4. Maintenance Scenarios -Availability

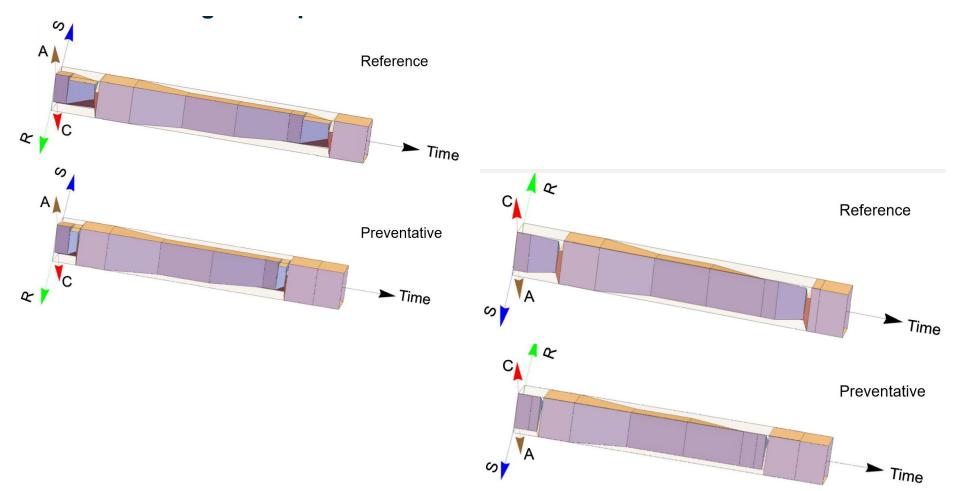


WG4. Maintenance Scenarios - Costs


- "Classical" BMS
- Inspection results:
 - Severity of damage
 - Extent of damage
 - Location (Component)
- Unit costs
- Mobilization costs
- Damage forecast
- Generation of "Maintenance Intevention"
 - Type (Repair, Rehabilitation, Replacement)
 - Estimated costs

WG4. Maintenance Scenarios - Resume

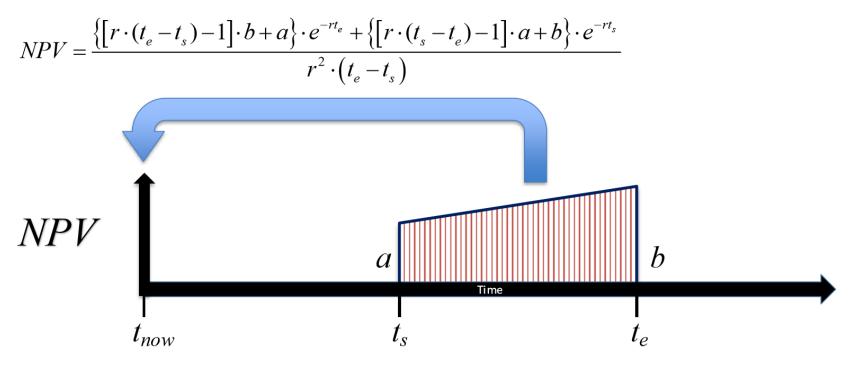
Preventative Scenario 2 Ó Reliability 5 20 40 60 80 100 0 Time (years) 5 0.8 ≣ 0.6 ∑ 0.4 0.2 20 40 60 80 0 100 Time (years) ailability le Ş 40 60 20 80 100 0 Time (years) 1 Safety 20 40 60 80 100



COST ACTION TU1406

Time (years) 1

- All relevant KPI are to be expressed on the scale from 1 to 5.
- Rating 1 is the best and 5 is the worst.
- Reliability and Safety is already expressed in this manner.
- Availability will be transformed from the 1 to 4 scale into 1 to 5 scale.
- Zero costs are expressed with 0 and the highest costs/year are expressed as 5
- The highest costs/year in both scenarios are 1Mio/year -> rating 5
- In this manner a 3D spider diagram for both scenarios can be generated.

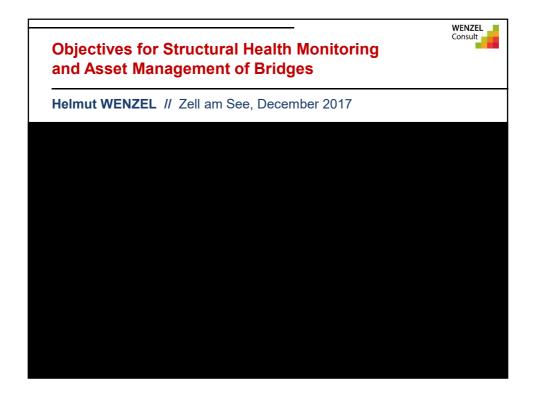


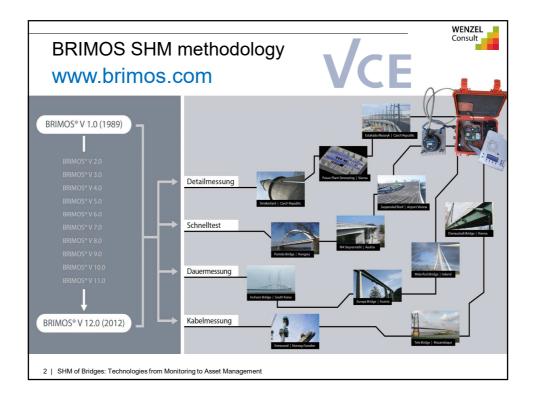
COST ACTION TU1406

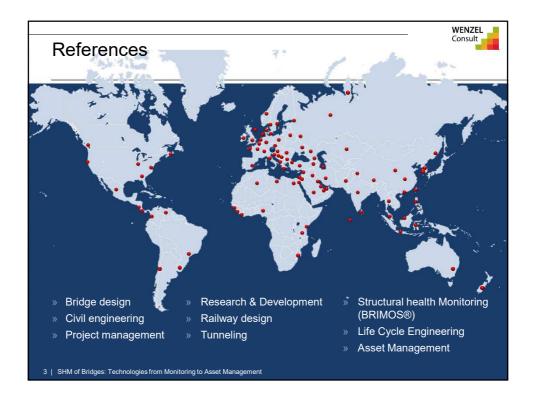
SLIDE 46

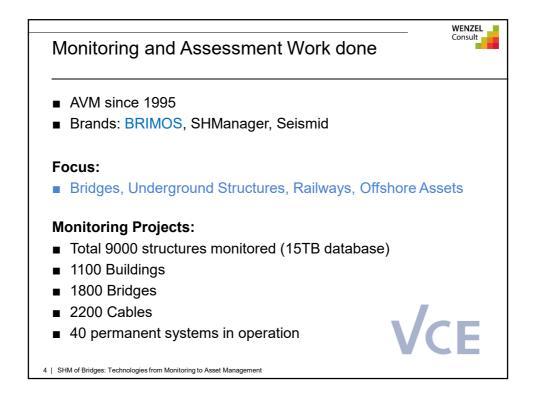
r = continuous discount rate

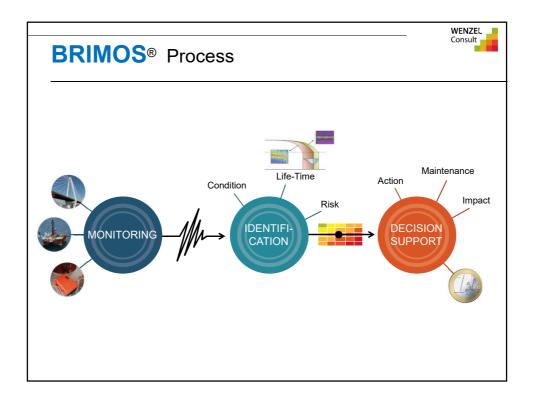
COST ACTION TU1406

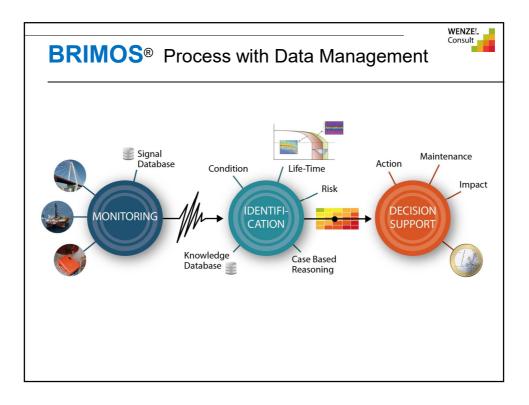

SLIDE 47

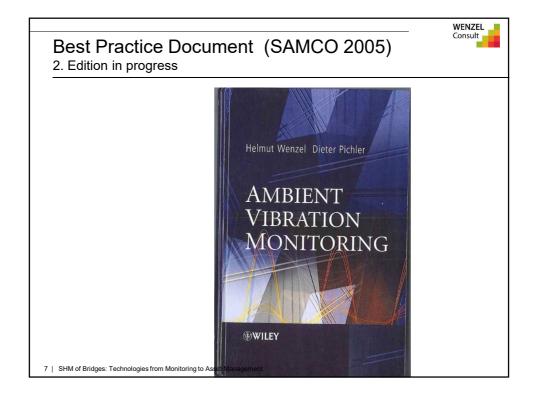

- Net present value of all KPIs is already directly comparable due to the same scale.
- In order to reduce the KPIs to the same scale as for any time instance the NPV is divided with NPV which is calculated if all KPI were 1 over the whole investigation period.
- These value can be regarded as "average" long term KPIs.

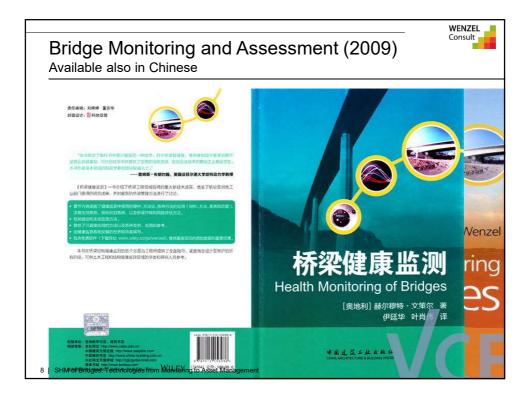


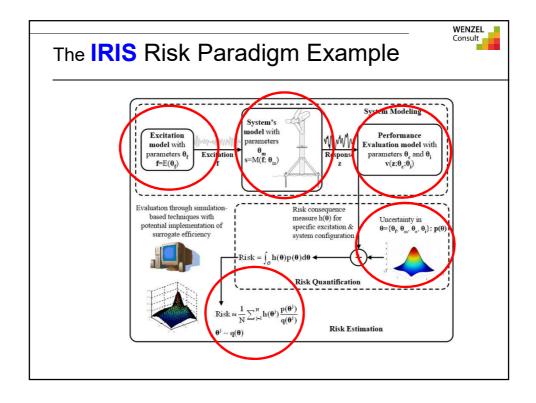


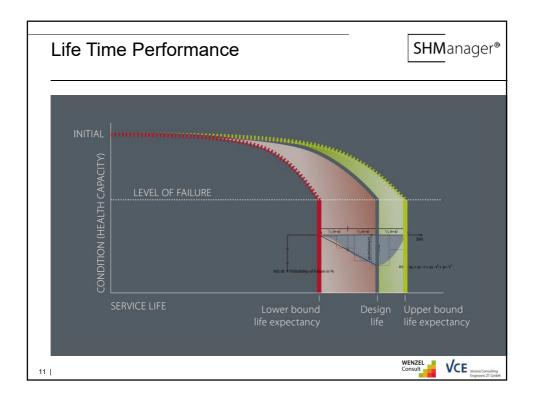


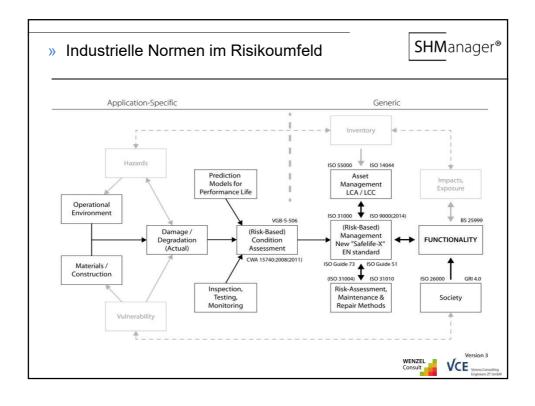


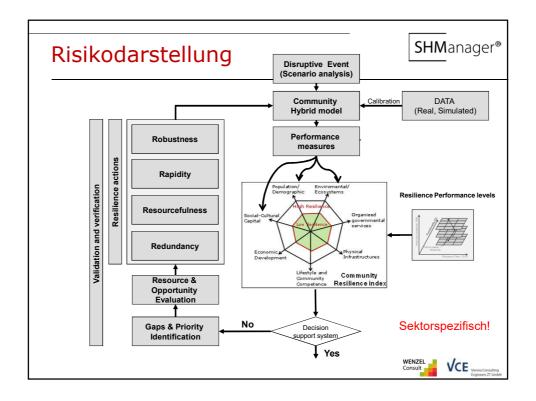


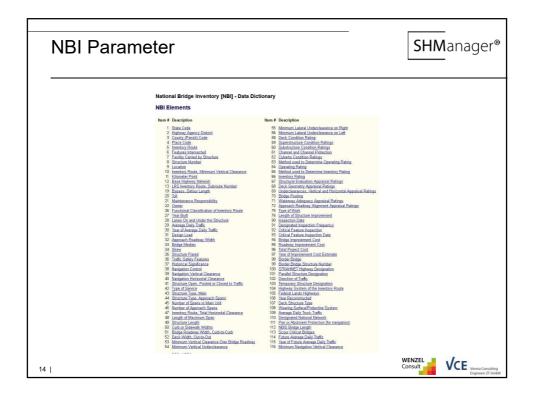


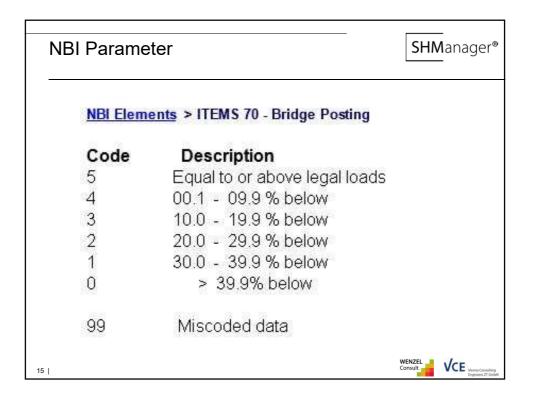


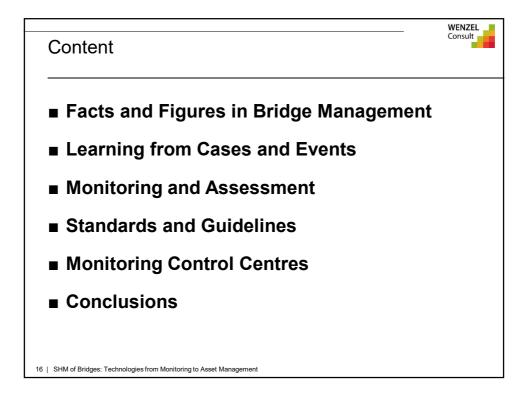


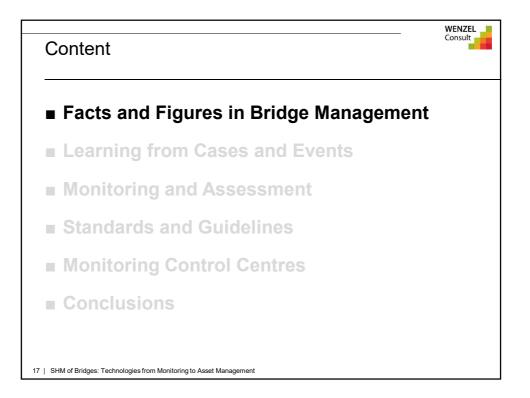


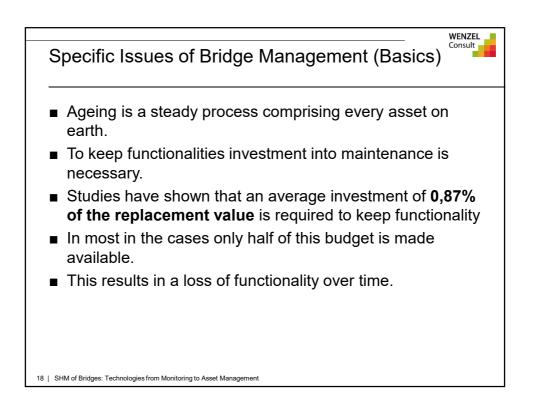


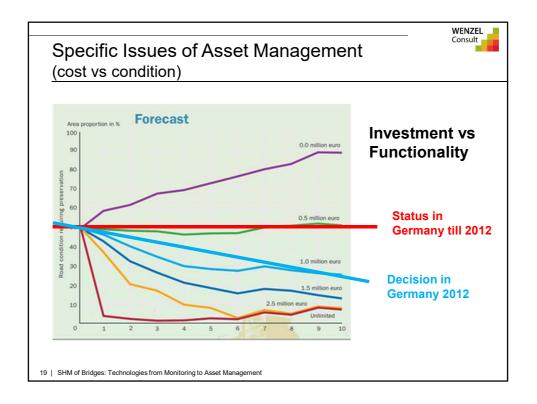


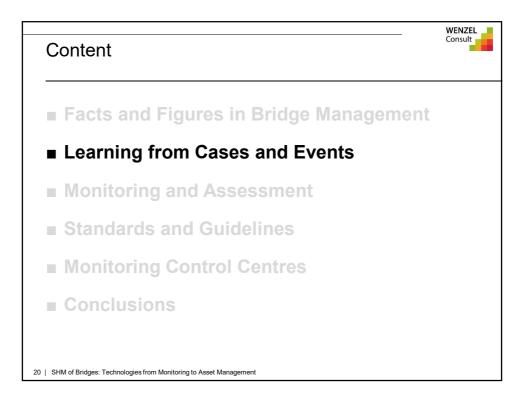


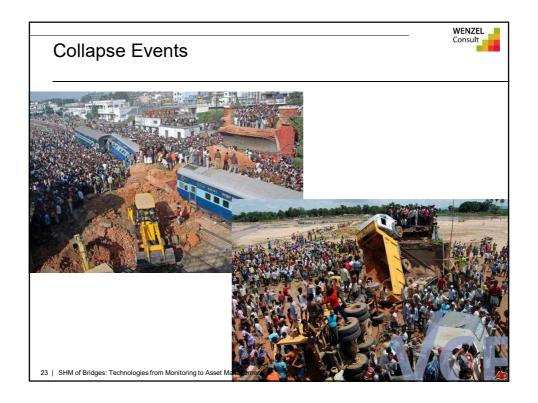


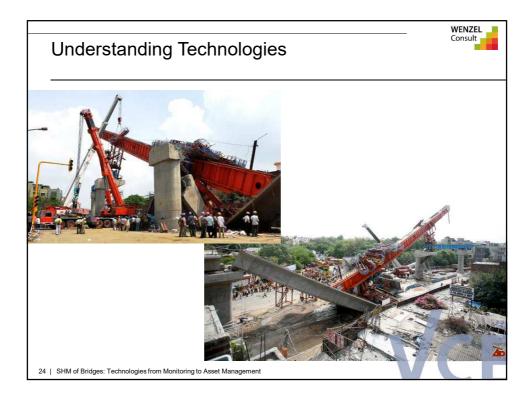


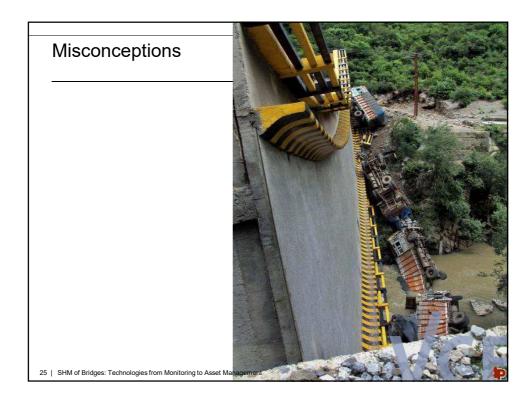


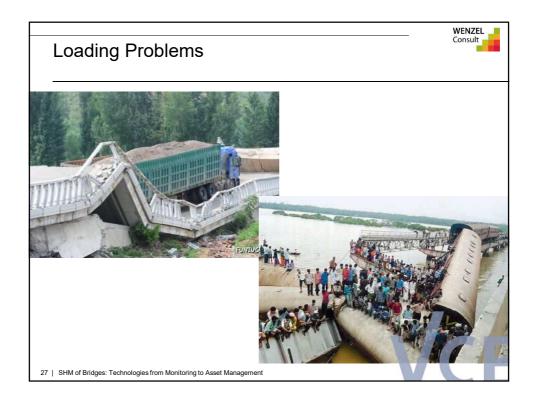


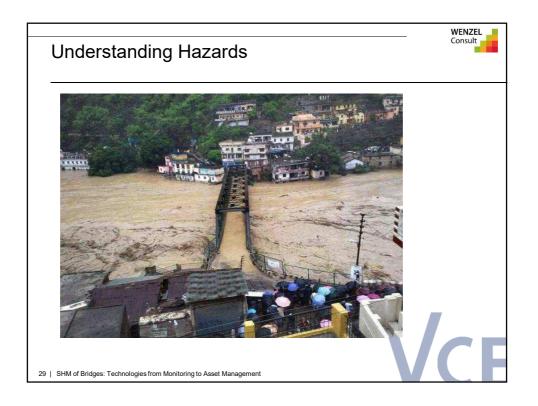


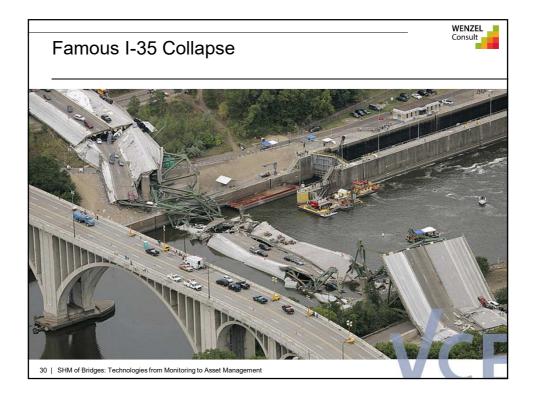


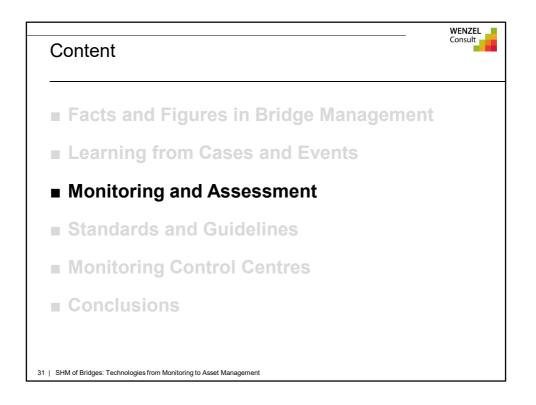


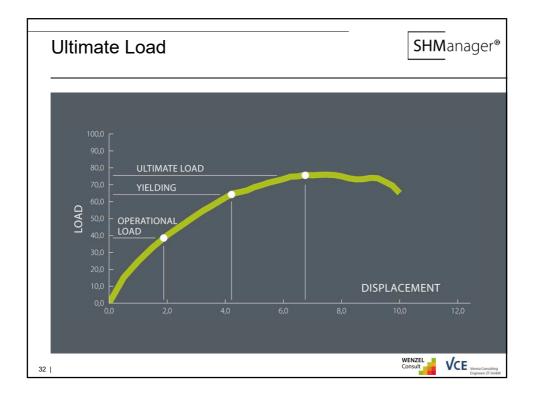


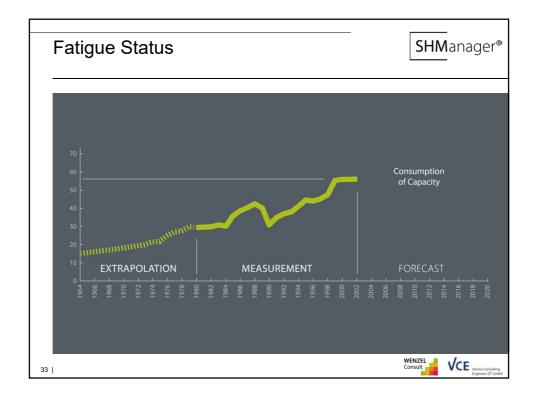


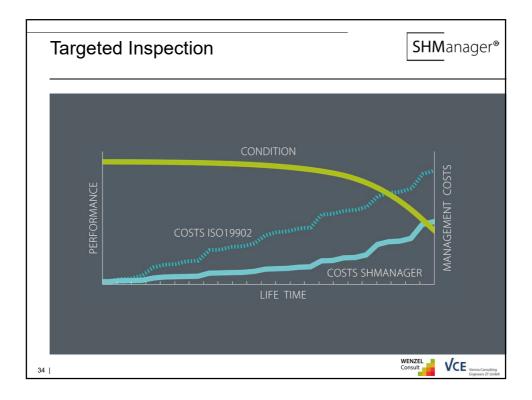


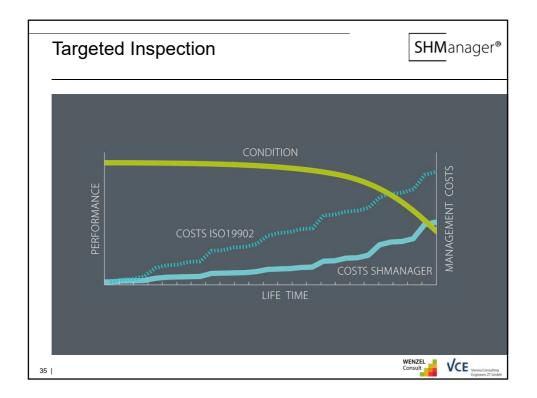


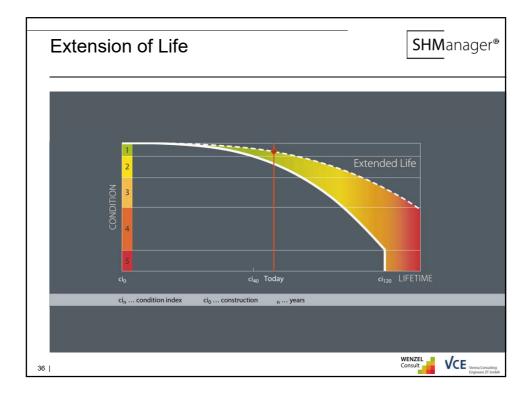


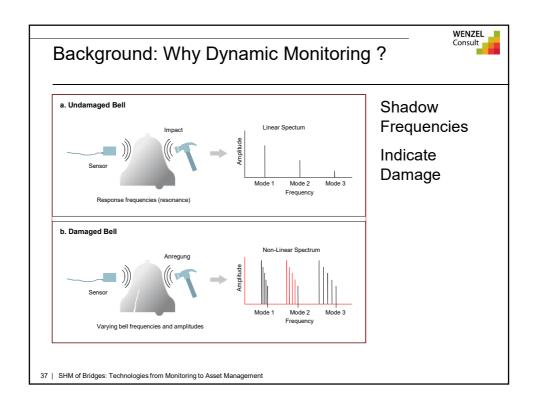


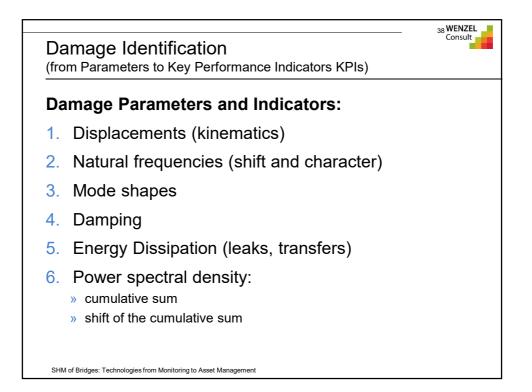


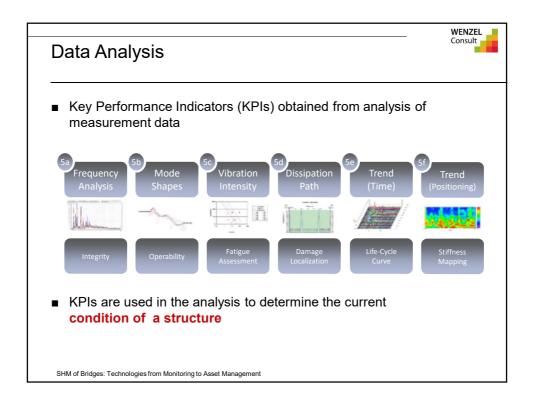


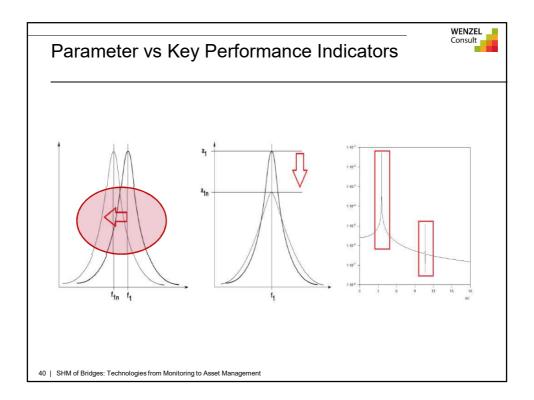


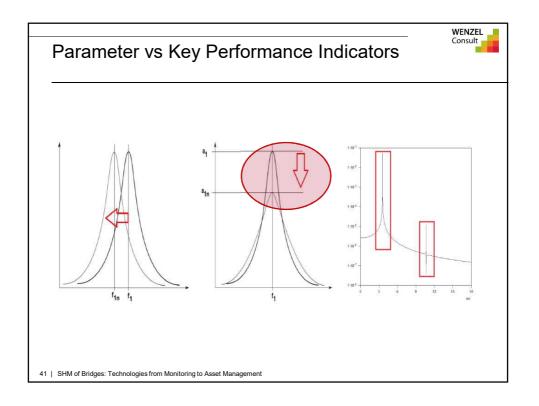


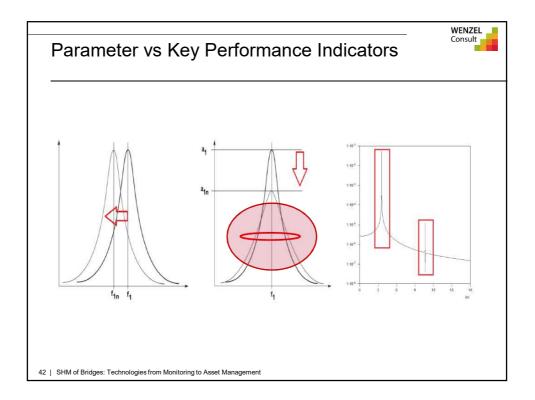


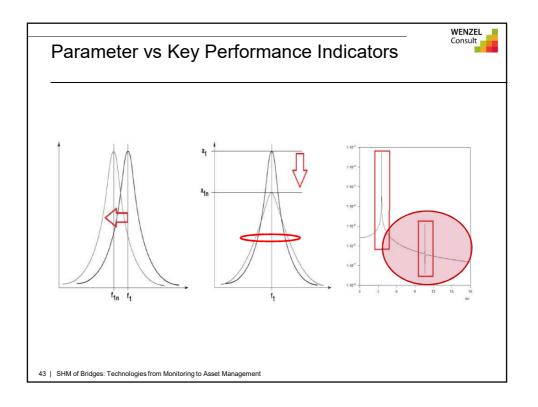


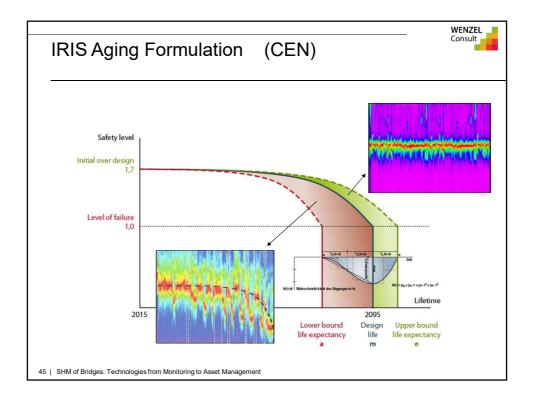


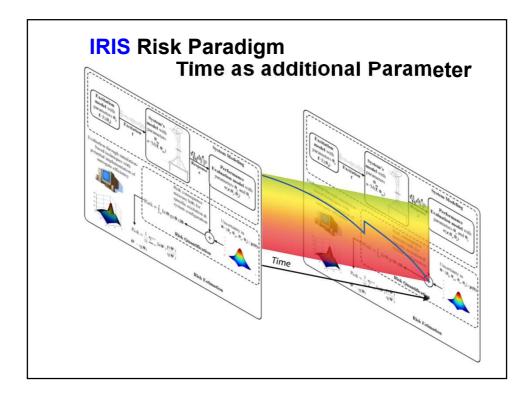


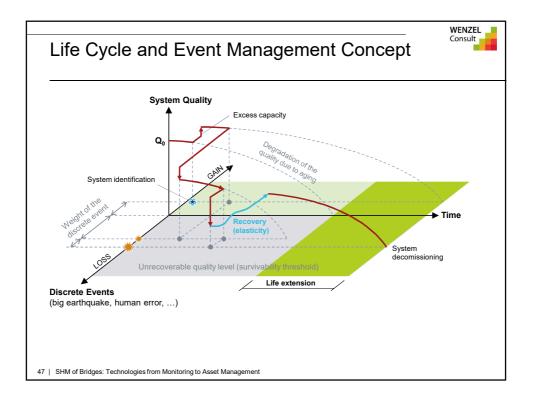


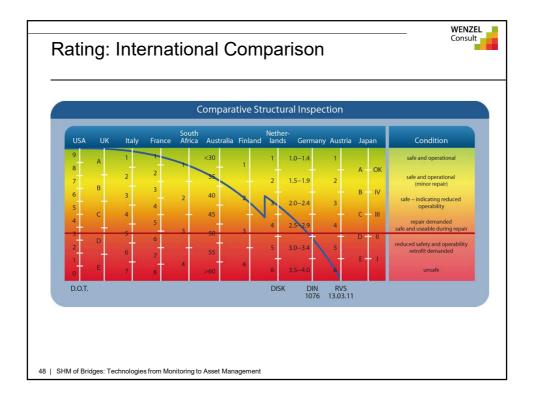


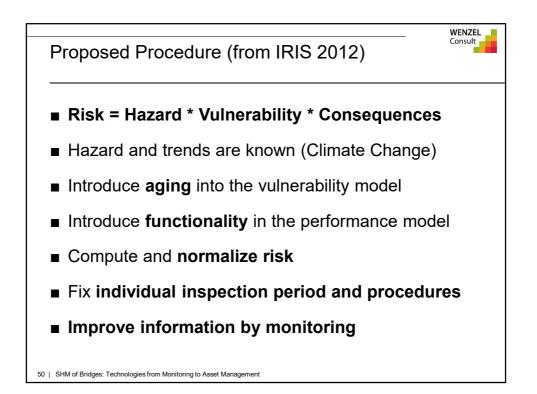


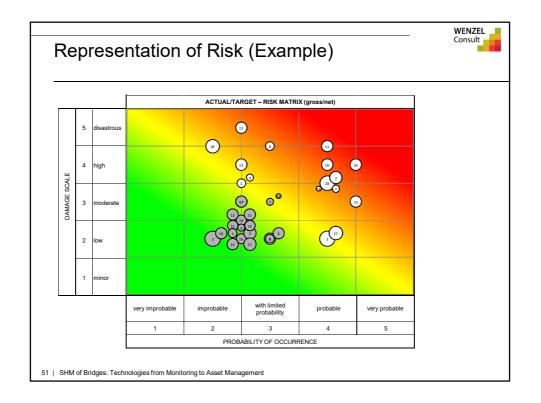


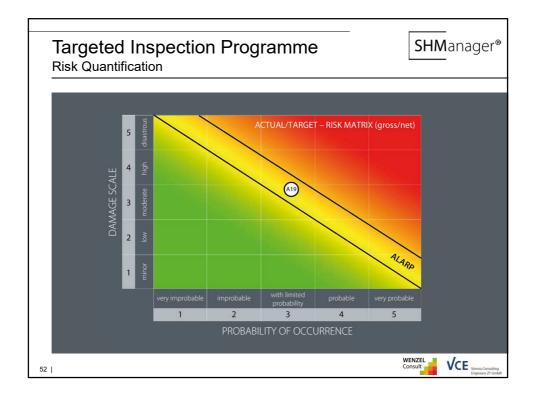


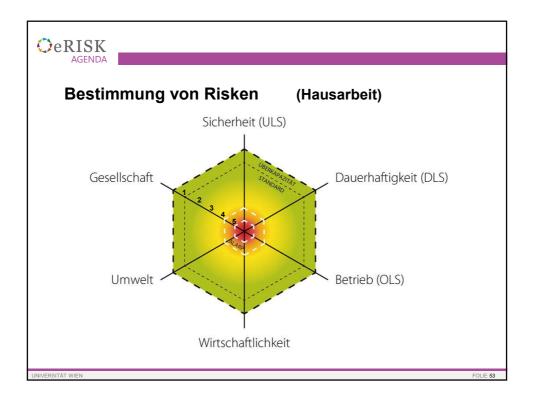


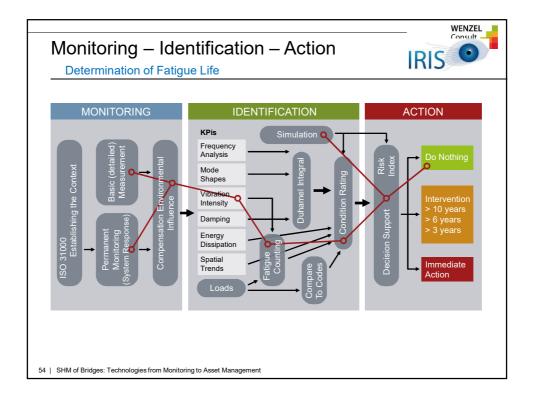


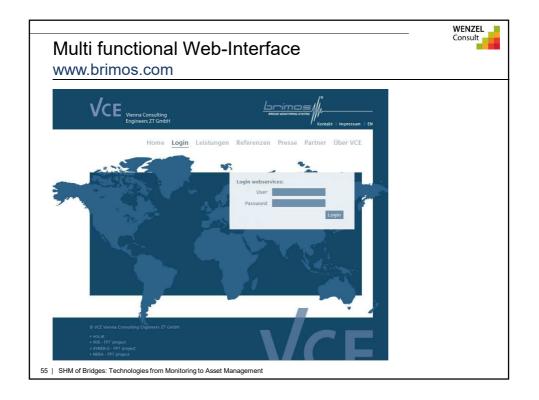


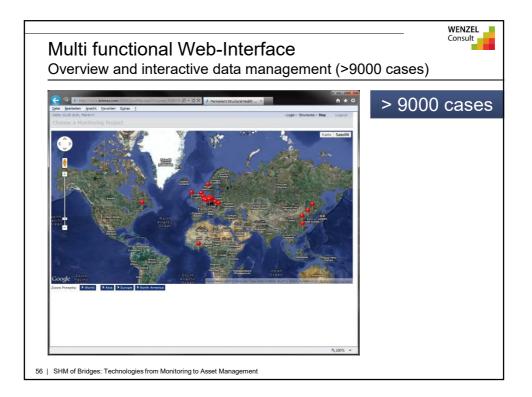


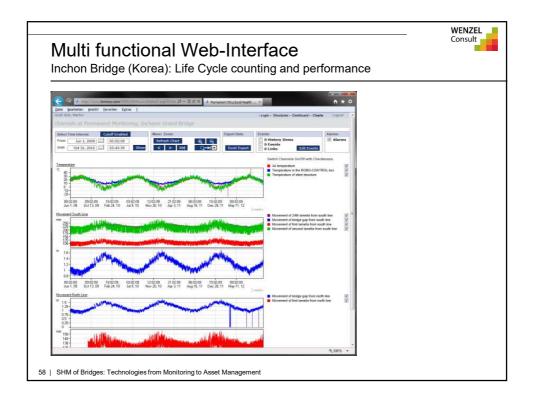


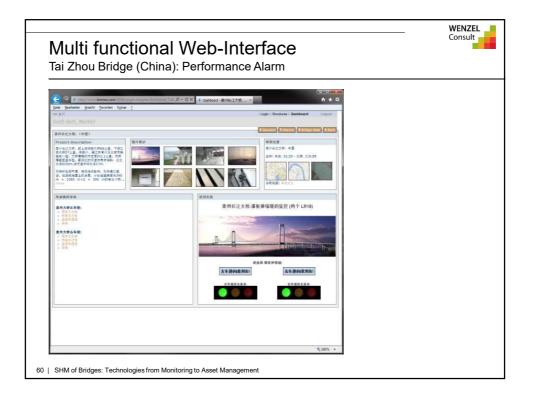


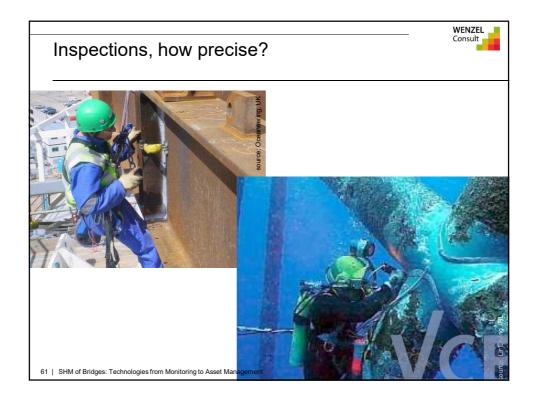


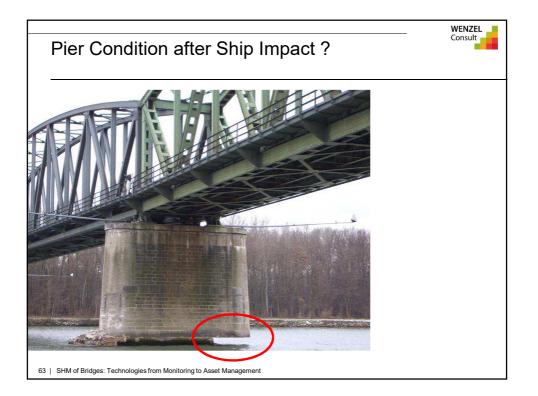


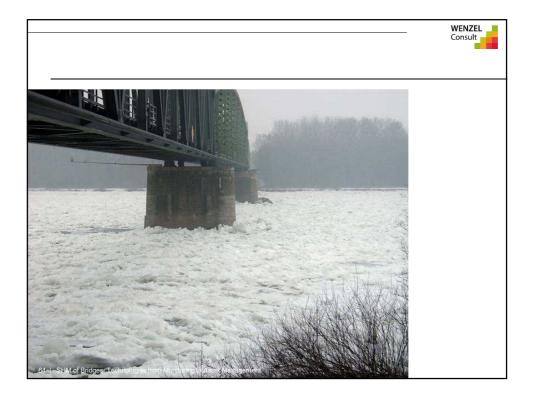


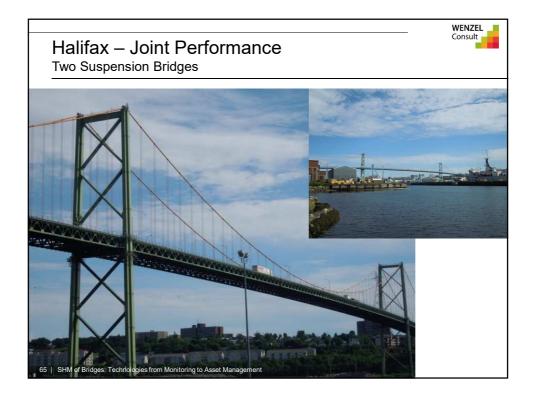


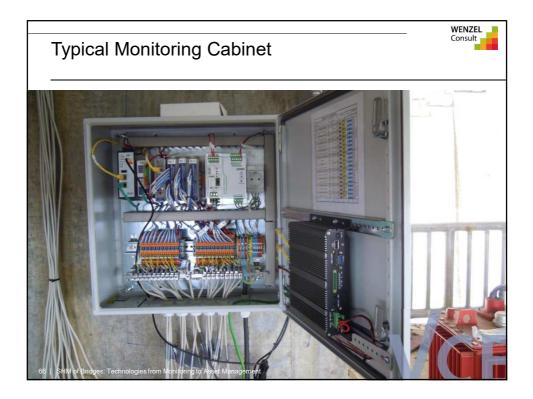


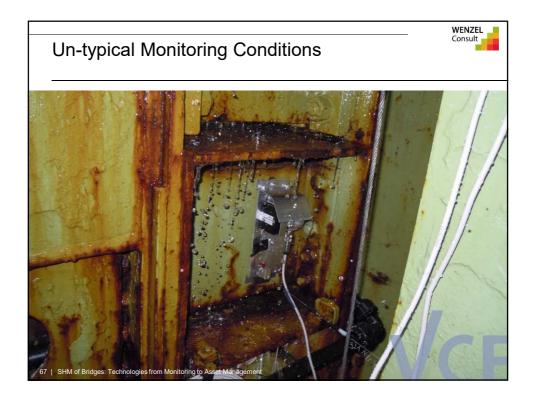


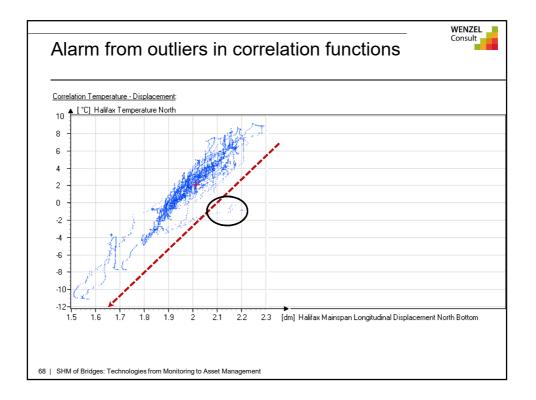


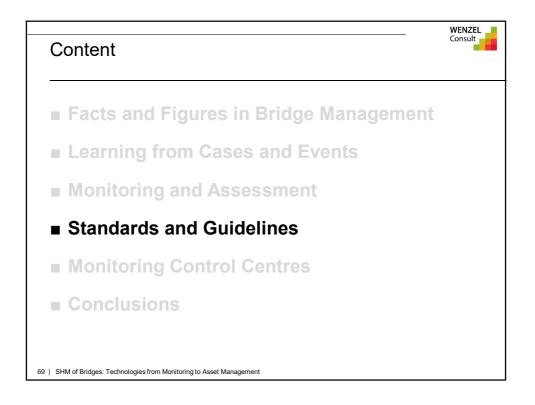


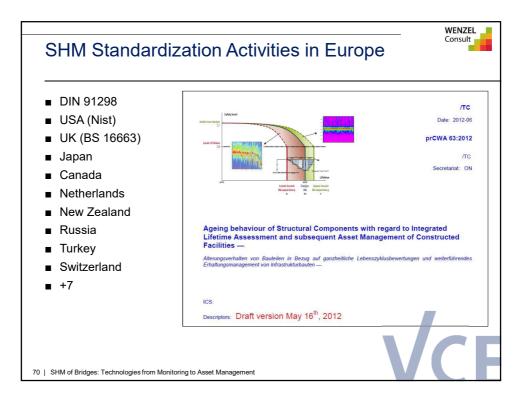


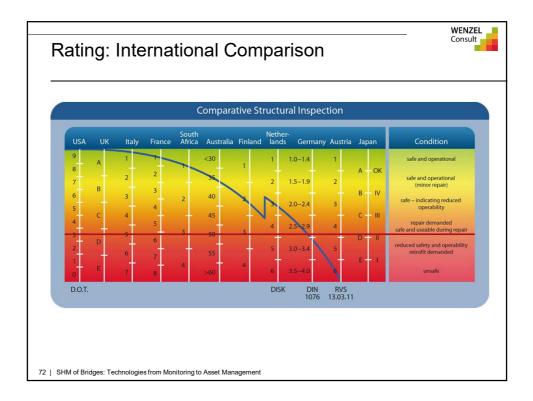


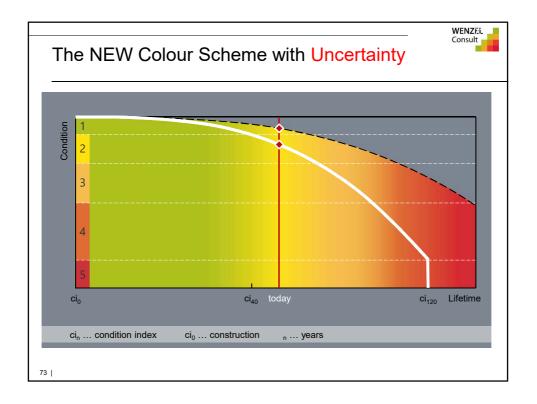


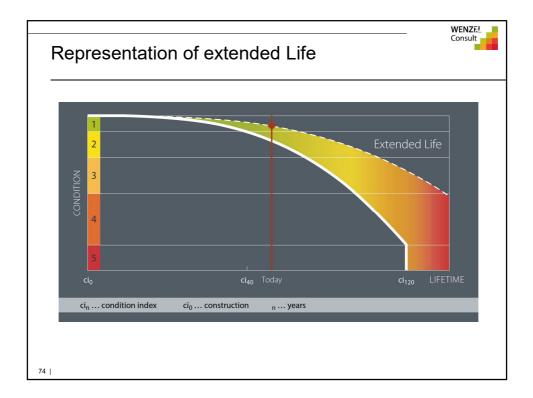


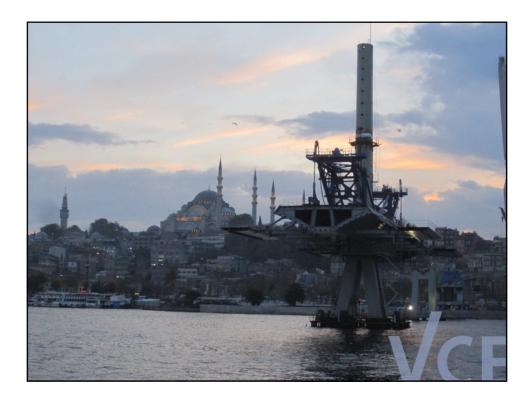


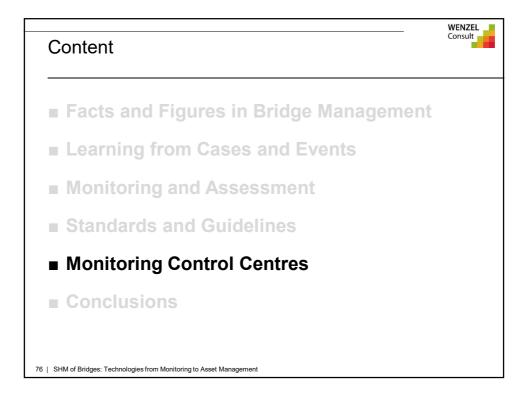


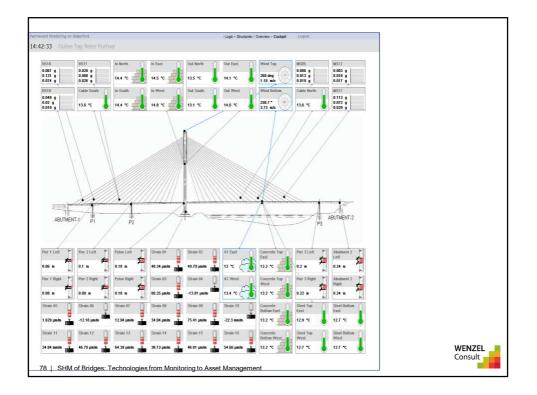


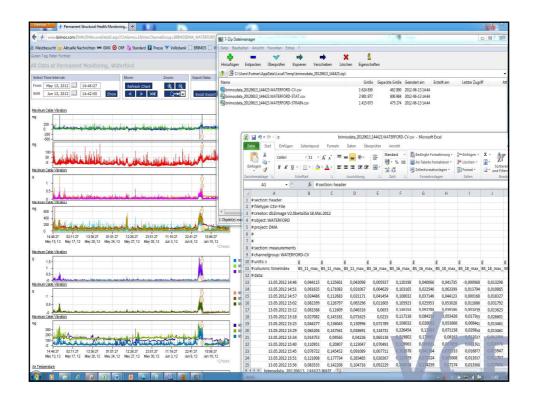


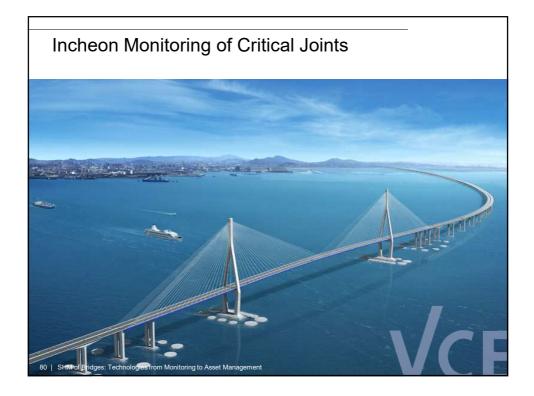


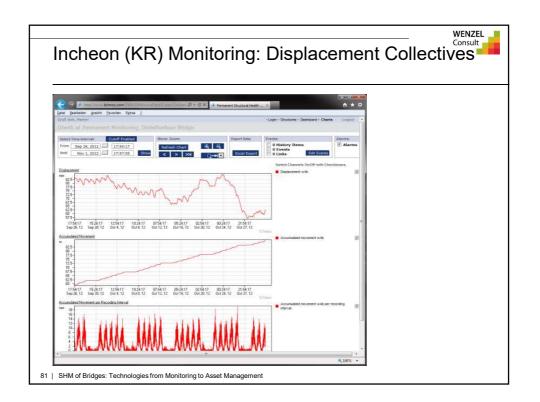


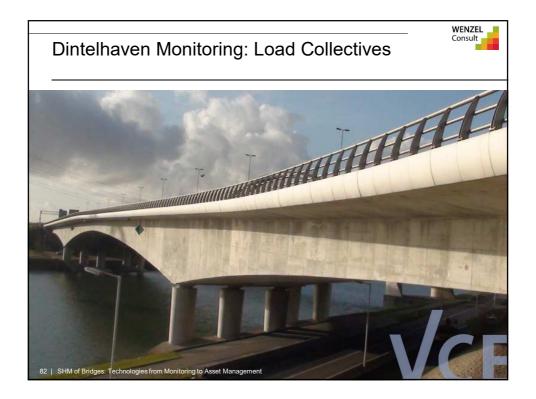


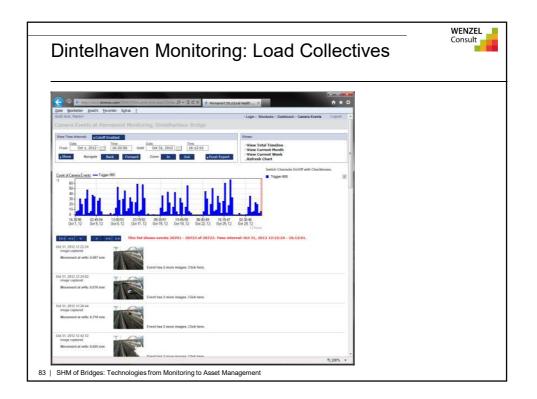


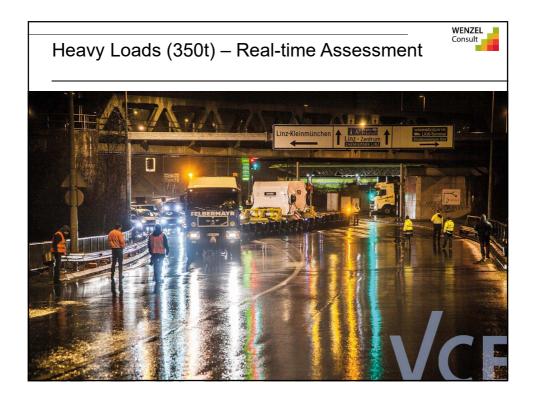


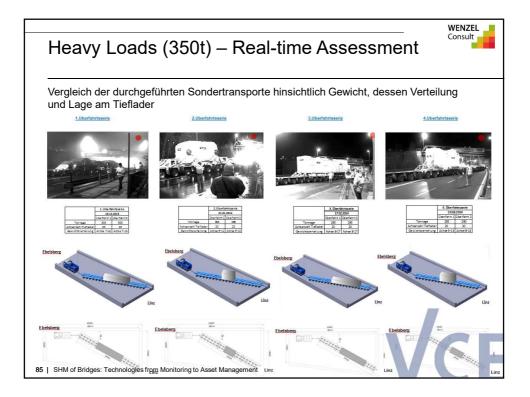


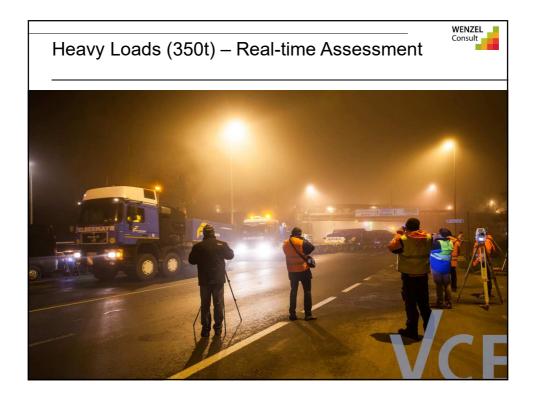


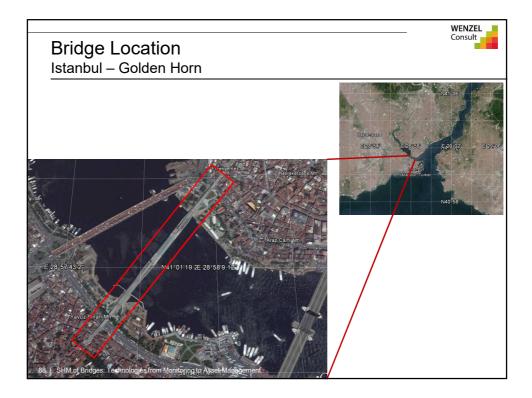


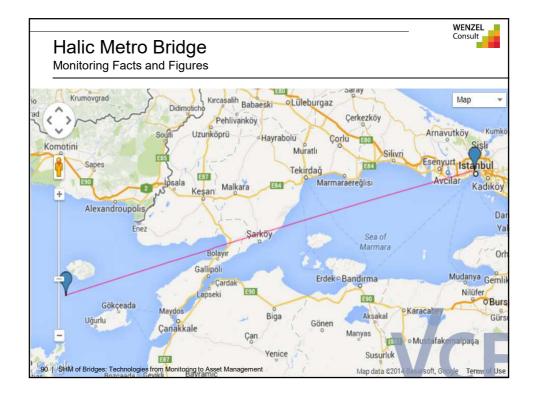


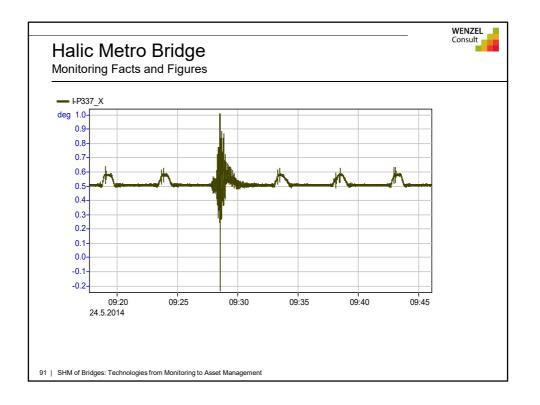


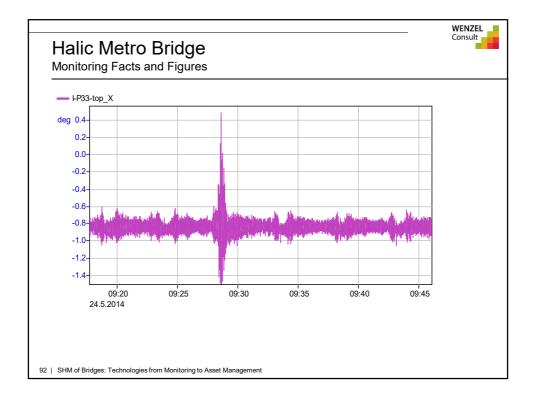


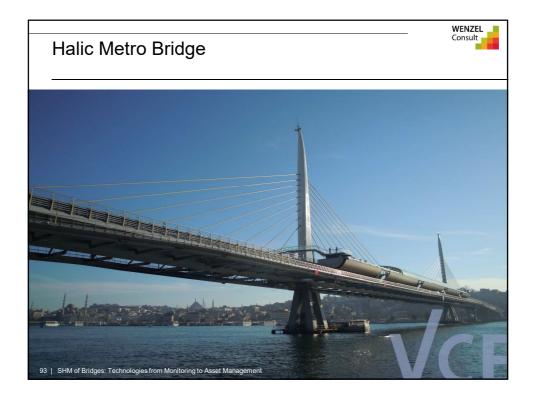


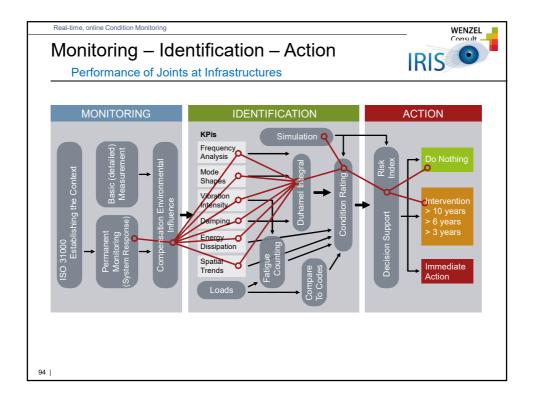


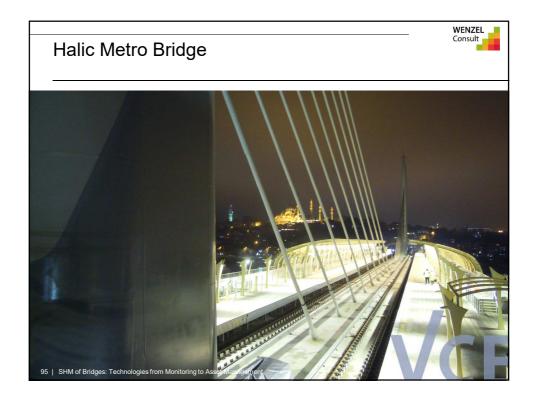


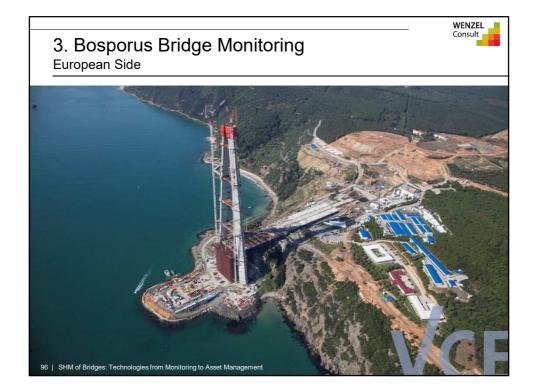


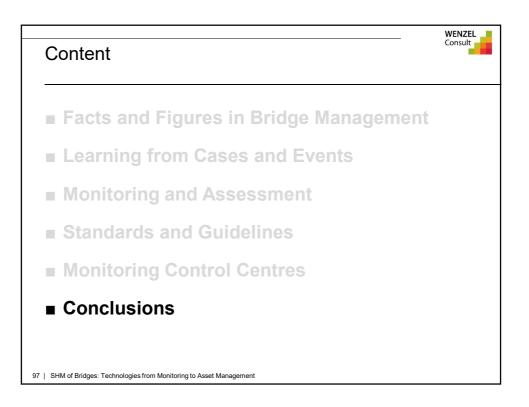


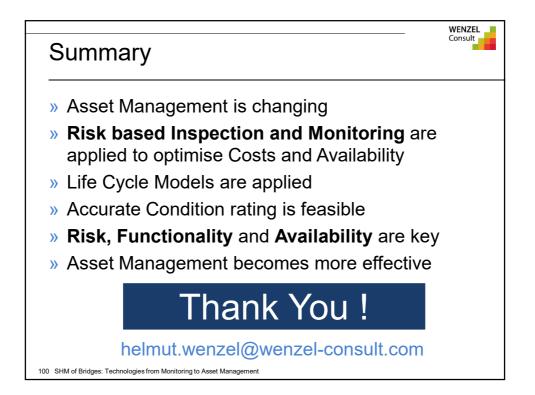












COST TU1406 – An overview of European Standardization on Quality Control of Road Bridges

Performance-based assessment of Existing Road Bridges WG1 Performance Indicators

18th – 21st December, 2017 Hotel St. Hubertushof Zell am See, Salzburg, Austria

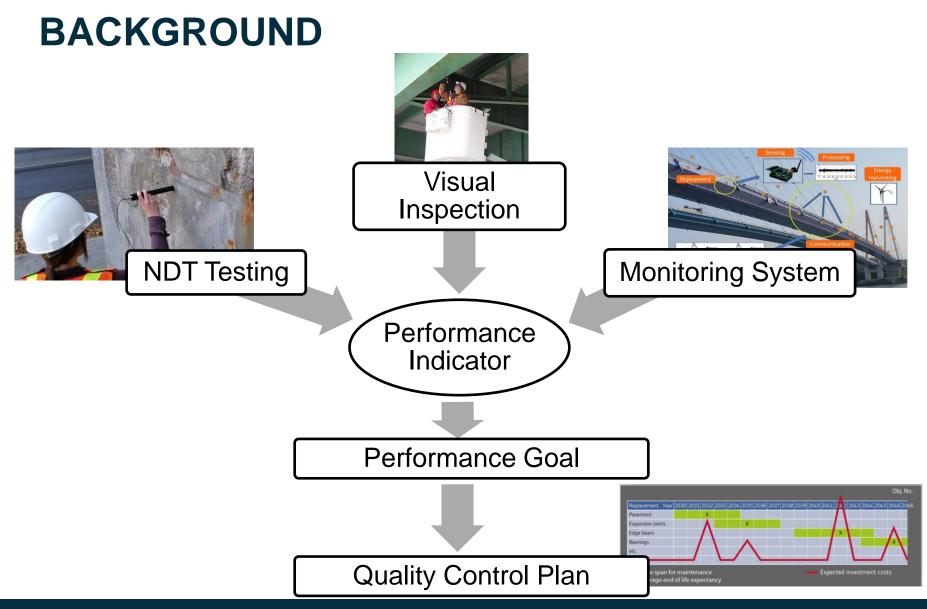
Alfred Strauss– Chair WG1

ESF provides the COST Office through a European Commission contract

COST is supported by the EU Framework Programme

Tuesday, 19 Deceml	ber 2017
09:00 – 10:00	Opening by Helmut Wenzel
10:00 – 10:15	Coffee-break
10:15 – 12:00	Risk based bridge assessment and management – best practice by Helmut Wenzel
12:00 – 13:00	Lunch
13:00 – 15:00	Performance based assessment of existing road bridges WG1 Performance indicators / Workshop by Alfred Strauss
15:00 – 15:15	Coffee-break
15:15 – 16:00	Performance based assessment of existing road bridges WG1 Performance indicators / Workshop reflection by Alfred Strauss

Wednesday, 20 Dec	cember 2017
09:00 - 10:00	WG2 Performance goals / Workshop by Irina Stipanovic
10:00 – 10:15	Coffee-break
10:15 – 12:00	WG2 Performance goals – best practice by Irina Stipanovic
12:00 – 13:00	Lunch
13:00 – 15:00	Application of quality control framework by Rade Hajdin
15:00 – 15:15	Coffee-break
15:15 – 16:00	Application of quality control framework – best practice by Rade Hajdin



Thursday, 21 Decei	mber 2017
09:00 - 10:00	Application of quality control framework – best practice by Rade Hajdin
10:00 – 10:15	Coffee-break
10:15 – 12:00	WG2 Performance goals – best practice by Irina Stipanovic
12:00 – 13:00	Lunch
13:00 – 15:00	International aspects by Helmut Wenzel
15:00 – 15:15	Coffee-break
15:15 – 16:00	International aspects by Helmut Wenzel
18:30 – 22:00	Social event

Friday, 22 Decembe	er 2017
10:00 - 11:00	Transfer from Zell am See to Vienna

REASONS FOR THE ACTION

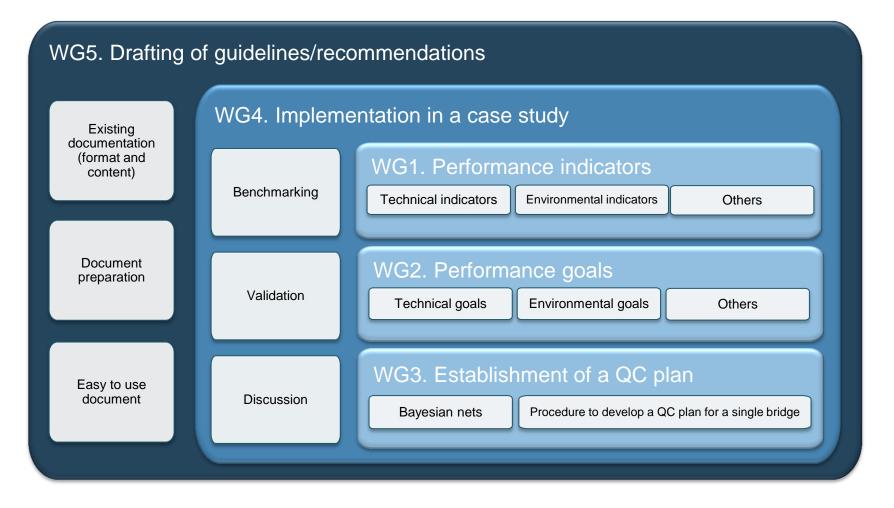
There is a **REAL NEED** to standardize the quality assessment of roadway bridges at an European Level

REASONS FOR THE ACTION

- CSO Approval: 13-11-2014
- Start of the Action: 16-04-2015
- End of Action: 15-04-2019
- Total Number of COST countries accepting MoU: **37**
- Total Number of COST countries intending to accept MoU: 0

AIM & OBJECTIVES

The overall intention of the Action is to


develop a guideline for the establishment of Quality Control (QC) plans in roadway bridges

reachable by pursuing the following 5 objectives:

- (i) <u>Systematize knowledge on QC plans for bridges</u>, which will help to achieve a state-of-art report that includes performance indicators and respective goals;
- (ii) <u>Collect and contribute to up-to-date knowledge on performance indicators</u>, including technical, environmental, economic and social indicators;
- (iii) <u>Establish a wide set of quality specifications through the definition of performance goals</u>, aiming to assure an expected performance level;
- (iv) <u>Develop detailed examples for practicing engineers</u> on the assessment of performance indicators as well as in the establishment of performance goals, to be integrated in the developed guideline;
- (v) <u>Create a database from COST countries with performance indicator values and respective</u> goals, that can be useful for future purposes.

SCIENTIFIC PROGRAM

WG1. MILESTONE: Report

WG1

Technical Report

Performance Indicators for Roadway Bridges of Cost Action TU 1406

General

Performance Indicators terms after surveying

Operators

Operators list of documents and database per country

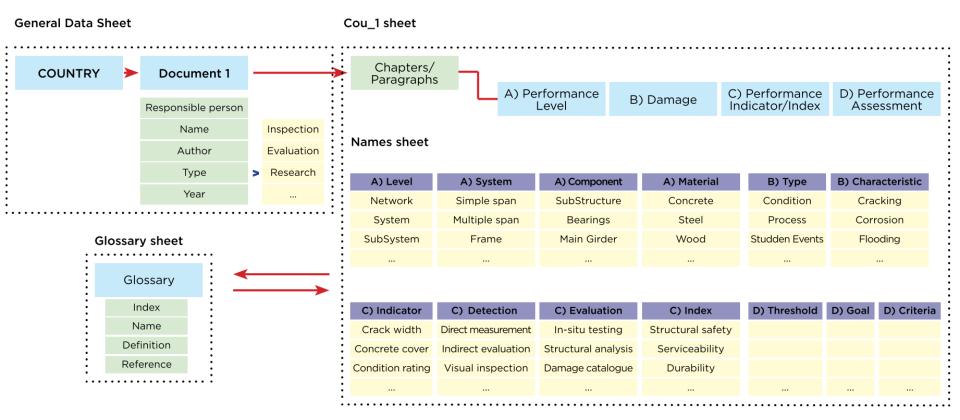
Research

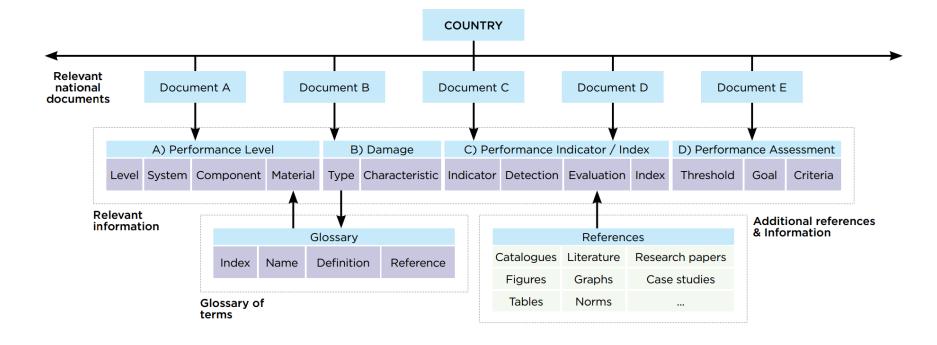
Research list of documents and database per country

Glossary

Glossary and specific term sheet per country

available on website: <u>www.tu1406.eu</u>


Quality specifications for roadway bridges, standardization at a European level


1st Survey phase	2 nd Survey phase		
	Nomination of MC members	s for:	
Questionnaire	 Contracting roadw 	vay owners and operators	
associated with predefined perfor- mance indicator	 Uploading I-DOC, 	E-DOC, B-DOC	
Performance indi-	Nomination of operating persons per country for	Core group WG1	Core group WG1-3
cators indicated in selected attached documents	Processing national docu- ments according to guidelines	Processed documents	Analysing Pl database
	Screening I-DOC, E-DOC, B-DOC	Transferring to database	
	Geneva	January	Belgrade
	Publishing official COST e-book WG1 activities	Preparation of WG1 acti	vity and endreport
	Call to researchers for		
	Uploading perfor- mance associated documents	Transferring documents to database	Analysing PI database
	:		

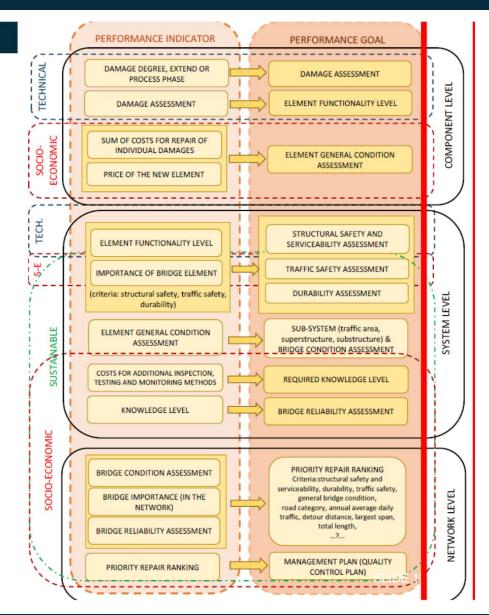
: ÷

......

SCREENING RESULTS OPERATOR DOCUMENTS / DATABASE

A	В	С	D	E	F	G H									
	SURVEY OF PERFOR	RMANCE INDICATORS													
	Country	Croatia	New D	ocument											
num	Responsible Person	Document	Doc. Туре		Year										
1	Ana Mandić Ivanković	Handbook of damages on bridge elements	Evaluation	d.o.o., dr.sc. Da				J			0	0	s	U	
2	Ana Mandić Ivanković	Guidelines for bridge inspections	Inspection	Hrvatske ces d.o.o.	^{ste} 2014			J	L	М	0	Q	5	U	
3	Ana Mandić Ivanković	HRMOS manual – Bridge management	Inspection	Hrvatske ces d.o.o.	ste 1999										
4	Dominik Skokandić	HRMOS manual – Bridge management – General bridge inspection	Inspection	d.o.o.	ste 1999										
5	Dominik Skokandić	Handbook of damages on bridges	Inspection/ evaluation		.0.0. 2010			Ref		Ref	Ref	Ref	Ref	Ref	
6	Ana Mandić	Guideline for bridge evaluation	Evaluation	Hrvatske	2010		l l	Roi	C) Performance Indica		- Roi		formance Asse		
	Ivanković			Autocesete d.o	.0.0.	-		indicator	detection	evaluation	index	threshold	goal	criteria	
7	Ana Mandić Ivanković	Bridge Management Planning	Backgroun d document	Hrvatske Autocesete d.o	12008			Damage degree	Direct_Measurement	Cranadion	mach	affected are		circuita	
8			uocument			-		Damage degree	Direct_Measurement			crack width	Damage Assessment		
9															
9 10						-									
						-		Ref		Ref	Ref	Ref	Ref	Ref	
10 11						-			C) Performance Indica	tor/Index		D) Per	formance Asse	essment	
10		lames_Table GeneralData Cro_1	Cro_2 Cro	3 Cro_4	Cro_5	- - - Cro_6 Cro_7	(+)	Ref indicator Damage degree	C) Performance Indica detection Direct_Measurement		Ref		formance Asse goal Damage		
10 11 12			Cro_2 Cro	3 Cro_4	Cro_5	- - - Cro_6 Cro_7	÷	indicator	detection	tor/Index		D) Per threshold	formance Asse goal Damage Assessment Damage	essment	
10 11 12		16 types + Element All bridge	Cro_2 Cro		Cro_5			indicator Damage degree	detection Direct_Measurement	tor/Index		D) Per threshold affected are	ormance Asse goal Damage Assessment Damage Assessment Damage	essment	
10 11 12		16 Element All bridge				ate Abras	on	indicator Damage degree Damage degree	detection Direct_Measurement Direct_Measurement	tor/Index		D) Per threshold affected are affected are	formance Asse goal Damage Assessment Damage Assessment	essment	
10 11 12		16 types 17 + Element All bridge 18 + Element All bridge 18 + Element All bridge 19 + Element All bridge	Foundations Foundations Foundations	1	Damage_Sta Damage_Sta Damage_Sta	ate Abras ate Settlem ate Degrada	on ents tion	indicator Damage degree Damage degree Damage degree Damage degree Damage degree	detection Direct_Measurement Direct_Measurement Direct_Measurement Direct_Measurement Direct_Measurement	tor/Index		D) Peri threshold affected are affected are affected dep sag (cm) affected are	ormance Asse goal Damage Assessment Damage Assessment Damage Assessment Damage Assessment Assessment	essment	
10 11 12		16 types 17 + 17 + 18 + 18 + 19 + 19 + 20 +	Foundations Foundations Foundations Foundations	Concrete D	Damage_Sta Damage_Sta Damage_Sta Damage_Sta	ate Abras ate Settlem ate Degrada ate Spalli	on ents tion ng	indicator Damage degree Damage degree Damage degree Damage degree Damage degree Damage degree	detection Direct_Measurement Direct_Measurement Direct_Measurement Direct_Measurement Direct_Measurement Direct_Measurement	tor/Index		D) Pert threshold affected are affected are affected dep sag (cm) affected are affected are	ormance Asse goal Assessment Damage Assessment Damage Assessment Damage Assessment Assessment Damage Assessment Damage Assessment	essment	
10 11 12		16 types 17 + 18 + 18 + 19 + 19 + 10 Element 11 Horidge 12 Horidge 13 + 14 Element 15 Horidge 16 Element 17 + 18 + 19 + 10 Horidge 10 Horidge	Foundations Foundations Foundations Foundations Foundations	Concrete D Concrete D	Damage_Sta Damage_Sta Damage_Sta Damage_Sta	ate Abras ate Settlem ate Degrada ate Spalli	on ents tion ng ng	indicator Damage degree Damage degree Damage degree Damage degree Damage degree	detection Direct_Measurement Direct_Measurement Direct_Measurement Direct_Measurement Direct_Measurement	tor/Index		D) Peri threshold affected are affected are affected dep sag (cm) affected are	ormance Asse goal Assessment Damage Assessment Damage Assessment Damage Assessment Assessment Damage Assessment Damage Assessment	essment	

SCREENING RESULTS RESEARCH DOCUMENTS / DATABASE


SURVEY OF RESEARCH PERFORMANCE INDICATORS

Article	Performance assessment of concrete s				References		
		[1] Zhao, YG., Zh	ong, W.	Q., Ang, A.HS., 200	Estimating joint failure probability of series structural sy	stems. J. Eng. Mech. 13	3, 588–596
Author	Strauss, Zan	[2] Strauss A, Vido	vic A, Z	ambon I, Grossberger	H, Bergmeister K. Monitoring information and probabilisti	c based prediction mode	els for the
Year		[3] Mark, P., Stang	enberg	, F., Bergmeister, K., S	trauss, A., Ahrens, M.A., 2013. Lebensdauerorientierter En	twurf, Konstruktion, Nac	chrechnung
Abstract	An efficient evaluation and prediction of fundamental requirement for life-cycle a structures. Important tools and valuable methods. Unfortunately, due to their pra information gathered with inspection and possible. The aim of this contribution is t performance indicators of concrete struct A theoretical background with selected in methods including inspection and monito	I monitoring methods i present a framework ures prone to fatigue, idicators is presented t	eed to b	SURVEY OF PERFC	ve manner PRMANCE INDICATORS		
Journal	IABSE Conference – Structural Engineeri	-		Country	Austria	Add Article	
Keywords	life-cycle analysis; performance indica	,					
Performance Indicator		Young modulus	num	Responsible	Article	Author	Year
Type of Indicator	Material property	i oung mountai	num	Person	Aiticle	Aution	real
Mathematical Formulation						Strauss, Zambon,	
Threshold					Performance assessment of concrete structures	Vidovic,	
Intentions (where to apply)	In order to evaluate the fatigue performa	nce of the critical cross	1	Ivan Zambon	based on probabilistic prediction models and	Grossberger,	2015
Level of maturity	Research stage				monitoring information	Bergmeister	
Case study	STRABAG test foundation in Cuxhaven		İ			bergineister	
Performance Indicator		Reliability index	2				
							1 1
Type of Indicator	Reliability		1				
Type of Indicator Mathematical Formulation	Reliability		3				
	Reliability		3				
Mathematical Formulation	Reliability In order to evaluate the fatigue performa	nce of the critical cross	3				
Mathematical Formulation Threshold		nce of the critical cross					

Indicators and goals

 Interactions between KPI and PG are contemplated, as they are crucial for optimal quality control and management of road bridges

Categorized

A) Perfo	rmance Le	vel		B) Dama	ge	C) Perfor		D) Perfor Assessm			
level	system	compo- nent	material	type	character- istic	indicator	detection	threshold	goal		
Sub-Sys- tem	All bridge types	Super Structure	Concrete	Damage State	Cracks	Damage degree	Direct Measure- ment	Crack width (mm)	Damage Assess- ment	>	Defects Crack width
Sub-Sys- tem	All bridge types	Super Structure	Concrete	Damage State	Hon- ey-comb- ing	Damage degree	Direct Measure- ment	Affected area (m2)	Damage Assess- ment	>	Material prop- erties bad concrete compaction
Sub-Sys- tem	All bridge types	Super Structure		Damage State	Freeze- thaw	Damage degree	Direct Measure- ment	Affected area (m2)	Damage Assess- ment	>	Environmental based Freeze-thaw
Sub-Sys- tem	All bridge types	Super Structure	Brick	Damage State	Disinte- gration of mortar	Damage	Visual Inspection		Damage Assess- ment	>	Structural integ- rity & joints Disintegration of mortar
Sub-Sys- tem	All bridge types	Railings	Steel	Damage State	Missing Parts	Damage degree	Visual Inspection		Damage Assess- ment	>	Equipment and protection Absence of equipment component
System	All bridge types			Damage State	Buckling	Damage degree	Visual Inspection		Damage Assess- ment	>	Geometry changes Buckling
System	All bridge types		Concrete	Damage State	Execution defects	Damage degree	Direct Measure- ment	Affected area (m2)	Damage Assess- ment	>	Original construction & design Execution/con- struction defects
Element				Damaging process	Low dam- age degree (first phase)	Damage degree	Visual Inspection	Upper limit + Duration of damage	Damage Assess- ment	>	Rating Damage degree +damage evo- lution
Element						Impor- tance of bridge element		Quantita- tive scale of values	Element impor- tance as- sessment	>	Cost & impor- tance Importance of bridge Element

Homogonized

defects	related to material properties	related to equipment & protection	geometry changes	related to bearing capacity, structural integrity and joints	related to original construction and design	related to dynamic behaviour	environmental based (common appearance)	rating	cost and importance	loads
abrasion	acids attacks	absence (missing) of equipment component	buckling	absent (missing) structural component	accessibility to damage	atypical vibrations	biological growth	advanced deterioration process	bridge importance (size)	gross weight of a vehicle
absence/ missing	aggregate segregation	approach slab settlement	cross incline of road	accumulated dirt and deposits in joints	bad design	damping	climate change	condition note	element functionality level	permanent loading
aggradation (alluviation)	aging of material	asphalt pavement cracking	deformation	anchorage blocks deficiency	carrying capacity factor	frequency	environmental exposure	condition of a bridge	importance of bridge element	traffic loading
blistering	alkali aggregate reaction (alkali- silica reaction)	asphalt pavement wearing and tearing (rutting.	denivelation	anchorage deficiency or failure	concrete cover	noise	freeze-thaw	condition rating	price of the new element	
blocking	alkali aluminium reaction	asphalt pavement wheel tracking and wrinkling and	differential movement	arch ring separation	cracks due to curing and forming	real dynamic behaviour	humidity	damage	sum of costs for repair of individual damages	
bulging	bad concrete compaction	blistering paint	displacement	barrel damage to stone arches	design codes	relative vibrations between elements	moisture	damage degree	traffic restrictions	
cavitation	bedding mortar failure	cladding damages	distortion	bearing defects	design load	sound	soot	damage evolution	traffic volume	
clogged	bituminous binder emersion	cladding deformations	flattening	bearing fracture extension	design load by road ID	vibrations/oscilla tions	subterranean water flow	damage extension		
coating loss	calcification	clogged collector	height difference	bearings displacement	dimensions		temperature	damage of high risk for safety		

Homogenized Database

	Document	National products of protect concrete st	l specifica and syste ion and r	according to	Ad	ld							
	Chapter/ Paragraph / Section	4.:	3 Inspect	ion	Hide/Sho								
				Ref		Ref	Ref			Ref	Ref	Ref	
	4	A) Performa	nce Leve	l	В)	Damage	C) Perf	ormance Indica	tor/Index		D) Performar	ice Asses	ssment
	level	system	component	material	type	characteristic	indicator	detection	evaluation	index	threshold	goal	criteria
+	Material	All bridge types		Concrete	Damage_ State	Cracks	Crack width	Visual_Inspect ion			Upper limit		
+	Material	All bridge types		Concrete	Damage_ State	Surface deficiency	Concrete cover	Visual_Inspect ion					
F	Material	All bridge types		Concrete	Damaging _Process	Corrosion	Chemical parameter	Visual_Inspect ion					
+	Element	All bridge types		Concrete	Damage_ State	Wet spots	Damage	Visual_Inspect ion					
+	Element	All bridge types		Concrete	Damage_ State	Efflorescence	Chemical parameter	Visual_Inspect ion					
+	Material	All bridge types		Concrete	Damage_ State	Concrete voids		Direct_Measu rement	In-situ testing				

				Homog	enized Ind	icators				
defects	related to material properties	related to equipment & protection	geometry changes	related to bearing capacity, structural integrity and joints	related to original construction and design	related to dynamic behaviour	environmental based (common appearance)	rating	cost and importance	loads

COST TU1406 – An overview of European Standardization on Quality Control of Road Bridges | Alfred Strauss

. ∽ · ở · ∓						
Datei <mark>Start</mark> Einfügen Seitenlayo	ut Formeln Daten Übe	erprüfen Ansicht 🖓 Was möchter	n Sie tun?			Anmelden 🔉 Frei
Ausschneiden	11 • A A = = = ** •	Prextumbruch Standar	d • 📭		AutoSumme • A	
Konjeren 🛪				lla Zellenformativarlagan Fini	🛨 🛨 🚽 Füllbereich 🛪 🗸	
ügen → ✓ Format übertragen	」・ ◇ ・▲・ 書 書 �� •■	🖶 Verbinden und zentrieren 👻 🍄 🗸 %	, 000 (000 →00 Bedingte Als Tabe Formatierung - formatier	elle Zellenformatvorlagen Elni	V Loschen *	eren und Suchen und tern - Auswählen -
Zwischenablage 🕞 Schrift	art 🗔 🖌	Ausrichtung 🕞 Z	0	vorlagen	Zellen Bearbe	
PRODUKTHINWEIS Excel wurde nicht aktiv	iert. Damit Sie Excel ohne Unterbre	chung weiterhin verwenden können, füh	ren Sie vor dem Mittwoch, 13. Juni 20'	18 die Aktivierung durch. Ak	ctivieren	
A	В	C	D	E	F	G
	Level	Performance indicator PI if Measurable?	PI belongs to the Key Peformance	Assessment		Level
	Component Level (CL) System Level (SL)	{Quantifiable?: Target value available?: Valid	Reliability (R), Availability (A), Maintainability (M), Safety (S), Security	Threshold $(T =)$ Goal $(G =)$		Component Level (CL) System Level (SL)
	Network Level (NL)	for ranking purposes?; Allow decision with	(Se), Environment (E), Costs (C), Health	Rating $(R =)$		Network Level (NL)
	Network Lever (NL)	economic implications?} (YES/No)	(H), Politics (P), Rating/Inspection (I)	Rating (R =)		Network Lever (NL)
		ceonomic implications: f (1E3/140)	(1), Fondes (F), Rading/hispeedion (i)			
		Technical (Tech), Socio Economical (SoEc),				
		Sustainable (Sust)				
lefects					related to material properties	
brasion					acids attacks	
absence/missing					aggregate segregation	
aggradation (alluviation)					aging of material	
blistering					alkali aggregate reaction (alkali-silica reaction)	
blocking					alkali aluminium reaction	
bulging					bad concrete compaction	
cavitation					bedding mortar failure	
clogged					bituminous binder emersion	
coating loss					calcification	
contamination					carbonation	
corrosion (state)					chemical attack	
crack length					chemical parameter	
crack orientation					chloride action	
crack width					chloride content	
cracking					chloride ions penetration	
cracks					concrete quality insufficient	
cracks - Alligator cracks					corrosion	
cracks - drying cracks					corrosion fatigue	
cracks - temperature cracks					corrosion related to prestressing steel	
cracks distance					corrosion related to protective coating	
cracks related to material					corrosion related to reinforcement steel	
cracks related to origin (e.g. due to loading, due to se	tlement, due to crumbling of concrete,				corrosion related to structural steel	
cracks related to position in a component					cracks due to shrinkage	
cracks related to sintering					fatigue	
cracks -structural cracks					galvanization deficiency	
crumbling					gel exudation	
crumbling of concrete cover					hydroxide calcium exudation	
crushing					material characteristics	
lamage					material quality insufficient	
debonding					oxidation	
debris					pitted corrosion	
decay					porous concrete	
decomposition/disintegration					red colour areas	
deepening					reinforcement bar yielding	
dafiaianax.	-				rainforcement correction	1
Indicators after clustering_3	85 (+)					4

Assignment

- Analyses of Performance Terms
 - based on the Homogenised Country Specific Terms
- Performance Indicators and Performance Spider for the Assessment of a Structural Component or System
 - (work on your own Problem, or let us know if you need one)

Your results will be Analysed and Documented in the Master Thesis of Konrad Ciempiel – please provide us your approval

Your results and the results of the Master Thesis will be part of the WG1 Report Appendix

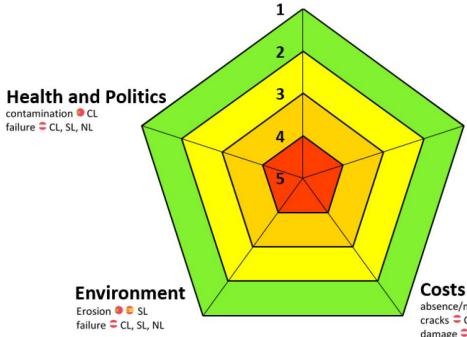
Assignment

Safety, Reliability, Securit					
	Level	Performance indicator PI if	PI belongs to the Key		
PI			Peformance Indicator(s)	Assessm	
11	Component Level (CL)	Measurable?	Reliability (R), Availability (A),	Threshold (T	
	System Level (SL)	{Quantifiable?; Target value	Maintainability (M), Safety (S),	Goal (G =	
concrete cover (insufficient)	CL	Yes, Tech, Sust	R, A, (C, I)	T= thickness (mm), G=	
cracks related to origin (e.g. due to					
loading, due to settlement, due to					
crumbling of concrete,	CL, SL	Yes, Tech	R, A, S, (C, I)	T=width (mm), G=under	
fatigue cracking	CL, SL	Yes, Tech	R, A, S, (C, I)	T= number of cracks an	
settlement	SL	Yes, Tech	R, A, S, (C, I)	T= dimension (mm) and	
water penetrability	CL	Yes, Tech, Sust	R, (C, I)	T= area and affected cor	
wetting/leaking	CL	Yes, Tech, Sust	R, (C, I)	T= area and affected cor	
carbonation depth	CL	Yes, Tech, Sust	R, A, (C, I)	T= depth (mm) in relation	
cathodic protection defficiency	CL, SL	Yes, Tech, Sust	R, A, (C, I)	T= existence of deficient	
chloride depth profile	CL	Yes, Tech, Sust	R, A, (C, I)	T= depth (mm) in relation	
contamination (agent content)	CL	Yes, Tech, Sust	R, A, (C, E, H, I)	T= % of agent content, 0	
corrosion	CL	Yes, Tech, Sust	R, A, S, (C, I)	T= % section loss; G= F	
fatigue (remaining service life)	SL	Yes, Tech, SoEc	R, A, S, (C, I)	T= (Remaining SL / Tim	
absence (missing) of equipment					
component	CL, SL	Yes, Tech	R, A, S, (C, I)	T= evidence of the defect	
approach slab settlement	SL, NL	Yes, Tech	R, A, S, (C, I)	T= height (mm); G=ass	
asphalt pavement cracking	CL, SL, NL	Yes, Tech, Sust	R, (C, I)	T= width (mm), length (
asphalt pavement wearing and tearing					
(rutting, ravelling)	CL, SL, NL	Yes, Tech, Sust, SoEc	R, A, S, (C, I)	T= affected area (m2), 1	
asphalt pavement wheel tracking and					
wrinkling and undulation	CL, NL	Yes, Tech, SoEc	R, A, S, (C, I)	T= affected area (m2), 1	
blistering of protective coating	CL	Yes, Tech, Sust	R, (C, I)	T= affected area (m2); C	

WG1. FROM PI TO KPI

abrasion ^{DP} , absence/missing ^{PI} , aggradation (alluviation) ^{DP} , blistering ^{OBS} , O locking ^{DP} , bulging ^{OBS} , cavitation ^{OBS} , clogged ^{OBS} , coating corrosion (state) ^{OBS} , crack length ^{OBS} , crack orientation ^{OBS} , crack width ^{OBS} , cracking ^{PI} , cracks - Alligator cracks ^{OBS} , crack temperature cracks ^{DP} , cracks distance ^{OBS} , cracks related to material ^{OBS} , cracks related to origin (e.g. due to loading, due to settlement, due OBS , cracks related to position in a component ^{OBS} , cracks related to sintering ^{DP} , cracks - structural cracks ^{DP} , crumbling ^{OBS} , crumbling ^{OBS} , cracks related to <u>CRS</u> , crumbling ^{OBS} , cracks related to <u>CRS</u> , crumbling ^{OBS} , cracks - depending ^{OBS} , crumbling ^{OBS} , cracks related to <u>CRS</u> , crumbling ^{OBS} , cracks related to <u>CRS</u> , cracks - depending ^{OBS} , crumbling ^{OBS} , cracks related to <u>CRS</u> , crumbling ^{OBS} , cracks - depending ^{OBS} , crumbling ^{OBS} , cracks - depending ^{OBS} , crumbling ^{OBS} , cracks - depending ^{OBS} , crumbling ^{OBS} , crumbling ^{OBS} , cracks - depending ^{OBS} , crumbling ^{OBS} , crumbling ^{OBS} , cracks - depending ^{OBS} , crumbling ^{OBS} , crumbling ^{OBS} , cracks - depending ^{OBS} , crumbling ^{OBS} , crumbling ^{OBS} , cracks - depending ^{OBS} , crumbling ^{OBS} , crum	acks - drying cracks ^{DP} €, cracks - e to crumbling of concrete, ^{DP} € concrete cover ^{OBS} € €, crushing mination ^{OBS} € destroyed ^{OBS} €
hydrai a construction activity changes	
whole 🗢 🗣 🔍 🧶 S; Austria; Chile; Croatia; Portugal; Spain	
DP 🗢 🖢 🧼, scour criticality 🐃, scour depth 🐃, secretion 🐃, segregation 🐃, separation 🐃 🚽, settlement 🖤 🔍, shear 🐃 🤍, shoving ? 🐃, silting a	and vegetation 🎞, sliding 🛄, soil
Failure ^{DP} 🗢, spalling ^{OBS} 🗢 🕏, splitting ^{OBS} 🗢, staining ^{OBS} , stratification ^{OBS} , structural damage ^{PI} , surface corrosion ^{OBS} , surface damage/deficiency ^{OI}	3S =, surface discoloration OBS =,
surface flaking due salting DP 🗢, swelling of structural steel surface OBS, tearing OBS, timber stars and the second structural steel surface OBS and the second structural steel structural steel surface OBS and the second structural steel structural stee	rmined stability (e.g. of river
surface flaking due salting ^{DP} , swelling of structural steel surface ^{OBS} , tearing ^{OBS} , timber si Kategorien:	, wearing and tearing ^{OBS} ,
weathering DP wat spats ^{OBS} wat spats with correspondence OBS were out OBS violat	DP, alkali aggregate reaction
(alkali-silica reaction) $\frac{D^{P}}{D^{P}}$, alkali aluminium reaction $\frac{D^{P}}{D^{P}}$, bad concrete compaction $\frac{D^{B}}{D^{B}} \Leftrightarrow 0$, be 20 Level PIS	alcification ^{DP} , carbonation ^{DP}
I chemical attack ^{DP} , chemical parameter ^{OBS} , chloride action ^{DP} , chloride content ^{OBS}	t ^{OBS} 🗢 🔍, corrosion ^{PI} 🧶 🍮,
corrosion fatigue ^{DP} , corrosion related to prestressing steel ^{OBS} , corrosion related to protec Damage Process	prrosion related to structural
steel ^{OBS} cracks due to shrinkage ^{DP} 🚍 fatigue ^{DP} 🚇 💁 🕱 galvanization deficiency ^{OBS} 🚍 g	acteristics ^{OBS} © 🍣 , material
quality insufficient ^{OBS} , oxidation ^{DP} , pitted corrosion ^{DP} , porous concrete ^{OBS} , red colour Non-interceptable processes	sion ^{DP} , rot fungi attack ^{OBS} 🐓
, shrinkage/creep ^{DP} , sintering ^{DP} , sulphate action ^{DP} , termite infestation ^{OBS} , wear out ^{DP} , whi	tack ^{OBS} , absence (missing) of
equipment component ^{OBS} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc approach slab settlement ^{OBS} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc subhalt pave Observation	(rutting, ravelling) ^{OBS} 🧶 Ҫ,
	contraction contraction contraction $contraction contraction con$
clogged drain OBS 🗢 🕏, clogged manhole OBS 🗢, clogged pipe OBS 🗢, cornicles and curbs	^{)BS} 📀, crack over the buried
expansion joint OBS 🗢, cracks in covering OBS 🗢, damage of protective coating OBS 🗢, de Other data	tive coatings (e.g. corrosion
protection, impregnate) OBS 🧶 🔍, deviator deficiency OBS 🗢, drainage/dewatering defici	iciency PI 🗢, expansion joint
pavement crack ^{OBS} , functionality of device ^{PI} , hydro-insulation defects ^{OBS} , incorrect Performance Indicator	∍quipment defects ^{OBS} , oiling
	, reduction of embankment cone
OBS \clubsuit , rollers condition (e.g. sliding, fixed, broken,) ^{2°PI} , sliding interface insufficient ^{OBS} \clubsuit , sliding path failure/blocking ^{OBS} \clubsuit , slip of bearing ^{OBS} \clubsuit , spectrum of the second state	
in transition slab ^{OBS} , waterproofing deterioration ^{OBS} • s, buckling ^{OBS} •, cross incline of road ^{OBS} , deformation ^{PI} • • • s, denivelation ^{OBS} • •	
displacement PI \textcircled{OBS} \textcircled{OBS} , distortion OBS \textcircled{OBS} , flattening OBS \textcircled{OBS} , height difference OBS , inclinations OBS \textcircled{OBS} , misalignment OBS \textcircled{OBS} , movements PI \textcircled{OBS} , rotations	s 🐨 👻 , sag 🐨 🖵 🍽 😉 🛎 , torsion

2º Level PIs, 2ºPI; Damage Process, DP_; Non-interceptable processes, NIP; Observation, OBS; Other data, OD; Performance Indicator, PI


defects; related to material properties; related to equipment & protection; geometry changes

🗢 🗲 🍮 😂; Austria; Chile; Croatia; Portugal; Spain

Reliability and Safety

corrosion 🧶 🍣 CL, SL drainage/dewatering deficiency 🗢 😉 CL, SL equipment fixings deficiency = CL deformation 🗢 🔍 😳 CL, SL displacement 🗢 🔍 🖸 CL, SL movements 🗢 movement ability deficiency (prevented movements) = CL execution defects = CL vibrations/oscillations 🗢 🔍 😂 🍮 CL, SL

Availability and Maintainabiloity

absence/missing = CL contamination <a> CL cracks 🗢 CL damage 🛢 CL decay = CL detachment 🛢 🚨 CL displacement 🗢 🔍 😳 CL, SL failure 🗢 CL, SL, NL settlement 🧶 😳 CL, SL corrosion 🧶 🍣 CL, SL 🗧 🍮 CL, SL

drainage/dewatering deficiency CL, SL equipment fixings deficiency = CL deformation = 🔍 😂 CL, SL displacement 🗢 🖲 🗧 CL, SL movements 🛢 movement ability deficiency (prevented movements) = CL execution defects 🗢 CL vibrations/oscillations = 9

absence/missing CL cracks CL damage 🗘 CL decay = CL detachment 🛢 🛢 CL displacement 🗢 🔍 🔍 CL, SL erosion 🧶 😳 SL failure CL, SL, NL settlement 🔍 🤤 CL, SL water penetrability 🧶 😉 CL, SL corrosion 🧶 🍮 CL, SL

drainage/dewatering deficiency 🛢 😉 CL, SL equipment fixings deficiency 🗢 CL deformation = 9 CL, SL displacement = 🧶 😉 CL, SL movements 🛢 movement ability deficiency (prevented movements) = CL execution defects 🗢 CL vibrations/oscillations = 9 5 3 CL, SL

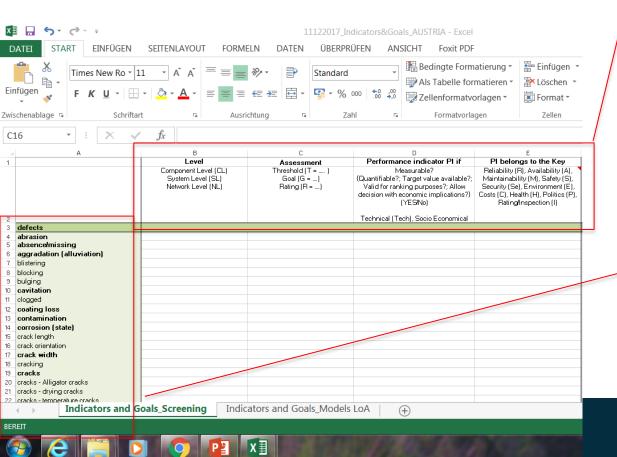
Survey- Step by Step

		\mathbf{k}			- 🎢 🗌	λ 🗈		🗸 🖃 🌑
🛠 Favoriten	Name ^	Änderungsdatum	Тур	Größe				
🔜 Desktop	🍑 Austria	17.12 2017 11:32	Dateiordner					
鷆 Downloads	📕 Bosnia and Herzegovina	12.12.20 7 13:15	Dateiordner					
😻 Dropbox	📕 Croatia	17.12.2017 11 32	Dateiordner					
🕮 Zuletzt besucht	📙 Czech Republic	17.12.2017 11:32	Dateiordner					
	🐌 Denmark	17.12.2017 11:32	Dateiordner					
🜏 Heimnetzgruppe	📕 Estonia	17.12.2017 11:32	Dateiordner					
	📕 France	17.12.2017 11:32	Dateiordner					
🖳 Dieser PC	📕 Germany	17.12.2017 11:32	Dateiordnex					
Apple iPhone	📕 Greece	17.12.2017 20:20	Dateiordner					
崖 Bilder	📕 Hungary	17.12.2017 11:32	Dateiordner					
膧 Desktop	📕 Iceland	17.12.2017 11:32	Dateiordner					
📗 Dokumente	📕 Ireland	17.12.2017 11:32	Dateiordner					
〕 Downloads	📕 Israel	17.12.2017 11:32	Dateiordner					
🐌 Musik	📕 Italy	17.12.2017 11:32	Dateiordner			- 1		
🤰 Videos	📕 Norway	17.12.2017 11:32	Dateiordner			'ST	SE	elect y
🊢 Windows8_OS (C:)	📔 Portugal	17.12.2017 11:32	Dateiordner			U		noot y
	🐌 Serbia	17.12.2017 11:32	Dateiordner					-
📬 Netzwerk	🐌 Slovenia	17.12.2017 11:32	Dateiordner					
	🎴 Spain	17.12.2017 11:32	Dateiordner					

9 Elemente

our country

• Open the file named "19122017_Indicators&G oals_(country)-EXPERTS


Survey- Step by Step

 Open the first data sheet called "Personal Information" and fill in your personal data

TU140	06 E	XAMPLE -AUSTRI	A]			
]			
Professio	civil	engineer				
- -						
Intervals betwe	een inspectio		ery four months (crew duty)			
-		control/engineer or. Bridge master-every four years qualfied engineer/every six years				Please fill in the
-			special audit/ if required every time			
-						empty cells
Current assess	sment System		1erkblatt	F		ompty conc
_			needed, 5=very heavy damage,			
_		immediate	ely repairs)			
Helevant docu	iments assessing	g the bridge monitoring sys				
-			3.03.11			
-						
-	RVS 13.03.51					
-	-					
-						
-						
			·			
Deves	nal Informe	tion Indicator	and Cools Screening	Taball	02	
Perso	nal Informa	ation indicator	and Goals_ Screening	Tabell	es (6
COST ACT			COST ACTION TO 14	00		SLIDE 27

Survey- Step by Step

- If you are done with your personal informations, please open the "data sheet" called " Indicator and goals screening"
- Now we start with the main task

4 columns for each classification

- 1. Level (CL, SL, NL)
- 2. Assessment (T, G, R)
- 3. Performance Indicator PI if (indicative questions)
- PI belongs to the Key Performance Indicator(s)) (R, A, M, S, Se, C, H, P, I)

In this column are the PIs (Performance Indicators) and the homogenized PIs of each country (highlighted in bold)

Survey- Step by Step (Last step)

созт

ACTION

Preparation for plotting the "Spider-diagram": open den second file called "19122017_Spider_country_EXPERTS in your country folder

A	в	c	D	E	F	G	н	-	J
i i i i i i i i i i i i i i i i i i i			Safety, Reliability, Security	-					
	Level	Performance indicator PI if	PI belongs to the Key Peformance Indicator(s)	Assessment					1
	Component Level	Measurable?			1		rating (1- 5)	weighti	comment
PI	(CL)	{Quantifiable?; Target value available?; Valid for ranking purposes?; Allow decision with economic implications?} {YES/NO}	Reliability (R), Availability (A), Maintainability (M), Safety (S), Security (Se), Environment (E), Costs (C), Health (H), Politics	Threshold (T =) Goal (G =)	applicable/ not applicable	intensity	1 (best)	0-1 (2)	(description o the position]
	System Level (SL) Network Level (NL)		(P), Rating/Inspection (1)	Rating (R =)			5(worst)		
		Technical (Tech) , Socio Economical (SoEc) , Sustainable (Sust)							r
									•
		·							
5 00	lumns	s you have to fill in \simeq							I
0.00			1						·
VOUI	r nore	onal assessment to \equiv							
you	i persi	$\frac{1}{2}$							1 1 1
thoc	se poir								i
1105	e hou		1						1
applicableł r	not applicable	rating (1-5) weightin comment intensity 1 (best) g (description of the 5(worst) 0-1 (%) position)	4 data sheets to first filling up (so key performance	rt and	l joined w				
	Safety, I	Realiability, Security Availability, M	aintainability Cost Environr	nent H	ealth, Polit <mark>i</mark> cs	+			
п				_			■		I –
	9] 🔾 🚫 💾 🔳							• Pr
	TU	406							

WG 1 REPORT

Quality specifications for roadway bridges, standardization at a European level

BASE

Estonia • List of documents

• Homogenized database

Finland

France

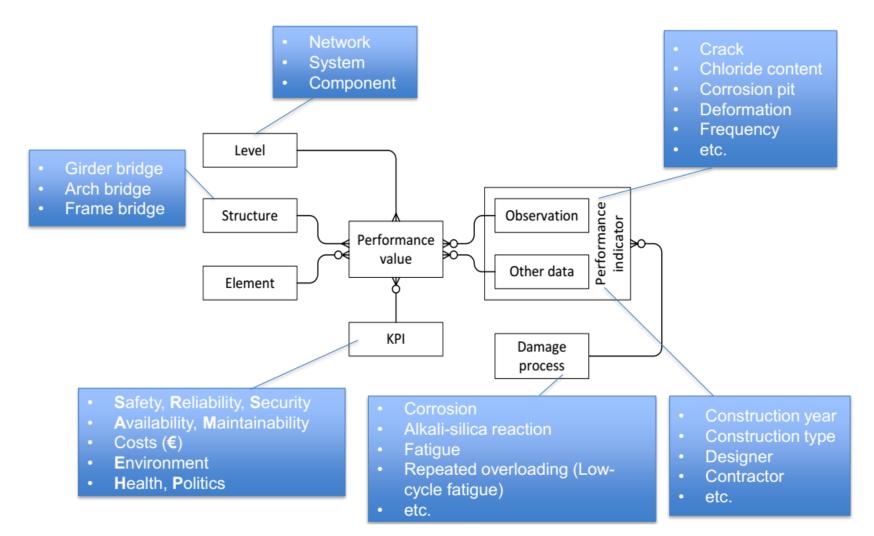
List of documents
 Non-homogenized database

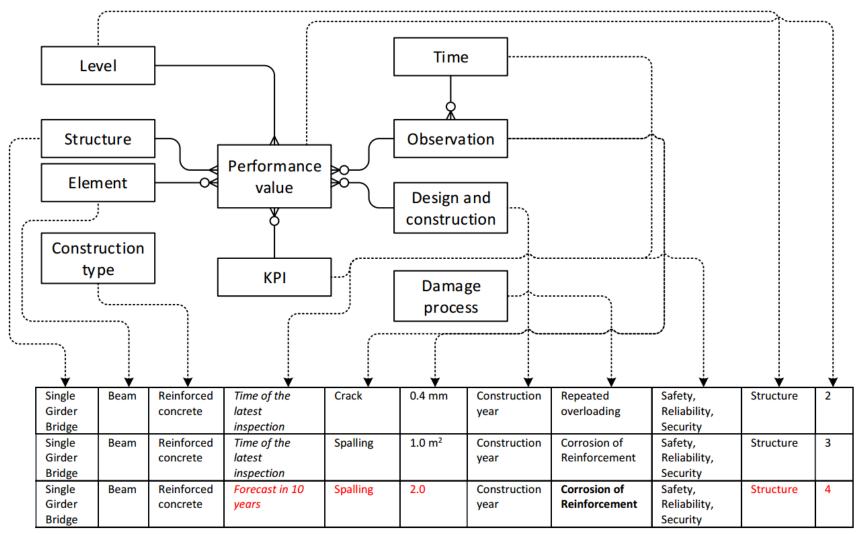
• List of documents Non-homogenized database

Germany

• List of documents Homogenized database

Greece


<u>List of documents</u>
 <u>Homogenized database</u>

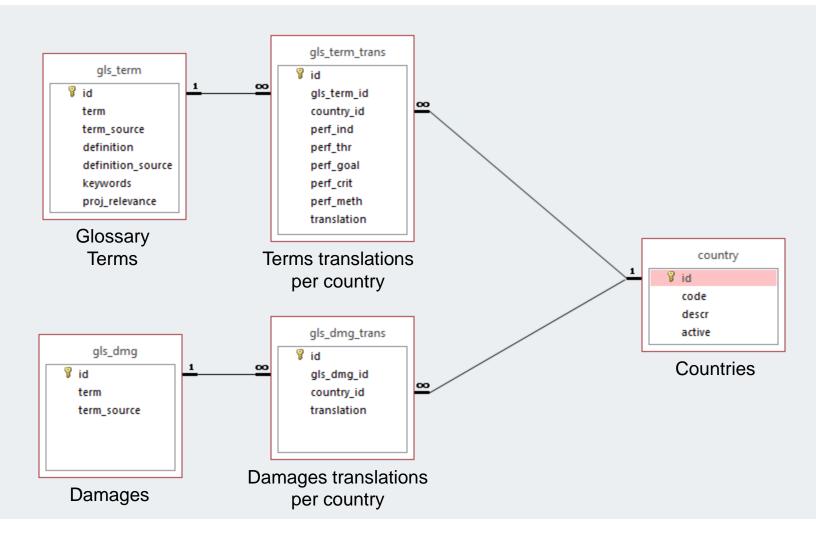


WG3. QUALITY CONTROL FRAMEWORK

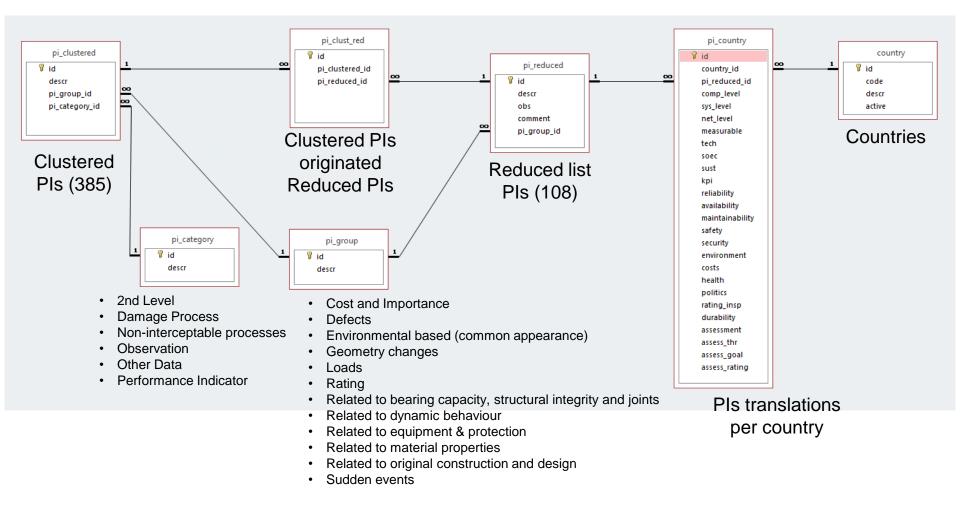
WG3. QUALITY CONTROL FRAMEWORK

WG4. CASE STUDIES

Girder Bridge Strimonas River Bridge Greece


Arch Bridge Carinski most, Mostar Bridge Bosnia and Herzegovina

Frame Bridge Unterführung SBB Bridge Switzerland



WG1 Database – Glossary

WG1 Database – Performance Indicators

Operators Survey

Research Survey Glossary Terms

Glossary Damages

Perf. Indicators (Clustered)

Perf. Indicators (Reduced)

Perf. Indicators (Countries)

Operators Survey

Operators Survey Research Survey Glossary Terms Glossary Damages Perf. Indicators (Clustered) Perf. Indicators (Reduced) Perf. Indicators (Countries)

Documents

Show 10 v entries

Show to v entre	5						Search:		
Country	Title	\Rightarrow	Туре	Author	\$ Year	Resp. Person	\Rightarrow	Obs.	\Rightarrow
All	All		All	All	All	All		All	
AT	Repair of concrete structures - National specifica		Inspection	Austrian Standards Instit	2015				
AT	Repair of concrete structures - National specifica		Inspection	Austrian Standards Instit	2015				
AT	Quality Assurance for Structural Maintenance, Stru		Evaluation	FSV	2009				
AT	Evaluation of load capacity of existing railway an		Evaluation	Austrian Standards Instit	2014				
AT	Quality Assurance for Structural Maintenance - Suv		Inspection	BMVIT	2011				
BA	UPUTSTVO ZA INSPEKTORE MOSTOVA / INSTRUCTIONS FOR		Evaluation	BCEOM Societe Francaise D	2004	Neven Pavlinovic			
BA	UPUTSTVO ZA INSPEKTORE MOSTOVA / INSTRUCTIONS FOR		Evaluation	BCEOM Societe Francaise D	2004	Neven Pavlinovic			
CZ	TP215 The application of the modal analysis for th		Evaluation	CTU in Prague, Faculty of	2009	Pavel Ryjácek			
CZ	TP216 The design, maintenance, inspection, repairs		Inspection	CTU in Prague, Faculty of	2009	Pavel Ryjácek			
CZ	TP175 Evaluation of the remaining life of concrete		Evaluation	SVÚOM s.r.o.	2006	Pavel Ryjácek			

Showing 1 to 10 of 74 entries

Previous 1 2 3 4 5 ... 8 Next

Soarch

Research Survey

Operators Survey Research Survey Glossary Terms Glossary Damages Perf. Indicators (Clustered) Perf. Indicators (Reduced) Perf. Indicators (Countries)

Articles

10 W antri Sh

Show 10 ∨ entr	les		Se	arch:
Country	Article Title	Author	∳ Year	Resp. Person
All	All	All	All	All
CZ	Methodology for the quantitative risk assessment of road bridges exposed to accidental events	Sykora, M., Holicky, M., Manas, P.	2015	Pavel Ryjacek
CZ	BRIDGES EVALUATION FROM LCC ASPECT	Macek, D., Meštanová, D.	2009	Pavel Ryjacek
CZ	BRIDGE GIRDERS CONDITION EVALUATION BY ACOUSTIC EMISSION METHOD USE	Pospíšil, K., Korenská, M., Pazdera, M., Stryk, J.	2003	Pavel Ryjacek
CZ	Diagnostics of a Historical Bridge Using Measuring Methods and Inverse Analysis	KLUSÁCEK, L.; NECAS, R.; BUREŠ, J.	2015	Pavel Ryjacek
CZ	Reliability elements for assessment of existing bridges	Holický, M., Markova, J.	2010	Pavel Ryjacek
CZ	Optimum Reliability Levels for Structures	Holický, M.	2014	Pavel Ryjacek
CZ	Structural robustness as an innovative design concept	Sykora, M., Holicky, M.	2010	Pavel Ryjacek
CZ	Strength assessment of historic brick masonry	Witzany, J., Cejka, T., Sýkora, M., Holický, M	2015	Pavel Ryjacek
CZ	Uncertainties in resistance models for sound and corrosion-damaged RC structures according to EN 1992-1-1	Sykora, M., Holicky, M., Prieto, M., Tanner, P	2015	Pavel Ryjacek
CZ	The design value method and Adjusted Partial Factor Approach for existing structures	Caspeele, R., Sykora, M., Allaix, D.L., Steenber	2013	Pavel Ryjacek
Showing 1 to 10 of 3	52 antrias		Provious 1 2 2	4 5 26 Nort

Showing 1 to 10 of 252 entries

Previous 1 2 3 4 5 ... 26 Next

COST ACTION TU1406

SLIDE 39

Glossary Terms

Operators Survey Research Survey Glossary Terms

Glossary Damages Perf. Indicators (Clustered)

Perf. Indicators (Reduced) Perf. Indicators (Countries)

Glossary

Definition									Search:			
Country	Term (EN)	▼	Source	Translation	Ş	Source	Keywords	Proj. Relevance	¢	Perf. Indicator	\$	Perf.
All	All		All	All		All	All	All		All		All
AU	? Failure path			Versagenspfad		[BFDW12]	Safety and Reliability, Modelling	FE 15.0538 (Systemanalyse)				
BA	? Failure path					[BFDW12]	Safety and Reliability, Modelling	FE 15.0538 (Systemanalyse)				
CZ	? Failure path					[BFDW12]	Safety and Reliability, Modelling	FE 15.0538 (Systemanalyse)		х		
DK	? Failure path					[BFDW12]	Safety and Reliability, Modelling	FE 15.0538 (Systemanalyse)				
EE	? Failure path					[BFDW12]	Safety and Reliability, Modelling	FE 15.0538 (Systemanalyse)				
ES	? Failure path					[BFDW12]	Safety and Reliability, Modelling	FE 15.0538 (Systemanalyse)				
FR	? Failure path			Chemin de défaillance		[BFDW12]	Safety and Reliability, Modelling	FE 15.0538 (Systemanalyse)				
GR	? Failure path					[BFDW12]	Safety and Reliability, Modelling	FE 15.0538 (Systemanalyse)				
HR	? Failure path					[BFDW12]	Safety and Reliability, Modelling	FE 15.0538 (Systemanalyse)				
IL	? Failure path					[BFDW12]	Safety and Reliability, Modelling	FE 15.0538 (Systemanalyse)				
<												>
Showing 1 to 10 of 6,	,279 entries							Previous 1 2	3 4	5 62	28 N	ext

Glossary Damages

Operators Survey

Research Survey Glossary Terms Glossary Damages Perf. Indicators (Clustered) Perf. Indicators (Reduced) Perf. Indicators (Countries)

Glossary Damages

Show 10 v entr	ies				Search:
Country	\$	Term (EN)	Translation	Source	÷
All		All	All	All	
AU		Abrasion	Abrieb	Qualitätssicherung bauliche Erhaltung Bauwerksdatenbank - RVS 13.04.11	
ES		Abrasion	Daños producidos a causa de ciclos		
ES		abrasion	abrasión		
SI		Abrasion	Abrazija		
IL		Abrasion of Concrete Surface	????? (???? ??? ?????)	"Israeli bridges and road structures defects tables", ver-5-2015, Hebrew Edition	
AU		Absence of a berm	Berme fehlt	Qualitätssicherung bauliche Erhaltung Bauwerksdatenbank - RVS 13.04.11	
ES		Absence of anchorage protection elements	Ausencia de elementos de protección de anclaje		
ES		Absence of beacons and headrooms	Ausencia de balizamientos y galibos		
ES		Absence of defense elements	Ausencia de elementos de defensa		
AU		Absence of hollow box drainage	Fehlende Hohlkastenentwässerung	Qualitätssicherung bauliche Erhaltung Bauwerksdatenbank - RVS 13.04.11	

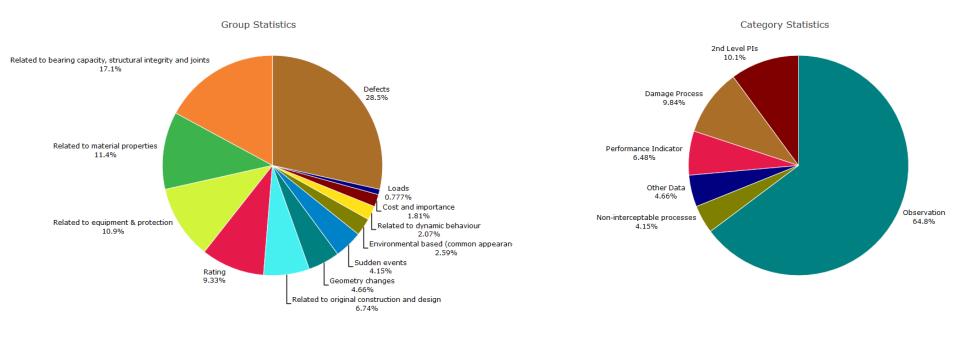
Showing 1 to 10 of 966 entries

Previous 1 2 3 4 5 ... 97 Next

Performance Indicators – Clustered

Operators Survey

Research Survey Glossary Terms Glossary Damages


Perf. Indicators (Clustered) Perf. Indicators (Reduced) Perf. Indicators (Countries)

Clustered List of Performance Indicators

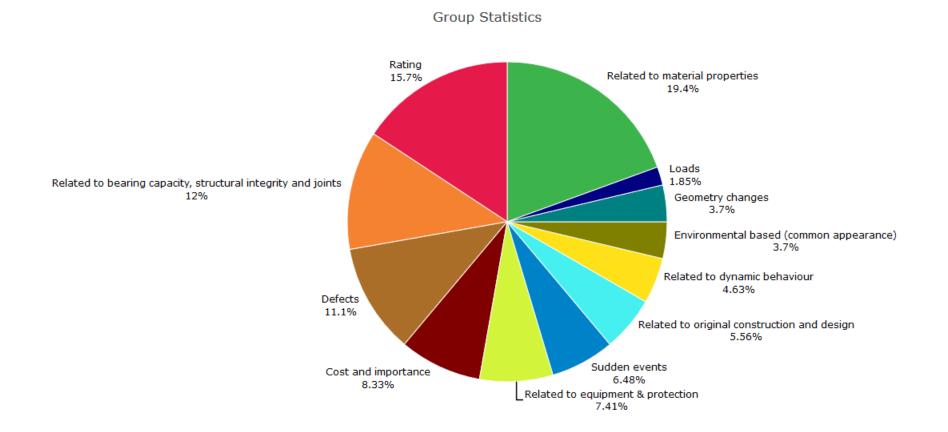
Show 10 v entries		Search:
Perf. Indicator		Category
All	Ali	All
element functionality level	Cost and importance	2nd Level PIs
sum of costs for repair of individual damages	Cost and importance	2nd Level PIs
traffic restrictions	Cost and importance	Observation
traffic volume	Cost and importance	Observation
bridge importance (size)	Cost and importance	Other Data
importance of bridge element	Cost and importance	Other Data
price of the new element	Cost and importance	Other Data
abrasion	Defects	Damage Process
aggradation (alluviation)	Defects	Damage Process
blocking	Defects	Damage Process
Showing 1 to 10 of 386 entries		Previous 1 2 3 4 5 39 Next

Performance Indicators Statistics – Clustered

Performance Indicators – Reduced

Operators Survey Research Survey Glossary Terms Glossary Damages Perf. Indicators (Clustered)

Perf. Indicators (Reduced) Perf. Indicators


Perf. Indicators (Countries)

Reduced List of Performance Indicators

Show 10 v entries		Search:
Perf. Indicator	♦ Obs.	♣ Group 4
All	All	All
Absence of equipment component	Components missing	Related to equipment & protection
Absent structural component	Components missing	Related to bearing capacity, structural integrity and joints
Advanced deterioration process		Rating
Approach slab settlement		Related to equipment & protection
Arch ring separation		Related to bearing capacity, structural integrity and joints
Asphalt pavement cracking		Related to equipment & protection
Asphalt pavement wearing and tearing	Rutting, ravelling	Related to equipment & protection
Asphalt pavement wheel tracking and wrinkling and undulation		Related to equipment & protection
Bearings deformation		Related to bearing capacity, structural integrity and joints
Bearings displacement		Related to bearing capacity, structural integrity and joints
Showing 1 to 10 of 108 entries		Previous 1 2 3 4 5 11 Next

Performance Indicators Statistics – Reduced

COST ACTION TU1406

SLIDE 45

Country Performance Indicators

Operators Survey Research Survey Glossary Terms Glossary Damages Perf. Indicators (Clustered)

Perf. Indicators (Reduced)

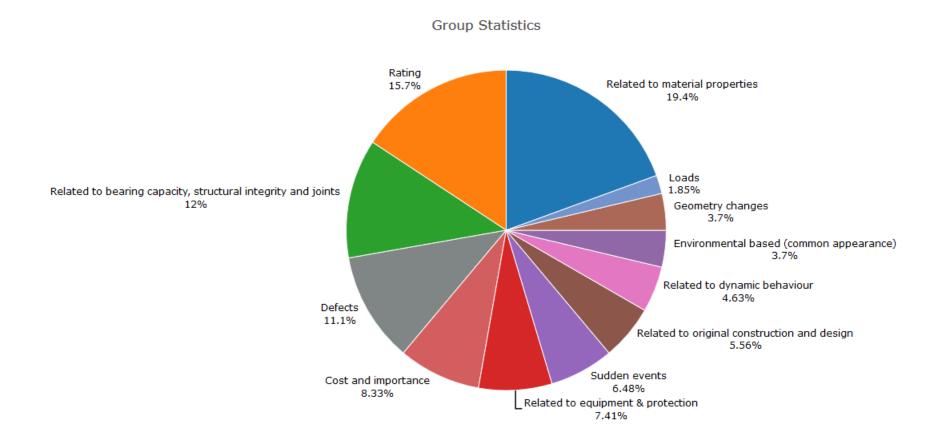
Perf. Indicators (Countries)

Reduced List of Performance Indicators per Country

Show 10 v entries Search: Component Network Socio Belongs Country Performance Indicator Group System Level Measurable? 🖕 Technical Sustainable Level Level Economical KPI? All ES Sum of costs for repair of individual damages Cost and importance Х Х Х Х ES Crack length Defects Х Х Х Х ES Crack orientation Defects Х X X Х ES Crack width Defects Х Х Х Х Х ES Defects Crack spacing ES Cracks related to origin Defects Х х Х Х ES Fatigue cracking Defects Х Х х х ES Concrete cover Defects Х Х Х Х ES Water penetrability Defects Х Х Х х ES Settlement Defects Х Х < >

Showing 1 to 10 of 140 entries

Previous 1 2 3 4 5 14 Next



Country Performance Indicators

Group	≜ ES	.≜ HR	÷
Cost and importance	0	9	
Defects	12	0	
Environmental based (common appearance)	0	4	
Geometry changes	4	0	
Loads	0	2	
Rating	0	17	
Related to bearing capacity, structural integrity and joints	11	2	
Related to dynamic behaviour	0	5	
Related to equipment & protection	8	0	
Related to material properties	21	0	
Related to original construction and design	0	6	
Sudden events	0	7	

Country Performance Indicators Statistics

QUALITY SPECIFICATIONS FOR ROADWAY BRIDGES, STANDARDIZATION AT A EUROPEAN LEVEL

Framework for KPIs bridge assessment

Irina Stipanovic, University of Twente, Netherlands

UNIVERSITY OF TWENTE.

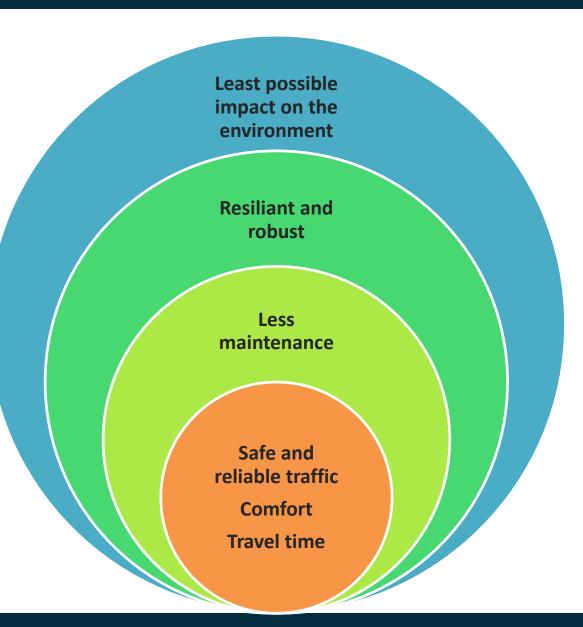
Winter training school, 18.-21. December 2018, Zell am See, Austria

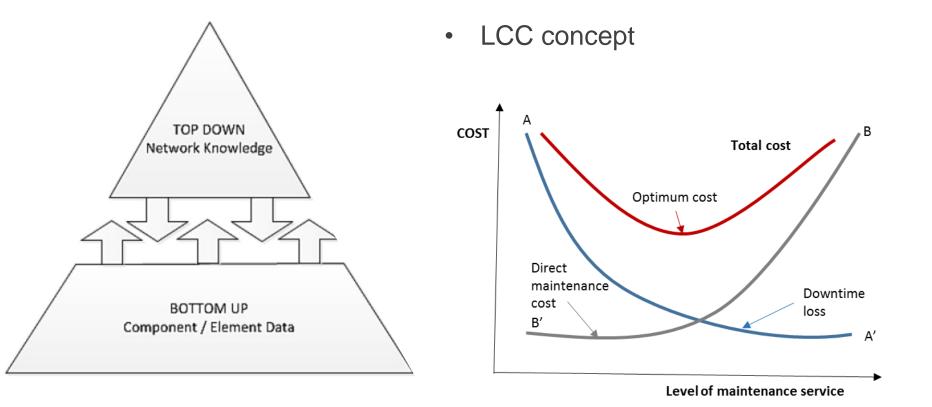
Introduction

Main objective of WG 2 Performance Goals

- To provide an overview of existing performance goals based on the *performance indicators* previously identified in WG1.
- These goals will vary by technical, environmental, economic and social aspects, and on the component, system and network level.
- Deliver a Report which will specify the performance goals, linked to the Performance Indicators.

Definition of Performance Indicator

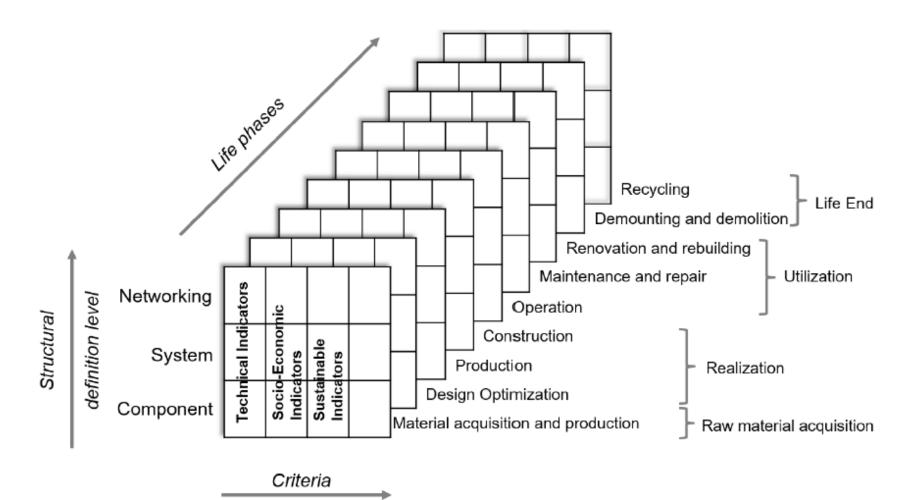

 Parameter measurable and quantifiable related to the bridge performance that can be compared with a target measure of a performance goal or can be used for ranking purposes among a bridge population in the framework of a Quality Control Plan or life-cycle management (decisions, actions involving economic resources).


Performance goals

- society / users related
 - Technical PGs
 - Reliability and safety related goals
 - Sustainable PGs
 - Environmental impact related goals
 - Other PGs
 - Economic and social based goals

Asset management approach

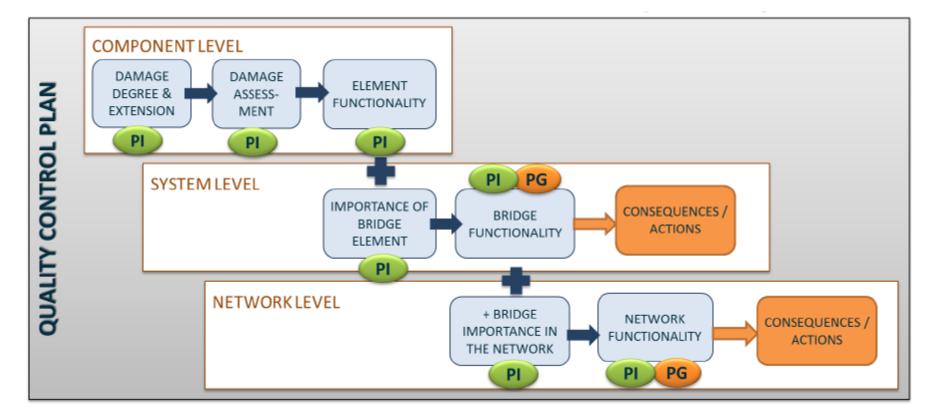
BRIDGE MANAGEMENT APPROACH


- Asset management considers physical assets in relation with other activities to deliver required performance
- Bridge management is to be part of the management of the network
- PAS55 (BSI, 2008) and ISO55000

In the case of the Netherlands network performance is described using nine performance aspects (RAMS SHEEP):

- Reliability, Availability, Maintainability
- Safety
- Security, Health, Environment
- Life Cycle Costs
- Politics

Complexity!

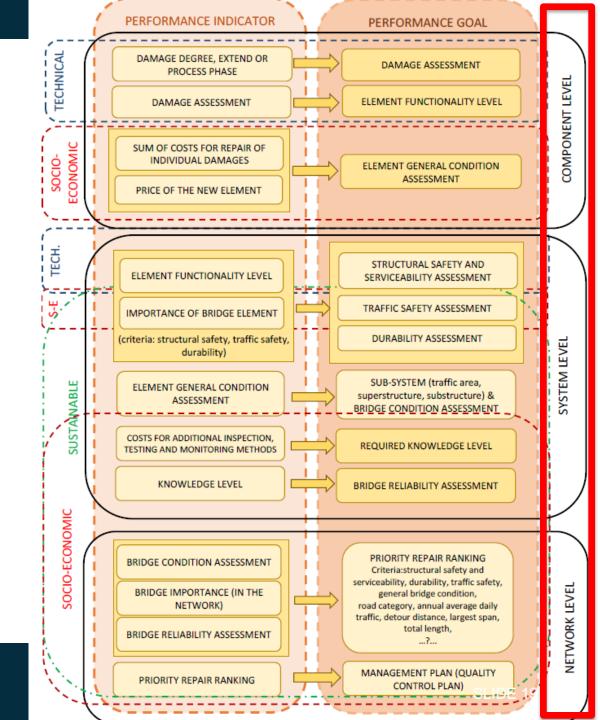


Framework

Crucial for optimal QC and Management

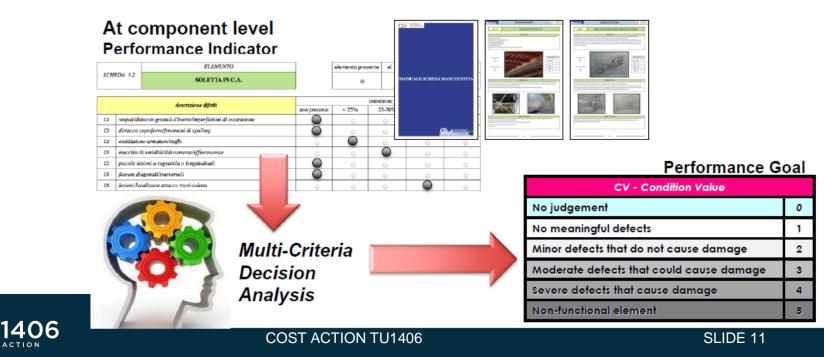
• Clustering the observations and the necessary actions based on the component, system and network level.

PI



PG

Indicators and goals


 Interactions between KPI and PG are contemplated, as they are crucial for optimal quality control and management of road bridges

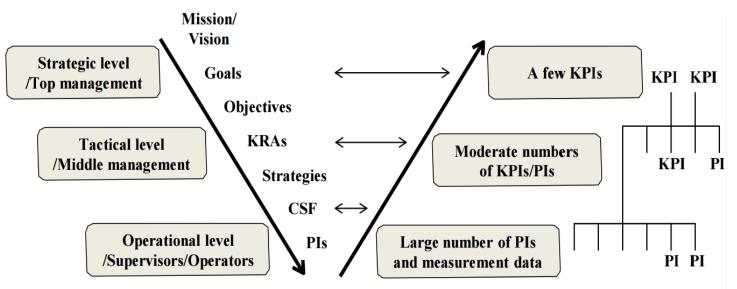
Transformation of performance indicators

- The multiple performance indicators cannot necessarily be directly compared;
- The PIs must be transformed in order to facilitate decision → KPIs as aggregated condition values → performance goals
- In order to do so, a "multi-criteria-analysis" or similar will have to be carried out

WG 2 Report

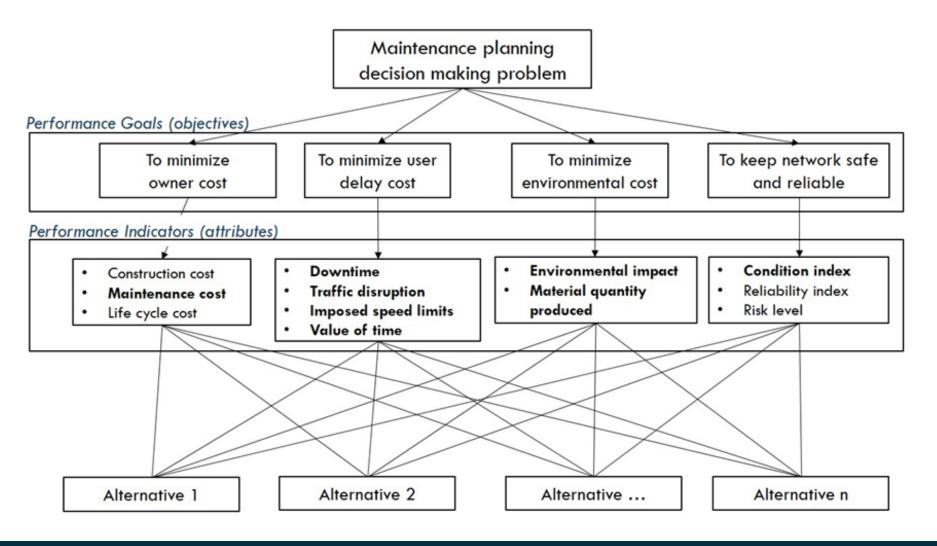
- Final report published in November 2017
- 13 Authors:

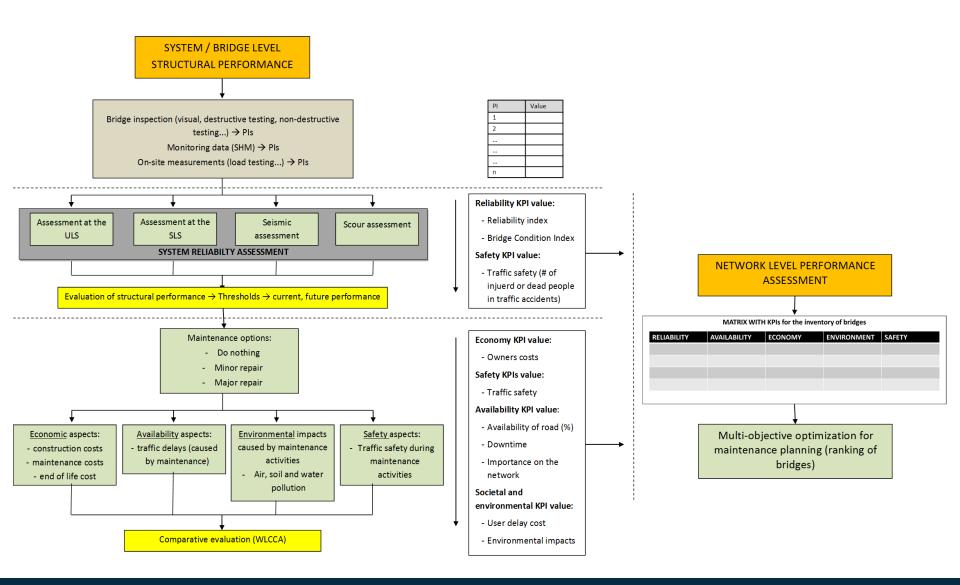
I. Stipanovic, E. Chatzi, M. Limongelli, K. Gavin, Y. Xenidis, B. Imam, A. Anzlin, M. Zanini, Z. Allah, G. Klanker, N. Hoj, N. Ademovic, S. Skaric Palic


- 7 Chapters and 2 Appendices
- Additional online MAUT tool is developed
- In the final format report has about 80 pages

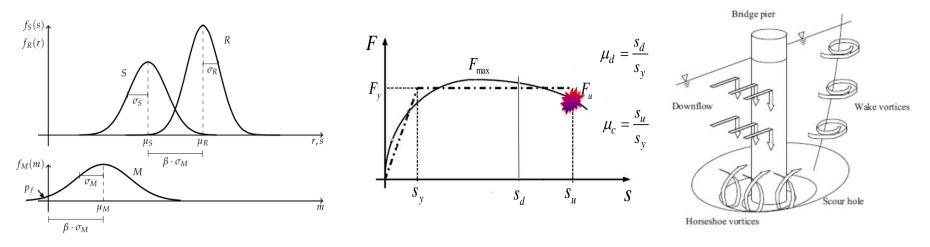
Content list

1 Introduction

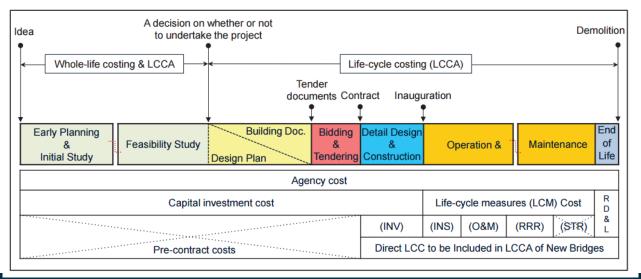

2 Performance goals for roadway bridges


KRA = key result area; where the result and indicators are visualised

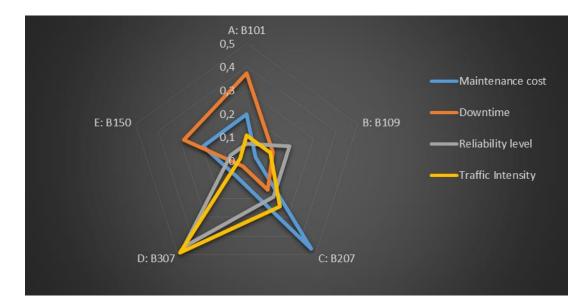
- CSF = critical success factor; to succeed with set objectives
- KPI = Key performance indicator (PI)



3 Reliability


- 3.1 Structural Performance assessment
- 3.2 Seismic assessment
- 3.3 Scour assessment
- 3.4 Joint seismic and scour assessment: current research trends
- 3.5 Implementation of Structural Health Monitoring

4 Economy, societal and environmental performance goals


- 4.1 Introduction
- 4.2 Economy performance assessment
- 4.3 Societal Performance Aspect
- 4.4 Combined Economic and Environmental Performance Analysis

5 Multi-objective optimization models

- 5.1 Analytic Hierarchy Process
- 5.2 Multi-attribute Utility Functions
- 5.3 Discussion and conclusions

6 Conclusion

Future developments should concentrate on the unification of:

- Standardization of the assessment procedures,
- Collection of PIs and quantification of KPIs,
- Development of maintenance optimization tools which can be applied in practice.
- Appendix 1 Environmental impact per kg of material (EE_{i,j})
- Appendix 2: Instructional Manual for the application of MAUT web-based tool

MAUT tool for bridge ranking for maintenance planning

- Management of bridges while achieving following performance goals:
 - Maximize the condition (reliability)
 - Minimize the owner cost (economy)
 - Minimize the user delay cost (availability)
 - Minimize the environment cost (environment)
- Objective: Rank/prioritize the bridges that are in need of maintenance while satisfying performance goals
- Tool is provided online on the COST TU 1406 website

Conclusions

- Large disparity in Europe regarding the way performance indicators are quantified and how performance goals / requirements are specified.
- Main challenges are:
 - how to quantify performance goals other than technical, and
 - how to link strategic level to the performance requirements on the project level.
- An important notion is that in many countries, the main focus of bridge management is still the condition assessment of the particular objects or elements.

Summary

- Technical performance goals (structural safety)
 - on the object level
 - linked to standards, value defined
 - can be internationally agreed
- Economic, environmental, societal and other performance goals
 - Depend on each country / agency goals
 - Mostly defined as constraints
 - Used as comparative method (no absolute values)
 - On the object level LCC to select optimal maintenance option
 - On the network level to select optimal maintenance strategy (performance goals: to increase availability, to decrease the environmental impact)

Thank you for your attention!

WWW.TU1406.EU

Winter Training School, Zell am See, 18.-21.12.2017

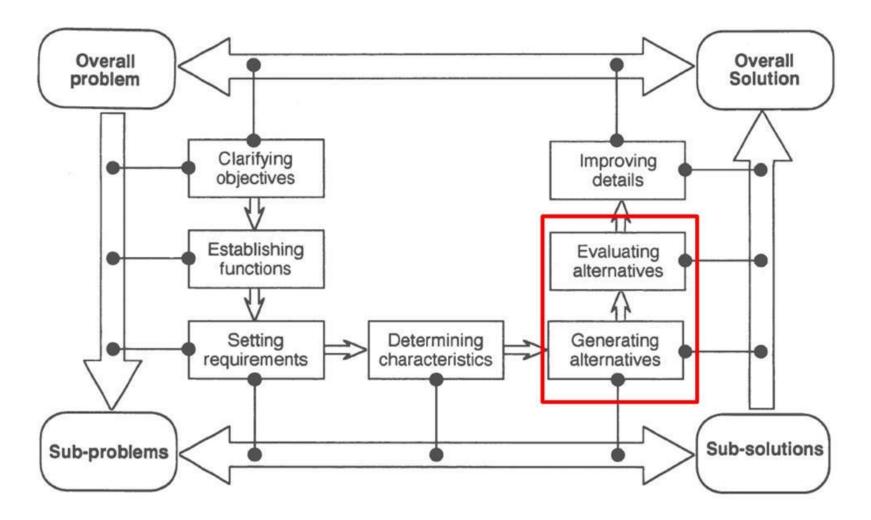
QUALITY SPECIFICATIONS FOR ROADWAY BRIDGES, STANDARDIZATION AT A EUROPEAN LEVEL

Multi-criteria decision making models

Irina Stipanovic, University of Twente, The Netherlands

Content

- 1. What is MCDA
- 2. MCDA method
- 3. Analytical Hierarchy Process (AHP)
- 4. Application of AHP
- 5. Workshop


WHAT IS MCDA

- Multi-criteria decision analysis
- Selection of best solution from set of alternatives based on multiple criteria
- Number of MCDA methods exist for this purpose
 - SAW (Simple Additive Weighting)
 - AHP (Analytical Hierarchy Process)
 - ANP (Analytical Network Process
 - MAUT (Multi-Attribute Utility Theory)
 - ELECTRE (Elimination et Choice Translating Reality)
 - TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution)

2. MCDA METHOD

Decision making!

Multi-criteria decision making For maintenance planning

- Systematic approach to evaluate multiple conflicting objectives in decision making
 - Limited budget vs. aging bridge
 - Demands of availability vs. need of maintenance
 - Risk of failure vs. criticality
- Enable the decision maker to provide preferences when exposed with conflicting objectives

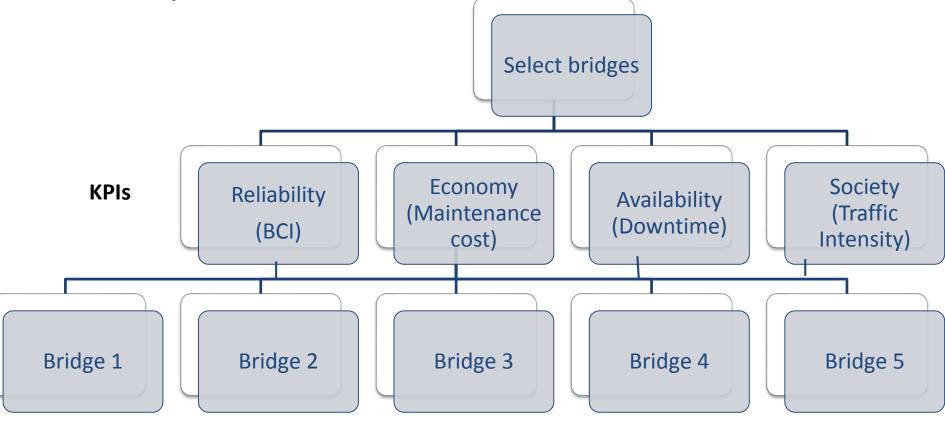
COSTTU 1406 Winter Training school

- Proposed by Thomas L. Saaty in 1970
- One of the widely used MCDA method
- Has wide variety of application such as government, business, industry, healthcare, etc
- Incorporate quantitative as well as qualitative criteria for decision making
- Algorithm
 - 1. Determine the relative weights of decision criteria
 - 2. Determine the relative ranking of alternatives

- Components of Decision making
 - Objective
 - Example: Select a car
 - Example: Select the best design solution
 - Criteria
 - Style, safety, price, capacity, etc
 - environment cost, society cost, etc.
 - Alternatives
 - Ford excort, Accord seden, Pilot SUV
 - Alternative 1, Alternative 2, etc

- Ranking of weights and Alternatives
 - Pairwise comparison is made to decide the relative importance of each criteria
 - The scale of comparion is also introduced by Saaty

The Fundamental Scale for Pairwise Comparisons					
Intensity of Importance	Definition	Explanation			
1	Equal importance	Two elements contribute equally to the objective			
3	Moderate importance	Experience and judgment slightly favor one element over another			
5	Strong importance	Experience and judgment strongly favor one element over another			
7	Very strong importance	One element is favored very strongly over another; its dominance is demonstrated in practice			
9	Extreme importance	The evidence favoring one element over another is of the highest possible order of affirmation			
Intensities of 2, 4, 6, and 8 can be used to express intermediate values. Intensities 1.1, 1.2, 1.3, etc. can be used for elements that are very close in importance.					


• Illustrative Example

Due to budget constraints, a decision has to be made regarding the selection of bridge for maintenance. The objective is to select those bridges where the cost and downtime can be kept the minimum.

- Select bridges Objective
- Cost, downtime, etc Criteria
- All the bridges under consideration Alternatives

• Hierarchy Tree

Analytical Hierarchy Process

Illustrative example

Define objective and identify criteria

Objectives

- Minimize the maintenance cost
- Minimize the downtime

Key Performance indicator	0	Reliability	Economy	Availability	Society
Criteria	Bridges	Reliability level	Maintenance cost	Downtime	Importance on the network
Scale	Name	Score card	Euros	Hours	Traffic Intensity (# cars / day)
	A: B101	3	500k	30	9000
	B: B109	4	1000k	70	10000
Alternatives	C: B207	4	200k	60	13000
	D: B307	5	800k	180	15000
	E: B150	3	500k	40	5000

Comparison matrix

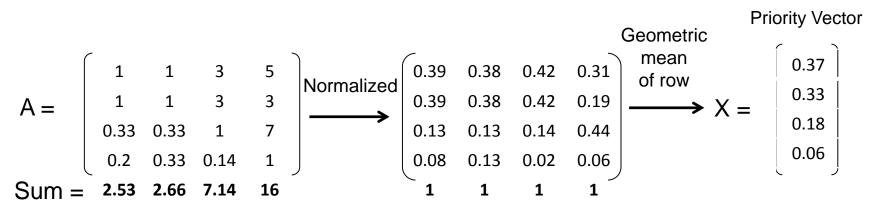
Bridge	Condition index	Maintenance cost	Downtime	Traffic Intensity
Name	Score card*	Euros (k)	Hours	# of cars/day
Bridge A	3	500	30	9000
Bridge B	4	1000	70	10000
Bridge C	4	200	60	13000
Bridge D	5	800	180	15000
Bridge E	3	500	40	5000

*1 is very good state of bridge and 6 is out of service

SCORE CARD

Bridge Condition Index	Description
1	Very Good (no faults)
2	Good (minor faults well within tolerance)
3	Fair (tolerable faults, no restriction in use necessary)
4	Poor (significant structural defects)
5	Very poor (seriously deficient, mitigation measures necessary)
6	Out of service (on high risk of failure, mitigation needed urgently)

	Maintenance cost (MC)	Downtime (DT)	Reliability (RL)	Traffic intensity (TI)
Maintenance cost	1	1	3	5
Downtime	1	1	3	3
Reliability	1/3	1/3	1	7
Traffic intensity	1/5	1/3	1/7	1



• Ranking of Criteria

Criteria		Importance & Intensity		
Α	В	Imp	Intensity	
Maintenance cost	Downtime	А	1: Equal importance	
Maintenance cost	Reliability	А	3: Moderate	
Maintenance cost	Traffic Intensity	А	5: Strong	
Downtime	Reliability	А	3: Moderate	
Downtime	Traffic Intensity	А	3: Moderate	
Reliability	Traffic Intensity	А	7: Very Strong	

- Ranking of Criteria
- To find the ranking of priorities, namely the Eigen Vector X:
 - 1) Normalize the column entries by dividing each entry by the sum of the column.
 - 2) Take the overall row averages.
 - A is the comparison matrix of size n×n, for n criteria, also called the priority matrix.
 - x is the Eigenvector of size n×1, also called the priority vector.

3. Application Example – AHP

Comparison of decision criteria (Experts' judgment)

Matrix normalization

- Create the comparison matrix from the preference structure
- Reduce the matrix from 0 to 1 by

$$\overline{b}_{ij} = \frac{b_{ij}}{\sum_{k=1}^{n} b_{kj}}, (i, j = 1, 2, \dots, n),$$

 Calculate the final Eigen vector from the preferences of each alternative by

$$\overline{\mathbf{w}}_i = \sum_{j=1}^n \overline{b}_{ij}, (i = 1, 2, \dots, n). \qquad \mathbf{w}_i = \frac{\mathbf{w}_i}{\sum_{j=1}^n \overline{\mathbf{w}}_j}, (i = 1, 2, \dots, n).$$

COSTTU 1406 Winter Training school

Comparison matrix

Bridge	Condition index	Maintenance cost	Downtime	Traffic Intensity
Name	Score card*	Euros (k)	Hours	# of cars/day
Bridge A	3	500	30	9000
Bridge B	4	1000	70	10000
Bridge C	4	200	60	13000
Bridge D	5	800	180	15000
Bridge E	3	500	40	5000

*1 is very good state of bridge and 6 is out of service

3. Application Example – AHP

Comparison of decision criteria (Experts' judgment)

Comparison Matrix

Comparison among criteria	Maintenance cost	Downtime	Reliability	Traffic Intensity
Maintenance cost	1.00	1.00	3.00	5
Downtime	1.00	1.00	3.00	3
Reliability level	0.33	0.33	1.00	7
Traffic Intensity	0.20	0.33	0.14	1

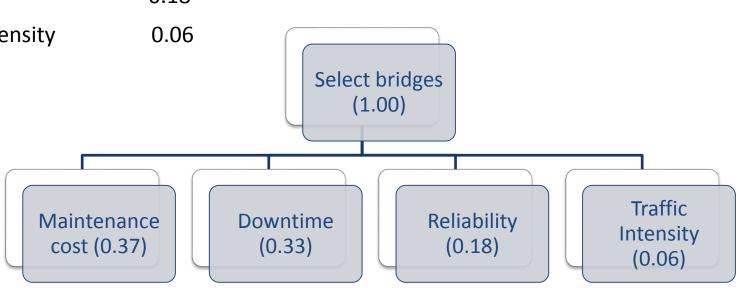
Matrix Normalization	
$\overline{b}_{ij} = \frac{b_{ij}}{n}, (i, j = 1, 2, \cdots, n),$	
$\sum_{kj}^{n} b_{kj}$	/

Normalized matrix	Maintenance cost	Downtime	Reliability	Traffic Intensity
Maintenance cost	0.39	0.38	0.42	0.31
Downtime	0.39	0.38	0.42	0.19
Reliability level	0.13	0.13	0.14	0.44
Traffic Intensity	0.08	0.13	0.02	0.06

COSTTU 1406 Winter Training school

3. Application Example – AHP

Comparison of decision criteria (Experts' judgment)


$$\overline{\mathbf{w}}_i = \sum_{j=1}^n \overline{b}_{ij}, (i = 1, 2, \dots, n). \qquad \mathbf{w}_i = \frac{\overline{\mathbf{w}}_i}{\sum_{j=1}^n \overline{\mathbf{w}}_j}, (i = 1, 2, \dots, n).$$

Calculate eigenvector

Normalized matrix	Maintenance cost	Downtime	Reliability level	Traffic Intensity	Scores
Maintenance cost	0.39	0.38	0.42	0.31	0.37
Downtime	0.39	0.38	0.42	0.19	0.33
Reliability level	0.13	0.13	0.14	0.44	0.18
Traffic Intensity	0.08	0.13	0.02	0.06	0.06

- Ranking of Criteria
- Maintenance cost 0.37
- Downtime 0.33
- Reliability 0.18
- Traffic Intensity

- Ranking of Alternative
- For qualitative criteria, the fundamental scale of pairwise comparison is used
- For quantitative criteria, the normalized procedure can be used for simplicity

In our example, we have only quantitative values, which are normalized as follows

Maintenance cost		nce N	lormal	ized
B1	500		0.17	
B2	1000		0.33	
B3	200		0.07	
B4	800		0.27	
B5	500		0.17	
SUM	3000		1	

• Ranking of Alternative

Comparison Matrix

Normalized Priority Matrix

	МС	DT	RL	ТІ	MC	DT	RL	TI
B1	500	30	3	9000	0.17	0.08	0.16	0.17
B2	1000	70	4	10000	0.33	0.18	0.21	0.19
B3	200	60	4	13000	0.07	0.16	0.21	0.25
B4	800	180	5	15000	0.27	0.47	0.26	0.29
B5	500	40	3	5000	0.17	0.11	0.16	0.10
SUM	3000	380	19	52000	1.00	1.00	1.00	1.00

ANALYTICAL HIERARCHY PROCESS MATRIX NORMALIZATION

Downtime	level	Intensity	Scores		Overall score
Downtime	level	Intensity			
l6 0,17	0,08	0,17	0.37		0.21
0,33	0,18	0,19	0.33		0.09
0,07	0,16	0,25	0.55		0.27
26 0,27	0,47	0,29	0.18		0.15
16 0,17	0,11	0,10	0.06		0.18
2	160,17210,33210,07260,27	160,170,08210,330,18210,070,16260,270,47	16 0,17 0,08 0,17 21 0,33 0,18 0,19 21 0,07 0,16 0,25 26 0,27 0,47 0,29	16 0,17 0,08 0,17 0.37 21 0,33 0,18 0,19 0.33 21 0,07 0,16 0,25 0.18 26 0,27 0,47 0,29 0.18	16 0,17 0,08 0,17 0.37 21 0,33 0,18 0,19 0.33 21 0,07 0,16 0,25 0.18 26 0,27 0,47 0,29 0.18

Matrix Multiplication

COSTTU 1406 Winter Training school

BRIDGES RANKING RESULTS

Results

Minimum cost and downtime

COSTTU 1406 Winter Training school

Conclusion

- The framework of multi-criteria decision making (MCDM) provides a guidance on how to implement multiple performance goals
- The methods of MCDM incorporate decision makers preferences on multiple (conflicting) performance indicators
- The pairwise comparison of AHP grows exponentially when presented with large number of performance indicators
- For the maintenance optimization over the network, a link between the performance indicators at object level and the goal on network level needs to be established.
- The quantification of performance goals, other than technical goals, is a challenge.

3. USE OF AHP

- How can you use AHP for to select best design solution?
- How do you define best solution? By defining criteria..!
- How will you define the criteria?
- Who will define which criteria is most important as compared to others?

4. WORKSHOP

i.stipanovic@utwente.nl

COST ACTION TU1406: QUALITY SPECIFICATIONS FOR ROADWAY **BRIDGES, STANDARDIZATION AT A EUROPEAN LEVEL**

Training School on Bridge Quality Control, December 18 – 22, 2017 Zell am See, Austria

Quality Control Framework – Implementation and further research

Prof. Dr. Rade Hajdin - University of Belgrade, Serbia

рађевински факултет

Универзитет v Seorpaav

What is Quality?

- Wiki: Philosophy and common sense tend to see qualities as related either to subjective feelings or to objective facts. The qualities of something depends on the criteria being applied to and, from a neutral point of view, do not determine its value (the philosophical value as well as economic value). Subjectively, something might be good because it is useful, because it is beautiful, or simply because it exists. Determining or finding qualities therefore involves understanding what is useful, what is beautiful and what exists. Commonly, quality can mean degree of excellence, as in, "a quality product" or "work of average quality".
- Wiki: In business, engineering and manufacturing, quality has a pragmatic interpretation as the non-inferiority or superiority of something; it's also defined as fitness for purpose. Consumers may focus on the specification quality of a product/service, or how it compares to competitors in the marketplace. Producers might measure the conformance quality, or degree to which the product/service was produced correctly.

What is Quality regarding bridges?

- In ISO 9000: Degree to which a set of inherent characteristics of a product or service fulfills requirements.
- Bridge is definitely a product that has to fulfill certain requirements
- The requirements are defined in "codes of practice". Typical requirements are defined to safety and serviceability.
- The bridge is fit for purpose if safety and serviceability requirements are met.
- Safety and serviceability are inherent characteristics (following the above definition) of a bridge
- In realm of bridge management the term "performance goals" are often use instead of "requirements".
- The evaluation if safety and serviceability goals are met can be performed in any time instance.
- These goals are normally met at the time of acceptance.

Quality of existing bridges

- Wiki: Support personnel may measure quality in the degree that a product is **reliable**, **maintainable**, or **sustainable**. A quality item (an item that has quality) has the ability to perform satisfactorily in service and is suitable for its intended purpose.
- Fulfillment of the safety and serviceability goals over time.
- Assuming that the safety and serviceability goals are met at acceptance (-> handover to the owner or operator) what wouldn't they be met in some time in future.

Ravages of time

- Slow, observable and therefore interceptable processes (corrosion, frost, alkali aggregate(?), climate, traffic)
- Slow unobservable and therefore non-interceptable processes (corrosion of posttensioning steel, alkali aggregate)
- Sudden events (flooding, earthquake, fire)
- These processes can endanger the fulfillment of these requirements.

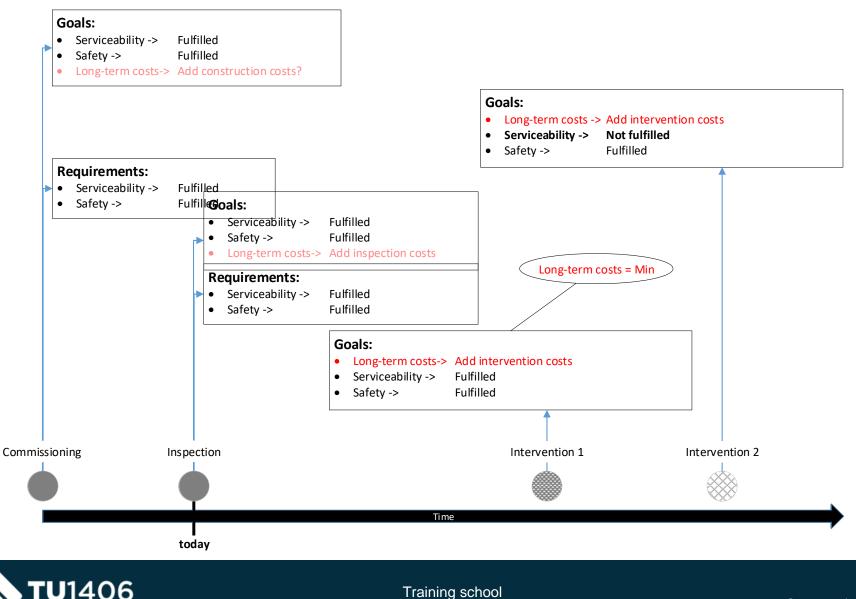
Quality control

- There are quite a few definitions reflecting the ambiguous meaning of the word "control" as
 - Verify, check or inspect or
 - Command, direct or rule.
- In business the quality control is defined as:

"The process of inspecting products to ensure that they meet the required standards" or

"The activity of checking goods as they are produced to make sure the final products are good"

- The first definition applies to the topic of this COST Action.
 - Check if product meet the standards, requirement or goals.
 - Car check, health check, etc.
- However, this COST Action goes beyond mere checking and verifying and provide guidance to "command and direct" actions to ensure long-term quality.



Quality control for bridges

- Static (snap shot) interpretation: Inspect and investigate a bridge and determine whether the serviceability and safety goals are met.
 - Basis for the decision making on actions
- Dynamic interpretation: Static interpretation + plan and execute actions to ensure long term fulfillment of safety and serviceability goals. -> Bridge Management
- There are different ways to ensure that goals are met on the long-term:
 - Preventive action
 - Corrective actions
 - Operational actions
- Which one to take? What is the criterion for decision making?
 - Economics (Cost); Which costs? One time costs or long term costs?
- There is therefore another goal of Quality Control -> Economics!!!

COST ACTION

December 20, 2017 | Zell am See, Austria

Performance goals

- The goal of road users is simple: to get from A to B safely in expected time.
- The road connection has to be reliable.
- Operational reliability -> not directly considered
- Structural reliability!
 - EN 1990:

"Ability of a structure or a structural member to fulfil the specified requirements, including the design working life, for which it has been designed. Reliability is usually expressed in probabilistic terms

NOTE: Reliability covers safety, serviceability and durability of a structure."

Durability: The structure shall be **designed** such that deterioration over its design working life does not impair the **performance** of the structure below that intended, having due regard to its environment and the anticipated level of maintenance.

– EN 1992:

A design using the partial factors given in this Eurocode (see 2.4) and the partial factors given in the EN 1990 annexes is considered to lead to a structure associated with reliability Class RC2 -> β_{safety} = 3.8, $\beta_{serviceability}$ =1.5 for 50years

Further performance goals

- **Reliability** include the probability of structural failure (safety) or operational failure (serviceability).
- Availability is the proportion of time a system is in a functioning condition.
 - WG2 (somewhat cryptical): Meet object specific requirements with regard to the fulfilment of object function.
 - For our purposes: Additional travel time due to imposed traffic regime on bridge.
 - Not reliability-related disruption of bridge users
- **Economic efficiency** -> minimizing long term cost
- **Safety** (not structural safety) minimize (eliminate) the **harm people** during the service life of a bridge. Loss of life and limb due to structural failure is normally not included!
- Environmental friendliness -> minimize the harm to environment during the service life of a bridge.

RAMSSH€EP

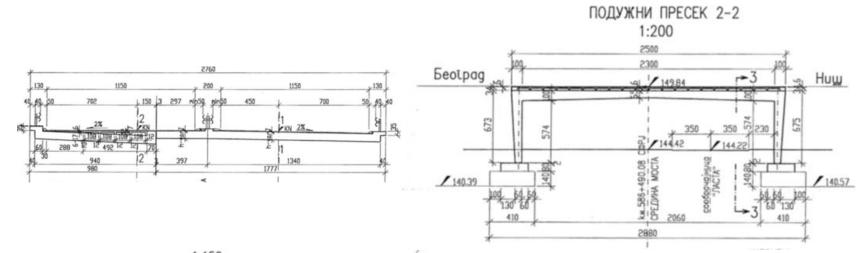
- Reliability
- Availability
- **Maintainability** is the ease with which a product can be maintained in order to correct defects or their cause, repair or replace faulty components without having to replace still working parts and prevent unexpected working condition -> design aspect and is covered with economic efficiency
- Safety
- **Security** is degree of protection against vandalism -> similar to maintainability is design aspect included in economic efficiency
- Health is absence of non-failure causes of illnesses (e.g. asbestos) ->
 regulated
- €conomics
- Environment -> regulated
- **Politics** include elimination of causes for public outcry, image protection etc. -> downstream performance goal; Fulfilled if RAS€E goals are met.

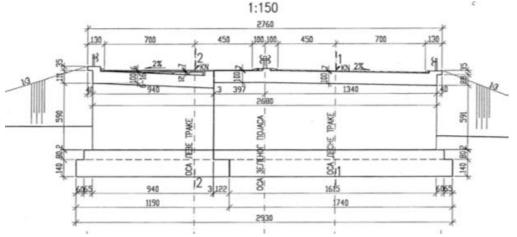
Conclusion

- Within the QC Framework
 - Reliability
 - Availability
 - Safety
 - €conomics

will be evaluated for different maintenance scenarios

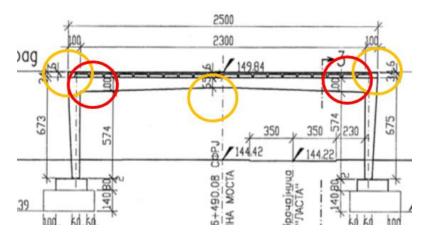
- Environment is mostly regulated, but in some cases can be also included.
- Snapshot or static quality control includes
 - Reliability (structural safety and serviceability) and
 - Safety (not structural safety) regarding loss of life and limb
- **Dynamic quality control** (bridge management) include
 - Feasible maintenance scenarios that define costs and availability over certain time frame
 - Reliability and Safety forecasts




Quality Control - Process

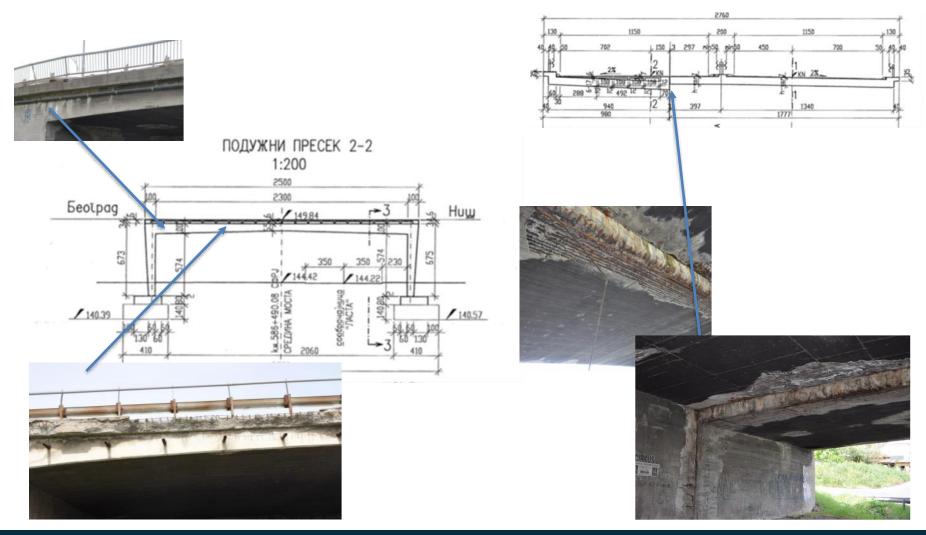
- Preforms snapshot quality control
 - 1. Preparatory work
 - 2. Inspection on site
 - 3. Lab test
 - 4. Assessment of reliability
 - 5. Assessment of safety (life and limb)
- Perform dynamic quality control (as far as possible)
 - 6. Assessment of a remaining service life
 - 7. Maintenance scenario
 - 8. Decision making

1. Preparatory work – inventory information



RC Frame ADT 10'000 Construction year 1963 Widened in 1977 No natural hazards

1. Preparatory work – other information


- No particular weaknesses of original design
- The obvious weakness is longitudinal joint connecting the old and the new parts of bridge
- No particular material weaknesses are known steel bars didn't have any ductility problems
- The traffic load in code of practice did increase since 1963, but the bridge was recalculated in 1977.
- Prior reliability index (safety) is 3.8

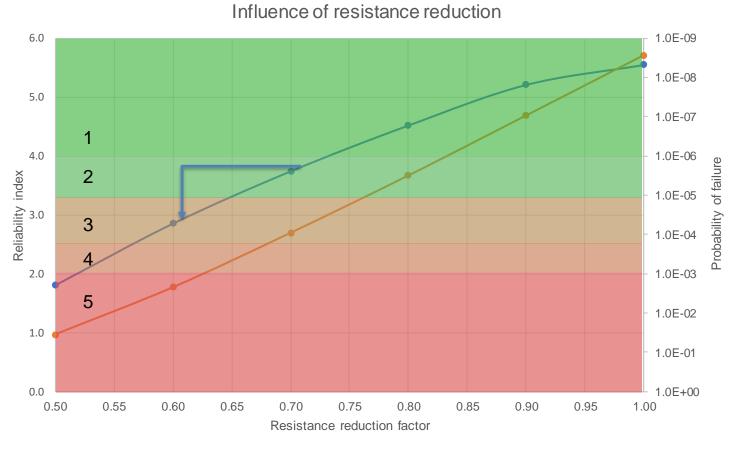
HMS-high suging moment zone	orange	ductile
HMH - high hoging moment zone	circle	uuctile
HSS - high shear zone	red circle	britle

2. Inspection on site – damages

Training school December 20, 2017 | Zell am See, Austria

2. Inspection on site – other hazards

- There is a road beneath the bridge
- It is rural road with low traffic volume
- There is however a danger of falling concrete on vehicles or persons
- Railings can't performed as designed


Training school December 20, 2017 | Zell am See, Austria

4. Assessment of resistance reduction

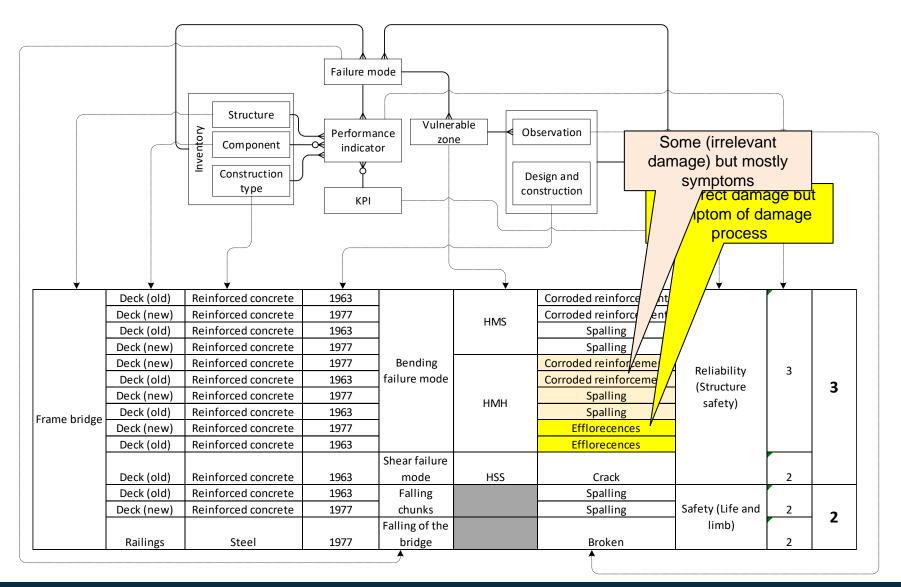
- There are some indication of diminished resistance:
 - Spalling at the width of (in average) 1.5 meters over the whole span.
 - Uncertain bonding
 - Significant corrosion ~10% section loss (old structure)
 - Corrosion to ~5% section loss in vulnerable zone (new structure)
 - Based on the symptoms there is probably corrosion over the piers, which is a vulnerable zone belonging to same failure mechanism
 - Redistribution in perpendicular sense has positive effects.
 - Uncertain cause and development of the diagonal crack.
- Based on experience and elementary statics the resistance reduction has been assessed to 10% (probably conservative)
- There is no urgent necessity to perform in depth investigation.
- Clearly, the assessment is rather rough and based on inspector's experience but so is condition rating.

4. Qualitative assessment of reliability

 $-\beta$ $-\beta$ Pf

Training school December 20, 2017 | Zell am See, Austria

4. Some comments


- The value of virgin reliability due to current loading is critical!
- It is advisable for old bridges to estimate the real loading by means of axle load measurements. The real traffic loading can be sometimes higher but sometimes significantly lower (less aggressive).
- In this particular case the traffic loading increased from 1977.
- The assessment od reliability is similar to the condition assessment with two crucial differences:
 - It takes into account virgin reliability,
 - focuses on failure modes and
 - related vulnerable zones.
- Most inspection practices focus implicitly on the latter two, but not explicitly.
- Hint: Thinking in failure mechanisms helps since it allows one to estimate the reduction of dissipation work due to damages.
- The example bridge will probably not fail catastrophically but rather experience a warping deformation.

5. Assessment of safety (life and limb)

- The loss and life and limb due to structural failure is **not included**.
- Falling concrete cover can endanger persons in and outside the vehicles.
- It is very unlikely that large chunks are going to fall down.
- The chunks that are found on the street were maximum 10x10x2 cm.
- The traffic volume is very low both pedestrian and vehicles.
- The capacity for spalling has also diminishes as water cannot reach reinforced bars that are still covered with concrete.
- The falling height is relatively small.
- The damaged railings jeopardize traffic safety
- Taking the observations into account and the above reasoning the danger for life and limb is relatively small i.e. 2.
- The performance indicator of 1 is no danger (injury return period > 100 years) and performance indicator of 5 characterizes immediate danger (injury return period < 10 years)

2. Catalog of observations

- WG1 collected observations from almost all European countries.
- The observations were clustered in different categories.
- WG 3 reduced the list by focusing on "real" observation and not interpretation.

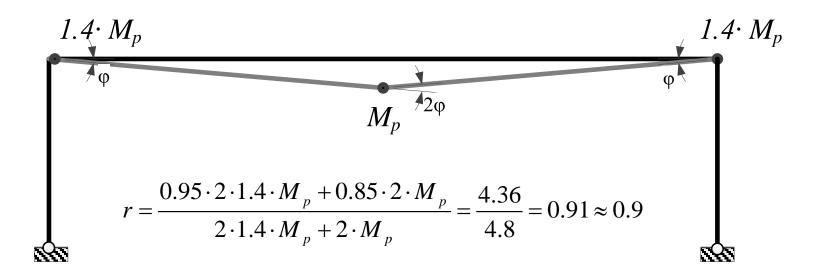
changes in dynamic behavior approach slab settlement porous concrete insufficient concrete cover aggregate segregation cladding damages cladding deformations deformation cracks crushing rupture delamination scaling spalling coupling joint deficiency wire break

presstresing cable failure reinforcement bar failure stirrup rupture efflorescence/crypto-florescence holes wet spots gel exudation hydroxide calcium exudation chloride content shear connection failure anchorage failure debonding protection duct damage (of prestreesed cable) grouting deficiency damaged adhesive tensioning force deficiency

4. Uncertainties and lack of information

- The same observation (actually the observed "thing") can have different causes.
- A crack > 0.2 mm indicated that the reinforcement yielded
- This can be due to a one-time overloading or error in design.
- The inspector can decide which of this possibility is more likely and attach his/her degree of belief.
- If the crack is closed due to bleaching it is unlikely that the element is under designed.
- If however the crack width changed between the inspection it can well be that the resistance is not sufficient.
- Similar reasoning can be applied to other observations e.g. fatigue cracks

4. Reliability against which failures?


- Failure Ultimate Limit State
 - Rigid body movement
 - Internal mechanism (plastic, brittle)
 - Fatigue (brittle)
- Failure Serviceability Limit State
 - Functionality
 - Comfort
 - Visual appearance
- Probability that stresses in a cross-section exceed certain value
- Probability of development of a mechanism
- Probability of undesired appearance -> RAMSSH€EP(olitics)
- Each country has to establish guidelines according to their value system.

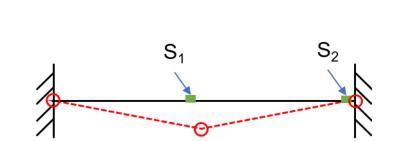
RADE HAJDIN

4. Assessment of reliability related to ULS

- Kinematic theorem of the theory of plasticity can be quite useful.
- Upper bound -> not on the safe side.
- Failure mechanism can be assumed -> relatively simple for vertical loads
- Resistance is essentially internal dissipation rate that decrease with each damage.

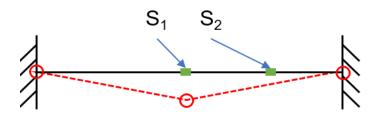
Failure mechanisms

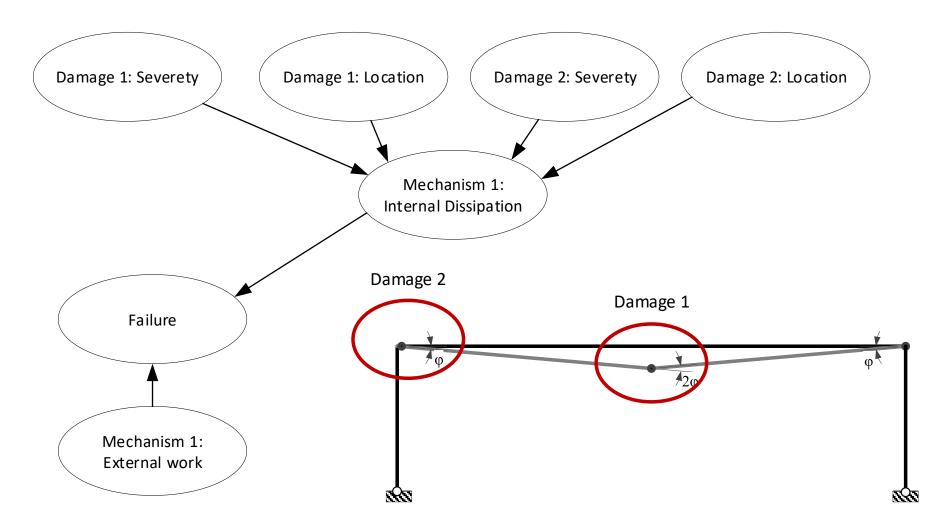
Training school December 20, 2017 | Zell am See, Austria


SLIDE 27 | 55

Reliabilty assessment

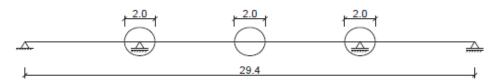
- Damages at the same location, either of them trigger a mechanism
 → The worst one counts; the other is not active
- Damages at the different locations, both contribute to the same mechanism
 - \rightarrow Cumulative resistance reduction


 Damages at the different locations, triggering different mechanims
 → Corelated serial system


 S_2

S₁

Reliability assessment - example



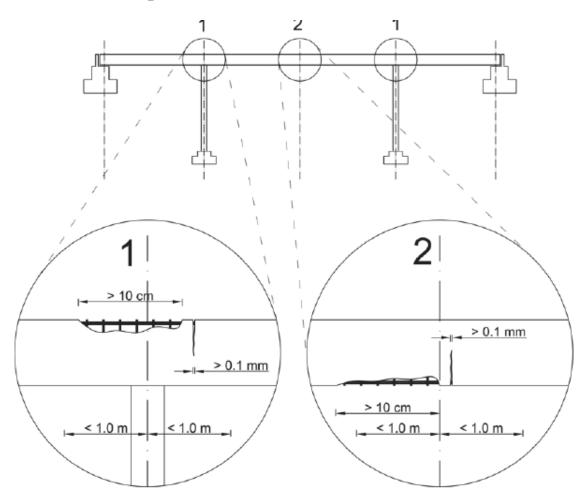
4. STSM – Example

Possible plastic mechanism:

Hot areas:

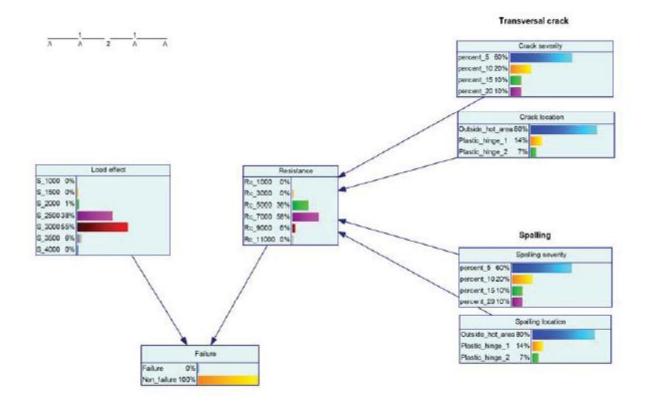
Node definitions:

Node: Crack severity		
Stiffness reduction	Likelihood	
5%	0.6	
10%	0.2	
15%	0.1	
20%	0.1	


Node: Crack location				
Location	Likelihood			
Outside hot area	= (29.4 - 2 - 2*2)/29.4	=	0.7959	
Plastic hinge 1	= (2 + 2) / 29.4	=	0.1361	
Plastic hinge 2	= 2 / 29.4	=	0.0680	

Node: Spalling severity		
Section loss	Likelihood	
5%	0.6	
10%	0.2	
15%	0.1	
20%	0.1	

Node: Spalling location		
Location	tion Likelihood	
Outside hot area	0.7959	
Plastic hinge 1	0.1361	
Plastic hinge 2	0.0680	

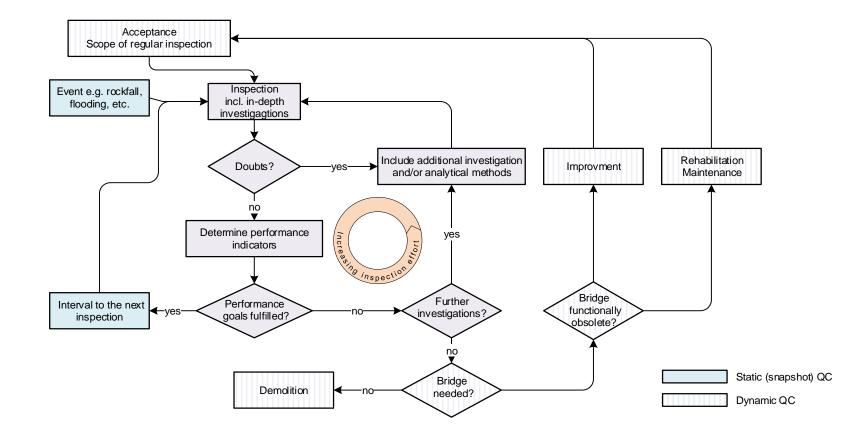


4. STSM – Inspection results

4. STAM - Bayesian networks

6. Return period and remaining service life

- The reliability index β for structural safety expresses the probability of failure due to combination of excessive load and uncertainty related to resistance of a bridge for a given design life.
- The design life is actually **failure return period**!
- It does not include **damages** that may or may not occur during the service life nor the **change in traffic loads**.
- The damages can reduce the resistance of a bridge resulting the in lower reliability index for safety and therefore also shorten failure return period.
- This should not be confused with the remaining service life due to deterioration.
- The failure return period of a heavily deteriorated bridge can be 10 years, which can be regarded as a threshold value to close a bridge. It is not connected with the time period in which this deteriorated state has been reached.



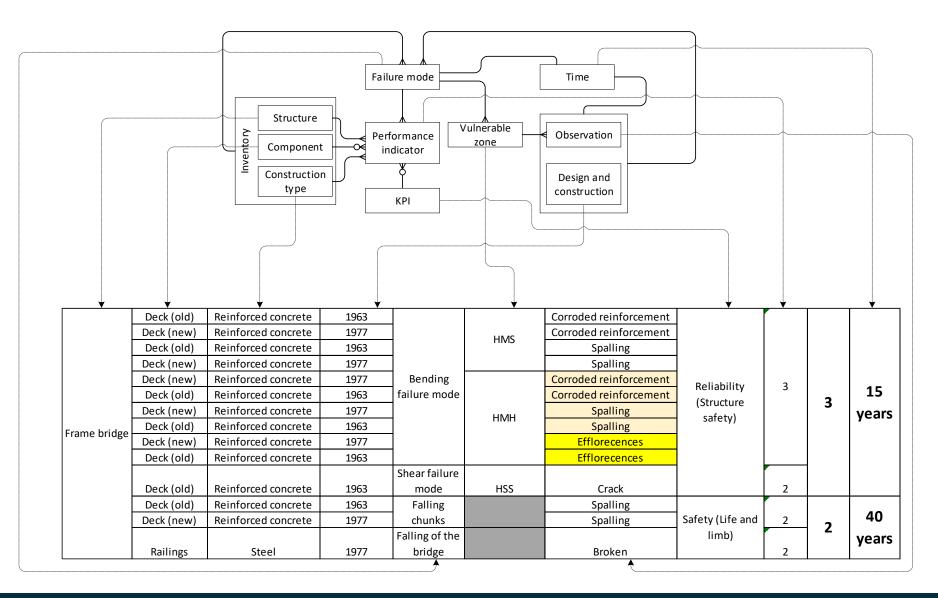
Assessment of the remaining service life

- The identification of active damage process and its drivers is essential for dynamic quality control.
- The further development of observed damages or behavior of the bridge is governed by damage processes.
- The development of these processes over time can be modelled based on physical processes and/or statistical data.
- In Bridge Management Systems different deterministic and probabilistic models are implemented, mostly for condition state.
- Common model for condition development is Markov Chains.
- The focus of this school is not on the time models for KPI but rather on principles that govern decision making.
- The remaining service life defined the point in time, at which the reliability of safety reach some threshold.

Stages of investigation

7. Maintenance scenarios

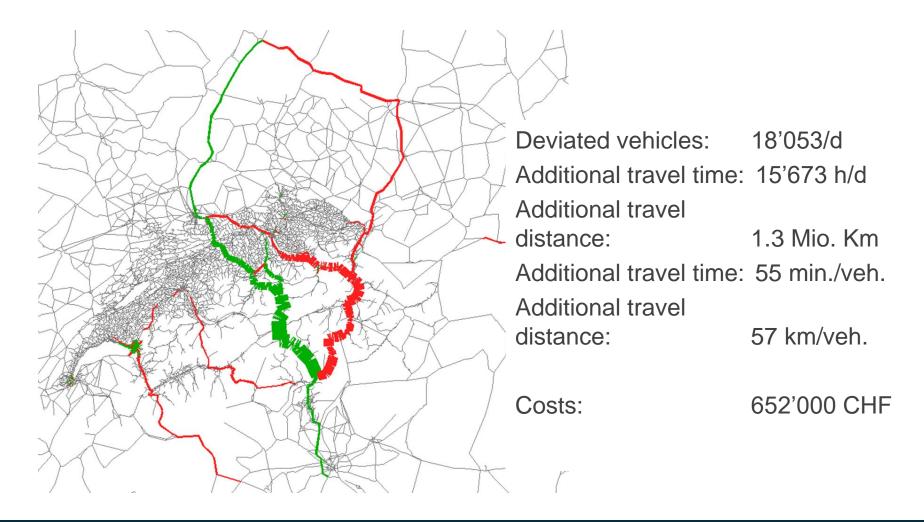
- Availability and Economics are governed by maintenance scenarios.
- The snapshot assessment of availability is of little interest as the bridge is either available or not. The key issue lied with the duration of restricted availability or closure.
- The costs that are required to assess economics are even less reasonable to asses as snapshot indicator. It is the cash flow over time that need to be assess.
- To compare different scenarios it is necessary to define a reference scenarios. This can be any scenario, but most common is to choose a "do nothing" scenario, in which the action are taken only at threshold values of a KPI.
- Mostly the reliability (in the current practice the condition state) is the triggering criterion for the interventions.



7. Maintenance scenarios - Forecasts

- Forecasts of reliability and safety
 - There are many model to forecast condition state of components and whole structures.
 - There are some models to forecast development of existing damages in the future (Germany, Switzerland).
 - These can be used as basis for the model that forecast the reliability level in the future.
 - The alternative is to let the inspector decide on remaining service life (=reaching reliability level 5)
- The speed of deterioration (=diminishing reliability and safety) depends highly on observations of both damages and symptoms
- Symptoms are not damages but observable and measurable artefacts that accompany damage processes.

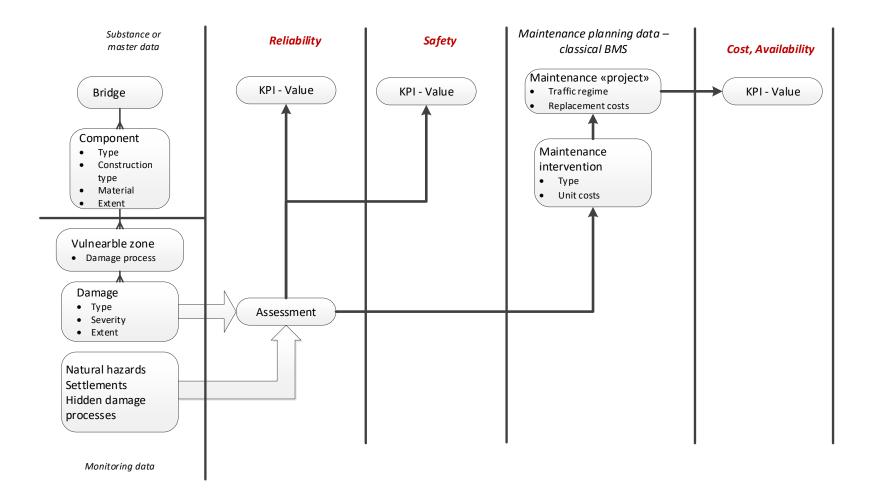
Quality Control Framework – Implementation and further research



7. Maintenance scenarios - Availability

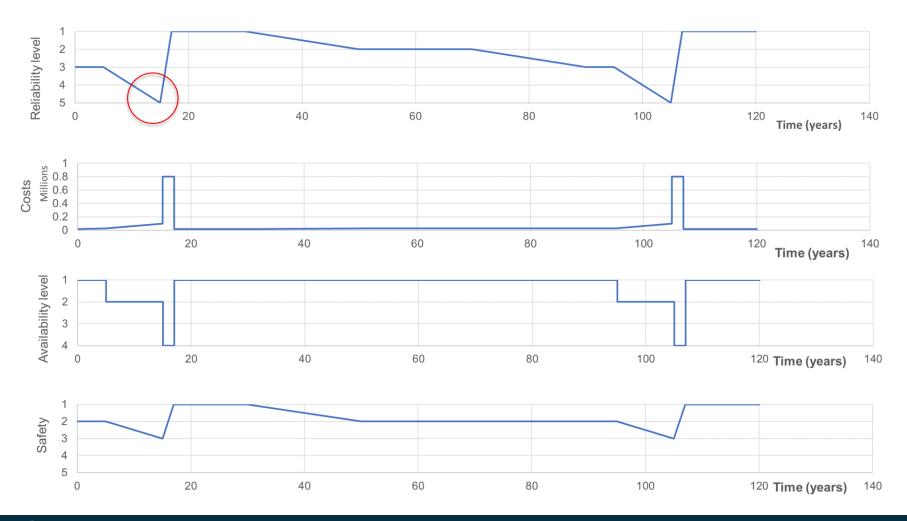
- Maintenance interventions require certain traffic regime, which may include closure for certain type of vehicles or lane closure or narrower lanes.
- Deteriorated bridge may be also closed for certain type of vehicles, which may be also regarded as traffic regime.
- For a given bridge there are not many possible traffic regimes, so they can denoted by letters or integer. The traffic regime 1 is the one with no restrictions.
- The other traffic regimes can be ranked by the additional travel time they cause for the road users.
- More appropriate would be to monetize these addition travel times based on the type of the vehicles and rank them.
- The complete closure is the worst case.

7. Additional travel time

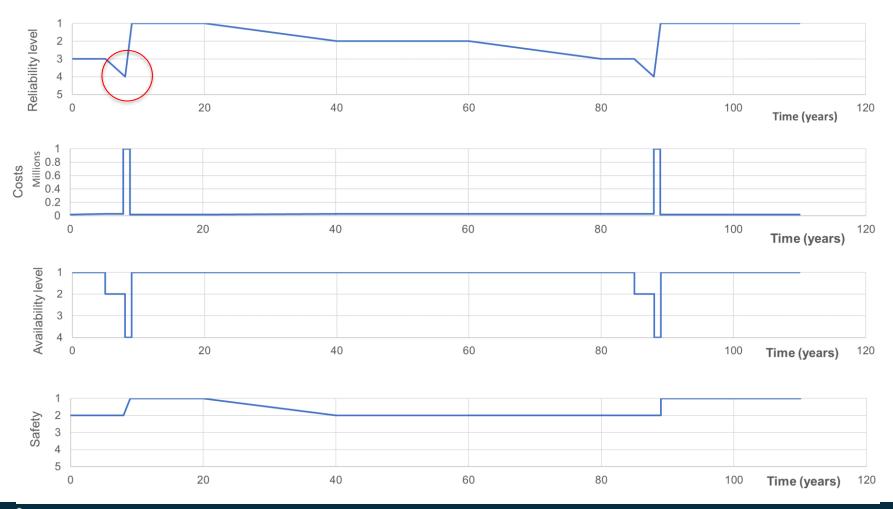


7. Maintenance scenarios - Cost

- "Classical" BMS
- Inspection results:
 - Severity of damage
 - Extent of damage
 - Location (Component)
- Unit costs
- Mobilization costs
- Damage forecast
- Generation of "Maintenance Intevention"
 - Type (Repair, Rehabilitation, Replacement)
 - Estimated costs



7. Maintenance scenarios - Summary


7. Reference scenario

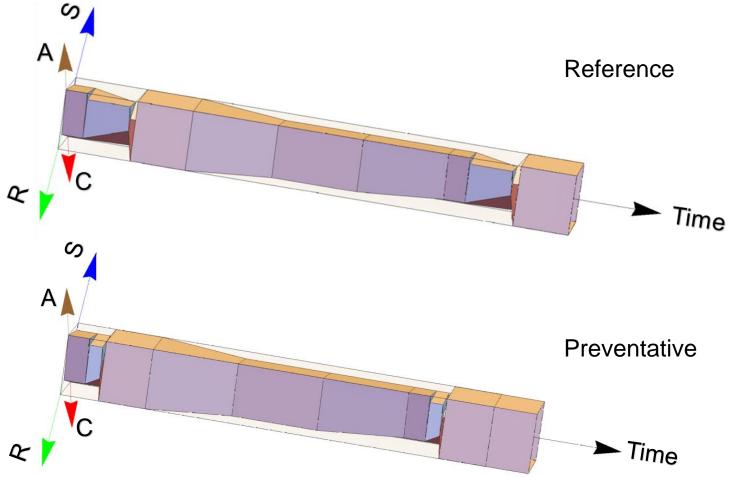
Training school December 20, 2017 | Zell am See, Austria

7. Preventative scenario

Training school December 20, 2017 | Zell am See, Austria

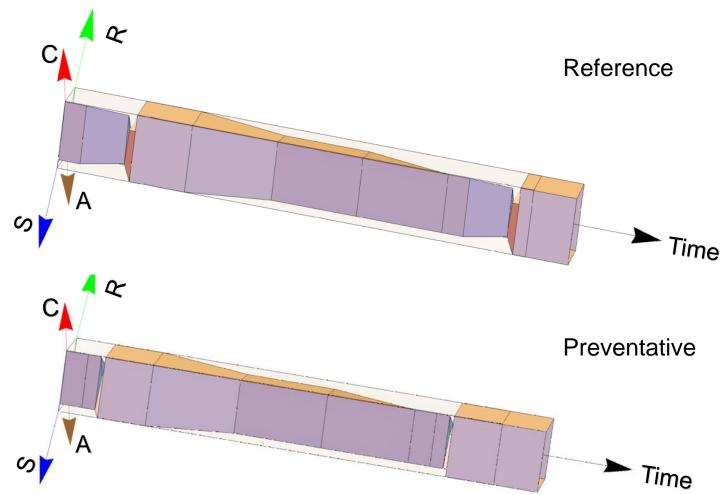
8. Comparing scenarios

- Monetization
 - Cost are already monetized
 - Availability can be easily monetized
 - Reliability can be only monetized together with the consequences of "failure" -> Risk
 - Safety can be only monetized together with the consequences for "life and limb" -> Risk
- The monetization is widely adopted method in research community.
- In this COST Action this approach was not chosen.
- The scenarios can be only compared if the consequences of the "failure" and for the "life and limb" are equal.



8. Spider Diagram

- All relevant KPI are to be expressed on the scale from 1 to 5.
- Rating 1 is the best and 5 is the worst.
- Reliability and Safety is already expressed in this manner.
- Availability will be transformed from the 1 to 4 scale into 1 to 5 scale.
- Zero costs are expressed with 0 and the highest costs/year are expressed as 5
- The highest costs/year in both scenarios are 1Mio/year -> rating 5
- In this manner a 3D spider diagram for both scenarios can be generated.



8. Decision making – 3D Spider/front view

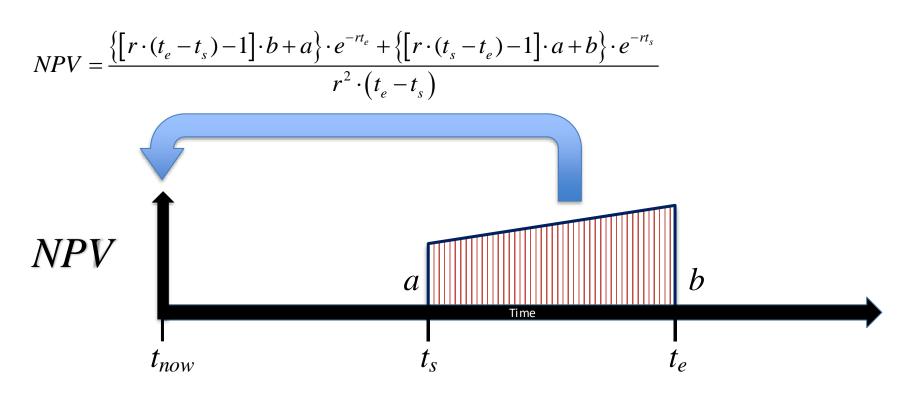
8. Decision making – 3D Spider/rear view

8. Time preference

- How to evaluate future events and compare them with present events?
- What is more important? A reliable bridge now or in the future?
- For costs or cash flows there is an established procedure: Discounting
- The future expenditures are discounted to present: NPV (Net Present Value)
- With the discount rate or 2% the expenditure of € 1.02 in a year is equal to € 1.00 today.
- How about availability, reliability or safety?
- There are different methods but essentially it comes also to "discounting"?
- The reliability, availability and safety is more important today then in 1, 2 or 10 years.
- This seems fair: The interventions on the short term are more expensive but the benefits are also more valuable!

8. Ordinal utility theory

- The ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask how much better it is or how good it is.
- If the ranking of options doesn't change in time then it can be reasonable asked for the same options whether is execution today is more or less preferable than execution it at some time point in future.
- Consumer impatience
- Comparison of utility streams
- The problem of averaging ordinal scores -> condition states



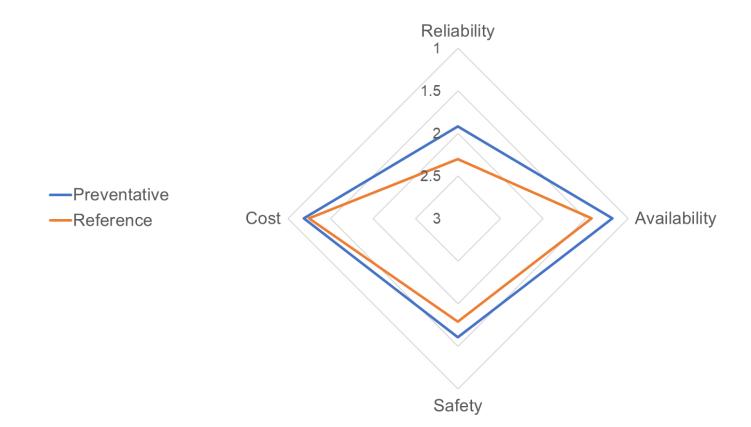
8. Monetization

- Reliability, availability and safety can be monetized
- Reliability -> Risk due to failure
- Availability -> User costs and externalities
- Safety -> Statistical value of life, cost of injuries
- Discount rate needs to follow the productivity increase in construction industry
- Effort needed to today to perform a certain activity compared to the effort to perform the same activity in the future.
- Quite low ca. 1 to 2%

8. Discounting

r = continuous discount rate

Training school December 20, 2017 | Zell am See, Austria


8. Normalization

- Net present value of all KPIs is already directly comparable due to the same scale.
- In order to reduce the KPIs to the same scale as for any time instance the NPV is divided with NPV which is calculated if all KPI were 1 over the whole investigation period.
- These value can be regarded as "average" long term KPIs.

8. Decision making – Net present KPIs

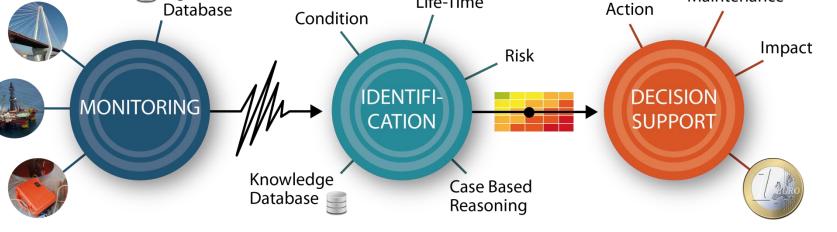
Preventative vs. Reference

Training school December 20, 2017 | Zell am See, Austria

Monitoring OFFSHORE STRUCTURES

Assessment, Inspection and Management

Helmut **WENZEL** Zell am See, December 2017

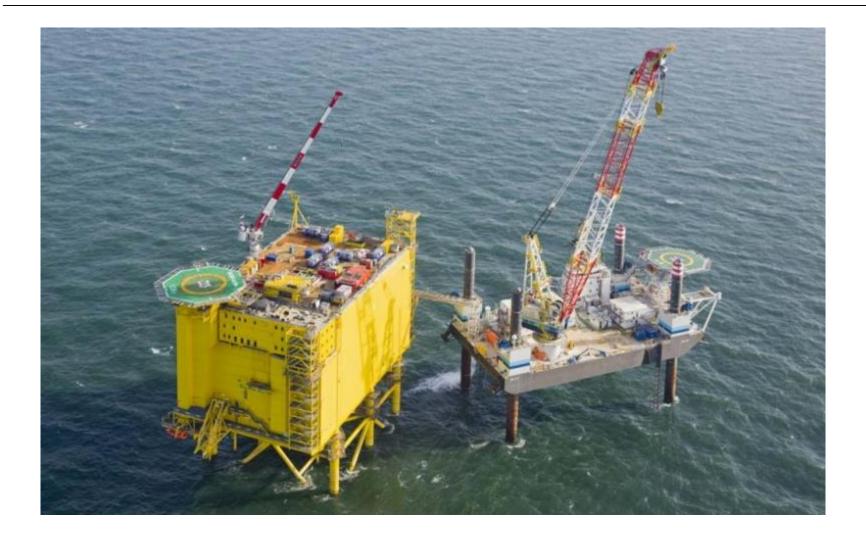


2 |

Signal Database Condition

Content

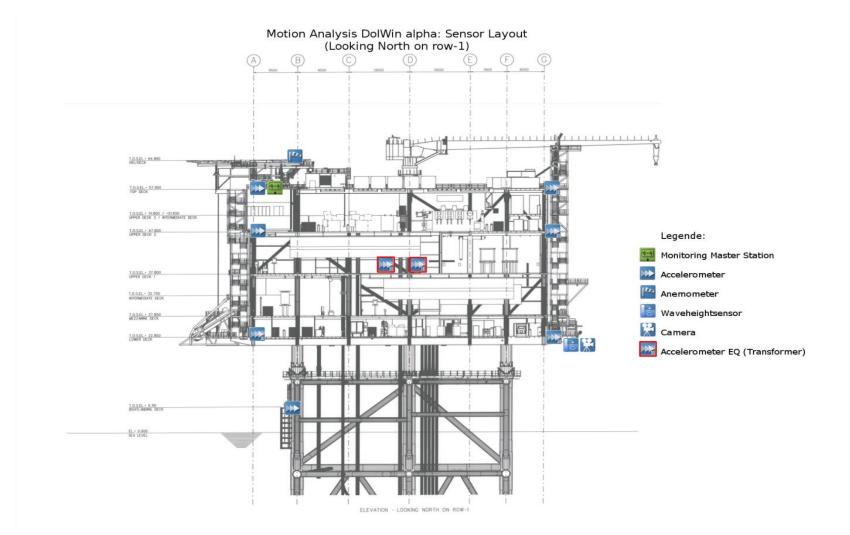
- 1. Monitoring
- 2. Identification
- 3. Decision Support
- 4. Summary

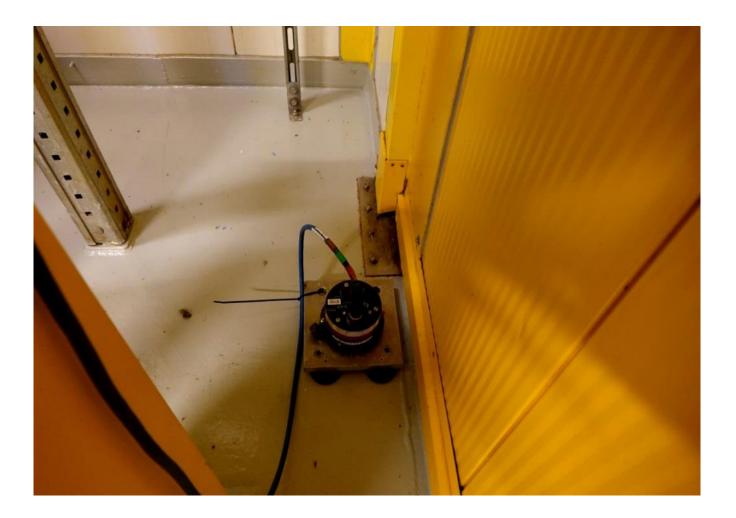


Maintenance

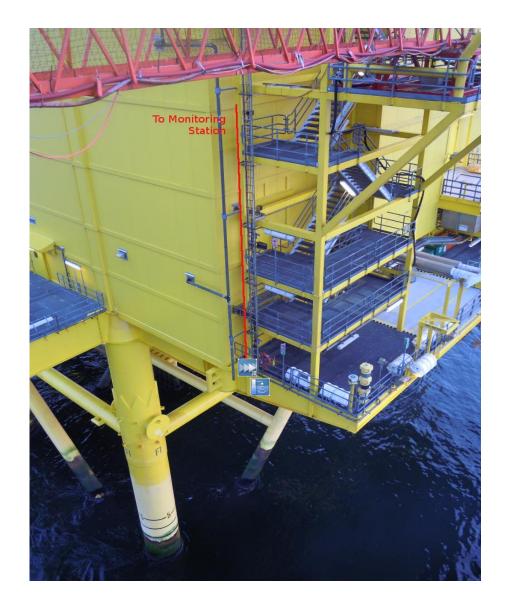
WENZEL Consult

Vienna Consulting Engineers ZT GmbH

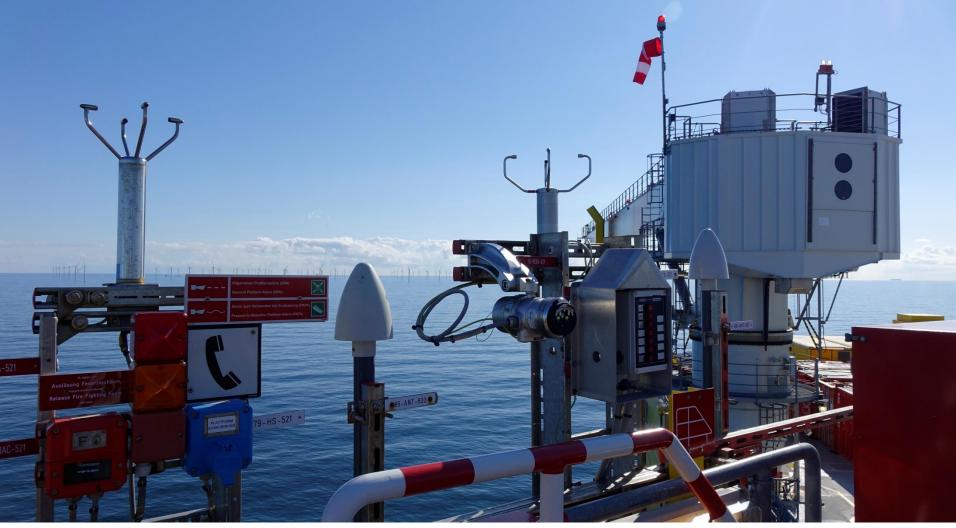



North Sea Application Layout Monitoringsystem

SHManager[®]



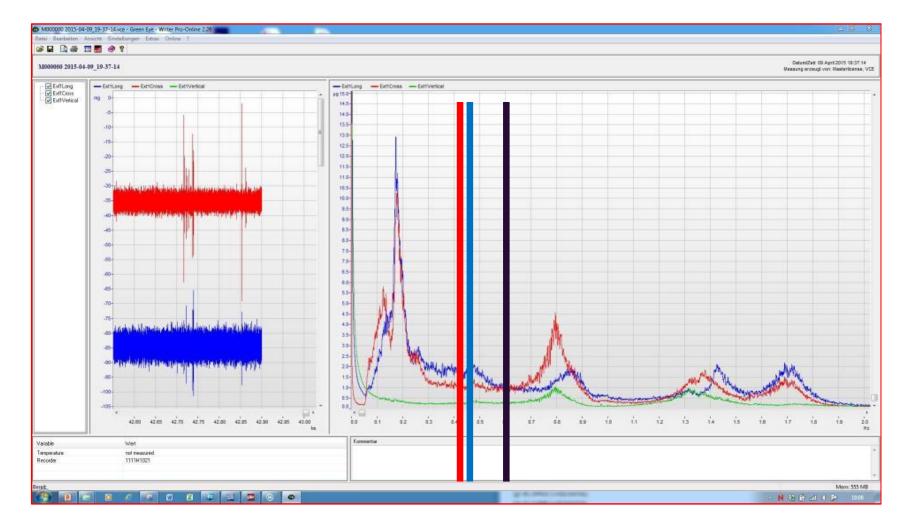
Monitoring



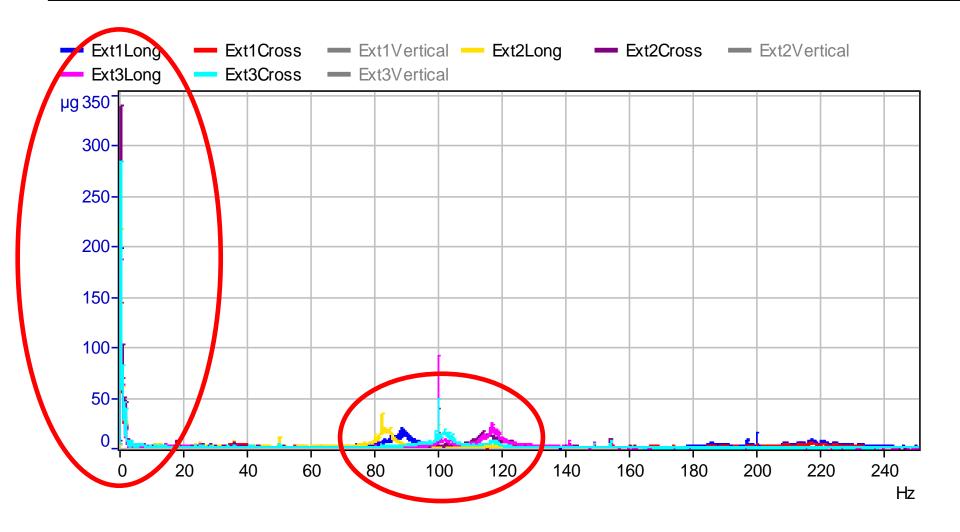
Targeted Inspection Programme Permanent Monitoring

Permanent Monitoring

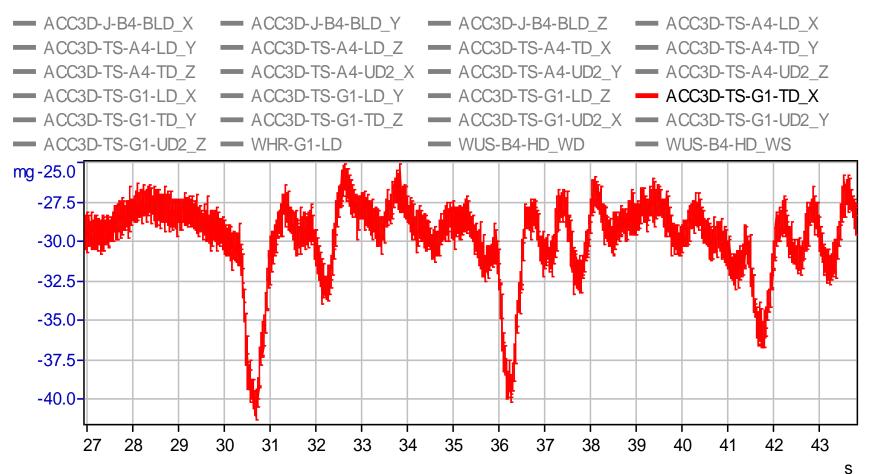
Monitoring for System Identification Purpose



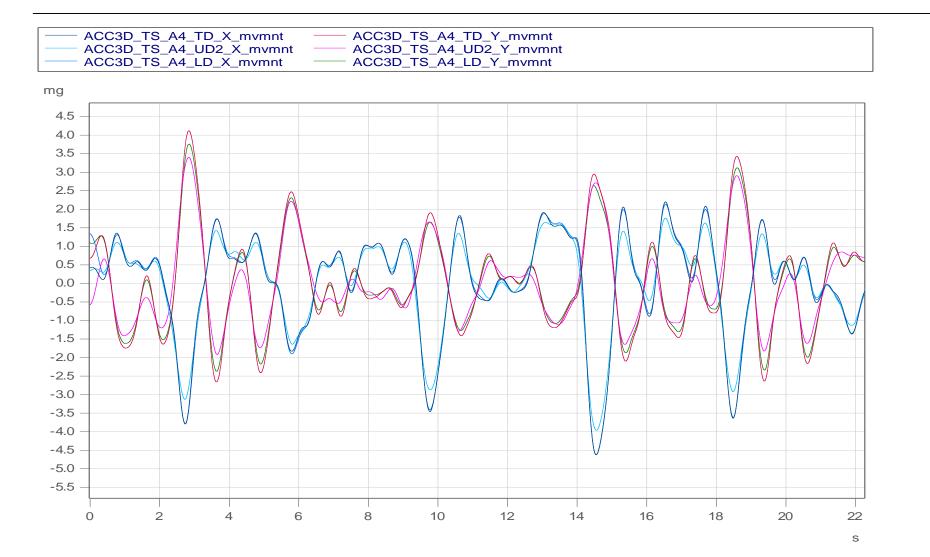
North Sea Application Model vs Measurements



Monitoring Frequencies

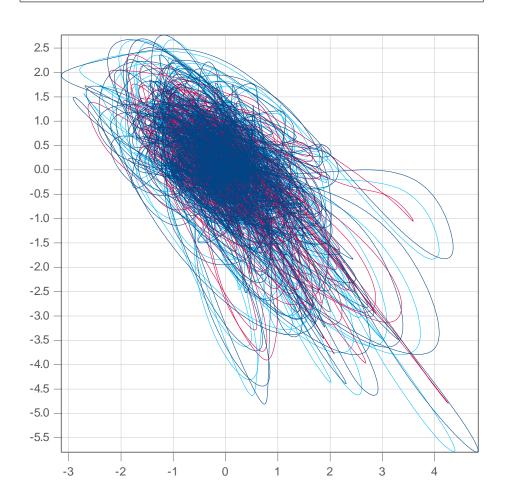


Monitoring Action


SHM anager®

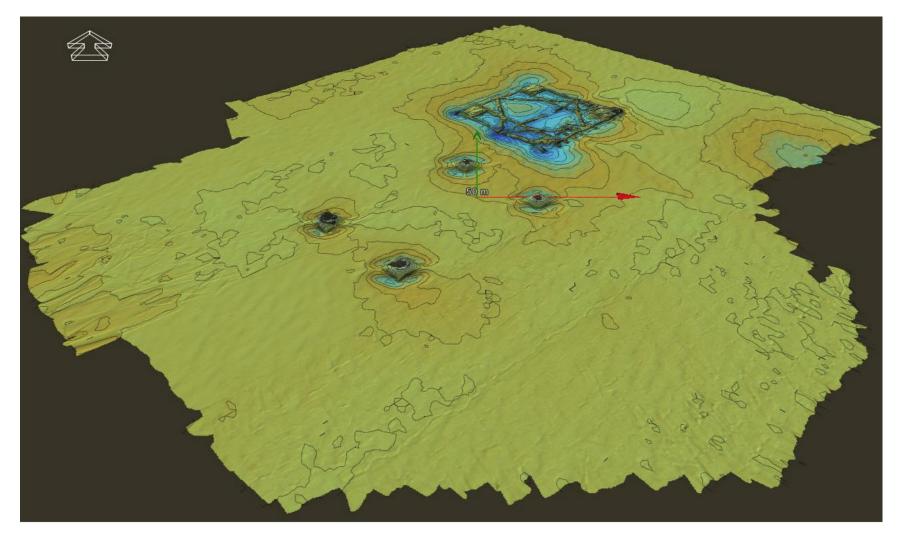
З

Monitoring Displacement

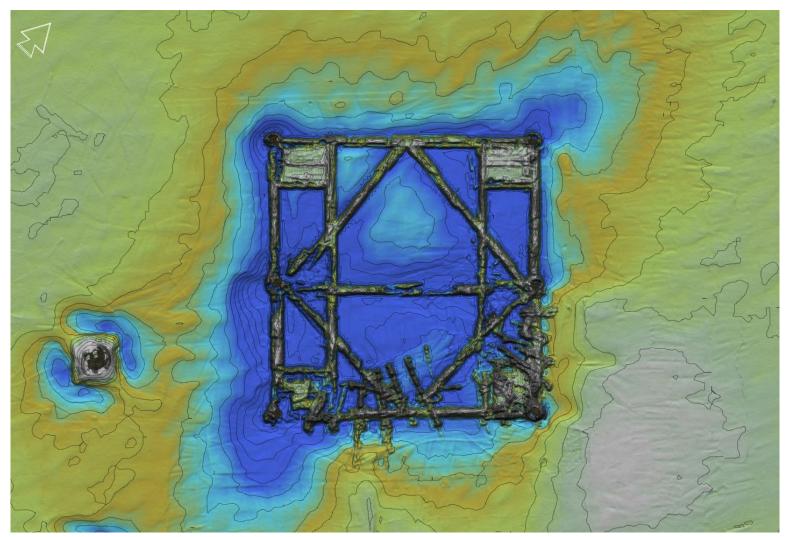


SHM anager®

Monitoring Performance


- SpurTD - SpurUD2 - SpurLD

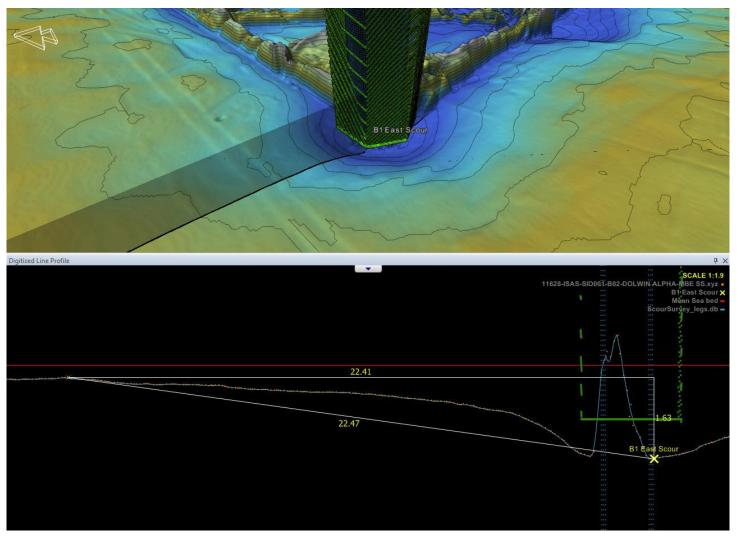
North Sea Application Scan ABB 2015: Multibeam



North Sea Application Scan ABB 2015: Detail

North Sea Application Scan ABB 2015: Jacket und Pile, Scour

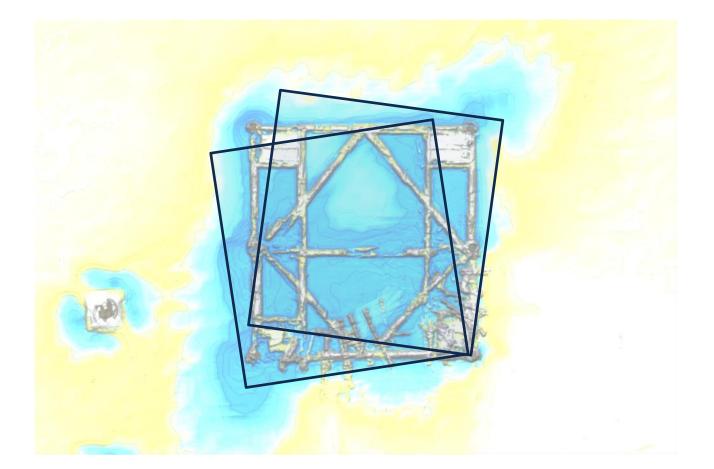
LEG B4 Digiquartz on seabed - Photo Ref. No: 166479-DWA-001



SHM anager®

23 |

North Sea Application Scan ABB 2015: Profil

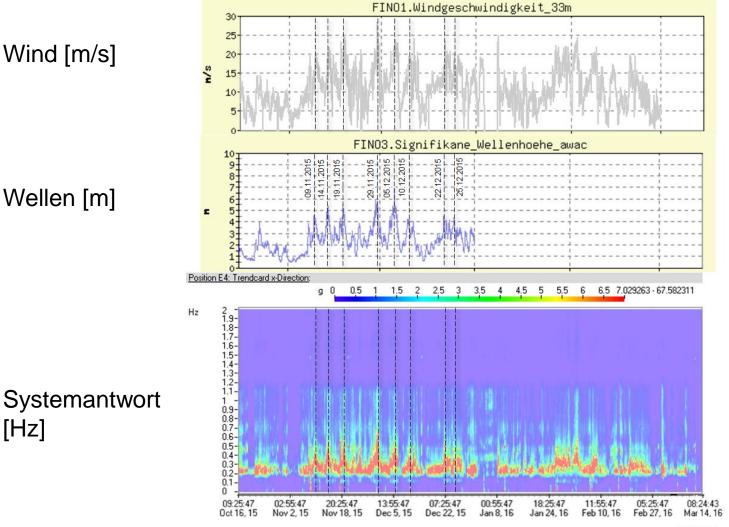


Vienna Consulting Engineers ZT GmbH

LEG B1 Multibeam vertical section profile ROW 1

North Sea Application Scan ABB 2015: Detail

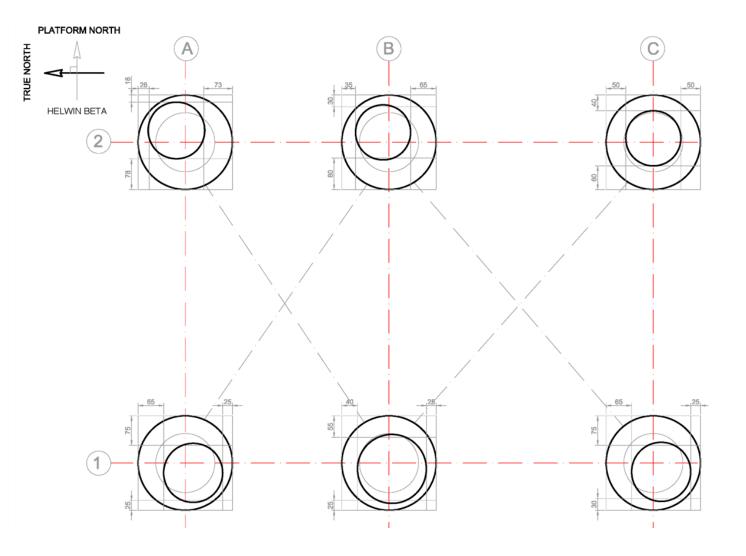
North Sea Application Correlation: Weather vs Response


Consult

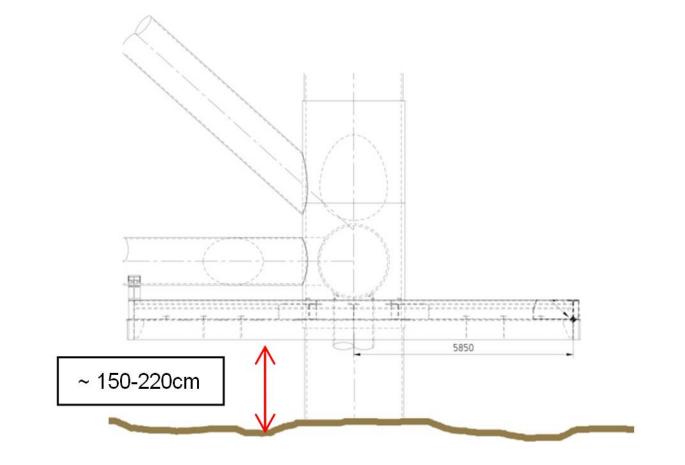
Vienna Consulting Engineers ZT GmbH

FIN01.Windgeschwindigkeit_33m 30 25 Wind [m/s] 20 n/s 15 10 FIN03.Signifikane_Wellenhoehe_awac 10 2015 2015 2015 2015 12.2015 2015 2015 2015 2015 10.2015 10.2015 9 8 10. 0 7 2 N 7 90 Ω. 30. ó g 4 0 05. 23 6 5 Wellen [m] 3 Ô. Position Axis A4, Top Deck: Trendcard x-Direction g 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 35,560464 - 144,422861 Hz 1.9-1.8-1.7-1.6-1.5-1.4-1.3-1.2-1.1-1 Systemantwort 0.9-0.8-0.6-0.5-0.4-0.3-0.2-0.1-[Hz] 15:18:08 05:48:08 15:28:08 00:48:08 05:38:08 10:28:08 20:08:08 00:58:08 10:38:08 11:29:24 Oct 16, 15 Oct 31, 15 Nov 15, 15 Nov 30, 15 Dec 16, 15 Dec 31, 15 Jan 30, 16 Feb 14, 16 Oct 1, 15 Jan 15, 16 WENZEL

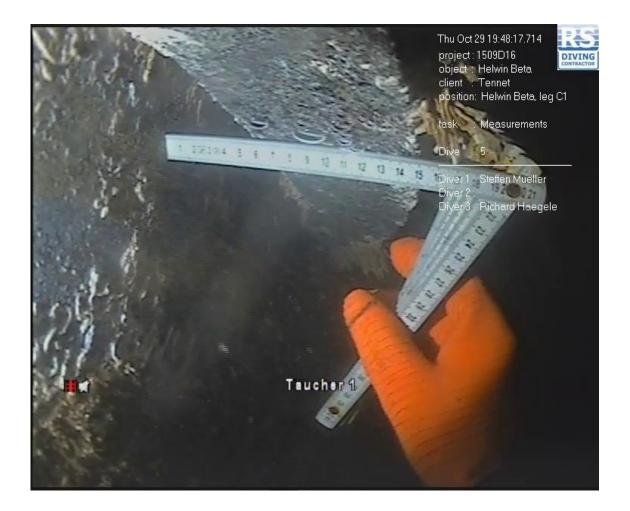
North Sea Application Correlation: Weather vs Response



North Sea Application Actual Position: Jacket – Piles

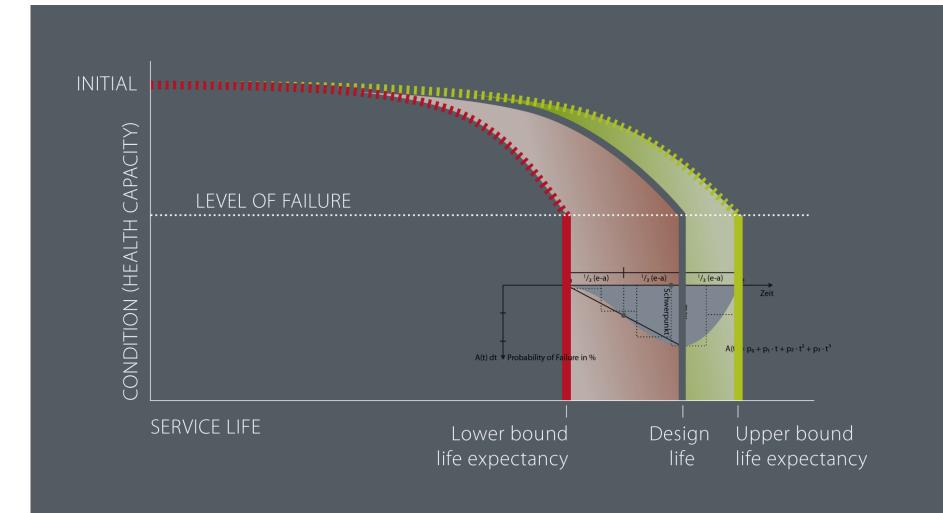


North Sea Application Sea Bed Survey Information



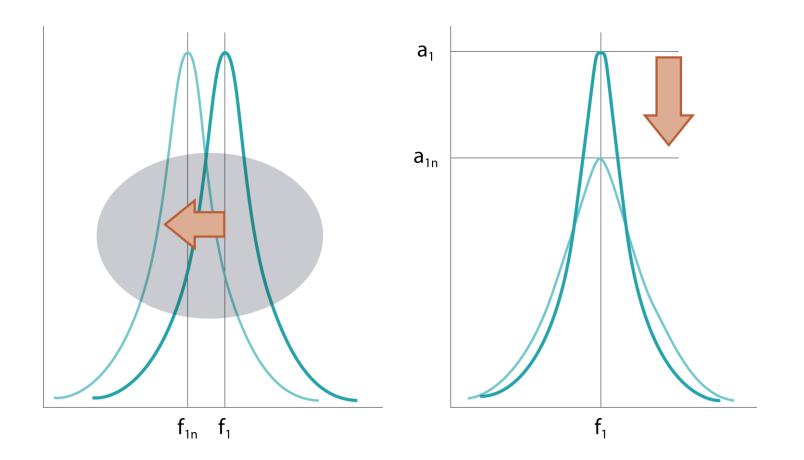
North Sea Application Sea Bed Survey Information

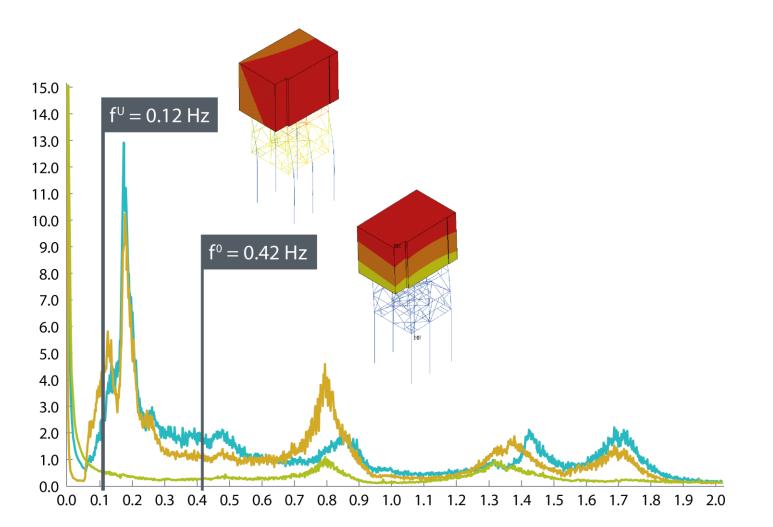
Identification Objectives

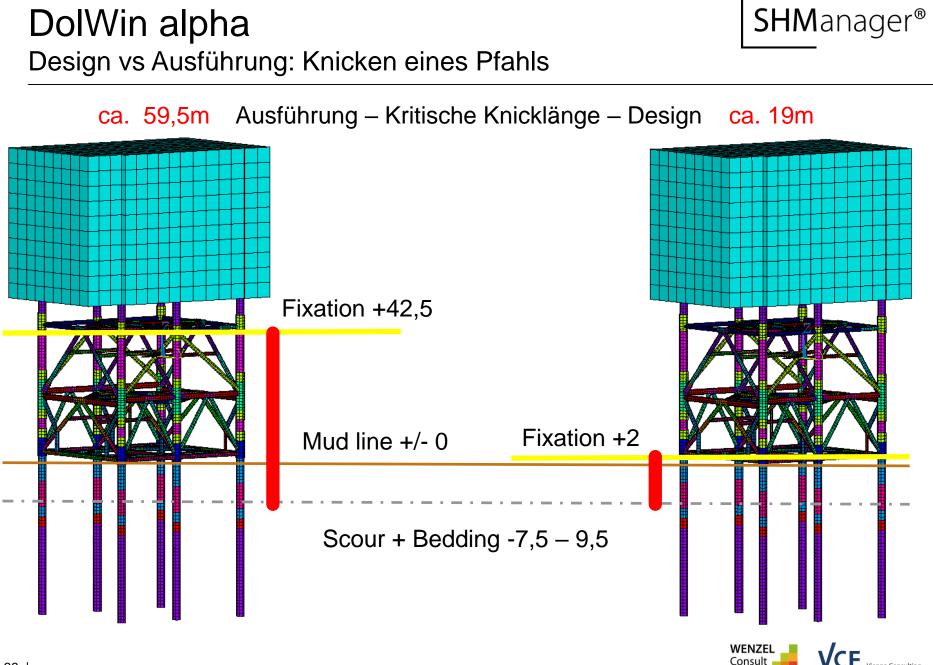


- 1. Ultimate Load
- 2. Fatigue Life Determination
- 3. Targeted Inspection Programme
- 4. Quantification of Life Extension

Life Time Performance

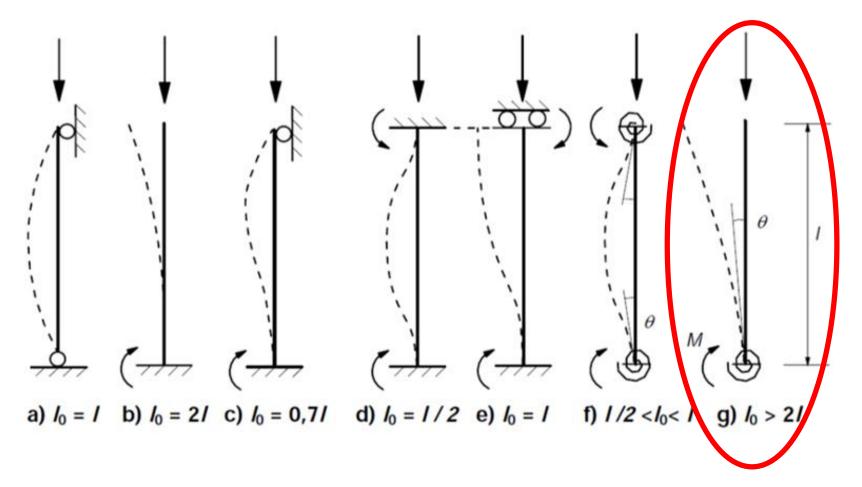


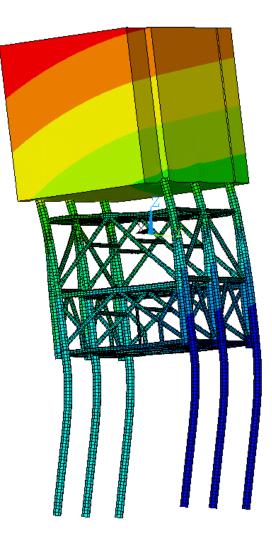

Ultimate Load Modelling



Engineers 7T GmbH

EUROCODE 1992 Knicken von Bauteilen

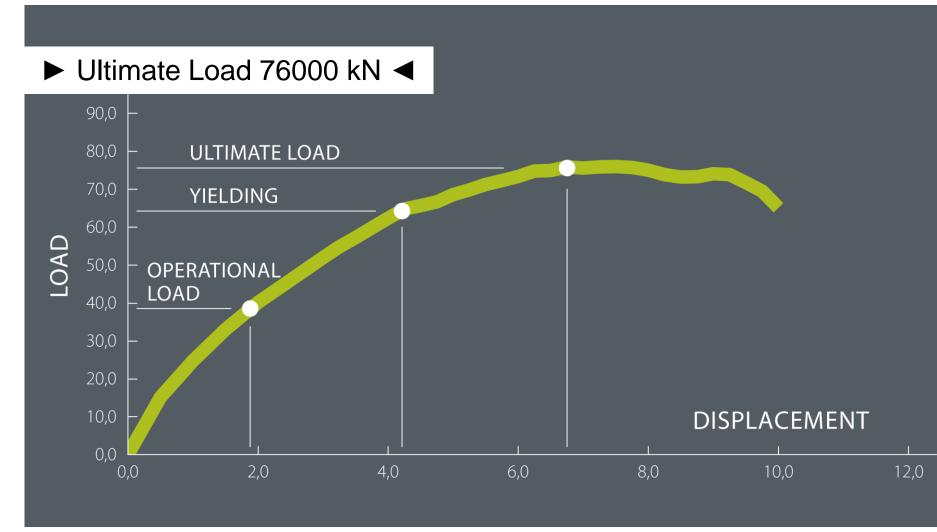



Figure: EN 1992-1-1:2004, pag. 66: Examples of different buckling modes and corresponding effective lengths for isolated members.

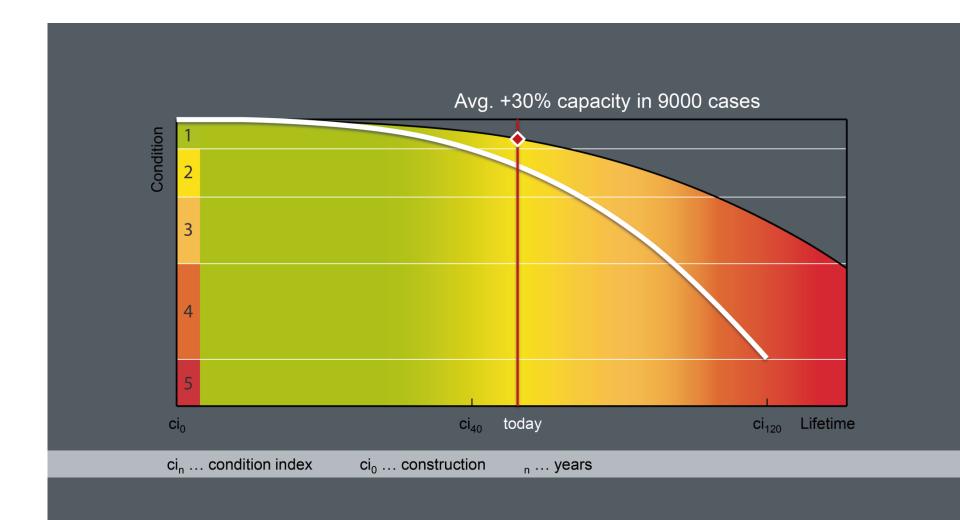
Vienna Consulting

Engineers ZT GmbH

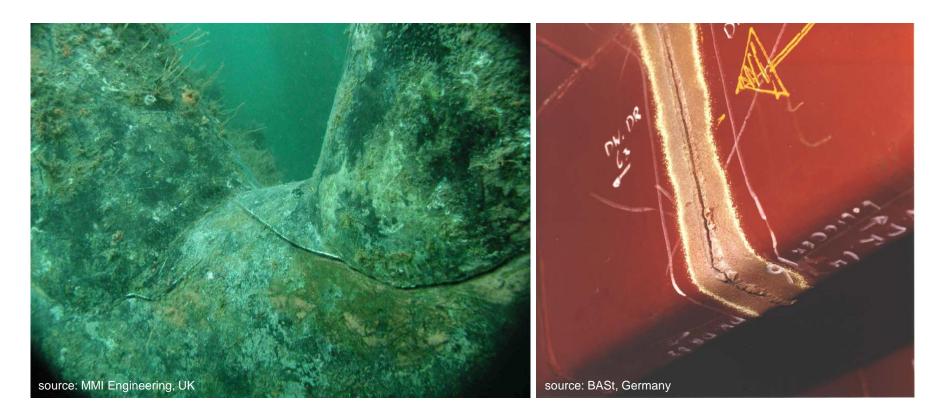
Ultimate Load Failure Mode



Ultimate Load Maximum Strain

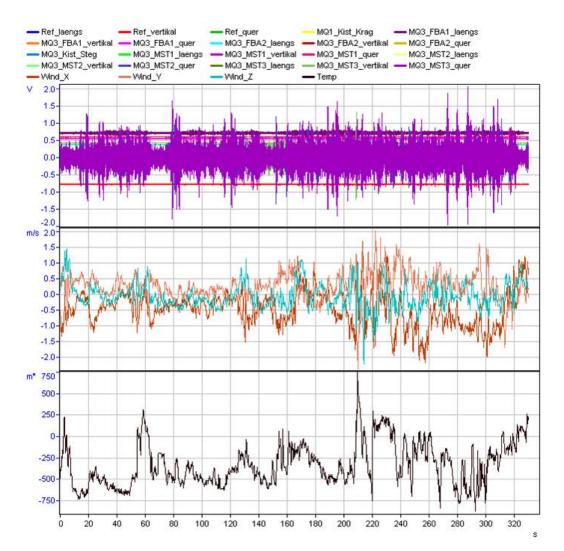

Fatigue Life Determination

Fatigue Life Determination



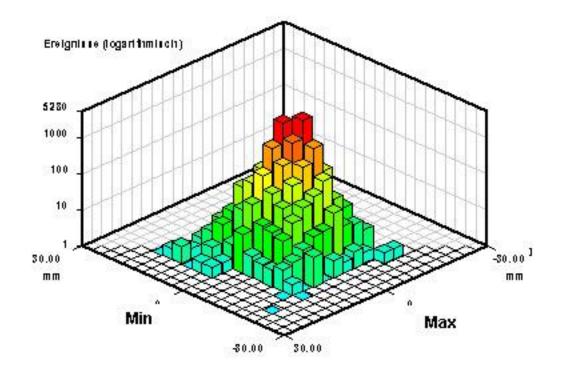
SHM anager®

Fatigue Deterioration of Welded Steel Structures

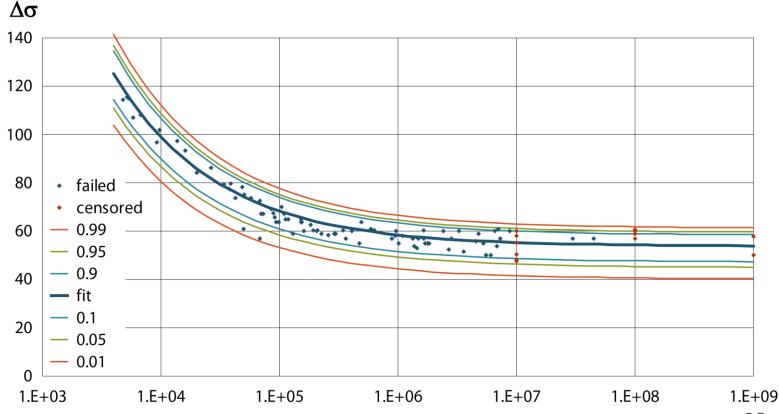


These crack show up in the dynamic response of the structure!

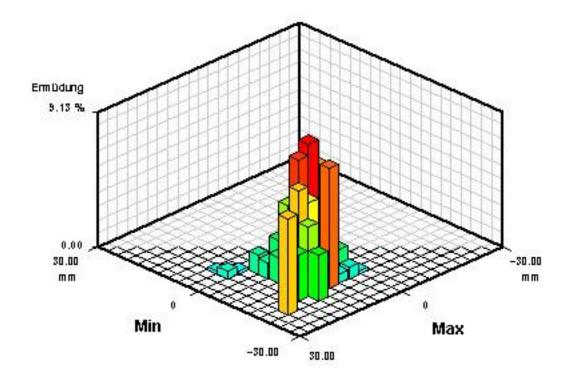
Fatigue Life Determination Permanent Monitoring-System



Fatigue Life Determination Rainflow-Matrix (Counting)



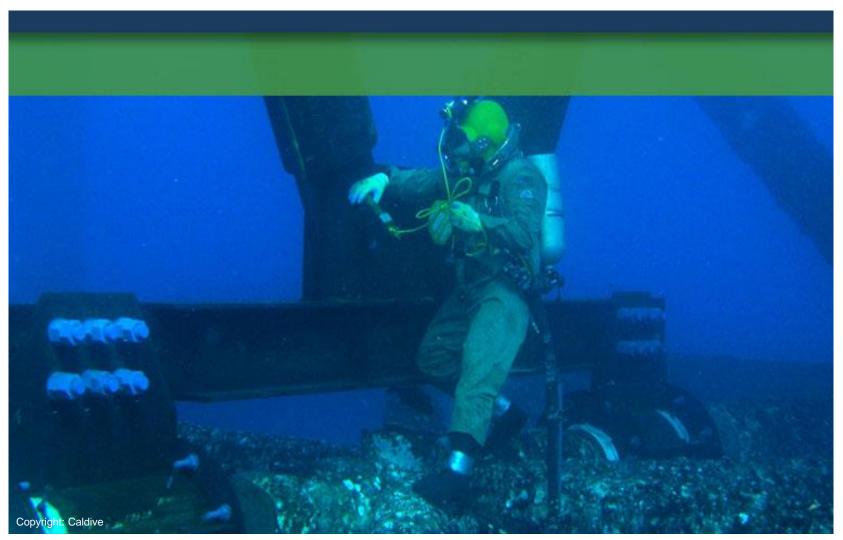
Fatigue Life Determination Fatigue Contribution (Wöhler-Curves)



Ν

Fatigue Life Determination Damage-Matrix (Assessment)

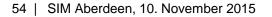
Targeted Inspection Programme EUROCODE Potential


Date: 2014-01 CEN/TC 319 Secretariat: NEN UNI

Risk-Based Inspection Framework

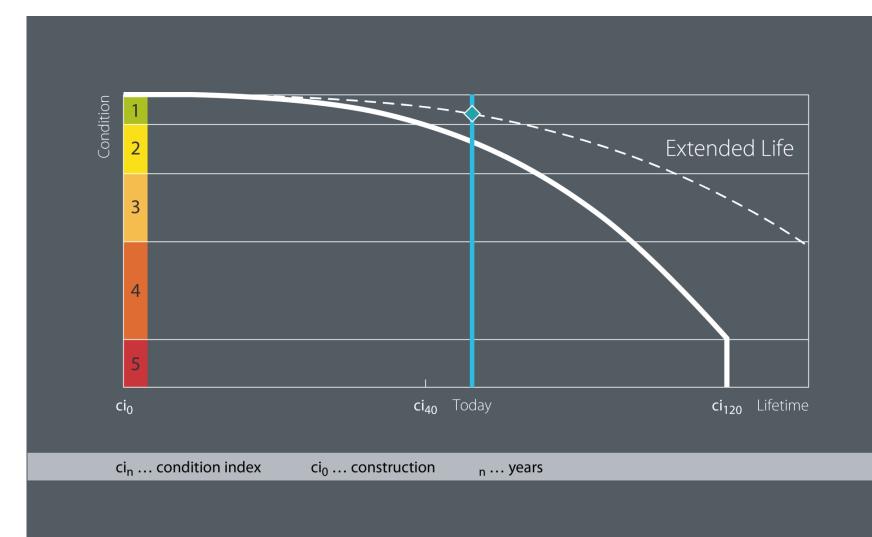
Document type: European Standard Document subtype: Document stage: CEN Enquiry Document language: E

Targeted Inspection Programme



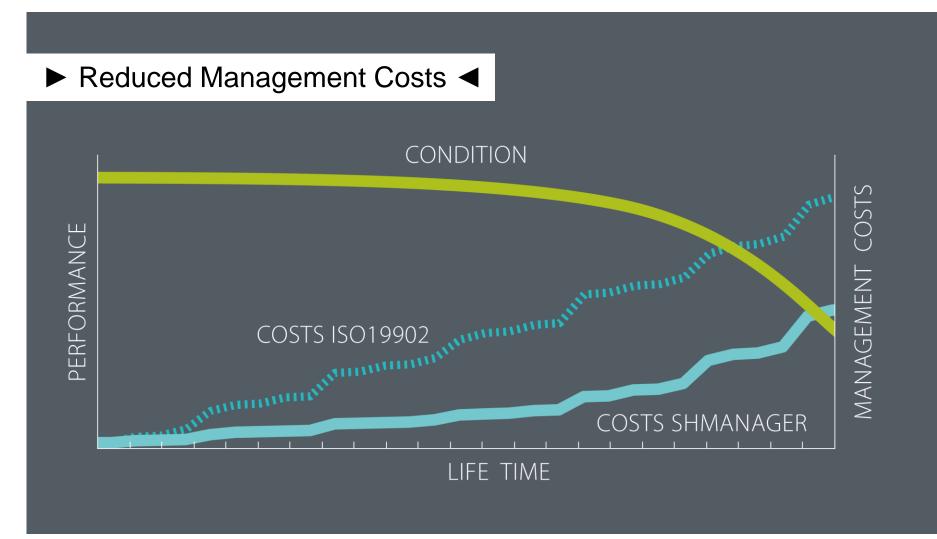
Consult

Vienna Consulting Engineers ZT GmbH

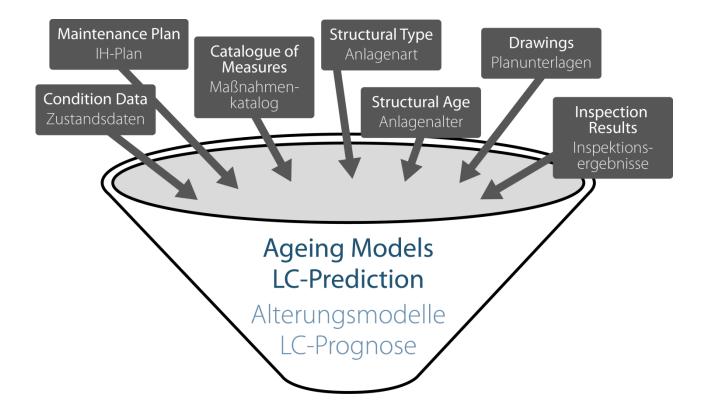

ntenance and replacement according to standard maintenance-intervals

erstructure	concrete									
ace	90 (-45/+30) years				2017					
ntenance	30 years			2002			2032			
structure	concrete									
ace	90 years									
ntenance	30 years			2002			2032			
ring	rubber									
ace	50 (+/-20) years			2002		2022		2042		
ntenance	- years									
e beam	concrete									
ace	33 (+/-16) years		1989	2005		2021 2022	2038	8		
ntenance	25 years		<mark>1997</mark>				2030			
joint	steel profile, synthetic resing	J concrete, rub	ber							
ace	30 years			2002			2032			
ntenance	10 years	1982	1992		2012	2022		2042		
le rail	steel									
ace	25 years		1997			2022		2047		
ntenance	- years									
Iternariee	- years									
ng	steel									
ace	50 years					2022				
ntenance	20 years		1992		2012			2042		
nage	cast-iron inlet with steel coll	ector pipe								
ace	50 years					2022				
ntenance	11 years	1983	1994	2005	2016		2033	2044		
						WENZEL				

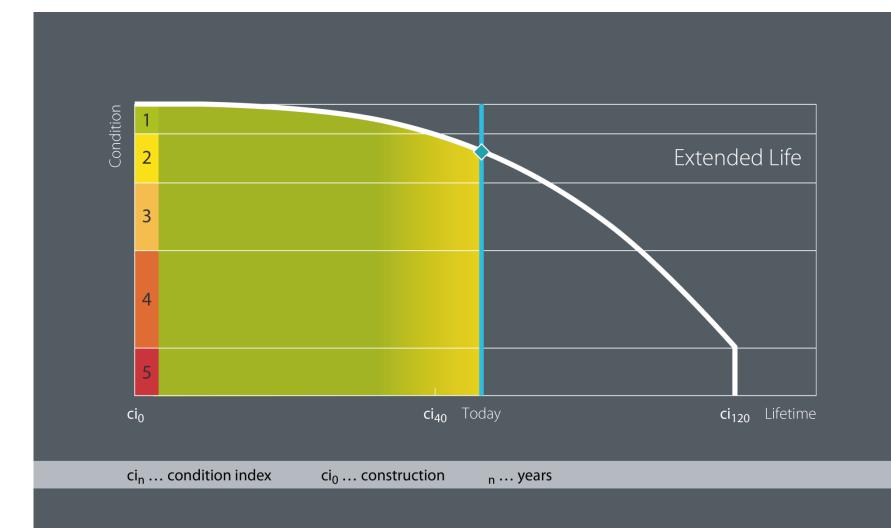
Targeted Inspection Programme Inspection Schedule & Programm



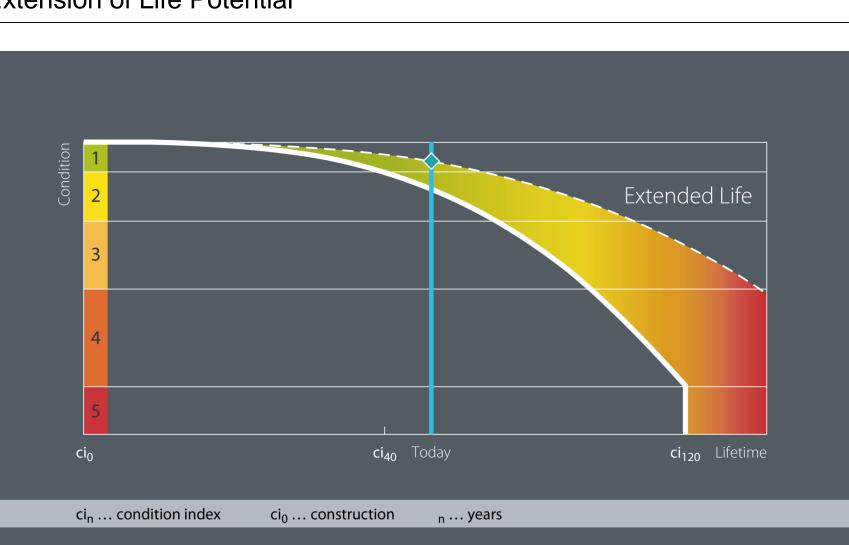
Targeted Inspection Programme Condition vs. Management Costs


Quantification of Life Extension

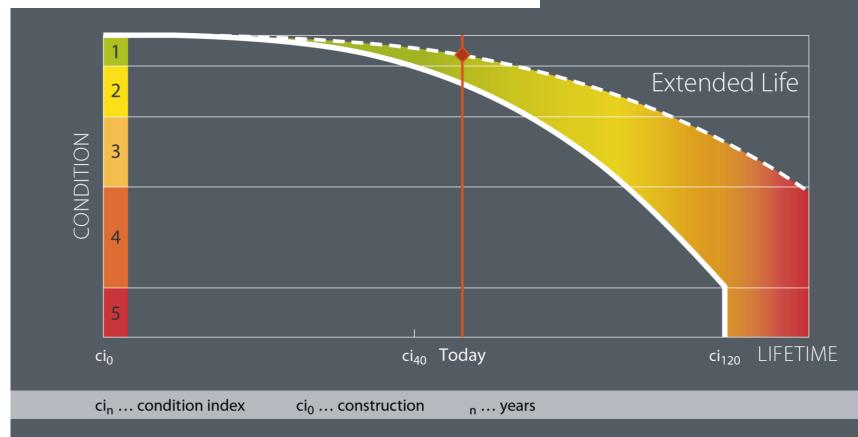
Quantification of Life Extension



SHManager[®]


Quantification of Life Extension Extension of Life Potential

Quantification of Life Extension Extension of Life Potential



SHM anager®

Quantification of Life Extension Extension of Life Potential

Decision Support

Ultimate Load

Fatigue Life Determination Consumed Life

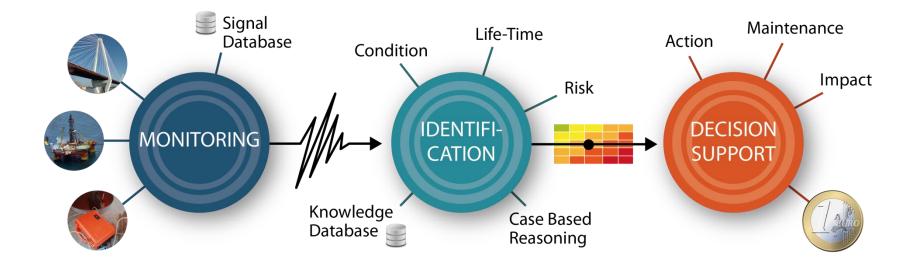
► Fatigue Life Consumed 60 % Consumption of Capacity **EXTRAPOLATION MEASUREMENT** FORECAST 2006 2008 2010 1964 1980 1986 1988 1996 2002 1982 1984 1992 1994 2004

Targeted Inspection Programme

Consult

Vienna Consulting Engineers ZT GmbH

ntenance and replacement according to standard maintenance-intervals


erstructure	concrete							
ace	90 (-45/+30) years				2017			
ntenance	30 years			2002		203	2	
structure	concrete							
ace	90 years							
ntenance	30 years			2002		203	2	
ring	rubber							
ring ace				2002		2022	2042	
	50 (+/-20) years			2002		2022	2042	
ntenance	- years							
e beam	concrete							
ace	33 (+/-16) years		1989	2005	2021	1 2022	2038	
ntenance	25 years		1997			2030		
joint	steel profile, synthetic resing	concrete, rub	ber					
ace	30 years			2002		203		
ntenance	10 years	1982	1992		2012	2022	2042	
le rail	steel							
ace	25 years		1997			2022		2047
ntenance	- years							
	steel							
ng ace						2022		
	50 years		1002			2022	2042	
ntenance	20 years		1992		2012		2042	
nage	cast-iron inlet with steel colle	ector pipe						
ace	50 years					2022		
ntenance	11 years	1983	1994	2005	2016	207	3	2044
						WENZEL	1	
							VCE	

SHManager[®] **Quantification of Life Extension Remaining Life** 16 Years Total Life: 30 + 16 = 46 years

SHM Process

Offshore Wind Industry Different Asset Management Concepts

Summary

- Vibration monitoring is a most helpful tool
- Accurate Condition rating and performance assessment is feasible using Monitoring Information
- Asset Management is supported (knowledge)
- Costs are reduced without sacrificing safety (knowledge)
- Inspection programs are individually designed
- Extension of life time is quantified and justified

Thank You !

helmut.wenzel@boku.ac.at

