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AABBSSTTRRAACCTT  

The background theme of the present thesis is the multidisciplinary area of textile 

biotechnology, which is of major importance for the textile industry and its sustainable 

development. The work here described was devoted to the treatment with enzymes of two man-

made fibres - acrylic and cellulose acetate. The thesis is divided in several chapters being the 

first one a general introduction. Biocatalysis is addressed, especially in the context of textile 

industry and surface modification of polymers, followed by a general description on the 

properties and applications of both fibres. The enzymes used throughout the work – nitrilase 

(EC 3.5.5.1) and cutinase (EC 3.1.1.74), are briefly mentioned as well as the major methods to 

manipulate and improve enzymes. The general aim of the work is the formation of reactive 

and/or hydrophilic groups at the surface of acrylic and cellulose acetate fibres by enzymatic 

hydrolysis of their pendent groups. As follows, the purpose is to preserve the desirable bulk 

properties of the fibres acting only at the surface by using eco-friendly catalysts. 

In chapter 2, the modification of the surface of acrylic fabric with a commercial nitrilase is 

reported. The enzymatic conversion of nitrile groups into the carboxylic groups, on the fibre 

surface, was monitored for 36 hours by the release of ammonia to the media and by the 

improvement in the affinity of the treated fabric for a basic dye. The steady release of ammonia 

along the enzymatic treatment showed that the adsorption of nitrilase to the acrylic led to an 

increase in its operational stability, resembling the immobilization procedures used to stabilize 

proteins. A maximum affinity for the basic dye was observed for a treatment period of 8 hours, 

which corresponded to a relative K/S of 135% when the colouration of acrylic was performed at 

70 ºC. A surface erosion phenomenon took place causing the “oscillatory” behaviour of the 

amount of dye uptake with the time of treatment. Polyacrylic acid was determined in solution as 

a non desirable, secondary product of the modification of acrylic with nitrilase. These results 

showed that the outcome of nitrilase application is closely dependent on reaction parameters 

like time, enzyme activity and media formulation. 

The chapter 3 describes the modification of the comonomer vinyl acetate of the acrylic 

used with two enzymes: cutinase from the fungus Fusarium solani pisi and a commercial 

esterase (Texazym PES). The effect of acrylic solvents and stabilizing polyalcohols on cutinase 

operational stability in solution was studied. The influence of these additives and mechanical 

agitation on the enzymatic modification of acrylic fabric was also investigated. The hydroxyl 

groups produced on the fibre surface reacted with the dye Remazol Brilliant Blue R, C.I. 61200, 

increasing the colour of treated fabric. The best colour level was obtained with a high level of 

mechanical agitation and with the addition of 1% (v/v) N,N-dimethylacetamide. Under these 

conditions, the increase in the acrylic fabric colour depth was around 30% for cutinase and 25% 

for Texazym, comparing to the respective controls. The crystallinity degree, determined by wide 

angle X-ray scattering, was not significantly changed between control samples and samples 
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treated with cutinase. The results showed, once more, that the success of the application of 

enzymes, in this case cutinase and a commercial esterase, depends closely on the conditions in 

which the treatment takes place.  

Cutinase was also chosen to modify the surface of cellulose diacetate and triacetate 

fibres. This work is reported in chapter 4. The enzymatic hydrolysis of acetyl groups on the fibre 

surface was evaluated by the release of acetic acid and by the specific chemical colouration of 

the fabrics with Remazol Brilliant Blue R. The treatment for 8 hours, at 30 ºC and pH 8, resulted 

in an acetyl esterase activity of 0.010 U and 0.0072 U on cellulose diacetate and triacetate, 

respectively. The colour levels for samples treated with cutinase for 24 hours increased 25% for 

cellulose diacetate and 317% for cellulose triacetate, comparing to the controls. Cross-sections 

of both fibres were analysed by fluorescence microscopy and the superficial action of cutinase 

was confirmed. Comparing to other enzymes described in literature, cutinase is a catalyst to 

consider for the superficial regeneration of cellulose hydrophilicity and reactivity on highly 

substituted acetates. 

For further improvement of cutinase activity on cellulose modified fibres, chimeric 

cutinases were produced, by recombinant DNA technologies, and used to treat cellulose 

acetate fabrics, as described in chapter 5. Two distinct carbohydrate-binding modules were 

fused independently to the C-terminal of cutinase: the carbohydrate-binding module of 

cellobiohydrolase I, from the fungus Trichoderma reesei, and the carbohydrate-binding module 

of endoglucanase C, from the bacterium Cellulomonas fimi. Both chimeric cutinases had a more 

efficient performance than the wild type enzyme, but the interaction of these bifunctional 

enzymes with cellulose acetate needs to be further characterized for a better assessment of the 

nature and yield of the observed modifications. 

The chapter 6 is dedicated to the general discussion, final remarks and future 

perspectives. In this thesis, evidences are presented showing that enzymes, more specifically, 

nitrilase and cutinase are important tools for the acrylic and cellulose acetate surface 

functionalization. This work also evidenced that this is only the first step towards the efficient 

utilization of these resources that Nature provide us. 
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RREESSUUMMOO  

O tema de fundo deste trabalho é a área multidisciplinar da biotecnologia têxtil que tem 

vindo a afirmar-se como uma área de grande importância para a indústria têxtil e para o seu 

desenvolvimento sustentável. O trabalho aqui apresentado consistiu no tratamento com 

enzimas de duas fibras, a acrílica e o acetato de celulose. A tese encontra-se dividida em 

vários capítulos consistindo o primeiro numa introdução geral a diversos tópicos abordados 

pelo trabalho. A biocatálise é referida, especialmente, no contexto da indústria têxtil e 

modificação superficial de polímeros, seguida de uma descrição geral das propriedades e 

aplicações das duas fibras. As enzimas utilizadas ao longo do trabalho – nitrilase (EC 3.5.5.1) e 

cutinase (EC 3.1.1.74), são mencionadas de forma sucinta assim como os métodos principais 

de manipulação da actividade enzimática. O objectivo geral do trabalho assentou no 

desenvolvimento de metodologias não poluentes conducentes à formação de grupos 

reactivos/hidrofílicos à superfície das fibras, via hidrólise dos grupos laterais dos respectivos 

polímeros de forma a preservar as propriedades nucleares e desejáveis das fibras. 

No capítulo 2 é reportada a modificação da superfície da fibra acrílica por uma nitrilase 

comercial. A conversão enzimática dos grupos nitrilo em grupos carboxílicos à superfície da 

fibra foi avaliada durante 36 horas através da libertação de amoníaco para a solução e através 

do aumento da afinidade do tecido tratado para um corante básico. O aumento linear do 

amoníaco, libertado durante o tratamento, mostrou que a adsorção da nitrilase à fibra acrílica 

conduziu a um aumento da sua estabilidade operacional assemelhando-se aos procedimentos 

de imobilização usados para estabilizar enzimas. Um valor máximo de K/S foi observado para 

um período de incubação de 8 horas, o que corresponde a um K/S relativo de 135% quando se 

fez uma coloração a 70 ºC. Teve lugar um fenómeno de erosão superficial que determinou o 

comportamento oscilatório da quantidade de corante fixada com o tempo de tratamento. Foi 

determinado ácido poliacrílico nas soluções de tratamento como produto secundário não 

desejado da modificação da acrílica pela nitrilase. Estes resultados revelam que o efeito final 

da aplicação da nitrilase no tratamento da acrílica está intimamente dependente dos 

parâmetros da reacção como o tempo, a actividade da enzima e a composição do meio. 

O capítulo 3 descreve a modificação do comonómero acetato de vinilo da fibra acrílica 

usada pela acção da cutinase do fungo Fusarium solani pisi e de uma esterase comercial 

(Texazym PES). Foi estudado o efeito de solventes da acrílica e de poli-álcoois na estabilidade 

operacional da cutinase em solução, bem como o impacto desses aditivos e da agitação 

mecânica na modificação enzimática do tecido de acrílica. Os grupos hidroxilo produzidos na 

superfície da fibra reagiram com o corante Remazol Brilliant Blue R, C.I. 61200, aumentando a 

cor do tecido tratado. O melhor nível de coloração foi obtido com elevada agitação mecânica e 

com a adição de 1% (v/v) de N,N-dimetilacetamida. Sob estas condições, o aumento da 

intensidade de cor, em relação aos controlos, foi de 30% para o tratamento com a cutinase e 
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25% para a Texazym. O grau de cristalinidade determinado por difracção de raios-X não foi 

alterado significativamente entre amostras controlo e amostras tratadas com cutinase. Uma vez 

mais, os resultados mostraram que o sucesso da aplicação de enzimas, neste caso a cutinase 

e uma esterase comercial, depende muito das condições em que se realiza o tratamento. 

A cutinase foi escolhida para modificar também a superfície de fibras de diacetato e 

triacetato de celulose, trabalho este que é abordado no capítulo 4. A hidrólise enzimática dos 

grupos acetilo na superfície da fibra foi monitorizada pela libertação de ácido acético e pela 

coloração específica dos tecidos com o corante Remazol Brilliant Blue R. O tratamento do 

tecido durante 8 horas a 30 ºC e pH 8 resultou numa actividade acetil esterase de 0.010 U e 

0.0072 U tendo como substrato a fibra de diacetato e triacetato de celulose, respectivamente. 

Os níveis de cor das amostras tratadas com cutinase durante 24 horas aumentaram 25% para 

o diacetato e 317% para o triacetato, comparando com os controlos. Foram analisadas secções 

transversais de ambas as fibras, por microscopia de fluorescência, e confirmou-se a acção 

superficial da cutinase. Por comparação com outras enzimas já descritas, a cutinase é um 

catalizador a ter em consideração para a regeneração superficial da hidrofilicidade e 

reactividade da celulose em acetatos com grau de substituição elevado. 

Para melhorar a actividade da cutinase nas fibras modificadas de celulose foram 

produzidas, através de tecnologias de ADN recombinante, cutinases quiméricas que foram, 

posteriormente, usadas no tratamento dos tecidos de acetato de celulose descrito no capítulo 

5. Dois módulos distintos de ligação a carbohidratos foram fundidos, independentemente, ao 

terminal carboxílico da cutinase: o módulo da celobiohidrolase I, do fungo Trichoderma reesei e 

o da endoglucanase C, da bactéria Cellulomonas fimi. Ambas cutinases quiméricas tiveram 

uma performance mais eficiente que a cutinase nativa, mas a interacção destas enzimas 

bifuncionais com os acetatos de celulose carece de mais estudos para melhor caracterizar a 

natureza e extensão destas modificações. 

O capítulo 6 é dedicado a uma discussão geral, observações finais e perspectivas 

futuras. Nesta tese são apresentadas evidências que mostram que as enzimas, mais 

concretamente, a nitrilase e a cutinase são ferramentas importantes para a funcionalização da 

superfície das fibras acrílicas e de acetato de celulose. Com este trabalho também fica claro 

que apenas se deu o primeiro passo num percurso que eventualmente nos conduzirá a um 

aproveitamento eficiente destes recursos que a Natureza nos providencia. 
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The present thesis, entitled Enzymatic Treatment of Acrylic and 

Cellulose Acetate fibres, connects topics from different areas of 

science that will be the subject of a brief bibliographic revision 

throughout this chapter. 

The first topic to be addressed is biocatalysis which is the background 

theme of this thesis and its importance will be emphasized in the 

context of the textile industry and surface modification of synthetic 

polymers. A general description of the two fibres used in this work, 

acrylic and cellulose acetate, will be given as well as their most 

common end-uses and reported biomodifications. The properties and 

general applications of the two main enzymes used to modify the fibres 

will be referred next. Finally, a summary of the methods used to 

manipulate enzymes is made before a concise description of the two 

carbohydrate-binding modules chosen to be fused with the C-terminal 

of cutinase. 
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11..  IINNTTRROODDUUCCTTIIOONN  

11..11   BBIIOOCCAATTAALLYYSSIISS   

1.1.1 INDUSTRIAL ENZYMES 

Biocatalysis is present in some of the oldest transformations known to 

humans: descriptions of various beer recipes were found in Sumerian writings 

(Ball, 2001). More recently, in the beginning of the 19th century, acetic acid was 

produced industrially from ethanol by an Acetobacter strain (Wandrey et al., 2000). 

Studies of fermentation processes led to a big bang in the knowledge of life’s 

chemistry. In the 19th century, Louis Pasteur came to the conclusion that the 

fermentation of sugar to alcohol by yeast was catalyzed by a vital force 

contained within the yeast cells called “ferments”, which were thought to 

function only within living organisms. Wilhelm Kühne was the first to use the 

term “enzyme” and, years later, Emil Fisher proposed the “Lock and Key Model” 

to visualize the substrate and enzyme interaction (Cabral et al., 2003). 

Enzymes are the subgroup of proteins that catalyse the chemistry of life, 

transforming both macromolecular and small molecules; they are the focus of 

present biocatalysis research (Walsh, 2001). The chiral nature of enzymes results 

in a remarkable chemical precision seen as different types of selectivity: 

substrate, stereo-, regio- and functional group selectivity (Rozzell, 1999). Most 

enzymes operate at room temperature, under neutral aqueous conditions and in 

the absence of functional group-protection (Koeller and Wong, 2001). Enzymes are 

environmental friendly catalysts not just because they are biodegradable 

themselves but also because of their mild operating conditions. They can result 

in processes that generate fewer waste disposal problems and that require 

lower energy input, leading to lower costs and lower emissions of greenhouse 

gases to the environment (Rozzell, 1999). These qualities make enzymes 

remarkable catalysts.  

Nowadays, it is widely recognized that enzyme-catalysed chemical 

transformations are convenient alternatives to traditional (non-biological) 
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transformations and suitable solutions to difficult synthetic problems (Koeller and 

Wong, 2001). The enzyme can be used as the sole catalyst in a reaction, in 

combination with other enzymes, or with inorganic reagents. Besides, many 

enzymes accept unnatural substrates, and genetic, pathway and medium 

engineering can improve further their stability and specific activity as well as 

modulate their substrate specificity (Koeller and Wong, 2001). Biocatalysis is 

accomplished by either using isolated enzymes or using whole cells which are 

more common in synthesis reactions that require cofactors (Schmid et al., 2001). 

The majority of currently used industrial enzymes are hydrolases (figure 1.1) 

from which proteases remain the dominant enzyme type, followed by amylases 

and cellulases (Kirk et al., 2002).  

Biocatalysis is a tool of increasing importance for industries which aim a 

sustainable development. Successful industrial applications of enzymes are 

growing rapidly over the past decade (Straathof et al., 2002). The major traditional 

consumers of enzymes are the food, feed, agriculture, paper, leather and textile 

industries (van Beilen and Li, 2002; Schäfer et al., 2007). However, the largest growth 

seen, in terms of number of occurrences (figure 1.2), is in the application of 

enzymes to the industrial chemical synthesis, especially in the pharma and agro 

sectors (Straathof et al., 2002; Schmid et al., 2001). Another sector that is becoming 

important includes the companies that provide enzymes. Besides producing the 

Hydrolases

LyasesIsomerases

Transferases

Oxido-reductases

Oxidizing cells

Reducing cells

Figure 1.1 – Biocatalysts used in industrial transformations (adapted 
from Straathof et al., 2002). 
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enzymes, they also invest in the research, using molecular technologies to 

discover and design new biocatalysts or to improve available ones (Straathof et 

al., 2002). 

 

1.1.2 BIOCATALYSIS IN TEXTILE INDUSTRY 

In the textile industry, the impact of biotechnology has been observed at 

three main levels: the introduction of enzymes in manufacturing wet processes 

and laundry detergents, the design of new and biodegradable fibres and the 

treatment of textile effluents. 

The use of enzymes as detergent additives represents one of the largest 

applications of biocatalysis in industry (Kirk et al., 2002; Schäfer et al., 2007). 

Different classes of hydrolases are used to cover as much as possible all kinds 

of stains: proteases, amylases, lipases and, more recently, mannanases and 

pectate lyases (Kirk et al., 2002; Schäfer et al., 2007). Cellulases are also used in 

laundry detergents in order to renew the cellulosic fabric surfaces damaged with 

microfibrils, fuzz, loose fibres and to improve their colour brightness (Durán and 

Durán, 2000; Gübitz and Cavaco-Paulo, 2001). The typical advantage of including 

enzymes in detergent formulations is to clean clothes at lower washing 

temperatures. However, these benefits are ultimately achieved if consumers are 

willing to accept low temperature washing (Schäfer et al., 2007). 

Pharma

Several sectors

Agro

Feed

Food

Cosmetics

Polymers

Figure 1.2 – Industrial sectors in which the products of industrial 
biocatalysis are used (adapted from Straathof et al., 2002). 
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The first application of enzymes to industrial textile processes began with 

the desizing of cotton fabric with amylases present in the malt extract used 

around 1857 (Cegarra, 1996; Etters and Annis, 1998). Today, a variety of commercial 

products are available, in particular for the wet processing of cellulosic fabrics. 

The protein fibres have also been the focus of industrial enzyme applications, 

mainly proteases (Cegarra, 1996; Etters and Annis, 1998). The main enzymes used in 

commercial textile processing are summarized in table 1.1, as well as their 

general conditions of use. 

 

 
Table 1.1 – Main enzymes used in commercial textile processing 

(adapted from Schäfer et al., 2007) 
 

Fibre Process stage Main enzyme Typical treatment conditions 
pH/ T/ t 

 
Cotton 
 
 
 
 
 
 
 
 
Lyocell 
 
Ramie 
 
Wool 
 
 
Silk 

 

Desize 

 

Scour 

Bleach clean-up 

Depilling and softening,  

Denim abrasion 

Reactive dye rinse 

Denim decolourization 

 

Defibrillation 

 

Preparation/degumming 

 

Scour 

Softening 

 

Degumming 

 

Amylase 

Lipase 

Pectinase 

Catalase 

 

Cellulase 

Peroxidase 

Laccase 

 

Cellulase 

 

Pectinase/xylanase 

 

Lipase 

Protease 

 

Protease 

 

pH 5-10/ 20-115 ºC/ 0.2-16 h 

pH 7-9/ 20-70 ºC/ 10-30 min 

pH 8-9/ 45-65 ºC/ 10-30 min 

pH 6-7/ 30-60 ºC/ 10-20 min 

 

pH 5-8/ 30-60 ºC/ 30-60 min 

pH 6-9/ 40-80 ºC/ 10-30 min 

pH 4-6/ 60-70 ºC/ 15-30 min 

 

pH 5-8/ 30-60 ºC/ 30-60 min 

 

pH 8-9/ 50-60 ºC/ 1-2 h 

 

pH 7-9/ 20-70 ºC/ 10-30 min 

pH 7-9/ 40-50 ºC/ 30-60 min 

 

pH 8-9/ 50-60 ºC/ 0.5-2 h 

 

 

New biodegradable synthetic fibres are being developed from renewable 

sources of biomass. A prime example is polylactic acid (PLA) made by 

fermenting a sugar feedstock into lactic acid which is then chemically 
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transformed into a polymer fibre. PLA based materials have properties similar to 

other synthetic fibres; they are durable, with a silky feel and may be blended 

with wool or cotton. PLA was launched in 2003 as the first man-made fibre 

derived from renewable resources under the commercial name Ingeo (Burke, 

2008). Another commercial fibre named Sorona, made by DuPont, results from 

the polymerization of 1,3-propanediol, derived from a fermenting process, and a 

petrochemical-based monomer (Burke, 2008). New fibres are also being derived 

from natural materials like chitin, collagen and alginate. These materials are 

used for medical applications in wound dressings and investigated for drug-

releasing systems (Lu and Chen, 2004; Qin, 2008; Rinaudo, 2008). 

The textile industry is under substantial environmental pressure. 

Considering the volume discharged and effluent composition, the wastewater 

generated by this industry is classified as one of the most polluting among all 

industrial sectors (Vandevivere et al., 1998). Biocatalysis can be applied as a tool 

for the textile effluents treatment. Possible bioremediation processes can be 

divided in whole cell microbial systems and isolated enzymes (Gübitz and Cavaco-

Paulo, 2001; Ramalho, 2005; Soares, 2000). Biodegradation through activated sludge 

is widely used in treatment plants but is still ineffective is decolorizing textile 

effluents (Vandevivere et al., 1998). It is necessary to integrate other chemical and 

physical technologies in order to increase the efficient treatment and reuse of 

this kind of effluents. Several laboratory-scale investigations have illustrated the 

potential of sequential anaerobic/aerobic biotreatment steps but a current use is 

still missing (Vandevivere et al., 1998). 

Although the widespread academic efforts in the textile biotechnology, the 

actual application of such work is modest. Hopefully in a near future this reality 

will be changed by both the academic and industrial communities. 

 

1.1.3 BIOCATALYSIS IN SYNTHETIC POLYMER SURFACE MODIFICATION 

In the preparation of wide-ranging synthetic polymer materials, sometimes 

it is desirable for the properties at the surface to be different from the bulk 

properties. Surfaces that promote cell adhesion, biocompatibility, hydrophobic/ 

hydrophilic character or chemical resistance are some examples of the 

properties that can be changed (Hutchings et al., 2008).  
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One important field where surface modification of polymers has a great 

impact is the materials science. The biocompatibility can be accomplished by 

immobilizing certain bioactive molecules on functionalized surfaces of the 

materials to be used. The superficial immobilization of molecules is also 

important for the manufacturing of specific analytical assays like microarrays 

and biosensors. The immobilization of industrial enzymes into the surface of 

solid supports is also a widespread process (Goddard and Hotchkiss, 2007). 

Textiles are one of the major and oldest subjects for surface modifications. 

Textile finishing is the final stage in the fabric manufacturing process and 

includes all the processes that modify the surface of fibres to add useful 

qualities to the fabric, ranging from interesting appearance and fashion aspects 

to high performance properties for industrial needs (Schindler and Hauser, 2004). 

The methods to accomplish distinct surface properties may involve the 

application of a coating layer or chemical modification of the surface (Hutchings et 

al., 2008). The modification of the surface can be performed by ionized gas 

treatments, like plasma and Corona discharge, and UV irradiation (Goddard and 

Hotchkiss, 2007). The wet chemical modification is the most classical and easy 

approach for the functionalization of polymer surfaces, offering advantages for 

porous materials, besides, it does not require very specialized equipment 

(Goddard and Hotchkiss, 2007). In the textile industry both chemical and physical 

methods are used, but chemical finishing has always been an important 

component of textile processing and its importance is growing in recent years 

with the trend to ‘high tech’ products (Schindler and Hauser, 2004). As the use of 

high performance textiles grows, the need for chemical finishes to provide the 

fabric properties required in these special applications has grown accordingly. 

Nowadays, more than 20 different types of chemical finishers exist for both 

natural or man-made fibres (figure 1.3) (Schindler and Hauser, 2004). 

Textile materials made from synthetic fibres are, in general, uncomfortable 

to wear because they are hydrophobic. This means that these materials can not 

absorb the perspiration and the water vapour can not easily be transported 

away from the body. The hydrophobic nature also leads to their characteristic 

static cling and stain retention during laundering (Gübitz and Cavaco-Paulo, 2008). 

There are several methods for the surface modification of synthetic polymers 

with the purpose of increasing the hydrophilicity. The methods currently used 
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are plasma treatments and chemical finishers, including alkaline and acid 

hydrolysis. In addition to the environmental issues, these methods are difficult to 

control, sometimes they are of reduced technical life-time and in some cases 

severe fibre weight losses and yellowing occur (Gübitz and Cavaco-Paulo, 2008, 

2003). On the other hand, enzymes are well-suited for targeted surface 

functionalization of polymers. Besides the advantages referred before, they are 

macromolecules and for that reason their action is normally restricted to the 

most superficial layers of polymer fibres.  

At the research level, there are several reports of successful surface 

enzymatic modifications of the major three synthetic textile fibres: polyester 

(poly(ethylene terephthalate)-PET), polyamide (PA) and polyacrylonitrile (PAN). 

The targets for enzyme catalysis are the ester and amide bonds of the polymer 

backbone of PET and PA, respectively, and the side chain nitrile groups of PAN 

(Gübitz and Cavaco-Paulo, 2008). PET was hydrolysed by cutinases, from different 

microorganisms, lipases, serine and nitro-benzyl esterases (Gübitz and Cavaco-

Paulo, 2008). The limited surface hydrolysis led to an increase in hydrophilicity 

and a depilling effect was also observed (Gübitz and Cavaco-Paulo, 2008; O’Neill et al., 

2004, 2007). PA fibres have also been hydrolysed superficially by proteases, 

cutinases and amidases. As a consequence of the enzymatic treatment there 

was a good improvement in the hydrophilicity (Gübitz and Cavaco-Paulo, 2008; Silva 

0,01%

13,5%

18,4%

13,9%

4,1%

22,1%
14,0%

1,4%

2,3%

0,3%

10,0%

Softners

Repellents

Flame retardants

Products for coating and
fibre/thread bonding
Products for easy-care 

Hand builders

Antimicrobial products

Antistatic agents

Non-slip agents

Anti-soiling products 

Others

Figure 1.3 – Distribution of textile chemical finishers by amount in 
2001 (adapted from Schindler and Hauser, 2004).
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et al., 2005b, 2007). The enzymatic modification of PAN with nitrilases and nitrile 

hydratases led to the formation of more hydrophilic carboxylic and amide 

groups (section 1.2.5) (Gübitz and Cavaco-Paulo, 2008). 

The broad substrate specificity and catalytic promiscuity, exhibited by 

some enzymes, uncover a new range of possible biocatalytic transformations 

(Bornscheuer and Kazlauskas, 2004). The ability of enzymes to use textile synthetic 

fibres as substrates under mild conditions, which are known for their stability 

and chemical inertia, is an evidence of the vast potential of these catalysts in 

industrial processes. 

11..22   AACCRRYYLL IICC  FF IIBBRREE  

1.2.1 GENERAL DESCRIPTION  

Acrylic fibres are defined, according to the Federal Trade Commission of 

United States, as manufactured fibres in which the fibre forming substance is 

any long-chain synthetic polymer composed of at least 85% by weight of 

acrylonitrile units (Guillen, 1987). 

Although the acrylonitrile was synthesised by Moreau in 1893, only in the 

1940s, suitable solvents were found that allowed the polyacrylonitrile 

processing, for the reason that its polymer decomposes prior to melting (Frushour 

and Knorr, 1998). The first appearance of acrylic fibres was in the year 1950, 

when DuPont introduced them in the market under the commercial name 

Orlon®. During the 1950s, the acrylic industry experienced an impressive growth 

with at least 18 companies producing acrylic goods (Frushour and Knorr, 1998). 

During the year 2005, global production of acrylic staple fibre reached 

2 791 thousand tons and acrylic accounted for 8% of all chemical fibre 

produced in the world (figure 1.4). The share has fallen dramatically from 15% 

in early 1980s. During the period 2000-2005, the acrylic staple fibre production 

increased at a rate of 1.25% per annum which was the slowest growth rate 

among all chemical fibres production (www.yarnsandfibers.com/ir/report/acrylic_chain_ 

report2006.html). In the year of 2006, the acrylic fibre production decreased to 

6.8% of the total chemical fibres. In terms of the contribution, Asia holds a major 

share of 59.5% in global production, where China has emerged as the leading 
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producer of acrylic staple fibre in the world and also as the major consumer 

(figure 1.5) (www.yarnsandfibers.com/revamp_ir/report_fullstory.php3?id=401&p_type=62&so 

urce _id=15&source=YarnsandFibers%20Paid&story_type=F&BF=Special&report_show=First). 

Acrylic fibre covers a broad range of products, more diverse in 

composition than any other synthetic fibre (Masson, 1995). The major reason for 

this is that acrylonitrile can copolymerise with many different monomers with an 

ethylene unsaturated group. In fact, the PAN homopolymer is rarely used in 

fibre manufacturing with the exception of some industrial applications (Frushour 

and Knorr, 1998). The homopolymer is difficult to spin and dye and therefore 

virtually all commercial acrylic fibres are made from acrylonitrile and at least one 

Figure 1.4 – World acrylic production between 1990 and 2005 (from 
www.yarnsandfibers.com/ir/report/acrylic_chain_report2006.html).
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other monomer (figure 1.6). The comonomers are used in order to increase the 

solubility of the polymer in the spinning solvents and improve the rate of dye 

diffusion into the fibres (Frushour and Knorr, 1998). Acid and basic comonomers are 

also used to create additional sites for dye fixation and to provide a hydrophilic 

component in water-reversible crimp bicomponent fibres (Frushour and Knorr, 1998; 

Masson, 1995). Halogenated comonomers, usually vinylidene chloride, vinyl 

bromide and vinyl chloride, can be used to impart flame resistance to the acrylic 

textiles (Frushour and Knorr, 1998; Masson, 1995). Modacrylic fibres are composed of 

35% to 85% of polyacrylonitrile and they are produced to be fire retardant by 

incorporation of halogenated comonomers (Masson, 1995). 

The copolymer is formed through free radical polymerization. There are 

four polymerization methods: bulk, aqueous dispersion, solution and emulsion 

polymerization (Frushour and Knorr, 1998; Masson, 1995). The industrial methods of 

choice are the aqueous dispersion and solution polymerization. After 
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Figure 1.6 – The acrylic polymer structure and some examples of its 
common comonomers. 
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precipitation the copolymer is dried and dissolved in an appropriate organic 

solvent, mainly dimethylformamide (DMF) or dimethylacetamide (DMA), and 

wet or dry spun (Capone, 1995; von Falkai, 1995). 

After the spinning stage, the acrylic fibre properties are unsuitable for their 

end-use; the fibres contain residual amounts of the organic solvent, the tenacity 

and elastic modulus are low while the plastic elongation is high, the fibre lacks 

the crimp needed to provide cohesion and bulk to the yarn (von Falkai, 1995). 

Thus, the fibre is subjected to further treatments in order to develop the 

desirable balance of processing and performance properties (Frushour and Knorr, 

1998). During this pos-spinning stage, the fibre undergoes a series of steps 

along a production line. The essential steps of washing, orientation drawing, 

drying and relaxation are common to all acrylic fibre spinning processes, but the 

sequences as well as a number of possible variations in the manufacture of 

acrylic fibres are protected and the details are not available (Frushour and Knorr, 

1998). The improvement of the acrylic fibre properties by manipulation of the 

conditions of spinning and pos-spinning processes is an important issue and it 

is the subject of several research groups (Bahrami et al., 2003; Wu et al., 2003; Chen 

and Harrison, 2002). The figure 1.7 is a schematic representation that illustrates a 

production line for acrylic fibres in the tow and staple forms.  

Wet spinning Dry spinning 

Drawing 
Washing 

Finish 
application 

Drying

Crimping

Relaxation

Figure 1.7 – Conventional manufacture process of acrylic fibres 
(adapted from Frushour and Knorr, 1998). 

TowCutting Staple 
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The nature of the comonomer in acrylic fibres affect the overall dyeability 

and the classes of dyes that may be used (Needles, 1986). The cationic or basic 

dyes are the most used in acrylics given the good fastness properties obtained. 

The fixation occurs with the salt bridge between dye cations and anionic sites 

(mainly sulphate from the initiator radicals). Acrylic can be dyed using disperse 

dyes, in particular the smaller ones, for pastel and light shades where dyeing 

uniformity may be hard to obtain with other dyes (Emsermann and Foppe, 1995). 

Acrylics can be dyed by either batch or continuous processes, in the fibre, yarn, 

fabric or garment form (Emsermann and Foppe, 1995). 

 

1.2.2 STRUCTURAL CHARACTERIZATION 

Textile fabrics are planar structures produced by interlacing or entangling 

yarns or fibres in a particular manner (Needles, 1986). Textile yarns are made up 

of fibres and each individual fibre is, in turn, made up from millions of individual 

long molecular chains of discrete chemical composition (Needles, 1986). The 

molecular structure of the long polymer chains determines the basic chemical 

and physical properties of the fibre. Although special treatments and changes in 

yarn and fabric production parameters can alter the fabric properties to some 

degree, the basic properties are inherent to the structure of the polymer from 

which the fibre is produced (Needles, 1986). 

Most textile fibres have a morphology that can be described by the two-

phase model for semicrystalline polymers (Frushour, 1995). According to this 

model, discrete crystalline domains of several hundred angstroms (Å) are mixed 

with amorphous domains of similar size. The individual polymer chains have 

lengths in the order of 1000 to 2000 Å, so a single chain can span two or more 

crystalline domains and its assembly in the intercrystalline regions forms the 

amorphous domains (Frushour, 1995). When a synthetic fibre is drawn, the 

molecules, in most cases, orientate themselves in crystalline domains parallel to 

the fibre axis. The degree of crystallinity is dependent on the total forces 

available for chain interaction and the stereo-regularity of adjacent chains 

(Needles, 1986; Stevens, 1990). 

Commercial vinyl polymers are in general atactic (with no stereo-

regularity) and form amorphous glasses that have no long-range crystalline 

 13
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order (Frushour, 1995). Fibres can be melt-spun from these glassy polymers but 

they can not be used for textile applications because of the lack of crystallinity 

(Frushour, 1995). Crystallinity is a very important characteristic because it confers 

good tensile properties (Frushour, 1995). PAN is atactic, but the fact that 

functional synthetic fibres can be made from it suggests that some degree of 

order must be present in PAN fibres. The other major factor that contributes to 

the formation of a crystalline phase is the ability of interchain bonding. In fact, 

some atactic polymers like PAN possess an unexpected high degree of order or 

pseudocrystallinity due to a substitutent group capable of strong interactions 

(Frushour, 1995). 

The pendent group in PAN molecules is the nitrile group. The 

distinguishing feature of the nitrile group is the large dipole moment, turning it 

one of the most polar organic functional groups (Frushour, 1995). The interaction 

between two nitrile groups can be either attractive or repulsive, depending upon 

the spatial orientation of the nitriles, while the magnitude depends upon the 

distance of separation (Frushour, 1995). In the PAN isolated chain, the potential 

energy will be minimized by placing the adjacent nitrile groups as far as 

possible, since they have parallel orientation between each other and this will 

lead to repulsive interactions (Frushour, 1995). To model the configuration with the 

lowest potential energy, the initial proposal was the helical conformation for the 

chain backbone (figure 1.8A). In such conformation all the nitrile groups would 

be pointing away from the helical axis. If several chains are packed together, 

then some of the nitrile groups on adjacent chains will be in an anti-parallel 

orientation leading to a net attraction between PAN polymer chains (Frushour, 

1995). More recent models, having in account the density of the fibres, propose 

stretches of more extended atactic molecular chains, where the nitrile groups 

are pointing normally to the backbone axis along directions which are displaced 

from each other ≈120º (Rizzo et al., 1996; Liu and Ruland, 1993).  
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BA 

Figure 1.8 – A) Model of the oriented acrylic fibres morphology with 
emphasis for the assumed irregular helical conformation of PAN polymer 
chain (adapted from Frushour, 1995). B) Pictorial representation of 
hexagonally packed chains of PAN (adapted from Bashir and Rastogi, 2005). 

Bohn et al. (1961) reported the first detailed model of the PAN fibre 

morphology using wide angle X-ray scattering (WAXS) and by studying the 

thermal behaviour of polyacrylonitrile. The diffraction pattern was indexed to a 

two-dimensional hexagonal lattice with an interchain distance of 6 Å, given by 

the most intense reflection at 2θ of 17º (Bohn et al., 1961; Frushour, 1995). A single 

polymer chain resembles a rod with a diameter of 6 Å where some of the nitrile 

groups extend beyond the confines of the cylinder (figure 1.8B) (Bohn et al., 1961; 

Frushour, 1995). It is believed that these protuberant nitrile groups are responsible 

for the net attraction between adjacent PAN polymer chains and the ability of 

this vinyl polymer to form fibres with structural order. 

The differences in the order between the paracrystalline and amorphous 

phase are much lower than in conventional crystalline polymers, not only 

because there seems to be a lack of a true three-dimensional order in the 

crystalline phase but also because the amorphous phase may be quite stiff and 

extended due to intrachain dipole repulsions (Frushour, 1995). Despite the 

investigation performed for more than 50 years, polyacrylonitrile is still a very 

controversial polymer, because it belongs to an unusual type of material that 
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cannot be obtained in proper crystalline or fully amorphous state (Bashir, 1994, 

2001; Bashir and Rastogi, 2005). 

The effect of the comonomers on the PAN morphology was studied by 

several authors. In all cases, the addition of comonomers lowers the 

crystallinity, here referred to the two-dimensional order (Frushour, 1995). This 

decrease in the crystallinity of PAN copolymers affects the dynamic-mechanical 

properties as well as the melting behaviour and glass transition temperature 

(Frushour, 1982). Incorporation of comonomers, as methyl acrylate and vinyl 

acetate, disrupts the laterally bonded structure in a way dependent on the 

comonomer molar fraction and on the molar volume of its side chain (Frushour, 

1995). The polymer becomes more soluble, making the preparation and storage 

of spinning dopes easier. The resultant fibres are also more extensible, less 

prone to fibrillation and more easily dyed, albeit a decrease in the hot-wet 

strength and modulus (Frushour, 1995). These main advantages provided by the 

comonomer incorporation are the reason for virtually all commercial acrylic 

fibres being spun from PAN with 5% - 10% comonomer. 

 

1.2.3 ACRYLIC FIBRE PROPERTIES 

The wet spinning technology is the most used to produce acrylic fibres 

(Lulay, 1995). This process leads to a round or bean shaped in contrast with the 

dog-bone shaped fibre produced by the dry spinning method. The macro-

structure of the fibre formed in the spin bath influences the mechanical 

properties of the final product. The values of stiffness predict softer yarn at a 

comparable fibre denier for the dry spun fibres (Lulay, 1995). The dog-bone 

shaped fibres also lead to a less dense and bulkier yarn, which in turn 

contributes to increase the comfort of the final products allowing a faster 

perspiration removal (Frushour and Knorr, 1998). The acrylic fibre densities may 

vary from 1.14 to 1.19 g cm-3 and the filament denier can range from 1.2 to 15 

(Collier and Tortora, 2001).  

In spite of all the differences among the existing commercial fibres, the 

general idea is that acrylics have moderate strength and elongation at break 

(Needles, 1986). The standard breaking strength (tenacity) varies from 2.0 to 3.6 g 
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per denier and the breaking elongation varies from 20% to 64% (Collier and 

Tortora, 2001; Frushour and Knorr, 1998). 

At 2% elongation the elastic recovery is 99% and at 5% it decreases to 

50% - 95% (Needles, 1986). The acrylic fibre is, therefore, moderately stiff, but its 

resilience ranges from good to excellent; the crimped fibres have good 

compression and bending recovery (Collier and Tortora, 2001). Comparing to the 

other two major synthetic fibres, acrylics have a lower breaking elongation and 

considerably lower tenacity, which make them inappropriate for end-uses 

requiring high strength (Frushour and Knorr, 1998).  

Acrylic fibres are less moisture absorbent than cellulose acetate, cotton, 

wool and rayon and more absorbent than nylon and polyester (Frushour and Knorr, 

1998). The standard moisture regain varies from 1.0% to 2.5% and the fibres 

swell ≈5% when saturated with water (Collier and Tortora, 2001; Frushour and Knorr, 

1998). At room temperature, there is a slight decrease in the tenacity when the 

acrylic fibres are wet, however when the temperature of water is raised above 

the glass transition temperature, the reduction in the modulus becomes 

significant (Frushour and Knorr, 1998). Raising the water temperature from 20 ºC to 

95 ºC, the tenacity and the fibre modulus are reduced 65% and 98%, 

respectively (Frushour and Knorr, 1998). The hot-wet strength of acrylic is very low, 

compared to other man-made fibres like cellulose acetate, nylon and polyester, 

and is attributed to the plasticizing effect of water and the lack of a true 

crystalline phase (Frushour and Knorr, 1998). The acrylic fibres have low electrical 

conductivity, even so they dissipate static charge more readily than most other 

synthetic fibres because they are more hydrophilic (Frushour and Knorr, 1998). 

The acrylic fibres have good colour and heat stability bellow 130 ºC 

(Frushour and Knorr, 1998). In a dry state, the fibre decomposes before melting at 

315 ºC. Acrylic fibres are moderately flammable; untreated acrylic fibres ignite, 

burn and melt, leaving a hard black bead residue at the edge of the fabric as 

other synthetic fibres (Collier and Tortora, 2001). The glass transition temperature 

for the oriented dry commercial fibres is between 85 ºC and 95 ºC (Emsermann 

and Foppe, 1995). Acrylic fibres can be heat-set under appropriate conditions 

acquiring good dimensional stability (Collier and Tortora, 2001). 

The chemical stability of acrylic is good; it is resistant to weak acids, weak 

alkalis, organic solvents, oxidizing agents and dry cleaning solvents. These 

 17



Enzymatic Treatment of Acrylic and Cellulose Acetate Fibres 

fibres are sensitive to strong bases and highly polar organic solvents (Frushour 

and Knorr, 1998). Regarding environmental factors, acrylics show very good 

resistance to sunlight and to all biological agents. 

The acrylic fibres impart warm, natural-like aesthetics to most fabrics as 

opposed to the cold, plastic handle of polyester and nylon fibres (Lulay, 1995). 

According to a study performed to evaluate qualitatively the properties of 

several fibres, consumers considered the acrylic as having moderate 

performance on highly desirable properties like abrasion, wrinkle and pill 

resistances, strength and wash-wear. Nylon and polyester were considered to 

have a better performance for those properties. Therefore a continuous effort to 

improve acrylic properties is being taken in order to compete with the other 

synthetic fibres. Several methods were already tested, consisting in the 

incorporation of comonomers, modification of the spinning process and/or 

finishing treatments (Frushour and Knorr, 1998). Success has been achieved mostly 

regarding the improvement on the pilling behaviour as well as in the 

strengthening of the already good properties of acrylic fibres (Frushour and Knorr, 

1998). 

 

1.2.4 PRODUCTS AND APPLICATIONS 

Acrylic fibres are commonly produced in the tow and staple forms and the 

main use is the replacement of wool. Acrylic has many of the desirable wool 

properties: warmth, softness of hand and generous bulk qualities. It is also less 

costly, more resistant to abrasion, light, heat, chemical and biological attacks 

and it has lower tendency to shrink than wool (Frushour and Knorr, 1998). Acrylic 

fibres are fabricated into woven and specially knitted constructions in a variety 

of textures and weights, according to the end-use. The major market sectors 

are the apparel and home furnishing. The apparel uses are sweaters, 

sleepwear, knit-accessories, fleece fabrics and hand-knitted garments (Collier 

and Tortora, 2001). In the home furnishing sector, the main uses are blankets, 

upholstery, draperies and carpets (Masson, 1995). 

There are several product variants that constitute less than 25% of total 

acrylic fibre sales. Acrylic fibres can be made in bicomponent varieties by 

extruding two different types of acrylic polymer as one fibre. The differences in 
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the properties of the two lead to the formation of moisture-sensitive or heat-

sensitive crimp, most used in knitted apparel (Collier and Tortora, 2001). Acid 

dyeable-fibres are obtained by the incorporation of basic monomers (pyridines, 

tertiary amines and quaternary ammonium salts) and blended with cationic 

dyeable-acrylics to produce certain colour effects (Masson, 1995). Acrylic fibres 

can be also pigmented for a particularly better light fastness as well as better 

colour stability regarding the exposure to a variety of chemicals (Masson, 1995). 

These variants are more important for outdoor applications and work clothes.  

More technical applications include the reinforcing fibres, made from 

polyacrylonitrile homopolymer, used as asbestos replacement, and the carbon 

fibre precursor. Carbon fibres are produced by the thermal decomposition of 

polyacrylonitrile copolymers in the absence of oxygen. More recently, 

polyacrylonitrile has been used in reverse osmosis gas separation, ion 

exchange, ultrafiltration and dialysis (Frushour and Knorr, 1998; Masson, 1995).  

 

1.2.5 POLYACRYLONITRILE AS AN ENZYMATIC SUBSTRATE 

As described previously, the modification of the surface of textile polymers 

with enzymes is focused mainly on natural fibres. In the case of synthetic 

polymers the methods currently used involve the action of chemical or physical 

agents. Acrylic fibres are treated with strong reactive chemical agents, like 

concentrated bases, or with radiation and plasma in order to add functional 

groups or transform the existent nitrile groups (Battistel et al., 1995; Gübitz and 

Cavaco-Paulo, 2008). 

Several research groups have already demonstrated that is possible to 

modify the acrylic fibre with nitrile metabolizing enzymes. These enzymes can 

convert the nitrile groups into carboxylic or amide groups, depending on the 

type of enzyme system present (figure 1.9). The modification of nitrile surface 

groups into amide groups was accomplished by the action of nitrile hydratases 

from Brevibacterium imperiale and Corynebacterium nitrilophilus (Battistel et al., 

2001 and 1995). The newly formed amides were assessed by X-ray photoelectron 

spectroscopy and the treated acrylic fibres and powder were coloured with acid 

dyes, while the untreated controls were inert to the same dyes. In another work 

it was reported a nitrile conversion to the carboxylic acid with the release of 
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ammonia, on granular PAN as substrate, and to the amide on acrylic fibres 

surface, with a nitrile hydratase and amidase from Rhodococcus rhodochrous 

(Tauber et al., 2000). It was also reported that the molecular weight of PAN 

influenced negatively the enzymatic action. A nitrile hydratase, from 

Arthrobacter sp. Ecu 1101, was used to selectively transform the nitrile into 

amide groups (Wang et al., 2004). The modified acrylic fibre became more 

hydrophilic, antistatic and acid-dyeable. The authors concluded that the use of 

non-ionic surfactants improved the enzyme activity while DMF did not. Another 

microorganism, Agrobacterium tumefaciens, was found to grow on 

polyacrylonitrile as a carbon source, converting it to polyacrylic acid (PAA) as 

shown by solid state nuclear magnetic resonance (NMR) (Fischer-Colbrie et al., 

2006). The detected enzyme activities were nitrile hydratase and amidase, 

although this amidase was, once more, less efficient in using acrylic fabric as a 

substrate, like amidases from other species.  

More recently, a membrane-bound nitrilase was isolated from Micrococcus 

luteus BST20 (Fischer-Colbrie et al., 2007). Nitrile groups from both polymers and 

fabrics of PAN were converted to carboxylic acid groups, with the associated 
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Figure 1.9 – Possible chemical transformations on PAN surface 
catalysed by nitrile metabolizing enzymes.
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release of ammonia. The nitrilase preferred the less crystalline polymer among 

seven polymers with different comonomer compositions, as generally observed 

for other enzymes acting on solid substrates.  

11..33   CCEELLLLUULLOOSSEE  AACCEETTAATTEE  FF IIBBRREESS  

1.3.1 GENERAL DESCRIPTION  

Acetate fibres are defined as manufactured fibres by the Federal Trade 

Commission from United Stated, in which the fibre-forming substance is 

cellulose acetate (Needles, 1986). Cellulose acetates are classified as derivative 

cellulose fibres, distinct from rayon and lyocell which are regenerated cellulose 

fibres, because the chemical composition of cellulose acetate is not cellulose 

but an ester of cellulose (Collier and Tortora, 2001). Each anhydroglucose repeating 

unit of cellulose (figure 1.10) has three hydroxyl groups located at the positions 

2, 3 and 6 (La Nieve, 2007). These sites are available for acetylation to produce 

the acetate fibres. The degree of acetylation or substitution (DS) is the average 

number of acetylated positions per anhydroglucose unit. Commercial cellulose 

triacetate has a DS of 2.91-2.96 while cellulose acetate has a DS of ≈2.4 (La 

Nieve, 2007). Therefore, the denomination of cellulose acetate fibres is used to 

refer all commercial acetylated cellulose fibres, but it is also the common name 

for the cellulose acetate fibre with a DS ≈2.4. To avoid misinterpretations, 

throughout this text, the name cellulose acetate will be used to refer all types of 

fibres and cellulose diacetate will be used to refer the acetate with a DS ≈2.4. 

Cellulose diacetate (CDA) was first synthesized by Schützenberger in 

Figure 1.10 – Chemical structure of the anhydroglucose repeating 
unit of cellulose (from La Nieve, 2007). 
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1865 and, 14 years later, Franchimont found that sulphuric acid acted as a 

catalyst, allowing for the CDA production at room temperature (Rustemeyer, 

2004a). In 1902-1905, several patents appeared for the application of cellulose 

triacetate (CTA) as photographic film, artificial silk and hornlike plastic material 

(Rustemeyer, 2004a). The first important application of CDA was the coating for 

the fabric wings of airplanes in World War I. The Dreyfus brothers were invited 

to found CDA plants in Europe (1914) and in United States (1917). In 1924, 

they developed a successful spinning process of a silk-like yarn textile called 

“Celanese”, for the Celanese Co. (Rustemeyer, 2004a). CTA textile fibre was 

commercialized later in the 1950s (La Nieve, 2007). 

Cellulose diacetate flake is mainly used to produce tow used in cigarette 

filters. Other uses include the manufacture of textile fibres, films, sheets and 

moulded objects. The combined CDA and CTA textile fibre world production 

reached a maximum in 1971 with 426 000 tons (La Nieve, 2007). Since then the 

textile fibre production has been decreasing gradually (figure 1.11). An 

exception is CTA film used for LCD manufacture, which is expected to grow 

continuously (www.sriconsulting.com/CEH/Public/Reports/580.0400). CDA tow was 

introduced in 1952 and has been applied successfully in the production of 

cigarette filters (La Nieve, 2007). In contrast to the textile fibre, the world 

production of CDA tow has increased steadily (figure 1.11). 

The decline in the sales volume of CDA has been felt by all major world 

Figure 1.11 – World production of cellulose diacetate (CDA) and 
triacetate fibres (CTA) compared with the cellulose diacetate tow and total 
man-made fibres (adapted from La Nieve, 2007). 
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areas except China, Central Europe and Russia. In these developing countries 

the trend in cigarettes consumption is increasing and it is expected that it will 

offset the declining number of smokers in North America and Western Europe 

(www.sriconsulting.com/CEH/Public/Reports/580.0400). Global market for CDA is highly 

concentrated with major producers representing over 80% of global capacity: 

Celanese Corp, Eastman Chemical Company, Daicel Chemical Industries, 

Mitsubishi Rayon and Rhodia Acetow (www.industrialnewsupdate.com/news/manufac 

turing/archives/2008 /04/cellulose_aceta.php). 

Cellulose diacetate and triacetate are produced from high quality cellulose, 

such as cotton linters and wood pulps, with an α-cellulose content above 95% 

(Saka and Matsumura, 2004). The initial stages of both CDA and CTA formation are 

the same. Purified and shredded cellulose pulp is pretreated to increase its 

reactivity and to disperse it uniformly in the reaction media (La Nieve, 2007). The 

most used commercial acetylation process is the acetic acid system where the 

acetic acid serves as solvent for the cellulose acetylation and acetic anhydride 

and sulphuric acid as catalysts (La Nieve, 2007). The esterification of cellulose is 

Figure 1.12 – Schematic representation of the manufacturing line of 
cellulose acetate fibres (from Collier and Tortora, 2001). 
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allowed for 7-8 hours till the CTA, also known as primary acetate, is formed 

(Collier and Tortora, 2001). After this point the procedure differs depending on 

which DS is being produced (figure 1.12). 

To obtain the CTA, water is added to the acetylating media and CTA is 

precipitated as a white flake, which is then collected, and dried (Collier and Tortora, 

2001). To obtain the CDA, also known as secondary acetate, water is added in 

an amount and for a period of time that allow partial hydrolysis of the primary 

acetate. The CDA is then precipitated, collected, washed and dried (Collier and 

Tortora, 2001). The spinning dope preparation is basically the same for both CDA 

and CTA except for the solvent used (La Nieve, 2007). CDA is usually dissolved in 

95% aqueous acetone while CTA is dissolved in methylene chlorine containing 

5% to 15% of methanol. At the dope stage, titanium dioxide pigment can be 

added if dull yarns are to be produced. Dope dying is possible for both fibres by 

the addition of pigments or dyes soluble in the particular solvent system used 

for the spinning dope (La Nieve, 2007). The CDA and CTA fibres are produced by 

the dry-spinning technology. The fibres are lubricated and crimp is also 

introduced for further processing. Besides the continuous filament, acetate 

fibres are also produced in the tow and staple forms (La Nieve, 2007). 

Cellulose diacetate and triacetate are not satisfactorily dyed by soluble 

dyes; instead disperse dyes are the ones preferred for these fibres (La Nieve, 

2007; Needles, 1986). Disperse dyes are insoluble or slightly soluble in hot 

aqueous baths, so dispersing agents and carriers are currently used to enhance 

the uniformity and penetration of the dye molecules into the fibres. In the case 

of CDA, carriers are not necessary and the dyeing temperatures range between 

70º and 80 ºC. CTA has a slower relative dyeing rate, the carriers are needed 

as well as dyeing temperatures in the range of 96 ºC - 100 ºC (La Nieve, 2007; 

Steinmann, 1998). 

Although triacetate and diacetate are produced in a very similar way and 

have similar structures, the small difference in the DS value provides significant 

differences in the properties of these fibres (Needles, 1986). 
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1.3.2 STRUCTURAL CHARACTERIZATION 

While cellulose, either from cotton linters or wood pulp, is highly 

crystalline, the substitution of the hydroxyl by acetyl groups disrupts its original 

structure in such way that dry-spun cellulose acetates show very low crystalline 

order (La Nieve, 2007). The structure order of cellulose disappears during the 

normal process of esterification as observed by Robert Work (Work, 1949). CTA 

appears to have a certain amount of crystallinity but the amorphous component 

is predominant. He observed that by raising the CTA to a temperature slightly 

bellow its melting point there was a molecular rearrangement leading to a more 

crystalline material. Robert Work also verified that the same was not true for the 

less substituted CDA, due to the steric disorder provided by heterogeneous side 

groups (acetyls and hydroxyls) randomly placed along the polymer chain. 

Stretching the swollen CDA yarns improved the orientation but there was not a 

great increase in crystallinity. To prove his hypothesis, he hydrolyzed 

completely the CDA obtaining regenerated cellulose with a high degree of 

structural order. 

Two structural polymorphisms exist for CTA designated by CTA I and CTA 

II (Zugenmaier, 2004; Sprague et al., 1958). Commercial CTA, which is produced 

normally by homogeneous acetylation of cellulose, has a crystalline structure 

that corresponds to the polymorph CTA II. 

The unit cell dimensions of both CTA polymorphs and the structural 

models are depicted in figure 1.13. The crystal structure of CTA I is assumed to 

have a orthogonal unit cell composed of chains packed with parallel polarity 

(Stipanovic and Sarko, 1978; Zugenmaier, 2004). The cell unit of CTA II is also 

orthorhombic but the chains pack in pairs with an antiparallel orientation (Roche 

et al., 1978; Zugenmaier, 2004). 

In both CTA and CDA, hydrogen bonding between cellulose chains is 

substantially decreased and the bulky acetyl group prevents the close packing 

of cellulose chains (Needles, 1986). The van der Waals forces are the major 

associative forces between the polymer chains and their lower magnitude is the 

reason for cellulose acetate being considerably weaker than cellulose fibres. 
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The increase in crystallinity of CTA by heat treatment has beneficial effects 

on the fibre and fabric properties, resulting in “ease-of-care” and “wash-and-

wear” characteristics (Steinmann, 1998).  

 

1.3.3 CELLULOSE ACETATE FIBRE PROPERTIES 

The fibre cross section of both CTA and CDA is irregular with as many as 

5 to 6 lobes and the longitudinal views show striations along the fibre length 

(Needles, 1986). Both fibres have white bright appearance and good lustre if not 

dyed or treated with a delustering agent (Collier and Tortora, 2001). CDA and CTA 

have densities of 1.30-1.35 g cm-3 and the filament denier ranges from 3 to 60 

(Needles, 1986; Steinmann, 1998).  

Figure 1.13 – Structural models of CTA I and CTA II in two 
projections: A) CTA I perpendicular to the ac plane, B) CTA I along the c 
axis (the chain axis), C) CTA II perpendicular to the ac plane, D) CTA II 
along the c axis, E) unit cell dimensions of CTA I and F) unit cell 
dimensions of CTA II (adapted from Zugenmaier, 2004). 

a = 23.6 Å 
b = 6.3 Å 

c = 10.4 Å 
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Both CDA and CTA have a very low strength, with standard tenacities of 

1.2-1.4 g per denier and standard elongations at break of 25% - 45%, however, 

for their end-uses, strength is not a primary consideration (Steinmann, 1998; Collier 

and Tortora, 2001). At 2% elongation the fibres have recoveries ranging from 80% 

to 99%, but above 5% elongation the recovery is very low, in particular for CDA. 

CDA and CTA are moderately stiff fibres with good resilience on bending and 

deformation. 

The moisture regains for CDA and CTA is 6.5% and 3.5%, respectively 

(Steinmann, 1998; La Nieve, 2007). The CDA has a moisture regain close to the 

value 7% of natural cotton yarn, while, the CTA has a lower value but still higher 

than the commercial synthetic fibres. Wetting the cellulose acetate fibres 

decreases their tenacity to 0.8-1.0 g per denier and the elongation at break 

increases more in the case of CDA (35% - 50%) than in the case of CTA (30% - 

40%). CTA is more hydrophobic and the water has lower impact on the CTA 

crystalline structure when compared to CDA. This imparts a better dimensional 

stability to CTA during washing and drying cycles, whereas CDA may exhibit 

relaxation shrinkage on laundering (Collier and Tortora, 2001). Both fibres have a 

high electrical resistance and, as a consequence, static build-up is a problem 

unless antistatic treatments are applied (Needles, 1986). 

The CDA and CTA are good heat conductors and they are cool to the 

touch (Needles, 1986). These fibres are thermoplastic so they soft and melt with 

the application of heat. CDA is more heat sensitive than CTA, it softens in the 

range of 190 ºC - 205 ºC and it melts at ≈260 ºC with discolouration (Steinmann, 

1998; La Nieve, 2007). The softening temperature for heat-treated CTA is ≈240 ºC 

and the melting point is ≈305 ºC with discoloration and decomposition. If ignited, 

CDA and CTA burn with melting, leaving a small, hard, beadlike residue at the 

edge of the burning area (Collier and Tortora, 2001). 

The chemical stability of cellulose acetates is poor. They are attacked by a 

number of organic solvents capable of dissolving esters, strong acids and 

bases, which result in saponification of acetyl groups (La Nieve, 2007; Collier and 

Tortora, 2001). CDA is more susceptible of being attacked by strong oxidizing 

agents than CTA, however both can be bleached. They can be damaged by 

microorganisms under certain conditions, but CTA is considerably more 
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resistant to biological attack (Needles, 1986; Collier and Tortora, 2001). In general, the 

CTA fibre is more resistant to sunlight exposure and aging, while CDA looses 

strength upon extended exposure to sunlight. Neither CDA nor CTA are 

resistant to abrasion (La Nieve, 2007; Collier and Tortora, 2001). 

Acetate fibres are soft, cool, have silk-like aesthetics, good drape and they 

can be easily blended with other fibres like silk, rayon, nylon, cotton and 

polyester (Law, 2004). Their unique attributes remain desirable and they are 

responsible for the survival of acetate production in the competitive market of 

man-made fibres. In a study made in 1999 by the Institute of Environmental 

Research from Kansas State University to determine the perceived difference 

between acetate and polyester linings, a group of consumers felt that acetate 

was more comfortable (less sticky, clammy and damp) and lighter in weight 

than polyester (www.acetateworld.com). Another attribute that is gaining importance 

is the fact that cellulose acetate fibres are environmental friendly compared to 

the major synthetic fibres. 

Some methods were developed to improve the strength, abrasion 

resistance and dimension stability of acetate fibres, in particular of CDA 

(Steinmann, 1998). One approach was to add to CDA spin dope polymer additives. 

Several were tested but, unless their concentration was bellow 5%, the phase 

compatibility was poor (Steinmann, 1998). To improve the compatibility, some 

polymers were graft on CDA. In the case of acrylonitrile, the graft copolymer 

increased the compatibility of PAN and cellulose acetate and the resulting fibres 

possessed improved thermal and chemical stabilities (Steinmann, 1998). It was 

also investigated the effect of crosslinking agents on cellulose diacetate, though 

the improved properties were still not equal to those of heat-treated CTA 

(Steinmann, 1998). 

 

1.3.4 PRODUCTS AND APPLICATIONS 

The properties of acetate fibres led to their largest use in women’s apparel 

and apparel linings. The yarns are evenly distributed between woven and knit 

constructions. Principal items of clothing are blouses, dresses, lingerie, robes 

and linings for suits, skirts and pants. They are also used in household textiles 

like draperies, bedcovers, curtains, etc (La Nieve, 2007; Collier and Tortora, 2001; Law, 
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2004). Other textile applications include sportswear, medical bandages and tape 

(Law, 2004).  

Staple fibres and nonwovens are used in wound dressings, personal 

hygiene, wipes and speciality papers (Law, 2004). 

CDA is also used for the production of cigarette filters. The CDA crimped 

tow presents several advantages like the ability to produce uniform and firm 

filters, it selectively removes phenols, nitrosamines, quinolines and other 

undesired smoke components, it is non toxic, tasteless, odourless and it is 

biodegradable. These attributes account for the preference for filters made from 

CDA which represents 90% of the consumed cigarettes in the world (Rustemeyer, 

2004b). 

Other non textile applications include solvent-cast diacetate film that is 

produced by dissolution of CDA flake in acetone and the addition of certain 

additives like plasticizers that impart the film attributes. The films are applied in 

a variety of end-uses like adhesive tapes, labels, general packaging, photo 

negative sleeves, and graphic arts, among others. They are known for their high 

transparency and gloss, although they can be produced with irregular matt 

surfaces (Law et al., 2004). The CTA film has unique properties exploited in its 

application as photographic film, protective film for polarizing plates or optical 

compensation film for liquid crystal displays (Sata et al., 2004). CDA is also used 

to produce plastic products whose use implies direct and prolonged contact with 

humans, like fashion accessories, tooth brushes, protective glasses, casino 

chips, etc (Carrolo and Grospietro, 2004). 

Cellulose acetate is extensively applied in the separation technology. 

Acetate membranes are used in desalting (by reverse osmosis), hemodialysis, 

drinking-water purification (by ultrafiltration) and filters for laboratory use. 

Cellulose acetate is also used as stationary phase in chromatography 

separations (Shibata, 2004). 

The manufacture of products made from cellulose acetate and other 

esters, has a promising future due to their renewable resource and properties. 

Cellulose acetate is becoming the raw material of choice for a new generation 

of high-tech products for the separation technology, the pharmaceutical 

industry, the controlled release and biopolymer fields (Glasser, 2004). 
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1.3.5 CELLULOSE ACETATE AS AN ENZYMATIC SUBSTRATE 

Work on the modification of cellulose acetate with enzymes has been 

done in the context of its biodegradation (Puls et al., 2004). The figure 1.14 

summarizes the main reactions expected to occur during the biodegradation of 

cellulose acetate with special emphasis to the deacetylation reaction. The 

degradation of cellulose and hemicellulose is naturally carried out by 

microorganisms and requires the concerted action of many enzymes for their 

complete destruction. Among those carbohydrate-active enzymes, there is the 

group of carbohydrate esterases which hydrolyse the ester linkage of 

polysaccharides substitutents, allowing for the exo- and endoglycoside 

hydrolases to break the polymer chains. 

Cellulose acetate was found to be a carbon source for several 

microorganisms and a substrate of several acetyl esterases in cell-free systems 

(Gardner et al., 1994; Samios, 1997; Sakai et al., 1996; Altaner et al., 2003a, 2003b). It was 
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found a negative correlation between the degree of substitution and the 

biodegradability of cellulose acetate (Samios, 1997). The deacetylation efficiency 

of carbohydrate esterases is decreased when the degree of substitution of 

cellulose acetate increases and consequently its hydrophobicity and 

crystallinity. 

11..44   NNIITTRRIILLAASSEE  ((EE..CC..   33 ..55 ..55..11))

R C

  

1.4.1 GENERAL DESCRIPTION, STRUCTURE AND FUNCTION 

The formation and cleavage of carbon-nitrogen bonds are essential in 

biology. Peptide bonds are the most obvious class of carbon-nitrogen bonds, 

but there are others whose metabolism is less well understood (Brenner, 2002). 

Such less obvious bonds include nitriles (R-C≡N), amides [R-C(=O)-NH2], 

secondary amides [R-C(=O)-NH-R’], N-carbamyl amides [R-NH-C(=O)-NH2]. 

They are hydrolytic substrates for 9 of 13 branches of the nitrilase superfamily 

(Brenner, 2002; Pace and Brenner 2001). Nitrile-degrading activity is found in three of 

the 21 plant families and in a limited number of fungal genera, while it is 

relatively frequent in bacteria (Banerjee et al., 2002). 

Nitrilases belong to the first branch of the Nitrilase superfamily, which is 

Figure 1.15 – Mechanism of the nitrile hydrolysis catalysed by 
nitrilase (adapted from Banerjee et al., 2002). 
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the only one displaying true nitrilase activity (Brenner, 2002; Pace and Brenner, 2001). 

Nitrilases are thiol enzymes that perform the hydrolysis of the nitrile group to the 

corresponding acid and ammonia. The reaction starts with the nucleophilic 

attack on the nitrile carbon atom by the thiol group of a catalytic cysteine 

residue (figure 1.15). Subsequent steps involve the attack by two water 

molecules, protonation of the nitrogen atom, which is released as ammonia, and 

regeneration of the enzyme, through tetrahedral intermediates (Banerjee et al., 

2002). 

The nitrilase was first isolated from barley leaves, in 1964, where it 

catalyses the conversion of indole-3-acetonitrile to the auxin indole-3-acetic acid 

(Mahadevan and Thimann, 1964). In the same year, a nitrilase was also isolated 

from a soil bacterium by selection for growth on a natural occurring nitrile – 

ricinine (Robinson and Hook, 1964; Hook and Robinson, 1964). Since then, several 

nitrilases were isolated and characterized but they represent a rather small 

fraction compared to the 137 nitrilases that the Diversa Corporation claimed to 

discover recently (Robertson et al., 2004). From the available information it is clear 

that nitrilases are a very heterogeneous group regarding their biochemical 

characteristics: substrate specificity, optima pH/temperature, and quaternary 

structure (O’Reilly and Turner, 2003; Harper, 1977a, 1977b, 1985; Stalker and McBride, 1987; 

Kobayashi et al., 1990; Nagasawa et al., 2000; Khandelwal et al., 2007). 

Most nitrilases show highest activities for aromatic nitriles and, in general, 

they prefer the meta and para substitutions with poor or no activity with ortho 

substituted substrates (Harper, 1977a, 1977b, 1985; Stalker and McBride, 1987). Some 

nitrilases have a preference for arylacetonitriles and others for aliphatic nitriles 

(Kobayashi et al., 1990). The relative low optimum temperature of nitrilases (30 ºC - 

45 ºC) reflect the growth optimum temperature of the source organisms and the 

intracellular nature of nitrilases, nevertheless few nitrilases have been isolated 

from thermophilic microorganisms (Cowan et al., 1998; Khandelwal et al., 2007). In this 

last case, the optimum temperature can vary from 50 ºC to 65 ºC. Regarding 

the pH, nitrilases have highest activities in the neutral to alkaline range (Cowan et 

al., 1998; O’Reilly and Turner, 2003).  

So far, the described nitrilases consist of a single folded polypeptide, 

which, in general, aggregates to form the active enzyme. The oligomeric form, 

in some cases, is subjected to substrate activation or is dependent on the pH, 
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temperature and enzyme concentration (Harper, 1977a; Nagasawa et al., 2000; O’Reilly 

and Turner, 2003). The number of polypeptides in the aggregates can range from 

6 to as much as 26 subunits with the addition of subunits taking place in pairs 

(Sewell et al., 2003). 

The crystal structures of three members of the nitrilase superfamily are 

available (Kumaran et al., 2003; Nakai et al., 2000; Pace et al., 2000). Their domains 

have similar topology and dimerization modes (Kumaran et al., 2003). Each subunit 

is a compact αββα sandwich and it forms dimers with an eight layer αββα:αββα 

structure (figure 1.16A). The subunit is well defined, globular and, in all the 

three structures, the dimer interface is through interactions between α layers. 

These dimers combine further to form tetramers in two of the three studied 

proteins through contacts between the exposed edges of the β-layers (Nakai et 

al., 2000; Pace et al., 2000). From the structures, mutagenesis and gene sequence 

comparison, it is assumed that the entire superfamily uses a catalytic triad 

consisting of conserved glutamic acid, lysine and cysteine residues (figure 

1.16B) (Brenner, 2002; Robertson et al., 2004; Kumaran et al., 2003; Nakai et al., 2000; Pace 

et al., 2000). 

The enzymes of the nitrilase superfamily play diverse and important roles 

in biology. The known functions include synthesis of signalling molecules, 

vitamins and coenzymes metabolism, small molecules detoxification and protein 

post-translation modifications (Brenner, 2002). 

 

1.4.2 APPLICATIONS 

Nitrilases have attracted the attention and interest in the past two decades 

and they are been recognised as important “green” catalysts (Kaul et al., 2007; 

Singh et al., 2006). The conversion of nitriles into carboxylic acids is a key organic 

reaction in the synthesis of many intermediate compounds and final products. 

The chemical hydrolysis of nitriles requires drastic conditions such as strong 

bases or acids and/or elevated temperatures, besides, it originates undesirable 

by-products and inorganic wastes (Zhu et al., 2007). The advantages presented by 

these enzymes, besides the eco-friendly biotransformation is their inherent 

enantio- and, in particular, regio-selectivity. 
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There are several examples of industrial conversions of pyridine-nitriles, 

pyrazine-nitriles and regio-selective transformation of dinitriles using nitrilases 

(Kaul et al., 2007). The nitrilase from Rhodococcus rhodochrous J1 was applied in 

the production of p-aminobenzoic acid, the vitamin nicotinic acid and the 

antimycobacterial agent pyrazinoic acid, with a substrate conversion of 100% 

(Kobayashi and Shimizu, 1994). Acrylic and methacrylic acid are also produced by 

the same nitrilase using acrylonitrile as substrate. The acrylic homo- and 

copolymers are important as print-thickeners, dispersants in pigment 

Figure 1.16 – Schematic ribbon diagrams depicting the overall 
structure of N-carbamyl-D-amino acid amidohydrolase from Agrobacterium 
sp. (Protein Data Bank ID: 1erz). A) View of the dimer where each 
polypeptide has a different colour and a labelled N- and C-terminal. B) View 
of one subunit where the catalytic triad, composed by a cysteine, lysine and 
glutamic acid, is shown as spheres. 
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suspensions, detergent builders, and disposable diapers, among others (Hughes 

et al., 1998). 

One of the most important industrial applications of nitrilase (from 

Alcaligenes strains) is the transformation of racemic mandelonitrile to (R)-(-)-

mandelic acid. This compound is a key intermediate in the production of semi-

synthetic cephalosporins, penicillins, and it is also important in the synthetic 

process of antitumor and antiobesity agents (Kaul et al., 2007). 

Transgenic crop plants expressing the nitrilase gene from Klebsiella 

ozaenae were obtained in order to survive to the herbicide bromoxynil which is 

a photosynthesis inhibitor (Kobayashi and Shimizu, 1994). The nitrilase destroys the 

herbicide by hydrolysis of its nitrile group. 

Another important application of nitrilase or nitrilase-producing organisms 

is the decontamination of acrylonitrile waste effluents and aqueous polymer 

emulsions containing this highly toxic and carcinogenic compound (Battistel et al., 

1997; Wyatt and Knowles, 1995).  

11..55   CCUUTTIINNAASSEE  ((EE..CC..   33..11..11..7744))   

1.5.1 GENERAL DESCRIPTION, STRUCTURE AND FUNCTION 

Cutinases are carboxylic ester hydrolases that degrade cutin which is the 

structural component of the outer envelope (the cuticle) of higher plants (Purdy 

and Kolattukudy, 1975a; Kolattukudy, 2002). Cutin is a natural polyester composed 

mainly of C16 and C18 hydroxyl and epoxy fatty acids as monomers. The cuticle 

constitutes an efficient barrier against desiccation and entry of pathogens in 

plants (Kolattukudy, 2002). The enzymatic degradation of the cuticle, as a 

consequence of the secretion of cutinases by fungi, was proved to be one of the 

first steps in the infectious process of plants (Carvalho et al., 1998). 

Cutinases have been purified from different sources, especially fungi but 

also from pollen and bacteria (Carvalho et al., 1998). The first and most studied 

cutinase is from the fungal pathogen of peas, Fusarium solani pisi (Purdy and 

Kolattukudy, 1975a, 1975b). This is a small ellipsoid protein (≈22 KDa, 45x30x30 Å) 

that bridges functional properties of lipases and esterases, because it 

hydrolyses both soluble esters and emulsified triacylglycerols (Mannesse et al., 
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1995; Egmond and de Vlieg, 2000). Studies with triglyceride analogues revealed that 

cutinase activity is very sensitive to the length and distribution of the acyl 

chains, with highest activities observed for short chain lengths of three to five 

carbons (Mannesse et al., 1995; Egmond and de Vlieg, 2000). The optimum pH for the 

hydrolysis is around 8.5, depending on the particular substrate used, and the 

maximum thermal stability is obtained for the pH range 6-9 (Petersen et al., 1998, 

2001b). 

Cutinase is a serine esterase that shares the basic catalytic features with 

serine proteases (Köller and Kolattukudy, 1982). The essential feature is the 

catalytic triad involving the hydroxyl group of a serine, the imidazole side chain 

of a histidine and a carboxylic side chain of an acidic residue which, in cutinase, 

is an aspartic residue (Martinez et al., 1994). The function of the serine is to 

participate in a transacylation reaction with the substrate to form an acyl-

enzyme intermediate (figure 1.17). The intermediate is hydrolysed to release 

the first product. The serine acyl ester reacts then with a water molecule to 
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release the fatty acid and to regenerate the catalytic hydroxyl group (Lau and 

Bruce, 1999; Petersen et al., 2001a). The role of the imidazole ring is to act as a base 

to remove the proton from the serine hydroxyl group in concert with the 

nucleophilic attack of the serine oxygen on the carbonyl carbon of the substrate. 

The aspartic residue seems to orient the imidazole ring properly and to stabilize 

the local structure around the active site (Lau and Bruce, 1999). 

The F. solani pisi cutinase belongs to the superfamily of α/β-hydrolases, to 

which lipases also belong. Cutinases have a central slightly twisted β-sheet 

consisting of five parallel strands covered by two α-helices on either side of the 

sheet (figure 1.18A) (Longhi and Cambillau, 1999; Egmond and de Vlieg, 2000). The 

nucleophilic serine is located in an extremely sharp turn between a β-chain and 

an α-helice, named nucleophilic elbow. The amino acid sequence around the 

catalytic serine (Gly-Tyr-Ser-Gln-Gly) matches the consensus sequence 

commonly present in lipases (Gly-His/Tyr-Ser-X-Gly). The catalytic triad is 

located at one edge of the ellipsoid protein (figure 1.18B), it is rather accessible 

to the solvent, in contrast with lipases, and it is surrounded by two loops with 

A 

B 

Asp 175 

His 188 Ser 120 

N

C 

Figure 1.18 – A) Schematic ribbon diagrams depicting the overall 
structure of cutinase from Fusarium solani pisi (Protein Data Bank ID: 1cex); 
the secondary structural elements are represented in different colours (β-
strands are in yellow, α-helixes are in red and connecting loops are in 
green; the N- and C-terminal are labelled; the two disulfide bridges and 
catalytic residues are depicted in blue by the stick model. B) Closed view of 
the catalytic triad composed by a serine, histidine and aspartic acid, shown 
by the stick model; the two possible locations of the Ser120 side chain are 
both represented.  
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high mobility (Prompers et al., 1999; Longhi et al., 1997). These loops delimit the 

catalytic site and the substrate binding cleft which is hydrophobic, reflecting the 

lipolytic nature of cutinases (Egmond and de Vlieg, 2000). 

The F. solani pisi cutinase is also classified as a member of the family 5 of 

carbohydrate esterases (www.cazy.org/fam/CE5.html), sharing a very similar 3D-

structure with other two members with known structure: the acetyl xylan 

esterase (E.C. 3.1.1.72) from Trichoderma reesei and the acetyl xylan esterase 

II (AXE II) from Penicillium purpurogenum (Hakulinen et al., 2000; Ghosh et al., 2001). 

Although they present very similar overall structures, the conformation of the 

active site is different. These esterases have more exposed catalytic residues 

than cutinase, reflecting their specificity towards nonlipidic polar substrates 

(Ghosh et al., 2001). There is also an additional loop, delimiting the active site, in 

the AXE II from P. purpurogenum, which is responsible for the preference for 

short substrates. When this loop is deleted, AXE II is also able to hydrolyse long 

chain fatty acidic esters, up to at least 14 carbons, resembling cutinase 

specificity (Colombres et al., 2008). 

 

1.5.2 APPLICATIONS 

Cutinase is a very versatile enzyme: it can utilise a broad range of 

substrates, it is rather stable and at low water activities cutinase catalyses the 

reverse reaction – trans-esterification of fats and selective esterification of 

alcohols (Carvalho et al., 1998). Both, hydrolytic and synthesis reactions have 

potential use in food processing, beverages, perfume industries, pharmaceutical 

industries, agriculture, chemical industries and others like pulp/paper, textile 

and leather industries (Panda and Gowrishankar, 2005). Some of its potentialities are 

already applied in industry, but many others are still at a research level. Some 

cutinase preparations have been produced by Genencor and Unilever for 

detergent and surfactant formulations (Carvalho et al., 1998). A lot of research is 

devoted to the study and optimization of cutinase activity in non conventional 

media (organic media, supercritical fluids and gas/solid systems) and in the 

stabilization of the enzyme through immobilization, micro-encapsulation and 

lyophilized preparations (Carvalho et al., 1999a). 
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Another important application of cutinase is the degradation of plastics. 

The synthetic polyester, polycaprolactone, was hydrolysed to soluble products 

that were used by F. solani wild type strains as source of carbon and energy 

(Murphy et al., 1996). 

11..66   TTAAIILLOORRIINNGG  TTHHEE  PPRROOPPEERRTT IIEESS  OOFF   BBIIOOCCAATTAALLYYSSTTSS    

1.6.1 PROTEIN AND MEDIA ENGINEERING 

The Nature’s biodiversity provides us with a large collection of enzymes 

well suited for supporting life, however, they may not always be well suited for 

our technological interests (Arnold, 2001). Therefore, the impact of enzymes is 

dependent on our ability to tailor their properties according to the demands of a 

particular technological process (Arnold, 2001). Some important issues that often 

need to be addressed are limited substrate range, limited stability to 

temperature, pH and solvent, limited enantioselectivity and limited turnover 

number (Powell et al., 2001). Although screening the biodiversity continues to be 

an important approach to find better biocatalysts, the manipulation of the protein 

molecule itself and/or the reaction media are gaining increasing importance. 

Reaction media engineering is important to optimize and modulate 

biocatalysts activity and stability. Biocatalysis in non-aqueous media offers 

unique advantages compared to aqueous enzymology (Castro and Knubovets, 

2003). There are drastic changes in the enantioselectivity of catalysed reactions, 

reversal of the thermodynamic equilibrium of certain reactions, suppression of 

water-dependent side-reactions, improved solubility of hydrophobic substrates 

or products and resistance to bacterial contamination (Klibanov, 2001; Castro and 

Knubovets, 2003). Homogeneous biocatalysis in water-organic mixtures is also 

used and major changes in enzyme catalytic activity and initial rates have been 

reported, depending on the type and amount of the cosolvent (Castro and 

Knubovets, 2003). In several cases, at low concentration of the organic cosolvent 

(between 5% and 25%) the initial rate and stability of the enzyme are 

maximized regarding aqueous buffers (Castro and Knubovets, 2003). 

The stability of enzymes in vitro is a very critical issue in biotechnology 

and both protein and media engineering strategies are used to increase it. 
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However, it is not always possible to resort to recombinant DNA technologies to 

obtain more stable biocatalysts. Besides, the chemical modifications that entrap 

enzymes into larger aggregates or immobilize them on supports for better half-

life times are not always adequate. They create diffusion and accessibility 

barriers which, in some situations like a solid substrate, may be problematic. 

Stabilizing additives are low-molecular weight compounds that interact with the 

enzyme molecules in a way that the unfolding is thermodynamically disfavoured 

(Ó’Fágáin, 2003). Sugars, polyalcohols and surfactants are examples of common 

compounds used to improve the stability of enzymes (Melo et al., 2001, 2003; 

Matsumoto et al., 1997). 

A revolution in the biocatalysts design at the molecular level was provided 

by the establishment of the recombinant DNA technology (Arnold, 2001). It 

allowed the manipulation of DNA sequences in a highly specific manner and the 

expression of their protein products in a variety of organisms, from animal cells 

to bacteria (Arnold, 2001). If a priori there is the knowledge of the protein 

structure, function and catalytic mechanism, it is possible to rational redesign 

enzymes through molecular site-specific changes. These changes can be a 

single point mutation, several point mutations or they can consist in the 

exchange/addition of a whole structural domain. It is also common to fuse two 

enzymes or an enzyme with a non-catalytic domain (Nixon et al., 1998). A good 

example of the benefits of such rational modelling of enzymes is provided by 

the work of Araújo et al. (2007). Computational modelling and site-directed 

mutagenesis were used to enlarge the active site of cutinase from Fusarium 

solani pisi to better fit larger substrates like a synthetic polymer chain. Several 

mutations were performed and one of these, cutinase L182A, showed an 

activity increase of five-fold when compared to the native enzyme, using PET as 

substrate (Araújo et al., 2007). Another procedure is the random redesign of 

enzymes through directed evolution which consists in repeated cycles of 

random mutagenesis and/or gene recombination, followed by screening and 

selection of the functionally improved mutants (Rubin-Pitel and Zhao, 2006). 

Besides recombinant DNA technology, biocatalysts can also be altered by 

physical and chemical modification procedures, involving the side chain reactive 

groups of the amino acid residues, allowing, for example, different types of 

enzyme immobilization (Ó’Fágáin, 2003; Illanes, 1999; Sheldon et al., 2005). Silva 
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(2005) modified a commercial serine protease by covalent coupling to a soluble-

insoluble polymer of high molecular weight. The enzyme conjugated to such a 

carrier, in its soluble form, may be used as a catalyst to modify the scales of 

wool fibres surface, with the purpose of providing resistance to felting and 

shrinkage without significant loss in fibre resistance. Then, it can be recovered 

via the insoluble state, presenting good operational and storage stabilities which 

are quite interesting from an industrial point of view (Cavaco-Paulo and dos Santos 

Martinho da Silva, 2003). 

 

1.6.2 FUSION PROTEINS WITH CHARBOHYDRATE - BINDING MODULES AND 

APPLICATIONS 

In 1950, it was proposed that the initial stage of enzymatic degradation of 

cellulose involved the action of two components: C1 was the non-hydrolytic 

component and Cx was the catalytic component (Din et al., 1994). The C1 was 

thought to be responsible for the nonhydrolytic disruption of cellulose, making 

the substrate more accessible to the Cx (Shoseyov et al., 2006). Decades later, the 

C1 component, named cellulose-binding domain, was isolated from the fungus 

Trichoderma reesei and the bacterium Cellulomonas fimi by proteolytic 

cleavage of the linker that connected this domain to the catalytic domain of 

cellulose-hydrolytic enzymes (figure 1.19) (van Tilbeurgh et al., 1986; Langsford et al., 

1987; Tomme et al., 1988; Gilkes et al., 1988). The name cellulose-binding domain 

evolved to carbohydrate-binding module (CBM) to reflect the diverse ligand 

specificity of these non-catalytic polysaccharide-recognizing domains. 

More than 500 putative sequences from bacteria, fungi, plants and 

Figure 1.19 – Schematic representation of a cellulase based on the 
cellobiohydrolase I from Trichoderma reesei (adapted from Hildén and 
Johansson, 2004). 

CH 2
CH2

H2C

HN

CBM

Linker

Catalytic domain



Enzymatic Treatment of Acrylic and Cellulose Acetate Fibres 

animals have been identified and the CBMs have been classified into 52 

different families based on the amino acid sequence, binding specificity and 

structure (www.cazy.org/fam/acc_CBM.html#1). The CBMs are a contiguous amino 

acid sequence from 30 to ≈200 residues, with a discrete fold and exist as a 

single, double or triple domain in one protein. They can be localised, within the 

protein, at the N- or C-terminal and seldom in the middle (Shoseyov et al., 2006). 

In general, CBMs can have three functions in the parental protein 

(Shoseyov et al., 2006; Boraston et al., 2004). The proximity effect increases the 

concentration of the enzyme on the surface of the substrate. Several authors 

reported a reduction in the catalytic activity when the CBM is removed, but only 

for solid polysaccharides. The targeting effect, meaning substrate binding and 

selectivity, is also attributed to the CBM. The interaction of aromatic amino acid 

side chains with the ligand is ubiquitous to CBM carbohydrate recognition; the 

key determinant of the binding specificity is the binding-site topography. The 

CBMs can be grouped in two three general classes according to structural and 

functional similarities. The type A CBMs bind to surfaces of crystalline 

polysaccharides and they have flat or platform-like binding sites. The type B 

CBMs interact with single chains, thus with the amorphous phases of the 

polysaccharides, and they have binding sites in the shape of a groove or cleft of 

varying depth. The type C CBMs bind to small sugars having one to three units. 

Finally, the last but the most controversial role attributed to CBMs is the non-

hydrolytic disruptive effect of the polysaccharide structure. This effect was 

described only for a few CBMs. The first evidence was found for the CBM from 

the endoglucanase A (CenA) from C. fimi, which alone or attached to the linker 

region led to a rough surface on cellulose fibres and to the release of small 

particles (Din et al., 1991). 

The application of CBMs in several areas of biotechnology has been 

growing in the recent years due to the fact that CBMs are independently folded 

domains and a priori they can function perfectly when fused to other proteins. 

Moreover, their ligands are abundant and renewable materials with good 

properties and normally low-priced (Shoseyov and Warren, 1997). One of the most 

important areas is bioprocessing, because large-scale purification and recovery 

of biological molecules continues to be a challenge. CBMs can be expressed as 

an affinity tag for protein immobilization, processing and purification using 
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cellulose as a matrix in many formats, from affinity chromatography to two 

phase liquid separations (McCormick and Berg, 1997). Targeting of compounds to 

polysaccharides that are present in many daily products, especially cellulose, is 

also an important application of CBMs. This area includes oral care products, 

denim stonewashing, the targeting of enzymes that do not possess natural 

affinity to cotton, in laundry detergents, and other chemicals, like fragrances (von 

der Osten et al., 2000a,b; Cavaco-Paulo, 1995; Kalum and Andersen, 2000; Berry et al., 2001; 

Fuglsang and Tsuchiya, 2001). Other applications include whole cell immobilization, 

enzyme immobilization and modification of polysaccharide fibres by non-

hydrolytic disruptive activity (Shoseyov et al., 2006; Pinto et al., 2004). The application 

of CBMs is faraway from being exhausted and will be further expanded with the 

increasing knowledge on these binding domains. 

 

1.6.3 CARBOHYDRATE-BINDING MODULE OF CELLOBIOHYDROLASE I FROM 

TRICHODERMA REESEI 

In the 1980s, major steps were taken in the understanding of how 

cellulolytic enzymes work. Many studies were conducted with the fungus T. 

reesei and it was evident that the four cellulases, known at that time, shared a 

common structural organization. They consisted in a catalytic domain (≈400-500 

residues), a highly conserved terminal domain (≈40 residues), either at the C- or 

N-terminal and a heavily O-glycosylated linker region (≈30 residues) connecting 

the two domains (Fägerstam et al., 1984; Bhikahbhai and Pettersson, 1984; van Tilbeurgh et 

al., 1986). The limited proteolysis of the cellobiohydrolase I from T. reesei (CBH I) 

led to the first clue on the function of the conserved C-terminal domain (van 

Tilbeurgh et al., 1986). The core protein was fully active against small, soluble 

substrates, while the whole cellulase, with the C-terminal peptide was active 

against Avicel (insoluble microcrystalline cellulose). The implication of the C-

terminal peptide of CBH I in the adsorption process and enhancement of 

cellulase activity towards solid substrates was confirmed later on and it was 

demonstrated that the C-terminal domain and the linker interacted directly with 

insoluble cellulose independently of the presence of the core domain (Tomme et 

al., 1988; Stahlberg et al., 1988). This cellulose-binding activity was eliminated by 
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reduction of disulfide bridges in the C-terminal peptide, pointing to the existence 

of a defined 3D-structure (Johansson et al., 1989). 

The structure of the CBM from CBH I was first determined in 1989 by NMR 

(Kraulis et al., 1989). Subsequent directed mutagenesis of the CBM and sequence 

alignment studies determined the most important residues for the adsorption 

and cast some light on the mechanism of interaction with cellulose (Reinikainen et 

al., 1992, 1995; Linder et al., 1995a, 1995b; Mattinen et al., 1997a, 1997b; Hoffrén et al., 1995). 

The CBM from CBH I belongs to the CBM family 1 and folds into a wedge-

shape structure with overall dimensions of 30x18x10 Å (figure 1.20). One face 

of the wedge is flat, hydrophilic and it is the one that interacts with crystalline 

cellulose. The main secondary structure is a small anti-parallel β-sheet 

composed by three strands which is stabilized by hydrogen bonds and two 

disulfide bridges. The residues that compose the flat binding surface are well 
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Figure 1.20 – A) Primary sequence and secondary structures of the 
CBM of CBH I from Trichoderma reesei; the two disulfide bridges are 
represented by the sticks connecting the cysteine residues; the tyrosines 
involved in the interaction with the ligand are in red. B) Ribbon schematic 
representation of the overall 3D-structure (Protein Data Bank ID: 2cbh); the 
two disulfide bridges and ligand-binding tyrosines are depicted by the stick 
model. C) Binding of the flat surface of CBM to an oligosaccharide of 6 
glucose units (from Mattinen et al., 1997b). 
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conserved among fungal CBMs. In the CBM from CBH I, the three tyrosines 

Tyr5, Tyr31 and Tyr32 are involved in the interaction with the glucose rings of 

cellulose, mainly through van der Waals forces and their substitution leads to a 

significant decrease in the binding affinity. 

The construction of a bifunctional CBM, using the CBM from CBH II and 

CBH I spaced by a small linker, showed that the connection affects the binding 

of the individual CBMs (Linder et al., 1996). The double CBM exhibits higher 

affinity to the solid substrate than the isolated CBMs. Another work 

demonstrated the reversibility with a high exchange rate of the CBM from CBH I 

which is crucial for the mobility of CBH I on the cellulose surface and its 

continuous activity (Linder and Teeri, 1996). 

 

1.6.4 CARBOHYDRATE-BINDING MODULE N1 OF ENDOGLUCANASE C FROM 

CELLULOMONAS FIMI 

The gene and its product, the endoglucanase C (CenC), from the 

bacterium C. fimi, were first identified in 1989, after other cellulases from the 

same organism had already been characterized (Moser et al., 1989). The complete 

sequence of cenC gene and the characterization of the cellulase CenC were 

accomplished later, revealing an unusual organization that did not resemble the 

other cellulases from C. fimi found previously (Coutinho et al., 1991). The 

identification of the cellulose-binding domain was possible by the dissection of 

the gene and independent expression of the different sequences (Coutinho et al., 

1992). It was found that CenC has two CBMs (N1 and N2) in tandem at the N-

terminal, with distinct structures and affinities (Coutinho et al., 1993). The CBMN1 

binds preferentially amorphous cellulose and can also bind Avicel weakly but 

not crystalline cellulose (Tomme et al., 1996a). 

The structure of the CBMN1 was first determined in 1996 by NMR (Johnson 

et al., 1996a, 1996b). Subsequent directed mutagenesis and structure 

determination of the CBMN1 in complex with an oligosaccharide by NMR and X-

ray crystallography have elucidated the interaction of this CBM with a single 

chain of cellulose and revealed the most important residues (Kormos et al., 2000; 

Johnson et al., 1999; Boraston et al., 2002). The CBMN1 belongs to the CBM family 4 

and it folds into jelly-roll β-sandwich (figure 1.21). There are no α-helices, the 
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sandwich comprises two anti-parallel β-sheet, A and B, of five strands each and 

there is one disulfide bridge connecting two neighbour strands in the β-sheet B. 

The binding site of CBMN1 is a cleft that runs across the β-sheet A and consists 

of a central strip of hydrophobic side chains, flanked on both sides by polar and 

aromatic residues. The side chains of the residues Arg75, Asn50, Gln124 and 

Gln128 form hydrogen bonds with the hydroxyl groups of the cellopentose and 

the three tyrosines Tyr19, Tyr43 and Tyr85 are involved in the interaction with 

the glucose rings of cellulose, mainly through van der Waals forces. The 

substitution of these residues by alanine leads to a significant decrease in the 

binding affinity, specially the aromatic residues.  

N

C

Tyr 43

Tyr 85 Tyr 19

Figure 1.21 – A) Primary sequence and secondary structures of the 
CBMN1 of CenC from Cellulomonas fimi; the disulfide bridge is represented 
by the line connecting the cysteine residues; the tyrosines involved in the 
interaction with the ligand are in red. B) Ribbon schematic representation of 
the overall 3D-structure showing a ligand with 5 glucose units (Protein Data 
Bank ID: 1gu3); the N- and C-terminal are labelled. C) Close up view of the 
binding-site where the tyrosines involved are represented by the stick 
model. 
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11..77   AAIIMMSS  OOFF   TTHHEE  WWOORRKK  

In the industrial processing of natural textile fibres, several enzyme 

applications have been introduced. The same did not happen regarding the 

processing of most man-made fibres, specially the synthetic ones. Conventional 

modifications of such fibres require high amounts of energy and chemicals in 

order to obtain the desired end-product properties. 

The general purpose of the present work is the development of eco-

friendly methodologies to produce value added fibres with new surface 

functionalities, through the application of enzymes for the specific and targeted 

modification of the surface of acrylic and cellulose acetate fibres. More precise 

objectives are the characterization of the fibre modifications by physicochemical 

methods and the improvement of the enzymes performance through the 

manipulation of the treatment media and recombinant DNA technologies. 
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he modification of nitrile surface groups into carboxylic groups by 

the action of a commercial nitrilase, is reported in this chapter. 

The enzymatic modification of acrylic fibres is a heterogeneous process 

and, for that reason, requires longer treatments than one-phase 

catalysis. The reaction media was manipulated with the purpose of 

improving nitrilase efficiency. The nitrilase catalysis was further studied 

without additives for a better understanding of the chemical 

modifications that were occurring at the acrylic fibre surface. 

The direct enzymatic modification of nitrile into carboxylic groups 

constitutes a promising approach to make the acrylic fibre more 

hydrophilic, enhancing the basic dye uptake of PAN treated fabrics and 

producing surface reactive chemical sites that may be the target of 

other finishing processes. 

T 
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22..  UUSSIINNGG  AA  NNIITTRRIILLAASSEE FFOORR  TTHHEE  SSUURRFFAACCEE  MMOODDIIFFIICCAATTIIOONN  OOFF  

AACCRRYYLLIICC  FFIIBBRREESS    

22 ..11   MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  

2.1.1 REAGENTS AND ENZYMES 

The enzyme used in this work was a commercial nitrilase (EC 3.5.5.1), 

Cyanovacta Lyase, supplied by Novacta Byosystems Ltd, Hatfield, Herts, UK. 

The acrylic taffeta fabric used was produced from a copolymer of PAN and 

7% vinyl acetate, with 82 g m-2 and 36/36 ends/picks per cm, supplied by 

Fisipe, Lavradio, Portugal. 

The cationic dye Basic Blue 9, C.I. 52015, was from Carlo Erba, Milan, 

Italy. All other reagents were laboratory grade reagents from Sigma-Aldrich, St. 

Louis, USA, unless stated otherwise. The buffer used throughout the work was 

a phosphate buffer having a concentration of 50 mM and pH 7.8. The 

exceptions are specified when necessary. 

 

2.1.2 NITRILASE ACTIVITY ASSAY 

Nitrilase activity was determined by the quantification of the ammonia 

released into the reaction media, using benzonitrile as the substrate. The 

reaction was started by the addition of 0.25 mL of a buffered nitrilase solution 

containing 0.08 mg mL-1 of total protein to 0.25 mL of 19.4 mM benzonitrile. The 

mixture was incubated for 1 to 10 min in a water bath at 30 ºC. The reaction 

was stopped by adding 0.1 mL of 2 M hydrochloric acid. The ammonia was 

quantified using an enzymatic kit from Sigma Diagnostics, St. Louis, USA (cat. 

No 171-A). All the assays were performed in triplicate. One unit of nitrilase initial 

activity was defined as one µmol of ammonia released per minute. 
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2.1.3 PH AND TEMPERATURE PROFILE  

Nitrilase solutions with 0.08 mg ml-1 of total protein were incubated for 10 

min at 30 ºC in 300 mM Britton-Robinson buffer of constant ionic strength. The 

pH range tested was 4.5 to 10.6.  

The effect of temperature was investigated within the range 20 ºC - 60 ºC. 

Preparations of buffered nitrilase solution with 0.08 mg mL-1 total protein were 

incubated for 10 minutes, at the tested temperatures. 

The nitrilase activity was measured as described previously. 

 

2.1.4 STABILITY OF NITRILASE  

The operational stability of nitrilase was investigated in the presence of 

two organic solvents and several polyalcohols. The buffered enzyme was 

incubated at a final total protein concentration of 0.08 mg mL-1 in different media 

compositions: 4%-15% v/v of DMA, 4%-15% DMF or 1 M of a polyalcohol. The 

polyalcohols studied were glycerol, sorbitol and ethylene glycol (EG). The 

enzyme was also incubated at the same final concentration with 4% v/v DMA 

and 1 M sorbitol. For each assay, the final volume was 25 mL, kept in 50 mL 

polypropylene containers. The control was identically prepared except that 

buffer substituted the enzyme. The incubation took place in a water bath at 

30 ºC, with an orbital agitation, until the drop in nitrilase activity was above 50%. 

The enzyme activity was assayed at proper time intervals as previously 

described. 

 

2.1.5 EFFECT OF ADDITIVES IN THE ENZYMATIC TREATMENT OF ACRYLIC FABRIC  

All samples of acrylic fabric used were washed prior to use in order to 

remove possible impurities from manufacture and from human handling. The 

washing was performed at 60 ºC with an aqueous solution of 1.0 g L-1 Lutensol 

AT25, a non-ionic detergent (BASF, Ludwigshafen, Germany). After removing 

the detergent, the fabric was washed with distilled water and allowed to air dry. 

The treatment of acrylic fabric was carried out in stainless steel pots of 

450 mL in capacity, housed in a laboratory scale machine Rotawash MKIII 

(vertical agitation simulating European washing machines, from SDL 

International Ltd.), operating at 30 ºC and 20 rpm, for 116 hours. The samples 

 50



Enzymatic Treatment of Acrylic and Cellulose Acetate Fibres 

of acrylic fabric, having an average weight of 9 g, were incubated with 24 U of 

nitrilase per gram of fabric, in a final volume of 360 mL of buffer. Three different 

media were tested: no additives, 4% v/v DMA plus 1 M sorbitol and the control 

without enzyme and without additives.  

After the enzymatic treatment, all fabric samples were immediately 

washed to remove the adsorbed protein. The samples were left under running 

tap water for several minutes, then they were washed with 2 g L-1 sodium 

carbonate and distilled water, for 60 min each, at 60 ºC.  

 

2.1.6 ENZYMATIC TREATMENT OF ACRYLIC FABRIC 

All samples of acrylic fabric used were previously washed, as already 

described. The acrylic fabric was treated with 412 U of nitrilase per gram of 

fabric in buffer, at 40 ºC. The acrylic fabric samples were treated in independent 

containers, one piece of fabric and bath solution for each time determination, in 

the Rotawash MKIII at 20 rpm. Samples of acrylic fabric with an average weight 

of 2 g were incubated in a final volume of 100 mL of treatment solution for 0, 2, 

4, 8, 24, and 36 hours.  

After enzymatic treatment, all fabric samples were washed twice in 2 g L-1 

sodium carbonate for 20 min, once in 4 g L-1 Lutensol AT25 for 20 min and 

three times in distilled water for 25 min, in the Rotawash at 70 ºC. Before and in 

between the changes of the washing solution, the samples were left under 

running tap water. 

 

2.1.7 QUANTIFICATION OF TOTAL PROTEIN CONCENTRATION 

Total protein in solution was quantified following Bradford methodology, 

using BSA as standard (Bradford, 1976). All samples were measured in triplicate. 

  

2.1.8 DETERMINATION OF AMMONIA CONCENTRATION  

Detection of ammonia in the reaction media of the first acrylic fabric 

treatment (section 2.1.5) was performed using the enzymatic kit from Sigma 

Diagnostics. 

For the second nitrilase treatment (section 2.1.6), the Nessler method was 

adapted and applied to quantify ammonia (Greenberg et al., 1992). The protein was 
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previously precipitated using trichloroacetic acid and the pH of supernatants 

was neutralized with 250 mM sodium hydroxide. The standard solutions were 

prepared using anhydrous ammonium chloride and were submitted to the same 

protein precipitation procedure and pH adjustment. For the Nessler 

determination, 0.5 mL of samples/standards were diluted with 4.5 mL of distilled 

water in glass tubes and 10 µL of Rochelle salt (aqueous solution: 50% w/v 

potassium sodium tartrate tetrahydrated) were added. After mixing well, 0.2 mL 

of Nessler reagent was added to each tube and again mixed. The colour was 

allowed to develop for 10 min and the absorbance was registered at 425 nm. All 

the assays were performed at least in duplicate. 

 

2.1.9 DETERMINATION OF POLYACRYLIC ACID CONCENTRATION 

Detection of PAA in the reaction media was performed by an absorption-

colorimetric method using a kit from Hach Company, USA (cat. No. 22252-00 

and No. 22257-00). The standards were prepared from aqueous solutions of 

PAA (average molecular weight of 2000 g mol-1). All the assays were performed 

in duplicate. 

 

2.1.10 DETERMINATION OF FABRIC WEIGHT DIFFERENCES 

The fabric weight differences were determined by the difference between 

the weight of the dry fabric before and after the enzymatic treatment. The fabric 

pieces were whipstitched with the same acrylic yarn before the treatment. After 

the washing procedures, the samples were dried at 60 ºC for three hours in a 

laboratory oven and they were then conditioned in a glass desiccator for 30 min. 

The drying and desiccation were repeated until differences in the measures 

were not significant (<5%). 

 

2.1.11 ACRYLIC FABRIC COLOURATION WITH A BASIC DYE 

After the enzymatic treatment, samples were competitively coloured in 

duplicate with 1% o.w.f. (of weight of fabric) Basic Blue 9, C.I.52015. The 

colouration was performed in a lab-scale dyeing machine (AHIBA Spectradye, 

from Datacolor International) with a temperature gradient of 4 ºC min. For a 

more detailed procedure, see table 2.1. 
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Table 2.1 – Conditions for the colouration of acrylic fabrics with Basic 

Blue 9, C.I. 52015, according to each enzymatic treatment performed 
 

Enzymatic treatment Temperature/ 
ºC 

Fabric 
weight/ g 

Colouration 
bath 

volume/ mL 
Time/ 
min 

1st treatment 80 1 100 75 

2nd treatment 70, 75, 80, 90 1.7 100 90 

 

 

After colouration, all samples were washed twice with 4 g L-1 Lutensol 

AT25, for 20 min each and several times with water at 70 ºC in Rotawash, until 

no more colour could be detected in the solution. The colour measurements (5 

for each sample) were carried out with a reflectance spectrophotometer having 

a standard illuminant D65 (Spectraflash 600 Plus, from Datacolor International). 

The colour strength was evaluated as K/S at the maximum absorption 

wavelength (660 nm). The ratio between absorption (K) and scattering (S) is 

related to reflectance data by applying Kubelka-Munk’s law at each wavelength, 

and it is proportional to dye concentration (Kuehni, 1997). 

22..22   RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  

2.2.1 PH AND TEMPERATURE PROFILE OF NITRILASE ACTIVITY  

Enzymes as proteins have properties that are quite dependent on the 

environment. Among other factors, slight changes on pH and temperature can 

affect the performance of an enzyme. The effect of the solution pH on the initial 

activity of nitrilase was studied within the pH range 4.5-10.6. Nitrilase was active 

in a wide range of pH and it kept more than 75% of its maximum activity 

between 7.5 and 10.6. The maximum initial activity of nitrilase was observed in 

the pH range 8-10, being pH 9 the optimum pH value for which the activity was 

15 U per mg of total protein. Nitrilases are in general very labile enzymes, 

especially for high purity levels (Harper, 1977a, 1985; Bandyopadhyay et al., 1986), with 



2. Using a Nitrilase for the Surface Modification of Acrylic Fibres 

optimum pH values ranging between 7.5 and 8 (Banerjee et al., 2002; O’Reilly and 

Turner, 2003). The commercial enzyme used throughout this work is supplied as 

cell preparation and according to the results obtained, this nitrilase has a 

relative high optimum pH, resembling nitrilases from fungi and from the 

bacterium Klebsiella ozaenae (Harper, 1977b; Stalker et al., 1988). According to the 

suppliers, the enzyme solution should be maintained in the pH region 7-8, thus 

the pH 7.8 was chosen to perform all the enzymatic treatments. 

The temperature effect on nitrilase initial activity was studied between 

20 ºC and 60 ºC. The maximum formation of ammonia occurred between 40 ºC 

and 45 ºC. The highest value of activity was 33 U mg-1, obtained at 45 ºC. 

Above this temperature, there was a sharp decrease in the nitrilase activity. In 

the literature, the optimum temperature for mesophilic nitrilases varies 

considerably but there is some agreement in considering this group of enzymes 

very sensitive to this parameter (Cowan et al., 1998). The range of temperatures 

for which enzymes are stable is often below the optimum value. 

 

2.2.2 STABILITY OF NITRILASE 

Operational stability, defined as the persistence of enzyme activity under 

the conditions of use, was studied before applying the enzyme to acrylic fabric 

treatment (Ó’Fágáin, 2003). The effect of the addition of two organic solvents and 

polyalcohols on nitrilase activity was studied by comparing the half-life time, as 

a measure of stability. The values of half-life time were calculated from first 

order exponentional decay fitting of data, using OriginPro 7.5 SR0 (OriginLab 

Corporation, Northampton, USA). The decay of nitrilase activity obeyed to this 

exponential model of enzyme deactivation. 

The addition of both organic solvents, DMA and DMF, to the enzyme 

solution decreased the initial activity and the half-life time of nitrilase. For many 

enzymes, deactivation in homogeneous water-organic solvent mixtures may be 

due to the disruption of the quaternary structure, disruption of the protein 

hydrophobic core and/or to the water stripping (Castro and Knubovets, 2003). This 

effect was more pronounced as the organic cosolvent concentration increased. 

The decrease in the half-life time is almost linear with the increase in the 

organic solvent concentration (table 2.2). The decrease of nitrilase activity was 
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faster and more pronounced when DMF was added. Therefore, DMA should be 

used instead of DMF regarding the enzymatic treatments of acrylic fibre. The 

investigated organic solvents were chosen because of their action on the fibre 

structure. They are known solvents of PAN and they are commonly used in 

industrial production of acrylic fibre (Burkinshaw, 1995; Capone, 1995). Their 

plasticizer function disturbs the regular structure of the polymer, reducing the 

magnitude of interchain bonding, which should aid the accessibility to the 

enzyme, improving its action on the fibre. 

 

 
Table 2.2 – Influence of organic solvents and polyalcohols on initial 

activity and half-life time of Nitrilase, at 30 ºC and pH 7.8. An initial activity 
and a half-life time of 100% correspond to 12.6 U mg-1 and 15 hours, 
respectively. The half-life time was calculated as kt 2ln

2
1 =

kx
tt eaa −
== .0

, from the 1st 

order exponential decay fit of data ( ) 
 

Assay conditions Initial activitya (%) Half-life timea (%) 

Control No additives 100 100 

DMF 

4 % 87 30 

10 % 78 19 

15 % 59 9 

DMA 

4 % 84 90 

10 % 89 55 

15 % 87 19 

Polyalcohols 

Glycerol 122 101 

Sorbitol 122 294 

EG 107 160 

4% DMA + 1 M sorbitol 105 249 
a The standard deviations for the initial activity and half-life time values were 

≤ 5% and ≤ 7%, respectively. 
 

 

The initial activity of nitrilase increased in the presence of all the studied 

polyalcohols, particularly, sorbitol and glycerol (table 2.2). It cannot be excluded 

that this effect could be due to a better solubility of the substrate benzonitrile in 
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the media containing these compounds. The highest half-life time values were 

obtained with the addition of sorbitol and EG. Sorbitol showed the best 

performance as a nitrilase stabilizer for long-term treatments. The half-life time 

increased almost three times (from 15 to 44 hours) in the presence of sorbitol. It 

has been found that the addition of high concentrations (usually higher than 

1 M) of some low molecular weight compounds in solution stabilizes the native 

conformation of globular proteins (Xie and Timasheff, 1997; Timasheff, 1995). 

A combined effect of the organic solvent and the stabilizer was studied in 

order to check the possibility of a compromise between an increase in the 

accessibility of the nitrilase to acrylic fibre and a good operational stability of the 

enzyme. The least deleterious condition studied was 4% (v/v) of DMA. The 

addition of 1 M of sorbitol to this medium proved to be beneficial (table 2.2). The 

initial activity was slightly improved and the half-life time, although shorter than 

the one obtained only in the presence of sorbitol, was still 249% of the half-life 

time for the control (no additives). The half-life time of nitrilase without additives 

increased from 15 to 38 hours in the presence of the additives. Therefore, these 

conditions were chosen for an enzymatic treatment of acrylic fabric. 

 

2.2.3 EFFECT OF ADDITIVES ON THE MODIFICATION OF ACRYLIC SURFACE WITH 

NITRILASE 

The hydrolysis of nitrile groups from the acrylic fibre should result in the 

formation of carboxylic groups at the fibre surface and in the release of 

ammonia to the treatment solution. 

The formation of carboxylic groups at the fibre surface was evaluated by 

colouring the fabric with a basic dye, which has a cationic group able to 

establish ionic bonds with anionic groups on the fibre. If nitrilase is able to 

modify some of the nitrile groups into carboxylic groups, at the surface, then 

more dye can be absorbed into the fibre and this could be seen as an increase 

in K/S. The colouration methodology was already reported and proved to be a 

valuable and a very sensitive qualitative method (Silva et al., 2005a, 2005b). 

For samples treated with nitrilase without additives, the K/S value 

increased 156% at the dyeing temperature of 80 ºC (table 2.3). The dye uptake 

was even more pronounced by the addition of sorbitol and DMA to the 
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enzymatic treatment. The increase of the colour level was 17%, when 

compared with the nitrilase treatment without additives, which can be attributed 

to the partial swelling of the fibre by DMA and to an improvement in nitrilase 

performance provided by an increase in the fibre surface area available for the 

enzyme attack. 

 

 
Table 2.3 – Effect of the additives on the enzymatic modification of 

acrylic fabric. The acrylic samples were treated with 24 U of nitrilase per 
gram of fabric, at pH 7.8 and 30 ºC, for 116 hours 

 
 

 

 

 

 

 
Control 

Enzymatic treatment 

 No additives DMA + sorbitol 

K/S 660nm
a 9.8 25.1 29.3 

Weight lossa (%) 0.3 0.4 0.9 

Ammoniaa (mM) 0 15.3 nd 
a The standard deviations for the K/S, weight loss and ammonia 

concentration values were ≤ 10%, ≤ 5% and ≤ 11%, respectively. 
 

 

Evidence of hydrolysis was also obtained by the formation of ammonia. 

The ammonia concentrations are reported in table 2.3. It was not possible to 

determine the ammonia in the solution from the treatment with additives, 

because they interfered with the kit reagents. 

From the expected reaction products, the weight of acrylic fabric should, in 

theory, increase. The results obtained showed the opposite (table 2.3). There 

was a slight weight loss instead of a weight gain. 

The above results suggested that some modified polymer chains could be 

solvated and could become soluble in the form of PAA or a copolymer of acrylic 

acid and acrylonitrile. To verify this hypothesis, another assay was performed 

and samples of acrylic fabric and treatment solutions were collected at different 

times of incubation. This study is reported in the next section. 

 

2.2.4 STUDIES OF ACRYLIC SURFACE MODIFICATION WITH NITRILASE 

As in all heterogeneous catalysis, it is necessary to consider two general 

steps in the modification of acrylic: the physical adsorption of nitrilase to the 
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fibre surface and the formation of the enzyme/substrate complex and 

consequent hydrolysis of the nitrile group. 

The protein adsorption was indirectly calculated by a decrease in total 

protein remaining in the treatment solution (figure 2.1). In the first 8 hours of 

treatment, there was a sharp decrease in the protein content in the treatment 

solution. Afterwards, the equilibrium around an average value was reached, 

with some oscillations due to alternating adsorption and desorption phenomena 

(Azevedo et al., 2000). The equilibrium value of protein concentration in the 

solution was around 9 mg L-1, meaning a total protein adsorption of 80%, at 

40 ºC. 

There was no significant ammonia release before 8 hours of treatment 

(figure 2.1). It is interesting to notice that the release of ammonia into treatment 

solutions was coincident with the achievement of the adsorption equilibrium. 

This lag phase is also seen in homogeneous catalysis of nitrilases whose 

activity onset depends on the assembly of its oligomeric active form (Harper, 

1977a). The ammonia release is a good indicator of successful nitrilase 

catalysis, which should render an improvement of the acrylic dyeability. It also 

shows that a certain amount of those 80% of total protein adsorption must be 

nitrilase and that the enzyme is able to recognize the nitrile groups of acrylic 

fabric as the substrate. 

Figure 2.1 – Total protein and nitrogen concentrations in the 
treatment solutions. The acrylic samples were treated with 412 U of 
Cyanovacta Lyase per gram of fabric, at pH 7.8 and 40 ºC. 
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The linear release of ammonia also implies the absence of activity decay 

during the 36 hours of treatment. Since its half-life time in solution was 15 

hours, it is feasible to assume that the adsorption of the enzyme to acrylic led to 

an increase in its stability, resembling the immobilization procedures employed 

to stabilize proteins. 

In the figure 2.2, the values of K/S are represented as a percentage of the 

initial value. The relative K/S had a waving behaviour with incubation time. This 

behaviour was attenuated with the increase in the colouration temperature, as 

expected. Enzymes are large molecules and they will not penetrate inside the 

tight structure of PAN fibres. Therefore, the chemical changes catalysed by 

nitrilase are located at the surface. At lower temperatures, the adsorption of dye 

occurs mostly at the fibre surface where the enzymatic catalysis takes place, 

producing different K/S values between samples treated with enzyme and 

controls. The significant raise in dye diffusion that occurs at or about the glass 

transition temperature (Tg) is often referred as the dyeing transition temperature 

(Td). Both transition temperatures, Tg and Td, indicate the onset of segmental 

mobility of the polymer chains and the consequent increase of the free volume 

within the polymer (Burkinshaw, 1995). Approaching these temperatures, the 

colour depth increases sharply for both enzymatic treated and untreated 

Figure 2.2 – Relative K/S values for acrylic fabric treated with 412 U 
of Cyanovacta Lyase, at pH 7.8 and 40 ºC. Samples and controls were 
competitively coloured at 70, 75, 80 and 90 ºC. Relative K/S was calculated 
as 
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samples and camouflages the differences in K/S due to superficial changes. 

This is the reason for the observed decrease in the amplitude of the oscillation 

of relative K/S with increasing colouration temperatures (70 ºC to 80 ºC). At 

90 ºC, which is above Td, the differences are absent. 

The oscillation of relative K/S values with time of treatment could be 

explained assuming that above a threshold conversion of nitrile groups into 

carboxylic groups, the polymer chains would be more stable in solution and 

would be detached from the surface of the fibre. The modification of CN into 

COOH groups could create some instability in the arrangement of PAN chains 

at the fibre surface, mainly due to steric hindrance and pH dependent charge 

repulsion. It was possible to detect increasing concentrations of PAA in 

treatment solutions (figure 2.3). The removal of carboxylic groups from the 

surface of the fabric could be the cause of the lower points on the K/S curve. 

When the PAA macromolecules leave the surface, the underneath PAN chains 

are exposed to further nitrilase catalysis. This leads to an increasing number of 

carboxylic groups, thus, to an increase of K/S, until the threshold value for chain 

solubilization is again achieved (figure 2.4). 

A maximum K/S value was observed for the treatment of 8 hours and it 

corresponded to a relative K/S of 135% (for the lower colouration temperature). 

Figure 2.3 – Relative K/S for acrylic fabric coloured at 70 ºC and 
polyacrylic acid concentration in the treatment solutions. The acrylic fibre 
was treated with 412 U of Cyanovacta Lyase per gram of fabric, at pH 7.8 
and 40 ºC. 
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For longer incubation periods, the “wave amplitude” tends to decrease, as the 

“length” tends to increase with time. This could be related to modifications in the 

fibre surface, since there was not an activity decay of the enzyme. However, the 

particular phenomenon that explains why this happens is still unclear. 

The hypothetical model of “surface erosion” of acrylic fibre, here described 

(figure 2.4), is very similar to the one applicable for synthetic polymers 

biodegradation (Marten et al., 2003, 2005). The acrylic fibre surface is depleted 

layer by layer, depending on factors such as micro-structural properties of PAN 

copolymers, molar mass of the polymer chains, enzyme adsorption, nitrilase 

deactivation, removal and dissolution of products. 

22..33   CCOONNCCLLUUDDIINNGG  RREEMMAARRKK SS  

In spite of the increasing interest in the nitrilase enzymatic system and its 

successful industrial applications using whole cells (Kobayashi and Shimizu, 1994; 

Hughes et al., 1998), there is still much space to fulfil in the understanding and 

improvement of the nitrile conversion by purified or semi-purified nitrilases. The 

work reported evaluates the stabilization efficiency of various additives and the 

influence of two organic cosolvents in the activity of a commercial nitrilase. 

From the additives studied, the best stabilizing performance was induced by 

sorbitol. Another important aspect is the fact that the organic solvent DMA, used 

in acrylic fibre industry, revealed no significant loss in enzyme initial activity, 

when used in small amounts. 

It was also demonstrated in this study that a successful application of 

nitrilase to the acrylic surface modification would be dependent on the control of 

important factors like time and enzyme activity. The nitrilase action seems to 

induce “surface erosion” of PAN fibres, by the dissolution of the modified 

polymer molecules. This hypothesis is confirmed by the detection of PAA in the 

treatment solutions and the increase of its concentration with the period of 

incubation of acrylic fabric with nitrilase. 

Further studies will be necessary to evaluate the impact of nitrilase activity 

in the physical properties of the fabric and to assess if some amide groups were 

also produced as by-products of nitrilase hydrolysis. 
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nitrilase 

acrylic fibres 

nitrile group 

carboxylic group 
at pH>7 

Figure 2.4 – Surface erosion model for acrylic fibres treated with 
nitrilase at alkaline pH (for simplification, the comonomer vinyl acetate is 
not represented). 
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From the above considerations, it could be suggested that the stabilized 

nitrilase has potential in textile industry for the modification of PAN fibres. The 

wet spinning would be the most adequate industrial process for the introduction 

of such enzymatic treatment, though it would demand a very fast enzymatic 

modification (a few minutes). The accessibility of the fibre would be greater than 

that of the woven fabric used in this study. If the application of the enzyme 

occurred when the fibre is still in a gel state, a considerable reduction in the 

time needed to maximize the enzymatic conversion into carboxylic groups could 

occur. In addition, after coagulation, there are other possible stages for the 

application of an enzymatic treatment, during which several finishing processes 

normally take place. The nitrilase stability would not be so compromised by the 

amount of solvent present as in earlier stages. In any case, a careful study is 

needed to evaluate the feasibility of such application, but the work here reported 

gives encouraging perspectives. 
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 previous work reported that cutinase could be used to modify 

the acrylic surface. After a long enzymatic treatment, the 

hydrolysis of ester bonds from the comonomer vinyl acetate produced 

acetic acid and hydroxyl groups on the surface of the fibre that could be 

detected by reactive colouration (Silva et al., 2005a). 

The major purpose of this work described in this chapter was to reduce 

the treatment time of acrylic fabric with cutinase and to improve its 

catalysis efficiency by means of reaction media manipulation. In order 

to do that, the influence of known acrylic solvents and the influence of 

known stabilizers on cutinase operational stability were investigated. 

The impact of mechanical agitation and additives on vinyl acetate 

enzymatic hydrolysis by cutinase and by a commercial esterase was 

also studied. 

A 
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33..  TTHHEE  EEFFFFEECCTT  OOFF  AADDDDIITTIIVVEESS  AANNDD  MMEECCHHAANNIICCAALL  AAGGIITTAATTIIOONN  

IINN  SSUURRFFAACCEE  MMOODDIIFFIICCAATTIIOONN  OOFF  AACCRRYYLLIICC  FFIIBBRREESS  BBYY  EESSTTEERRAASSEESS  

33..11   MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  

3.1.1 REAGENTS AND ENZYMES 

The enzymes used in this work were a cutinase (EC 3.1.1.74), from 

Fusarium solani pisi, and a commercial esterase Texazym PES, from inoTEX 

Ltd, Dvur Kralove nad Labem, Czech Republic. The recombinant wild type 

cutinase was over-expressed in Saccharomyces cerevisiae SU50 strain and 

supplied as culture medium, with 50% to 70% of purification degree in respect 

to total protein (Silva et al., 2005a; Calado et al., 2002). It was a generous gift from 

Centro de Engenharia Biológica, Instituto Superior Técnico, Lisbon, Portugal. 

The acrylic taffeta fabric used was produced from a copolymer of PAN and 

7% vinyl acetate, with 82 g m-2 and 36/36 ends/picks per cm, supplied by 

Fisipe, Lavradio Portugal. 

The reactive dye Remazol Brilliant Blue R, C.I. 61200, was acquired from 

Sigma. All other reagents were laboratory grade reagents also from Sigma-

Aldrich, St. Louis, USA, unless stated otherwise. The buffer used throughout 

this work was a phosphate buffer having a concentration of 50 mM and pH 8.  

 

3.1.2 ESTERASE ACTIVITY ASSAY 

Esterase activity was determined following the product release (p-

nitrophenol, p-NP) through the increase in the absorbance at 400 nm. The 

activity assay conditions for cutinase were described previously (Silva et al., 

2005b; Shirai and Jackson, 1982). The esterase activity of Texazym PES was also 

determined by using p-nitrophenyl butyrate (p-NPB) as substrate, but using 

slightly different conditions that were optimized for this enzyme. The enzymatic 

reaction was started with the addition of 0.1 mL of 10 mg L-1 Texazym PES to a 

final volume of 2 mL of phosphate buffer, containing 75 µM p-NPB and 5% v/v 
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ethanol. The mixture was incubated for 1.5 min in a water bath, at 35 ºC. The 

hydrolysis was stopped by the addition of 2 mL of acetone. All the assays were 

performed in triplicate. Standard solutions of p-NP were used to obtain the 

calibration curve. One unit of esterase initial activity was defined as one µmol of 

p-NP released per minute. 

 

3.1.3 STABILITY OF CUTINASE  

The operational stability of cutinase was investigated in the presence of 

two organic solvents and several polyalcohols. The enzyme was incubated at a 

final concentration 1 mg L-1 in phosphate buffer containing 0.05% w/v sodium 

azide. The concentrations of DMA or DMF used in this study were 7.5%, 15%, 

25% and 50% v/v. The final concentration of glycerol, sorbitol, xylitol and EG 

used was 1 M. For each assay, the control was identically prepared except that 

buffer substituted the enzyme. The incubation took place in a water bath at 

35 ºC with orbital agitation until the drop in esterase activity was above 50%. 

 

3.1.4 ENZYMATIC TREATMENT OF ACRYLIC FABRIC  

All samples of acrylic fabric used were previously washed to remove 

impurities. The washing consisted in several steps, all performed in a laboratory 

scale machine, the Rotawash MKIII (vertical agitation simulating European 

washing machines, from SDL International Ltd.), at 60 ºC and 20 rpm. The 

fabric was washed twice for 30 min with 0.1 g L-1 Lutensol AT25 (non-ionic 

detergent, BASF, Ludwigshafen, Germany) and left for 10 min under running 

tap water. Then, the fabric was washed once for 30 min with 2 g L-1 sodium 

carbonate and left for another 10 min under running tap water. Finally, the fabric 

was washed three times in distilled water for 20 min each and was left to dry at 

room temperature. 

Two sets of experiments were carried out for each enzyme taking into 

account the degree of mechanical agitation. For both sets, the treatment of 

acrylic fabric was performed in stainless steel pots of 450 mL capacity in 

Rotawash machine, in the case of cutinase, and in Washtec-P 05/99A (vertical 

agitation simulating European washing machines, from Roaches International 

Ltd.), in the case of Texazym. All the treatments were performed in phosphate 
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buffer at 30 ºC and 20 rpm, for three hours. To increase the mechanical 

agitation, stainless steel discs (19.2 g, 32 x 3 mm) were added to the reaction 

mixture.  

In the cutinase treatment, samples of acrylic fabric, having an average 

weight of 1.57 g, were incubated with 9 U mL-1 of cutinase, in a final volume of 

100 mL. Five different media were tested: no additives, 1% and 15% v/v of 

DMA, 1 M glycerol and 1% DMA + 1 M glycerol. In a second set of assays, 

these conditions were repeated and 4 stainless steel discs were added to each 

assay. 

In the treatment with Texazym PES, samples of acrylic fabric, having an 

average weight of 3.05 g, were incubated with 3.4 U mL-1 of the enzyme, in a 

final volume of 200 mL. The reaction media were the same as described for 

cutinase. The number of discs added was raised to 9 per assay. For each 

reaction media, a control was run in parallel in which buffer substituted the 

enzyme. 

After enzymatic treatment, all fabric samples were washed twice in 2 g L-1 

sodium carbonate for 30 min, once in 0.25 g L-1 Lutensol AT25 for 30 min and 

three times in distilled water for 15 min, in the Rotawash or Washtec-P at 70 ºC. 

 

3.1.5 QUANTIFICATION OF TOTAL PROTEIN CONCENTRATION 

Total protein in solution was quantified following Bradford methodology 

(Bradford, 1976), using BSA as standard. All samples were measured in triplicate. 

 

3.1.6 DETERMINATION OF ACETIC ACID CONCENTRATION IN THE BATH 

SOLUTIONS 

Detection of acetic acid in reaction media was performed with a kit from 

Boehringer Mannhaim R-Biopharm (cat. No.10148261035), Darmstadt, 

Germany. Protein was previously precipitated using perchloric acid according to 

the manufacture instructions. The samples pH was neutralized using 1 M 

potassium hydroxide and the subsequent salts were removed by centrifugation. 
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3.1.7 ACRYLIC FABRIC COLOURATION WITH A REACTIVE DYE 

After enzymatic treatment, samples were competitively coloured in 

duplicate with 2% o.w.f. Remazol Brilliant Blue R. The colouration bath 

consisted in a 10 g L-1 sodium carbonate solution. The colouration was 

performed at 70 ºC and 80 ºC, in a lab dyeing machine (AHIBA Spectradye, 

from Datacolor International), for 90 min at 20 rpm. The total fabric average 

weight per colouration assay was 2.87 g and 2.18 g for samples treated with 

cutinase and Texazym PES, respectively. 

After colouration, all samples were washed once with 0.25 g L-1 Lutensol 

AT25 and several times with water at 70 ºC in Rotawash, until no more dye 

could be detected in the solution. The colour measurements (5 for each sample) 

were carried out with a reflectance spectrophotometer having a standard 

illuminant D65 (Spectraflash 600 Plus, from Datacolor International). The colour 

strength was evaluated as K/S at maximum absorption wavelength (590 nm). 

The ratio between absorption (K) and scattering (S) is related to reflectance 

data by applying Kubelka-Munk’s law at each wavelength, and it is proportional 

to dye concentration (Kuehni, 1997). 

 

3.1.8 WIDE ANGLE X-RAY SCATTERING 

The X-ray diffraction (XRD) patterns were obtained for the acrylic fabric 

samples treated with cutinase without and with stainless steel discs (the later for 

the samples treated in the presence of the additives). The WAXS experiments 

were undertaken in a Philips PW1710 apparatus, using Cu Kα radiation and 

operating at a 40 KV voltage and 30 mA current. The patterns were 

continuously recorded in the diffraction angular range 2θ from 5º to 40º, with a 

step size of 0.02º at 0.6º min-1. 

The degrees of crystallinity were obtained according to the method of El-

Zaher (El-Zaher, 2001). 
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33..22   RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  

3.2.1 OPERATIONAL STABILITY OF CUTINASE 

From the biotechnological point of view, both storage and operational 

stabilities greatly influence the usefulness of enzyme-based products (Ó’Fágáin, 

2003). Operational stability, defined as the persistence of enzyme activity under 

the conditions of use, was studied for cutinase before applying the enzyme to 

acrylic fabric treatment. The media conditions, such as buffer, pH and 

temperature were chosen based on preliminary studies performed in the 

laboratory, using the esterase activity determination methodology described 

earlier. The conditions chosen, which maximize the hydrolysis of p-NPB by 

cutinase, were phosphate buffer at pH 8 and temperatures comprised between 

30 ºC and 40 ºC. These preliminary results were in agreement with those 

described in literature (Petersen et al., 1998, 2001b; Melo et al., 1997). Under the 

reported conditions, the specific activities of cutinase and Texazym PES were 

253 ± 51 and 11 ± 1 U mg-1, respectively. 

The half-life times obtained for cutinase, incubated under different 

conditions, are shown in table 3.1, as a measure of operational stability. The 

values of half-life time were calculated whenever the experimental data was 

adequately fitted with a first order exponential decay, using OriginPro 7.5 

(Origin Lab Corporation, USA). This was the case for the assays where 

cutinase was incubated with 7.5% and 15% of both organic solvents and with 

EG and PEG. The half-life times for cutinase incubated with glycerol, sorbitol, 

xylitol, and both organic solvents at 25% and 50% (v/v) were obtained from the 

second order exponential decay fitting data. Many protein deactivation models 

are non first order (Ó’Fágáin, 2003; Aymard and Belarbi, 2000; Baptista et al., 2000 and 

2003; Melo et al., 2001). Cutinase has already been described as displaying non-

first order exponential decay for acid values of pH (Melo et al., 1997; Baptista et al., 

2003). 

The values attained suggest that cutinase tolerates well the two organic 

solvents tested if their concentration remains bellow 15% (v/v). The stability of 

cutinase was improved with 15% DMA, being the half-life time 3.5 times higher 

than that of the control. Considering organic solvent contents above 15%, the 
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half-life time was drastically reduced in the presence of both DMA and DMF. 

Cutinase is one among other enzymes reported in literature that exhibits an 

increase in its stability as well as in its maximal activity (results not shown), in 

the presence of low concentrations of organic cosolvents, (Ó’Fágáin, 2003; Castro 

and Knubovets, 2003; Klibanov, 2001; Soares et al., 2003). 

The use of some low molecular weight compounds in solution has been 

found to stabilize native conformations of globular proteins like cutinase, when 

added at high concentrations (≥ 1 M) (Xie and Timasheff, 1997). From the 

polyalcohols studied, glycerol and sorbitol were the only ones improving the 

stability of cutinase. With glycerol, the half-life time increased by three fold. The 

xylitol, EG and PEG had the opposite effect, the half-life time was reduced more 

than 30% (table 3.1). 

 

Table 3.1 – Influence of two organic solvents and several 
polyalcohols on operational stability of cutinase. The cutinase was 
incubated at 35 ºC, pH 8, in a water bath with agitation, under different 
media compositions. The half-life time was calculated as kt 2ln

2
1 =

kx
tt eaa −
== .0

, in the 

cases of a 1st order exponential decay of activity ( ) 
 

Assay conditions Half-life time/ days 

No additives 45 ± 7 

DMF 

7.5% 45 ± 4 

15% 46 ± 7 

25% a 0.6 

50% a 0.01 

DMA 

7.5% 48 ± 2 

15% 159 ± 24 

25% a 4 

50% a 0.4 

Polyalcohols 

Glycerol a 134 

Sorbitol a 113 

Xylitol a 31 

EG 29 ± 8 

PEG 23 ± 8 
a The half-life time was obtained from the 2nd order exponential decay fitting 

curve 2.
2

1.
1 .. kx

t
kx

tt eaeaa −− +=  
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3.2.2 ENZYMATIC MODIFICATION OF ACRYLIC SURFACE 

The modification of a solid substrate, like acrylic fibres, with enzymes 

constitutes a heterogeneous biocatalysis, since enzyme and substrate are in 

different phases. Therefore, it is necessary to consider two general steps in 

order to make the catalysed reaction occur: the physical adsorption of 

cutinase/Texazym to acrylic fibre surface and the formation of the 

enzyme/substrate complex and consequent hydrolysis of the ester bond 

between vinyl acetate and the backbone of the polymer chain.  

During the treatment, aliquots were taken at different time intervals to 

follow the protein adsorption. In figure 3.1, the total protein is plotted for the 

cutinase treatment with different amounts of DMA, under low and high 

mechanical agitation. These conditions were chosen as an example. It is clear 

from the results that there is no significant protein adsorption under the 

conditions tested, taking into account the experimental error. When the discs 

are present, the greater mechanical agitation did not affect the adsorption 

behaviour of this enzyme into acrylic fibre. In addition, it was not possible to see 

a clear effect of the organic solvent on protein adsorption. The lack of significant 

adsorption was also verified in the acrylic treatment with Texazym PES for both 

degrees of mechanical agitation. 

These results were not surprising since polyacrylonitrile polymers are polar 

materials and they are known low-protein-adsorbing polymers, often used to 

produce inert membranes and supports for bioprocessing technologies (Belfort 

and Zydney, 2003). 

In theory, if the hydrolysis of vinyl acetate happens on the surface of the 

fibre, according to the ‘electrostatic catapult’ model (Petersen et al., 2001a, 2001b) 

at pH 8, cutinase should release the product – acetate anion. It was not 

possible to detect acetic acid in the aliquots collected during the treatment of 

acrylic with both enzymes. The detection limit, according to the kit suppliers, is 

1.5 mg L-1 acetic acid. The average acrylic weight used was 15.5 g L-1 of 

treatment solution. Thus, it means that less than 0.14% of the total available 

vinyl acetate was hydrolysed (in average, 7% w/w of 15.5 g L-1). According to 

the model proposed by Warner et al., they are organized in fibres of strong 

laterally bound chains (Frushour and Knorr, 1998). Assuming that the enzyme 
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cannot penetrate inside the fibres, the reason area/volume of these fibres 

determines the vinyl acetate available for enzyme attack. Relating the 

area/volume (2/r) between a single polymer chain (6 Å) - maximal accessibility, 

and acrylic fibres (diameter: 100-1000 Å) - <<100% accessibility, the acetic acid 

concentration produced would be between 6.5 and 65 mg L-1. 

Factors like the use of textile fabric instead of free fibres and the lower 

efficiency of enzymatic catalysis in heterogeneous system could explain the 

failure to detect acetic acid by this method. 

A methodology was developed (Silva et al., 2005a) to measure the hydroxyl 

groups that result from the enzymatic hydrolysis of the ester linkage of vinyl 

Figure 3.1 – Total protein concentration in bath treatment solutions 
during the 3 hours incubation of acrylic with 9 U mL-1 of cutinase and 
different amounts of DMA, (A) in absence and (B) in presence of stainless 
steel discs. 
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acetate and that remain attached to the polymer backbone. The basic principle 

is the specific reaction between a vinylsulphonic group from a reactive dye, in 

this case Remazol Brilliant Blue R, and the hydroxyl group at the fibre surface. 

The specificity of the method is increased by the fact that this kind of reactive 

dye was designed for cellulose fibre dyeing, thus it has low affinity for synthetic 

fibres. The sensitivity is also very high due to the large molar absortivities of dye 

molecules. 

A higher level of mechanical agitation was of crucial importance in the 

acrylic fabric treatment with both enzymes. Without the addition of stainless 

steel discs, it was not possible to measure any difference in K/S between 

treated samples and controls. The relative increase in K/S, obtained for the set 

of experiments where the discs were used, is represented in figure 3.2. Treating 

acrylic fabric, either with cutinase or with a commercial esterase, only led to the 

formation of hydroxyl groups when the stainless steel discs were introduced into 

the incubation vial. The experiments were performed in lab machines 

reproducing the vertical agitation of European washing machines, where the 

mechanical work involves the fibre-fibre and fibre-metal friction as well beating 

effects. The introduction of metal discs increases the beating effects and the 

fibre-metal friction (Vasconcelos and Cavaco-Paulo, 2006). The finishing and washing 

effects produced by cellulases also depend highly on strong mechanical work 

delivered to cotton fabrics (Cavaco-Paulo, 1998; Azevedo et al., 2000). Heterogeneous 

catalysis implies adsorption of the enzyme which is in itself a complex process 

depending, among other issues, on transport toward the surface by convection 

and diffusion. Accordingly, it is likely that an increase in mechanical agitation is 

helpful for the outcome of acrylic biotransformation, increasing the accessibility. 

In addition, in a comparable way to cellulose, the increased friction has a micro-

pilling effect on the acrylic fabric, therefore, increasing the surface area 

available for enzymatic attack.  

DMA is a known solvent of PAN and it is commonly used in acrylic fibre 

industrial production. Its plasticizer function disturbs the regular structure of the 

polymer, reducing the magnitude of inter-chain bonding, which should aid the 

penetration of the enzyme, improving its action on the fibre. The acrylic fabric 

sample treated, both with cutinase and with Texazym PES, in the presence of 

15% DMA did not show any difference in respect to controls (figure 3.2). The 
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increased accessibility, as the consequence of swelling of fibres by the organic 

solvent, does not therefore render an enhancement in cutinase catalysis on 

acrylic surface. If the observed increase in cutinase stability is due to the 

preferential hydrating phenomena induced by DMA, most probably the 

interactions between enzyme and polymer are not sufficiently strong to displace 

the tightly bound water. This 15% DMA content has no improving effect upon 

catalysis on the contrary to just 1%, where the relative K/S increase is clear, at 

the colouration temperature of 70 ºC. From all the conditions tested, both 

cutinase and Texazym PES have shown the highest activity with 1% DMA, in 

spite of the error margin. 

B 

A 

Figure 3.2 – Percentage of increase in K/S for acrylic samples 
treated (A) with cutinase (573 U per gram of fabric) and (B) with a 
commercial esterase (223 U per gram of fabric). To increase the 
mechanical agitation, stainless steel discs were added to all the assays 
plotted. Samples were competitively coloured at 70 ºC and 80 ºC, and the 
relative increase in K/S was calculated as

control

controlenzyme

SK
SKSK

/
)//( − . 



Enzymatic Treatment of Acrylic and Cellulose Acetate Fibres 

For 1 M glycerol and a combination of 1 M glycerol with 1% DMA, the two 

enzymes showed different behaviours (figure 3.2). In spite of the similar 

increase of K/S for the absence of additives and for 1% DMA, the units of 

esterase activity from cutinase were more than twice the units from Texazym 

were, in all assays. This could mean a saturation of cutinase at the referred 

media conditions. When glycerol was present in the reaction media, Texazym 

treatment did not lead to a better colouration of acrylics, while, cutinase 

performance was improved, in respect to the treatment without additives. The 

presence of 1% DMA could not raise the colour level provided by glycerol. 

The differences in K/S were observed when the samples were coloured at 

70 ºC. At 80 ºC, the method failed somehow to detect the action of both 

enzymes on the surface of the acrylic, except for the treatment with cutinase 

without additives. The raise from 70 ºC to 80 ºC, which is very near the glass 

transition temperature (Tg) for commercial acrylic fibres, has a major impact in 

segmental mobility of polymer chains. As the dye molecules penetrate more 

deeply in the fibre, the differences in K/S are diluted. Dye molecules can also 

react with other chemical groups present in the fibre, such as the initiator 

molecules used in acrylic polymerisation. The yield of this side reaction will be 

enhanced by temperature since more of these groups will be exposed causing 

the colour depth to be higher. The addition of dye molecules to hydroxyl groups 

that result from enzymatic catalysis is not improved in an equal extension 

because they are located on the surface of the fibre. Thus, the observed 

increase in K/S, at 80 ºC, for the cutinase treatment without additives is an 

exception and is not fully understood. To confirm the dependency of relative 

increases in K/S with dyeing temperature, more studies are required. 

 

3.2.3 WIDE ANGLE X-RAY SCATTERING 

The XRD patterns obtained for the different samples showed the 

characteristic reflection peaks of polyacrylonitrile homopolymer described in 

literature (JCPDS card no 48-2119) (Bashir, 1992 and 1994; Liu and Ruland, 1993). 

The XRD pattern of the control sample for the treatment without discs or 

additives is given as an example (figure 3.3). The main peaks are characterized 

by a well defined sharp and intense peak positioned at 2θ ≈ 16.8º, characteristic 
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of (010) plane, and a second one, less intense at 2θ ≈ 29.4º, from the (300) 

plane. A third diffuse peak was also observed in all samples, located at 

2θ ≈ 26.5º, attributed to (210) plane. This peak was found to be a very broad 

and diffuse one, commonly associated to amorphous phases. In order to obtain 

an accurate fitting profile, it was always necessary to consider a fourth 

significantly diffuse peak, at an angular position 2θ ≈ 16.8º, which is in fact very 

similar to that of the previously mentioned peak. Although unusual, similar 

behaviour was also found by Causin et al. (2005). This peak appearance might 

result from the introduction of the comonomer vinyl acetate, which probably 

induces some defects in the lateral packaging of polymer chains and thus being 

responsible for this second “amorphous type” phase. In a systematic study of 

homologous series of amorphous polymers, Miller and Boyer (1984a, 1984b) 

found in the XRD patterns two types of amorphous halos. The position of the 

first type corresponded to the close packaging of atoms (2θ ≥18º) and its 

position was dependent on the size of the pendent group, while the second type 

Figure 3.3 – X-ray diffraction ttern of ntrol sample for the 
treatment performed in the absence of additives and stainless steal discs. 
The XRD data was analyzed by profile fitting of the scans with the Pearson 
VII function, using the software WinFit! beta release 1.2.1, 1997. 
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corresponded to regions within the samples which exhibit some near-range, 

intersegmental order (2θ <18º). 

No significant differences (below 1%) in the values of crystallinity index 

were found between acrylic control samples and samples treated with the 

enzyme (table 3.2). This was expected given the superficial nature of the 

enzymatic treatment of the fabric and, in the particular case of acrylic fibres, the 

preservation of an intact carbon skeleton of polymer chains. 

The WAXS and scanning electronic microscopy (SEM) studies were 

initially intended as negative controls on the modification of physical properties 

of acrylic fibres. The figure 3.4 shows the photos taken by SEM to fabric from 

one of the treatments that did not led to colour differences between control and 

treated samples and to the treatment with 1% DMA and stainless steel discs, 

which produced the highest colour improvement due to the cutinase treatment. 

In fact, there were no qualitative significant differences on the morphology 

between controls and enzymatic treated acrylic samples, analysed by SEM. The 

chemical modifications catalysed by cutinase/esterase do not affect significantly 

the physical properties of acrylic fibres. 

Table 3.2 – Crystallinity degrees (CD) for acrylic fabric samples 
treated for three hours with 573 U of cutinase per gram of fabric, at pH 8 
and 30 ºC. The values were obtained according to the equation 

( )%
)010(

)300()010(

I
IICD −

=  where I(010) and I(300) are the intensities of the peaks at 2θ 

16.8º and 29.4º, respectively 
 

Sample Crystallinity degree (%) 

No discs No additives 
control 86,5 
enzyme 86,3 

Discs 

No additives 
control 85,5 
enzyme 86,2 

DMA 1% 
control 85,1 
enzyme 85,0 

DMA 1% + 
Glycerol 

control 85,7 
enzyme 86,4 
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33..33   CCOONNCCLLUUDDIINNGG  RREEMMAARRKK SS  

In literature, a great amount of work has been published in respect to 

cutinase stability (Silva et al., 2005b; Petersen et al., 2001b; Baptista et al., 2000, 2003; 

Melo et al., 2001, 2003; Gonçalves et al., 2003; Carvalho et al., 1999b; Pocalyko and Tallman, 

1998; Crevel et al., 2001). Special attention has been devoted to trehalose and 

surfactants, given the industrial interest in this enzyme for detergents 

formulation, for enzyme immobilization and micro-encapsulation. The work 

reported in this paper contributes to expand the pool of information regarding 

stabilization additives for cutinase, in aqueous media, which is still of great 

importance in biotechnological applications.  

A B

C D

Figure 3.4 – SEM photographs of acrylic fabric (A) control and (B) 
cutinase treated sample without stainless steel discs, and (C) control and 
(D) cutinase treated sample treated with discs and 1% DMA. All images 
were acquired under the same conditions with a total magnification of 400x, 
in a scanning electronic microscope Leica S360. 
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The catalytic efficiency of both enzymes studied on acrylic surface 

modification, although not considerably significant, was proved to be enhanced 

by DMA at low concentrations, a solvent of PAN fibres commonly used in its 

spinning process. Besides, the reduction in incubation time with cutinase from 

90 hours (Silva et al., 2005a) to just three hours, due to a higher mechanical 

agitation, represents a great advance in the application of these enzymes to 

acrylic surface modification, especially in wet spinning lines of production and at 

stages of a more “exposed and accessible” surface of the acrylic fibre. It is 

expected that the impact of esterase activity on fibre surface modification will be 

greater when used in acrylic or other textile fibres with higher contents in 

hydrolysable ester monomers in their compositions. 
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ork on the modification of cellulose acetate with enzymes has 

been mostly done in the context of its biodegradation (Puls et 

al., 2004). This chapter describes the hydrolysis of acetate surface 

groups of CDA and CTA fabrics using Fusarium solani pisi cutinase. 

The preference for hydrophobic substrates, as well as the versatility in 

respect to soluble and insoluble substrates makes cutinase an 

attractive esterase for highly substituted cellulose acetates. 

The hydrolysis of surface acetyl groups from CDA and CTA with a 

cutinase constitutes a promising approach for the partial regeneration 

of cellulose reactivity and hydrophilicity in these fibres, here 

demonstrated by the enhanced reactive dye uptake of treated fabrics.  

 

W 

44
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44..  SSUURRFFAACCEE  MMOODDIIFFIICCAATTIIOONN  OOFF  CCEELLLLUULLOOSSEE  AACCEETTAATTEE  WWIITTHH  

CCUUTTIINNAASSEE  

44..11   MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  

4.1.1 REAGENTS AND ENZYMES 

The cellulose diacetate and triacetate plain woven fabrics used were 

kindly supplied by Mitsubishi Rayon Co. Ltd., Tokyo, Japan. The CDA fabric has 

41/27 ends/picks per cm and 64 g m-2. The CTA fabric has 45/31 ends/picks per 

cm and 98 g m-2. 

The cutinase (EC 3.1.1.74) from Fusarium solani pisi used in this work 

was expressed and purified as previously reported by Araújo et al. (2007). 

The reactive dye Remazol Brilliant Blue R, C.I. 61200, was from Sigma. All 

other reagents were laboratory grade reagents also from Sigma-Aldrich, St. 

Louis, USA, unless stated otherwise. The buffer used throughout this work was 

a phosphate buffer having a concentration of 50 mM and pH 8.  

 

4.1.2 ESTERASE ACTIVITY ASSAY 

Esterase activity was determined following the product release (p-NP) 

continuously through the increase in the absorbance at 400 nm at 30 ºC. The 

assay conditions for the determination of cutinase activity were described 

previously (section 3.1.2). All the assays were performed at least in triplicate. 

Standard solutions of p-NP were used to obtain the calibration curve. One unit 

of esterase activity was defined as one µmol of p-NP released per minute. 

 

4.1.3 TREATMENT OF CELLULOSE DI- AND TRIACETATE FABRIC WITH CUTINASE 

All samples of cellulose acetate fabric were washed prior to use in order to 

remove possible impurities from manufacture and from human handling. 

Washing was performed at 35 ºC and 20 rpm, in stainless steel pots of 450 mL 

in capacity and housed in a laboratory scale machine, the Rotawash MKIII 
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(vertical agitation simulating European washing machines, from SDL 

International Ltd.). The fabric was washed twice for 30 min in 40 mg L-1 Lutensol 

AT25 (non-ionic detergent, BASF, Ludwigshafen, Germany), then rinsed four 

times with distilled water for 30 min each and left to dry at room temperature. 

Several sets of experiments were carried out taking into account the 

amounts of enzyme, fabric and time of incubation. For all experiments, the 

treatment of cellulose acetate fabric was performed in phosphate buffer with 

vertical agitation, in the Rotawash machine operating at 30 ºC and 20 rpm. To 

evaluate the effect of enzyme concentration, samples of CDA and CTA fabric, 

with an average weight of 0.1 g, were incubated in duplicate for 8 hours with 0, 

25, 50, 75 and 100 U mL-1 of cutinase, in a total volume of 5 mL. To obtain a 

progress curve, samples of CDA and CTA fabric, with an average weight of 

0.1 g, were treated with 50 U mL-1 of cutinase, in a final volume of 10 mL for 

different periods of time. For each sample a control was run in parallel in which 

the buffer substituted the corresponding volume of enzyme. In another 

treatment, the average weight of both type of fabric was increased to 0.5 g and 

the incubation extended to 24 hours. The initial activity of cutinase was 

25 U mL-1 in a final volume of 25 mL. For each sample a control was run in 

parallel without the enzyme. 

After enzymatic treatment, all fabric samples were washed at 35 ºC, in the 

Rotawash machine, to remove the adsorbed protein, according to the order: 

250 mg L-1 Lutensol AT25 for 30 min, 70% ethanol for 20 min, 15% isopropanol 

for 15 min, three steps of increasing concentrations of sodium chloride for 

10 min each, three steps in distilled water for 20 min each. Between the 

detergent/alcohol and alcohol/salt steps the fabric was rinsed under running 

cold tap water for 5 min. 

 

4.1.4 QUANTIFICATION OF TOTAL PROTEIN CONCENTRATION 

Total protein in solution was quantified following Bradford methodology 

(Bradford, 1976) using BSA as standard. All samples were measured at least 

twice. 
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4.1.5 DETERMINATION OF ACETIC ACID CONCENTRATION IN THE TREATMENT 

SOLUTIONS 

Detection of acetic acid in the reaction media was performed with the 

acetic acid UV test from Roche (Darmstadt, Germany) as described previously 

(section 3.1.6). 

 

4.1.6 CELLULOSE ACETATE FABRIC COLOURATION WITH A REACTIVE DYE 

After enzymatic treatment, samples were competitively coloured in 

phosphate buffer with 2% o.w.f. Remazol Brilliant Blue R, in duplicate. The 

colouration was performed at 50 ºC or 60 ºC, for 90 min at 20 rpm, in sealed 

stainless steel beakers of 140 mL in capacity and housed on a lab-scale dyeing 

machine (AHIBA Spectradye, from Datacolor International). 

After colouration, all samples were washed once with 0.25 g L-1 Lutensol 

AT25 and several times with distilled water in Rotawash, until no more dye 

could be detected in the solution. The washing temperature was 5 ºC higher 

than the colouration temperature. 

The colour measurements (5 for each sample) were carried out according 

to the procedure described previously (section 3.1.7). 

 

4.1.7 FLUORESCEIN ISOTHIOCYANATE LABELLING  

Enzymes were incubated with fluorescein isothiocyanate - FITC (33:1 w/w) 

in 0.5 M sodium carbonate buffer pH 9.5, for one hour at room temperature. The 

unconjugated FITC was removed with HiTrap Desalting 5 mL columns (GE 

Healthcare Bio-Sciences Europe GmbH, Munich, Germany) while the carbonate 

buffer was exchanged by the phosphate buffer.  

 
4.1.8 FLUORESCENCE MICROSCOPY  

Thin strips of CDA and CTA fabric samples were embedded in an epoxy 

resin (Epofix kit, Struers, Copenhagen, Denmark) and cross sections were cut 

with 20-25 µm thickness. The samples were observed under a Leica 

Microsystems DM5000 B epifluorescence microscope equipped with a 100 W 

Hg lamp and an appropriate filter setting. Digital images were acquired with 
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Leica DFC350 FX digital Camera and Leica Microsystems LAS AF software, 

version 2.0 (Leica Microsystems GmbH, Wetzlar, Germany). 

 

4.1.9 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FT-IR) 

The diffuse reflectance (DRIFT) technique was used to collect the infrared 

spectra of CDA and CTA fabric samples treated during 24 hours with cutinase 

and respective controls. The spectra were recorded in a Michelson FT-IR 

spectrometer MB100 (Bomem, Inc., Quebec, Canada) with a DRIFT accessory. 

The fabric pieces were placed and hold on top of the sample cup, previously 

filled with potassium bromide powder that was used to collect the background. 

All the spectra were obtained under a nitrogen atmosphere in the range 

 cm-1 at 8 cm-1 resolution and as the ratio of 32 scans to the same 800־4000

number of background scans. The spectra were acquired in Kubelka-Munk units 

and baseline corrections were made using Bomem Grams/32R software, 

version 4.04. 

 

4.1.10 WIDE ANGLE X-RAY SCATTERING  

The XRD patterns were obtained for the CDA and CTA fabric samples 

treated during 24 hours with cutinase and respective controls. The WAXS 

experiments were undertaken in a Philips PW1710 apparatus, using Cu Kα 

radiation and operating at a 40 KV voltage and 30 mA current. The patterns 

were continuously recorded in the diffraction angular range 2θ from 4º to 40º, 

with a step size of 0.02º at 0.6º min-1. The non linear fitting of the diffraction 

patterns was performed using the Pseudo-Voigt peak function from 

OriginPro 7.5 (Origin Lab Corporation, USA) considering the CTA structural 

polymorphism II (Cerqueira et al., 2006). The peaks that were considered 

crystalline were at the diffraction angles 2θ: 10º, 17º and 21º for CDA, and 8º, 

10º, 13º, 17º, 21º and 23º for CTA (Chen et al., 2002; Hindeleh and Johnson, 1972). 
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44..22   RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  U

4.2.1 EFFECT OF CUTINASE CONCENTRATION ON THE MODIFICATION OF 

CELLULOSE DI- AND TRIACETATE 
4.2.1 EFFECT OF CUTINASE CONCENTRATION ON THE MODIFICATION OF 

CELLULOSE DI- AND TRIACETATE 

The media conditions, such as buffer, pH and temperature, were chosen 

based on earlier studies performed in our laboratory, using the esterase activity 

determination methodology already described (section 3.1.2). The conditions 

chosen were phosphate buffer pH 8 and the lowest optimum temperature 30 ºC. 

The hydrolysis of the acetate groups in cellulose ester substrates leads to the 

formation of hydroxyl groups at the fibres surface and to the release of acetic 

acid to the treatment solution. The effect of cutinase concentration was 

analysed by measuring the acetic acid in the treatment solutions, after a period 

of 8 hours (figure 4.1). 

The media conditions, such as buffer, pH and temperature, were chosen 

based on earlier studies performed in our laboratory, using the esterase activity 

determination methodology already described (section 3.1.2). The conditions 

chosen were phosphate buffer pH 8 and the lowest optimum temperature 30 ºC. 

The hydrolysis of the acetate groups in cellulose ester substrates leads to the 

formation of hydroxyl groups at the fibres surface and to the release of acetic 

acid to the treatment solution. The effect of cutinase concentration was 

analysed by measuring the acetic acid in the treatment solutions, after a period 

of 8 hours (figure 4.1). 

The acetic acid release was not linearly proportional to all the tested 

enzyme concentrations as it would be expected (Tipton, 2002; Lee and Fan, 1982). 

The higher level of acetic acid released from the less substituted cellulose 

acetate was according to the irreversible relation between the degree of 

substitution and the degree of bio-deacetylation (Samios et al., 1997; Altaner et al., 

2001, 2003a; Moriyoshi et al., 1999, 2002). Steric hindrance and crystallinity are 

The acetic acid release was not linearly proportional to all the tested 

enzyme concentrations as it would be expected (Tipton, 2002; Lee and Fan, 1982). 

The higher level of acetic acid released from the less substituted cellulose 

acetate was according to the irreversible relation between the degree of 

substitution and the degree of bio-deacetylation (Samios et al., 1997; Altaner et al., 

2001, 2003a; Moriyoshi et al., 1999, 2002). Steric hindrance and crystallinity are 

ULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  

Figure 4.1 – Effect of cutinase concentration on the acetic acid 
release. The CDA and CTA fabrics were treated during 8 hours, at pH 8 
and 30 ºC, with several concentrations of cutinase expressed as esterase 
initial activity in U mL-1. 
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considered important factors in the adsorption and mostly in the effectiveness of 

the adsorbed enzyme to promote the hydrolysis (Lee and Fan, 1982). These 

factors should favour CDA over CTA. At the maximum concentration used, the 

enzyme activity was 0.010 U and 0.0072 U (µmol of acetic acid per min) while 

only 0.54% and 0.36% of the acetyl groups were released from CDA and CTA, 

respectively. These values were obtained considering a DS 2.4 for CDA and a 

minimum DS 2.7 for CTA commercial fibres (Steinmann, 1998; Zugenmaier, 2004). A 

very low yield in deacetylation is not uncommon for highly substituted cellulose 

acetates treated with cell-free enzymes (Puls et al., 2004). By comparison, in view 

of the fact that at least one of the cellulose acetate used has a higher DS, 

cutinase demonstrated potential as cellulose acetate esterase. Altaner et al. 

(2001) reported that acetylesterases from 13 different commercial origins could 

significantly use cellulose acetates with DS ≤1.4 as substrates. Only one 

enzyme from Humicola insolens was able to release a small amount (10%) of 

acetyl groups from a cellulose acetate DS 1.8, after 220 hours (Altaner et al., 

2001). Another enzyme purified from a commercial preparation, derived from 

Aspergillus niger, was able to hydrolyse 5% of the existing acetyl groups on a 

cellulose acetate DS 1.8 after 140 hours (Altaner et al., 2003a). Considering the 

values found in the literature, the percentage of acetic acid released obtained 

with cutinase was not insignificant, mainly because the final purpose of this 

modification is not biodegradation of the substrate, but the modification of the 

fibre surface. 

IFICATION OF CELLULOSE DI- AND 

TRIACETATE FABRICS AND PROTEIN ADSORPTION 

Samples of CDA and CTA fabric (1% w/v) were treated with 50 U mL-1 of 

cutinase for different periods of incubation. The action of cutinase was 

evaluated by indirectly measuring the hydroxyl groups formed at the fibres. 

Since the cellulose acetates used in this work were insoluble, the enzyme 

adsorption to the substrate was a prerequisite for the formation of the enzyme-

substrate complex. The protein adsorption was indirectly calculated by the 

decrease in total protein remaining in the treatment solution. For CDA (figure 

4.2A), an equilibrium level of relative protein adsorption of 45% (2.8 mg g-1 of 

 

4.2.2 PROGRESS CURVES FOR THE MOD
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protein per fabric weight) was reached. For CTA (figure 4.2B), the equilibrium 

level of protein adsorption was higher, with 57% of relative protein adsorption 

(3.5 mg g-1). The hydrophobic character of the substrate should not be a 

problem for cutinase adsorption since this enzyme is a lipolytic enzyme and its 

natural substrate, cutin, is hydrophobic (Egmond and Vlieg, 2000; Mannesse et al., 

1995; Kolattukudy, 2002). 

The formation of hydroxyl groups at the fibre surface was evaluated by 

colouring the fabric with a cotton reactive dye. If the cutinase is able to 

Figure 4.2 – Progress curves for the formation of hydroxyl groups at 
the fibres surface, measured as relative increase in K/S values, and total 
protein adsorption for (A) CDA and (B) CTA. All the samples were treated 
with cutinase (5000 U per gram of fabric) at pH 8 and 30 ºC. Samples and 
controls were competitively coloured at 60 ºC. The relative increase in K/S 
was calculated as 

control

controlenzyme

SK
SKSK

/
)//( −  (%) and the relative protein 

adsorption as 
h

th

P
PP

0

0 )( −  (%), where P is the total protein in solution. 

B 

A 
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hydrolyse some of the acetyl groups at the surface, then more dye can be 

chemically linked to the fibre, resulting in an increase in K/S.  

In the case of CDA fibre, the sensitivity is not as good as for the CTA fibre. 

The dye has more affinity for diacetate and, as a result, the controls are very 

coloured while the triacetate controls are very faint. This is the reason for the 

observed differences between the two fibres in the relative increase in the 

colour strength values (figure 4.2). After 18 hours, the relative difference in 

colour strength between treated samples and controls was around 50% for CDA 

and 450% for CTA. For both fabrics, the relative K/S increased rapidly in the 

first hours of treatment and slowed down as the protein adsorption equilibrium 

was being settled. In the particular case of these modifications, a very slow 

enzymatic reaction occurs. We believe that the fast initial increases in colour 

are an artefact created by an incomplete protein removal during the washing 

procedure at the end of each treatment. It seems that the dye is also able to 

react with hydroxyl groups present in the protein molecules not removed from 

the fabric. If this argument is correct the actual relative K/S increase is bellow 

the observed values. 

 

4.2.3 RICS 

WITH 

ase 

for 24 hours. Table 4.1 shows the values of increase in colour strength and 

acetic ac o the reac

control values were subtracted). 

 

 SURFACE MODIFICATION OF CELLULOSE DI- AND TRIACETATE FAB

CUTINASE 

Samples of CDA and CTA fabric were treated with 25 U mL-1 of cutin

id liberated t tion medium for both cellulose acetates (the 

 
Table 4.1 – Hydrolysis of CDA and CTA fabrics by cutinase. The 

samples were treated with 1250 U per gram of fabric, at pH 8 and 30 ºC, for 
24 hours. Samples and controls were competitively coloured at 50 ºC 

 
 CDA CTA 

K/S 590nm (%) 25 ± 9 317 ± 32 

Acetic acid (mg L-1) 1.9 ± 0.2 nd 
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Evidence of hydrolysis was obtained by the increase in K/S for both fabrics 

and by the formation of acetic acid for CDA. It was not possible to detect this 

product in the treatment medium of CTA. Compared to previous results, the 

levels of acetic acid are lower than the observed for the same esterase activity 

per weight of the substrate. 

gh surfaces. The 

figure

The DRIFT technique was used to collect the infrared (IR) spectra of CDA 

and CTA fabric samples and respective controls in order to obtain further 

evidence of the hydrolysis of the ester linkage at the surface of treated fibres. 

This technique allows examining the IR absorption by rou

 4.3 shows the IR spectra in the region of 1800-1720 cm-1 which is the 

wavenumber region for the stretching vibration of the carbonyl group (Krasovskii 

A 

B 

Figure 4.3 – DRIFT spectra showing the carbonyl group stretching 
A) CDA and (B) CDT controls and samples. The samples were 

eated with cutinase (1250 U per gram of fabric), at pH 8 and 30 ºC, for 24 
hours.  

band of (
tr
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et al., 1996)

 and 

shape of the carbonyl stretching band between the treated sample and the 

control. There was a decrease in the intensity after the cutinase treatment and 

there was also d to lo enumbers. The decrease in the 

intensity was correlated to the enzymatic hydrolysis of some ester linkages at 

the surface of the samples. The displacement could be caused by the formation 

of int

considered not significant. The absence of a 

significant difference was unexpected because in the treatment liquor it was 

possible to detect acetic acid while for CTA it was not. 

Cross sections of fibres treated with cutinase conjugated with FITC were 

observed by fluorescence microscopy (figure 4.4). The fluorescence signal is 

located mainly around the fibres of both CDA and CTA. The fibres core does 

not emit fluorescence indicating that the labelled protein was found at the fibre 

surface of both fabrics and confirming the superficial action of cutinase on these 

fibres. 

Figure 4.4 – Epifluorescent photographs of cross-sections from (A) 
CDA and (B) CTA samples. The samples were treated with 10 mg of FITC-
conjugated cutinase per gram of fabric, at pH 8 and 30ºC, for 15 hours. 
Both images were acquired with a total magnification of 1000x. 

. 

For CTA (figure 4.3B) there was a clear difference in both the intensity

 a shift of the ban wer wav

ermolecular hydrogen bridges between the remaining carbonyl groups and 

the newly formed hydroxyl groups (Ilharco and Barros, 2000) or it could be due to a 

preferential hydrolysis of the carbonyl groups at C2 e C3 positions (Krasovskii et 

al., 1996). Regarding CDA (figure 4.3A), the observed differences between the 

control and sample were 

A B 
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SEM images were also obtained for both fabrics treated for 18 hours with 

50 U mL-1 cutinase (figure 4.5). The surface of CDA was not apparently altered 

by the enzymatic treatment while a slight fibrillation of the triacetate surface was 

visible after the cutinase treatment.  

The impact of the hydrolysis of acetyl groups should be more drastic on 

the highly ordered structure of CTA than on the more disordered CDA. From the 

mathematical fitting of XRD patterns (figure 4.6), crystallinity indexes were 

determined for CDA and CTA, samples and respective controls (table 4.2). 

There was a small decrease in the crystallinity index after the enzymatic 

treatment, for both fibres. CTA was most affected, with a decrease of 12% while 

CDA had a

rics, 

increasing the number of hydroxyl groups and consequently the hydrophilic 

 decrease of 8%. 

Cutinase was able to modify the surface of the cellulose acetate fab

BA 

DC 

Figure 4.5 – SEM photographs of CDA (A) control and (B) treated 
sample, and CTA (C) control and (D) treated sample. The samples were 
previously treated with cutinase (5000 U per gram of fabric), at pH 8 and 
30ºC, for 18 hours. All images were acquired under the same conditions 
with a total magnification of 3000x, in a scanning electronic microscope 
Leica S360. 
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character and the dye affinity. Since there were changes on the crystallinity 

index, other physical properties should be tested for a better evaluation of the 

impact of such surface modifications on the textile performance of these fibres. 

 
Table 4.2 – Crystallinity indexes for CDA and CTA. The samples 

were treated with cutinase (1250 U per gram of fabric), at pH 8 and 30 ºC, 
for 24 hours. The crystallinity index (IC) was determined according to the 
equation )( ACCC AAAI += , where Ac is the total area of the crystalline peaks 
and AA is the total area of the amorphous peaks 
 

 CDA CTA 

control 0.58 0.68 

treated sample 0.57 0.60 

 

44..33   CCOONNCCLLUUDDIINNGG  RREEMMAARRKK SS  

The biomodification of the surface of cellulose acetate with high degree of 

substitution with cutinase was demonstrated by the acetic acid release and the 

improvement in the chemically specific colouration of the fabrics with a reactive 

dye. From less 

subst etyl 

hydro ences in colour, 

 the acetic acid release, the hydrolysis yield is higher for the 

ituted cellulose acetate fabric, but the consequences of the ac

lysis are more pronounced for CTA, as shown by the differ

A B

Figure 4.6 – X-ray diffraction pattern obtained for (A) CDA sample 
and (B) CTA sample, both treated with cutinase (1250 U per gram of 
fabric), at pH 8 and 30 ºC, for 24 hours. The XRD data was analyzed by 
profile fitting of the scans with the Pseudo-Voigt peak function from the 
software OriginPro 7.5 (Cerqueira et al., 2006) 
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morp

d of the physical, rather than chemical, 

modi

hology of the fibres surface and crystallinity between controls and treated 

samples. Further studies will be necessary to evaluate the impact of cutinase 

activity in the physical properties of the fabrics and to assess the contribution of 

the incomplete protein removal an

fications on the differences seen upon enzymatic treatment. 
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PPRROODDUUCCTTIIOONN  OOFF   CCUUTTIINNAASSEE  FFUUSSEEDD  

TTOO  CCAARRBBOOHHYYDDRRAATTEE--BBIINNDDIINNGG  

MMOODDUULLEESS  FFOORR  TTHHEE  MMOODDIIFF IICCAATTIIOONN  

OOFF   CCEELLLLUULLOOSSEE  AACCEETTAATTEE  
 

 

 

 

 

 

 

 

 

he enzymatic modification of highly substituted cellulose acetate 

fibres is a hetero us process, fore, an attempt was 

 to increase cut efficiency towards this substrate by 

her carboh -active enzy with modular nature. 

Two different carbohydrate-binding modules (CBMs) were fused to the 

C-terminal of cutinase. The CBMs act synergistically with the catalytic 

domains by increasing the effective enzyme concentration at the 

for some CBMs, by physical disruption of the 

solid substrate. Two types of CBM were chosen on the basis of ligand 

T 

 

 

 

 

 

 

geneo  there

made inase 

mimicking ot ydrate mes 

substrate surface and, 

affinity, since the two cellulose acetate fibres used in this work are 

structurally different from cellulose (the native ligand) and different 

between themselves, presenting two different overall crystallinities.  
The production of fusion cutinases with new functionalities is here 

described and a comparison with cutinase regarding its efficiency for 

CDA and CTA modification is presented. 

55
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55..  PPRROODDUUCCTTIIOONN  OOFF  CCUUTTIINNAASSEE  FFUUSSEEDD  TTOO  CCAARRBBOOHHYYDDRRAATTEE--

BBIINNDDIINNGG  MMOODDUULLEESS  FFOORR  TTHHEE  MMOODDIIFFIICCAATTIIOONN  OOFF  CCEELLLLUULLOOSSEE

AACCEETTAATTEE    

55 ..11   MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  

5.1.1 REAGENTS AND ENZYMES 

The cellulose diacetate and triacetate plain woven fabrics used were 

kindly supplied by Mitsubishi Rayon Co. Ltd., Tokyo, Japan. Their 

characteristics were described in a previous section (section 4.1.1). 

All reagents were laboratory grade reagents from Sigma-Aldrich, St. Louis, 

USA, unless stated otherwise. The buffer used for the enzymatic treatment of 

both fabrics was a phosphate buffer having a concentration of 50 mM and pH 8. 

Other buffers are specified in the text when necessary. 

The cutinase (EC 3.1.1.74) from F. solani pisi was expressed and purified 

as previously reported by Araújo et al. (2007). 

Restriction enzymes were purchased from MBI Fermentas (Vilnius, 

Lithuania) and from Roche Diagnostics GmbH (Penzberg, Germany). 

AccuzymeTM DNA polymerase was purchased from Bioline GmbH 

(Luckenwalde, Germany) and recombinant Taq DNA polymerase was 

purchased from MBI Fermentas. T4 DNA ligase was purchased from Roche 

Diagnostics GmbH (Penzberg, Germany). 

 

5.1.2 BACTERIA, PLASMIDS AND GENES 

The bacterial hosts used for cloning and expression of cutinase fusion 

genes were the Escherichia coli strain XL1-Blue and strain BL21 (DE3), 

respectively. The plasmid pGEM®-T Easy (Promega Corporation, Madison, 

USA) was used to clone and sequence the products of the polymerase chain 

reaction (PCR). The plasmid pCWT (pET25b(+) carrying native cutinase gene 
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from F. solan

CBMs at the 

The DN

wtCBMCBHI, w

USA), as we

sCBMCBHI. Th

fimi CenC w

i pisi, (Araújo et al., 2007) was used to insert the genes coding for the 

3’ end f the cutinase gene and to express the fusion proteins. 

A cod I, 

as syn ssouri City, 

ll as, th , 

e plas e CBMN1 from C. 

as kind  provided by Professor Anthony Warren (Department of 

Microbiology, University of British Columbia, Vancouver, Canada) (Johnson et al., 

1996a). 

 
5.1.3 PLASMID CONSTRUCTION 

Standard techniques were used for all the DNA manipulations. The 

wtCBMCBHI and sCBMCBHI were amplified by PCR, using the primers supplied by 

Epoch Biolabs, and cloned directly into pGEM®-T Easy. Transformants were 

selected and the gene sequences were confirmed by DNA sequencing, 

following the method of Sanger (Sanger et al., 1977). The constructs 

pGEM::wtCBMCBHI and pGEM::sCBMCBHI were digested with SacI and SalI, the 

DNA fragments were extracted and purified from agarose gels and cloned into 

the SacI/SalI restricted and dephosphorilated pCWT, resulting in the final 

pCWT::wtCBMCBHI and pCWT::sCBMCBHI vectors. The CBMN1 sequence was 

PCR-amplified fro

ataagaatgcggccgct

accgctcgagctcgacct

bold). The PCR pro

was selected and co

was restricted with N

from agarose gel an

pCWT, resulting in the final pCWT::CBM

PTbox of C. fimi CenA

overlapping primers (in 

bold): PTbox for (5

o

ing the wild type linker and a CBM of T. reesei CBH 

thesized and purchased from Epoch Biolabs (Mi

e DNA fragment coding for a smaller linker and the CBM

mid pTugN1 containing the gene coding th

ly

m pTug, with the primers CBM N1 for (5’-

agcccgatcggggagggaacgt) and CBM N1 rev (5’-

cggagtcgagcgc) containing the NotI and XhoI sites (in 

duct was cloned into pGEM®-T Easy and a positive clone 

nfirmed by DNA sequencing. The construct pGEM::CBMN1 

otI and XhoI, the DNA fragment was extracted and purified 

d cloned into the NotI/XhoI restricted and dephosphorilated 

N1 construct. The DNA coding the linker 

 (Shen et al., 1991) was obtained by PCR amplification of two 

 (underlined sequence) containing the SalI and NotI sites 

’-ctcgagctcagtcgacccgacgccaaccccgacgcctacaactccgactccg 

acgccgaccccgactc) 

tgttggagtcggggtcggcgtcggagtcggagttg

and PTbox rev (5’-gagggactgcgtcgcggccgcggtaggggtcgg 

). The amplification by PCR consisted in 
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30 cycles of 20 s at 94 ºC and 20 s at 72 ºC for the Accuzyme extension. The 

PCR product was cloned into pGEM®-T Easy and a positive clone was selected 

and c

and cloned into the SalI/NotI restricted and dephosphorilated pCWT::CBMN1, 

e final pCWT::PTbox::CBMN1 vector. 

 

5.1.4 EXPRESSION AND PURIFICATION OF CHIMERIC CUTINASES 

The constructs pCWT::wtCBMCBHI, pCWT::sCBMCBHI, pCWT::CBMN1 and 

pCWT blished in E. coli strain XL1-Blue. Medium-

scale purifications of plasmid DNA were made and used to transform the E. coli 

strain BL21(DE3). Clones harbouring the constructs were grown, at 15 ºC and 

200 rpm, in 2.5 L Luria-Broth medium supplemented with 100 µg mL

d with 

0.7 mM isopropyl-1-thio-β-D-galactopyranoside, and further incubated for 16 

hours at 15 ºC. The cells were harvested by centrifugation at 4 ºC (7500 xg, 

onfirmed by DNA sequencing. The plasmid pGEM::PTbox was restricted 

with SalI and NotI, the DNA fragment was extracted and purified from agarose 

resulting in th

::PTbox::CBMN1 were first esta

-1 ampicillin 

until an absorbance A of 0.3-0.5 was reached. Cells were induce600 nm 

10 min), washed with phosphate buffered saline (PBS) pH 

80 ºC. The ultrasonic disruption of the bacterial cells was accomplished on ice 

7.4 and frozen at -

with a 25.4 

16000 x

7.6, 500 mM 

sodium chloride, 25  with 

10 column volumes of binding buffer followed by buffers with 50 and 100 mM 

imida

mm probe in an Ultrasonic Processor VCX-400 watt (Cole-Parmer 

Instrument Company, Illinois, USA). The lysate was centrifuged for 30 min at 

g and 4 ºC. The supernatant was collected, pH was adjusted to 7.6 and 

imidazole was added to a final concentration of 25 mM. Protein purification was 

performed with the affinity chromatography system HiTrap Chelating HP (GE 

Healthcare Bio-Sciences Europe GmbH, Munich, Germany) coupled to a 

peristaltic pump. The 5 mL column was loaded with 100 mM nickel(II) and 

equilibrated with the binding buffer (20 mM phosphate buffer pH 

mM imidazole). The samples were loaded and washed

zole. The fusion proteins (figure 5.1) were eluted with 550 mM imidazole 

buffer. 

The fractions obtained were monitored by SDS-PAGE with Coomassie 

Brilliant Blue staining. The elution buffer was changed to 50 mM phosphate 

buffer pH 8 with HiTrap Desalting 5 mL columns (GE Healthcare Bio-Sciences 
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Europe GmbH, Munich, Germany). Prior to the 2.5 L culture scale up, western 

blotting was performed with monoclonal Anti-polyHistidine-Peroxidase 

Conjugate from mouse to confirm the expression of the fusion proteins. The 

detection was made with ECL western blotting reagents and analysis system 

(Amersham Biosciences Europe GmbH, Freiburg, Germany). 

 

5.1.5 ESTERASE ACTIVITY ASSAY 

Esterase activity was determined following the product release (p-NP) 

continuously through the increase in the absorbance at 400 nm at 30 ºC. The 

assay conditions for the determination of cutinase activity were described 

previously (section 3.1.2). All the assays were performed at least in triplicate. 

Standard solutions of p-NP were used to obtain the calibration curve. One unit 

of esterase initial activity was defined as one µmol of p-NP released per minute. 

 

Figure 5.1 – Schematic representation of the recombinant wild-type 
cutinase from F. solani pisi (Araújo et al., 2007) and its new chimeric proteins 
with the fungal carbohydrate-binding module of CBH I, from T. reesei, and 
the bacterial carbohydrate-binding module N1 of CenC, from C. fimi. The 
amino acid sequence of the linkers is specified in the figure using the one 
letter code. 

 98
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5.1.6 TREATMENT OF CELLULOSE DI- AND TRIACETATE FABRIC WITH CUTINASE 

FUSED TO CARBOHYDRATE-BINDING MODULES 

All samples of cellulose acetate fabric were washed prior to use in order to 

remove possible impurities from manufacture and from human handling, as 

described previously (section 4.1.3). 

Cellulose acetate fabric samples with an average weight of 0.1 g were 

incubated with 100 U mL-1 of cutinase and cutinase-CBMN1, 50 U mL-1 of 

cutin  of cutinase-

sCBM

section 4.1.6). 

ase-PTboxCBMN1 and cutinase-wtCBMT.reesei, 25 U mL-1

T.reesei in 10 mL of phosphate buffer with 0.01% sodium azide, under 

continuous vertical agitation at 30 ºC and 20 rpm, for 18 hours. A control for 

both types of fabric was run in parallel in which the buffer substituted the 

enzyme. 

After enzymatic treatment, all fabric samples were washed at 35 ºC, in the 

Rotawash machine, to remove the adsorbed protein, according to the procedure 

described previously (section 4.1.3). 

 

5.1.7 QUANTIFICATION OF TOTAL PROTEIN CONCENTRATION 

Total protein in solution was quantified following Bradford methodology 

(Bradford, 1976) using BSA as standard. All samples were measured at least 

twice. 

 

5.1.8 CELLULOSE ACETATE FABRIC COLOURATION WITH A REACTIVE DYE 

After enzymatic treatment, samples were competitively coloured in 

phosphate buffer with 2% o.w.f. Remazol Brilliant Blue R, C.I. 61200, in 

duplicate. The colouration was performed at 60 ºC, for 90 min at 20 rpm, in 

sealed stainless steel beakers of 140 mL in capacity and housed on a lab-scale 

dyeing machine (AHIBA Spectradye, from Datacolor International). 

After the colouration, all samples were washed and the colour was 

measured as described previously (
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55..22   RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  

5.2.1 CELLULOSE DI- AND TRIACETATE TREATMENT WITH CUTINASE FUSED TO 

CARBOHYDRATE-BINDING MODULES 

For further improvement of cutinase catalysis, several fusion proteins with 

known and well characterized CBMs were produced. The inclusion of spacers 

between the cutinase and the CBMs was performed in three of the fusion 

proteins. The importance of these spacers was studied by several authors 

mainly through deletion studies. It was demonstrated that linker peptides, 

connecting the catalytic domains of carbohydrate-active enzymes and the 

CBMs, are necessary for the synergistic activity between the two domains 

(Srisodsuk et al. ed 

in the was 

also ose 

was sed 

to CBMCBHI, by removing from the wild-type linker a sequence of residues that 

constitute possible sites for O-glycosylation. Since E. coli does not possess the 

he CenA from C. 

fimi ( hen et al., 1991). This type of PT linker is also naturally glycosylated, but 

when it is not, the conformations of catalytic domain and CBM are preserved, 

since

be due to non-hydrolytic disruption of cellulose acetate fibres, in particular, of 

CDA for which this phenomenon was most visible. This mechanical disruption 

was already described for cellulose and cotton in the presence of CenA, Cex 

, 1993; Shen et al., 1991). The wild-type linker of CBHI was includ

 fusion protein with the CBM from the same enzyme. A smaller linker 

used to connect cutinase to the fungal CBM (figure 5.1). The initial purp

to increase the levels of expression in E. coli of the soluble cutinase fu

machinery necessary for this post-translation eukaryotic modification, removing 

those residues could promote correct folding of the fusion protein. The 

expression levels were very low for soluble cutinase-wtCBMCBHI and were not 

significantly improved in the case of cutinase-sCBMCBHI. The bacterial linker 

used was the proline-threonine box (PT)4T(PT)7 present on t

S

 only a partial increase in the linker flexibility seems to occur (Poon et al., 

2007). 

Protein quantification after the cellulose acetate treatment with cutinase-

CBMN1 and cutinase-PTboxCBMN1 was unviable due to the turbidity of solutions. 

This turbidity happened only for the referred assays, where protein adsorption 

might be underestimated. The turbidity could be precipitated protein or it could 
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and i

/S between chimeric proteins and 

cutin

tate, independently of the CBM type. The 

solated CBMs (Din et al., 1991, 1994; Cavaco-Paulo et al., 1999). Comparing the 

amount of protein adsorbed and relative K

ase, there was a clear difference between the two cellulose acetates 

studied (figure 5.2). The fusion of cutinase to the CBMs had a more pronounced 

effect for the less substituted ace

A 

B 

Figure 5.2 – Protein adsorption and relative increase in K/S values for the 
(A) CDA and (B) CTA treated with cutinase and cutinase fused to CBMs (initial 
concen  is expressed in units per gram of fabric). The samples were 
incu ing 18 hours with cutinase, cutinase-CBMN1 (cut-N1), cutinase-
PTbox  (cut-PT-N1), cutinase-wtCBMT.reesei (cut-wtCBM), and cutinase-
sCBM -sCBM), at pH 8 and 30 ºC. Samples and control were 
comp ured at 60 ºC. Relative protein adsorption was calculated as 

tration
bated d
CBMN1

T.reesei
etitively colo

ur

 (cut

cutinaseh18cutinaseh

h
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steric triacetate fibre given its higher DS 

than in the diacetate fibre. The backbone is more fully ornamented with the 

acety

CBM should be more impaired on this fibre 

surfa

N1 (Tomme et al., 1996b). Other reason could be the difference in 

size 

 constrains should be stronger in the 

l groups and consequently the interactions necessary for the recognition of 

the anhydroglucose units by the 

ce regarding the diacetate fibre. Due to the fact that different initial 

amounts of protein were used, is not possible to compare directly the protein 

adsorption behaviour of the several constructs. But it is possible to see for this 

particular treatment that there was no obvious relation between the colour 

differences and the amount of protein adsorbed. 

Taking into account the different esterase activities used, the cutinase-

wtCBMCBHI and cutinase-sCBMCBHI seem the most efficient catalysts under the 

treatment conditions used. For CDA, the relative K/S was improved 3.8 and 2.6 

fold by cutinase-wtCBMCBHI and cutinase-sCBMCBHI, respectively, regarding 

cutinase alone. For treated CTA, the relative increase in K/S was not different 

between cutinase alone and fused to the fungal CBMs, but the initial esterase 

activity of cutinase was higher (figure 5.2). The differences in relative K/S were 

also improved with the fusion of the bacterial CBM to cutinase. For CDA, 

cutinase-CBMN1 improved the relative K/S by 1.8 fold, the same as cutinase-

PTboxCBMN1. 

The treatment was performed at pH 8 which was the optimum pH for the 

cutinase. The optimum pH for binding of most CBMs corresponds to the 

optimum pH for the catalytic domain of the respective carbohydrate-active 

enzyme and it is in the range of acidic to neutral. The better performance on 

cellulose acetate fibres of the fungal CBM could be explained by the affinity of 

CBMCBHI to insoluble ligands being relatively more insensitive to pH than the 

affinity of CBM

of both CBMs. The activity of cutinase could be more constrained by the 

bigger bacterial CBM than by the smaller fungal CBM. Indeed, using half the 

esterase activity in the treatment with cutinase-PTboxCBMN1, the increase in K/S 

obtained was in the same range of that with cutinase-CBMN1, for both fabrics 

(figure 5.2). Further studies, aiming at a better characterization of the action of 

chimeric cutinases on the surface modification of cellulose acetates, would 

contribute to clarify these issues. 
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reesei, provided strong evidences of being an interesting strategy to pursuit. 

Future work is needed to improve the recombinant production of modular 

cutinases and to study in detail their affinities toward the cellulose acetates. 

From the above considerations, it could be suggested that the cutinase 

has potential in textile industry for the surface modification and consequently on 

the “bicomponent yarns/fibres” production of cellulose acetate. 

  

The design of hybrid enzymes mimics the strategies that Nature uses to 

evolve and it is a powerful tool in biotechnology. The production and application 

of the cutinase fused to CBMs, especially to the fungal CBM of CBHI of T. 
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appli

-made fibres, in 

particular the synthetic fibres, the scenario is by far different. Nature did not 

design efficient ways to use and integrate them as part of ecosystems and they 

are not natural substrates for enzymes. Besides, due to their chemical structure 

man-made fibres require high amounts of energy and chemicals for their 

modification in order to achieve the desired properties. Taking into account that 

they have a market share of more than 50% (Aizenshtein et al., 2003), it is 

imperative to address the environmental and safety issues brought by their 

processing and disposal. Finding eco-sustainable alternatives to traditional 

practices for man-made fibres in an extremely competitive market, such as the 

textiles, is a hard challenge. The first and critical step is to find, to develop and 

to improve methodologies for the enzymatic treatment of a given fibre (based on 

the target chemical bounds of the polymer molecules). However it may not be 

enough. The manipulation of the structure of enzymes through recombinant 

DNA technologies may be crucial to the competitiveness of a bioprocess by 

improving the ability of an enzyme to recognize and use the synthetic fibre as a 

substrate. 

The work presented in this thesis was focused on the application of 

enzymes to specifically modify two man-made fibres – acrylic and cellulose 

acetate, producing new functional groups on their surfaces. The enzymatic 

modification of both acrylic and cellulose acetate fibres was targeted to the 

pendent groups of the backbone chain of their polymers, which were the nitrile 

and acetyl groups of acrylic, and the acetyl groups of cellulose acetate.  

  

The textile industry presents well succeed examples of enzy

cations on the processing of natural fibres. For cotton, enzymes can be 

used almost along all steps of its wet processing, nearly replacing conventional 

textile practices like the stone washing of denim. Regarding man
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Chapter

treatment of

carboxylic gr

substrate wit

hours, at 40 

of the enzym

any substrate

 2 rep rts the employment of a commercial nitrilase on the 

 acryli rile into 

oups. I re as a 

h a ste  release o monia to the reaction media, during 36 

ºC. Firs ved stability 

e under operational conditions. When incubated in solution, without 

, at 30 en the 

acrylic fabric samples were present in the system, there was an adsorption of 

80% of total protein and the nitrilase adsorbed did not loose activity during the 

36 hours of treatment, since it was not observed a slowing down on the release 

of ammonia. Second, it can be inferred that the adsorption that takes place is a 

dynamic process. Either an alternating adsorption and desorption take place, or 

nitrilase has the ability to move over the acrylic surface like other processive 

enzymes. Otherwise the release of ammonia would eventually stop and a 

plateau would be established with time. 

Looking to the other and most important product of the biocatalysed 

reaction – the carboxylic groups at the fibre surface, the results were somehow 

unforeseen. The treatment of acrylic with nitrilase presented an interesting case 

study due to the fact that while ammonia was steadily produced the same was 

not verified for the acidic groups. The increase in K/S of treated acrylic fabric 

samples was not regular along the 36 hours of treatment. Instead, it was 

observed a succession of colour strength values higher and lower than the 

controls, which created an oscillating pattern. The hypothesis was that in some 

way the groups could leave the surface of the fabric. This was confirmed when 

the polyacrylic acid was determined in the treatment solutions. The important 

consequence of this finding is that the nitrilase biomodification of acrylic needs 

to be properly controlled in order to maximize the concentration of the surface 

acidic groups.  

In order to achieve a proper control over the acrylic biomodification is 

important to understand better how nitrilase acts on such substrate. Is the 

enzyme very sensitive to the crystallinity degree of the fibre? How does 

crystallinity affect the release of polyacrylic acid? How the molecular size of the 

polymer is related to the released amount of polyacrylic acid? Is there any 

difference in treating the fibre before and after orientation? It would be 

o

cs, leading to the superficial conversion of nit

t was found that nitrilase was able to use acrylic fib

ady f am

t important outcome of this work was the impro

 ºC, nitrilase lost half of its activity after 15 hours. Wh
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interesting to treat polymers with different compositions, crystallinities and 

mole

more complete picture of the modifications catalysed by 

nitrilase and to minimize the treatment time. 

The acrylic samples, non treated and treated for 4 and 24 hours, were 

evalu ant difference between the degrees of 

crystallinity of samples was observed (less than 1%). In a previous work, where 

alkali

increased the surface area available for enzymatic hydrolysis by a 

micro

a good 

starting point for the application of biocatalysts. 

cular size distributions, as well as, from different stages of the manufacture 

process to have a 

ated by WAXS, but no signific

ne and enzymatic treatments of synthetic fibres were compared, the 

nitrilase did not affect significantly the breaking strength of the acrylic fabric 

(Silva, 2002). Once the main chain of each molecule of acrylonitrile copolymer is 

not chemically altered and because enzymatic hydrolysis is in general 

superficial, major consequences of such modifications on the bulk properties of 

these fibres are not expected. 

The acrylonitrile represents 93% of the total monomer composition of the 

acrylic used in this work. The remaining 7% is vinyl acetate which constitutes a 

possible substrate for another class of enzymes – esterases. Chapter 3 

describes the experiments performed with an esterase that has the natural 

ability to hydrolyse both soluble and insoluble substrates – the cutinase from 

Fusarium solani pisi. The enzyme was very stable and active but the 

modifications were faint, since only 7% of the surface groups were possible 

substrates for cutinase. The protein adsorption was practically absent, in 

contrast to the prior observed nitrilase adsorption, indicating that significant 

unspecific interactions were not occurring, but also indicating lack of specific 

binding sites for cutinase. The introduction of stainless steel discs in the 

reaction media allowed the evaluation of changes, in terms of colour, on the 

fibre treated for short periods. Besides increasing the mass transfer, the discs 

may have 

pilling effect. Nevertheless, the observation that small amounts of a 

common industrial acrylic solvent (DMA) improved the activity of the enzyme 

lead to the hypothesis that the accessibility of this substrate can be higher in 

early stages of its wet-spinning manufacture. As long as the stability of the 

biocatalyst is not to much compromised, the industrial tanks after coagulation, 

where the washing and orientation of the acrylic fibre begin, may be 
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In a similar way, cutinase was used to hydrolyse the acetyl groups 

esterified to the main chains of cellulose acetate (chapter 4). Commercial CDA 

and CTA fabrics, having different degrees of substitution and, consequently, 

different degrees of crystallinity and hydrophilic character, were tested. From 

the formation of the soluble product (acetic acid), during 8 hours, it was possible 

to conclude that cutinase, like most enzymes, slightly preferred the less 

crystalline and more hydrophilic substrate, the CDA. When the solid product of 

the enzymatic reaction (hydroxyl groups) was evaluated through colouration 

and DRIFT, there was an apparent opposite preference. This result could be 

due to the hydroxyl groups that are already present at the CDA fibre comparing 

to their almost absence at CTA fibre. The CDA controls had a much higher 

capacity to fix the cotton reactive dye than the CTA controls; the K/S values for 

CDA were around 8 times higher than the ones obtained for CTA. This meant a 

lower sensitivity of the colouration methodology and maybe a lower sensitivity of 

DRIFT for the differences in the concentration of hydroxyl groups between 

contr

 fibres. In terms of increase in the hydroxyl groups at the fibres 

surfa

ols and cutinase treated samples of CDA fabric. The differences between 

the K/S and the intensity/shape of the carbonyl stretching band of controls and 

treated samples of CTA were clearer than the differences obtained for CDA. 

The chapter 5 describes the production of cutinases with new 

functionalities by recombinant DNA technologies and the study of their 

efficiency for CDA and CTA modification in comparison with the native enzyme. 

Since the two cellulose acetate fibres used are structurally different from 

cellulose (the native ligand) and different between themselves, presenting 

different overall crystallinities, two different CBMs were fused to the C-terminal 

of cutinase. The idea was to mimic other carbohydrate-active enzymes which 

also have CBMs that improve their activity. In terms of protein adsorption, the 

purpose was attained: the fusion with both CBMs increased the affinity of native 

cutinase for the

ce the results of the colouration were preliminary but there are strong 

evidences that the chimeric cutinases are more efficient than the native 

cutinase. 

The adsorption of cutinase to the cellulose acetate fibres was higher than 

the one observed for acrylic, obviously reflecting a higher concentration of 

recognizable substrates at the fibre surface. However, because the washing 
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procedure after the enzymatic treatments was milder, in terms of pH and 

temperature, and because the cellulose acetate is less polar and more 

hydrophobic than the acrylic taffeta used, it is not possible to exclude unspecific 

binding of cutinase to the cellulose acetates. It will be necessary to have 

controls like null mutated or inhibited cutinases for a better assessment of this 

phenomenon. 

66..22   FFIINNAALL   RREEMMAARRKKSS

quate biocatalyst for the modification of nitrile 

  

The general conclusions that can be drawn from the work here described 

are:  

• nitrilase is an ade

groups of polyacrylonitrile copolymers; using a single enzyme, 

(which is an advantage regarding the enzymatic systems of nitrile 

hydratase and amidase, reported in the literature) at mild conditions 

of pH and temperature, acid groups were formed at the fibre 

surface; 

• cellulose acetate and triacetate can have more reactive surfaces 

using a lipolytic enzyme - cutinase, which is a new and important 

finding; the surface ‘regeneration’ of cellulose composition can 

impart these yarns a bicomponent character that would be very 

interesting for the sportswear field; 

• the affinity of cutinase for cellulose acetates can be improved by 

adding CBMs, resembling natural carbohydrate esterases.  

 

The application of enzymes to the surface modification of acrylic and 

cellulose acetate fibres, and the resultant new functionalities may lead to eco-

friendly finishing steps of these textile materials compared to the traditional 

ones, saving on water, energy and reducing the amounts of hazardous 

compounds. 

In spite of these findings, many questions remain to be answered which 

give space for future work. 
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tyl 

ester

  

In order to transform the biomodifications here reported into cost 

competitive industrial processes, a considerable amount of work will be needed. 

The modification of acrylic by nitrilase needs to be carefully studied in 

order to maximize the formation of acid groups on its surface, in terms of time 

and without compromising too much the nitrilase activity. The production of a 

know nitrilase that can be redesigned to use more efficiently acrylic as a 

substrate is, beyond doubt, needed. It would be interesting to look for naturally 

more stable nitrilases, like the ones found in extremophile microorganisms 

(Cowan et al., 1998; Mueller et al., 2006; Khandelwal et al., 2007), because the presence 

of high temperatures and organic solvents during the wet-spinning process of 

acrylic fibres can have deleterious effects on the enzymatic activity. 

A better biochemical characterization of cutinase fusion proteins is needed 

in addition to their interaction with the cellulose acetates. The optimization of the 

expression system also is needed for higher yields of protein production which 

is essential for the economical point of view. 

It also would be interesting to compare cutinase with natural ace

ases in the hydrolysis of cellulose acetates surface, like the acetyl esterase 

II from Trichoderma reesei and Penicillium purpurogenum (Margolles-Clark et al., 

1996; Hakulinen et al., 2000; Ghosh et al., 2001; Colombres et al., 2008). These enzymes 

have acetyl esters as natural substrates and their structures are very similar to 

cutinase. 

Finally it would be necessary to study the feasibility of upgrading the 

optimized processes to an industrial scale and the application of such modified 

fibres for the production of speciality-properties textile products. 
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