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a b s t r a c t 

We consider the problem of, given a landscape represented by a gridded network and a fire ignition lo- 

cation, deciding where to locate the available fire suppression resources to minimise the burned area and 

the number of deployed resources as a secondary objective. We assume an estimate of the fire propaga- 

tion times between adjacent nodes and use the minimum travel time principle to model the fire propa- 

gation at a landscape-level. The effect of locating a resource in a node is that it becomes protected and 

the fire propagation to its unburned adjacent nodes is delayed. Therefore, the problem is to identify the 

most promising nodes to locate the resources, which is solved by a novel iterated local search (ILS) meta- 

heuristic. A mixed integer programming (MIP) model from the literature is used to validate the proposed 

method in 32 grid networks with sizes 6x6, 10x10, 20x20 and 30x30, with two different number of fire 

suppression resources (64 problems). Our ILS produced optimal solutions in 40 cases out of 41 known 

optimal lower bounds. The proposed method’s effectiveness is also due to its short computing times and 

small coefficients of variation of the objective function values. 

We also provide a categorised literature review on fire suppression deterministic optimisation models, 

from which we conclude that approximate collaborative approaches seldom have been applied in the 

past and, according to the results obtained, can successfully address the complexity of fire suppression, 

reaching good quality solutions even for large scale instances. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Wildfires have a major impact on human and environmental 

ife. In UNDRR (2019) , it is reported that wildfires caused 71 deaths 

nd affected more than 19 thousand people, on average, per year, 

etween 20 0 0 and 2017. Solely in 2018, wildfire caused 247 deaths 

nd affected more than 250 thousand people. Recent wildfires with 

ajor impact include the 2020 California wildfires, with a size of 

ore than 1700 thousand ha, that provoked 32 direct deaths; the 

019–2020 Australia wildfires with a size of more than 1800 thou- 

and ha, that provoked 34 direct deaths and 445 deaths by smoke 

nhalation; the 2019 Amazon wildfires with a size close to one 

housand ha; and the 2017 (June and October) Portugal wildfires 

hat caused 115 direct deaths 1 . 

In the aforementioned countries and in many others, large 

mounts of resources are allocated to prevent and suppress wild- 
∗ Corresponding author. 

E-mail address: andbergs@usp.br (A.B. Mendes) . 
1 Figures from https://www.en.wikipedia.org/wiki/List _ of _ wildfires , accessed 

020-11-1. 
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res in order to attempt to mitigate their negative impacts. These 

nclude, of course, the direct threat to human lives but also, 

hrough the emission of gas and particles, health effects and, at 

 different scope, global temperature increase 2 . Through the de- 

truction of forest resources and wildlife habitats, economical and 

nvironmental impacts are also major consequences that must be 

onsidered. 

Operational research and optimisation have been used in ad- 

ressing forest fires since the 1960s. For example, as early as 1963, 

 model for determining the fire-suppression force that minimises 

he total cost of an initial attack was proposed ( Jewell, 1963 ). 

In Martell (1982) , a review of operational research studies in 

orest fire management is conducted. Although some of the re- 

iewed areas had significant evolutions since the early 1980s, 

.g. fire detection, the core of other problems remains the same, 

s well as the potential of operational research to contribute to 

heir mitigation. Examples are fire load management (prevention 
2 https://www.public.wmo.int/en/media/news/widespread-fires-harm-global- 

limateenvironment , accessed 2021-01-04. 

https://doi.org/10.1016/j.ejor.2022.04.037
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lanning and fuel management, surveyed more recently in Chung 

2015) ) and fire suppression, which activities, in the same refer- 

nce, are divided in resource acquisition and strategic deployment, 

esource mobilization, initial attack dispatching and extended at- 

ack management. 

A more recent overview of operational research methods and 

pplications in forest fire management are Minas, Hearne, & Hand- 

er (2012) and Martell (2015) . In the latter, the author refers that 

many of the large fire management challenges that Shephard & 

ewell (1961) initiated research on the application of OR/MS to fire 

anagement remain. That being said, it has not been for lack of 

ffort.”

The relevance of fire suppression resource management, in 

hich operational research and optimisation, we believe, play a 

ecisive role, is supported, for example, in Fernandes, Pacheco, 

lmeida, & Claro (2016) , where extremely large fires in Portugal 

rom 2003 to 2013 were analysed to conclude that more effective 

dentification and exploration of containment opportunities (i.e. re- 

ources management) are preferable to higher fire-suppression re- 

ourcing. 

In Duff & Tolhurst (2015) fire suppression activities are di- 

ided in two groups: one related to preparedness and the other 

ith response. Preparedness activities are further divided in four 

evels: protection analysis, resource location-allocation, readiness 

nd detection. Similarly, response activities are further divided in 

hree levels: dispatch, travel and suppression works. The authors 

ention that fire suppression fits in the preparedness and re- 

ponse components of the management of emergencies. Prepared- 

ess is related with the activities prior to an ignition and response 

o the ones after. Overviews on the issues and approaches for 

arge-fire management can be found in Dunn, Thompson, & Calkin 

2017) and Thompson, Silva, Calkin, & Hand (2017) . 

In this paper, we focus on decisions related to the resources 

vailable to fire suppression. Examples of these resources are fire 

rews and their equipment, airtankers and fire trucks. We model 

heir effect in a given location as the delay in the fire spread 

hey provoke, which allows to model direct extinguishment of the 

ames and fireline-based containment. The proposed approach in- 

egrates the spatial and time dimensions in fire spread and also 

n the resources usage in order to minimise the burned area of 

 landscape given an ignition point and fire travel times between 

djacent cells. The proposed approach is flexible enough to model 

he use of resources in an initial attack or the protection of as- 

ets in large fire management, meaning that other objectives than 

inimising the burned area in a given time horizon may be con- 

idered. 

This problem was previously addressed by Alvelos (2018) , who 

roposed several MIP models to solve different variants. The author 

olved small landscapes (6x6), aiming to demonstrate the models’ 

pplicability. In this work, we propose a novel iterated local search 

ILS) metaheuristic and demonstrate its effectiveness by solving a 

et of 64 test cases for different landscapes, including real-sized in- 

tances. For the 48 smaller problems, with up to 400 nodes, the so- 

utions provided by the ILS can be compared with the bounds pro- 

ided by the MIP model, while for the larger instances, the model 

rom Alvelos (2018) can not be solved due to memory limitations. 

The sequence of this paper includes a literature review in 

ection 2 , followed by the problem definition and a MIP model in 

ection 3 . The proposed metaheuristic is described in Section 4 , 

nd dummyTXdummy- the computational results are presented 

nd commented in Section 5 . Conclusions are drawn in Section 6 . 

. Literature review 

Several optimisation models, in particular mixed integer pro- 

ramming (MIP) models, have been proposed to address fire sup- 
888 
ression problems. We conduct a categorised literature review 

ased on the interaction of the fire representation and optimisa- 

ion model. Three types of approaches are considered: sequential, 

ntegrative and collaborative. We focus on deterministic models, in 

oncordance with our approach. 

For stochastic models, we refer the interested reader to the 

tochastic integer programming approaches of Haight & Fried 

2007) and Belval, Wei, & Bevers (2019) and references therein. 

.1. Sequential 

We first review models derived from well-known MIP formula- 

ions, such as location, allocation and routing, and, in some cases, 

heir integration. These models are adapted to the fire prepared- 

ess and/or response through the use of parameters that represent 

re suppression requirements that must be met by the activity 

f the resources. We first consider examples where fire suppres- 

ion requirements are modelled as demands and then as a fireline 

ength that must be built to contain fire. 

The fist step in addressing a fire suppression optimisation prob- 

em with one of the these approaches is to characterize fire 

hrough the parameters of the model (of course also defining other 

arameters, for example related to resources) and, in a second step 

o obtain a solution by solving the model. Accordingly, we name 

his type of approach as sequential. 

.1.1. Demand-based 

In covering models ( Dimopoulou & Giannikos (2001) ; Marianov 

 ReVelle (1992) ), decisions are related to where to locate re- 

ources (e.g. vehicles, truck stations) to cover a set of demand 

oints (e.g. regions) representing potential fire events. In alloca- 

ion models ( MacLellan & Martell (1996) ; Mees & Strauss (1992) ; 

ees, Strauss, & Chase (1993) ) decisions are related to which com- 

ination of resources (e.g. airtankers) should be allocated to each 

emand (e.g. fire segment, initial attack base). In vehicle routing 

odels ( van der Merwe, Minas, Ozlen, & Hearne (2015) ; Roozbeh, 

zlen, & Hearne (2018) ; Wu, Cheng, & Feng (2019) ) decisions are 

elated to the definition of a sequence in which a set of vehicles 

e.g. tankers) should visit a set of assets, within given time win- 

ows, in order to maximise the value protected. Both spatial and 

ime dimensions are considered for the resources but they do not 

nteract with fire spread which is modelled by parameters. 

.1.2. Fireline-based 

In fireline-based models, fire is represented by a pre-defined 

erimeter at different time instants. A fire is extinguished when 

he fireline built by the resources is greater than or equal to 

he fire perimeter (perimeter condition). In Wiitala (1999) and 

onovan & Rideout (2003) dispatch decisions are addressed: which 

esources send to a fire site to minimise the cost of fire contain- 

ent. In Kirsch & Rideout (2005) ; Rideout, Wei, & Kirsch (2011) ; 

odríguez-Veiga, Ginzo-Villamayor, & Casas-Méndez (2018) MIP 

odels are derived for deciding the allocation, and its duration, 

f resources to fires. In Zambon, de Rezende, & de Souza (2018) , 

ecisions are related to which barriers (from the ones enumerated 

n a preprocess step) to built and in which sequence to maximise 

he salvaged area defined by the faces that are protected. 

.2. Integrative 

In integrative approaches, a single model includes optimisation 

nd fire spread: decisions on resources affect fire spread and vice- 

ersa. In scheduling models, the sequence in which fires (or fire 

egments) are visited influence the time required for their sup- 

ression and the time for suppression of fires influence the se- 

uence. In models where adjacency relations determine the fire 
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pread, the location of resources changes the adjacency relations 

hich changes the optimal location of resources. Lastly, in models 

ased on the minimum travel time principle, resource locations in- 

uence the fire travel times to adjacent nodes which influence the 

ptimal location of resources. 

.2.1. Scheduling 

In Rachaniotis & Pappis (2006) , Pappis & Rachaniotis (2010) and 

achaniotis & Pappis (2011) fire suppression is modelled as a 

cheduling problem where fires correspond to jobs to be processed 

y a single resource. Setup times (sequence dependent) correspond 

o the resource movements between fires. Fire spread is modelled 

s the time needed for suppression and increases with the time 

rom ignition according to a Rothermel empirical model (based on 

he wind speed, type of fuel and fuel loading). 

.2.2. Adjacency 

In Belval, Wei, & Bevers (2015) , the decisions, modelled in a 

IP model, are related to the positioning of resources in a net- 

ork representing the landscape. An ignited cell spreads fire to all 

ts neighbour cells that are flammable and do not have a resource. 

 more theoretical problem that relies on modelling fire spread 

hrough adjacency is the firefighter problem ( Blum, Blesa, García- 

artínez, Rodríguez, & Lozano (2014) ; Develin & Hartke (2007) ; 

inbow & MacGillivray (2009) ; Hu, Windbichler, & Raidl (2015) ; 

ichalak (2014, 2017) ; Ramos, de Souza, & de Rezende (2020) ). 

his problem is defined on a graph where fire spread is simulated 

y a sequence of time steps. An ignition occurs in one vertex at the 

rst step. In every step, vertices adjacent to a burned vertex also 

urns, except for the ones where a resource was located. At the 

eginning of each step a (fixed) number of resources is available. 

he objective is to minimise the number of burned vertices. 

In Wei et al. (2021) ; Wei, Thompson, Haas, Dillon, & O’Connor 

2018) ; Wei, Thompson, Scott, O’Connor, & Dunn (2019) models 

ased on the definition of potential wildfire operational delin- 

ations (POD, polygons whose boundaries may facilitate fire con- 

rol operations, such as roads and fuel transitions) is presented. 

ire spread is modelled through adjacency between POD. Decisions 

nclude the definition of the boundaries and protection points 

here the (limited) resources should work. 

.2.3. Minimum travel time 

In integrative approaches based on the minimum travel time 

MTT) principle Finney (2002) , the landscape is represented by 

 network (with any topology and, theoretically, any resolution). 

odes represent locations (e.g. stands or cells). Arcs represents ad- 

acency between locations. The minimum travel time (MTT) prin- 

iple states that the fire arrival time at a node is the shortest path

rom the ignition node to that node with respect to the fire travel 

imes between all adjacent nodes. In a MIP integrating the MTT 

nd optimisation, the fire spread is modelled with decision vari- 

bles related to fire arrival times (and to the shortest paths from 

he ignition to the cells) and decision variables related to the lo- 

ation of resources. Fire spread and resources interaction are mod- 

lled by the increase of the fire travel times from a node where a 

esource is located to adjacent nodes. 

To our best knowledge, MTT fire spread and optimisation has 

een first integrated in Hof, Omi, Bevers, & Laven (20 0 0) through 

 MIP for maximising the fire arrival times at cells that must be 

rotected. In the MIP model of Wei, Rideout, & Hall (2011) , the ob-

ective is to minimise the value of the cells that burn within a time 

orizon. In Alvelos (2018) , besides these two objectives, objectives 

elated to fire containment (by perimeter and by fire inactivity), 

re also considered. In this latter reference, two noticed issues of 

he previous models were overcome. 
889
The first one is that, as noted in both works, with a straightfor- 

ard model, arrival times in cells not belonging to the fire paths 

ay not comply with the shortest ones. In Wei et al. (2011) this 

ssue is addressed by a sequential procedure involving the solu- 

ion of two MIP models. In Alvelos (2018) , linear programming op- 

imality conditions are used to derive a single MIP model which, 

ndependently of the objective function, always provides the cor- 

ect arrival times at every cell. 

A second issue is related with the time availability of the re- 

ources from the start. A possibility to incorporate that resources 

re not immediately available is to forbid cells close to the igni- 

ion to receive resources, but this imply that the fire arrival times 

t those cells is known. In Wei et al. (2011) , an approximate iter- 

tive procedure, based on the MIP model, is presented to address 

he multi-period problem, where a set of resources is made avail- 

ble at the beginning of each time period, overcoming that issue. 

n Alvelos (2018) , this issue is addressed by defining time instants 

here the resources become available, treating time both as con- 

inuous (for fire arrival times at cells) and discrete (instants when 

esources become available/are located). 

.3. Collaborative 

In collaborative approaches, two modules (optimisation and fire 

pread) exchange information. Typically, the optimisation module 

rovides solutions (e.g. location of resources) and receives their 

valuation (e.g. burned area). Collaborative approaches have a big 

otential in fire suppression as they accommodate, virtually, any 

re spread model (from physical to empirical) and, virtually, any 

earch method (e.g. meta-heuristic). 

In Chi et al. (2003) fire propagation is modelled by a cel- 

ular automata (with deterministic rules for state transitions) 

hich evaluates different resources usage from the search space 

f a genetic algorithm. A genetic algorithm is also proposed 

n HomChaudhuri, Kumar, & Cohen (2013) where the fitness of 

ach individual is obtained by simulating the fire spread taking 

nto account the resources location and the fireline construction 

ate. 

.4. Comparison and contributions 

We now briefly compare the three different types of approaches 

nd describe what we think are the major contributions of this pa- 

er. 

Sequential approaches are very limited in terms of fire spread 

odelling. Integrative approaches may incorporate more detailed 

re spread models but are difficult to solve given their complexity 

nd size (in case of MIP models even with state-of-the-art solvers). 

Collaborative approaches allow, virtually, any fire spread model 

o be used for evaluating solutions generated or modified by an 

ptimisation module. These approaches can be seen as particular 

ases of the general scheme of simulation-optimisation, which has 

een applied successfully in many areas ( Figueira & Almada-Lobo, 

014 ). 

A first main contribution of this paper is therefore to high- 

ight the advantages of addressing large scale wildfire optimisation 

roblems using collaborative approaches, paving the way for their 

se with other optimisation methods / fire spread models in ad- 

ressing wildfire problems. 

The second main contribution is the design and computa- 

ional validation of a collaborative approach that combines a meta- 

euristic with a MTT fire spread model solved by Dijkstra’s algo- 

ithm and provides good quality solutions (proved to be optimal 

nes in most cases) for large instances of a relevant wildfire sup- 

ression problem. 
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Fig. 1. Example of a network representing a landscape and fire travel times 

( Alvelos, 2018 ). 
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. Problem definition and modelling 

Let (N, A ) be a graph representing a rasterised landscape. The 

et of nodes N contains cells of the landscape, while the set of 

rcs A represents adjacency relations between them (i.e. direct fire 

ransmission is possible), as exemplified in Fig. 1 . It is assumed 

hat the fire ignition takes place in a single node represented by 

gn ∈ N. 

The fire rate of spread between nodes depends on several is- 

ues, such as the amount of fuel at each node (e.g. flammable veg- 

tation), the wind direction and intensity, and the terrain slope. 

t is a premise that each cell contains a homogeneous area with 

espect to weather, topography, and fuel. The fire spread time be- 

ween adjacent nodes i and j is given by c i j , which can be esti-

ated by fire propagation simulators such as Finney (1998) . 

We consider a set of K time instants, K = { b 1 , b 2 , . . . , b h } , with h

eing the last instant of the time period under consideration, and 

 set of fire fighting resources R . In the k th instant, time b k , a given

umber resources, a k , becomes available and can be located in the 

nburned nodes of the network at this instant or later. Locating a 

esource in a node implies that the node will not burn and the fire

pread to adjacent unburned nodes is delayed by a known value 

. 

For a fire ignited in instant 0, at node ign ∈ N, the problem con-

ists of determining when and where to position the available re- 

ources so that the total burned area is minimised. A secondary 

bjective is to minimise the total number of deployed resources. 

his approach resorts to lexicographic optimisation where each so- 

ution with a smaller burned area is better independently of the 

umber of resources; the number of resources is only used to 

ifferentiate solutions with the same burned area. In a rasterised 

andscape, all cells have the same area, and the minimisation of 

he number of burned nodes thus produces the same effect. By 

dopting ε = 1 / | R | in the objective function, a single model can

e used if such weight does not pose numerical difficulties to the 

olver. If that is the case, two models can be solved sequentially, 

he first for the burned area objective (or the number of burned 

odes) and the second, with an additional constraint fixing the op- 

imal burned nodes, for the number of resources. 

The mixed integer programming (MIP) model proposed by 

lvelos (2018) is presented to make this paper self-contained. 

oreover, it is intended to assess the maximum landscape size 

hat commercial solvers can solve and use to model to evaluate 

he performance of the proposed heuristics. The model relies on 
890 
he following sets and parameters: N - set of nodes (indices i, j); A 

 set of arcs; R - set of resources (index r); K - set of time instants

indices k, g); h - target instant, in which the solution (burned area 

nd number of deployed resources) are minimised ( h ∈ K); ign - 

gnition node ( ign ∈ N); n - number of nodes ( n = | N| ); c i j - fire

pread time between the (center of) node i and the (center of) 

ode j in that direction; c max - maximum fire spread time between 

ny two nodes; a k - number of resources that become available at 

nstant k ( b k ); � - delay, expressed in time units, of the fire arrival

o an unburned adjacent node to the one that received a resource; 

- weight of the total number of resources in the objective func- 

ion ( ε = 1 / | R | ). 
The decision variables present in the model are: x i j - the num- 

er of shortest paths (each one beginning in the root and ending 

n a different node) that include arc i j; t i - length of a shortest 

ath between the root and each node i (a value that may vary ac- 

ording to the resources that have been installed as they modify 

he fire propagation paths); s i j - slack variable that is zero when- 

ver arc i j belongs to a shortest path; q i j - a binary variable that 

qual 1 if arc i j belongs to a shortest path, and 0 otherwise; y k 
i 

-

 binary variable that equals 1 if node i is burned at instant k ( b k ),

nd 0 otherwise; o k - number of resources available but not used 

t instant k and therefore available at instant k + 1 ; z kr 
i 

- a binary

ariable that equals 1 if node i receives resource r at instant k ( b k ),

nd 0 otherwise. 

inimise 
∑ 

i ∈ N 
y h i + ε

∑ 

i ∈ N 

∑ 

k ∈ K 

∑ 

r∈ R 
z kr 

i (1) 

Subject to: 
∑ 

ign, j∈ A 
x ign, j = n − 1 , (2) 

∑ 

i j∈ A 
x i j + 

∑ 

ji ∈ A 
x ji = 1 , ∀ i ∈ N \ { ign } (3) 

 ign = 0 (4) 

 i j ≤ (n − 1) q i j , ∀ i j ∈ A (5) 

 

i ∈ N 

∑ 

k ∈ K 
z kr 

i ≤ 1 , ∀ r ∈ R (6) 

 

r∈ R 

∑ 

k ∈ K 
z kr 

i ≤ 1 , ∀ i ∈ N (7) 

 

i ∈ N 

∑ 

r∈ R 
z 1 r i + o 1 = a 1 , (8) 

 

i ∈ N 

∑ 

r∈ R 
z kr 

i + o k = a k + o k −1 , k = 2 , · · · , | K| (9) 

 

kr 
i ≤ 1 + (t i − b k ) /b k , ∀ i ∈ N, ∀ k ∈ K, ∀ r ∈ R (10) 

 j − t i + s i j = c i j + �
∑ 

r∈ R 

∑ 

k ∈ K 
z kr 

i , ∀ i j ∈ A (11) 

 i j ≤ ((n − 1) c max + (| R | − 1)�)(1 − q i j ) , ∀ i j ∈ A (12) 

 

k 
i ≥

b k − t i + 1 

b k 
−

∑ 

r∈ R 

∑ 

l=1 , ... ,k 

z lr i , ∀ i ∈ N \ { ign } , ∀ k ∈ K (13) 
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Fig. 2. Fire shortest paths and arrival instants at all nodes for ignition at node (1,1) (left); Fire shortest paths and arrival instants at all nodes after placing resources at (3,3), 

(4,2) and (5,1) (right). 
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k 
i ≤ 1 + 

b k (1 − ∑ 

r∈ R 
∑ 

l=1 , ... ,k z 
lr 
i 
) − t i 

(n − 1) c max + (| R | − 1)�
, ∀ i ∈ N, ∀ k ∈ K (14) 

 k ≥ 0 , ∀ k ∈ K (15) 

 i ≥ 0 , ∀ i ∈ N \ { ign } (16) 

 i j , s i j ≥ 0 , q i j ∈ { 0 , 1 } , ∀ i j ∈ A (17) 

 

k 
i ∈ { 0 , 1 } , ∀ i ∈ N, ∀ k ∈ K (18) 

 

kr 
i ∈ { 0 , 1 } , ∀ i ∈ N, ∀ k ∈ K, ∀ r ∈ R (19) 

In the this model, the objective function (1) minimises the to- 

al number of burned nodes at the target instant plus a weighted 

umber of assigned resources. Constraint (2) forces that n − 1 

aths departure the ignition node ign , while constraint (3) guar- 

ntees that one path reaches each node in the network. Constraint 

4) states that the fire arrival time of ignition node is zero. Con- 

traint (5) activates the binary variable q i j if arc (i, j) belongs to a

hortest path. Constraint (6) states that a resource can be assigned 

t most once to any node. Analogously, constraint (7) guarantees 

hat each node can receive at most one resource throughout the 

lanning period. Constraint (8) allows assigning resources at in- 

tant 1, based on the number of resources that were released ( a 1 ).

onstraint (9) controls the number of available resources by bal- 

ncing the number of unassigned resources at the end of each time 

eriod. In constraint (10) , it is checked whether node i is burned at

nstant a k . This happens when the fire arrival time t i is less than

he evaluated instant. In such cases, node i cannot receive a re- 

ource. On the other hand, if the fire arrival instant is greater than 

r equal to a k , then node i can receive a resource at this instant.

onstraint (11) calculates the fire arrival instant at node j, having 

ode i as origin. In case a resource has been assigned to node i , a

elay in the fire arrival at node j is guaranteed by parameter �. 

onstraint (12) forces a slack variable s i j to be zero whenever arc 

i, j) belongs to a shortest path (i.e., when q i j is one). Constraints 

13) and (14) define if node i is burned at instant k . These con-

traints, together with constraint (10) , allow node i to receive a re- 

ource at the same instant of the fire arrival at the node. Finally, 

onstraints (15) to (19) define the variables’ domain. 
891 
To illustrate the fire propagation model used, the left part of 

ig. 2 presents the fire shortest paths to all 35 nodes when the 

gnition takes place at node (1,1), for the example shown in Fig. 1 .

he values marked in red are the fire arrival instants at the nodes 

alculated by Dijkstra’s shortest path algorithm when no action is 

aken to protect them, i.e. no resources are used. 

In right part of Fig. 2 we represent a solution where three re- 

ources are located in nodes (3,3), (4,2) and (5,1). Note that for the 

olution to be feasible, the fire arrival time at those nodes must be 

reater than the instant they become available (i.e. the resources 

ust be available before 13, 11 and 13 time units, respectively). 

Because of the delay (assuming � is large enough) provoked by 

ocating the resources, the fire paths of the previous successors of 

3,3), (4,2) and (5,1), do not include them any longer. For example, 

ode (3,4), whose fire arrival instant was 18, has a new shortest 

ath reaching it from node (2,4) with an increased fire arrival in- 

tant equal to 20. It is interesting to note how the modified fire 

rrival instants varies throughout the network. In node (5,2), for 

xample, the fire arrival increased from 14 to 41, as node (4,2) be- 

ame protected and a longer fire path is needed to reach it. By 

onsidering the time horizon as 20, the number of burned nodes 

s 22 with no resources and 13 with the three resources. 

. Solution method 

An iterated local search (ILS) algorithm is proposed to minimise 

he total number of burned nodes at the given target instant h plus 

he weighted number of resources. The ILS metaheuristic, as de- 

cribed in Lourenço, Martin, & Stützle (2003) , follows the general 

tructure presented in Algorithm 1 . In line 1, an initial solution s 0 

Algorithm 1: Iterated Local Search. 

1 (s 0 , f 0 ) ← MultiStartConstructiveHeuristic () 

2 (s ∗, f ∗) ← LocalSearch (s 0 ) 

3 while Stopping criterion is not met do 

4 (s ′ , f ′ ) ← Perturbation (s ∗) 
5 (s ∗′ , f ∗′ ) ← LocalSearch (s ′ ) 
6 s ∗ ← AcceptanceCriterion (s ∗, s ∗′ ) 
7 return s ∗ and f ∗. 

s generated by a multi-start constructive heuristic with objective 

unction value f 0 . This solution is then submitted to a local search 

rocedure in line 2, returning solution s ∗ with objective function 

alue is f ∗. ILS’ main loop takes place in lines 4 to 6, while the



A.B. Mendes and F.P. e Alvelos European Journal of Operational Research 304 (2023) 887–900 

s

w

t

T

r

a

s

t

i

I

(

p

f

g

t

t

4

d

s

d

A

j

p

a

t

r

s

d

i

s

r

s

t

a

i

a

i

o

b

c

w

o

T

o

i

i

r

r

a

e

4

A

n

s

w

i

p

a

topping criterion, defined as the maximum number of iterations 

ithout improvement, is not met. In line 4, the s ∗ solution is per- 

urbed, resulting in solution s ′ with objective function value f ′ . 
his solution is submitted to a local search procedure in line 5, 

eturning solution s ∗′ with objective function value f ∗′ . Finally, the 

cceptance criterion is applied in line 6, whereby only improved 

olutions are admitted. 

As described, ILS relies on searching a solution space by itera- 

ively exploring the neighborhood of a current solution and mov- 

ng to a more distant solution when no improvement can be made. 

LS is one of the most well-known single-solution meta-heuristics 

 Gendreau, Potvin et al., 2010 ). These are characterized by a com- 

romise between fast computational running times (usually much 

aster than population-based methods as, for example, genetic al- 

orithms) and faster high quality-solutions (usually much better 

han constructive algorithms). The main routines are detailed in 

he next subsections. 

.1. Constructive heuristic 

The constructive heuristic is a multi-start probabilistic proce- 

ure whose structure follows the concepts discussed in Martí, Re- 

ende, & Ribeiro (2013) . Each iteration of Algorithm 2 builds a ran- 

Algorithm 2: MultiStartConstructiveHeuristic(). 

1 f ∗ ← ∞ 

2 while Maximum iterations has not been reached do 

3 s = ConstructRandomSolution () 

4 if f (s ) < f ∗ then 

5 s ∗ ← s 

6 f ∗ ← f (s ) 

7 return s ∗ and f ∗. 

omised solution s according to the general procedure described in 

lgorithm 3 , which is kept as the best initial solution s ∗ if the ob- 

Algorithm 3: ConstructRandomSolution(). 

1 while there are unburned nodes with fire arrival instants less 

than h and there are resources available do 

2 Find the least release time of a resource. 

3 Run Dijkstra’s algorithm to determine the fire arrival 

instants. 

4 Identify the set of burned nodes. 

5 Sort nodes in ascending order by their fire arrival instants. 

6 Build a restricted candidate list of unburned nodes. 

7 Randomly select a node from the candidate list. 

8 Assign a resource to the chosen node. 

9 Update the fire travel time to its adjacent unburned 

nodes. 

10 return solution and its objective function value. 

ective function value f ∗ improves. 

In each iteration of the constructive heuristic, Dijkstra’s shortest 

ath tree algorithm is used to determine the fire propagation paths 

nd the corresponding fire arrival instant at each node. Based on 

hose times, one resource is located in one of the locations of a 

estricted candidate list made of unburned locations. When a re- 

ource is placed on an unburned node, it becomes protected and 

elays the fire propagation path that was meant to go through 

t. Hence, the heuristic selects promising nodes to place the re- 

ources, considering the resources’ release instants and the fire ar- 

ival times at the nodes. 
892 
As presented in Algorithm 3 , the randomised construction of a 

olution is an iterative procedure with two stopping rules (line 1): 

he algorithm is interrupted if all unburned nodes have their fire 

rrival instants greater than h (since the solution is evaluated at 

nstant h , there is no need to continue) or if no further resources 

re available (there is nothing to be done). If the stopping criterion 

s not met, the procedure will first find out the least release instant 

f a resource (line 2). This is important as no action can be taken 

efore this instant. The fire arrival time to all nodes is then cal- 

ulated with Dijkstra’s shortest path algorithm (line 3). The nodes 

hose fire arrival instants are inferior to the least release instant 

f a resource cannot be protected and are set as burned (line 4). 

he remaining unburned nodes are sorted in the ascending order 

f their fire arrival instants (line 5), and a restricted candidate list 

s built (line 6) containing the unburned nodes that will first burn 

f no resources are deployed before the fire arrival. One node is 

andomly selected from the restricted candidate list (line 7), and a 

esource is assigned to it (line 8). As a consequence, the unburned 

djacent nodes have the fire propagation times delayed by param- 

ter � (line 9). 

.2. Local search 

The general structure of the local search is described in 

lgorithm 4 and consists of removing the resource from each 

Algorithm 4: LocalSearch(). 

1 repeat 

2 for each node 0 with a resource do 

3 Remove the resource from node 0 . 

4 Update the fire propagation time to the unburned 

adjacent nodes of node 0 . 

5 Run Dijkstra’s algorithm to determine the fire arrival 

instants. 

6 neighbourhood ← GenerateNeighbourhood ( node 0 ) 

7 for each node 1 in neighbourhood do 

8 Place the available resource at node 1 . 

9 Update the fire travel time to the adjacent 

unburned nodes of node 1 . 

10 Run Dijkstra’s algorithm to determine the fire 

arrival instants. 

11 Determine the solution feasibility. 

12 if the solution is feasible and the best possible 

improvement then 

13 Save movement as the best Mov ement . 

14 Remove resource from node 1 . 

15 Update the fire travel time to the adjacent 

unburned nodes of node 1 . 

16 Restore the resource to node 0 . 

17 Update the fire propagation time to the unburned 

adjacent nodes of node 0 . 

18 if there is improvement then 

19 Execute the bestMovement . 

20 until no improvement; 

21 return solution and its objective function value. 

ode, one at a time, and evaluating the impact of placing the re- 

ource in the neighbouring nodes to those with resources. By this 

e mean adjacent nodes as well as diagonal nodes (e.g. node (1,4) 

s diagonal to (2,5)). This type of movement aims to form fire sup- 

ression barriers by having fire suppression resources positioned 

djacently - later, on the perturbation phase, we also include nodes 
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Algorithm 5: Perturbation(). 

1 Set prob 2 to 0 if there are no available resources. 

2 Rnd = random () 

3 if Rnd < prob 1 then 

4 Remove a resource from the node with the largest 

deployment instant. 

5 Update the resource availability. 

6 Update the fire travel time to its adjacent nodes. 

7 else 

8 if Rnd < prob 1 + prob 2 then 

9 Find the least release time of an available resource. 

10 Run Dijkstra’s algorithm to determine the fire arrival 

instants. 

11 Identify the set of candidate nodes to receive the 

resource. 

12 Sort candidate nodes in ascending order by their fire 

arrival instants. 

13 Build a candidate list for receiving the resource. 

14 Randomly select a node from the candidate list. 

15 Assign a resource to the chosen node. 

16 Update the resource availability. 

17 Update the fire travel time to its adjacent nodes. 

18 else 

19 mod = 0 

20 failure = 0 

21 while mod < maxMod id ications and 

failure < maxF ailures do 

22 Randomly select a node with resource. 

23 Remove the resource. 

24 Update the fire propagation time to its adjacent 

nodes. 

25 Run Dijkstra’s algorithm to determine the fire 

arrival instants. 

26 Generate the neighbourhood. 

27 Randomly select a node from the neighbourhood. 

28 Place the resource at the selected node. 

29 Update the fire propagation time to its adjacent 

nodes. 

30 Run Dijkstra’s algorithm to determine the fire 

arrival instants. 

31 Assess the solution feasibility. 

32 if the solution is feasible then 

33 mod = mod + 1 . 

34 failure = 0 . 

35 else 

36 Undo the proposed movement. 

37 failure = failure + 1 . 

38 Run Dijkstra’s algorithm to determine the fire arrival instants. 

39 return solution and its objective function value. 

t

i

fi

d

w

t

b

i

(  

n

t

hat not necessarily form a barrier. It is essential to highlight that 

ore than one barrier is admitted. 

The complete list of the neighbouring nodes to those with re- 

ources is called an extended neighbourhood. As the size of this 

eighbourhood can be very large, a reduction scheme is applied. 

he first nodes to eliminate are the burned nodes. The remaining 

odes are sorted in ascending order of their fire arrival instants, 

nd a reduced neighbourhood is built with the first elements of 

his list (more details are given in the computational results sec- 

ion). 

The local search procedure starts by removing the resource 

rom one node (line 3). Then, the fire propagation time to the ad- 

acent unburned nodes is updated (line 4), which means that the 

elay in propagating the fire (parameter �) is eliminated. In the 

equence, the fire arrival instants to all nodes are determined by 

ijkstra’s shortest path algorithm (line 5). The next step consists 

f defining a reduced neighbourhood for placing the resource (line 

). Then, it is assessed the impact of placing the resource at each 

ode belonging to this neighbourhood (lines 7 to 17). 

This evaluation begins by placing the resource at one node of 

he neighbourhood (line 8) and modifying the corresponding fire 

ropagation time to its unburned adjacent nodes (line 9). In the 

equence, Dijkstra’s shortest path algorithm is called (line 10) to 

etermine the fire arrival instants to all the nodes. Before evalu- 

ting the number of burned nodes, a feasibility check has to be 

ade (line 11). As the resource was removed from its original po- 

ition (line 3) and reinserted in a different node (line 8), the fire 

ropagation paths to all the nodes are affected, and the fire arrival 

nstants at all nodes are likely to change. One has to be aware that 

 node with a resource cannot have its new fire arrival time infe- 

ior to the instant the resource was previously assigned to it. Such 

 situation is inconsistent and characterizes an infeasible move. In 

ase the movement is feasible, and this modification turns out to 

e the best possible improvement, it is saved (lines 12 and 13) for 

uture modification (line 18). In lines 15 and 16, the resource is re- 

oved from node 1 , and the fire propagation time between its adja- 

ent nodes is updated. When all nodes belonging to the neighbour- 

ood have been examined, the resource is restored to node 0 (line 

8), and the fire propagation time to its unburned adjacent nodes 

re updated (line 19). Finally, in line 21, after the whole neigh- 

ourhood of all nodes with resources has been evaluated, and if 

t is possible to improve the solution, the best movement is ex- 

cuted (line 22). Otherwise, the procedure is halted by the outer 

ycle condition (line 24). 

.3. Perturbation scheme 

The perturbation scheme is meant to generate solutions that 

re not too close to the incumbent solution and neither too distant, 

nabling to escape local optima, hopefully keeping good-quality 

eatures of the solution. In this regard, three types of perturbations 

ere implemented and are described in Algorithm 5 . The first one 

s called with probability prob 1 and aims to reduce the number 

f assigned resources (lines 4 to 6). The second type of perturba- 

ion is called with an accumulated probability of prob 1 + prob 2 and 

dds a resource to the solution (lines 9 to 17). This perturbation is 

nly called when there is at least one available resource; other- 

ise, prob 2 is set to 0 (line 1). The third perturbation forces that a 

redetermined number of resources be moved from their current 

ositions to other nodes, provided that the solution remains feasi- 

le. 

The first type of perturbation can improve the solution in sit- 

ations where not all resources are needed to minimise the total 

urned area at the target instant h . This may happen when too 

any resources are available or the fire travel times are large with 

espect to target time. In those cases it is important to minimise 
893 
he number of resources used, keeping the burned area at the min- 

mum. 

It must be observed that the constructive heuristic initially de- 

nes the number of resources, and the subsequent local search 

oes not modify this quantity. In cases where the initial solution 

as built using more resources than what is actually needed, this 

ype of perturbation allows adjusting the solution, keeping the 

urned area unchanged. The idea is simple and consists of find- 

ng the node whose resource deployment instant is the largest 

 algorithm 5 , line 4) and remove the resource. Lines 5 and 6 are

ecessary to update the resource availability and update the fire 

ravel time to the adjacent nodes. 
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The second type of perturbation consists of adding a resource 

o the solution, if available. This perturbation, however, is called 

ess frequently, as it is not expected that a solution will demand 

ore resources than it was defined in the constructive phase. 

The process is very similar to the steps described in 

lgorithm 3 and consists of finding the least release time of an 

vailable resource ( algorithm 5 , line 9) and call Dijkstra’s shortest 

ath algorithm to determine the fire arrival instants in the whole 

etwork (line 10). A list of candidate nodes is elaborated, includ- 

ng all nodes whose fire arrival instants are greater than or equal 

o the instant that the resource is released and do not have a re-

ource (line 11). This list of candidate nodes is sorted in ascending 

rder by their fire arrival instants (line 12), and a restricted candi- 

ate list is built (line 13). A node is randomly selected from this list 

line 14) to receive a resource (line 15). The resource availability is 

pdated (line 16), and the fire travel time to its adjacent nodes is 

pdated (line 17). 

The third type of perturbation is most frequently called (with 

 probability of 1 − prob 1 − prob 2 ) and consists of modifying a 

redefined number of resources from their positions (lines 22 to 

9). While the maximum number of modifications has not been 

eached and the number of failures has not reached its maximum 

alue, a resource is moved from its current node. First, a node with 

 resource is randomly selected (line 22), and the corresponding 

esource is removed (line 23). Consequently, the fire propagation 

ime to its adjacent nodes must be updated (line 24), and Dijk- 

tra’s shortest path algorithm is called (line 25) to determine the 

re arrival time at all nodes after the resource was removed. The 

eighbourhood for placing the resource is generated (line 26) in 

he same way as in the local search procedure, but without con- 

idering that a node must be adjacent or diagonal to a node with 

 resource. This means that any unburned node can be part of the 

eighbourhood, thus generating a broader list of candidate nodes. 

owever, as the neighbourhood has a maximum allowed size (fur- 

her defined), the candidate nodes are sorted in ascending order 

y their fire arrival instants, and only the nodes with the smaller 

nstants are considered. One node from this neighbourhood is se- 

ected (line 27) to receive a resource (line 28). 

Dijkstra’s shortest path algorithm is called (line 30) to deter- 

ine the fire arrival instants to assess the solution feasibility (line 

1). This verification is needed to check if the new fire arrival in- 

tants at the nodes with resources are inferior to the instants that 

he resources were released. If this is the case, we have an infea- 

ible solution. Otherwise, the counter mod is incremented, and the 

failure counter is set to zero (lines 33 and 34). If the solution is 

nfeasible, the movement made in lines 23 and 28 must be un- 

one (line 36), and the failure counter is incremented (line 37). 

efore returning the solution (line 43), the objective function has 

o be updated, and this is done by first calling Dijkstra’s shortest 

ath algorithm for determining the fire arrival instants at all nodes, 

hich allows assessing the resulting number of burned nodes. 

. Computational results 

.1. Instances and ILS calibration 

Computational tests were made with the mixed integer pro- 

ramming model and the iterated local search metaheuristic. In- 

tances were created with four different grid sizes: 6x6, 10x10, 

0x20 and 30x30, as in Hof et al. (20 0 0) , Minas, Hearne, & Martell

2014) and Belval et al. (2015) . In all cases the ignition takes place

n a quasi-central node, i.e. nodes (3,3), (5,5), (10,10) and (15,15) for 

rid sizes 6x6, 10x10, 20x20 and 30x30, respectively, thus allowing 

he fire to propagate in all directions. Besides the grid size and the 

gnition node, one needs to know the estimated fire spread time 

etween any pair of adjacent nodes. Several aspects influence the 
894 
re propagation spreading rate and define the propagation time 

ore precisely ( Finney, 1998 ). The estimate of the fire propagation 

imes, however, is beyond this paper’s scope. 

To generate the test instances, uniform distributions are used to 

efine the spreading times (in minutes) between adjacent nodes 

n the directions indicated in Table 1 , considering the wind as the 

ain influence. For example, in instance one, the fire propagation 

imes southward and eastward are drawn from the uniform dis- 

ributions U(2,4) and U(4,6), respectively. These distributions have 

he least minimum and maximum values among the four direc- 

ions, indicating that the resulting wind direction is southeast. For 

ach grid size, eight variations are proposed with different time 

ropagation distributions (32 problems); instance 1 was extracted 

rom Alvelos (2018) and is represented in Fig. 1 . 

The instances are evaluated for two different number of re- 

ources. The first set considers that two resources become avail- 

ble at instant 10 and three resources become available at instant 

5. The second set considers that three resources become available 

t instants 10 and 15. In Table 1 , two additional pieces of infor-

ation on the instances are given in the last two columns. First, 

n the ‘burned nodes’ column, one will find the number of nodes 

hose fire arrival times are inferior to when resources are first 

eleased (instant 10) and will inevitably burn. Second, the ‘candi- 

ates first resources’ column indicates the number of nodes that 

re candidates to receive the resources released at instant 10, in- 

luding all nodes whose fire arrival instants are between 10 and 

4. Intuitively, the greater the number of candidate nodes relative 

o the number of resources, the more difficult the instance is. The 

re delay implied by locating a resource, �, is assumed to be 50. 

or all cases, the objective function is evaluated at instant h = 28 

inutes, when the number of burned nodes is assessed, and deci- 

ions on other actions can be taken, such as requesting additional 

esources or planning an extended attack ( Martell, 2015 ). 

The proposed heuristic requires the calibration of general pa- 

ameters (ILS) and others relative to the constructive heuristic 

CH), local search (LS) and the perturbation scheme (Pert). The 

dopted values are presented and if not otherwise indicated are 

ommon to all grid sizes - maximum number of perturbations (ILS) : 

5 (6x6), 100 (10x10), 200 (20x20), 250 (30x30); maximum num- 

er of iterations without improvement (ILS) : 50; number of repetitions 

CH) : 500 (6x6,10x10), and 1000 (20x20,30x30); restricted candi- 

ate list size : 5 (6x6,10x10), and 6 (20x20,30x30); maximum neigh- 

ourhood size (LS and Pert) : 6 (6x6), 10 (10x10), 20 (20x20) and 30 

30x30); probability of removing a resource (Pert) : 7 . 5% ; probability 

f adding a resource (Pert) : 2 . 5% ; maximum number of modifications 

Pert) : U(3 , 5) ; maximum number of failures (Pert) : 100. 

The MIP model (1) - (19) was solved by Gurobi 9.02 for instances 

 to 24 (6x6, 10x10 and 20x20) with five and six resources; in- 

tances with 900 nodes could not be solved due to out-of-memory 

rrors. In all cases, the Gurobi time limit was set as 7200 seconds. 

he ILS metaheuristic was coded in Python 3.8 with the support 

f NetworkX library ( NetworkX, 2021 ) for the network representa- 

ion and manipulation; our code also relied on Dijkstra’s shortest 

ath algorithm from NetworkX (2021) . The ILS was run five times 

or all instances. All results were obtained by a personal computer 

ith an i7-9750H processor, 2.60GHz and 8.0GB of RAM. 

.2. Mixed integer programming 

The results obtained by Gurobi when solving the MIP model 

1) - (19) are shown in Tables 2 and 3 , for five and six resources,

espectively. These tables contain, for each instance, the objective 

unction value (OFV), the lower bound (LB), the lower bound value 

t the root node (LB0), the total burned area, the number of nodes 

xplored in the branch-and-bound tree, the number of integer so- 
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Table 1 

Instances’ parameters and information. 

Ins- tance Size Wind Direction Propagation Time [min] North South East West Ignition Node Burned Nodes Candidates First Res. 

1 6x6 Southeast U(7,9) U(2,4) U(4,6) U(6,8) (3,3) 11 6 

2 6x6 Southeast U(7,9) U(1,3) U(4,6) U(6,8) (3,3) 11 9 

3 6x6 Southeast U(7,9) U(2,4) U(3,5) U(6,8) (3,3) 9 10 

4 6x6 Southeast U(7,9) U(1,3) U(3,5) U(6,8) (3,3) 11 12 

5 6x6 South U(7,9) U(2,4) U(4,6) U(4,6) (3,3) 9 11 

6 6x6 South U(7,9) U(1,3) U(4,6) U(4,6) (3,3) 12 11 

7 6x6 South U(7,9) U(2,4) U(3,5) U(3,5) (3,3) 10 14 

8 6x6 South U(7,9) U(1,3) U(3,5) U(3,5) (3,3) 12 16 

9 10x10 Southeast U(7,9) U(2,4) U(4,6) U(6,8) (5,5) 10 8 

10 10x10 Southeast U(7,9) U(1,3) U(4,6) U(6,8) (5,5) 11 12 

11 10x10 Southeast U(7,9) U(2,4) U(3,5) U(6,8) (5,5) 11 9 

12 10x10 Southeast U(7,9) U(1,3) U(3,5) U(6,8) (5,5) 14 12 

13 10x10 South U(7,9) U(2,4) U(4,6) U(4,6) (5,5) 10 13 

14 10x10 South U(7,9) U(1,3) U(4,6) U(4,6) (5,5) 12 17 

15 10x10 South U(7,9) U(2,4) U(3,5) U(3,5) (5,5) 13 14 

16 10x10 South U(7,9) U(1,3) U(3,5) U(3,5) (5,5) 17 18 

17 20x20 Southeast U(7,9) U(2,4) U(4,6) U(6,8) (10,10) 8 8 

18 20x20 Southeast U(7,9) U(1,3) U(4,6) U(6,8) (10,10) 10 13 

19 20x20 Southeast U(7,9) U(2,4) U(3,5) U(6,8) (10,10) 8 12 

20 20x20 Southeast U(7,9) U(1,3) U(3,5) U(6,8) (10,10) 11 16 

21 20x20 South U(7,9) U(2,4) U(4,6) U(4,6) (10,10) 9 10 

22 20x20 South U(7,9) U(1,3) U(4,6) U(4,6) (10,10) 12 18 

23 20x20 South U(7,9) U(2,4) U(3,5) U(3,5) (10,10) 9 16 

24 20x20 South U(7,9) U(1,3) U(3,5) U(3,5) (10,10) 14 22 

25 30x30 Southeast U(7,9) U(2,4) U(4,6) U(6,8) (15,15) 9 13 

26 30x30 Southeast U(7,9) U(1,3) U(4,6) U(6,8) (15,15) 13 15 

27 30x30 Southeast U(7,9) U(2,4) U(3,5) U(6,8) (15,15) 11 12 

28 30x30 Southeast U(7,9) U(1,3) U(3,5) U(6,8) (15,15) 14 19 

29 30x30 South U(7,9) U(2,4) U(4,6) U(4,6) (15,15) 11 15 

30 30x30 South U(7,9) U(1,3) U(4,6) U(4,6) (15,15) 16 18 

31 30x30 South U(7,9) U(2,4) U(3,5) U(3,5) (15,15) 14 16 

32 30x30 South U(7,9) U(1,3) U(3,5) U(3,5) (15,15) 19 24 

Table 2 

Results obtained for the MIP model solved with Gurobi - five resources. 

Ins- tance OFV LB LB0 Burned Nodes Node Count Solution Count Time Best[s] Total Time[s] 

1 26 26 13.8 25 1 7 1.6 1.9 

2 26 26 14.7 25 1 7 1.3 1.4 

3 27 27 12.9 26 1 7 1.7 1.9 

4 27 27 15.1 26 1 9 1.3 1.4 

5 26 26 13.8 25 1 7 2.5 2.6 

6 27 27 17.1 26 1 6 1.2 1.4 

7 28 28 15.7 27 35 7 1.6 3.5 

8 28 28 17.9 27 1 7 1.4 1.8 

9 42 42 14.2 41 1 8 12.9 13.1 

10 47 47 17.3 46 284 4 8.4 10.1 

11 48 48 15.6 47 191 8 14.3 14.5 

12 55 55 20.5 54 207 8 17.6 18.4 

13 52 52 15.6 51 1251 9 20.2 20.4 

14 56 56 19.7 55 1 6 13.5 13.8 

15 59 59 19.4 58 221 7 13.8 14.2 

16 64 64 25.3 63 220 7 16.0 16.4 

17 – 37.5 12.1 – 441 0 – 93.6 

18 – 48.7 15.6 – 7 0 – 64.6 

19 – 41.2 12.7 – 13 0 – 62.7 

20 – 55.3 17.1 – 13 0 – 77.5 

21 – 46.3 13.8 – 7 0 – 96.5 

22 – 63.3 19.1 – 3 0 – 91.3 

23 – 15.2 15.2 – 0 0 – 11.8 

24 – 21.9 21.9 – 0 0 – 11.1 
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utions generated, the time for obtaining the best solution and the 

otal runtime from Gurobi. 

Problems with 36 nodes (instances 1 to 8) were promptly 

olved, not taking more than 3.8 seconds to achieve optimality. 

roblems with 100 nodes are still easy to be solved, not tak- 

ng more than 30 seconds. In instances 20x20 with 5 resources 

 Table 2 ), an out-of-memory error halted the model execution be- 

ore the imposed time limit in all cases. Particularly, in instances 

3 and 24, the processing was interrupted at the root node. In in- 

tances 20x20 with 6 resources ( Table 3 ), there were four cases 
895 
hat no integer solutions were generated at all, but only lower 

ounds. Concerning grids of size 30x30, no problem could be 

olved by Gurobi due to memory limitations from the very begin- 

ing of the model execution. 

One may note that all cases where integer solutions are gener- 

ted, the solutions are optimal. Regarding instances 17 to 24 with 

ve resources, additional tests were made by running the mathe- 

atical model with the best ILS solutions as initial solutions. As a 

esult, the optimal lower bound for instance 17 was achieved (LB = 

0.0), and the lower bounds for instances 23 and 24 were signifi- 
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Table 3 

Results obtained for the MIP model solved with Gurobi - six resources. 

Ins- tance OFV LB LB0 Burned Nodes Node Count Solution Count Time Best[s] Total Time[s] 

1 23 23 13.0 22 1 7 1.7 1.8 

2 24 24 14.2 23 1 6 1.9 2.0 

3 24 24 12.3 23 16 6 2.6 3.5 

4 24 24 14.4 23 1 5 1.4 1.6 

5 24 24 13.1 23 12 7 2.7 3.8 

6 25 25 16.4 24 1 6 1.3 1.6 

7 24 24 15.0 23 1 7 2.0 2.0 

8 25 25 17.2 24 1 7 2.0 2.1 

9 38 38 13.0 37 440 4 17.6 17.9 

10 43 43 15.4 42 1499 6 17.1 17.2 

11 43 43 14.2 42 36 4 10.6 15.2 

12 50 50 18.5 49 158 7 14.8 15.0 

13 48 48 14.6 47 2250 10 25.0 25.2 

14 52 52 18.6 51 1088 6 17.1 17.7 

15 55 55 18.3 54 222 4 18.5 18.8 

16 59 59 23.7 58 54 6 19.3 19.5 

17 – 33 11.4 – 226,918 0 – 7,200.2 

18 – 49 14.8 – 333,866 0 – 7,200.2 

19 – 39 12.0 – 192,853 0 – 7,200.3 

20 – 57 16.0 – 217,700 0 – 7,200.4 

21 44 44 12.9 43 2400 1 273.8 274.4 

22 63 63 18.1 62 6303 1 425.9 426.3 

23 61 61 14.3 60 22,149 3 640.5 640.9 

24 99 99 20.6 98 16,707 9 1,646.5 1,647.0 

Table 4 

ILS results for problems with five resources. 

Best solution (OFV) Average values (5 replications) Total (ILS) 

Instance CH LS ILS CH LS ILS Time[s] Best Time[s] 

1 27 27 26 27.0 26.8 26.0 1.2 5 6.1 

2 27 26 26 27.0 26.2 26.0 1.2 5 5.9 

3 28 27 27 28.2 27.2 27.0 1.0 5 5.2 

4 28 27 27 28.0 27.0 27.0 1.0 5 5.0 

5 27 27 26 27.0 27.0 26.0 1.1 5 5.7 

6 27 27 27 27.0 27.0 27.0 1.0 5 4.8 

7 28 28 28 28.0 28.0 28.0 1.0 5 4.8 

8 28 28 28 28.0 28.0 28.0 1.0 5 5.1 

9 44 42 42 44.6 42.0 42. 4.7 5 23.5 

10 52 47 47 51.2 47.8 47.0 5.1 5 25.4 

11 52 48 48 51.2 48.0 48.0 5.1 5 25.7 

12 58 55 55 57.6 55.0 55.0 5.0 5 25.2 

13 55 55 52 54.6 53.2 52.0 5.3 5 26.3 

14 61 59 56 61.4 58.8 56.0 5.7 5 28.6 

15 64 59 59 64.0 59.0 59. 4.7 5 23.7 

16 69 65 64 69.0 65.0 64.2 5.8 4 29.1 

17 42 40 40 42.0 40.0 40.0 32.5 5 162.7 

18 61 59 56 61.4 59.4 56.0 39.5 5 197.7 

19 52 51 49 52.0 50.4 49.0 37.5 5 187.4 

20 80 80 73 80.6 77.2 73.0 34.7 5 173.5 

21 59 51 51 58.8 51.0 51.0 33.8 5 168.9 

22 83 75 75 79.4 75.0 75.0 32.8 5 163.8 

23 75 75 73 75.8 73.4 73.0 35.7 5 178.6 

24 117 116 113 119.0 116.0 112.8 41.2 3 206.1 

25 48 48 46 47.6 46.8 46.0 82.1 5 410.4 

26 72 65 64 70.4 64.2 64.0 75.6 5 378.1 

27 57 57 56 58.0 57.0 56.0 83.3 5 416.7 

28 94 88 79 94.2 88.0 79.0 79.4 5 396.8 

29 66 66 61 64.4 62.0 61.0 72.8 5 364.2 

30 90 88 84 90.0 85.6 84.0 78.8 5 394.2 

31 90 90 86 89.0 88.6 86.2 86.9 4 434.5 

32 143 132 124 143.4 133.6 127.2 98.8 3 494.2 
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antly improved to 56.4 and 77.3, respectively. However, no signifi- 

ant lower bound improvements were observed for instances 18 to 

2. 

.3. ILS Results 

The ILS results are shown in Tables 4 and 5 , for problems with

ve and six resources, respectively. In these tables, the first col- 
896 
mn indicates the instance number, followed by objective function 

alue of the best solution produced by the constructive heuristic, 

y the local search procedure and by ILS. In the following three 

olumns, the average objective function values over five runs are 

eported for the same three approaches. Afterwards, the average 

unning time is reported, followed by the total number of times 

hat the best solution was achieved (out of five), and the total run- 

ing time, considering the five replications. 
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Table 5 

ILS results for problems with six resources. 

Best solution (OFV) Average values (5 replications) Total (ILS) 

Instance CH LS ILS CH LS ILS Time[s] Best Time[s] 

1 25 25 23 24.6 24.4 23.6 1.2 2 6.2 

2 26 25 24 25.4 24.4 24.0 1.2 5 5.9 

3 25 24 24 24.8 24.0 24.0 1.2 5 6.1 

4 27 24 24 26.8 24.4 24.0 1.7 5 8.6 

5 25 24 24 24.4 24.2 24.0 1.2 5 5.9 

6 25 25 25 25.0 25.0 25.0 1.1 5 5.7 

7 26 25 24 26.0 25.0 24.0 1.5 5 7.7 

8 27 25 25 26.2 25.0 25.0 1.2 5 6.0 

9 41 38 38 40.4 38.0 38.0 5.1 5 25.4 

10 47 45 43 46.6 43.8 43.0 5.3 5 26.4 

11 45 43 43 44.8 43.0 43.0 4.7 5 23.7 

12 56 53 50 55.8 51.8 50.4 6.0 3 29.8 

13 50 49 48 50.2 49.0 48.0 5.2 5 26.0 

14 57 53 52 56.4 53.6 52.6 6.0 2 30.0 

15 58 55 55 57.4 55.0 55.0 5.7 5 28.6 

16 66 62 59 67.0 61.4 59.0 7.8 5 39.2 

17 36 35 33 36.6 34.6 33.0 39.9 5 199.5 

18 58 54 49 57.4 52.2 49.8 38.5 3 192.6 

19 49 47 39 47.8 43.8 39.8 39.3 4 196.4 

20 74 67 57 74.8 67.4 57.0 39.8 5 198.9 

21 49 44 44 49.6 44.4 44.0 36.7 5 183.4 

22 74 64 63 74.8 64.4 63.0 41.1 5 205.4 

23 68 61 61 67.8 61.8 61.0 37. 5 185.1 

24 111 101 100 109.2 103.0 101.4 41,1 4 205.4 

25 38 38 38 39.2 39.2 38.8 94.2 3 471.1 

26 67 57 56 66.2 57.0 56.0 117.4 5 587.0 

27 53 51 49 53.2 51.6 49.8 112.9 3 564.7 

28 86 80 70 84.0 81.0 70.6 151.9 2 759.7 

29 57 53 53 57.4 53.6 53.4 93.4 4 467.2 

30 85 81 75 85.2 80.0 75.2 123.0 4 615.0 

31 79 79 74 78.4 78.0 74.0 106.8 5 534.2 

32 135 121 114 136.2 121.4 114.0 133.0 5 665.2 
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Table 6 

ILS performance by grid size. 

ILS relative ILS relative Coef. Var. Coef. Var. Average 

Grid improvement improvement OFV Runtime Runtime 

over CH over LS All Repl.[s] 

6x6 3.5% 1.2% 0.1% 9.4% 5.9 

10x10 6.7% 1.4% 0.1% 10.6% 27.3 

20x20 10.2% 3.5% 0.6% 9.8% 187.8 

30x30 8.6% 3.8% 0.8% 13.8% 497.1 
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A comparison is made between the ILS objective function value 

nd the lower bounds obtained from Gurobi for instances 1 to 24 

with five and six resources) to assess the ILS effectiveness. This set 

f 48 problems comprises 36 optimal solutions, five optimal lower 

ounds (instance 17 from Table 2 and instances 17 to 20 from 

able 3 ), seven non-optimal lower bounds (instances 18 to 24 from 

able 2 ). As previously noted, the lower bounds were improved in 

hree cases after running the MIP model having as an initial solu- 

ion the ILS solution. In summary, optimality was reached for 40 

ut of 41 cases, and the only non-optimal solution had a 1.0% gap. 

y considering the other seven cases (instances 18 to 24 with five 

esources), the overall average gap is 2.8%. Instances 30x30 cannot 

e compared to exact lower bounds. 

A comparison between Gurobi and ILS regarding the processing 

ime has to consider that Gurobi was processed aiming to achieve 

ptimality. However, this was done by balancing between finding 

ew feasible solutions and proving that the current solution is op- 

imal. Moreover, a time limit of 7200 seconds was imposed for 

olving the MIP models, and, as a result, their processing times 

an be high. In fact, the average Gurobi runtime for instances 1–

4 with five and six resources, excluding the out-of-memory cases, 

as 802.3 seconds. On the other hand, the ILS average processing 

ime for the same instances, considering all replications, was 52.5 

econds. 

In Tables 4 and 5 the objective function values are always in- 

egral, meaning that all resources were utilised. This was expected 

s the problem set proposed in this work was tested under a lim- 

ted number of resources (five and six). If more resources were 

vailable, there could exist fractional optimal solutions. For exam- 

le, if four resources were made available at instant 10 and four 

esources were made available at instant 15, the optimal solution 

or instance 1 would be 7.625, indicating seven burned nodes and 
m

897 
ve out of eight resources utilised ( 5 / 8 = 0 . 625 ). This example also

onsidered that the ignition takes place at node (1,1). 

An important figure is the overall average number of best so- 

utions produced by ILS: 4.57 (out of five replications). This value 

aried according to the grid size in the following way: 4.81 (6x6), 

.63 (10x10, 20x20), 4.25 (30x30). Even for the cases where the 

est solution was not achieved, the variation is low. We further 

omment on the coefficient of variation of the objective function 

alues below. 

The summary of the average ILS performance is shown in 

able 6 . The first column indicates the grid size. The other columns 

isplay the average values of the relative improvement of the 

bjective function values of ILS with respect to the constructive 

euristic (i.e, (z CH − z ILS ) /z CH ) and to the local search (i.e., (z LS −
 ILS ) /z LS ) approaches (columns 2 and 3, respectively), followed by 

he coefficient of variation of the objective function values and of 

he ILS runtime. One may note that the ILS relative improvement 

ncreases with the grid size. The coefficient of variation of the ob- 

ective function values are very low, which is a significant achieve- 

ent, while an admissible variation is observed in the ILS runtime. 
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Fig. 3. Effect of different � values on instance 5. 
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Table 7 

Objective function values for different � values and five resources. 

Instance OFV ( � = 5 ) OFV ( � = 10 ) OFV ( � = 15 ) OFV ( � = 50 ) 

1 29 26 26 26 

2 29 26 26 26 

3 30 27 27 27 

4 30 27 27 27 

5 29 27 26 26 

6 29 27 27 27 

7 31 28 28 28 

8 31 28 28 28 

9 49 44 42 42 

10 55 49 47 47 

11 57 51 49 48 

12 61 56 55 55 

13 58 54 52 52 

14 63 58 56 56 

15 68 62 60 59 

16 71 66 64 64 

17 51 43 40 40 

18 77 64 57 56 

19 61 52 49 49 

20 90 82 74 73 

21 65 55 51 51 

22 93 84 77 75 

23 86 76 73 73 

24 120 115 113 113 
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.4. Analysis of the fire suppression delay parameter 

A foundational premise on which this research relies is that 

hen suppression resources are deployed along a rasterised land- 

cape, the nodes with resources become protected and hinder the 

re propagation through them. The mathematical model addresses 

his issue by adding a delay to the fire propagation time from the 

rotected node to its adjacent nodes. By properly adjusting the de- 

ay parameter ( �) regarding the instant that the objective func- 

ion is evaluated, one can guarantee that the suppression resources 

ill act as fire blockers throughout the considered time horizon. In 

his case, the smallest value that the � parameter can assume is 

iven by the difference between the instant the objective function 

s evaluated and the instant that resources are first released and 

lus one. 

If � assumes values inferior to the above-indicated, the sup- 

ression resources will act as fire retardants rather than blockers. 

uch a situation occurs, for instance, when fire intensity is suffi- 

iently high to prevent a fire crew from protecting the whole node 

rea. Consequently, the fire path through the node may not be 

locked but rather retarded. By adopting small � values (which 

an be node-specific), the modelling can thus address situations in 

hich suppression resources are likely to fail to block an intense 

re. Hence, optimisation approaches can indicate how to deploy 

uppression resources effectively. 

In this regard, additional tests were made both with the math- 

matical model and the ILS metaheuristic. We considered the case 

ith five resources and tested three different values for � (5, 10, 

5), besides the value of 50, as in the previous section. Note that 

orcing � to be 20 (or larger) produces the same effect as 50, for 

easons already given. To assess the ILS performance, we limited 

ur experiments to landscapes 6x6, 10x10 and 20x20, which are 

olvable by Gurobi. As in the previous experiments, Gurobi was 

rocessed with a time limit of 7200 seconds, ILS was processed 

ve times, and the minimum value for each instance was consid- 

red. The results are displayed in Table 7 . In all cases, ILS reached

he optimal solution. Therefore, we will concentrate our discus- 

ion on the effects of different � values rather than the heuris- 

ic performance (processing times and the number of best solu- 

ions). Note that in Table 7 , the objective function values that ap- 

ear in the last column come from the previous computational ex- 

eriments, either from Table 2 (instances 1 to 16) or Table 4 (in- 

tances 17 to 24), as Gurobi failed to generate integer solutions 

ith five resources for larger instances. All other values are op- 

imal objective function values obtained both by Gurobi and ILS. 

In Table 7 , the average reduction in the number of burned 

odes when � increases from five to ten is 10.3 % , and the max-

mum reduction is 17.1 % . Then, by increasing � from ten to fifteen, 

he average reduction in the number of burned nodes is 3.7 % , and

he maximum reduction is 11.1 % . In both cases, the maximum re- 

uction was observed for instance 18. The reduction in the aver- 

ge number of burned nodes is expected, as the larger the delay 

arameter, the more effective the protection provided by the sup- 

ression resources is. 

i

898 
Fig. 3 shows the influence of different � values on instance 5. 

or the three cases, the numbers indicate the fire arrival instants 

t each cell (node). The red cells are the ignition nodes; the orange 

ells are burned by the time the objective function is evaluated 

instant 28). The grey cells are those where the resources were de- 

loyed, and the light green cells are protected. Interestingly, the 

etardant effect is observed for � = 5, for the cell (2;1) (second 

ine, first column), with fire arrival instant 21. The fire first arrived 

t node (2;2) at instant 11. Considering that the fire spread time 

etween nodes (2;2) and (2;1) equals to five (a value that only ap- 

ears in the problem data set) and by adding the delay of five time 

nits, the fire reaches node (2;1) at instant 21, despite suppression 

esources being placed in the surrounding nodes (2;2) and (3;1). 

or � = 5 and � = 10, the resources are mostly deployed in the 

pper parts of the landscape. As the fire propagates more rapidly 

n the southeast direction, it is advantageous to position resources 

n the upper nodes when � is small. However, for � = 15, one can 

bserve that the lower part of the landscape becomes protected, 

nd the retardant effect is sufficient for protection until the instant 

he objective function is evaluated. The objective function values 

9, 27, and 26, indicate 28, 26, and 25 burned nodes, respectively. 

n all cases, all resources were utilised (which forces the second 

erm of the objective function to be 1.0). 

. Conclusions 

Combating wildfires is a major concern throughout the world. 

ith the ever-increasing occurrence and intensity of forest fires, 

t is paramount to extinguish them as quickly as possible before 
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hey become uncontrollable. A particular concern relates to forest 

re occurrences in wildlands surrounding areas with human set- 

lements, posing a greater risk to human lives. 

In an attempt to effectively respond to fire occurrences, fire 

anagement teams have mapped fire-prone areas concerning their 

patial data, raster data from geographic information systems, fu- 

ls and typical weather conditions ( Landfire, 2022 ). These data al- 

ow determining the fire spread rates between adjacent nodes of a 

asterised landscape, which in turn allows applying optimisation- 

ased fire suppression planning tools. 

In this regard, we addressed a fire suppression problem aiming 

o determine where to position the suppression resources that be- 

ome available in different time instants, with the objective of the 

inimising the number of burned nodes by a target instant and 

he total number of resources as a secondary objective. 

We proposed an iterated local search metaheuristic that can 

olve large instances of the problem in short computing times. The 

pproach was validated by comparing the objective function values 

ith those from a mixed-integer programming model from the lit- 

rature. ILS found provably optimal solutions for grid sizes ranging 

rom 36 to 400 nodes, with very small coefficients of variation, at- 

esting that the method is robust. Problems with 900 nodes were 

lso solved with reasonable computing times. An important feature 

f the proposed approach is the optimisation of resource position- 

ng, taking into account its influence on the spatial and temporal 

ropagation of fire. This collaborative approach allows assessing 

he effect of positioning suppression resources in the fire spread 

ehaviour, thus supporting fire management decisions during the 

nitial attack. 

The proposed approach can be directly extended to address 

ariants such as the existence of different resource types or the 

bjective of asset protection. A relevant extension is to model the 

ovement of resources (taking into account that fire blocks paths), 

r even test a fire spread simulator other than MTT solved with 

ijkstra’s algorithm. The inclusion of uncertainty in the fire spread 

imulator is a natural follow-up to this work. 
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