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ABSTRACT 

Prevision, control and optimization of a hexapod robot posture in inclined surfaces 

 

In a world marked by natural and man-made disasters, the imperative of deploying mobile 

autonomous robots to replace human involvement in hazardous environments is evident. With this in 

mind, this dissertation focuses on developing posture control techniques that allow the robot to safely 

navigate these environments. 

Among legged robots, hexapod robots distinguish themselves as exceptional performers. Their 

capabilities extend to climbing, functioning with damaged limbs, and exhibiting remarkable static 

balance and gait movement. To comprehend the significance of hexapod robots in contrast to other 

legged counterparts, an extensive analysis is conducted, studying the structural attributes of hexapods, 

such as body composition, leg and joint arrangements, actuator and sensor configurations, thereby 

exposing the advantages and disadvantages intrinsic to this type of robots. 

The groundwork for this research is firmly established as it delves into the realm of posture 

adjustment. In pursuit of enhanced adaptability for the hexapod robot across various terrains, five leg 

path algorithms were compared, namely: triangular function, parabola function, 3rd-degree spline 

function and 3rd and 4th-degree Bézier curves. Compared along four different environments the 

preferred choice for this purpose is the 3rd-degree Bézier curve algorithm. This exploration, focusing on 

posture adjustment, provides a foundation for the understanding of the ATHENA hexapod model, 

encompassing its kinematic principles and gait generation strategies. 

The application of Q-Learning aided with integration of proprioceptive and exteroceptive sensors 

and simulation frameworks form a robust foundation for the posture adjustment problem. Through 

simulations with diverse control parameters in different slope environments, optimal control parameters 

for each slope were identified. These findings were then applied to simulate the robot navigating terrain 

with various slopes. A simulation lacking height control parameters resulted in failure, while the 

controlled simulations successfully adapted to variable slopes. 

Keywords 

“ATHENA”; HEIGHT CONTROL; HEXAPOD ROBOT; POSTURE ADJUSTMENT; Q-LEARNING 
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RESUMO 

Previsão, controlo e otimização da postura de um robô hexápode em superfícies 

inclinadas 

 

Num mundo marcado por desastres naturais e provocados pelo homem, é evidenciado a 

necessidade de implementar robôs móveis autónomos para substituir intervenções humanas em 

ambientes perigosos. Com isso em mente, esta dissertação foca-se em desenvolver técnicas de 

controlo de postura que permitem o robô navegar com segurança nestes ambientes. 

Entre os robôs com pernas, os robôs hexápodes destacam-se excecionalmente. Estes robôs têm 

um equilíbrio estático notável e são capazes de escalar e operar mesmo com pernas danificadas. Para 

compreender a importância dos robôs hexápodes em contraste com outros tipos de robôs com pernas, 

é realizada uma pesquisa extensiva, explorando as características estruturais dos hexápodes, como a 

estrutura corporal, a disposição das pernas, configuração das articulações, atuadores e sensores, 

revelando assim as vantagens e desvantagens inerentes a este tipo de robôs. 

O alicerce desta pesquisa é estabelecido à medida que nos aprofundamos no domínio do ajuste 

de postura. Em busca de uma maior adaptabilidade para o robô hexápode em vários terrenos, foram 

comparados cinco algoritmos de trajetória de pernas, nomeadamente: função triangular, função 

parabólica, função spline de 3º grau e curvas de Bézier de 3º e 4º grau. Comparando-os em quatro 

ambientes diferentes, a curva de Bézier de 3ºgrau foi a selecionada. Esta pesquisa, centrada no ajuste 

de postura, fornece uma base para a nossa compreensão do modelo hexápode ATHENA, abrangendo a 

sua análise cinemática e estratégias de geração de marcha. 

A aplicação de Q-Learning, com a integração de sensores exterocetivos e propriocetivos e um 

esquema de códigos e simulações, constitui uma base sólida para o problema de ajuste de postura. 

Através de simulações com diversos parâmetros de controlo em ambientes compostos por diferentes 

inclinações, identifica-se os parâmetros de controlo ótimos para cada inclinação. Estas descobertas 

foram então aplicadas para simular a navegação do robô num terreno com vários declives. Uma 

simulação sem aplicação de parâmetros de controlo de altura resultou em fracasso, enquanto as 

simulações controladas adaptaram-se com sucesso a inclinações variáveis. 

Palavras-Chave 

AJUSTE DE POSTURA; “ATHENA”; CONTROLO DE ALTURA ; Q-LEARNING; ROBÔ HEXÁPODE
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1. INTRODUCTION  

Natural and man-made disasters prompt the necessity for mobile autonomous robots capable of 

substituting human-performed chores in unsafe environments. The performance of mobile and 

autonomous robots creates the possibility of safeguarding human life by eliminating the use of humans 

to access dangerous environments. Therefore, these devices are applied to operate, detect and execute 

rescue maneuvers(Zhao et al., 2018). Regarding the access to these environments, only half of the land 

area is accessible by wheel-type vehicles. Wheeled robots need a continuous support point between the 

wheels and the ground during locomotion, which affects their performance in irregular surfaces. On the 

contrary, multi-legged biomimetic robots have isolated support points, which optimize support and 

traction. Thus, the discrete contact points provide, legged robots superiority in terms of mobility. Legged 

robots are able to perform tasks in complex environments by choosing the best approach to overcome 

the obstacles or ground irregularities, depending on their movements (Raibert, 1986; Wang et al., 

2021; Zhao et al., 2018). Amongst legged robots, hexapod robots are capable of climbing, moving with 

damaged limbs and have the best overall static balance and gait, which is of paramount importance for 

navigating complex environments(Deng et al., 2017a; H. Li et al., 2021; H. Zhang et al., 2014).  

The gait complexity of hexapod robots is not only related with the mechanical parts, but also the 

servomotors and electrical components that enable their control (Faigl & Čížek, 2019). The body’s 

posture and gait constantly change while moving through rough terrain because of balance 

requirements imposed by the interaction between the ground and the contact points. Subsequently, the 

generation of the leg’s trajectory change continuously to adapt to the hexapod’s balance to the walking 

conditions(Bal, 2021; Deng et al., 2017a). Besides, robot stability is equally important to avoid falling 

and damage. Stability is considered a challenge in terms of locomotion control due to the fact that an 

ineffective posture control creates torso oscillations (Bjelonic et al., 2016). Since posture control is 

necessary in the robot’s motion across inclined and complex surfaces, the dynamical analysis plays an 

important role in the control design. Development of the dynamical model requires the feet forces 

distributions, energy consumption, torque and angular momentum (Mahapatra et al., 2019). Directly 

reading IMU’s (inertial measurement units) is a common method to control the posture of the robot, 

obtaining the joints values and triggering the limbs correctly. 
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Reinforcement Learning application by trial-and-error to predict and correct the robot’s posture 

using the current posture, its stability and the relative angular position of each joint. 

It is intended that the actions provide the angular positions of the torso to establish the best 

orientation according to the terrain the robot is located. Simulations will be made using Gazebo. 

CMEMS dynamical model is necessary to apply the posture control.  

Given the framework of the theme, the present dissertation is part of the project “ATHENA” (All-

Terrain Hexapod for Environment Navigation Adaptability). Its main objective is to develop a smart 

hexapod robot, capable of moving in any terrain. This theme has the support and partnership of the 

Automation and Robotics Laboratory (LAR), department of Electronic Engineering of University of Minho. 

All studies are directed to predict and control the robot’s posture according to its movement, 

either being in flat or rough ground. Results will be validated and obtain through experimental tests. 

1.1. OBJECTIVES 

The primary focus of this dissertation is to proficiently develop posture control techniques utilizing 

Reinforcement Learning to effectively adjust the height of a hexapod robot when navigating inclined 

surfaces. The robot's central task is to discern the degree of inclination on the terrain and accurately 

apply the most appropriate height adjustment control parameter for the specific slope it encounters. 

To achieve the primary goal of this dissertation, the following tasks were assigned: 

• Identify a leg movement algorithm that achieves a harmonious balance between minimizing 

energy consumption and ensuring the smoothness of limb trajectories; 

This task aims to reduce oscillations in the system. A range of algorithms will be introduced and 

evaluated based on criteria such as Cost of Transport, height variations, as well as roll and pitch 

dynamics. Furthermore, a diverse set of simulation environments will be crafted to rigorously assess 

each algorithm across various scenarios, bolstering the reliability of the outcomes. 

• Development of a Q-Learning algorithm and simulation scheme; 

To ensure smooth simulations, this task was defined. It encompasses the creation of a 

comprehensive reward algorithm and a versatile code framework, created to facilitate adaptation and 

future research involving posture adjustment through the application of Reinforcement Learning. 

• Q-Learning Simulations; 

Simulations will be conducted using the refined reinforcement learning algorithm within an array 

of distinct simulation environments, each featuring unique slopes. This will shed light on the 

identification of the optimal height control parameters tailored to each specific incline. 
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• Determine optimal height control parameters and compare results; 

The final task of this dissertation, which meets the overall purpose of the project, is to identify the 

optimal height control parameters for each specific slope. This will be based on the results of the Q-

Learning simulations and their comparison with a simulation with no control parameters applied. 

1.2. DISSERTATION STRUCTURE 

This dissertation is divided into five chapters, which are organized as explained in the following 

paragraphs. 

The first Chapter corresponds to the introduction, where the topic is introduced along with its 

importance so that the relevance of the dissertation is perceptible. The objectives, to be addressed in 

the final conclusions, are also outlined. 

The second Chapter presents the literature review, which encompasses a thorough investigation 

into hexapod robots distinctive characteristics, the intricate control mechanisms governing their 

movements, and the strategic use of reinforcement learning, particularly concentrating on the Q-

Learning algorithm's application in enhancing their adaptability and decision-making capabilities. 

The third Chapter describes the virtual hexapod model used in this research, studying the 

kinematic model responsible for controlling limb motion and guiding the robot movement. A study is 

made on gait generation mechanisms, including stance and swing phases, and applicable leg path 

algorithms. It also presents the test environments and simulation results. 

In the fourth Chapter, the posture adjustment is investigated, encompassing the role of sensors 

for data assessment, the mechanisms facilitating posture orientation determination and control 

parameter manipulation. The simulation framework employed for Q-Learning-based posture adjustment, 

the construction of reward algorithms within the reinforcement learning context, and the conduction of 

simulations in diverse slope environments were explored. Finally, a comprehensive comparison and 

conclusions drawn from the extensive analysis performed. 

In the fifth Chapter, and last Chapter, the key conclusions of the dissertation are highlighted in 

light of the set objectives and testing program results. Perspectives and suggestions for future work are 

also discussed in order to underline the importance of the outcomes and work done while guiding for 

potential changes that can be adopted. 
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2. LITERATURE REVIEW 

Robots are tools envisioned to perform tasks done traditionally by humans, whether in industrial 

surroundings or any other place that would benefit with automation. Autonomous robots offer a solution 

to access dangerous environments that could be a threat for human life. For detecting and rescue 

applications, these mobile robots become an optimal addition to maneuver rough terrains.  

Legged robots are superior in navigating hazardous environments compared with their wheeled 

counterparts because they only need discrete footholds for walking and can adapt their gait while 

walking (Zhao et al., 2018). Due to their intrinsic static stability, which is the ability to maintain the body 

steady and upright when only reaction forces are applied to the system, insects have been examined as 

inspiration for robots that can navigate autonomously in complex situations. Not only that, but their 

design allows the generation of different gait patterns which increases their adaptability to the 

environment (Coelho et al., 2021). 

Hexapod robots have the best overall static balance and gait in comparison to biped and 

quadruped robots. Additionally, hexapod robots are capable of climbing walls and carrying loads higher 

that its own weight. Although hexapod robots are superior in some traits they have some drawbacks, 

such as energy consumption, due to the superior number of motors in each leg. The mechanical 

complexity is also a bottleneck in the design of hexapods, since it influences each leg’s number of 

Degrees of Freedom(DoF) (Lagaza & Pandey, 2018). 

Artificial Intelligence (AI) is considered a recent subject but worthy topic of investigation in the 

control of mobile robots. Russell and Norvig (2009) describe AI as the art of creating machines that 

perform functions that require intelligence when performed by people. The concept of AI can be divided 

according to the learning methodology. Amongst the AI branches, Machine Learning (ML) aims at data 

learning and making predictions and/or decisions. Within ML, the Reinforcement Learning (RL) 

approach examines problems that require sequential decision making. Therefore, RL is usually related 

to optimal control and operations research and management (Y. Li, 2018). 

This chapter exposes the theoretical concepts applied in this dissertation. Firstly, hexapod robots 

and their inherently characteristics and mechanisms. An extensive review on the main hexapod body 

structures, followed by an evaluation of the common legs and joints arrangements. The main sensors 

and actuators applied in modern-day hexapod robots, the first being what allows the robot to 

understand the physical world, as well as its internal state, and the latter being what gives power to 
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make the legs move. Afterwards, a study on the control of hexapod robots, analysing the performance 

indices that evaluate and compare the performance of hexapod robots, the movement control and 

posture control that regulate the body’s posture and leg movements. The main gaits utilized in recent 

research are exposed, in addition to the most common control architectures that are employed in robot 

systems. 

Lastly, Reinforcement Learning concepts and applications are studied. An exploration of the 

general terminology used in RL problems to give a grasp on its core principles. Then, an in-depth study 

on the main learning approaches and the mathematical framework used to create, train, and evaluate 

RL agents. Additionally, the examination of the practical application of Q-Learning, which is a widely 

used RL algorithm, to solidify the understanding of these concepts. 

2.1. HEXAPOD ROBOTS 

A hexapod robot comprises a main body with six legs attached. Due to the discrete landing points 

and the redundant DoF of the legs, the performance of hexapods is considered better than wheeled and 

tracked robots (Q. Liu & Jing, 2015). The overall capacities of hexapod motivate their study for walking 

across inclined surfaces, when compared to biped, quadruped and even octopod robots. 

This type of legged robots can navigate irregular terrains due to their inherent static stability, 

which is the capacity for maintaining the body stable and upright when only the reaction forces are 

applied to the system. The distribution of the limbs around the main body, provides the generation of 

omnidirectional motion and fault tolerant locomotion (Tedeschi & Carbone, 2014).  

2.1.1. MAIN BODY 

The main body, or torso, of a hexapod robot can be classified between two different types of 

structures, a rectangular shaped structure or a hexagonal shaped structure. The first one (see Figure 

2-1 (a)) is considered to be insect inspired and the six legs are distributed symmetrically in each side. 

The rectangular design provides a fast locomotion in the longitudinal and lateral directions. However, 

the hexapod becomes more rigid in terms of maneuverability, and, turning trajectories are more difficult 

to perform (Zaghloul et al., 2016). On the other side, hexagonal shaped hexapods (see Figure 2-1 (b)) 

have all six legs distributed symmetrically around the main body. The presented configuration can 

achieve the same walking speed in any given direction and its more flexible. 

Rectangular hexapod robots are better suited than their counterpart in moving along a straight 

line, however they require a special gait for turning actions that consists of four steps.  
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Hexagonal hexapod robots have true radial symmetry, so the body has no front or rear and there is no 

preferential direction for the motion. Tedeschi and Carbone ( 2014) proved that hexagonal robots have 

superior stability margin, stride and turning ability compared to rectangular robots. 

 

(a) 

 

(b) 

Figure 2-1 Leg Distribution in Hexapod robots: (a) Rectangular hexapods, (b) Hexagonal hexapods. 

2.1.2. ROBOTIC LEGS 

Artificial locomotion systems are mechanical structures with legs, each one comprising several 

links connected by prismatic or rotational joints. Gao et al., (2022) defined legged robots as multi-input, 

multi-output, multi-end-effector systems. These systems present advantages over conventional vehicles 

that use wheels. Nonetheless, legged robots reveal complex kinematic and dynamic settings, which 

make their analysis and control difficult (Silva & Tenreiro Machado, 2007). 

Legged locomotion vehicles present superior mobility in natural terrains, due to the discrete 

foothold positions. The ability to use discrete footholds can improve energy consumption since they 

deform the terrain less than wheeled or tracked vehicles. Legged robots can include redundant legs 

which improve drastically the static balance and locomotion even with damaged legs (Silva & Tenreiro 

Machado, 2007). The mechanical design and kinematic chain of the limbs’ mechanism favours the 

robot adaptation to the surface irregularities. The mechanism workspace allows an infinite combination 

of joints’ positions, hence the straightforwardness in the adjustment of the feet coordinates. The 

disadvantages of designing leg mechanisms include their low speed, and complexity of the generation 

of control algorithms. Despite that, in some situations the energy consumption can be reduced to 

energetically optimize the limbs trajectories, as aforementioned in the previous subsections. 

Figure 2-2 shows two different types of hexapod legs, bio inspired legs and non-zoomorphic legs. 

Bio inspired legs configuration is influenced by animal gaits, such as reptiles, mammals or 

arachnid. Non-zoomorphic legs usually take inspiration in anthropomorphism designs. The main 

characteristics of each leg type are listed in Table 2-1. 
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Figure 2-2 Hexapod leg types. (Tedeschi & Carbone, 2014) 

Table 2-1 Hexapod leg types and characteristics. 

Leg type Principal characteristics Reference 

Mammal 
Lower power consumption to support the body 

since it is above the legs. 
(Tedeschi & Carbone, 2014) 

Aracnid 
Legs extremities are situated on both sides, sticking 

the knees at the top of the body. 
(Tedeschi & Carbone, 2014) 

Reptil 
Legs are placed on both ends and knees to the side 

of the base. 
(Tedeschi & Carbone, 2014) 

Under actuated 
High compliance legs that only require an actuator 

at the hip. 
(Saranli et al., 2001) 

Telescopic leg Increase in the maximum load capacity of the robot. (Pfeiffer et al., 1995) 

Hybrid leg 

Foot is designed as a powered wheel that regulates 

the velocity and force of contact during the support 

phases. 

(Nava Rodriguez et al., 2010) 

 

The design of robotic legs can be classified in two more categories, legs orientation and joints 

configuration (see Figure 2-3). A rectangular hexapod robot can have two different configurations (see 

Figure 2-3 (a)): frontal or sagittal. In the first one, the directions are perpendicular to the advancement 

of the legs position. In the sagittal the movement is parallel to the robot legs. The circular assembly 

(Figure 2-3 (a)) as the legs positioned radially to the body, which allows movement in any direction.  

Regarding joints configuration there are three possible designs (see Figure 2-3 (b)): knee 

outwards, knee inwards and knees in the same direction. 
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(a) 

 

(b) 

Figure 2-3 Hexapod legs orientation (a) and joints configuration (b). (Adapted from (Tedeschi & Carbone, 2014)) 

2.1.3. JOINTS  

Joints are an inevitable part of robots since they are used to connect the mechanical parts and 

allow the relative movement between them. The principal objective of a mechanical joint is to hold parts 

together and transmit a loading force from a given structural component to an adjoining component 

(Josephs & Huston, 2018). Different type of movements requires distinct type of joints whether the 

movement is translational or rotational.  

The main joint types are (Bajaj et al., 2015; Flores & J.C, 2005): cylindrical, revolute, prismatic 

and spherical joints. Table 2-2 explains the four types of joints. 

Table 2-2 Types of Joints. 

Joints Description DoF Reference 

Revolute 

 

Allows a relative rotation 

movement. 
1 (Flores & J.C, 2005) 

Cylindrical 

 

Allows one relative translation 

movement and one relative 

rotation movement. 

2 (Flores & J.C, 2005) 

Prismatic 

 

Allows a relative translation 

movement. 
1 (Flores & J.C, 2005) 

Spherical 

 

Allows rotation in three theoretic 

relative rotations. 
3 

(Flores & J.C, 2005; 

Talaba, 2012) 
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2.1.4. SENSORS 

Robots require sensors to perceive their surroundings in the physical world. Additionally, sensors 

for estimating the internal state of the robot can be included (Gao et al., 2022). For that, sensors are 

divided into two categories (He & Gao, 2020), namely proprioceptive and exteroceptive sensors. 

Proprioceptive sensors are used to monitor the robot’s internal systems and components. 

Encoders (Electromechanical device which calculates the joint angle and speed via electrical signals), 

torque sensors and IMU’s (Inertial Measurement Units) are examples of this type of sensors. 

Exteroceptive sensors measure environmental information using visual, non-visual and contact 

sensors. These sensors can be separated in two different sub-categories (He & Gao, 2020): for physical 

and geometrical information. The former group obtains data for the kinematic and dynamic control of 

the robot using contact sensors and the latter gets information for mapping and localization using visual 

and non-visual sensors. 

Figure 2-4 shows the commonly used sensors in legged robots. 

 

Figure 2-4 Sensors used in legged robots. (He & Gao, 2020). 

2.1.5. ACTUATORS 

Actuators provide the necessary force and motion required for leg movement. There are several 

requirements for actuators, such as robustness or compliance, velocity control, low-impedance force 

control, high-power density (He & Gao, 2020). 

The actuators can be divided into three main types (Gao et al., 2022; He & Gao, 2020), namely: 

electrical, pneumatic and hydraulic. 
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Electrical actuators convert electrical energy into mechanical motion, Table 2-3 shows their 

advantages and disadvantages. Pneumatic actuators use energy of compressed air or gas to produce 

force. These types of actuators are known for their high force output and fast response time as well as 

having a low cost. Table 2-4 displays their advantages and disadvantages. Hydraulic actuators use a 

pressurized fluid to generate mechanical motion. They provide extreme high power density and are 

robust against impulsive loads, usually found in heavy machinery. Table 2-5 represents their 

advantages and disadvantages. 

Table 2-3 Advantages and disadvantages of electrical actuators. (Gao et al., 2022) 

Advantages Disadvantages 

Precise control. Limited Power. 

Speed control. High initial cost. 

Energy efficient. Possibility of over-heating. 

Low maintenance. Limited force output. 

Easy installation. Low stiffness. 

 

Table 2-4 Advantages and disadvantages of pneumatic actuators. (Xavier et al., 2022) 

Advantages Disadvantages 

High force output. Limited Precision. 

Fast response time. Compliant systems. 

Simple control. Noisy systems. 

Low maintenance. Difficult to control their linear position. 

Low cost. Needs a constant supply of compressed air/gas. 

 

Table 2-5 Advantages and disadvantages of hydraulic actuators. (He & Gao, 2020). 

Advantages Disadvantages 

High power. Low compliance. 

Precise control. Leakage possibility. 

Robust. Requires maintenance. 

High force density. Expensive. 

High precision. Viscosity of fluid changes with temperature. 

  



Prevision, control and optimization of a hexapod robot posture in inclined surfaces 

 

11 

Besides the presented actuators, some unconventional actuators applied to hexapod robots 

include (Tedeschi & Carbone, 2014): 

• Ionic polymer-metal composites: when applied with voltage differences their shape 

change. 

• Polyacrylonitrile: polymer gel that activates with changes in pH. 

• Shape Memory Alloys (SMA): exhibit contraction with heat. 

2.2. CONTROL IN HEXAPOD ROBOTS 

Hexapod robot control is crucial as it affects the robot’s capacity to maneuver through 

challenging settings, carry out specified tasks, and interact with its surroundings. The many legs and 

multiple DoF on hexapod robots make the task of controlling difficult and complex. 

A well-designed control system can make the robot move with agility, navigate challenging terrain, 

and perform a variety of jobs with great precision and accuracy. Not only that, but the control system is 

responsible for guaranteeing the security of the robot and its surroundings. 

In this chapter, the performance indices will be presented since they are metrics that are used to 

evaluate the performance of a control system, and can be used to estimate the effectiveness of the 

control. Afterwards an analysis to the movement control, exploring existing controllers and focusing on 

the leg path. A study of posture control, focusing on several methods used in correcting the robot 

posture. Lastly, an analysis of control architecture, reviewing the main methods and studying the most 

used type of control architecture. 

2.2.1. PERFORMANCE INDICES 

Performance indices are established parameters to correctly evaluate and compare hexapod 

robots. Since a more complete analysis requires more than one parameter the following will be 

presented: 

• Duty factor 

• Statistic stability criteria 

• Cost of transport (CoT) 
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Duty factor 

The duty factor β is the ratio of the time a leg spends on the ground to the cycle time and is 

defined as (C.-D. Zhang & Song, 1993): 

𝛽 =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑝𝑒𝑟𝑖𝑜𝑑

𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒
 (2.1) 

In a hexapod robot a duty factor 𝛽 < 0.5 corresponds to a running gait and 𝛽 > 0.5 is equivalent 

to a walking gait (He & Gao, 2020). 

Statistic stability criteria 

Hexapod robots need to stay statically stable at all the times during each gait in order not to fall 

with three or more legs in contact with the ground. Stability is achieved whenever the projection of the 

center of mass (CoM) is inside the support polygon that is comprised by the legs. This criterion uses the 

Zero Moment Point (ZMP) principle, which is defined as the minimum distance between the projection 

point of the CoM vector on the supporting polygon and each side of the polygon.  

Cost of transport 

The virtual robot used in this study has an overall of eighteen active joints, which is equivalent to 

a high energy consumption. Therefore, its motion needs to be energetically optimized to increase the 

system autonomy. The CoT is used to evaluate the swing trajectory and to identify the energy 

consumption for each gait cycle, and is expressed as follows, 

ζ =
𝑃

𝑚𝑔‖𝜐‖
 (2.2) 

where P is the power consumption, which is obtained through the torque and angular velocity of each 

joint, m is the system mass, g is the gravitational acceleration, and 𝜐 is the overall robot velocity 

(Coelho et al., 2022). 

2.2.2. MOVEMENT CONTROL 

Navigation in complex environments needs movement stability. This task is of utmost importance 

since with a successful application it may replace humans in explore and rescue missions.  

A control system is necessary to trigger the robot’s limbs and prevent it from falling during its 

movement. The system success depends on its ability to autonomously adapt to the terrain typology 

without damaging itself (Coelho et al., 2021). 
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Different types of control have been classified according with the methodology used to control the 

movement of a hexapod robot. Each methodology (traditional controllers, bio-inspired architectures and 

Reinforcement Learning) (see Figure 2-5) will be described below. 

 

Figure 2-5 Control systems methodologies. 

Traditional controllers 

Traditional control systems consider the hexapod as a rigid body connected to six robot 

manipulators and analyze the actuation and control of each leg individually. Furthermore, the 

locomotion is described through kinematic and dynamic models. Since there are a vast number of 

adopted methodologies for design of these control architectures, they were grouped in three categories 

(Coelho et al., 2021). 

 

Figure 2-6 Traditional controllers categories. 

Kinematic-Based Control 

This methodology relies on the calculation of the desired angular position of the joints or the 

torque of their actuators according to the desired motion of the limbs. The environment influences the 

stability of the robot, and to generate adaptive locomotion, it is necessary to obtain a perception of the 

surroundings.  

Most methods to generate adaptive gaits consider an evaluation of the contact forces of the feet 

to detect the roughness of the terrain (Coelho et al., 2021). 

Zha et al., (2019) did research about a searching algorithm, which aimed at determining new 

footholds when the limbs could not detect contact forces during the swing phase.  
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This research applied a constraint of stability, the Static Stability Margin (SSM) to evaluate the stability 

of the gait. This method evaluates the distance of the ground projection of the CoM of the robot toward 

the edges of the Support Polygon (see Figure 2-7). If the CoM is inside the SP, the robot is statically 

stable. Coelho et al., (2021) states that SSM is used to ensure that the robot is upright during the 

transition between the phases of the gait. Rojas et al., (2015) states that to solve a problem in an 

environment with a large number of forbidden locations a different constraint was used. The longitudinal 

stability margin (LSM) has a different methodology, where the minimal distance is calculated 

considering the direction of motion (see Figure 2-8). 

 

Figure 2-7 SSM of a hexapod. (Zha et al., 2019). 

 

 

Figure 2-8 LSM of a hexapod. (Adapted from (Zha et al., 2019)). 

Dynamic-Based Control 

The robot’s dynamic formulation enables the investigation of the motion deviation caused by 

external forces and torques applied to the hexapod in order to find the values of its interaction with the 

environment (Coelho et al., 2021). 

This type of control is explored with different approaches, presented in Table 2-6. 
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Table 2-6 Dynamic based control research. 

Research Description Ref 

Dynamic gait stability 

margin (DGSM) 

Evaluates the stability of a gait through the generated angular 

momentum and the edges of the SP. 

(Mahapatra et 

al., 2019) 

Spring-loaded inverted 

pendulum (SLIP) 

The system estimated the torque values of the actuators, which 

ensured the virtual dynamic model of the limbs behaved as linear 

springs during the stance phase. 

(Soyguder & 

Alli, 2012) 

Compliance controller 

+ kalman filter 

Adjusts the position of the limbs based on the error between the 

measured and the expected contact forces. The Kalman filter 

predicts the ZMP and verifies if it is within the SP. 

(Deng et al., 

2017) 

Impedance controller 

Increase stability of the motion and its energy efficiency. The 

torque of each joint is used to calculate the roughness of the 

ground. 

(Bjelonic et 

al., 2018) 

Euler-Lagrange method 

Determine the deviations between the desired and real positions 

of the joints through the contact forces and the generated torques 

of the actuators. 

(Faigl & Čížek, 

2019) 

 

One of the most important applications of these models is the evaluation of the contact forces 

between the feet and the ground. Not only that, another advantage of using the dynamic model of the 

robot is the possibility of evaluating the energy consumption of the actuators (Coelho et al., 2021). 

 

Real-Time Path and Gait Planning Methods 

In this subsection some of the methods used will be presented, where one of the main criteria is 

the processing time required to define the best trajectory for the robot to follow in a complex 

environment. 

Some methods discuss the use of computer vision algorithms to calculate safe trajectories. 

These algorithms were also used to teach the hexapod to adapt its behaviour in unknown environments. 

A brief description of each method will be presented in Table 2-7. 
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Table 2-7 Real-Time path and gait planning methods. 

Method Description Ref 

Rapidly exploring 

random tree (RRT) 

The algorithm was implemented to estimate a safe path in an 

unknown environment. Not only that but it was also used for path 

planning in an environment with obstacles. 

(M. S. Khan et 

al., 2015) 

Artificial neural 

network (ANN) + 

Fuzzy logic 

The method aimed at reducing the time a controller needs to plan 

its gait. Fuzzy Logic determined the correct actuation of the limbs 

and ANN decided the most adequate locomotion. 

(Coelho et al., 

2021) 

Support vector 

machine 

The robot adjusts the position of its CoM to avoid unsafe ground 

using the contact forces when walking across brittle surfaces. 

(Coelho et al., 

2021) 

 

Bio-Inspired Controllers 

Bio-inspired control architectures aim at mimicking the biologic process of generation of 

locomotion. The goal is to provide an optimal adaptation of the behaviour of the hexapod to the 

environment. Inspired in biological principles from the Central Pattern Generator (CPG) these systems 

have a high control center, similar to an animal brain (Coelho et al., 2021). 

These systems use coupled oscillators to rhythmically activate the swing and the stance phase of 

the limbs. Since there are different type of oscillators, they are presented in Figure 2-9. The interest of 

implementing sensory feedback in bio-inspired architectures is to produce adaptive locomotion by 

modifying the oscillator’s parameters and output signal. The output of the coupled oscillators is 

converted to angular positions of the joints. 

 

Figure 2-9 Types of oscillators.(Coelho et al., 2021). 

Reinforcement Learning 

By several trial-and-error encounters between the robot and its surroundings, RL gives a control 

system the capacity to learn how to operate in order to accomplish the intended goal. This type of 

application gives the robot a superior level of autonomy without the need to learn previous information 

about the environment (Coelho et al., 2021). 
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Since the subject of RL is further clarified in Reinforcement Learning a short explanation of the 

three main applications (Figure 2-10) of RL in the autonomous learning of a hexapod robot in an 

environment is provided. Hong et al., (2017) presented a combined Fuzzy Logic with Q-learning to 

generate real-time control for obstacle avoidance. In this method the algorithm had a fast convergence 

and learned an optimal strategy, which enabled the avoidance of obstacles. 

Liu et al., (2019) used the Monte Carlo method to optimize the Markov decision process and 

generate a stable gait. With the help of this technique, the issue of determining the likelihood of 

transition states, a component of the Markov decision process that affects the stability margin position 

states, is resolved. The robot could successfully adjust its locomotion to different surfaces. 

Recent research found two different approaches to the damage recovery problem. Verma et al., 

(2019) suggested a Neural Network to self-diagnose the damages and the algorithm could find the 

optimal gait with one or two limbs harmed. Chatzilygeroudis & Mouret, (2017) pointed a method which 

required a high computational power, employed a reset-free trial-and-error algorithm that stored and 

mapped all policies to select the one that had the maximum expected reward. 

 

Figure 2-10 Areas of application of RL in autonomous hexapod robot's movement.(Coelho et al., 2021). 

2.2.3. GAITS 

A gait defines the pattern of leg movements that a robot uses to move and its critical for the 

locomotion and overall functionality of hexapod robots. It plays a crucial role in determining the 

efficiency, stability, maneuverability, and adaptability of the robot. There are three main terms that 

describe gait (Alexander, 1984): duty factor (already introduced in Duty factor), stride and relative 

phase. 

The stride is a complete cycle of leg movements, from the setting down of a foot to next setting 

down of the same foot. The stride length, λ, is the distance travelled in a stride and the stride 

frequency, f, is the number of strides in unit time. This criterion is mainly used with periodic gaits. 

 



Prevision, control and optimization of a hexapod robot posture in inclined surfaces 

 

18 

The relative phase criterion is a measure used to characterize the synchronization of leg motions 

in hexapod robots. It calculates the time difference between two leg movements as a proportion of the 

entire gait cycle time. Changing the relative phase criteria can optimize the robot's gait for varied jobs 

and settings, impacting the stability and efficiency of the robot's movement. 

Hexapod robots can have two different setups in terms of gaits (Xu & Ding, 2014) (see Figure 

2-11): Periodic and aperiodic gait.  

Periodic gaits refer to a sequence of leg movements that repeat after a fixed interval of time, 

creating a periodic pattern. Considered more stable and efficient, making them suitable for applications 

that require precise control over the robot’s movement. Aperiodic gaits do not repeat in a periodic 

pattern. They are more complex and provide flexibility and adaptability in unpredictable terrain. 

 

Figure 2-11 Types of hexapod's gaits. 

There are four common gaits of hexapods (see Figure 2-11) (Alexander, 1984; Campos et al., 

2010): metachronal, ripple, tripod, and free gait. 

Since periodic gaits have the characteristic of repetition it is possible to extract their gait 

diagrams, which represents the sequence of leg movements in a hexapod robot to achieve locomotion. 

The metachronal gait (see Figure 2-12 (b)) is adopted by the hexapod in a slow movement. This 

gait is described as back to front propagating “wave”, moving one leg at a time. 

The ripple gait (see Figure 2-12 (c)) is considered a medium speed movement. Limbs move in 

groups of two in the same phase, for example R1 and L3, L1 and R3, and L2 and R2. 

The tripod gait (see Figure 2-12 (d)) has the top speed. Limbs move in groups of three in the 

same phase (L1, L3 and R2, and R1, R3, and L2). Free gait is a versatile and effective walking gait for 

hexapod robots, allowing them to move in any direction and adapt to a wide range of environments.  

It is usually adopted when the robot needs to change its gait according to real-time changes of the 

terrain and its state information, generating a sequence of gaits with an irregular order. The order of 

legs changes in a non-fixed but flexible manner (Ding et al., 2020). 
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(a) 

(b) 

 

(c) 

 

(d) 

 

Figure 2-12 (a) Legs distribution; (b) Metachronal gait diagram; (c) Ripple gait diagram; (d) Tripod gait diagram.((b), (c) and 
(d) adapted from(Campos et al., 2010)).  

2.2.4. POSTURE CONTROL 

A hexapod robot posture is related with stability, flexibility and adaptability in a complex 

environment. Posture control is of utmost importance since the relevance of transposing rough terrain, 

not only effectively but also quickly, has been growing exponentially (Y. Liu et al., 2020). 

Y. Liu et al., (2020) stated that the methods used to control the robot’s posture are divided in 

three categories (Table 2-8): Optimal pose method, suspension control method and the force/position 

hybrid control method. 

Table 2-8 Posture control methods.(Y. Liu et al., 2020). 

Method Description 

Optimal pose  

From the perspective of trunk position control, the robot’s posture is controlled to make 

the hexapod robot have better stability and flexibility. The stability and robustness of the 

torso are increased. 

Suspension 

control 

Controls the posture of the robot from the perspective of force control. Foot force 

perception information is combined with the control algorithm to supress the influence 

of external interference on trunk posture. 

Force/position 

hybrid control 

From the perspective of force/position hybrid control realizes stable walking by 

adjusting the position of the CoM. 
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The three methods have disadvantages, which include: low flexibility, heavy computational 

burden, and difficulty in establishing the control method. 

In regard to the optimal pose, the hexapod robot uses the position control to adjust the posture, 

that leads to the heavy calculation burden, challenging the real-time performance. Suspension control, 

with the force control strategy avoids the disadvantages of the latter method, but it has a poor 

adaptability to complex terrain. This creates the need of a hybrid method of pose control that can avoid 

complex kinematic solutions and has a good operability (Y. Liu et al., 2020). 

2.2.5. CONTROL ARCHITECTURES 

The choice of an appropriate control architecture is a major design issue. A well-planned 

architecture simplifies robot system management. There are two main concepts: Architectural structure 

and architectural style. The former refers to how a system is divided into subsystems and how those 

subsystems interact, and the latter refers to the computational concepts that underlie a given system 

(Kortenkamp & Simmons, 2008). 

There are four main architectural paradigms (see Figure 2-13) and they are shortly presented 

(Ingrand & Ghallab, 2017; Kortenkamp & Simmons, 2008). 

 

Figure 2-13 Types of control architectures.(Adapted from (Ingrand & Ghallab, 2017)). 

The most widely used in robotics is hierarchical architectures, modular components are 

themselves built on top of other modular components. They organize the software into layers with 

different temporal requirements. This type of layered decomposition reduces system complexity through 

abstraction, and they clearly identify and organize the sensory-motor components and the deliberation 

components. 

In reactive architectures plans are generated quickly and relied more directly on sensed 

information. Composed of input/output automata implementing loops from sensors to effectors. 

Despite being categorized as a different architecture they can be organized hierarchically. 
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Teleo-reactive architectures has the same general structure but operate at increasingly lower 

frequency as they move from the servo level to the reasoning levels.  

A paradigm based on planning-acting components distributed at different levels. They offer advantages 

with respect to the consistency of the system, but have issues scaling up to complex and dynamic 

environments. 

Open architectures are more recent, designed to fulfil the needs of service and personal robots in 

open environments. They have a distinct characteristic, which is to allow a robot to take data and 

models over the web. 

Since the three-layered robot architectures (see Figure 2-14) are very popular an example will be 

provided and explained. The lowest layer is behavioural control and is the layer tied most closely to 

sensors and actuators. The second layer is the executive layer and is responsible for choosing the 

current behaviours of the robot to achieve a task. The highest layer is the task-planning, responsible for 

the long-terms goals of the robot. The behaviour layer perceives the environment and carries out the 

actions of the robot, it is designed to bring speed and reactivity to robot control. The middle layer is the 

interface between the numerical behavioural control and the symbolic planning layer. It is responsible 

for translating high-level plans into low-level behaviours. Lastly, the planning layer looks towards the 

future, it is responsible for determining the long-range activities of the robot based on high-level goals. 

 

Figure 2-14 Typical tree-layered architecture.(Adapted from (Kortenkamp & Simmons, 2008)). 
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The architectural style defines how the architecture components communicate with each other. 

Every component needs to exchange data and send commands and for this there are two basic 

approaches:  

• Client-server: A communication protocol, where the components talk directly with other 

components. A component can call functions and procedures of another component. 

• Publish-subscribe: A communication protocol, where a component publishes data, and 

any other component can subscribe to that data. In a typical architecture, most 

components both publish information and subscribe information published by other 

components. 

2.3. REINFORCEMENT LEARNING 

Artificial Intelligence (AI) entry into the industry caused a revolution. Facing an exponential 

evolution, with great advances in computer hardware and capability, decreased costs in data storage 

this technology remarks itself superior to the others. 

The principal objectives of Artificial Intelligence can be found in Figure 2-15. 

 

Figure 2-15 Artificial Intelligence objectives.(Adapted from (Nian et al., 2020)). 

Machine Learning is a field of Artificial Intelligence, and it can be described as the subject of 

science that studies and develops algorithms and statistical models to give machines the ability to learn 

tasks without being programmed for them (Nian et al., 2020). 

This topic can be divided in three categories: Supervised Learning (SP), Unsupervised Learning 

(UL) and Reinforcement Learning (RL) (Figure 2-16). The latter is the main focus of this work. 

A Supervised Learning algorithm attempts to generalize across training examples and uses this 

knowledge to predict labels for unseen data. SP is not capable of outperforming the subject matter 

expert since the algorithm only mimics the labelling behaviour of the expert. Unsupervised Learning is 

used for identifying hidden structures within unlabeled data sets, grouping them in categories. The main 

goals of UL are dimensional reduction, feature extraction and clustering (Nian et al., 2020). 
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Figure 2-16 Categories of Machine Learning. 

Reinforcement Learning (Figure 2-17) presents a new methodology that attempts to give the 

machines the ability to find solutions that the previously mentioned could not find.  

Through an optimal mapping of situations to actions through a trial-and-error search using a 

system of delayed rewards (also called delayed feedback). These two features distinguish RL from all 

the other algorithms (Nian et al., 2020). 

RL presents algorithms with an agent that learns and interacts with a state space to reach a goal. 

The agent must be able to sense the state of its environment and perform actions that affect the state. 

Sutton & Barto, (2018) define that any method capable of solving problems that has an agent capable 

of sensation, action and goal should be considered a RL method. 

These methods have a similar learning to humans and animals and the main part of RL 

algorithms are based in biological systems of learning. 

 
 

(a) (b) 

Figure 2-17 (a) Basic RL structure; (b) Basic RL architecture.(Adapted from (Dridi, 2021)). 
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2.3.1. TERMINOLOGY 

Although Reinforcement Learning has many different algorithms with different methodologies of 

study and application, they still have common terms that should be presented. Table 2-9 show the 

common terms used in RL and exhibit a brief description. 

Table 2-9 Terms used in a RL Model. 

Term Description 

Agent 
Performs a specific action in an environment in order to receive a reward. It´s main objective 

is to maximize the cumulative reward. 

Environment 
Scenario where the agent has to navigate. Includes all objects, events and rules that govern 

the agent’s behaviour and influence the rewards it receives. 

State 
Current situation in which the agent is present. Contains all the relevant information that the 

agent needs to choose an appropriate action. 

Action  A move/task performed by the agent in an environment in a given state. 

Reward 

A scalar value that represents the feedback given to the agent for its actions in a particular 

state. The goal is to influence the agent to learn to maximize the cumulative reward by taking 

appropriate actions in different states. 

Policy 
Strategy chosen by the agent based on the current state in order to decide the next task or 

action. 

Value 
Long-term reward, or a reward with a discount. Represents the expected cumulative reward 

an agent can obtain from a state or state-action pair. 

Value 

function 
The total reward and identifies the value of the state. 

2.3.2. LEARNING APPROACHES 

The learning approaches of RL agents or RL algorithms can be categorized into two classes: 

• Model-based RL: The agent employs a predictive model to learn about the control policy 

from the environment through a very small number of interactions, and then the model is 

applied to the subsequent episodes to obtain the rewards. 

• Model-free RL: Without any model, the agent learns about the control policy from the 

environment through trial and error in order to maximize rewards. 

Khan et al in (Khan et al., 2020) state that model-free RL has proved itself as a promising 

approach in the fields of robotics in comparison to model-based RL. 

Figure 2-18 shows RL algorithms classification and present some RL algorithms. 
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Figure 2-18 Classification of RL algorithms. (Khan et al., 2020) 

2.3.3. MARKOV DECISION PROCESS 

An important mathematical framework that formalizes the Reinforcement Learning problem as a 

sequential decision-making process is the Markov Decision Process (MDP). MDP is a discrete-time 

stochastic control process. This framework is intended to be a simple way of representing essential 

features of the reinforcement learning problem. 

MDP’s are meant to be a straightforward framing of the problem of learning from interaction to 

achieve a goal. A MPD manifests a sequence of decision tasks in which, at each time step, the agent 

observes the current state of the environment and decides upon an action. A transition occurs in the 

environment, it moves to the next state and the agent receives a reward, either positive or negative. The 

agent will continue to act in the environment until it reaches a terminal state at a given time step, T, or 

until it completes the goal (Fu et al., 2022). 

The reward that the agent gets at each step its affected by a discount factor, γ, and the total 

reward is defined as the return, G. 

There are three fundamental classes of methods for solving finite Markov decision problems: 

Dynamic Programming, Monte Carlo methods and temporal difference learning (Sutton, 2018).  
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Dynamic Programming 

Dynamic programming (DP) is a set of methods that may be used to compute optimal policies 

given a perfect model of the environment in the form of a Markov decision process. These methods are 

well developed mathematically but require a complete and accurate model of the environment, which 

has a great computational expense. 

The main idea of DP is the use of value functions to organize and structure the search for good 

policies. 

Monte Carlo Methods 

In contrast with dynamic programming, in these methods the agent doesn’t have access to a 

complete model of the environment and must learn from experience. To produce data identical to data 

gathered from a real phenomenon that complies with the model's requirements, Monte Carlo 

techniques are employed. 

In order to solve problems statistically when there is no deterministic model, the basic idea 

behind Monte Carlo methods is to estimate complex or uncertain outcomes by repeatedly creating 

random samples and averaging their results. By utilizing the law of large numbers, these techniques 

converge to precise estimations as the quantity of samples or trials grows. 

Temporal difference methods 

Temporal difference (TD) methods learn a value function that estimates the expected long-term 

reward for taking a particular action in a state, it learns from experience by iteratively updating value 

estimates based on the difference between predicted and observed outcomes, which allows the agent 

to evaluate and improve its policy without waiting for the end of episodes (Fernández-Conde et al., 

2022). Dynamic programming and Monte Carlo techniques are combined in TD methods to create a 

more effective strategy. The main TD methods that exist are: 

• Q-learning – Off- policy method used to approximate the optimal action-value function. It 

iteratively updates q-values using the Bellman equation and the maximum expected 

return over all possible actions. 

• SARSA – On-policy method used to learn the action-value function. It updates q-values 

based on the q-value of the next state-action pair, considering the action chosen in the 

next state. 

• Expected SARSA – On-policy method that extends SARSA by estimating the expected q-

value for the next state-action pair, considering the probability distribution of possible 

actions in the next state.  
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Considering that this research will evaluate the hexapod actions in different environments by 

adjusting control parameters that affect how the robot regulates its movement while maneuvering and 

adapting to changes in the inclination of the terrain, the most suitable method to apply is the Q-

Learning. 

2.3.4. Q-LEARNING  

Q-Learning assesses the quality of the action taken. A model-free RL that handles problems with 

stochastic transitions and rewards. A Q-Learning algorithm is a temporal difference method that 

forecasts a sum dependent on the future values of the signal (Abdulqadir & Abdulazeez, 2021). 

Known as off-police RL because it learns the action that is outside the current policy. A Q-table is 

created to store the state and action values, which is the main reference for the agent to choose the 

best actions based on their values in the Q-table. Then, the agent interacts with the environment and 

updates the state-action pairs in the Q-table. The actions can be taken as exploiting or exploring.  

The agent exploits when it uses Q-table to view all Q-values and chooses the action based on the 

maximum Q-value. Random actions performed by the agent are considered exploring. Exploiting 

depends on maximum future reward, whereas exploring depends on acting randomly (Dridi, 2021). 

Q-Learning is defined by, 

𝑄𝑛𝑒𝑤(S𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 ∙ max
𝑎
𝑄(𝑆𝑡+1, 𝛼) − 𝑄(𝑆𝑡, 𝐴𝑡)]. (2.3) 

where 𝑄(𝑆𝑡, 𝐴𝑡) is the current Q-table variable value, 𝛼 is the learning rate (0 < 𝛼 ≤ 1), that affects 

the degree to which the Q-values are updated during the process, 𝛾 is the discount factor (0 < 𝛾 ≤ 1) 

and max
𝑎
𝑄(𝑆𝑡+1, 𝛼) is the estimate of optimal future value. This algorithm is a variation of the Bellman 

equation as a simple value iteration update. The Q-values are based on the benefit gained by the 

selection of activity plus the overall possible reward predicted. 
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2.4. SUMMARY AND CONCLUSIONS 

In this chapter an extensive analysis was made in order to comprehend the relevance of hexapod 

robots when compared with other legged robots. A research of the hexapod robots main features, 

namely the main body structure, legs and joints arrangements and also the most common sets of 

actuators and sensors, is made to understand the advantages of disadvantages of this type of robots. 

Regarding the control of hexapod robots an overview of the performance indices is executed 

since they are effective at estimating the quality of a control system. Not only that, but the movement 

control and gaits are evaluated and divided into sections to further understand the use of movement 

stability in this research. When considering hexapod gaits, the tripod gait is defined as the default 

walking gait, considering it has the top speed between all periodic gaits and, since it has the highest 

oscillations, it is the best choice for stability research. In respect to control architectures, the 

hierarchical architecture is the one applied in this investigation since it is the most researched topic and 

it has a rather simple system complexity, which aids with comprehension. 

Lastly, a thorough study on Reinforcement Learning that presents the common terminology, the 

learning approaches and learning algorithms. Q-learning, a model-free approach where the agent learns 

with a control policy in an environment through trial and error, is selected. The use of a Q-table that is 

composed of actions and states can be adapted to the use of different environments, in this case 

different worlds with diverse slopes, and a control parameter that has several options. By assimilating 

the different control parameter values with all the slope environments, it is possible to find a suitable 

match with the use of Q-Learning. 
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3. HEXAPOD MODEL AND GAIT ANALYSIS 

In this chapter a description of the hexapod robot ATHENA used in this study is presented. A 

kinematic analysis of the limb is showed for the purpose of understanding the robot’s walking. The  

analysis of the limbs trajectory is also presented in order to establish the best algorithm to use along 

with the posture control. 

3.1. HEXAPOD MODEL DESCRIPTION 

In this section, a description of the hexapod robot ATHENA considered in this study is presented. 

Considering that the physical prototype is not used in the study an exposition is made in order to assist 

comprehension. The physical body is depicted in Figure 3-1. The robot is composed of 25 rigid bodies, 

which are interconnected by 24 kinematic joints. The limbs are distributed in two groups of three legs 

placed symmetrically along the two sides. Each limb includes three revolute joints that are actuated by 

servo motor with a stall torque of 1.89 N.m. The revolute joints connect the torso with the coxa, femur 

and tibia segments of each leg, named respectively Thorax-Coxa(TC), Coxa-Trochaterofemur(CTr), and 

Femur-Tibia(FTi). The hexapod feet are connected to the tibia segments by passive prismatic joints, that 

absorb the impact with compression springs. 

 

Figure 3-1 Physical model of the ATHENA robot. 

Since this research is based on computation simulations, a simplified model of the robot was 

used in the Gazebo software. The system geometry has a minimal influence on the results, as long as 

the inertial properties are equal, the hexapod modelled in Gazebo was composed using simple 

geometries.  
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The torso and the coxa, femur and tibia segments were converted into prisms and the feet were 

modelled as spheres (Figure 3-2) which helps the computational simulations in terms of collision with 

the ground since there is only one contact point in each point. In order to replicate the physical model 

joints, all the revolute joints were set to a maximum torque of 1.89 N.m. Also, the connection between 

the tibia and the foot is assumed fixed. 

 

Figure 3-2 Computational multibody model of ATHENA robot. 

3.2. KINEMATIC MODEL 

The hexapod’s kinematic model is important for the control of the limbs motion. This is used to 

control the robot’s movement, which requires the determination of the relationship between the angular 

positions of the joints and the coordinates of the robot’s feet. Using the computational model of the 

ATHENA robot the torso’s center of mass is defined as the reference point for all calculations. In 

addition, for simplification, each separate leg is considered an isolated system, also the tibia and the 

foot are combined into a single body. The kinematic model of a leg is depicted in Figure 3-3. The angles 

𝜃2, 𝜃3 and 𝜃4 are the relative angles of the TC, CTr, and FTi joints, respectively. The motion range of 

the TC joint is set to 𝜃2 ∈ [−0.612, 0.612]rad, and the angular position of the remaining joints is 

constrained to 𝜃3, 𝜃4 ∈ [−1.484, 1.484]rad. 

 

Figure 3-3 Leg kinematic model. 
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The locomotion control is based in two different estimations from the kinematic model. Firstly, 

get the current feet coordinates based on the joints’ angular positions to check if the desired motion is 

inside the system’s workspace. Secondly, in order to calculate the joints’ configuration, it is used the 

trajectory applied to the feet. The first estimation is based on the forward kinematics configurations and 

for that the Denavit-Hartenberg convention is applied to obtain the relative position of the foot w.r.t the 

robot’s center of mass, for simplification it will be referenced as O. The transformation matrix between 

two consecutive references is expressed as, 

𝐓𝑖
𝑖−1 = [

cos𝜃𝑖 −sin𝜃𝑖cos𝛼𝑖 sin𝛼𝑖sin𝜃𝑖 𝑎𝑖cos𝜃𝑖
sin𝜃𝑖 cos𝜃𝑖cos𝛼𝑖 −𝑐𝑜𝑠𝜃𝑖sin𝛼𝑖 𝑎𝑖sin𝜃𝑖
0 sin𝛼𝑖 cos𝛼𝑖 𝑑𝑖
0 0 0 1

] (3.1) 

where 𝑖 corresponds to the reference number, 𝑎𝑖 and 𝑑𝑖 denote the translation along the x and z axes, 

and 𝛼𝑖 𝜃𝑖 correspond to the rotation along the same axes. Using the Denavit-Hartenberg convention 

and the parameters presented in Table 3-1, it is possible to obtain the relative transformation between 

the reference O and the hexapod feet. This transformation can be determined as, 

𝐓4
0 = 𝐓1

0𝐓2
1𝐓3

2𝐓4
3 (3.2) 

which can be reformulated as, 

𝐓4
0 =

[
 
 
 
 
cos(𝜃1 + 𝜃2)cos(𝜃3 + 𝜃4) −cos(𝜃1 + 𝜃2)sin(𝜃3 + 𝜃4) sin(𝜃1 + 𝜃2) 𝑥𝑝

𝑂

sin(𝜃1 + 𝜃2)cos(𝜃3 + 𝜃4) −sin(𝜃1 + 𝜃2)sin(𝜃3 + 𝜃4) cos(𝜃1 + 𝜃2) 𝑦𝑝
𝑂

sin(𝜃3 + 𝜃4) cos(𝜃3 + 𝜃4) 0 𝑧𝑝
𝑂

0 0 0 1 ]
 
 
 
 

 (3.3) 

where the vector 𝒑𝑖
𝑂 = {𝑥𝑝

𝑂 ,  𝑦
𝑝
𝑂 , 𝑧𝑝

𝑂} , 𝑖 ∈ [1, 6] contains the feet’ relative coordinates, which are 

expressed as, 

𝒑𝑖
𝑂 = [

cos(𝜃1 + 𝜃2)(𝑙4cos(𝜃3 + 𝜃4) + 𝑙3cos𝜃3 + 𝑙2) + 𝑙1cos𝜃1
sin(𝜃1 + 𝜃2)(𝑙4sin(𝜃3 + 𝜃4) + 𝑙3sin𝜃3 + 𝑙2) + 𝑙1sin𝜃1

𝑙4sin(𝜃3 + 𝜃4)  + 𝑙3sin𝜃3

] (3.4) 

Table 3-1 Denavit-Hartenberg parameters for all relative transformations between O and the hexapod foot. 

Transformation 𝜶𝒊[rad] 𝒂𝒊[mm] 𝜽𝒊[rad] 𝒅𝒊[mm] 

{𝟎} → {𝟏} 0 𝑙1 𝜃1 0 

{𝟏} → {𝟐} 
𝜋

2
 𝑙2 𝜃2 0 

{𝟐} → {𝟑} 0 𝑙3 𝜃3 0 

{𝟑} → {𝟒} 0 𝑙4 𝜃4 0 
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The second estimation uses inverse kinematics calculations to control the joints positions. Using 

the feet’s position to obtain the relative angular positions of the joints. Starting with 𝜃1, which is 

constant and depends on the leg position as, 

𝜃1 =  {

0, 𝑖 = 1 

arctan (
𝑙𝑎
𝑙𝑏
) , ∀𝑖 ∈ {2, 3, 5, 6}

𝜋, 𝑖 =  4 

 (3.5) 

Figure 3-4 shows how the 𝜃1 value is obtained.  

 

  (a) 

 

            (b) 

Figure 3-4 Hexapod Design: (a) portrays the torso measurements, (b) portrays the 𝜃1 value in regards of the leg. 

To calculate 𝜃2 a reference Q is placed on the TC joint. So, the angular position of this joint is 

defined as, 

𝜃2 =  arctan(
𝑥𝑝
𝑄

 𝑦
𝑝
𝑄
) (3.6) 

in which 𝒑𝑖
𝑄 = {𝑥𝑝

𝑄 ,  𝑦
𝑝
𝑄 , 𝑧𝑝

𝑄} denotes the relative position of 𝒑𝑖 w.r.t the reference Q, and is 

expressed as, 

𝒑𝑖
𝑄
= (𝐓1

0)−1𝒑𝑖
𝑂 (3.7) 

where 𝐓1
0 is the transformation matrix between the torso reference O and Q. By applying forward 

kinematics with the TC joint coordinates and 𝜃1 the CTr joint coordinates, reference U, are calculated, 

𝑈𝑖
𝑄
=  (𝐓1

0)−1𝐓2
0 (3.8) 

Considering the vector 𝐬𝐩, which is the size of the vector between the reference U and the foot, 

the value of the CTr and the FTi joints are as follows,  

𝜃3 =  arccos(
−𝑙4

2 + 𝑙3
2 + ‖𝑠𝑝‖

2

2𝑙3‖𝑠𝑝‖
) − arcsin(

𝑧𝑈 − 𝑧𝑝

‖𝑠𝑝‖
) (3.9) 

𝜃4 =  𝜋 + arccos(
−‖𝑠𝑝‖

2
+ 𝑙4

2 + 𝑙3
2

2𝑙3𝑙4
) 

(3.10) 
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3.3. GAIT GENERATION 

The study of gait generation aims at analyzing the influence of the limbs’ trajectory in the robot 

locomotion. Although the feet are not in contact with the ground during most of the swing phase, their 

velocity and acceleration influence the torso posture and the overall consumption rate. Thus, it is 

necessary to compare different algorithms to choose the one that has a lower impact in the variation of 

its posture. In order to reduce the influence of deviations in the system stability the same hexapod gait 

will be applied. The motion applied in ATHENA is the tripod pattern. The legs are divided in two 

locomotion groups, alternating between swing and stance phase. Since there are two different phases, 

each is going to have a distinct trajectory. In the stance phase the same trajectory will be applied in 

each case as the aim is for the limbs to support the robots’ weight by ensuring the contact with the 

ground. For the swing phase, this research considers five different functions – a triangular function, a 

parabola, a cubic and a fourth-degree Bezier curves and a cubic Spline Curve. 

For a more complete study all different algorithms were applied in four different environments – a 

normal plane world, a normal plane world with steps, a ramp with 10-degree slope and a terrain 

composed by uneven blocks, that will be referred as a testbed. 

3.3.1. STANCE PHASE 

The stance phase main requirements are to support the torso weight and ensure the feet contact 

with the ground. The trajectory of the leg during the stance phase is as it follows, 

𝑓0(𝑡) = {

𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

}  = {

𝑥𝑝,0

𝑦𝑝,0 +
𝑆

𝑇
𝑡

𝑧𝑝,0

} (3.11) 

where 𝑆 is the robot step length, 𝑇 is the time of a step cycle and and 𝒑𝑖,0 = {𝑥𝑝,0, 𝑦𝑝,0, 𝑧𝑝,0}
T
 is 

the foot initial position. 

3.3.2. SWING PHASE 

The swing phase analysis compares five different functions, the first one combines two linear 

trajectories, one for the foot ascending motion and another for the descending motion. 

For the ascending motion the trajectory is expressed as, 
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𝑓1(𝑡) = {

𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

} =  

{
 
 

 
 

𝑥𝑝,0

𝑦𝑝,0 +
𝑆

𝑇
𝑡

2
ℎ − 𝑧𝑝,0

𝑇
𝑡 + 𝑧𝑝,0}

 
 

 
 

for  𝑡 ≤
𝑇

2
 (3.12) 

where ℎ is the trajectory maximum height. As for the limb descending motion, it is defined as, 

𝑓1(𝑡) = {

𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

} =  

{
 
 

 
 

𝑥𝑝,0

𝑦𝑝,0 +
𝑆

𝑇
𝑡

−2
ℎ − 𝑧𝑝,0

𝑇
𝑡 + 𝑧𝑝,0 + 2ℎ}

 
 

 
 

for   𝑡 >
𝑇

2
 (3.13) 

The parabola is a second degree polynomial function, which is described as, 

𝑓2(𝑡) =  𝑎𝑡2 +  𝑏𝑡 +  𝑐 (3.14) 

where 𝑎, 𝑏 and 𝑐 are constants which must be obtained through three control points 𝐜𝐢 ∈ [0, 2]. 

Assuming that 𝐜𝟎 = 𝐩i,0, the remaining control points are defined as, 

𝐜𝟏 = {0,
𝑆

2
 , ℎ}

T

+ 𝐜𝟎 (3.15) 

𝐜𝟐 = {0, 𝑆 , ℎ}T + 𝐜𝟎 (3.16) 

since this motion occurs in the y and z axes, the values of 𝑎, 𝑏 and 𝑐 need to be estimated for cases, 

using the following expressions, 

{𝑎𝑦, 𝑏𝑦, 𝑐𝑦}
T
= 𝑴 −𝟏{𝑦𝑐,0, 𝑦𝑐,1, 𝑦𝑐,2}

T
 (3.17) 

{𝑎𝑧 , 𝑏𝑧 , 𝑐𝑧}
T = 𝑴 −𝟏{𝑧𝑐,0, 𝑧𝑐,1, 𝑧𝑐,2}

T
 (3.18) 

where 𝑴 is defined as, 

𝑴 = [
1 0 0
1 0.25 0.25
1 1 1

] (3.19) 

with the constants of each plane, it is possible to describe the limbs’ motion, the result expression is 

the following, 

𝑓2(𝑡) = {

𝑥(𝑡)

𝑦(𝑡)
𝑧(𝑡)

}  =  {

𝑥𝑝,0

 𝑎𝑦𝑡
2 + 𝑏𝑦𝑡 +  𝑐𝑦

 𝑎𝑧𝑡
2 +  𝑏𝑧𝑡 +  𝑐𝑧

} (3.20) 

For the Bezier trajectories, the generic form of a Bezier curve can be expressed as, 
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𝑓𝑗(𝑡) =  ∑(1 − 𝑡)𝑛−𝑖𝑡𝑖𝐜i,

𝑛

𝑖=0

 𝑗 ∈ {3, 4} (3.21) 

where 𝑛 is the curve degree and 𝑡 is the time interval for the trajectory. The main difference between 

the cubic and the fourth-degree curves is the number of control points. Assuming 𝐜𝟎 = 𝐩i,0, for the 

first case, the values of 𝐜i, 𝑖 ∈ [1, 3] are as follows, 

𝐜𝟏 = {0,
𝑆

4
 ,
ℎ

3
}
T

+ 𝐜𝟎 (3.22) 

𝐜𝟐 = {0,3
𝑆

4
 ,
ℎ

3
}
T

+ 𝐜𝟎 
(3.23) 

𝐜𝟑 = {0, 𝑆 , 0}T + 𝐜𝟎 (3.24) 

As for the fourth-degree Bezier curve, the values of 𝒄𝑖 , 𝑖 ∈ [1, 4] are the following, 

𝐜𝟏 = {0,
𝑆

4
 ,
ℎ

3
}
T

+ 𝐜𝟎 (3.25) 

𝐜𝟐 = {0,
𝑆

2
 , ℎ}

T

+ 𝐜𝟎 
(3.26) 

𝐜𝟑 = {0, ,3
𝑆

4
 ,
ℎ

3
}
T

+ 𝐜𝟎 
(3.27) 

𝐜𝟒 = {0, 𝑆 , 0}T + 𝐜𝟎 (3.28) 

For the cubic spline its necessary five control points 𝐜𝐢 ∈ [0, 4]. Assuming that 𝐜𝟎 = 𝐩i,0, the 

remaining control points are expressed as, 

𝐜𝟏 = {0,
𝑆

4
 ,
ℎ

1.35
}
T

+ 𝐜𝟎 (3.29) 

𝐜𝟐 = {0,
𝑆

2
 , ℎ}

𝑇

+ 𝐜𝟎 
(3.30) 

𝐜𝟑 = {0,3
𝑆

4
 ,
ℎ

1.35
}
𝑇

+ 𝐜𝟎 
(3.31) 

𝐜𝟒 = {0, 𝑆 , 0}𝑇 + 𝐜𝟎 (3.32) 

in which 𝐜𝒊,𝑦 ∈ [0, 4] and 𝐜𝒊,𝑧 ∈ [0, 4] and using the CubicSpline function in Python, the cubic 

polynomial for each interval [𝐜𝒊,𝑦, 𝐜𝐢+𝟏,y,] can be found, which is defined as, 

𝑆𝑖(𝑥) =  𝑎𝑖 + 𝑏𝑖(𝑥 − 𝐜𝒊,𝑦) + 𝑐𝑖(𝑥 − 𝐜𝒊,𝑦)
2  +  𝑑𝑖(𝑥 − 𝐜𝒊,𝑦)

3 (3.33) 

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 are coefficients computed by the CubicSpline function. 𝑓5 is defined as the group 

of 𝑆𝑖(𝑥) equations, and with that the limbs movement can be expressed as, 
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𝑓6(𝑡) = {

𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

} =

{
 
 

 
 

𝑥𝑝,0

𝑦𝑝,0 +
𝑆

𝑇
𝑡

𝑓5 (𝑦𝑝,0 +
𝑆

𝑇
𝑡)}
 
 

 
 

 (3.34) 

3.3.3. ENVIRONMENTS 

A complete study requires that all algorithms are tested in different environments to know which 

algorithm is the most appropriate to apply in the posture adjustment. In order to have diversity in the 

terrains, four different setups where created, which are shown in Figure 3-5. The first terrain (Figure 3-5 

(a)) works as a baseline for the values obtained in the latter environments. A slope environment (Figure 

3-5 (c)) and two environments with obstacles (Figure 3-5 (b) and (d)), simple and complex, were used in 

order to give the robot different situations that can be found in the world. 

Furthermore, the selection of these diverse environments aligns with the need for adaptability in 

robotic systems. Robots are often required to navigate and perform tasks in dynamic and unpredictable 

settings. Therefore, exposing the hexapod robot to scenarios like the slope and obstacle environments is 

not only a mean to test algorithm performance but also a reflection of the real-world challenges robots 

may encounter. The study's findings will not only inform about posture adjustment but also contribute to 

the broader field of robotics by enhancing the understanding of how algorithms can adapt to different 

terrains and obstacles, ultimately improving the robot's versatility and utility in practical applications. 

 

(a) 

 

(b) 

( 

c) 

 

(d) 

Figure 3-5 Environments tested in the computational simulations: (a) normal world, (b) normal world with steps, (c) ramp 
with 10-degree slope, (d) testbed. 
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3.4. SIMULATIONS 

As presented in Swing Phase, five different gait algorithms were tested in all environments. Since 

energy efficiency is a topic of high importance in hexapod robots mobility the energy consumption was 

compared to find which algorithm had a higher reduction in terms of energy values. For that reason, the 

CoT was studied and compared throughout all environments. In each simulation, the robot took 20 

steps using the tripod gait, at a velocity of 0.045 m/s. Each step was divided into 20 timesteps, during 

which the power consumption of all joints was extracted by multiplying the torque and the angular 

velocity. The CoT of each step was calculated by summing the power consumption values of all joints 

across all timesteps (see Performance Indices for the CoT equation). The presented results in Table 3-2 

represent the average and standard deviation of three simulations for each gait algorithm and 

environment. 

In an overall performance assessment across various environments, the 3rd and 4th degree 

Bézier curves consistently yield superior CoT results. The elevated CoT values observed in the triangular 

function are attributed to its less smooth trajectory compared to other algorithms. The other algorithms 

aim for smoother, curve-like paths, while the triangular function's trajectory lacks smoothness, which 

over-constraints the servomotors, resulting in trajectory errors and significant oscillations. In the normal 

world with steps and the testbed, there was a substantial increase in both mean and standard deviation 

values, with standard deviation occasionally surpassing the mean. This increase was linked to instances 

where the robot's standing legs would slip or fall due to obstacles or sudden balance loss, leading to an 

overexertion of the servomotors as the robot struggled to regain its balance. Given the rather favourable 

outcomes of the parabolic and 3rd-degree Spline algorithms, they remain viable options for gait 

generation.  

Table 3-2 CoT Results for the simulations in all environments. 

Algorithm 

Environment 
Triangular Parabolic 3rd-bézier 4th-bézier 3rd-spline 

Normal world 105.38 ± 58.79 3.12 ± 1.01 3.14 ± 1.02 2.60 ± 0.66 5.78 ± 2.76 

Normal world with 

steps 
104.73 ± 54.63 12.80 ± 16.47 13.45 ± 17.88 9.80 ± 8.45 17.84 ± 19.25 

10° slope 79.99 ± 46.16 8.50 ± 4.27 7.28 ± 2.96 7.25 ± 2.44 10.23 ± 6.27 

Testbed 116.29 ± 163.21 20.99 ± 33.23 16.82 ± 14.95 24.44 ± 25.28 21.28 ± 26.32 

 

For further clarification the height variations, as well as the roll and pitch variations will be compared. 

This data is measured with an IMU applied to the virtual model of the robot. 



Prevision, control and optimization of a hexapod robot posture in inclined surfaces 

 

38 

To better classify the height variation, there will be two parameters: Height variance and distance 

to 0.10 m line. Figure 3-6 reveals that the triangular algorithm exhibits significant height variations, 

which also impact roll and pitch values. Consequently, it is determined that this algorithm is unsuitable 

for deployment on the hexapod robot. Among all other algorithms, the height variations are generally 

low. Notably, the 3rd-degree Bézier curve consistently maintains its height values above the 0.10 m 

threshold, reducing the risk of the robot’s torso hitting the environment.. 

 

          (a) 

 

   (b) 

 

         (c) 
 

  (d) 

 

Figure 3-6 Box plots of height variation: (a) normal world, (b) normal world with steps, (c) 10º Slope, (d) testbed. 

In terms of roll and pitch, greater stability is correlated with lower acceleration and velocity 

values, the velocity values are indicated in Figure 3-7 and Figure 3-8. Particularly, the parabola function 

consistently exhibits higher velocity value variations, leading to its exclusion as a suitable algorithm for 

application on the robot. In the context of this research, which emphasizes adaptation on inclined 

surfaces, the 3rd degree Spline is likewise unsuitable due to inferior performance compared to the 3rd 

and 4th degree Bézier curves (see Figure 3-7 (c) and Figure 3-8 (c)). Considering the better height 

values of the 3rd-degree Bézier curve, the similarity in roll and pitch values between both Bézier curves, 

and the increased computational cost associated with the 4th-degree Bézier curve due to the additional 

trajectory-defining point required, the chosen algorithm is the 3rd-degree Bézier curve. 
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       (a) 
 

                                        (b) 

 

         (c) 
 

                                        (d) 

 

Figure 3-7 Box plot of roll velocity variation: (a) normal world, (b) normal world with steps, (c) 10º Slope, (d) testbed. 

  

  

Figure 3-8 Box plots of pitch velocity variation: (a) normal world, (b) normal world with steps, (c) 10º Slope, (d) testbed. 
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3.5. SUMMARY AND CONCLUSIONS 

This chapter has provided a comprehensive exploration of the hexapod model ATHENA, focusing 

on its description, kinematic model, gait generation, and simulations. The description of the physical 

hexapod robot ATHENA, while not directly employed in the study, was included to facilitate a clear 

understanding of the system. Subsequently, the kinematic model was introduced as a critical element 

for controlling limb motion and, by extension, the robot's overall movement. This model established the 

crucial link between joint angular positions and the feet's coordinates, with the torso's center of mass 

serving as a reference point for all calculations. These foundational equations of motion and kinematic 

principles were identified as essential for posture control development. 

The study then delved into gait generation, with a specific focus on how limb trajectories impact 

robot locomotion. The investigation highlighted the intricate relationship between foot velocity, 

acceleration, torso posture, and energy consumption during locomotion. To provide a comprehensive 

analysis, various algorithms were applied in four diverse environments: a normal flat surface, a flat 

surface with steps, a 10-degree sloped ramp, and a challenging terrain composed of uneven blocks 

referred to as the testbed. The results of this extensive examination revealed that the 3rd and 4th-

degree Bézier curves consistently outperformed other algorithms in terms of CoT. The selection of the 

3rd-degree Bézier curve as the preferred algorithm was driven by its superior height values, comparable 

roll and pitch velocity to the 4th-degree Bézier curve, and the associated computational efficiency 

advantages. 

In conclusion, this chapter has laid the groundwork for understanding the ATHENA hexapod 

model, its kinematic principles, gait generation strategies, and the subsequent simulations. The insights 

gained from this chapter are instrumental in informing the subsequent chapters of this study, which will 

focus on posture control and adjustment. 
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4. POSTURE ADJUSTMENT 

For a successful locomotion in rough terrain the main focus should be for the robot to have a 

correct posture adjustment. Timely corrections of the posture depending on the information of the 

robot’s feet is a necessity to prevent crashes or inabilities to move forward. A correct assessment of the 

external information allied with a precise control are the key factors for an effective walking state. 

In this chapter it is presented the sensors used to aid with the posture analysis, the posture 

control parameters which affect the height of the body, as well the roll and pitch inclination of the torso. 

An extensive study of the application of Reinforcement Learning, specifically Q-Learning, as a tool to find 

the best control parameters for each given inclined terrain. Also, the development of the code scheme 

that connects the Gazebo environment, the posture control and the Q-Learning algorithm is exposed. 

4.1. SENSORS 

In order to aid with the assessment of the data obtained by the robot walking it was necessary to 

implement three types of sensors. Firstly, an infrared sensor was installed at the bottom of the torso to 

measure its distance to the ground, this was used to find a reference height while the robot walks in a 

plain ground and use it to adapt its walking while going through inclined terrain. At the feet, force 

sensors were fixed in order to aid in two tasks: verify contact with the ground and measure the reactions 

force from the ground to the feet so that it was possible to determine the effort applied to the joints of 

each leg, since a higher reaction force in the foot implies a stronger input from the servomotors at the 

joints in order to maintain its posture. Lastly, an IMU was installed at the torso to measure the robot’s 

velocity, position and orientation with the intention to calculate the CoT. This IMU outputs the 

orientation in quaternions, the angular velocity and the linear acceleration in the three axes (X, Y and Z). 

Although there is not a visible representation of the IMU sensor the other two sensors were 

represented in Gazebo (see Figure 4-1), and for the purpose of understanding the infrared sensor and 

the feet sensors a simulation in a normal plane was executed. In Figure 4-2 it is possible to ascertain 

the height displacement and the reaction forces applied to the foot 2 of the robot during a standard 

simulation in a normal plane environment. 



Prevision, control and optimization of a hexapod robot posture in inclined surfaces 

 

42 

 

(a) 

 

(b) 

Figure 4-1 Sensors applied in the Gazebo environment: (a) infrared sensor, (b) force sensor. 

 

Figure 4-2 Values of height and forces applied at a foot of the robot in a normal plane. 

4.2. POSTURE ASSESSMENT 

4.2.1. ORIENTATION APPROXIMATION 

The change of terrain complexity increases the displacement of the torso’s position, which limits 

the hexapod’s ability to climb inclined surfaces. The posture control parameters aim at adjusting the 

hexapod’s height and orientation by estimating the ground inclination. 

As said in Sensors the hexapod’s height displacement is measured by an infrared sensor placed 

on the torso to measure the distance to the ground and its value is compared to reference height of the 

robot while walking in a normal plane. 
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For the orientation, it is necessary to estimate the terrain perception by the relative position of the 

feet w.r.t the torso (see Figure 4-3). The relative coordinates of the feet in contact with the ground are 

evaluated by the control. With the relative coordinates of the supporting feet, the terrain can be 

approximated to a characteristic plane expressed as, 

𝑎𝑝𝒙 + 𝑏𝑝𝒚 + 𝑐𝑝𝒛 + 𝑑𝑝 =  0 (4.1) 

in which 𝑎𝑝, 𝑏𝑝, 𝑐𝑝 and 𝑑𝑝 are constants, and 𝒙, 𝒚 and 𝒛 represent the feet coordinates vectors. With 

the value of 𝑎𝑝, 𝑏𝑝, 𝑐𝑝 and 𝑑𝑝 the normal vector of the plane is obtained. 

Each gait cycle has two sets of moving legs, each set of legs consists of the front and back leg of one 

side and the middle leg of the opposite side, so it’s important to distinguish how the posture corrections 

will apply depending on each set. To simplify calculations, two sets of supporting legs were assigned to 

each set of moving legs, a variable, t, was created and for the first half of the cycle its value is zero and 

in the second half its value changes to one.  

Although each foot has force sensors and it’s possible to obtain the contact forces that prove that 

the leg is in contact with ground, for the case of climbing a ramp it was considered that the during the 

transposition of the ramp each set of legs is working in synchrony with the full gait cycle and the set 

represents the limbs that should be in contact with the ground. Considering the torso’s local reference, 

and a two-dimensional representation of the normal vector, the angular displacement of the roll and 

pitch angles is determined as, 

𝛿𝛼 =  𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑔′𝑇𝑛𝜁

‖𝑔′‖‖𝑛𝜁‖
) , 𝑔′ = {𝑥𝑔, 𝑧𝑔}

𝑇
∧ 𝑛𝜁 = {0,1}

𝑇 (4.2) 

𝛿𝛽 =  𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑔′𝑇𝑛𝜁

‖𝑔′‖‖𝑛𝜁‖
) , 𝑔′ = {𝑦𝑔, 𝑧𝑔}

𝑇
 

(4.3) 

where 𝛿𝛼 represents the roll displacement, 𝑛𝜁 is a unitary vector, 𝑔′ is a two dimensional 

representation of the normal vector and 𝛿𝛽 is the pitch displacement. The normal vector is a three-

dimensional value and creating these two-dimensional representations allows to obtain the angular 

displacements in each plane, thus finding the pitch and roll angles. 

 

Figure 4-3 Schematic representation of the plane formed by the supporting limbs. 
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4.2.2. CONTROL PARAMETERS 

After obtaining the values of the posture displacement, in terms of height and orientation the 

posture correction can be performed. The introduction of three control parameters: 𝑘ℎ for the height 

displacement, 𝑘𝛼 for the roll displacement and 𝑘𝛽 for the pitch displacement; provide the means to 

ensure a smooth gait phase transition. These parameters range from 0 to 1, 0 denotes that the control 

system does not influence the torso’s height and orientation and 1 denotes that there is full 

implementation of the control system. 

The height displacement is caused by the limbs’ trajectory in the stance phase, so in order to 

successfully adjust its height, the control parameters are applied in the stance gait equations, provided 

in Stance Phase. Not only that, but since the swing phase it is influenced by the torso’s height, changes 

were made at the final control point of the cubic Bézier trajectory used to calculate the swing 

movement. That final control point is defined as, 

𝒑𝑖,3
𝑂 = {0, 𝑆 , 𝑘ℎ𝛿𝑧 }

𝑇 + 𝒑𝑖,0
𝑂 ,  𝑘ℎ ∈ [0, 1] (4.4) 

where 𝑘ℎ is the height control parameter, 𝛿𝑧 is the height difference measured by the infrared sensor, 

being the difference between the height measured w.r.t the ground and the reference height, which is 

the torso’s height while in standing posture, and 𝒑𝑖,0
𝑂  is the initial control point used to calculate the 

cubic Bézier trajectory w.r.t the reference O. 

Regarding the stance phase corrections, the three control parameters are used to adjust and 

correct the displacement in height and orientation. The feet’s final position in the stance phase is 

expressed as, 

𝒑𝑖,𝑓
𝑂 = 𝒕𝒓  + 𝒑𝑖,0

𝑂   (4.5) 

in which 𝒕𝒓 denotes the transformation vector, that is expressed by, 

𝒕𝒓 = 𝑅𝑥
(4,4)(𝑘𝛼𝛿𝛼)𝑅𝑦

(4,4)(𝑘𝛽𝛿𝛽)𝑇
(4,4)(𝑘ℎ𝛿𝑧), 𝑘𝛼 ∈ [0, 1] , 𝑘𝛽 ∈ [0, 1] (4.6) 

where 𝑅𝑥 and 𝑅𝑦 are the rotation matrixes along the x and y axes respectively, 𝑘𝛼 and 𝑘𝛽 are the roll 

and pitch control parameters, and 𝑇 is the transformation matrix, the matrixes can be defined as, 

𝑅𝑥
(4,4) = [𝑅𝑥

(3,3) 0
0 1

] 
(4.7) 

𝑅𝑦
(4,4) = [𝑅𝑦

(3,3) 0

0 1
] 

(4.8) 

𝑇(4,4) = [𝐼
(3,3) 𝑗
0 1

] , 𝑗 = {0,−𝑆, 𝑘ℎ𝛿𝑧}
𝑇 (4.9) 
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4.3. SIMULATION SCHEME 

For single simulations to obtain reference values in any environment the procedure only involved 

initiating the gd.launch file, which started the Gazebo environment, the simulation.py that coordinated 

how long and how the simulation would execute and the ros_client.py that connected Gazebo and the 

.py file. After concluding all the files close and the data is stored in individual files. However, to ensure 

that during the RL phase there would not be any errors and that the data was stored successfully there 

was the need to develop a script in order to safeguard a correct execution of all the parts of the code. 

In this section a representation of the simulation scheme is made, and a thoughtful analysis is 

executed in order to ascertain its functioning. The principal focus are the files that were utilized or 

changed in contemplation of a reliable and functional program. For that, five files will be exposed (see 

Figure 4-4): main.sh, Q_Learning.py, iteration.sh, gd.launch and simulation.py. To be noted that all .sh 

files are considered bash files that use C language, the .launch is a XML file and .py files use python 

language. 

 

Figure 4-4 Developed simulation scheme. 

4.3.1. SIMULATION START 

The main.sh file is executed in the terminal window and is executed to start running the 

simulations. Table 4-1 describes its functioning. 
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Table 4-1 Simulation start code depiction. 

Algorithm 1: Starting the simulations 

input: i : iteration number, iterations : total number of iterations 

output: i : iteration number 

check for iteration number in iteration.txt 

if  i ∈ iteration.txt 

 c_i = i 

else 

 c_i = 1 

end if 

iterations = 1000 

save iterations in total_ite.txt 

for c_i ← 1, . . ., iterations do 

 initiate Q_learning.py file 

 return c_i in iteration.txt 

end for 

if c_i = iterations 

 save i = 1 in iteration.txt 

end if 

In this code, the iteration number is extracted from a file in which the current iteration is saved, 

this is made in order to resume the code in case of a malfunction or there was not enough time to 

finish the full number of iterations. Other values were saved in additional files to give the possibility to 

resume the simulations without the need of starting over. 

4.3.2. Q-LEARNING APPLICATION 

This file reveals significant importance, since allows the algorithm to learn which value should be 

set in the control parameters. In this study, the focus was to determine the best control parameter for 

height adjustment. Since Q-Learning is a model-free type of RL and is a trial-and-error method some 

values need to be provided for its correct execution. Such values are the learning rate, discount factor, 

explore rate and the reward function. The correct use of these values aids to find the best results. Table 

4-3 depicts its code. 
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The application of Q-Learning is divided into two steps. The first step contains the evaluation of 

the current iteration and extracting the data to update the Q-table. The second step, in which a class 

(named qLearning) was created to encapsulate the functioning of the Q-Learning algorithm and the 

update of the data for the following iterations. Figure 4-5 shows how the class qLearning is built. This 

class is comprised of 6 functions to support the inner workings of the Q-Learning algorithm. 

 

Figure 4-5 qLearning configuration structure. 

The __init__ function is automatically initiated when the class is called in code and creates the 

Q-table, The Q-table (see Table 4-2) in this study is designed to include 6 distinct actions that are 

parametrized by the 𝑘ℎ values, as well as 5 unique states that correspond to the different 

environmental configurations.  
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Table 4-2 Q-table developed in this research. 

 States 

(Ramp inclination) 

3 ° 6 ° 9 ° 12 ° 15 ° 

A
ct

io
n

s 

(𝒌
𝒉

 v
al

ue
s)

 

0 0 0 0 0 0 

0.2 0 0 0 0 0 

0.4 0 0 0 0 0 

0.6 0 0 0 0 0 

0.8 0 0 0 0 0 

1 0 0 0 0 0 

 

The choose_action function uses the explore rate value to decide whether to explore or exploit 

the action to take. A random number is generated between 0 and 1 and in case that value is below the 

explore rate the algorithm will choose a random action to take, in this research the action is a random 

𝑘ℎ parameter value to apply in the simulation. If the value is superior to that of the explore rate the 

action that is chosen is the one with the highest q-value. Regarding the states, its value depends on the 

variable state_q which will correspond to the coordinate in the vector states that include all five 

environments. For the first iteration the chosen action is 𝑘ℎ = 0, because all actions have a q-value of 

0, regarding any environment. 

With the update_q_table function the Q-table is dynamically updated during the reinforcement 

learning process. The update is performed using the values of state_q, action, being the action taken in 

the current iteration, reward, indicating the immediate reward received for that action, and next_state. 

Specifically, the Q-table is updated by modyfing the entry corresponding to the combination of action 

and state_q used in the current iteration. 

Finally, the functions save_q_table, load_q_table, final_q_table, are used in order to pass 

information between iterations, the first being used to store the updates after an iteration and the 

second being utilized to load up the updates in the beginning of future iterations. The latter is applied in 

the final iteration to save the fully developed Q-table when the learning process is finished. 
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Table 4-3 Q_learning.py code scheme. 

Algorithm 2: Q-Learning application 

input: i: iteration number, iterations: total number of iterations, 𝛼: learning rate, 𝛾: discount factor, 𝜀:  

explore rate, 𝑘ℎ: height control parameter, states: simulation environments, num_states: number of 

states, num_actions: number of actions 

output: 𝑟: reward value 

𝑘ℎ  = { 0, 0.2, 0.4, 0.6, 0.8, 1} 

states = {‘3Deg’, ‘6Deg’, ‘9Deg’, ‘12Deg’, ‘15Deg’} 

num_states = 5 

num_actions = 6 

check for iteration number in iteration.txt 

state = random(1,5) 

save state variable in environment.txt 

if  i = 1 

 𝑘ℎ = 0 

save 𝑘ℎ in kh_value.json 

ep = i 

state_q = state – 1 

state_values = 0 

create Q-table  

else 

 ep = i 

state_q = state – 1 

extract state_values from state_value_update.json 

extract Q-table from q_table.txt 

end if 

epochs = 1000 

for ep ← 1, . . ., epochs do 

 action ← apply choose_action function 

 save action variable in kh_value.json 

old_state = state_q 
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run iterations.sh file 

extract all update values from state_values_update.json 

extract reward from reward_value.json 

next_state = random(0,4) 

update ←apply update_q_table function 

save ← apply save_q_table function 

save Q-table in q_table.txt 

if ep = epochs 

 final ← apply final_q_table function 

get best_action for each state 

save Q-table in final_q_table.txt 

 end if 

end for 

4.3.3. ENVIRONMENT SELECTOR 

This bash file is used to alter the world in the Gazebo environment. In order for that change to be 

possible the gd.launch file needs to be manually switched to be able to input a new Gazebo world. 

Since it’s not possible to manually modify the file after each iteration a solution was needed. 

Iterations.sh extracts a value from environment.txt, that was updated in Q_learning.py, that is used to 

select a coordinate in an array of strings (text data variable). This array contains the name of the files 

that constitute the worlds created for the simulations. After extracting the string variable from the array, 

the line in gd.launch in charge of launching the Gazebo world is deleted and then replaced with the 

same line but with the new array variable, this makes the gd_launch  able to launch a different 

environment, see Figure 4-6 for schematic. Afterwards the gd.launch file is initiated. 

 

Figure 4-6 Gazebo environment switching in iterations.sh. 
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4.3.4. SIMULATION LAUNCHER 

The gd.launch file is used for configuring and launching components within a ROS environment, 

in this case for a Gazebo simulation of a hexapod robot. It loads the robot’s URDF model, and spawns it 

in the simulation. While doing that, it launches a node athena that runs a Python script, simulation.py. It 

contains several arguments that are used to configure the simulation environment, such as enabling 

GUI, whether the simulation runs without a graphical user interface, setting simulation time and 

specifying the URDF model file. 

This .launch file can be split into five actions: the hexapod model configuration, the simulation 

environment, where a .world file is used to set up Gazebo, hexapod model spawn, where the robot’s 

URDF description is generated from the Xacro model file and it spawns the hexapod model in the 

Gazebo simulation, hexapod control, that launches another file, hexapod_control.launch, that contains 

the configuration for controlling the hexapod robot, and the custom node, athena, that runs the python 

script, simulation.py, where all the orders and commands for the robot are located, and, not only that, 

all the data is generated. 

4.3.5. SIMULATION EXECUTION 

Although q_learning.py considerable importance to this work, the bulk of the code resides in 

simulation.py. Since this file includes an extensive code documentation only the relevant parts will be 

mentioned. From the calculation of the feet and legs path to the reward system development, without 

this code arrangement it would not be possible to do the simulations. There are four important 

functions within this file that work in a cycle to make the robot move (see Figure 4-7). Those are: step, 

move_joints, posture and the tripod function. 

In a simulation the robot does 15 steps, and in each step new footpaths are generated for the 

robot to succeed in walking until the end of simulation. The 𝑘ℎ value is exported from the kh_value.json 

that is created in q_learning.py and applied to the leg movements so that the height corrections are 

made in each new cycle. In the step function variables, all the necessary data to calculate the reward at 

the end of each simulation is saved and exported. The move_joints function generates the angle values 

calculated in posture and tripod and feed it to the ROS client to make the movement occur in the 

Gazebo environment. 
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Figure 4-7 simulation.py main functions scheme. 

The robot’s walking is covered in Kinematic Model and Gait Generation, so a study on starting 

simulation conditions and ending simulation conditions is executed. 

In order to feed the algorithm different conditions to better understand which is the best control 

parameter to apply, not only it was added different environments (check Environments), but also, two 

different starting positions were added to simulate a robot in a default standing position and a robot 

starting with the two front legs already on top of the ramp (Figure 4-8). 

 

(a) 

 

(b) 

Figure 4-8 Robot's starting position: (a) normal standing position, (b) with two front legs in ramp. 

This different starting position was achieved by generating a random number between 0 and 1, 

and any number that was generated above 0.5 would change the model initial position in the y axis, in 

the simulation world orientation, so that the front legs would be on top of the ramp. The goal was to add 

an imbalance in the robot’s orientation and analyze situations in which the robot was not completely 

stable in the beginning of the simulation, giving the RL algorithm more inputs to achieve a better all-

around understanding of the best control parameter to apply. 
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Regarding the conditions necessary to end the simulation, there were three possible scenarios: a 

normal simulation where the robot did all the 15 steps, the robot stops moving, which occurs when 

there is a disconnection between the ROS client and Gazebo and when the robot falls from the ramp. 

Although the first scenario was sure to happen in all the simulations, there was a need to 

reassure that the other two possible scenarios would not crash the system and create a data loss. To 

ensure a safe shutdown of the program the robot’s coordinates in the Gazebo world were registered 

and compared with limits that were set. In the case of the robot’s not moving in two straight cycles a 

shutdown would be issued and for the possibility of the robot falling from the ramp at the end of each 

cycle the current height would be registered and if between two cycles the height difference had a 

sudden change the shutdown signal would be issued.  
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4.4. REINFORCEMENT LEARNING 

4.4.1. REWARD PARAMETERS ASSESSMENT 

In order to ascertain the correct formula to apply the Reinforcement Learning algorithm the robot 

was tested in all the environments. Contact forces were retrieved during the whole simulations in order 

to obtain conclusions regarding the influence of the contact with the floor while walking slopes with 

different inclinations. The robot’s feet were split in three different groups (Figure 4-9): the front legs 

(legs two and three), middle legs (legs one and four) and the back legs (legs five and six). This decision 

was based on the fact that the hexapod is walking with a tripod gait and by doing that it can be 

determined how the gait cycle and the ground influence different legs in the same position. 

 

Figure 4-9 Groups of Hexapod robot Legs. 

By extracting contact forces applied to each set of legs, it can be estimated how each slope 

influences each separate set of legs and then determine if the weight distribution and the Cost of 

Transport is an important subject to have in mind while developing the Reinforcement Learning 

algorithm in regard to the posture adjustment. 

The reference simulation is the robot walking in a regular plain terrain. The front legs feet set had 

a median contact force of 6.55 N and 5.72 N, the first value being associated with the leg two and the 

latter to the leg three. Middle legs feet had a median contact force of 9.45 N and 9.08 N, these values 

being from leg one and leg four respectively. The back legs feet had a median contact force of 6.38 N 

and 4.78 N, for the leg five and the leg six correspondingly. Since the middle legs are closer to the 

center of mass of the robot it is logical that these will have a higher load applied during locomotion and 

the simulation results solidify this theory. Figure 4-10 shows the load on each foot of the robot during 

the locomotion in the regular terrain, as well as showing the height of the torso.  
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(a) 

 

(b) 

 

(c) 

Figure 4-10 Forces applied to the feet in a regular environment: (a) front legs, (b) middle legs, (c) back legs. 



Prevision, control and optimization of a hexapod robot posture in inclined surfaces 

 

56 

Gathered the results from the reference simulation the robot is tested in five different slopes: 

3ºSlope, 6ºSlope, 9ºSlope, 12ºSlope and 15ºSlope. In Appendix A it is possible to consult the forces 

applied to each robot foot during locomotion in each slope. 

There was a slight increase in the forces applied to the robot feet, mainly the middle and back 

feet, which is logical since climbing a terrain will require an increase in the forces applied from to robot 

to the ground in order to keep climbing. For the back legs, a trend of increasing mean contact forces 

associated with rising slope inclination was observed. However, the minimal increase in the forces 

applied to the feet deemed these values irrelevant to affect the reward function. Since, these values are 

directly proportional to the CoT there is no need to include it in the reward function. Consequently, the 

formulation of the reward function will focus solely on the robot's height during locomotion and its body 

inclination while ascending slopes. 

Table 4-4 Mean contact forces in each leg, in all environments. 

  Mean contact forces [N] 

  Front legs Middle legs Back legs 

 Leg two Leg three Leg one Leg four Leg five Leg six 

S
lo

p
e

s 

3 ° slope 6.36  5.64  9.50  8.90  6.94  4.88  

6 ° slope 7.55  5.92  9.90  9.64  8.77  8.21  

9 ° slope 7.00  5.16  9.71  9.59  7.60  6.41  

12 ° slope 5.63  4.49  9.80  8.95  8.02  6.70  

15 ° slope 6.09  4.37  9.84  9.83  8.30  6.89  
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4.4.2. REWARD ALGORITHM DEVELOPMENT 

The reward algorithm had some changes during this research and in this section. The choice to 

present this component before showing the simulation results resides in the fact that the reward 

function has a pivotal role that heavily influences the outcome of the experiments, and it must not be 

mixed with the learning values. The goal is to provide a comprehensive understanding of the 

adjustments that were employed to refine the reinforcement learning model. 

The previous section concluded that the height and inclination values of the robot are the best to 

formulate the reward function, so that was the starting point. From the start of the formulation of the 

reward function there were four major changes to improve its functionality.  

The first iteration of the reward algorithm stored at the end of each step the value of the height in 

a list and a median value of the body inclination was obtained. The reward equation is the following, 

𝑟1 = −∑‖𝐻[𝑖+1] − 𝐻[𝑖]‖ − (‖𝑠 −  𝑏𝑑𝑒𝑔‖ × 2)

𝑛−1

𝑖=0

  
(4.10) 

𝑟2 = 10, 𝑖𝑓  ‖𝐻[0] − 𝐻[𝑖]‖ ≤ 1.5 (4.11) 

𝑟3 = −20, 𝑖𝑓 𝑑 = 1 (4.12) 

𝑟 = 𝑟1 + 𝑟2 + 𝑟3 (4.13) 

𝐻 being the list with all the height values registered at the end of each cycle, 𝑠 the real slope 

inclination,  𝑏𝑑𝑒𝑔 the median value of the robot’s body inclination and 𝑑 being the variable that 

indicated if the robot had stop moving or fell of the ramp. 

While doing this first set of simulations it was concluded that some changes were needed. It was 

noted that after the height change, from the normal ground to the inclined ground, the robot would have 

a minimal height variance in any case, since all legs were on the same plane again. That would 

influence the final results of the 𝑘ℎ parameter because there was unnecessary data being compared, 

so the height values should only be compared while the robot is adapting to the inclination change (see 

Figure 4-11). Thus, the reward function changed to, 

𝑟1 = −(∑‖𝐻[𝑖+1]
𝑠 − 𝐻[𝑖]

𝑠  ‖ × 1.5) − (‖𝑠 −  𝑏𝑑𝑒𝑔‖ × 2)

𝑛−1

𝑖=0

  
(4.14) 

𝑟2 = 10, 𝑖𝑓  ‖𝐻[0] − 𝐻[𝑖]‖ ≤ 1.5 (4.15) 

𝑟3 = 20, 𝑖𝑓 𝑑 = 1 (4.16) 

𝑟 = 𝑟1 + 𝑟2 + 𝑟3 (4.17) 
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𝐻𝑠 being the height values list when the robot is starting to climb the ramp, and to give more 

importance to these values, it was added a multiplication of 1.5. 

In order to make it possible to extract only the values of height when the robot is climbing the 

ramp in each cycle the y coordinate of the robot was compared with the world coordinates to ensure 

that only the values within the limits imposed were extracted, 

∑𝐻[𝑖]

𝑛

𝑖=0

∈ 𝐻𝑠, 𝑖𝑓  𝐵𝒚 ∈ [0.35,0.9] 
(4.18) 

with 𝐵𝒚 as the y world coordinate of the center of the body of the robot. 

 

Figure 4-11 Height values extracted in the process of climbing the ramp. 

Although these changes improved the results obtained in the simulations, they created a 

potential problem for the algorithm to distinguish a successful adaptation of the body inclination to each 

slope in the simulation. Thus, another improvement was made to reward it, 

𝑟1 = −(∑‖𝐻[𝑖+1]
𝑠 − 𝐻[𝑖]

𝑠  ‖ × 1.5)

𝑛−1

𝑖=0

  
(4.19) 

𝑟2 = 10, 𝑖𝑓  ‖𝐻[0] − 𝐻[𝑛]‖ ≤ 1.5 (4.20) 

𝑟3 = 20, 𝑖𝑓 𝑑 = 1 (4.21) 

𝑟4 =  

{
 
 
 

 
 
 

0, 𝑖𝑓 𝑠 = 3

5, 𝑖𝑓‖𝑠 −  𝑏𝑑𝑒𝑔‖ ≤ 1.5 ∧ 𝑠 = 6 

5, 𝑖𝑓‖𝑠 −  𝑏𝑑𝑒𝑔‖ ≤ 2.2 ∧ 𝑠 = 9

5, 𝑖𝑓‖𝑠 −  𝑏𝑑𝑒𝑔‖ ≤ 2.8 ∧ 𝑠 = 12

5, 𝑖𝑓‖𝑠 −  𝑏𝑑𝑒𝑔‖ ≤ 3.3 ∧ 𝑠 = 15

−(‖𝑠 −  𝑏𝑑𝑒𝑔‖ × 2), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4.22) 

𝑟 = 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 (4.23) 
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The last change involved equations 4.20 and 4.22 to improve the chance of the algorithm finding 

the best results. 

𝑟4 = 

{
 
 
 

 
 
 

0, 𝑖𝑓 𝑠 = 3

5, 𝑖𝑓‖𝑠 −  𝑏𝑑𝑒𝑔‖ ≤ 1 ∧ 𝑠 = 6 

5, 𝑖𝑓‖𝑠 −  𝑏𝑑𝑒𝑔‖ ≤ 1.5 ∧ 𝑠 = 9

5, 𝑖𝑓‖𝑠 −  𝑏𝑑𝑒𝑔‖ ≤ 2.5 ∧ 𝑠 = 12

5, 𝑖𝑓‖𝑠 −  𝑏𝑑𝑒𝑔‖ ≤ 3 ∧ 𝑠 = 15

−(‖𝑠 −  𝑏𝑑𝑒𝑔‖ × 2), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(4.24) 

𝑟2 = 10, 𝑖𝑓  ‖𝐻[0] − 𝐻[𝑛]‖ ≤ 0.6 (4.25) 

By applying these changes, the number of simulations that can reach these conditions is 

reduced, and the possibility to find the best control parameter for each slope inclination is further 

increased. 

4.5. SIMULATIONS 

The objective of the simulations is to find the best height control parameter for any slope. For 

that goal, five different environments with different slopes were created so the algorithm could train and 

discover which is the best option. In each simulation the robot starts either before the ramp or with the 

front legs already on top of it, the simulation runs for 15 steps and then ends and saves the data. For 

the purpose of the RL approach each set of simulations consisted of 1000 episodes. To conduct the 

experiments described in this dissertation an Intel Core i7, 9th generation @2.60Ghz and 8.0 GB RAM 

capacity was used. The operating system is Ubuntu 20.04 LTS, and the command window was used to 

launch the simulations, that ran on Gazebo. Each set of simulations had a real time duration of 17 

hours. 

The RL approach had three steps, namely, to find the correct parameters for the reward 

algorithm (see Reward algorithm development), the tuning of reward algorithm parameters and tuning 

of the hyperparameters. The last step compared results from simulations with the same reward 

algorithm and different hyperparameters values to find the optimal solution. 

In this section, is presented the training procedure, the hyperparameters applied and the results 

of said application. The reward values, as well as the Q-values are compared throughout the process to 

understand the changes that led to the final RL algorithm and simulation results. Additionally, height, 

roll and pitch data were extracted to analyse how the process improved. 
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4.5.1. RESULTS 

In addition to the reward algorithm, the hyperparameters influence how the agent acts during the 

simulations. The learning rate (𝛼) sets the size of steps taken by the learning algorithm when adjusting 

its model to minimize errors, which affects the convergence speed, the discount factor (𝛾) determines 

the importance of future rewards in the agent’s decision making process and the explore rate (𝜀) 

defines how often an agent chooses random actions over the best-known actions. Table 4-5 presents 

the combination of hyperparameters used in each simulation.  

Table 4-5 Simulations hyperparameters. 

Step Simulation number 𝜶 𝜸 𝜺 

1 
1 0.7 0.9 0.2 

2 0.7 0.9 0.2 

2 3 0.5 0.9 0.1 

3 

4 0.8 0.7 0.3 

5 0.8 0.95 0.3 

6 0.8 0.99 0.3 

The first step included the research for the correct reward algorithm parameters. Nonetheless, 

the results from these simulations aided in finding which were the most efficient hyperparameters while 

working with the RL algorithm. Comparing equations 4.10 and 4.14 it is predicted that the first 

simulation converges above the second simulation since the latter had an increase in the negative 

reward regarding height changes. Figure 4-12 proves that prediction. Since the first simulation had a 

reward algorithm that was not objective oriented towards the goal, the second simulation will work as a 

baseline to the following simulations. All the simulations are compared in terms of the accumulated 

reward function convergence, as well as the height, roll and pitch velocities values (see Table 4-6). 

These values are the average extracted from the end of each episode (1000 episodes) that made each 

simulation. Since all simulations after the second have a reward algorithm that is objective oriented 

towards the goal, a higher convergence value is associated with better simulation results. 

 

Figure 4-12 SIM_1 and SIM_2 accumulated reward functions. 
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Table 4-6 Baseline Values for height, roll and pitch. 

Parameters Values 

Height 0.1450±0.00624 m 

Roll velocity 0.3821±0.1258 rad/s 

Pitch velocity 0.4063±0.2169 rad/s 

 

In each simulation, at every 100 episodes, it was extracted key values to further understand how 

the learning evolved. By inspecting Table 4-7, a trend to obtain higher rewards is noted as the episodes 

increase. When comparing episode 199 and 299, where the environment and control parameter value 

were the same it is possible to see an increase in the reward and the approximation of the body 

inclination to the slope inclination. Although some data doesn’t abide by that tendency that is justifiable 

by the explore input, which allows the agent to seek random combinations in disregard to the exploit 

input, that always execute the action with higher Q-value. These random combinations can help finding 

a possible optimal solution that the current agent and reward system had disregarded earlier on the 

simulations. For the future simulations the key values extracted at each 100 episodes are going to be 

exposed in Appendix B. 

Table 4-7 Key values at each 100 episodes in SIM_2. 

Episode Reward 𝒌𝒉 
Height 

[m] 

Roll velocity 

[rads/s] 

Pitch velocity 

[rads/s] 
 𝒃𝒅𝒆𝒈 Real slope  

99 —4.692 0.2 0.1398 0.2802 0.2190 4.68º 12º 

199 —2.083 0.6 0.1473 0.3619 0.4248 6.03º 12º 

299 —0.322 0.6 0.1458 0.4622 0.4078 6.89º 12º 

399 +1.306 0.8 0.1525 0.4348 0.3872 4.70º 9º 

499 +2.461 0.6 0.1492 0.5395 0.7764 5.29º 9º 

599 —1.525 0.4 0.1519 0.3628 0.3145 6.28º 12º 

699 —5.516 0.8 0.1449 0.5792 0.5600 7.42º 15º 

799 +7.120 0.8 0.1522 0.3313 0.2616 4.6º 6º 

899 +8.685 0.4 0.1418 0.3585 0.2734 2.39º 3º 

999 +7.213 0.0 0.1378 0.2972 0.2021 4.63º 6º 
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The final Q-table at the end of the second simulation can be analyzed in Table 4-8. The q-values 

with a green shade show the optimal control parameter for each slope. In this simulation there is 

already a bias to choose 𝑘ℎ> 0 in most of the environments, except in the 3º Slope, which is 

understandable since it is an environment similar to a plane terrain. The control parameters that are 

optimal in this simulation are the following: 

• 3ºSlope: The best control parameter to apply is 𝒌𝒉 = 0.0. 

• 6ºSlope: 𝒌𝒉 = 0.8. 

• 9ºSlope: 𝒌𝒉 = 0.6. 

• 12ºSlope: 𝒌𝒉 = 0.2. 

• 15ºSlope: 𝒌𝒉 = 0.8. 

Table 4-8 Final Q-table of Sim_2. 

 States 

(Ramp inclination) 

3 ° 6 ° 9 ° 12 ° 15 ° 

A
C

ti
o

n
s 

(𝒌
𝒉

 v
al

ue
s)

 

0 +39.27 +26.30 +11.46 +4.53 +14.41 

0.2 +27.40 +22.25 +22.60 +23.91 +13.13 

0.4 +28.40 +30.64 +18.52 +18.01 +15.35 

0.6 +25.53 +21.30 +30.53 +17.00 +7.21 

0.8 +29.22 +30.66 +22.12 +9.43 +17.76 

1 +29.52 +19.47 +19.4 —16.76 +8.32 

The second step compared the results of the second and third simulation. It was applied the 

same reward algorithm and different hyperparameters. The third simulation converged earlier and 

higher which proves that it achieved a better solution compared with the second simulation (see Figure 

4-13). The final Q-table generated in the third simulation reached the following conclusions:  

• 3ºSlope: The best control parameter to apply is 𝒌𝒉 = 0.2. 

• 6ºSlope: 𝒌𝒉 = 0.0. 

• 9ºSlope: 𝒌𝒉 = 0.4. 

• 12ºSlope: 𝒌𝒉 = 0.2. 

• 15ºSlope: 𝒌𝒉 = 0.4. 
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Figure 4-13 SIM_2 and SIM_3 accumulated reward functions. 

Table 4-9 Final Q-table of SIM_3. 

 States 

(Ramp inclination) 

3 ° 6 ° 9 ° 12 ° 15 ° 

A
C

ti
o

n
s 

(𝒌
𝒉

 v
al

ue
s)

 

0 +29.32 +27.42 +19.69 +8.56 +3.61 

0.2 +36.98 +25.25 +12.63 +16.71 +7.39 

0.4 +27.73. +26.84 +32.21 —2.45 +21.94 

0.6 +20.87 +18.39 +12.26 +14.65 +7.25 

0.8 +27.74 +22.30 +20.55 +6.88 +8.81 

1 +19.87 +7.08 +20.77 +12.80 +3.20 

 

The software Gazebo couldn’t assure the same specific height value in the standing posture of 

the hexapod in each simulation, so it was deemed necessary to compare the standard deviation of the 

height variations. To compare the height values between the simulations it was applied the coefficient of 

variation. The second simulation had a coefficient of variation of 4.31% and the third simulation had 

4.06%, concerning the height variations. Regarding roll and pitch average values there was a decrease 

in the third simulation of 3.06% and 15.32%, respectively. Roll and pitch standard deviation values 

reported a decrease of 3,07% and 18,80%, correspondingly. Table 4-10 shows the SIM_3 values. 

Table 4-10 SIM_3 Values for height, roll and pitch. 

Parameters Values 

Height 0.1437±0.00584 m 

Roll velocity 0.3708±0.1221 rad/s 

Pitch velocity 0.3523±0.1826 rad/s 
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The transition to the third step compares the third simulation with the remaining simulations. The 

latter simulations apply the last iteration of the reward algorithm (check Reward algorithm 

development), so in terms of goal objective they are more accurate than the reward algorithm in the 

third simulation. These latter simulations have the same learning rate and explore rate, but the discount 

factor has different values in order to find the one that has a bigger reduction of the noise, which is 

random variations that affect the total reward signal that can influence the agent learning. Standard RL 

simulations have a discount factor≥0.9, the fourth simulation had a discount factor of 0.7 which proved 

to be an error since it had a worse performance than the third simulation even while having a more 

accurate reward algorithm, which suggests that the accumulated reward function convergence is not 

solely dependent on the accuracy of the reward algorithm, so the data generated from this simulation 

can be disregarded. In Figure 4-14 it is possible to conclude that the fifth and sixth simulations achieved 

higher convergence values than the third simulation, indicating greater reliability in their final outcomes. 

Also, a closer analysis of their q-values (see Table 4-11 and Table 4-12) revealed that the discount 

factor significantly influences the evolution of the q-values, with a higher discount factor emphasizing 

future rewards, which in turn affects the growth of the q-values. 

Overwriting the results from the third simulation with the fifth simulation results, the optimal 

control parameters for the height for each slope are: 

• 3ºSlope: The best control parameter to apply is 𝒌𝒉 = 0.4. 

• 6ºSlope: 𝒌𝒉 = 0.6. 

• 9ºSlope: 𝒌𝒉 = 0.8. 

• 12ºSlope: 𝒌𝒉 = 0.8. 

• 15ºSlope: 𝒌𝒉 = 0.8. 

 

Figure 4-14 SIM_3, SIM_4, SIM_5 and SIM_6 accumulated reward functions.  
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Table 4-11 Final Q-table of SIM_5. 

 States 

(Ramp inclination) 

3 ° 6 ° 9 ° 12 ° 15 ° 

A
C

ti
o

n
s 

(𝒌
𝒉

 v
al

ue
s)

 

0 +116.94 +110.42 +91.42 +82.24 +89.94 

0.2 +106.63 +112.91 +92.84 +92.50 +94.23 

0.4 +118.34. +115.70 +97.04 +93.58 +93.51 

0.6 +102.91 +121.14 +111.21 +95.20 +92.42 

0.8 +110.53. +111.65 +111.72 +106.66 +98.45 

1 +102.57. +92.71 +100.19 +73.84 +92.36 

Table 4-12 Final Q-table of SIM_6. 

 States 

(Ramp inclination) 

3 ° 6 ° 9 ° 12 ° 15 ° 

A
C

ti
o

n
s 

(𝒌
𝒉
 v

al
ue

s)
 

0 +275.68 +264.86 +260.96 +257.62 +246.31 

0.2 +287.03 +272.33 +274.33 +270.17 +215.66 

0.4 +252.14. +294.52 +286.93 +264.64 +287.21 

0.6 +301.85 +253.58 +288.32 +268.65 +269.91 

0.8 +201.39. +219.51 +257.72 +286.89 +241.05 

1 +274.27. +175.54 +279.87 +272.66 +260.55 

 

Given the superior results observed in the third simulation compared to the baseline values, the 

performance of the third simulation with that of the fifth and sixth simulations were compared(see Table 

4-13). Regarding the height standard deviation values, the coefficient of variation is 4.21% and 4.73%, 

for the fifth and sixth simulation, respectively, which compared to the third simulation has a slight 

increase. Concerning the roll average and standard deviation values for the fifth simulation there was a 

decrease of —1.48% and an increase of 3.63%, correspondingly. For the pitch average and standard 

deviation, it was registered an increase of 11.68% and 18.55%, individually. As for the sixth simulation, 

for the roll average and standard deviation values there was an increase of 1.98% and 5.50%, 

respectively. In the case of the pitch average and standard deviation there was also an increase of 

18.28% and 28.22%. 



Prevision, control and optimization of a hexapod robot posture in inclined surfaces 

 

66 

Although, when compared with the third simulation, the key values present an increase in their 

values, these cannot be used as a fixed measure of the effectiveness of the simulations. Considering 

that the optimal control parameters discovered in the third simulation were all 𝑘ℎ<0.4 and for the fifth 

and sixth simulations the optimal control parameters were all 𝑘ℎ>0.4 it is possible to understand why 

the key values were higher. From the observed behaviour of ATHENA throughout the computational 

simulations, higher values of 𝑘ℎ can lead to heavier oscillations. This is justified by the over-

compensation of the feet trajectory, which increases their velocity and consequently the friction forces 

during the collision with the ground. The correction of the feet motion requires more energy 

consumption to a non-adaptive behaviour (𝑘ℎ = 0). Bearing this in mind, the increase of 𝑘ℎ causes 

posture instabilities, and although it makes it possible for the robot to overcome the higher slope ramps 

it causes a higher height disruption. This higher control parameter value has an increased influence in 

correcting the robot’s trajectory, because of that an increased effort is put on the servomotors, which by 

consequence causes more oscillations while walking. 

Table 4-13 SIM_5 and SIM_6 values for height, roll and pitch. 

Parameters Sim_5 Sim_6 

Height 0.1447±0.00609 m 0.1448±0.00685 m 

Roll velocity 0.3654±0.1267 rad/s 0.3783±0.1292 rad/s 

Pitch velocity 0.3989±0.2242 rad/s 0.4311±0.2544 rad/s 

4.5.2. FINAL RESULTS 

To evaluate the research's accomplishments, a concluding simulation is conducted, contrasting a 

hexapod robot's navigation in a novel, dynamically changing environment (see Figure 4-15) with and 

without control interference. Building upon insights from the preceding sub-chapter, the robot 

showcases its autonomous adaptation of optimal control parameters when traversing a varied terrain 

composed of  inclined surfaces with diverse inclinations. 

The simulation without the application of height control parameters encountered failure, halting 

at a 12º slope as the robot's height dipped below the critical 0.10 m threshold (see Figure 4-16), 

indicating an unsafe operational state close to collision. An examination of the height values evolution 

within the control-free simulation, reveals that while the robot navigates lower-degree slopes effectively, 

it struggles to adapt on steeper inclines, leading to a gradual loss of height until an eventual collision 

with the environment becomes inevitable. 
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On the contrary, the simulation with applied control parameters adeptly adjusted to varying slopes, 

achieving successful completion. Despite suffering significant oscillations, even exceeding those 

observed in the control-free simulation (as evident in Table 4-14), the primary objective of enabling a 

hexapod robot to navigate inclined surfaces was attained. An examination of the height value 

progression in the controlled simulation (see Figure 4-16) highlights the correlation between oscillations 

and alterations in the 𝑘ℎ parameter whenever the terrain slope changes. It is evident that a sudden 

modification in the control parameter triggers a transitional phase during which the robot recalibrates its 

gait algorithms to accommodate the newly applied parameter, giving rise to heightened oscillations in 

the process. Nonetheless, the robot’s successful completion of the simulation, proves that despite 

needing corrections in the process of re-adjusting the control parameter it is still capable of transposing 

a complex environment with diverse slopes. 

Comparing the coefficient of variation for height values, the simulations without control, the 

simulation with control values in the same step where the simulation without control ended, and 

throughout the entire controlled simulation yielded percentages of 9.64%, 8.25%, and 9.99%, 

respectively. In terms of roll, the average and standard deviation increased by 75.75% and 13.38%, 

correspondingly, when transitioning from the control-free simulation to the controlled one. Similarly, the 

pitch parameters saw an increase of 111.33% in the average and 107.43% in the standard deviation 

with control. These substantial increments do not disregard the successful and safe traversal of the 

environment by the robot with applied control, which is the research's core objective. 

 

(a) 

 

(b) 
Figure 4-15 World with all slopes: (a) top view, (b) side view. 
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Figure 4-16 Height Variation for the robot with and without control. 

Table 4-14 Height, Roll and Pitch values for the final simulation. 

Parameters No control (56 steps) Control (56 steps) Control (80 steps) 

Height 0.1406±0.0136 m 0.1449±0.0120 m 0.1438±0.0144 m 

Roll velocity 0.2081±0.3136 rad/s 0.3735±0.3744 rad/s 0.3657±0.3556 rad/s 

Pitch velocity 0.2277±0.2917 rad/s 0.3661±0.4483 rad/s 0.4812±0.6051 rad/s 

4.6. SUMMARY AND CONCLUSIONS 

In summary, this chapter comprehensively explored posture adjustment, a fundamental element 

in enhancing the hexapod robot's adaptability to diverse terrains. Five sub-chapters have been covered, 

each contributing to an all-around understanding of the posture adjustment process. 

Firstly, the integration of three key sensors that significantly enhanced data assessment during 

the robot's locomotion. An infrared sensor at the torso's base provided reference height information for 

adapting to inclined terrain, while force sensors at the feet validated ground contact and gauged 

reaction forces to assess joint effort. An IMU captured velocity, position, and orientation, enabling CoT 

calculation. 

Secondly, correct posture assessment centers on accurate orientation estimation, which is 

derived from the relative coordinates of the feet. These orientation values enable us to calculate the 

pitch and roll displacement of the robot's body relative to the ground plane. This displacement data is 

essential for adapting gait algorithms to account for changes in terrain, ensuring successful navigation 

in varying terrain conditions. 
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Thirdly, the creation of a simulation scheme within the context of this research provides a 

foundation for future enhancements and extensions by establishing an adaptable framework for the Q-

Learning approach. This framework enables easy integration of new studies to obtain results involving 

the control parameters for roll and pitch displacement. Nonetheless, adding more parameters in a 

Reinforcement Learning problem will demand a higher number of simulations, necessitating substantial 

computational power for efficient and rapid results. Furthermore, the scheme streamlines the gathering 

of variables, automatic environmental modifications and data storage. 

Fourthly, the critical role of the reward algorithm in the success of an RL algorithm is 

emphasized. Precise, goal-oriented reward parameters are essential for productive outcomes. Through 

simulating robot walks on various slopes, the reward algorithm can omit CoT and focus on body 

inclination and height variations when transitioning between slopes. 

Fifthly, the application of Q-Learning to find the optimal height control parameters for each 

individual slope. In addition to the reward algorithm, fine-tuning hyperparameters is crucial for achieving 

satisfactory and optimal results. The core objective of the research was successfully achieved: the 

robot, initially unable to navigate a sloped environment without control assistance, became capable of 

doing so through the application of height control parameters. However, this caused increased 

oscillations, attributed to abrupt control parameter changes with varying slope inclinations and the fact 

that higher 𝑘ℎ values result in posture instability. A smoother transition for 𝑘ℎ shifts can likely resolve 

the first issue. Addressing the second problem, future research on roll and pitch displacement control 

parameters can mitigate the amplified oscillations associated with higher 𝑘ℎ values. 

In conclusion, the findings and developments presented in this chapter have yielded positive 

results, signifying a significant step in enhancing the hexapod robot's adaptability to inclined terrains. 

The comprehensive exploration of posture adjustment, integration of advanced sensors, simulation 

frameworks, and the optimization of control parameters has provided a solid foundation. This project's 

success is a testament to its adaptability and readiness for future research. Built to accommodate 

further additions and increased complexity, it serves as a promising platform for ongoing research and 

innovation in the field. 
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5. FINAL CONSIDERATIONS 

The final considerations are included in the parts that follow. The description of the primary 

conclusions for the current work, as well as the prospects and future work based on what has been 

done and what can be done, ranging from improvements to new applications. 

5.1. CONCLUSIONS 

Throughout the present dissertation, conclusions were presented whenever it was convenient, 

however, a general overview of the most significant ones is provided here. Regarding the objectives 

identified in section 1.2, it is demonstrated throughout this dissertation that all of them were attained. 

The main objective of the present dissertation was to correctly adapt a hexapod robot posture 

while transversing inclined surfaces. It can be considered accomplished as the simulations results are 

presented and their analysis correspond to a tuning of control parameters that adjust accordingly to the 

inclination of each simulation. The conclusions drawn from this accomplishment are presented below. 

Regarding the gait generation, it was noted that the limbs' trajectory had a notably strong 

influence on the robot's posture. Although the feet were not in contact with the ground during most of 

the swing phase, their velocity and acceleration influenced the torso posture and the CoT. As a result, a 

comprehensive analysis was conducted, encompassing five gait algorithms and four diverse 

environments. 3rd and 4th-degree Bézier curves consistently outperformed other algorithms in terms of 

CoT and roll and pitch velocity values. But, ultimately, the selection of the 3rd-degree Bézier curve as 

the preferred algorithm was driven by its superior height values and the associated computational 

efficiency advantages. 

Concerning posture adjustment, Q-Learning was applied to find the best control parameters for 

each given inclined terrain. While developing the Q-Learning reward algorithm through simulated robot 

walking on different slopes, it was found that CoT could be omitted as it was deemed irrelevant. 

Instead, the algorithm was designed to prioritize body inclination and height variations during slope 

transitions. Also, a code scheme was developed to connect the posture control with the Q-Learning 

algorithm, as well as ensuring data storage and error prevention. This code scheme was capable of 

initiating the Q-Learning algorithm, randomly select a slope environment from an array of five different 

slope environments and randomly deploy the hexapod robot in two different simulation starting 

positions, these increased scenarios and starting positions were applied to obtain more trustworthy 
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results. Furthermore, this code scheme was built, not only for this particular scenario of height control 

in slope environments, but also any type of environment and control parameters. The goal was to make 

a code scheme easy to adapt and ensure that future research using RL in the hexapod control realm 

could have a significant head start. As for the control simulations, the core objective of the research was 

successfully achieved: the robot, initially, unable to navigate a sloped environment without control 

assistance, became capable of doing so through the application of height control parameters. 

In conclusion, this dissertation has successfully achieved the goal of enhancing a robot's 

adaptability to inclined surfaces through the application of Reinforcement Learning. By equipping the 

robot with the ability to autonomously select the optimal height control parameter in response to 

detected inclines, it can safely navigate and adapt its movement for traversing these terrains. Bearing 

all this in mind, it is possible to conclude that the proposed objectives where attained. 

5.2. PERSPECTIVES AND FUTURE WORK 

Despite the success in accomplishing the dissertation objectives, there are some improvements 

that could be made in the project. Even so, upon concluding this work and drawing all the conclusions, 

there is a rewarding sense that this dissertation has yielded fruitful results. 

Regarding the application of the control parameters, along the 𝑘ℎ parameter there are two other 

important control parameters that were not applied, the roll and pitch control parameters. Time 

constrictions and lack of computational power imposed a challenge to apply all three control 

parameters. However, the groundworks of said missing control parameters were applied in the code 

structure and in future research it is possible, with some minor changes in the code scheme, to study 

these effectively. It is necessary to mention that the resulting simulations would require a high level of 

computational power. 

Even though the choice of the gait trajectory algorithm is backed by an extensive analysis of five 

different algorithms, giving relevance to the 3rd and 4th-degree Bézier curves, it is suggested that future 

research should try to find a correlation between the type of terrain and type of gait trajectory, as it 

seems that even higher posture stability is obtained with the application of a correct height control 

parameter and correct gait trajectory algorithm. 

Despite the hexapod robot success in adapting to inclined slopes, there were increased 

oscillations, attributed to abrupt control parameter changes with varying slope inclinations and the fact 

that higher 𝑘ℎ values result in posture instability. It is suggested that inputting a smooth transition 

between 𝑘ℎ shifts can reduce the oscillations. Additionally, by incorporating roll and pitch control 
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parameters into posture control, it becomes possible to discover values that enhance stability in 

complex environments. 
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Appendix 

A. Appendix A 

 

(a) 

 

(b) 

 

(c) 

Figure Appendix A-1 Forces applied to the feet in a 3ºSlope: (a) front legs, (b) middle legs, (c) back legs. 
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(a) 

 

(b) 

 

(c) 

Figure Appendix A-2 Forces applied to the feet in a 6ºSlope: (a) front legs, (b) middle legs, (c) back legs. 
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(a) 

 

(b) 

 

(c) 

Figure Appendix A-3 Forces applied to the feet in a 9ºSlope: (a) front legs, (b) middle legs, (c) back legs. 
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(a) 

 

(b) 

 

(c) 

Figure Appendix A-4 Forces applied to the feet in a 12ºSlope: (a) front legs, (b) middle legs, (c) back legs. 
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(a) 

 

(b) 

 

(c) 

Figure Appendix A-5 Forces applied to the feet in a 15ºSlope: (a) front legs, (b) middle legs, (c) back legs.  
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B. Appendix B 

Table Appendix B-1 Key values at each 100 episodes in SIM_3. 

Episode Reward 𝒌𝒉 
Height 

[m] 

Roll velocity 

[rads/s] 

Pitch velocity 

[rads/s] 
 𝒃𝒅𝒆𝒈 Real slope  

99 +7.696 0.0 0.1354 0.5550 0.3140 4.87º 6º 

199 +8.435 0.0 0.1357 0.5221 0.3541 5.24º 6º 

299 +2.358 0.4 0.1462 0.4500 0.3116 5.26º 9º 

399 —1.613 0.2 0.1440 0.2985 0.2107 6.22º 12º 

499 +9.732 0.6 0.1464 0.4370 0.3948 2.90º 3º 

599 —0.417 0.2 0.1413 0.2396 0.2911 6.82º 12º 

699 +1.640 0.0 0.1389 0.4073 0.2902 4.86º 9º 

799 —1.244 1.0 0.1456 0.2392 0.3067 3.50º 9º 

899 +7.289 0.0 0.1346 0.5148 0.3390 4.67º 6º 

999 +2.123 0.4 0.1492 0.2915 0.2033 5.01º 9º 

 

Table Appendix B-2 Key values at each 100 episodes in SIM_4. 

Episode Reward 𝒌𝒉 
Height 

[m] 

Roll velocity 

[rads/s] 

Pitch velocity 

[rads/s] 
 𝒃𝒅𝒆𝒈 Real slope  

99 +9.265 0.8 0.1446 0.3119 0.2294 2.67º 3º 

199 +1.186 0.6 0.1492 0.3933 0.2793 4.66º 9º 

299 +8.535 0.6 0.1492 0.4724 0.2440 2.31º 3º 

399 +8.749 0.6 0.1405 0.1597 0.1597 2.40º 3º 

499 +9.082 0.6 0.1451 0.0604 0.1838 2.56º 3º 

599 +7.358 0.6 0.1525 0.4072 0.4341 4.72º 6º 

699 —2.568 0.2 0.1460 0.5412 0.5186 5.75º 12º 

799 +9.938 0.0 0.1368 0.5695 0.3339 6.00º 6º 

899 +8.614 0.2 0.1494 0.3673 0.3400 2.33º 3º 

999 —2.616 0.8 0.1455 0.2891 0.5933 5.77º 12º 
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Table Appendix B-3 Key values at each 100 episodes in SIM_5. 

Episode Reward 𝒌𝒉 
Height 

[m] 

Roll velocity 

[rads/s] 

Pitch velocity 

[rads/s] 
 𝒃𝒅𝒆𝒈 Real slope  

99 +2.945 0.0 0.1363 0.6470 0.3576 5.50º 9º 

199 +9.966 0.0 0.1475 0.1218 0.1050 2.91º 3º 

299 +2.775 0.8 0.1464 0.4152 0.3776 5.42º 9º 

399 +9.862 0.8 0.1540 0.0900 0.2531 2.40º 3º 

499 —1.559 0.8 0.1531 0.2449 0.8710 6.29º 12º 

599 +14.85 0.8 0.1466 0.3730 0.3447 4.89º 6º 

699 —1.773 0.2 0.1389 0.3553 0.2410 6.14º 12º 

799 —3.335 0.4 0.1365 0.2997 0.2490 5.37º 12º 

899 +9.95 0.8 0.1523 0.2847 0.3847 3.06º 3º 

999 +14.933 0.6 0.1454 0.2571 0.3063 4.79º 6º 

 

Table Appendix B-4 Key values at each 100 episodes in SIM_6. 

Episode Reward 𝒌𝒉 
Height 

[m] 

Roll velocity 

[rads/s] 

Pitch velocity 

[rads/s] 
 𝒃𝒅𝒆𝒈 Real slope  

99 +1.257 0.4 0.1552 0.3362 0.3061 4.66º 9º 

199 +7.486 0.0 0.1403 0.4147 0.2551 4.78º 6º 

299 +9.942 0.6 0.1427 0.3258 0.3169 2.33º 3º 

399 +1.760 0.8 0.1386 0.4639 0.3267 4.92º 9º 

499 +1.166 0.8 0.1523 0.4165 0.5550 4.62º 9º 

599 +3.714 0.2 0.1436 0.5227 0.3098 5.87º 9º 

699 —0.354 0.0 0.1304 0.1470 0.2154 6.88º 12º 

799 —1.234 0.8 0.1478 0.4370 0.8336 6.48º 12º 

899 +2.335 0.8 0.1453 0.2996 0.2133 5.19º 9º 

999 —0.996 0.8 0.1449 0.3713 0.7015 6.59º 12º 
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C. Appendix C 

The code developed in all different phases of the dissertation can be seen in: 

https://github.com/Diogo-Silva99/ATHENA_Posture. The provided link contains three files: 

"Athena_Code," "gd_test," and "worlds." 

Within "Athena_Code," various files, including the first stage of the client ROS .py file, the first 

stage of ATHENA locomotion based .py files, the simulation launcher file that calls all dependencies, a 

model description in a .xacro file, and .yaml files containing data on ROS topics, are exposed. 

Inside “gd_test” several files in the last stage of development, including the client ROS .py file, 

the ATHENA locomotion base .py files and the simulation launcher, are revealed. 

Finally, in “worlds” all simulation environments used throughout this dissertation are presented. 

 

https://github.com/Diogo-Silva99/ATHENA_Posture

