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ABSTRACT: Wastewater treatment companies are facing several
challenges related to the optimization of energy efficiency, meeting
more restricted water quality standards, and resource recovery
potential. Over the past decades, computational models have
gained recognition as effective tools for addressing some of these
challenges, contributing to the economic and operational
efficiencies of wastewater treatment plants (WWTPs). To predict
the performance of WWTPs, numerous deterministic, stochastic,
and time series-based models have been developed. Mechanistic
models, incorporating physical and empirical knowledge, are
dominant as predictive models. However, these models represent
a simplification of reality, resulting in model structure uncertainty
and a constant need for calibration. With the increasing amount of available data, data-driven models are becoming more attractive.
The implementation of predictive models can revolutionize the way companies manage WWTPs by permitting the development of
digital twins for process simulation in (near) real-time. In data-driven models, the structure is not explicitly specified but is instead
determined by searching for relationships in the available data. Thus, the main objective of the present review is to discuss the
implementation of machine learning models for the prediction of WWTP effluent characteristics and wastewater inflows as well as
anomaly detection studies and energy consumption optimization in WWTPs. Furthermore, an overview considering the merging of
both mechanistic and machine learning models resulting in hybrid models is presented as a promising approach. A critical
assessment of the main gaps and future directions on the implementation of mathematical modeling in wastewater treatment
processes is also presented, focusing on topics such as the explainability of data-driven models and the use of Transfer Learning
processes.

1. INTRODUCTION
Population growth and the change in the lifestyles and in the
consumption patterns of humanity make it expectable that
demand for water, energy, and other goods and services that
require water will also increase, making this natural resource of
primary importance with potential scarcity in some regions.1

Trying to overcome this issue, Sustainable Development Goal
6 of Agenda 2030 (of the United Nations) aims to ensure
availability and sustainable management of water and
sanitation for all, by 2030. Specifically, target 6.3 intends:
“By 2030, improve water quality by reducing pollution,
eliminating dumping and minimizing release of hazardous
chemicals and materials, halving the proportion of untreated
wastewater and substantially increasing recycling and safe reuse
globally”.2 Therefore, concerns about the quality and quantity
of clean water have been increasing. The improvement of the
management of this natural resource has become one of the
main research subjects nowadays.

A large part of the population live in urban centers where
municipal authorities provide services and infrastructures to
guarantee access to clean water to the population, through the
urban water cycle, a challenge that includes disposal and
treatment of effluents and water supply.3,4 To guarantee the
water quality level, it is necessary to monitor its treatment in
several wastewater treatment plants (WWTPs). Monitoring
leads to the detection of failures in WWTPs, resulting in an
improvement both in terms of quality and in reducing
maintenance risks.5−7 Managing WWTPs is an exhaustive
and complex process, as it depends on uncontrollable factors
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such as weather conditions or illicit discharges and water leaks.
These factors cause variations in the flow and characteristics of
the influent, requiring a more resilient and robust treatment.
WWTPs aim to control all processes that ensure the quality of
the water treatment, by minimizing simultaneously the
environmental impacts and the operating costs.
Over the last few decades, computational models have

gained recognition as effective tools for addressing some of
these challenges by contributing to the economic and
operational efficiencies of WWTPs. In order to predict the
performance of WWTPs, numerous deterministic, stochastic,
and time series-based models have been developed.8,9 These
models can be used to predict the effluent parameters over the
process and take preventive actions to avoid compromising its
treatment quality.10 Predictive models are conceived to help
decision-makers understand the data and make predictions
about it to reduce environmental risks. Some examples of
predictive models are artificial neural networks (ANNs),
support vector machines (SVMs), and recurrent neural
networks (RNNs), among others.
Besides the implementation of predictive models, modu-

lation and detection of abnormal situations may also play
important roles in WWTPs management. Anomaly detection
for the cyber-physical system (CPS) is related to the
identification of unfamiliar patterns of behaviors, i.e., the
detection of potential intrusions as a deviation from normality
(anomaly detection) that are not exhibited under normal
operation.6,11 These anomalies could result from the physical
environment and human error, but also from standard bugs or
incorrect or suboptimal configurations in the software.11 The
detection of anomalies plays a defensive role, at the same time
that facilitates development, maintenance, and repairs of
CPSs.11 Deep neural networks (DNNs) and SVMs are some
examples of models that can be used for anomaly detection.
Mechanistic models, incorporating physical and empirical

knowledge, are dominant as predictive models. Nevertheless,
this type of model represent a simplification of reality, which
results in an uncertainty of the models’ structure.12 With a
constant increase in the amount of available data, data-driven
methods are becoming more and more attractive. In this kind
of model, the structure is not explicitly specified, but it is
instead determined by searching for relationships in the
available data.12

Over the last several years, some reviews on the application
of AI models to water/wastewater treatment have become
available, providing a systematic overview of the application of

AI mainly in technology, both physical/chemical13 and
biological14,15 treatments, and management.16 For example,
Safeer et al.13 reviewed the recent advancements and
applications of AI in water purification and wastewater
treatment processes. Regarding water purification, this review
emphasizes specific processes such as coagulation/flocculation,
disinfection, membrane filtration, and desalination. Regarding
the AI models for wastewater treatment, it focuses on
membrane processes, and heavy metals and dyes.13 The
paper by Sundui et al.14 explores the advancements and
perspectives on utilizing ML algorithms to improve biological
wastewater treatment processes, specifically in algae−bacteria
consortia systems. The work of Singh et al.15 focuses on the
application of AI and ML techniques for monitoring and
designing biological wastewater treatment systems. In the case
of Fu et al.16 their paper is a critical review of the role of deep
learning in the field of urban water management. Since deep
learning is a subset of ML, this is focused on only a part of the
ML models. Nevertheless, it discusses broader aspects related
to water management: water supply and distribution systems;
urban flooding; cyber security; etc. Their review presents only
a short section regarding wastewater treatment plants. Zhong
et al.17 explores the innovative ideas and tools that have
emerged with the adoption of ML techniques to address
various environmental challenges in the field of environmental
science and engineering, presenting a broader view of the
application of ML when compared with our review. These
authors approach only a subsection regarding the modeling of
biochemical wastewater treatment systems.
Nevertheless, when comparing these reviews with the

present work, we believe ours presents a wider perspective
on wastewater treatment systems discussing both MM and ML
to study factors such as effluent characteristics (Table 1),
wastewater inflow rates (Table 2), anomaly detection (Table
3), and energy consumption optimization (Table 4) in
WWTPs. This review also includes a section where the recent
developments of hybrid models in wastewater treatment
modeling are explored, since we believe that hybrid models
that join the best of both (ML e MM) models are the best
solution to improve model performance and model explain-
ability. Finally, the main gaps and weaknesses, such as data
size/periodicity, lack of transparency and explainability (black-
box approach), difficulty in predicting and responding to
process disturbances, and the lower benchmark calculations
until the moment are critically discussed.

Table 3. Summary of Parameters of Studies Focused on Anomaly and Fault Detection in WWTPs

AI
algorithm target objective

model performance
(F-scores) ref

DNN sensors Application of unsupervised machine learning to anomaly detection for a CPS 0.80281 11
SVM 0.79628
DBM influent

conditions
Application of unsupervised machine learning to anomaly detection for a CPS 0.98 (OCSVM) 96

RBM 0.99 (OCSVM)
RNN 0.97 (OCSVM)
RNN-
RBM

0.99 (OCSVM)

Stand
alone

0.98 (OCSVM)

LSTM WWTP sensor
data

Method based on DNN (specifically, long short-term memory) compared with statistical and
traditional machine learning methods

0.9267 97

PCA-
SVM

0.8667
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2. MECHANISTIC WASTEWATER MODELS: A PIECE
OF HISTORY

Water quality modeling has evolved since the early years of the
20th century. The pioneering work of Streeter and Phelps
(1925)18 launched the basis for the evolution and development
of mathematical models applied to water quality problems.
Later, with the emergence of computational capabilities, it
allowed the development of more complex models.
Mechanistic models or deterministic models implement a set

of differential equations reflecting the mass balance equations
and other conserved quantities, for all involved compounds.19

Back in 1987, Henze et al. developed the Activated Sludge
Model No. 1 (ASM1), the first WWTP model well accepted by
research community and industry.20 ASM1 describes the
removal of nitrogen and organic carbon compounds, with the
simultaneous consumption of electron acceptors (nitrate and
oxygen), in municipal activated sludge WWTPs. In ASM1, the
biological reactions are defined according to the Monod
kinetics, and the majority of the basic concepts were inspired
from the activated sludge model developed by Dold et al.21

This integrated model combined the chemical oxygen demand
(COD) conservation with stoichiometry and kinetics, by
expressing transformation rates in the form of derivatives.21

Further developments led to the expansion of the ASM
model to include biological phosphorus removal and chemical
phosphorus removal via precipitation processes, ASM222 and
ASM2d23 models, as well as the ASM3,24 which were intended
to amend the ASM1 model flaws and facilitate the calibration.
ASM222 and ASM2d23 models include the description of
biological P processes and chemical P removal via precip-
itation, with simultaneous nitrification-denitrification pro-
cesses. Later, a new version of the ASM model, ASM3,24 was
developed, intending to amend the ASM1 model flaws that
have emerged during its usage. ASM3 has almost the same
objectives as ASM1, and supposedly is easier to calibrate. This
new ASM version distinguishes the importance of storage
polymers in the conversion of heterotrophic activated sludge,
which is mainly achieved by converting the circular growth−
decay−growth model, frequently known as death−regener-
ation concept, into a growth-endogenous respiration model.19

To integrate all of these tools and guarantee their evaluation
and comparison, several benchmark tools have been developed
by Working Groups of COST Action 682 and 624, and later by
the IWA Task Group of Benchmarking of Control Strategies.
This benchmark platform defines the WWTP arrangement, the
simulation model, influent data sets, test procedures, and
evaluation criteria.25 The Benchmark Simulation Model no. 1 -
BSM125 was the first layout to be developed and is comprised
by a five-compartment activated sludge reactor divided in two
anoxic tanks and three aerobic tanks. It combines nitrification
with predenitrification, which is usually used for nitrogen
removal in municipal WWTP. BSM226 was developed to also
integrate the sludge treatment. Finally, a Risk Module was
proposed,27 considering the microbiology-related settling
problems (filamentous bulking sludge, filamentous foaming,
or deflocculation), which cause several operational problems in
WWTPs.28 Additionally, BSM−UWS (urban wastewater
system), established as an integrated model library aiming to
simulate on a single platform the dynamics of flow rate and
pollutant loads in all the subsystems of an urban wastewater
system, and the BSM2G for predicting greenhouse gas
emissions were also developed.29 Benchmark calculations

using ASM models offer several advantages.30 ASM models
are based on a scientific understanding of the biological and
chemical processes, thus providing insights into the underlying
mechanisms and dynamics of the treatment process.19 They
are flexible and can be customized to represent specific
treatment configurations, operational conditions, and influent
characteristics. ASM models can simulate the behavior of
wastewater treatment processes and predict their performance
under different scenarios, as well as quantify key performance
indicators (KPIs), such as effluent quality, sludge production,
nutrient removal efficiency, and energy consumption.31

Optimization and troubleshooting efforts, and the estimation
of resource requirements are other advantages of benchmark
calculations using ASM models.30 Nevertheless, ASM models
also have some drawbacks such as model complexity, accuracy,
data requirements, high uncertainty due to many simplifica-
tions and assumptions, lack of adaptability, insufficient model
validation, and computational requirements.32−34

One of the main drawbacks of mechanistic models is the
need for model calibration. Model calibration is the adjustment
of model parameters starting from a default parameter set,
which is updated considering the fitting of experimental data
with simulation results. This is a time-consuming step and
hinders the broader application of these models.32 In the
calibration, it can be used nondynamic data (i.e.: composite 24
h samples) or dynamic data (dynamic profiles of influent and
effluent composition).22 The calibration can be carried out
following a heuristic approach, considering the process
understanding and the model structure or through a purely
mathematical optimization process.19 The first approach is
more sensitive but requires a considerable level of expert
knowledge of the process. Usually, the calibration process
based on engineering (heuristic) approaches could be
combined with the mathematical approach, by applying a
sensitivity analysis to model parameters.35

In addition, despite ASM models being widely accepted,
some novel treatment processes, such as anaerobic ammonium
oxidation processes36 and membrane treatment,37 are still
lacking for standard modeling frameworks.34 Also, digital twins
or virtual replicas of water and wastewater treatment
infrastructures have been developed. Some examples include
simulation platforms such as EPANET for drinking water
distribution network, collection systems (info works, SWMM)
water-related domain (DHI) and water resources recovery
facilities (Biowin, Aquasim, GPS-X, Sumo, Simba, WEST).38

However, the limited prediction capabilities of mechanistic
models hinder its application.
In summary, the long history of ASM models application has

demonstrated their effectiveness for the design, optimization,
and operation of WWTP, as well as in the comprehension of
involved processes.39 In an attempt to adapt the models to
changes in WWTPs, i.e., process upgrades and introduction of
new treatments, or even more strict effluent discharge limits,
new models and/or extensions to existing models have been
developed.33 However, these changes result in an increase in
the model complexity, making them too parametrized and
difficult to calibrate.40 Therefore, their popularity has
decreased over the last years, as can be observed in Figure 1,
where the number of publications related to the Activate
Sludge Model (one of the most used mechanistic models) is in
decline. Although the mechanistic models represented by the
ASM model have been widely used, in recent years, studying
the wastewater treatment processes with the data-driven
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methods have gradually emerged and developed rapidly with
the development of machine learning algorithms and the
increase in the size of data sets (Figure 1). A recent review
paper had also highlighted the explosive growth in the number
of publications related with ML in the field of environmental
science and engineering, being around 50% in water sector.17

3. WASTEWATER TREATMENT MODELING USING
MACHINE LEARNING

ML has demonstrated in the last years to be a strong tool to
simplify the modeling of WWTP processes.10,41 Through ML,
machines can acquire knowledge to perform tasks usually
associated with humans, considering what has been previously
experienced. Thus, the development of models entirely
identified based on input−output data without reflecting
knowledge of physical, chemical, or biological processes in the
model structure can be used to indicate the occurrence of
possible problems in WWTPs, thus activating appropriate
control actions when needed.
A significant difference between humans and computers is

that humans can automatically change their behavior through
learning from previous mistakes. Thus, the essence of Machine
Learning (ML) is the creation of models and tools that can
learn and consequently improve their performance, through
continuous data collection, resulting in experience and
expertise.42,43 In ML there are three distinct paradigms:
supervised, unsupervised, and reinforcement learning. Super-
vised learning is an ML approach based on accumulated
experiences incorporated into the training set. The system is
programmed or trained from a predefined and well-classified
set of data. After processing a series of information and
learning from it, the program can decide when to receive new
data records. The most used ML models are supervised,44

since this method may be used in situations where the analysis
of historical data allows predicting possible future behaviors.
Supervised learning has a wide range of application categories,
such as the classification and regression method.45 Regarding

classification, the program can make fewer complex decisions,
such as indicating a positive or negative response. In the case
of regression, the value to be predicted by the program follows
a continuous spectrum and allows answering questions such as
“how many are there” or “how much does it cost”.46 Decision
trees (DTs), SVMs, and ANNs are some models present in this
type of learning.47−49 ANNs, one of the models most used in
the simulation and prediction of the performance of biological
treatment in WWTP, use models composed of several artificial
neurons, connected by links of variable weight, to form black
box representations of pseudoneurological systems.41 Each
neuron receives input signals from other neurons, processes
them, and sends out the output, which in turn is passed on as
input to subsequent neurons.50 The ANNs learn from training
data and capture the relationships between data points, which
can be used for simulation, prediction, and optimization.
ANNs are a type of information processing system that
resembles the human brain.51

On the other hand, in unsupervised learning, there is no
feedback on the obtained results so that the model can use
them as a reference for learning. In other words, there is no
supervisor to tell us whether we are going the right way or not.
Also, because the results are unknown, it becomes impossible
to determine their accuracy, making supervised models more
applicable to real-world problems. This technique is used
based on observation and discovery. Such unsupervised
learning is designed to be used in situations in which
information about the desired results is unknown. The patterns
discovered with unsupervised learning methods can be useful
when implementing supervised machine learning methods. As
an example, cluster analysis can be carried out by unsupervised
techniques and use the cluster to which each row belongs as an
additional resource in the supervised learning model.52 Some
examples of unsupervised learning are the K-means and K-
medoids models.53 Reinforcement learning allows computa-
tional agents to learn from interactions with the environment
in which they are inserted. In the reinforcement learning
paradigm, an agent is rewarded or punished, depending on the
decision made. With the time and repetition of the teachings,
the agent will learn the actions that generate a greater reward
for each situation that the environment presents and thus avoid
the actions that create punishments or smaller rewards.
Contrary to what happens in most ML methods, the learner
is not informed of the path he must take but rather
determining which actions obtain the best reward by trying
them. Moreover, actions can affect the immediate reward and
subsequent ones.54 Q-Learning and SARSA are some examples
of models used in reinforcement learning.55

With the increase in the amount of data available, deep
learning (DL) emerged as a subarea of ML. With the
emergence of more complex problems, the evolution in
technology and hardware has enabled the use of DL models
to solve these types of problems and improve existing
solutions, such as image recognition or tomography analysis.56

The use of DL aims to imitate the functioning of the human
brain in data processing, learn without human supervision, and
use unstructured and unlabeled data, following possible
approaches, supervised and unsupervised. Autoencoders and
generative modeling are examples of the unsupervised
approach,57 while MultiLayer Perceptrons (MLP), RNNs or
convolutional neural networks (CNNs) are examples of the
supervised approach.56,58,59 Considering the autoencoders,
they reduce the dimensionality of the input through an

Figure 1. Evolution of the number of publications related to
wastewater and mechanistic (activate sludge model) or machine
learning model. Data for Figure 1 were obtained by analyzing the
number of publications by year in the Web of Science database, using
the following searching keywords “wastewater” + “machine learning
model” and “wastewater” + activate sludge model”.

ACS ES&T Water pubs.acs.org/estwater Review

https://doi.org/10.1021/acsestwater.3c00117
ACS EST Water 2024, 4, 784−804

793

https://pubs.acs.org/doi/10.1021/acsestwater.3c00117?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.3c00117?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.3c00117?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.3c00117?fig=fig1&ref=pdf
pubs.acs.org/estwater?ref=pdf
https://doi.org/10.1021/acsestwater.3c00117?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


encoder, reconstructing it again by a decoder. These models
are evaluated by minimizing the reconstruction error.60 MLP
networks are known as feedforward neural networks (FFNN),
since each neuron in these networks can only be connected to
units in the next layer and never in the previous layer. This
makes the processing flow from input to output unidirectional,
which differentiates it from other feedback networks, such as
Hopfield networks. This type of network allows the creation of
multiple hidden layers which allows the resolution of problems
whose separation between classes is not linear.61,62 CNNs are
specially developed for computer vision because the extraction
of characteristics is done by the network itself, which is trained
with it. This type of deep neuronal network is divided into two
parts: the features extractor, which can be composed of
convolution and reduction layers; and the classifier, composed
of fully connected layers, as in an ANN. With CNN, the
characteristics of input images are extracted through successive
convolutions and resizing. These networks are easy to train and
have fewer parameters than other fully connected networks.63

Despite this, in recent times, these networks have been used in
the scope of time series forecasting, namely, through 1D-
CNNs. The prediction of PM2.5 levels in the air and the river’s
flow are some examples of the application of 1D-CNNs.64,65

RNNs constitute a class of networks in which the evolution of
the state depends on the current input and the current state.
This property makes it possible to perform context-dependent
processing, allowing long-term dependencies to be learned.
Signals supplied to a recurring network in an instant of time t
can change the behavior of that network in the next moments
(t + k, k > 0). These networks can have connections that
return from the outgoing nodes to the incoming nodes, or even
arbitrary connections between nodes.66,67 Special cases of
RNNs are long short-term memory (LSTM) and gated
recurrent units (GRUs).
The fuzzy logic (FL) algorithms are composed by the fuzzy

inference system (FIS), fuzzification, defuzzification, and fuzzy
rules, and were developed to model complex and imprecise
systems.68 Of these compounds, the most used is the FIS,
which is based on four functional blocks: the fuzzification unit,
the decision-making unit, the knowledge base (which includes
the rules and the database), and the defuzzification unit.41

Genetic algorithms (GAs) are evolutionary algorithms that
use Darwin’s theory to model the natural evolutionary process
to achieve the minimum or maximum objective function.69−71

Selection, crossover, and variation are the main principles of
applying genetic operators to chromosomal populations.
Artificial neural networks - genetic algorithm (ANN-GA)

use a GA to iteratively optimize the parameters in the neural
network and increase its problem-solving power.
Neural-fuzzy (NF) systems use ANN learning algorithms to

determine the parameters of FIS, sharing knowledge
representations, and data structures. A common way to apply
a learning algorithm to a fuzzy system is to represent it in a
special ANN -like architecture.72

3.1. Practical Applications of Artificial Intelligence to
Wastewater Treatment. The most common ML models
used in the simulation, prediction, evaluation, and diagnose of
wastewater treatment operations are the ANN, FL, GA, and
NF, as well as ANN-GA as hybrid models.10,41

3.1.1. Forecasting Effluent Parameters. Several AI models
have been applied to predict WWTPs effluent characteristics.
Table 1 summarizes the analyzed works. For example, the
effluent biochemical oxygen demand (BOD), COD, and total

nitrogen (TN) of Nicosia WWTP were predicted by FFNN,
adaptive neuro fuzzy inference system (ANFIS), SVM, and a
multilinear regression (MLR).73 ANFIS showed better results
on calibration and verification phases in comparison to other
models. Regarding BOD forecasting, the performance obtained
by the AI model increased up to 14%, 20%, and 24%, taking
into account the simple averaging ensemble (SAE), weighted
averaging ensemble (WAE), and neural network ensemble
(NNE), as ensemble models, respectively. For COD and TN,
the performance efficiency increased only up to 5%.73

According to the authors, SVM was found to be more reliable
than the MLR model, and single models should not be
considered as a trustable model for the simulation of effluents
BOD in WWTP. The models tested in this study responded
satisfactorily and are recommended for the simulation of
effluents’ COD and TN.73 Effluent TN from a WWTP in
Ulsan, Korea, was also predicted by ANNs and SVMs models,
with the SVM model showing a higher prediction accuracy
during the training phase.74 However, the sensitivity analysis
(Latin-Hypercube one-factor-at-a-time - LH-OAT) showed
that the ANN model was a better model for 1-day intervals for
the prediction of TN, regarding the cause effect relationship
between TN concentration and modeling input values.74

Although ANN and M5 model tree revealed reliability,
robustness, and high generalization capability, ANN (R2
equal to 0.95, 0.95, and 0.97 for BOD5, COD, and total
suspended solids (TSS), respectively for model validation)
showed better performance than M5 model tree (R2 of 0.88,
0.90, and 0.83 for BOD5, COD, and TSS, respectively for
model validation) when applied to the WWTP of Ramin
thermal power, Ahvaz Iran, covering 3 years (2013 to 2015)
daily data set.75 The effluent total Kjeldahl nitrogen (TKN)
concentration yielded from a WWTP was also predicted by
SVM and ANFIS models, with SVM models providing more
solid results than the ANFIS models. Among ANFIS models,
the Gbell MF MODEL was found to be a little more efficient
in modeling the nonlinear time series, being able to define the
interrelation between various wastewater quality variables.8

Besides TN,76 ML was used to predict an effluent’s COD, from
a WWTP in Jiangsu Province, China. The ML model was
developed by joining an improved feed-forward neural network
(IFFNN) with an optimization algorithm. The input variables
for the model consisted of data of WWTP process monitoring
and operation. When IFFNN was compared to traditional
FFNN, the IFFNN enhanced prediction performance by
72.6% for TN and 52.3% for COD. The IFFNN model
structure was optimized with a genetic algorithm (GA). The
implementation of IFFNN helped to overcome the problem of
overfitting when compared to the traditional FFNN. The GA-
IFFNN model was able to predict TN with values very closed
to the real data and was shown to be efficient in determining
complex nonlinear relationships and extrapolation.76

Nourani et al.77 showed that the prediction accuracy of the
black box AI model, composed by FFNN, support vector
regression (SVR), and ANFIS, increased up to 20% at the
verification phase, using jittering data preprocessing and
postprocessing ensemble models to predict model parameters
through an autoregressive integrated moving average
(ARIMA) model. The model was used to predict the BOD
and COD present in the effluent of Tabriz WWTP using the
data from 2016 to 2018.77 These authors concluded that AI
models are more suitable than ARIMA in the prediction of
WWTP parameters. Hybrid models, such as CNN-LSTM
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model, presented better results than the CNN or LSTM stand-
alone models, in the prediction of urban sewage COD,
supporting the further development of feedforward control
systems.78 A recent study used data of 10 parameters from 3
WWTPs that were collected hourly.79 In this work, the total
phosphorus (TP) in the outlet was predicted by testing 6 ML
models: seasonal autoregressive integrated moving average
(SARIMAX), gradient tree boosting (GTB), random forest
(RF), SVM, LSTM, and ANFIS. Despite having data from 10
parameters, the TP in the outlet (TPeff) was shown to be
better than other variables to predict itself. SARIMAX showed
the best prediction with acceptable computation efficiency,
while LSTM presented a good performance but it was rather
time-consuming.79 A big data set, with historical data from
2010 to 2020 of a WWTP, was used as input to a ML
ensemble model that combines ANN, ANFIS, and SVR to
predict 15 process parameters.80 According to the authors, the
implementation of a multistage model structure resulted in the
ability of predicting the intermediate parameters of the process
which are affected by the influent characteristics, that can be
useful to explain the overall process performance.80

Some of these predictive models were also implemented in
processes for treating industrial wastewaters. For example,
Picos-Benit́ez et al.81 assessed the effectiveness of an ANN-GA
model for the evaluation and optimization of wastewaters
treatment containing sulfate withbromophenol blue dye using
an electro-oxidation (EO) process. In a detergent industrial
WWTP, FFNN (MLP), a cascade forward neural network and
SVR approaches were tested to predict the performance of the
WWTP of the industry by using data collected over a period of
6 months of parameters such as of COD, BOD, TDS, TSS, and
oil and grease content.82 The MLP has shown the best models’
performance, with a maximum correlation value for BOD (R2
= 0.99, MAE = 0.33, and RMSE = 0.49). The authors plan to
implement models to optimize the performance of the WWTP
in a future study. The ML model has also been applied in
alternative wastewater treatment processes such as electro-
chemical nitrate removal. Meng et al.83 used the ANN model
to successfully predict the electrochemical nitrate removal,
presenting a maximum coefficient of determination of 0.9020.
ML models have also been implemented for predicting
defluorination of emergent compounds, such as per- and
polyfluoroalkyl substances during their treatment and remov-
al.84 This work represent the first use of ML approaches for
PFAS structures, with the express goal of predicting/ration-
alizing C−F bond dissociation energies to support effective
treatment and removal, which shows the potential of these
models’ implementation in the wastewater sector.84

3.1.2. Forecasting Influent Flow. The influent flow in a
WWTP has a major impact on its operation and management.
Therefore, the prediction and evaluation of wastewater inflow
in WWTP by applying AI models have been the goal of several
studies over the last few years. A summary of these studies is
presented in Table 2.
The influent flow forecast contributes, for example, to the

reduction of energy consumption by optimizing the pumps’
selection and programming.85 Some factors need to be
considered in this type of forecast, such as the weather
conditions and characteristics of the WWTP itself. Hernańdez-
del-Olmo et al.86 obtained an approximately 85% accuracy in
the weather soft-sensor that tells the control system of a
WWTP about the present weather condition by means of the
inflow characteristics with two ML algorithms: K-nearest

neighbors (KNN) and random forests (RF). These weather
predictions are different from the traditional ones since this
soft-sensor is able to predict the weather based on the WWTP
influent characteristics.86

The influent flow at a Wastewater Reclamation Facility in
Des Moines, Iowa, was predicted using a 3-layer ANN.87 The
model was trained using 10 months of data (influent flow,
precipitation, and radar reflectivity) and tested with 5 months
of data by evaluating the mean squared error (MSE) and the
mean absolute error (MAE). The convergence time in the
training phase was improved with the BFGS algorithm. The
results showed that the forecast’s accuracy decreases as the
time horizon becomes longer and that the measurement
metrics increase rapidly considering a time spectrum above 30
min.87 In addition, the authors developed a deep neural
network (DNN), more precisely, a focused time-delay neural
network (FTDNN), to improve the performance of the
forecast over longer periods. The DNN model depicted a
better performance than ANN, with the metrics’ values having
a less significant increase over longer periods.87

Different feature selection (FS) methods (filter, wrapper,
and embedded methods) were evaluated for enhancing the
prediction accuracy for TN in the WWTP influent flow. ANN,
RF, and gradient boosting machine (GBM) were tested with
daily time-series input parameters, such as pH, dissolved
oxygen (DO), COD, BOD, TSS, volatile suspended solids
(VSS), NH4-N, and TN concentration. Results reveal that
Mutual Information, including DO, COD, BOD and NH4-N,
had the best result rather than other FS methods. Moreover,
RF and GBM revealed better performance results in
comparison to ANN.88

To reduce the overflow in a WWTP in Drammen, Norway,
Zhang et al.89 developed a hydraulic model to identify the
spatially distributed free space and three RNNs models,
Elman,90 NARX,91 and LSTM, to predict overflow in rainy
situations. The input data (precipitation and flow data) of
models data were normalized for the training phase in an
interval between 0 and 1. For the Elman and NARX models,
the authors divided the data on training, testing, and validation,
by 70%, 15%, and 15% respectively.89 In the LSTM model,
80% of the data were used for training and 20% for testing. In
the training of all models, a tuning process was carried out,
based on tentative errors, from the models’ architecture to the
number of hidden layers. Of the three models, LSTM
performed the best to find long-term dependencies and
dealing with dynamic flow changes.89

The RF model was used for the daily forecast of wastewater
effluents in two WWTPs in Ontario, Canada.92 To validate the
model’s performance, the authors compared the same with
models using ARIMA and MLP, based on R2, NSE and the
mean absolute percentage error (MAPE). In general, the RF
model could forecast wastewater inputs competently, and in
comparison with the ARIMA model, although in one of the
stations the results were not as good as in the other, and the
MAPE was smaller by about two units.92 Regarding the MLP
model, the RF model did not capture extreme values, but the
results were generally satisfactory.92

Szelag et al.93 carried out a study whose objective was to
compare the application of different nonlinear methods to
model the sewage flow in a WWTP in Rzeszoẃ, Poland. The
authors compared four models: RF, SVMs, KNN, and Kernel
Regression. As input, the models received precipitation values,
the water levels of the Wisłok river, and WWTP sewage inflow,
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between the period 2005 to 2008. The input variables were
normalized by the min-max transformation and selected using
a matrix relevant correlation. Regarding the assessment metrics
of both models developed, MAE and MAPE were used. The
models were tested in 12 investigations with different inputs.
The authors concluded that in about 75% of the investigated
cases, the SVMs method was more effective than the others
and that over three inputs were always the best model. Among
the 4, the Kernel Regression never managed to be the best
model in any of the investigations. In both models, the authors
concluded that research with the largest number of input
variables showed better results at both the level of MAE and
MAPE.
Recently, a multiobjective supervisory control (MOSC)

strategy was conceived to optimize the wastewater treatment,
under variable influent conditions in a hyperhaline wastewater
treatment plant in N-city, South Korea, search optimal set
points of multiple controllers.94 First, a fuzzy c-means (FCM)
clustering algorithm distinguished specific influent conditions
according to a scenario, and then for each influent condition,
the DNN model estimated the WWTP performance based on
the BSM2 with three WWTP local controllers: aerobic
reactors, external carbon, and biogas production. Finally, the
optimal set points of each controller to satisfy the desired
control objectives were automatically searched by non-
dominated sorting genetic algorithm II (NSGA-II). The results
showed that the MOSC strategy can stably contain extreme
influent conditions, 8% of reduce operational costs, maintain
effluent quality, and produce biogas for sustainable WWTP
operation.94

3.1.3. Anomaly and Fault Detection. Deep belief networks
(DBNs) model and one-class support vector machine
(OCSVM) were used with effectiveness, as a fault detection
method, to monitor operating conditions of a decentralized
WWTP in Golden, CO, USA.95 Dairi et al.96 developed data-
driven unsupervised anomaly detection approaches, by
combining the RNNs capacity to capture temporal autocorre-
lation features with a restricted Boltzmann machines (RBM)
function to describe complex distributions. The results were
validated through seven years’ influent conditions data from a
coastal WWTP, Saudi Arabia, and showed the superior
performance (R2 up to 0.98) of the RNN-RBM-based
OCSVM approach to detect anomalies. Inoue et al.11 proposed
an anomaly detection method for a water treatment plant
based on unsupervised ML. The authors compared adapted to
time series data generated by a cyber-physical system (CPS)
DNN model with one-class SVM. DNN generated less false
positives, while SVM detected slightly more anomalies.11

Overall, the DNN has a slightly better F scores than the
SVM.11 Also, a real data set containing over 5.1 million sensor
data points was used to evaluate the effectiveness of a method
based on DNN (LSTM) compared to statistical and traditional
ML methods (such as PCA-SVM) to model faults in the
oxidation and nitrification processes.97 The new model
performed better than the traditional methods, with a fault
detection rate of around 92%.97 Information regarding the
models’ performance in the discussed works is presented in
Table 3.
3.1.4. Energy Consumption Optimization. Artificial in-

telligence (AI) models have been used to optimize the energy
consumption in WWTP. ML (NN and RF models) was used
by Torregrossa et al.98 to develop energy cost models with high
performance for WWTPs. Therefore, a database of 317 plants

situated in northwest Europe was used. The model perform-
ance indicators were usually better than the ones in the
literature, when the machine learning cost modeling (MLCM)
algorithms were applied.98 This work concludes that the
pollution load (COD, TP, and TN) in the inflow is the
parameter with the highest impact on the energy cost of the
WWTPs, and the price of energy has a minor impact on the
energy consumption cost model. Also, the energy consumption
of a WWTP was forecasted by LSTM, GRUs, and unidimen-
sional CNN approaches.99 The results demonstrated that the
pretrained univariate CNN model was the one that performed
the best, presenting an approximate overall error of 630 kWh
when on a multivariate setting. Oliveira et al.99 have
successfully implemented learning processes, with the overall
error reducing to 325 kWh. In addition, Bernardelli et al.100

described the design and field testing on a large-scale
municipal WWTP of about 500,000 population equivalent of
the energy way (EW) model predictive controller (MPC)
based on ANFIS and a heuristic search. The model was able to
predict the TN peaks (30 min in advance), allowing them to
adapt the air flow and ensuring compliance with effluent
discharge parameters, while saving energy. Finally, a new
hybrid neural network (PCA-CNN-LSTM) model based on
DNN was proposed and tested with two years’ data from a
WWTP in Chongqing, China.101 The model was able to
predict the effluent parameters and optimize energy and
materials consumption, achieving reductions in total energy
and materials costs around 10% to 15%.101 DNN were also
used by Oulebsir et al.102 to optimize the energy consumption
in WWTP using an activated sludge process. The model
showed good results with a R2 varying between 90−92% in the
training period and 74−82% in the testing period, and showed
a gain in energy for most of the data.102 RF was tested as an
energy consumption model, using data from 2472 WWTPs in
China.103 The RF model had an R2 of 0.702, which was much
higher than the one obtained for the multiple linear regression
(0.147), therefore implying a higher accuracy.103 In Table 4 is
a summary of the previously discussed works.
Besides directly optimizing the energy consumption, some

recent works focused on using tools such as CNN, RNN
(LSTM), and hybrid CNN-LSTM to predict the optimal
aeration rate of dissolved oxygen that needs to be applied to
the A2/O (anaerobic-anoxic-aerobic) process by using data of
influent and effluent of COD, nitrate, and the amount of
dissolved oxygen present in each biological step.104 These
authors also established an online learning-empowered smart
management of the A2/O process in sewage treatment
processes (OL-AP). By optimizing the optimal aeration,
these approaches will also minimize/optimize the energy
consumption in this process.

4. WASTEWATER TREATMENT MODELING USING
HYBRID MODELS

Very few examples of hybrid models (HM) applications in
water and wastewater treatment are available.105 The first
examples appeared around 2000 and were based on neural
networks (Table 5). These works simulated the prediction
errors of a simple MM,106 the nitrogen dynamics process
reaction rates,107 and the concentration of the effluent
components by comparing serial and parallel hybridization.108

The use of neural networks gave a very good level of
interpolation but showed a poorly extrapolative capability.108

Thus, Lee et al.109 also compared the performance of different
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AI algorithms (Table 5) in a parallel hybridization with ASM1.
They concluded that all HM tested performed better than the
MM alone; however, they found high discrepancies between
training and validation periods.
Serial hybridization requires that mechanistic or data driven

processes are run sequentially, with the output of one being the
input of other. In parallel hybridization, both models run in
parallel, where, for example, the data-driven model could be
trained to learn the mismatch between the mechanistic model
and experimental data, reducing the residual error, or could be
applied to perform the same prediction, improving the final
ensemble model performance.34 The serial approach is mainly
used to fill the gaps in input data, while the parallel structure is
used to improve the model response in conditions never seen
by the model. Finally, a new approach to parallel hybridization
was presented by Quaghebeur et al.,12 by the incorporation of
a neural differential equation into a mechanistic model, thus
capturing the missing dynamics of the mechanistic component.
Another interesting potentiality of hybrid models is the

reduction of the model calibration needs. Hvala and Kocijan105

reported that the prediction accuracy of the hybrid model is
comparable to the tuned MM (i.e. with calibrated parameters).
This could represent a huge time savings by eliminating the
calibration step.
Detailed information on the use of hybrid modeling in water

resource recovery facilities can be found in the recent review of
Schneider et al.34

5. GAPS AND FUTURE DIRECTIONS
As referenced, mechanistic models involve the development of
a series of simplified mathematical formulations with the
purpose of mimicking the real system. This approximation
results in the loss of accuracy due to parameter and stochastic
event adjustments, which propagates and aggravates the
predictive performance. In this type of model, the closer to
reality, the more difficult the calibration process. Indeed, most
of kinetic parameters, derived from unmeasurable parameters
in Monod expressions, such as inhibition constant, maximum
growth rates, half-saturation constants, and substrate utilization
rates, are usually determined in controlled biochemical
measurements.116 This results in the necessity of frequent
calibrations due to the complexity and variability of wastewater
exposed to the microbial communities. In addition, the precise
incorporation of multiple time and space scales represents a
difficulty to mechanistic models.117 These drawbacks are
overcome by data-driven models based on AI. AI models can
provide universal predictions that are missing in the
mechanistic models due to their oversimplified assumptions
and extremely specific nature. Nevertheless, with AI and
mechanistic modeling approaches different types of informa-
tion can be afforded, since they rely on different types of
data.117

In recent times, AI models have been gaining more and
more impact. The last 5 years have seen an exponential
increase in publications in the scientific community, consid-
ering the use of ML models within the scope of WWTPs
(Figure 1). Despite this growing increase in the use of AI
models in various aspects of WWTPs, there are still steps to
make their applications more robust and wider. AI models can
handle data sets of large capacity.118 In particular, in the case of
DL models that aim to forecast time series, the periodicity of
data capture is one of the essential parts of this process. In this
aspect, all of the features that will serve as input to the AI

models must have the same periodicity. Due to this factor, the
data that even had considerable size, at first sight, ended up
having a smaller size at the end of the entire treatment process.
If this grouping is carried out for a different periodicity, some
DL models, whose great asset is the ability to consider the time
series present in the data, such as the LSTM, can lead to
performance breakdowns. Hence, more significant temporal
stability in data collection by the WWTP management entities
becomes crucial to avoid the decrease of the size of the
collected data set. Also, some studies conducted experiments
with data sets of limited size. They achieved a performance
comparison between deep learning and traditional statistical
methods, such as ML algorithms. A recent study119 used
several models, such as ordinary least square (OSL), seasonal
decomposition by local regression (SDL), exponential
smoothing state space (ES), and ARIMA, to predict energy
consumption in WWTPs. In this study, the ARIMA model had
a better MAPE performance than did the others. Other works
are used to predict biochemical parameters or energy
consumption in WWTPs, such as a work of Bagherzadeh et
al.88 that did a comparative study on predicting total nitrogen
in WTTPs by testing ML and DL algorithms. The results of
this work show that the RF model obtained a better RMSE
than other algorithms.88 Another work aimed to predict the
dissolved nitrous oxide (N2O) concentration in a sequence
batch reactor (SBR) by applying ML algorithms such as
SVR.120 In the context of WWTPs, the problem of the lack of
data results from the fact that some of the data are still being
collected manually and require laboratory analysis, namely,
data acquired by analytical control. Hence, considering the
data set’s periodicity as the most frequent periodicity in its
features usually leads to a decrease in its size. Despite this,
many installations already have an extensive history of data and
sensing at the level of analytical control of the water, which
facilitates the use of DL models, which need a large set of data,
namely, in the scope of forecasting time series. In addition, one
of the methods that can be used regarding the size of the data
set is the application of data augmentation.121 Through this
technique, it will be possible to artificially increase, through the
collected data, the size of the training data set to be used by the
AI models. However, there are some limitations when using
this technique. One is that the biases present in the original
data set will remain in the augmented data set. Furthermore,
guaranteeing quality assurance in data augmentation is
expensive and time-consuming.
In time series forecasting problems, some factors can lead to

a better performance of the designed models such as features
in the model inputs that present a strong correlation, whether
negative or positive, with the target feature intended to be
predicted. In this context, not all the various studies analyzed
carry out a feature selection process before applying the
different conceived models. These studies could obtain better
results if they only used feature models correlated with their
target as input. Using features that are not strongly correlated
with the target to be predicted can lead to worse performance
of the model.122 Hence, a good feature selection leads to better
performance from DL models. Another essential factor to
consider in this type of problem is cross-validation. This aspect
is vital as it aims to assess how the model results will be
generalized to an independent data set. Through cross-
validation techniques, it is possible to limit problems such as
overfitting or underfitting of the conceived models.123

Preventing these problems is essential, so the model does
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not generalize to a given training data set. In the case of time
series, it is also necessary to use specific cross-validation, such
as time series split, so that the test data set has more recent
periodicity than those used in the train. Analyzing the reviewed
studies, not all consider this vital aspect when conceiving time
series forecasting models (Tables 1, 2, and 4).
Regarding anomaly detection models, there is still a lack of

studies in WWTPs. The WWTPs must follow limits imposed
on the emission of various substances present in the
wastewater, thus leading to tight control of these values.
However, there may be times when this control may fail due to
multiple factors, such as a failure in one of the wastewater
treatment processes at these facilities. In this sense, anomaly
detection models can be advantageous, alerting people who
work in WWTPs to some anomalous value in some processes
carried out in the facilities. We can identify a practical example
of this utility in energy consumption. If any of the processes
use more energy than usual, it may indicate a failure in
equipment used in the process in question, causing it to
consume more energy. In this case, using an anomaly detection
model can help to identify this problem more quickly, leading
to faster action by the WWTPs’ interlocutors. Nevertheless, to
study the best anomaly detection model for different data sets,
it is necessary to label them by people specialized in the area to
classify a value as an anomaly or not an anomaly.
One of the aspects pointed out to data-driven models is their

lack of transparency and an explanation of what happens in
their process. Many companies today still have difficulty using
AI models due to the lack of confidence and security in
understanding the whole process. Therefore, it is essential to
give interpretability to the black box that surrounds data-driven
models. One of the future directions is the application of
Explainable AI (XAI) to demonstrate the entire process
performed within these algorithms, such as feature impor-
tance.124 In addition, using a Transfer Learning process is
another point to consider as a direction. This process aims to
use a pretrained model on a given problem, applying it to
another but within the same context.125 For example, at the
level of a WWTPs management entity, the use of a pretrained
model for forecasting energy consumption in a given WWTP
can be reused in a different WWTP, for a similar forecast. This
way, a single trained model can be used in different WWTPs,
within the same context. However, to use this process in the
context of WWTPs, attention to the infrastructure will be
necessary. In the case of a pretrained model for predicting
energy consumption in a specific WWTP, if we use it to carry
out the same prediction in a larger WWTP where overall
energy consumption is higher, this type of approach will not
have many effects because the model was trained in a range of
smaller values due to less energy consumption.
Nevertheless, to date the majority of the literature studies

are based on specific study cases, and there is a lack of
benchmark calculations.126 Still, a few studies have looked into
this issue. For example, Torregrossa et al.98 benchmarked the
classic cost approaches with the performance of neural network
and random forest to estimate the cost function in WWTP. In
addition, the BSM1 platform was used to simulate a
reinforcement learning-based particle swarm optimization
method to optimize the control setting in the sewage process
in WWTPs.127 The results of this approach demonstrated that
the developed model could provide feasible treatment
solutions while reducing the operating costs. Another bench-
mark calculation example was provided by Heo et al.94 In this

study, the authors developed a hybrid machine-learning
algorithm to find optimal set points of multiple controllers
under varying influent conditions. They applied the BSM2 to
model the WWTP and test the multiobjective supervisory
control strategy.94

Data-driven models are built under a set of hyperparameters
without any physical and biological meaning, lacking the
processes’ interpretability achieved by the mechanistic models.
In addition, large data sets are needed to represent the entire
WWTPs’ operation, this being the only source of knowledge to
the model. This fact makes model predictions difficult when
the WWTPs are under environmental or process disturban-
ces.12 Thus, as a future direction, we envisage the combination
of both model approaches (mechanistic and data-driven), as
the pros of one tend to be the cons of the other, allowing the
junction of expert knowledge with data. The construction of
hybrid models applicable to WWTPs could rely on an AI layer
overtaking the mechanistic framework, combining data-driven
models into a single loop by employing cycle-consistent
adversarial networks. Thus, the mechanistic framework will
facilitate the interpretation of model results, while the data-
driven model can provide the individual parameter calibration
and model refinement.
Furthermore, with the conception of hybrid models, it will

be possible to cover some essential aspects in parallel and
series approaches. Considering the hybrid models with a
parallel approach, one of the objectives would be to explain the
result coming from the ML models. Nowadays, ML models
still have a gap in the interpretability of their results without
any explanation, known as Blackbox. Using the series hybrid
model design approach, the output generated by the ML
models would feed the MM, with their input. Through this
mechanism, the MM would explain the obtained results by the
ML models, which could improve the decision-making process
in WWTPs.
On the other hand, using the parallel approach for designing

these models, the focus would be on minimizing the prediction
error of both models. ML models perform well with a greater
amount of available data. However, if we consider small data
sets or disturbances in the systems, the ML models cannot
perform satisfactorily, since it had small data set to be trained
and may not have knowledge to predict disturbances.34 This
would happen due to the lack of more data to learn these
variations. In these cases, the MM may respond better to the
variations presented in the data. By using the models in
parallel, we will have a more accurate and calibrated forecast,
always considering the model that obtains the best perform-
ance at the instant of time that we want to forecast.
Nowadays, some studies already use hybrid models in the

field of ML, such as CNN with GRUs or CNN with LSTM, to
predict energy consumption128,129 and Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) joining algorithms XGBoost and RF, for water
quality prediction.130 Compared with DL algorithms, this
model gave better results. The principle of the hybrid model
approach is to take the strengths of different models and their
knowledge representations,131,132 as the CNN-LSTM hybrid
model utilizes the ability of the CNN to extract features and
LSTM to handle time series and sequence data. This
combination intends to minimize the minimization of RMSE.
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6. CONCLUSIONS
Computational modeling has shown to be a promising tool to
assist in the management of WWTPs. Recent years came with
a shift from the traditional mechanistic models where the
process design has a special role to data-driven models, where
modeling is based on machine learning approaches, without
providing any knowledge about the function of the system.
Nevertheless, data-driven models present better prediction
capabilities than mechanistic ones, and overall, they present
smaller errors.
Data collection and curation were identified as the main

limitations to be overcome for a wider implementation of AI
models. Prediction of influent flow and effluent character-
ization are the most studied applications. Nonetheless, there is
room for significant developments in models for anomaly
detection and energy consumption optimization, for example.
Despite the availability of mechanistic models for the

different elements of water and wastewater systems, a robust
integration with data-driven models is still missing to achieve
an optimal balance between their prediction capabilities and
the required computational power. Thus, future research
should focus on the implementation of combined mechanistic
and data-driven models. This approach will contribute to the
economic and operational efficiency of WWTPs increasing
their environmental sustainability.
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Systems and Technologies; Rocha, Á., Adeli, H., Reis, L. P., Costanzo,
S., Eds.; Springer International Publishing: Cham, 2019; pp 273−282.
(68) Zadeh, L. A. The Role of Fuzzy Logic in the Management of
Uncertainty in Expert Systems. Fuzzy Sets Syst. 1983, 11 (1−3), 199−
227.
(69) Vafaie, H.; Jong, K. De. Genetic Algorithms as a Tool for
Feature Selection in Machine Learning. In Proceedings Fourth
International Conference on Tools with Artificial Intelligence TAI ’92;
1992; pp 200−203. DOI: 10.1109/TAI.1992.246402.
(70) Al Aani, S.; Bonny, T.; Hasan, S. W.; Hilal, N. Can Machine
Language and Artificial Intelligence Revolutionize Process Automa-
tion for Water Treatment and Desalination? Desalination 2019; pp
45884−96. .
(71) Chau, K. A Review on Integration of Artificial Intelligence into
Water Quality Modelling. Marine Pollution Bulletin 2006, 52, 726−
733.
(72) Abraham, A. Neuro Fuzzy Systems: State-of-the-Art Modeling
Techniques. In Connectionist Models of Neurons, Learning Processes,

and Artificial Intelligence; Mira, J., Prieto, A., Eds.; Springer Berlin
Heidelberg: Berlin, Heidelberg, 2001; pp 269−276.
(73) Nourani, V.; Elkiran, G.; Abba, S. I. Wastewater Treatment
Plant Performance Analysis Using Artificial Intelligence - An
Ensemble Approach. Water Sci. Technol. 2018, 78 (10), 2064−2076.
(74) Guo, H.; Jeong, K.; Lim, J.; Jo, J.; Kim, Y. M.; Park, J.-p.; Kim, J.
H.; Cho, K. H. Prediction of Effluent Concentration in a Wastewater
Treatment Plant Using Machine Learning Models. J. Environ. Sci.
(China) 2015, 32, 90−101.
(75) Asami, H.; Golabi, M.; Albaji, M. Simulation of the Biochemical
and Chemical Oxygen Demand and Total Suspended Solids in
Wastewater Treatment Plants: Data-Mining Approach. J. Clean. Prod.
2021, 296, No. 126533.
(76) Xie, Y.; Chen, Y.; Lian, Q.; Yin, H.; Peng, J.; Sheng, M.; Wang,
Y. Enhancing Real-Time Prediction of Effluent Water Quality of
Wastewater Treatment Plant Based on Improved Feedforward Neural
Network Coupled with Optimization Algorithm. Water (Switzerland)
2022, 14 (7), 1053.
(77) Nourani, V.; Asghari, P.; Sharghi, E. Artificial Intelligence Based
Ensemble Modeling of Wastewater Treatment Plant Using Jittered
Data. J. Clean. Prod. 2021, 291, No. 125772.
(78) Wang, Z.; Man, Y.; Hu, Y.; Li, J.; Hong, M.; Cui, P. A Deep
Learning Based Dynamic COD Prediction Model for Urban Sewage.
Environ. Sci. Water Res. Technol. 2019, 5 (12), 2210−2218.
(79) Ly, Q. V.; Truong, V. H.; Ji, B.; Nguyen, X. C.; Cho, K. H.;
Ngo, H. H.; Zhang, Z. Exploring Potential Machine Learning
Application Based on Big Data for Prediction of Wastewater Quality
from Different Full-Scale Wastewater Treatment Plants. Sci. Total
Environ. 2022, 832 (March), No. 154930.
(80) Zaghloul, M. S.; Achari, G. Application of Machine Learning
Techniques to Model a Full-Scale Wastewater Treatment Plant with
Biological Nutrient Removal. J. Environ. Chem. Eng. 2022, 10 (3),
No. 107430.
(81) Picos-Benítez, A. R.; Martínez-Vargas, B. L.; Duron-Torres, S.
M.; Brillas, E.; Peralta-Hernández, J. M. The Use of Artificial
Intelligence Models in the Prediction of Optimum Operational
Conditions for the Treatment of Dye Wastewaters with Similar
Structural Characteristics. Process Saf. Environ. Prot. 2020, 143, 36−
44.
(82) Jana, D. K.; Bhunia, P.; Das Adhikary, S.; Bej, B. Optimization
of Effluents Using Artificial Neural Network and Support Vector
Regression in Detergent Industrial Wastewater Treatment. Clean.
Chem. Eng. 2022, 3 (April), No. 100039.
(83) Meng, G.; Fang, L.; Yin, Y.; Zhang, Z.; Li, T.; Chen, P.; Liu, Y.;
Zhang, L. Intelligent Control of the Electrochemical Nitrate Removal
Basing on Artificial Neural Network (ANN). J. Water Process Eng.
2022, 49, No. 103122.
(84) Raza, A.; Bardhan, S.; Xu, L.; Yamijala, S. S. R. K. C.; Lian, C.;
Kwon, H.; Wong, B. M. A Machine Learning Approach for Predicting
Defluorination of Per- And Polyfluoroalkyl Substances (PFAS) for
Their Efficient Treatment and Removal. Environ. Sci. Technol. Lett.
2019, 6, 624.
(85) Di Fraia, S.; Massarotti, N.; Vanoli, L. A Novel Energy
Assessment of Urban Wastewater Treatment Plants. Energy Convers.
Manag. 2018, 163, 304−313.
(86) Hernández-del-Olmo, F.; Gaudioso, E.; Duro, N.; Dormido, R.
Machine Learning Weather Soft-Sensor for Advanced Control of
Wastewater Treatment Plants. Sensors (Switzerland) 2019, 19 (14),
3139.
(87) Wei, X.; Kusiak, A. Short-Term Prediction of Influent Flow in
Wastewater Treatment Plant. Stoch. Environ. Res. Risk Assess. 2015, 29
(1), 241−249.
(88) Bagherzadeh, F.; Mehrani, M. J.; Basirifard, M.; Roostaei, J.
Comparative Study on Total Nitrogen Prediction in Wastewater
Treatment Plant and Effect of Various Feature Selection Methods on
Machine Learning Algorithms Performance. J. Water Process Eng.
2021, 41 (March), No. 102033.
(89) Zhang, D.; Martinez, N.; Lindholm, G.; Ratnaweera, H.
Manage Sewer In-Line Storage Control Using Hydraulic Model and

ACS ES&T Water pubs.acs.org/estwater Review

https://doi.org/10.1021/acsestwater.3c00117
ACS EST Water 2024, 4, 784−804

802

https://doi.org/10.1007/978-3-319-24211-8
https://doi.org/10.1613/jair.301
https://doi.org/10.1613/jair.301
https://doi.org/10.1109/MEC.2011.6025669
https://doi.org/10.1109/MEC.2011.6025669
https://doi.org/10.1109/MEC.2011.6025669?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-030-57805-3_7
https://doi.org/10.1007/978-3-030-57805-3_7
https://doi.org/10.1007/978-3-030-57805-3_7?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-3-030-57805-3_7?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-3-319-92639-1_54
https://doi.org/10.1007/978-3-319-92639-1_54?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.1016/0956-0521(92)90138-9
https://doi.org/10.1016/0956-0521(92)90138-9
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/ICEngTechnol.2017.8308186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/ACCESS.2020.3040942
https://doi.org/10.1109/ACCESS.2020.3040942
https://doi.org/10.1109/I2CT51068.2021.9418215
https://doi.org/10.1109/I2CT51068.2021.9418215
https://doi.org/10.1016/S0165-0114(83)80081-5
https://doi.org/10.1016/S0165-0114(83)80081-5
https://doi.org/10.1109/TAI.1992.246402
https://doi.org/10.1109/TAI.1992.246402
https://doi.org/10.1109/TAI.1992.246402?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.desal.2019.02.005
https://doi.org/10.1016/j.desal.2019.02.005
https://doi.org/10.1016/j.desal.2019.02.005
https://doi.org/10.1016/j.marpolbul.2006.04.003
https://doi.org/10.1016/j.marpolbul.2006.04.003
https://doi.org/10.2166/wst.2018.477
https://doi.org/10.2166/wst.2018.477
https://doi.org/10.2166/wst.2018.477
https://doi.org/10.1016/j.jes.2015.01.007
https://doi.org/10.1016/j.jes.2015.01.007
https://doi.org/10.1016/j.jclepro.2021.126533
https://doi.org/10.1016/j.jclepro.2021.126533
https://doi.org/10.1016/j.jclepro.2021.126533
https://doi.org/10.3390/w14071053
https://doi.org/10.3390/w14071053
https://doi.org/10.3390/w14071053
https://doi.org/10.1016/j.jclepro.2020.125772
https://doi.org/10.1016/j.jclepro.2020.125772
https://doi.org/10.1016/j.jclepro.2020.125772
https://doi.org/10.1039/C9EW00505F
https://doi.org/10.1039/C9EW00505F
https://doi.org/10.1016/j.scitotenv.2022.154930
https://doi.org/10.1016/j.scitotenv.2022.154930
https://doi.org/10.1016/j.scitotenv.2022.154930
https://doi.org/10.1016/j.jece.2022.107430
https://doi.org/10.1016/j.jece.2022.107430
https://doi.org/10.1016/j.jece.2022.107430
https://doi.org/10.1016/j.psep.2020.06.020
https://doi.org/10.1016/j.psep.2020.06.020
https://doi.org/10.1016/j.psep.2020.06.020
https://doi.org/10.1016/j.psep.2020.06.020
https://doi.org/10.1016/j.clce.2022.100039
https://doi.org/10.1016/j.clce.2022.100039
https://doi.org/10.1016/j.clce.2022.100039
https://doi.org/10.1016/j.jwpe.2022.103122
https://doi.org/10.1016/j.jwpe.2022.103122
https://doi.org/10.1021/acs.estlett.9b00476?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.estlett.9b00476?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.estlett.9b00476?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.enconman.2018.02.058
https://doi.org/10.1016/j.enconman.2018.02.058
https://doi.org/10.3390/s19143139
https://doi.org/10.3390/s19143139
https://doi.org/10.1007/s00477-014-0889-0
https://doi.org/10.1007/s00477-014-0889-0
https://doi.org/10.1016/j.jwpe.2021.102033
https://doi.org/10.1016/j.jwpe.2021.102033
https://doi.org/10.1016/j.jwpe.2021.102033
https://doi.org/10.1007/s11269-018-1919-3
pubs.acs.org/estwater?ref=pdf
https://doi.org/10.1021/acsestwater.3c00117?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Recurrent Neural Network. Water Resour. Manag. 2018, 32 (6),
2079−2098.
(90) Elman, J. Finding Structure in Time. Cogn. Sci. 1990, 14 (2),
179−211.
(91) Siegelmann, H. T.; Horne, B. G.; Giles, C. L. Computational
Capabilities of Recurrent NARX Neural Networks. IEEE Trans. Syst.
Man, Cybern. Part B 1997, 27 (2), 208−215.
(92) Zhou, P.; Li, Z.; Snowling, S.; Baetz, B. W.; Na, D.; Boyd, G. A
Random Forest Model for Inflow Prediction at Wastewater
Treatment Plants. Stoch. Environ. Res. Risk Assess. 2019, 33 (10),
1781−1792.
(93) Szelag, B.; Bartkiewicz, L.; Studzinśki, J.; Barbusinśki, K.
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