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Abstract—WiFi Access Points (APs) can be used to offload
data or computation tasks while users are commuting. However,
due to APs’ limited coverage, offloading performance is heavily
impacted by the users’ mobility. This work proposes to leverage
human mobility to inform offloading tasks, taking a data based
approach leveraging granular mobility datasets from two cities:
Porto and Beijing. We define Offloading Regions (ORs) as
areas where a commuter’s mobility would enable offloading,
and propose an unsupervised learning methodology to extract
ORs from mobility traces. Then, we characterise and analyse
ORs according to offloading opportunity metrics such as type,
availability, total time to offload, and offloading delay. Results
show that in 50% of the trips, users spend more than 48% of
the travel time inside ORs extracted according to the proposed
methodology.

The ability to predict the next ORs would benefit offloading
orchestration. Offloading mobility predictability, although cru-
cial, proves to be challenging, expressed by the poor predictive
performance of well-known models (= 37% acc. for the best
predictor). We show that mobility regularity properties improve
predictive performance up to ~ 35%.

Finally, we look into the impact of further OR extraction and
prediction parameters. We show that the exploration phase length
does not impact the discovery of low relevance ORs, and that
both filtering low relevance OR and predicting multiple ORs
increase predictability. By characterising the trade-off between
mobility predictability and offloading opportunities in transit,
we highlighting the need for offloading systems to adopt hybrid
strategies, i.e., mixing opportunistic and predictive strategies. The
conclusions and findings on offloading mobility properties are
likely to generalise for varied urban scenarios given the high
degree of similarity between the results obtained for the two
different and independently collected mobility datasets.

Index Terms—Data Offloading, Human Mobility, Mobility Pre-
dictability, Offloading Mobility Properties, Offloading Systems

I. INTRODUCTION

OBILE data traffic has been growing tremendously
with the increasing of the number of applications
leveraging ubiquitous Internet access. According to Cisco
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forecasts [1]], mobile data traffic is growing at a compound
annual growth rate of 46% since 2017 and will continue to
increase. Mobile network operators are struggling to keep
up with this traffic demand, and part of the solution is to
offload communications to WiFi networks [2]]. The massive
deployment of WiFi networks in homes and businesses is
increasing the Internet coverage in densely populated urban
areas, making these networks attractive to offload mobile data
or access computation resources in the cloud or at the edge [J3]].

It is well known that most people spend their time in
specific locations, known as personal Points of Interest (Pol),
e.g., home, work or favorite restaurant, which usually have
WiFi networks that are used to offload data. Therefore, it
can be argued that cellular networks overload will be mainly
caused by users while travelling since during these periods the
cellular network is commonly the default option for Internet
access. In such scenario, deferring data transmissions while
the user is travelling, offloading only at the trip’s destination,
was shown to be a feasible solution [4]. However, most
applications cannot sustain large delays without impacting the
user’s quality of experience (QoE). For this reason, it is crucial
to develop mobile offloading systems that proactively take
decisions on WiFi places and connectivity windows to offload
data or tasks, while the users are travelling. In order to do that,
mobile offloading systems must rely on detailed information
regarding the users’ mobility to assist mobile devices deciding
when and where to offload.

This work is the first to explore mobility data from the
mobile offloading perspective, focusing on periods where the
users are in transit. We argue that mobile offloading systems
need to rely on offloading mobility profiles, which provide
detailed information about the users’ mobility, to assist mobile
devices in deciding when and where to offload to WiFi
networks. We use mobility data to show that such a strategy is
necessary and feasible to accommodate the differentiated user
connectivity profiles during commute. This sort of strategies
will run on the user’s device and, after learning their habits of
movement, will adapt and extract the best regions to perform
offload. This brings a perceptive feature to the offloading
strategy and the proposed learning methods are general to any
type of dataset.

Our paper explores how human mobility impacts mobile
offloading systems during commuting trips bringing evidence
that individual profiles should be considered. We seek answers
to questions like:

1) How can individual commuter offloading mobility pro-
files be established?
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2) Does human mobility in urban areas allow for offloading
to limited coverage technologies?

3) What are the limits of the predictability of per user
offloading connectivity and which factors impact that
predictability?

4) Which trade-offs should be considered in the system
design?

To answer this questions we develop and implement the

methodology pipeline presented in Figure [I] This methodol-
ogy encompasses a method to establish individual offloading
mobility profiles that would be part of the offloading strategies
we propose — system components; and the steps that provide
quantitative answers on the feasibility of such a system —
system evaluation. We use a data based approach relying on
two granular datasets from Porto and Beijing to support the
generality of the results. Therefore, we bring answer to the
first question in our contributions (i) and (ii). We answer the
second and the third question in the contributions (iii) and
(iv) respectively, and finally, we answer the last question in
the contribution (v). In short, we define our contributions as
follows:
(i) We propose an unsupervised learning methodology to
identify individual offloading regions (ORs), reflecting user
habits and routines, considering different time windows to
offload. Details are given in Section

(ii) In Section [V] we categorize ORs in terms of their relevance
and spatial characteristics. A comprehensive evaluation shows
that although collected in different cities and time periods,
the laws driving users’ mobility reflect similar relevance and
spacial characteristics of the ORs for both datasets.

(iii) We evaluate the offloading opportunities offered to users
at the OR while travelling in terms of type, availability, time
to offload and offloading delay. Our results show the small
offloading delays along with the high-temporal coverage of
ORs confirm opportunities to offload to limited coverage cells
while the users are in transit. Details are given in Section

(iv) We assess the mobility predictability in an offloading
scenario using theoretical and algorithmic evaluation of several
mobility predictors. The results show that mobility predictabil-
ity for offloading purposes is far more challenging than mo-
bility between Pols. Here, machine learning (ML) predictors
outperform common Markov Chain (MC) predictors used in
the literature by at least 15%, revealing the importance of
context information in an offloading scenario. Details are given
in Section

(v) Finally, we propose and discuss further flavours that could
impact OR extraction and predictability, namely the explo-
ration phase lengt}ﬂ the mobility regularity, and offloading
locations, as well as their impact on the design of offload-
ing systems. Specifically, we identify that considering longer
mobility learning periods is unlike to improve the capacity
to predict offloading mobility. However, mobility regularity
can be leveraged to improve predictability by ~ 27% at the
expense of fewer offloading opportunities. Thus, offloading
systems should rely on a combination of opportunistic and

!Exploration phase is the time to visit each OR for the first time.

deterministic strategies. Attending to the characteristics of
offloading locations observed in both datasets, we show that
in the majority of the cases, APs already deployed in urban
environments can provide full coverage to users while offload-
ing, decreasing the need for handovers. Details are given in
Section{VIII

The remainder of this paper is organized as follows. The
related work on human mobility and mobile offloading is
discussed in Section [l The datasets used in this work are
described in Section [[I] while the methodology to extract
ORs from trajectory traces is introduced in Section The
characteristics of ORs are presented in Section [V] and the
analysis of the offloading opportunities offered to users in
transit is detailed in Section The mobility predictability in
an offloading scenario is studied in Section Finally, the
different perspectives of our work are debated in Section |VIII}
and the main conclusions presented in Section

II. RELATED WORK

Mobile offloading can be infrastructure-based or
infrastructure-less depending on the first-hop type during the
offloading process. In the first, mobile devices offload directly
to APs. Instead, in the infrastructure-less approach, data is
sent to other mobile devices, and the offloading results from
the combined mobility of a sequence of non-controllable
entities [S[], [6]]. In this work, we focus on infrastructure-based
delayed offloading as it has been proven to reduce congestion
in cellular networks considerably at the expense of small
transmission delays [4], [7]. Here, several models have been
proposed to improve the offloading decision [§], [9], which
dictate “when” to offload considering variables such as
traffic constraints, offloading delay, efficiency, volume, etc.
However, before deciding "when” to offload, we first need
to investigate how good are the moments and places where
devices are in range of WiFi infrastructure. This depends on
the offloading opportunities leveraged from human mobility,
and thus mobility behavior and predictability of individuals.

Human mobility has been mostly focused on two main
domains: the identification and characterization of locations as
users’ personal Pol and the study of mobility patterns between
these locations. Several other works have been proposed to
infer Pol from GPS mobility traces [[10]], [11]]. Usually, Pol
are associated with a staying time which confers its degree of
importance, commonly in the order of several minutes. This
time is suitable for detecting important locations but not for
inferring offloading occasions, where short contacts with WiFi
APs can be leveraged for offloading.

Human mobility between Pol has been shown to be very
predictable. In [12], a theoretical framework is proposed and
shows that the upper limit for the predictive performance
on predicting the next Pol visited by a user is surprisingly
high (93%), staying constant throughout heterogeneous sets
of users (e.g., for different gender, age, geographical attach-
ment). When spatial reachability constraints are considered,
a tighter upper bound of 81-85% can be obtained [13[]. A
large diversity of mobility predictors using Recurrent Neural
Networks [14], Bayes models [[15]], Random Forest [16], and
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Fig. 1: Offloading mobility analysis methodology.

Markov Chains [17], has been proposed, approaching
the theoretical predictability. However, most of these studies
focus on mobility between personal Pol and not on scenarios
of offloading opportunities while users are travelling between
these locations.

In , rather that focusing on Pol, we first introduce a
methodology to identify and extract offloading zones from in-
dividual GPS trajectories, when small offloading time windows
are considered. Despite the methodology proposed, the mobil-
ity patterns between offloading zones are not explored and the
study was conducted on a single dataset. In the present work,
we use the same methodology to extract offloading zones
from two mobility datasets collected in different countries at
different times and analyse the users’ mobility in an offloading
scenario. To the best of our knowledge, this is the first work
to study and characterize human mobility for the purpose of
offloading when the users are in transit.

III. MOBILITY DATASETS

Several data sources have been used to study human mo-
bility but high sampled GPS trajectories remain the most
reliable way to track outdoor movements. The main dataset
used in this work was collected in the city of Porto, Portugal
(Figure [2a) from 2016 to 2018 through several crowdsensing
campaigns, and involved a total of 408 users. During these
campaigns, GPS data, i.e, user’s speed, estimated user location
(latitude, longitude), and the accuracy of this estimation,
were collected at a high temporal resolution (see Table [I).

Moreover, automatic start/stop strategies were being used by
the application to detect the beginning and the end of a trip. At
the end of each trip, a pop-up with a survey was automatically
presented to the users asking for movement confirmation. This
data collection process is detailed in and provides two
unique features to the dataset: (i) high temporal resolution
of positioning data of 1Hz; and (ii) annotated mobility traces
concerning the beginning and the end of a trip.

In order to ensure that the results presented in this work
are not biased by the usage of a single dataset, a second
dataset, namely Geolife []2;1'[], is used. This dataset provides
time-stamped GPS locations of 182 individuals collected from
2007 to 2012 and its choice was due to two main factors: (i)
it is widely used in human mobility studies as it is one of the
first publicly released datasets containing mobility; and (ii) the
trajectories are logged in a dense representation — 91.5% of
the trajectories are logged every 1-5 seconds or every 5-10
meters per point. As most data from Geolife was collected in
Beijing, only mobility traces collected in the metropolitan area
of this city (area in Figure are considered in this work,
comprising data from a total of 133 users, Table[I]

Both Porto and Beijing datasets include a similar amount
of location samples (~ 10M), however, as shown in Figure |Z[
due to the different cites’ area, the dataset from Porto presents
a higher density of location samples per cell (25x25m).

Although there are much more users in Porto’s dataset when
inspecting the number of weekdays with data per user, Figure 3]
shows that users from Beijing present almost six times more



TABLE I: Datasets main characteristics.

Porto Beijing
Period 2016-2018 | 2007-2012
Users 408 133
Area km? 24 723
Locations Samples 9.7M 10M
Temporal resolution 1s-2s 1s-5s

days with data. While the median number of weekdays for
the Porto’s users is 5 weekdays, in Beijing, is 28 weekdays.
However, when focusing on weekends, both datasets present
a median number of 2.5 days per user. The large difference
between the number of weekdays and weekends in Beijing
dataset is mostly due to the fact that most of users lived outside
Beijing metropolitan area (Figure 2b)), therefore, not traveling
to the city center on weekends.

(b) City of Beijing, China.

Fig. 2: Heatmap of collected location samples per 25x25m cells.

IV. INFERRING OFFLOADING REGIONS

Offloading Regions (ORs) are defined as geographical areas
where a user exhibits a mobility suitable for offloading. The
notion and the methodology for extracting ORs from trajectory
traces were initial introduced in our previous work [19]]. In
this section, to keep this article self-contained, we summarize
the key concepts and the methodology for extracting ORs
from trajectory traces and start answering the first question
presented in the introduction.
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Fig. 4: ORs extraction from a user’s trajectory .

A. Mobility Constraints for Offloading

Due to the limited coverage of WiFi APs, users’ mobility
dictates the time window available for offloading. Locations
where a user is stopped or moving at low speeds are preferred
for offloading, as the time window is maximized. Thus, ORs
are identified by applying space and time constraints to the
users’ mobility. We define the spatial threshold S;p,esn as the
maximum distance between two points that can be considered
to be in the same offloading opportunity. This threshold should
reflect the coverage of the technologies used. And we define
Tihresn as the minimum time that a user must spend in a
geographical area defined by the S;j,.sn to be able to take
advantage of offloading. Therefore, in order to define an OR,
we introduce the concept of offloading location candidate
(OLC). An OLC is a geographical area defined by Sinresh,
where a user stays during T;;yesn- Then, an OR is defined as
the aggregation of contiguous OLCs (see Figure ), reflecting
aggregated areas where the user has a mobility suitable for
offloading, e.g. walking path from home to bus station. When
no aggregation can be performed, an OR corresponds to an
OLC. Section [IV-D] brings more details on the ORs’ extraction
methodology.

Considering an offloading scenario based on WiFi networks,
the coverage of WiFi APs within an urban environment is
used as space threshold. Ground truth from more than 40k
APs shows that the median coverage of a AP in an urban
scenario is 44m [[19]]. Thus, we use this value for S;p,esn. The
time threshold should reflect that different applications may
require different minimum time windows for offloading, and
that some offloading orchestration time is necessary. In order
to discover opportunities that could use short time windows



to offload as well as less mobility friendly configurations, this
study considers (Typ,esn = {40,20, 10,5}), Figure

B. Trajectories Pre-Processing

The first stage of ORs’ extraction is pre-processing, as
shown in Figure [T} The users’ trajectories may include gaps
from periods where no GPS data was collected. This may be
due to lack of GPS signal in indoor environments or mobile
device/application being turned off. To avoid the underestima-
tion of ORs and to capture locations where users were stopped
or inside buildings, we identify the gaps G corresponding to
these cases using a max(Ggis;) = 100m (cf. Definition EI)
Then, for the whole duration of G (in sec), we use linear
interpolation to fill these gaps by adding pseudo locations.

Definition 1: Let a user’s trajectory for the user u be a
set of locations LY = (latitude,longitude) collected at the
timestamp i represented as Traj“ = (L?,L;‘_H, Li‘_m) We
define G as the spatio-temporal break satisfying the condition
(distance(LY, LY,,) < Gaist) A (time(LY, LY, ) > T), for T =
#”;’eed where max_speed is given by Eq.

As ORs are defined by T;pesn and Sinresh, the users’ speed
is limited by:

Sihres
max_speed = Sthresh (D
Tthresh
Then, we use a high-speed filter for eliminating from the

traces samples not satisfying Eq.

C. Mobility Traces Selection

In the second stage of Figure [I] a filter is also applied to
the mobility traces in order to select users that provide enough
historical data for studying their mobility patterns. As there is
a reduced number of weekends in both datasets (see Figure [3)),
only mobility traces collected from weekdays are considered.

Due to the extensive data collection period in both datasets,
some users exhibit mobility traces that were collected sev-
eral months or even years apart. Traces with such a large
time offset may lead to wrong assumptions regarding the
user’s mobility behaviors. Therefore, a time sliding window
of 4 months is defined and applied to each user in order
to select consecutive months where the user presents the
highest number of days with data in the dataset. Users are
then selected based on two filters: (i) minimum number of
days, and (ii) minimum number of hours with, at least, one
GPS sample. Figure [5 represents the number of users after
intersecting these two filters and shows that both datasets
present a similar number of users with a large number of hours
per day with GPS (top left corner of the heatmaps). However,
as the minimum number of days threshold increases, Beijing
dataset provides more users with a high number of GPS hours
per day (top right corner of the heatmaps). This reveals a
higher degree of engagement of users in Geolife towards the
data collection process when compared to users in Porto.

To avoid favoring a single dataset, we only consider traces
from users having at least 5 weekdays with 8h of GPS data,
resulting in mobility traces from a total of 55 and 57 users in
Porto and Beijing datasets, respectively.

TABLE II: Activity periods in a day.

Definition Day Period Usual Activities
DP1 01:00h to 06:59h Sleeping
DP2 07:00h to 09:59h Commuting
DP3 10:00h to 11:59h Working
Dp4 12:00h to 13:59h Lunch
DP5 14:00h to 16:5%h Working
DP6 17:00h to 19:5%h Commuting
DP7 20:00h to 00:59h Social

D. Offloading Regions Extraction

Finally, in order to extract ORs from the users’ trajectory
traces the DBSCAN [22]] clustering algorithm is used for the
identification and aggregation of OLCs. The use of a density-
based clustering algorithm to extract ORs allows to obtain
clusters with arbitrary shapes, focusing only on locations/areas
with high concentration of points. There are two parameters
that need to be set in DBSCAN before the clustering process:
MinPts and €. A data point is a core point if it has at least
MinPts in its neighborhood €. This notion of core point is
adopted to define an OLC. As in our dataset the location
samples are produced at a fixed rate of 1 Hz, MinPts is
defined as Typresn and € as Sinresn, once more reflecting the
WiFi connectivity into spatial constraints. Then, ORs are the
clusters comprising OLCs that are density connected. Clusters
not meeting the OLC criterion are discarded, while adjacent
OLCs are aggregated in the same cluster, forming ORs.

The analysis is focused on weekdays considering periods
that usually represent daily routines in people lives, as shown
in Table Therefore, for each user, the clustering process
described above is applied to the trajectories in each period.
In the downstream analysis, we assume that inside an OR,
there is contiguous and continuous connectivity adequate for
offloading data or computation.

V. CHARACTERIZING OFFLOADING REGIONS

ORs represent locations where offloading tasks can be
performed. In this section, these locations are characterized
in detail as the first stage to characterize offloading mobility
and continue to answer the first question presented in the
introduction.

A. Categories of Relevance

In order to better characterize ORs, we classify them into

categories of relevance. Relevance of OR x is defined bgsed

D
. . _ Dip
on the frequency of user u visiting OR,, i.e., RZRX = x

DI >
where D¢, R, is the total number of days that OR, was visited
by the user u and DY, is the total number of days in the
dataset for the user u within the day period DP (Table [II).

The number of relevance categories that best suits all users
is estimated using unsupervised learning. In this way, k-
means algorithm is applied to each user relevance values for
a different number of clusters (k), where k represents the
relevance categories in use. The optimal k is then determined
using the elbow method along with the total WSS (Within Sum
of Squares) [23]]. For the vast majority of users, k=3 gives the
best number of clusters, which determines three categories of
relevance: low, medium, and high.



© 0.25 Category of Relevance T - B 40sec. B2 20sec. B3 10sec. B2 5sec
49 43 27 11 8 4 3 1 10 8 Low 2048 O ' ' ' '
2 020 D“H/'C%'”m 1024 M .
62 55 38 22 15 7 4 3 8 £ 3 9 2 512 i
z 256 i
?‘; § 0.15 Ttresh g 128 !
80 72 8 34 26 17 7 & 6 5 3 0140 sec. ° e o
s & 1120 sec. S 3
107 97 75 55 43 31 15 10 4 2 o0 110 sec. € | |
i Tibsec 5 16
2 g ’ z 38
c 0.05 4
92 8 e 37 27 2 ¢ 5
4 5 7 10 12 15 20 25 0.00 ( . e 1
“Y 10 20 30 40 50 60 70 80 90 100 Low Medium High
Min. # of Days with GPS Data Relevance (%) Category of Relevance
(a) City of Porto, Portugal. (a) City of Porto. (a) City of Porto, Portugal.
© H T, : @ 40sec. = 20sec. = 10sec. = Hsec.
52 46 35 28 22 19 13 11 10 § 04]: E Low. 2048, thresh .
@ : Medium 1024 1
6 o | High w 512 . .
89 57 45 3 32 26 19 13 8 ¢ § |t ] i i
£ 2o03(§ T 256 '
: Ttresh O \ | 1
S 128
78 70 58 45 40 35 30 2 6 5 3 ° a1 |
5 Too [ 40 sec. & o, | o |
3 &~ L1 20 sec. £ % BL ) I
78 65 60 48 36 29 4 F I ™10 sec. E |- |
5 0 [ =z 8 .E—— |
* 001 sec. 4 ]
82 72 60 52 2 £ [
=] 2
4 5 7 10 12 15 20 25 ol S - T 1 I
00750720 30 40 50 60 70 80 90 100 Low Medium High
Min. # of Days with GPS Data Relevance (%) Category of Relevance
(b) City of Beijing, China. (b) City of Beijing. (b) City of Beijing, China.
Fig. 5: Number of users as the intersection of Fig. 6: ORs relevance values per category. Fig. 7: ORs’ number of cells (11x11m).

number of days and hours filters.

Mapping ORs to these categories implies the definition of
relevance values to be used as bounds for each category.
As these bounds depend on the users’ mobility patterns,
they cannot be predefined as each user has its own notion
of relevance. To solve this problem user-base thresholds are
needed, and therefore, the ORs relevance values of each user
are clustered using k-means with k=3, and then, each cluster
is classified as low, medium or high category according to the
distribution of relevance values.

Figure [6] shows the probability density function of the
ORs’ relevance for all users, obtained using the kernel density
estimation for both cities. The clean separation between the
categories’ distributions validates the choice of the categories
of relevance (k=3). Besides, the small overlapping area be-
tween distributions reveals that most users have similar bounds
for each relevance category. However, the fact that there is
an overlap shows the importance of a user-base threshold
approach for the ORs’ relevance classification, as an OR
with 25% relevance may be low-relevant to a user, while
other OR with the same relevance value may be medium-
relevant to other user. Moreover, it can be seen that users
from Porto and Beijing exhibit similar relevance distribution
concerning the categories of relevance. This reveals that ORs’
visiting behaviors appear not to depend on the country or city
but instead on the mobility pattern features in the offloading
scenario. ORs within the high-relevance category are visited
by users almost daily with the distribution peaking at 100%.
The high-relevance category includes locations such as home,
work place, and commute paths. The ORs within the medium-
relevance category may be occasionally visited by users (fa-
vorite restaurant, gym, etc.) with the distribution peaking at
~ 33%. Finally, ORs within the low-relevance category are
visited sporadically (distribution peaking approximately at 7%,
14%, and 20%).

B. Spatial Characteristics

As ORs can be used as offloading sites, their spatial
characteristics represent the areas where offloading can be
performed. Figure [7] shows the distribution of the number of
cells (11x11m grid squares) in the ORs for each category of
relevance. As illustrated, the size of ORs increases with the
relevance category for both datasets. The median number of
cells when considering a Tyjesn = {40, 20, 10, 5}sec is 8, 6, 6
and 10 for the low-relevance category; 12, 11, 14 and 26 for
the medium-relevance category; and 39, 64, 89 and 168 for
the high-relevance category, respectively. Interestingly, similar
ORs’ dimensions are observed when considering a different
city, with the ORs from Beijing’s dataset presenting a median
number of cells per OR of 7 for the low-relevance category; 13,
15, 19 and 47 for the medium-relevance category; and 29, 59,
81 and 238 for the high-relevance category, when considering
a Tynresn = {40, 20, 10, S5}sec, respectively.

Note that the ORs extracted for T;p,esn = Ssec are the
largest in both datasets. Defining small time windows for
the OR extraction increases the number of OLCs that can
be aggregated, forming larger ORs in the clustering step.
Additionally, as high relevance ORs are often personal Pol
and indoor, their larger size is due to large indoor GPS errors.

These results show that, although collected in different cities
and time periods, the offloading sites present very similar
characteristics evidencing that the laws driving users’ mobility
of both datasets are similar.

VI. IDENTIFYING OFFLOADING OPPORTUNITIES

In this section, we inspect offloading opportunities ad-
dressing the second question presented in the introduction.
Contrarily to the Geolife data, the dataset from Porto provides
precise information regarding the start and the end of each
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user’s trip, and therefore, it is preferred for this analysis.
Thus, we first characterize ORs by type, and then, evaluate
the offloading opportunities provided by transition ORs.

A. Type of OR

To understand how ORs are being encountered during a
trip, ORs are classified into three types: departure, arrival or
transition OR. If the departure location of a user’s trip belongs
to an OR that OR is classified as a departure OR. In the same
way, if the trip’s arrival location belongs to an OR, that OR
is identified as the arrival OR. All the remaining ORs visited
while the user is travelling are identified as transition ORs.

When inspecting the relevance of ORs according to their
type, Figure [8] shows that the majority of the departure and
arrival ORs exhibit a medium or high relevance, while the
majority of transition ORs have low relevance. The reason for
having slightly more high-relevance arrival ORs than departure
ORs is due to a small delay of the crowdsensing application on
starting data collection at the beginning of a trip (Section{III).
Hence, for some of the trips, the departure location ended
up being associated with a transition OR. Transition ORs
correspond to stops during the trip caused by factors such
as waiting for public transportation, traffic congestion, traffic
lights, etc. These stops have a higher degree of randomness
than the stops that correspond to the start and end of trips,
contributing to decrease the probability of these ORs to be
visited frequently. This will be further analyzed in Section

B. Availability of ORs

To evaluate the offloading opportunities offered to users
while travelling, the number of transition ORs visited per trip
is evaluated (Figure E[) For 50% of the trips, users visit 1-5
ORs while in transit, revealing that several offloading opportu-
nities exist to be explored apart from the trip destination. When
inspecting the impact of considering distinct T3 esp, it shows
that a Typresn = 40sec provides slightly less transition ORs
per trip when compared to smaller Ty 5n. This is because
smaller T;presn allow to extract ORs when users travel at
higher speeds as they need to stay less time in a location for
it to be considered an OR. In Figure [0} we also observe that
for 25% of the trips users can not offload while in transit as
these trips do not provide any transition OR. In these cases, the
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Fig. 9: Number of transition ORs visited per trip.

user can only offload at the trip destination and the maximum
offloading delay will depend on the trip’s duration.

When analyzing if users revisit the same transition OR
during the trip, it was verified that this scenario is rare (less
that 5% of the ORs are revisited in the same trip). This sug-
gests that offloading strategies that rely on multiple contacts
between a user and APs, e.g. IP caching to reduce connection
set-up time [24], would not be effective when the goal is to
offload during the trip. This results are therefore aligned with
the previous finding when exploring the interactions between
users and APs in urban scenarions.

C. Time Window for Offloading

The time available for offloading represents the time win-
dow that mobile devices can use to offload, therefore, it can
be estimated based on the time period a user stays inside a
transition OR during a trip. Figure[T0|shows the users’ average
sojourn time in transition ORs per trip. As shown, 50% of the
users spent more than 66, 56, 56 and 48sec on average inside
transition ORs for T;j,e5n = {40, 20, 10, 5}sec, respectively.

The possibility of offloading not only depends on the time
window to offload in each OR but also on the overall coverage
provided by ORs during the trip in the time domain. For
instance, offloading performance is maximized when users
spend most of the trip duration inside ORs. Computing this
time parameter, Figure [TT| shows that 75% of the users stay, on
average, more than 22, 25, 30 and 37% of the trips duration in-
side ORs for T;presn = {40, 20, 10, 5}sec, respectively. Smaller
Tihresn lead to larger ORs (Section [V-B), which increases
the spatial coverage of ORs and the overall time users are
within ORs, and consequently, the ability to offload. These
results show that the users’ mobility clearly provides offloading
opportunities while users are in transit.

D. Offloading Delay

Depending on the traffic’s requirements, applications can
defer data transmission until a WiFi connection is available.
This deferred transmission time, here called offloading delay,
can be estimated based on the time users take to move
between transition ORs. In this case, the observed travel time
between transition ORs can serve as a lower bound for the
minimum offloading delay regarding the offloading process.
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Fig. 10: Users’ average sojourn time in
transition ORs per trip.

Figure shows the users’ average travel time between
transition ORs. As shown, 50% of the users spend, on average,
less than 96, 62, 48 and 28sec travelling between ORs for
Tinresh = {40, 20, 10, 5}sec, respectively, evidencing that ORs
extracted with lower Typ,,.5; values provide lower offloading
delays to the users. Smaller T;j,csn, allow higher mobility to
users (Eq. [T) creating larger ORs (Figure [7a), which leads to
a decrease in the overall offloading delay at the expense of
smaller time windows for offloading.

To conclude, the results show that small offloading delays
along with high-temporal coverage of ORs confirm a clear
opportunity to offload data while the users move in the city.

VII. NEXT OFFLOADING REGION’S PREDICTION

To take advantage of the offloading opportunities provided
to users, it is relevant to predict the next OR to be visited by a
user. This allows offloading systems to take preemptive actions
to manage the offloading process, e.g., use strategies to im-
prove link-setup-time with APs in the ORs [24] or, ultimately,
to support the offload decision. Thus, the following study will
focus on the spatial OR prediction task bringing the answer to
the third question presented in the introduction. Initially, we
explore the theoretical predictability of the mobility patterns.
Next, we use Markov chains and Machine Learning predictors
as attempts to achieve that predictability.

A. Theoretical Predictability

The theoretical predictability of a sequence is correlated
with uncertainty, which is usually measured by the entropy rate
in information theory. This measurement has been adopted in
human mobility studies to establish bounds on predictability
under certain assumptions [[12], [13]], [25]. Here, the three most
common entropy measures are assigned to each user mobility
pattern represented by the sequence of transitions between its
ORs, namely: (i) random entropy S’ = log,(N,,), where
N, 1is the number of distinct ORs visited by the user u,
assuming that each OR is visited with the same probability,
ignoring both the frequency of visits and the temporal order
of the visits to the ORs; (ii) temporal-uncorrelated entropy
Sune = — Zfll pilogapi, obtained by ignoring just the tempo-
ral order information of visits to the ORs and applying the
entropy formula to the frequency of visits; and, finally, (iii)
the true entropy S/“¢ = (% > L)~ 'In(n), that considers both
the frequency and the temporal order information of the visits
to the ORs.

Fig. 11: Users’ average percentage of time
inside ORs per trip along trips’ duration.

Fig. 12: Users’ average travel time between
ORs.

Figure |13| shows the entropy distributions across users from
both Beijing and Porto datasets and, naturally, $7"*¢ < S""¢ <
srand ©Noreover, for both datasets, the results show that
considering a small Tjp,.s, increases the entropy of the time
series. As shown in Figure [I3a] for users from the city of
Porto, S""¢ peaks approximately at ~ 4.4 and ~ 4.7 for a
Tthresh = 40 and Ssec respectively, indicating that a user who
chooses randomly his next OR could be found, on average, in
any of 2** ~ 21 or 2*7 ~ 26 ORs. However, it is important
to note that for Ty esn = 40 and Ssec, S'7“¢ peaks at ~ 2 and
~ 2.5, indicating that the real uncertainty in the users’ next
OR is now 2% ~ 4 and 2?7 ~ 5.6 ORs. Interestingly, the same
entropy behavior and values can be identified in the users from
Beijing, suggesting that the uncertainty on the mobility for
offloading is independent of the users’ geographical location
at a country scale or even at a city scale.

Given the entropy S* of an individual who moves between N
ORs, the upper bound of mobility predictability is given by the
probability I1°, which represents the maximum accuracy that
can be achieved by a prediction algorithm. This probability
I1° is expressed by S* = H(II*) + (1 — I1*)loga (N — 1) with
the binary entropy function H(ITe) = —I1*/0og,(IT*) — (1 —
I1°)log, (1 —T1I°). This quantity is subject to Fano’s inequality
(we refer the reader to [12], [26] for more details). After
determining I1°, and as Figure illustrates, for both cities,
the TI"“¢ peaks between ~62% and ~70% for all Tip,esn, @
value considerably low when compared to related work. For
instance, a IT"""¢ of 93% is obtained when considering human
mobility between personal Pols [[12]]. This result clearly shows
that the prediction task for offloading is more challenging,
though possible, motivating the need for further investigation
of the mobility properties under offloading conditions.

B. Markov Chain Predictor

Markov Chain (MC) is the most commonly used predictor
for users mobility [[17], [18]. To evaluate the user’s mobility
between ORs, we model the mobility behavior as a discrete
stochastic process using a MC consisting of a set of states
S ={S,...,5;,...8,}, where S; corresponds to OR i visited
by the user, and a transition probability matrix P, where each
element pg, s, represents the user probability of moving from
S;to S;, with (i, j)) ={x e N|1 <x <n} and i # j.

For each user and day period, the sequence of ORs visited
is extracted in a chronological order. The first 75% of the
sequence is used as a training set to build the transition
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Fig. 13: Entropy values for the users.

probability matrix P and the remaining 25% as the testing
set to validate the predictions. Only users with a sequence
of visited ORs larger than 10 were considered. For each
prediction, the current state S; is defined as the last OR
of the training sequence and the prediction of the next OR
to be visited §; is performed selecting the OR with higher
transition probability ps, s;. In the case of two ORs with the
same transition probability, one is chosen randomly. If there
is no information regarding the current OR in P (e.g., the first
time the user visits this OR), it is assumed that the predictor
fails as it cannot predict the next OR. The predictor evaluates
in runtime — after each prediction, the training sequence is
updated with the right prediction, and a new P is computed.

The accuracy of the predictor is evaluated as the number
of correct predictions over the total number of predictions. As
shown in Figure [T3] the MC predictor presents similar results
for both cities. An accuracy below 23% and 13% is achieved
for 75% of the users from the city of Porto (refer to Fig-
ure [T53a)), when considering only the current location (k=1) and
respectively, a Typresn = 40sec and Typpesn = {20, 10, 5}sec.
Although an increase of ~ 10% in the MC predictor can be
seen in the users from Beijing for the 7y, .5, = 40sec (refer
to Figure [T5a), these values are considerably smaller that the
upper bound presented in Figure [T4] This accuracy is even
worse when past history is considered, namely, the current
and the previous OR (k=2). The reason is that Markovian
predictors have a large probability space that increases quickly
following a power law with order k. Therefore, when k > 1,
these predictors may suffer from insufficient samples.

Attending to such poor performance when compared to the
theoretical upper bound, we first investigate the possible causes
leading to the MC predictor low accuracy and then propose
and explore approaches to improve its performance.

(b) City of Beijing, China.

Fig. 14: Predictability values for the users.

(b) City of Beijing, China.

Fig. 15: MC predictor’ accuracy for all users.

1) Inspecting MC Predictor: A matrix P built using a short
history (length of the sequence of transitions between ORs)
may not capture the diversity of users routines (movement
between ORs). To test this hypothesis, the Pearson correla-
tion coefficient (p) between the accuracy of the predictions
and the sequences length was computed, and no correlation
was found indicating that small sequences may not be re-
sponsible for the predictor’s poor performance. Instead, a
negative correlation was found between the predictor’s accu-
racy and the number of unique ORs of the sequence, p =
{-0.38,-0.29,-0.30, -0.29} for Tipresn = {40,20, 10, S}sec,
respectively. Similar (p) values were found using Beijing’s
dataset, p {-0.46,-0.33,-0.31,-0.27} for Tipresn
{40, 20, 10, 5} sec respectively. This evinces that novelty, which
consists on finding new ORs may have more impact on the
predictors’ performance than the sequence length.

The appearance of new ORs in a sequence will make the
predictors fail the prediction in two scenarios, namely, when:
i) the current state is a new OR, since there is no information
in matrix P and, therefore, the prediction fails; and ii) the
next state is a new OR since the predictor can only predict
what is in P (what has occured before). To further study the
first scenario, we define three types of prediction based on P
information during the decision phase, namely:

Unknown-based prediction: occurs when there is no in-
formation in P regarding the current state (new OR);
Draw-based prediction: occurs when two or more ORs
in P have the same transition probability;
Regular-based prediction: occurs when only one OR
exhibits the highest transition probability.

Figure [T6] shows the distribution of predictions for each
prediction type. It is clear that in both datasets the number of
predictions is evenly distributed among the prediction types,
showing that the majority of predictions are not regular-based.
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Fig. 17: Users’ probability of finding a new
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Fig. 18: Improved MC predictor’s accuracy.

OR.

In addition, unknown-based predictions, which are nearly one-
third of predictions, are bound to fail.

To further inspect the second scenario mentioned above, we
compute the probability of the next OR being a new OR for
each sequence. For that, an OR is considered a “new OR” if it
appears in the sequence for the first time, or a “repeated OR”
otherwise. Note that the predictor is an online predictor, conse-
quently, even after training, P is updated after each prediction.
To capture this behavior, the probability of finding a new OR
is given by the fraction of “new ORs” in the test sequence
over the test sequence length, see results in Figure [T7] For
the sequences from Porto’s dataset in Figure [[7a] the median
probability of the next OR being a “new OR” is 27% for
Tthresh = 40sec. This means that an online MC predictor will
fail, on average, 27% of its regular-based predictions. This
value increases to ~40% for a Ty, 05 = Ssec values. Similar
results can be observed in Beijing’s dataset in Figure [T7b}
Smaller Typ,esn values increase the probability of finding new
ORs as the spatial-temporal constraint (see Section for
a location to be considered an OR is relaxed, increasing the
number of unique ORs extracted from a mobility trace.

2) Improving MC Predictor: Since most of the prediction
types are draw-based and unknown-based, we combine dif-
ferent strategies to improve the MC predictor’s performance
in these cases, evaluating also their impact. When the MC
predictor faces a draw-based prediction the following strate-
gies are applied to the set of ORs with the same transition
probability in P: i) randomly select one of the ORs as next
OR; or ii) select the closest OR to the current OR. In the
other side, when the MC predictor faces an unknown-based
prediction the following strategies are applied to select the
next OR considering all ORs present in P: i) no OR is selected
and the prediction fails; ii) select the closest OR to the current
OR; or iii) select the most visited OR in P. While the distance-

TABLE III: Strategies to improve MC predictor.
Prediction Type
Strategies Draw Unknown
Baseline Random None
Method 1 Closest OR from P None
Method 2 | Closest OR from P Closest OR
Method 3 | Closest OR from P | Most Visited OR

based strategies try to capture the human mobility tendency
to favor shorter paths, history-based strategies such as, Most
Visited OR, try to capture the regularity behavior of human
mobility. Table [[Tl] shows the different combinations of these
strategies when evaluating the MC predictor performance.

Figure [I§] shows the MC predictor accuracy for both dataset
for a k = 1 when applying the strategies described above.
Solving the ties by selecting the closest OR (Method 1) has a
minor impact on the predictor’s performance in both datasets.
However, solving the unknown-based predictions improves the
accuracy around two times in both datasets. Similar results
were obtained for methods 2 and 3 revealing no difference
between distance-based and historic-based strategies on the
unknown-based predictions.

Even with the improvements in the predictors performance,
their median accuracy is less than 24% for both Porto and
Beijing datasets. Although Markovian predictors have been
proposed as feasible solutions to predict mobility between
users’ Pol [|17)], [|18)], the results show that their performance
is significantly reduced in offloading scenarios.

C. Machine Learning Predictors

From the previous analysis, it was clear that the MC predic-
tor is not capable of predicting the next OR conveniently. Other
types of predictors are Machine Learning (ML) predictors. In
our mobility prediction task, the input consists of a series of
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TABLE IV: Mobility features for predicting the next OR.

Features Domain Feature Type Description
Current OR (COR) | Nominal OR where the user is
Location Previous OR (POR) | Nominal OR from where the user comes from
. . Coordinates of the grid cell (11x11m
Cell in COR Numeric square) where the usir is inside the OR
Duration in COR Nominal Time spent in the current OR
Time Day Nominal Weekday name
Hour Numeric Hour of the day
Relevance Category Nominal Relevance Category of the COR
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Fig. 19: ML predictors’ accuracy.

contextual features associated with the current OR, while the
output is the next OR. Context features regarding the current
OR were divided into three feature domains: location, time,
and relevance. Table [[V] details the features extracted from the
users’ mobility traces. The nominal variables were converted
to binary features using one-hot encoding. Then, different
types of ML predictors were used, namely, decision trees (DT),
neural networks with a single hidden layer (NN), bayesian
(Bayes) and random forests (RF) using the CARET package
in R with the algorithms C5.0, avgNN, bayesglm and ranger,
respectively, and the default parameter settings.

Figure [I9] shows the accuracy of ML predictors using
a cross-validation of k = 3. With the exception of the
Bayesian predictor, the ML predictors perform better than
the MC predictor, with RF presenting the best results for
both datasets with median accuracy between =~ 30% and
~ 37% for all Typ,esn values. However, it is important to
note that considering higher Ty, improves the prediction
accuracy, being this more evident in the Beijing dataset, see
Figure Note that the models considered could be further

fine-tuned or even replaced by others which could lead to
better results. However, our goal is not to produce a state-of-
the-art prediction model, but instead to inspect the limitations
and sources of predictability in an offloading scenario.

Contrary to the MC predictor, the online version of the ML
predictors is not considered as the training phase may have a
high-processing cost, being likely unfeasible when the offload-
ing process is handled in mobile devices. Therefore, new ORs
can have more impact on the ML predictors performance as
the predictors can only predict ORs that are present in the
initial training sequence (75% of the sequence). Figure [20]
shows the percentage of new ORs in the testing sequence when
compared to the training sequence. Once more, similar results
can be observed for both datasets where the lower number of
new ORs in the test set is obtained for a Tyj,.sn = 40sec.
Here, the median percentage of new ORs in the test set per
user is ~ 45% for T;presn = 40sec, showing that, for half of
the users, the maximum accuracy that ML predictors would
be able to achieve is = 55%. Note that while the users from
Porto present a similar number of new ORs in the test set
for the other Typ,esn, values, in Beijing, the number of ORs
increases as smaller T;j,,-.55 values are considered. This causes
the reduction in the ML predictors performance observed in
Figure as higher percentages of new ORs in the test set
lead to a decrease in the predictors performance.

Even though the new ORs phenomenon is more challenging
for ML predictors without having an online nature (as the MC
predictor used before), the performance of predicting the next
OR is higher. In an offloading scenario, the smaller spatial-
temporal constraint determined by Tipresn causes the users
to discover new ORs constantly, which may count with just
a few visits. Even comparing to an online MC predictor,
our results show that ML present better performance in
predicting offloading opportunities, revealing the importance
of contextual information (Table [[V) in offloading scenarios.

VIII. MOBILITY PROPERTIES FOR OFFLOADING

The previous section shows that looking at mobility from
an offloading perspective imposes different assumptions when
compared to human mobility as studied in related work. Thus,
previous conclusions on human mobility do not apply, e.g.
high performance of MC predictors [17], [[18]]. In this section,
we aim to shorten this gap by inspecting the properties of
human mobility in an offloading scenario and their impact on
designing offloading systems finally answering the fourth and
last question presented in the introduction.
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Fig. 20: New ORs in the test set when compared to the training set.

A. Exploration Phase Characteristics

We define the exploration phase of a user as the time to
visit each OR for the first time. As discussed in Section
the high probability of a user to find new ORs is the main
challenge to the user’s mobility predictability. One may argue
that this occurs due to the lack of historical information, and
that the new OR phenomenon will have less impact if longer
mobility traces are considered.

To evaluate this hypothesis, we compute and analyse the
users’ discovery factor DF. The discovery factor DF}' of a
user u in the /" day of its mobility trace is defined as the
percentage of ORs visited by that user u at the i’ day, with
respect to the total number of different ORs visited by the
same user during D days. We compute the DF during the
commuting periods for users with 15 days of historical data.

Figure 21| shows the users’ discovery factor for the morning
commuting period (DP2); similar results were found for DP4.
The similarity of the results from both datasets shows a
clearly indication that the user’s exploration phase on an
offloading scenario is common even across datasets collected
from different countries at different times. When considering
only medium and high-relevance ORs, it can be observed that
the users’ exploration phase is very short - 50% of users
visit all their medium and high-relevance ORs after just 3
days (median DF3 = 100%). However, when considering also
the low-relevance ORs (then considering all ORs) it can be
seen that users are constantly discovering new low-relevance
ORs every day. This can be seen by the tendency line of
the discovery factor indicator which increases almost linearly
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with the number of days. As shown in Figure 6, most low-
relevance ORs are rarely visited by the users (max. distribution
peaking approximately at 7%) which makes them very likely to
correspond to random stops taken by the users while moving,
and therefore, very probable to continue to appear even if a
larger historical data is considered. This shows that the new
OR phenomenon is due to the mobility characteristics in an
offloading scenario and not due to the lack of historical data:
In [27|, [28], authors discuss the hardness in prediction given
by the novelty component in mobility. Therefore, considering
longer learning periods for offloading systems is unlike to
improve their capacity of predicting mobility.

B. Mobility Regularity Effects

The regularity of users’ mobility is characterized by the
ORs’ visiting patterns, which might be used to improve
mobility predictability. We further evaluate the regularity im-
pact by answering the question: Can specific characteristics
of regularity be used to improve the mobility predictability
between ORs?

1) Relevance Filter: Offloading systems may try to im-
prove the user’s mobility regularity using relevance as a
filter, e.g. considering only ORs that have a specific level of
relevance to the users.

ORs with a relevance lower than 7%, 10% and 15% were
filtered from the sequence of visited ORs and the predictors
re-trained. Figure [22] shows the accuracy of the Random
Forest predictor (the best from Figure [I9) for the different
relevance filters, for both datasets. The results show that the
predictor’s accuracy improves when ORs with low relevance
are removed. In fact, the prediction accuracy improves approx-
imately 20% in both datasets when a 15% relevance filter is
used, reaching a median accuracy of approximately 55% for
Tihresh = {40,20,10} and 60% for Tipresn = Ssec. Higher
values for the relevance filter could be used to improve the
mobility predictability in an offloading scenario, however, this
affects the offloading opportunities. This trade-off will be
further studied in Section

2) Multiple OR Prediction: Depending on how the offload-
ing process is managed, offloading systems may consider more
than one OR in advance to prepare the offloading process, e.g.,
launching mechanisms to provide seamless network access to
mobile devices. In this case, all the setup actions anticipating
the users’ arrival can be performed in two or more ORs, and
the final OR choice can be made online using contextual
information such as the current user’s path. This scenario
is only convenient to offloading systems if the uncertainty
associated with the prediction of the next OR is concentrated in
a small subset of ORs, for each prediction. Thus, the problem
formulation for the prediction task can be loosened: what is
the ML predictor accuracy if we consider the N most probable
ORs as being the next OR? For this, in each prediction, the
top N ORs with the highest probability of being the next OR
visited by the user are selected. Then, a prediction is assumed
to be correct if one of the top N selected ORs is, in fact, the
next OR visited by the user. For this, the RF predictor is used
and only ORs with relevance greater than 15% are considered.
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Fig. 21: User’s discovery factor for the DP2 Fig. 22: Random Forest predictor’s accuracy Fig. 23: Random Forest predictor’s accuracy

day period.

Figure 23] shows the predictor’s accuracy when considering
that the next OR will be one of the top N ORs selected by
the predictor, where N = {x € N|I < x < 6}. As shown, for
both datasets, the predictors’ accuracy increases significantly
when considering multiple options as the next OR; in these
case, from ~ 15% for N = 2 to ~ 27% for N = 4. This
reveals that the uncertainty of predicting the next visited OR is
concentrated in a small subset of ORs which can be leverage
by offloading systems. However, considering more than four
possible next ORs does not bring significant added value as
after N > 4 only marginal improvements are obtained.

C. Mobility Predictability Trade-offs

The deterministic or opportunistic nature of the offloading
strategies used by offloading systems depends on the users’
mobility predictability. Ideally, high predictability is prefer-
able as it allows using more sophisticated and deterministic
strategies anticipating the users arrival to an OR to maximize
offloading performance. In the other hand, opportunistic strate-
gies should be preferred when the predictability is lower. In
this case, the offloading process can initiate opportunistically
every time a user enters an OR without any anticipatory action
needed to be taken.

As demonstrated in the previous sections, despite mobility
predictability being a challenge in an offloading scenario, it
can be improved if: (i) more than one OR is considered as
the next OR; and (ii) low-relevant ORs are not considered
during the prediction process. However, most of the transition
ORs are low-relevance ORs and removing them may affect the
offloading opportunities provided to users in transit. Figure [24]
and Figure [25] show the impact of removing low-relevance
ORs on the number of transition ORs and the percentage of
time inside ORs per trip (Porto’s dataset), respectively. For

for different relevance filters.

for N possible next ORs.

clarity purposes, only results for T;p,esn = 10sec are shown
as similar results were found for other 7;p,,05n. Removing low-
relevance ORs decreases the offloading opportunities while the
user is travelling. In fact, when considering only ORs with
relevance higher than 15%, the number of trips where users
cannot offload while travelling increases from 25% to 38%
(Figure[24). Moreover, when offloading while travelling is pos-
sible, the median percentage of time spent by users inside ORs
decreases from 37% to 28% (Figure 24). These results clearly
show a trade-off between the mobility predictability and the
offloading opportunities. Therefore, to maximize the offloading
opportunities to users in transit, an efficient offloading strategy
should combine opportunistic and predictive strategies.

D. Offloading Sites Considerations

In a mobile data offloading scenario WiFi APs should
provide Internet connectivity in the offloading sites. Larger
ORs may require more APs and consequently more handovers
to provide full WiFi connectivity during the offloading process.
Figure [26] shows the maximum coverage of the offloading sites
computed as the maximum euclidean distance between two
geographical coordinates belonging to the same OR. Similar to
the number of cells (see Section [V-B), the maximum coverage
of the ORs is very similar in both datasets. The horizontal lines
in Figure 26 represent the typical coverage of an AP (44m)
obtained in [19] through WiFi measurements in an urban
scenario. As the vast majority of transition ORs belong to the
low-relevance category, this shows that mobile devices will
not need to perform multiple handovers during the offloading
process as few APs, e.g. two APs, can provide full WiFi
coverage to the transition ORs.

Attending that most APs in [19] were were inside buildings
and homes, this indicates that already deployed WiFi infras-
tructure can be leveraged by offloading systems to offload since
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they provide a feasible coverage. Therefore, large studies such
as [29]-[31]] that characterize WiFi APs deployments at city
scale can be used to design offloading decision models that can
take advantage of the already deployed WiFi infrastructure.

IX. CONCLUSION

This work proposes the use of granular human mobility
profiles for informing offloading strategies during commuter
trips. ORs can be extracted from individual trajectories using
unsupervised learning methods, that were validated on data
collected from two different cities at different times. Of-
floading opportunities were investigated and the results show
that users can offload while in transit considering the ORs’
availability along with reasonable sojourn times and small
offloading delays between OR.

Mobility predictability for offloading in commuter trips
revealed to be much more challenging when compared to
mobility predictability between Pol. Here, ML predictors
outperform MC predictors (= 37% vs. = 12% acc.), revealing
the importance of a contextual feature when predicting the
next OR to be visited by a user. The results indicate that
the users’ high probability of finding new ORs is the main
cause for predictors’ poor performance. However, inspecting
the users’ exploration phase showed that this behavior is due
to the mobility characteristics in offloading scenarios, and
considering longer learning periods will not improve mobility
predictability. Nevertheless, the results also show that a signif-
icant improvement in mobility predictability can be obtained
if mobility regularity properties are used. Here, offloading
systems can consider up to four possible ORs as the next ORs
and use a relevance filter to improve prediction performance.
This implies the implementation of both opportunistic and
deterministic strategies to maximize offloading performance.
Our results also shown that mobile devices will not need to
perform multiple handovers inside an OR during the offloading
process as ORs can be covered by a small number of APs.

Finally, the findings can be considered general since they
are based on two datasets collected independently on two sides
of the world. A high degree of similarity between the results
from both Porto and Beijing datasets was found, indicating that
offloading mobility is highly dependent on how regular people
move in cities. Therefore, the findings and conclusion of this
work are likely to be generalized to other urban scenarios.

This work opens up new paths of research on the design
of personalised offloading systems that adapt to the user’s

Time (%)

Fig. 25: Users’ average time inside ORs per
trip (Typresh = 10) sec.
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mobility. As next steps we see the assessment of different types
of offloading mobility profiles, e.g. considering transportation
mode, and the evaluation of the offloading opportunities and
predictability for each. The design and evaluation of such sys-
tems considering individual mobility and specific applications
is another line of future work.
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