
Combining YOLO and Deep Reinforcement Learning for

Autonomous Driving in public roadworks scenarios

Nuno Andrade1, Tiago Ribeiro1 a, Joana Coelho2 a, Gil Lopes3 c and A. Fernando Ribeiro1 d
1Department of Industrial Electronics, ALGORITMI CENTER, University of Minho, Guimarães, Portugal

2Department of Mechanical Engineering, University of Minho, Guimarães, Portugal
3 Department of Communication Sciences and Information Technologies, University of Maia, Maia, Portugal

{a82007, id9402, id8667}@alunos.uminho.pt, alopes@ismai.pt, fernando@dei.uminho.pt

Keywords: Deep Learning, YOLO, Reinforcement Learning, Deep Deterministic Policy Gradient, Autonomous Driving,

Public Roadworks.

Abstract: Autonomous driving is emerging as a useful practical application of Artificial Intelligence (AI) algorithms

regarding both supervised learning and reinforcement learning methods. AI is a well-known solution for some

autonomous driving problems but it is not yet established and fully researched for facing real world problems

regarding specific situations human drivers face every day, such as temporary roadworks and temporary signs.

This is the core motivation for the proposed framework in this project. YOLOv3-tiny is used for detecting

roadworks signs in the path traveled by the vehicle. Deep Deterministic Policy Gradient (DDPG) is used for

controlling the behavior of the vehicle when overtaking the working zones. Security and safety of the

passengers and the surrounding environment are the main concern taken into account. YOLOv3-tiny achieved

an 94.8% mAP and proved to be reliable in real-world applications. DDPG made the vehicle behave with

success more than 50% of the episodes when testing, although still needs some improvements to be

transported to the real-world for secure and safe driving.

1 INTRODUCTION

In recent years, AI is becoming highly researched

regarding autonomous driving (Arcos-García et al.,

2018b; Chun et al., 2019). Researchers are constantly

studying ways to make autonomous vehicles reliable

in the context of real-world applications (Kaplan

Berkaya et al., 2016; Lim et al., 2017). In some

situations, it might be required to have temporary

road signs which by default can alter the previously

standard regulation. The new temporary road signs

can overlap the normal road rules and therefore the

vehicles must ignore the standard rules and follow the

specific ones. Recently, some studies have been

conducted in regard of this subject, namely in

Formula Student competition (Svecovs &

Hörnschemeyer, 2020), however, there is still a gap

in scientific research (Liu et al., 2021). The majority

a https://orcid.org/0000-0002-5909-0827
b https://orcid.org/0000-0002-5992-975X
c https://orcid.org/0000-0002-9475-9020
d https://orcid.org/0000-0002-6438-1223

Figure 1: Detection of the roadworks signs and vehicle’s

movement control.

of the solutions do not necessarily use supervised

learning and reinforcement learning combined. This

project combines YOLOv3-tiny and DDPG for

solving roadworks signs detection and the vehicle’s

behavior control in those real-world situations. Both

use neural networks, although in different contexts.

Figure 1 presents the detection module and the

planning of motion in real-time.

The system receives sensorial information

through a strategic camera and 16 sensors placed at

the front of the vehicle. This solution does not require

hard transformations to the chassis used in common

vehicles, making it more suitable for manufacturers

to apply the concepts.

Usually, authors present two main approaches for

autonomous driving problems which are end-to-end

and modular (T. Ribeiro et al., 2019; Huang & Chen,

2020; Yurtsever et al., 2020). This project follows the

second approach in order to simplify the complexity

of the problem. In case of system fail or upgrade

system components, maintenance becomes a simpler

task. The main tasks that the framework is supposed

to handle are: a) to process the detection of temporary

roadworks signs (object detection); b) to process the

data from the previous task commanding the vehicle

(Behavior Plan and Control) to act (Actuator) the

optimal way for the current state of the environment.

Figure 2 portrays the proposed framework.

Figure 2: Project modular-based approach and

implementation of the autonomous driving framework.

YOLOv3-tiny can detect multiple objects from

different classes at high frame rates. This is crucial for

maintaining the security and safety, since good

reflexes are expected from a human driver as well.

The vehicle also needs to be able to perform and

behave with efficiency and precaution. Many pieces

of research use deep reinforcement learning to

accomplish that performance (Sallab et al., 2017;

Kiran et al., 2021) and so DDPG is chosen for this

project. DDPG is suitable for real-world complex

robotic tasks and it uses neural networks to learn from

the environment and deploy the best vehicle behavior

it can achieve. For that, it chooses the action that leads

to the best reward achievable. This paper is composed

by a brief introduction of YOLOv3-tiny, the dataset

on which it was trained, a summary of DDPG and its

configuration, the simulation environment used, how

the communication was made between the framework

modules as well as the final results and the

correspondent conclusions.

2 YOLOV3-TINY

YOLOv3-tiny (Adarsh et al., 2020) is an one-stage

object detection algorithm proposed by J.Redmon

(Redmon & Farhadi, 2018) which focus on high

frame rates, taking advantage of YOLOv3 best

features. The architecture of YOLOv3-tiny is mainly

composed by convolution layers followed by max-

pooling layers to perform feature extraction from the

input images divided into SxS grid cells. YOLOv3-

tiny is fast because it operates only at two different

map scales which are 13x13 and 26x26, for 416x416

input images. It is able to detect medium-large objects

since for those scales small objects remain

undetectable.

For predicting the bounding boxes, YOLOv3-tiny

uses the same concepts of YOLOv3. It relies on the

use of anchor boxes to indicate the algorithm possible

locations of the objects that it is trying to detect. The

anchor boxes can be changed according to the dataset

in which YOLOv3-tiny is trained. The predicted

bounding box coordinates are calculated by the offset

between the predicted bounding box and the anchor

boxes. Finally, a threshold is used as a filter to

eliminate the bounding boxes that have low accuracy

and therefore are not useful to classify objects. The

remaining bounding boxes are excluded using Non-

Maximum Suppresion (NMS). It uses Intersection

over Union (IoU) for evaluating how coincident the

predicted bounding boxes are to the ground truth

bounding boxes and remove the least coincident ones.

3 DATASET OF YOLOV3

The dataset used for training YOLOv3-tiny contains

1252 photos with four objects randomly applied: 1)

Street cone; 2) Roadworks sign; 3) Road Separator;

4) Red and White Tape. These objects are presented

in figure 3.

Figure 3: The four objects used in the dataset.

The datasets found for these objects are not many,

these also lack in quality and have poor

diversification. To make up for these flaws, a new

entire dataset was built from scratch and every image

was tweaked to be different from the one behind and

after it. The goal was to avoid unnecessary

correlations between the images. Every image differs

in number of signs, different types of signs, hue,

saturation, brightness, shadows, object size,

perspective, contrast, color temperature, blur, noise,

distortion and light conditions. Figure 4 shows some

examples.

Figure 4: Examples of images picked directly from the

dataset.

This extra work resulted in gradual improvements

in the algorithm response as it is described in the

Results section. The LabelImage Tool was used to

label the entire dataset images. Figure 5 shows how

the images were labeled.

Figure 5: Signs surrounded by bounding boxes manually

applied, also known as labelling.

Some signs were intentionally positioned in the

image to teach the algorithm to ignore them, so they

are not labeled. One of YOLOv3-tiny advantages is

that it does not require a large dataset to show good

results. Approximately 2000 images were used to

make the algorithm reach an mAP above 90%.

4 DEEP DETERMINISTIC

POLICY GRADIENT (DDPG)

DDPG is the brain behind the vehicle actuator. It is a

model-free, off-policy and actor-critic based model

that uses a deterministic policy and deep neural

networks to improve the actions of the vehicle in a

way that leads to obtain the maximum rewards that it

can achieve in a certain environment. The authors

(Lillicrap et al., 2016) presented it as a solution to

Deep Q-Networks limitations regarding the

continuous domains. The main characteristics of this

algorithm makes it a good fit in the autonomous

driving field where the environments typically are

continuous, complex and there is no environment

model previously known (Wang et al., 2018). DDPG

relies only in experience and trial-and-error. At first,

the trial-and-error based training can be exhaustive

but once the algorithm starts learning it results in very

robust solutions. Figure 6 represents the DDPG

architecture.

Figure 6: DDPG Structure.

Actor-Critic based methods like DDPG use neural

networks so the policy can predict actions, called a,

for the incoming states, called s, with the main goal

of obtaining the optimal Q pair. Since there is no

reference or labeled dataset that indicates what is the

optimal pair, DDPG uses target networks to estimate

the optimal value for the next state, called Q_target.

It is possible to find what is the optimal Q, called y

(in figure 6). Q must converge to y and the target

networks cannot be regularly updated like the original

ones otherwise Q_target would change a lot on each

step and thus it would be difficult to converge Q. So,

the target network is fed with weights that are softly

updated.

The optimal behavior for the vehicle is established

by a reward system so that in exploitation, the policy

learns what are the actions highly rewarded according

to a certain state. The reward system created in this

work is expressed as:

reward = A * speedinstant – B * distancefinish_line

– C * ∆angledirection – D *step
(1)

Where speedinstant is the current speed of the

vehicle, the distancefinish_line is the distance between

the vehicle and the finish line, the ∆direction is the

vehicle’s changing of direction and the step is a

counter in every episode to ensure the vehicle

executes the path in the shortest time possible. A, B,

C and D are coefficients used to adjust the impact of

each variable of the reward function, depending on

the vehicle’s behavior.

Regarding the state space and action space of

DDPG, they are respectively the following:

S = {intersectionmatrix, distancefinish_line} (2)

A = {steeringapplied, speedapplied} (3)

In the state space, the intersectionmatrix is a matrix

of 16x3 dimensions and is the result of the visual

processing applied to every frame of the simulation.

The distancefinish_line is the same variable as the one in

the reward system. In the action space, the

steeringapplied and the speedapplied are the steering and

speed commanded to the actuator, respectively.

The origin of the intersectionmatrix is shown in

figure 7. One can see a set of 16 line segments rooted

in a single point in the lowest center of the frame.

These are separated by an angle of 12 degrees in the

interval of 180 degrees.

Figure 7: Image processing applied in a frame.

The line segments serve as a simpler orientation

for DDPG to know where the obstacles are and react

quickly to avoid them, rather than computing the local

coordinates of the objects detected. For instance,

every time a cone intersects one of the 16 line

segments, the line segment turns red and a flag is

generated and stored in the first column of the matrix

(and in the line correspondent to the line segment

number) that will be fed into the neural network. In

the second column of the matrix, it is stored a value

between 0 and 1, which corresponds to the distance

of the intercepted cone to the vehicle, calculated by

using visual processing techniques. In case more than

one cone intersects the same line segment, only the

nearest one is considered. On the other hand, if a line

segment is not intercepted by any cone, the distance

value is set to 1. To contextualize, 1 is estipulated as

an unreachable distance so it is the distance value

assigned to the cases where the line segments are not

intercepted.

The third column considers what line segments

are intercepted by the target. To achieve that,

proximity sensors were introduced (figure 8).

Figure 8: Sensors placed in the vehicle. The line of the

sensors blink yellow when intercepting the target.

The sensors were disposed following the same

orientation of the 16 line segments displayed in the

frame. This allows to map the target flags with the

correspondent line segments in the matrix. The goal

of the sensors is to give the vehicle an insight into the

position of the target, mainly in accentuated curves,

where the camera cannot see the target. Besides the

target, all other objects remain invisible for the

sensors. Table 1 shows a resulting matrix example.

Table 1: Matrix generated by the processing applied to the

figure 7 captured frame.

Line

Number

Intersection Distance

(%)

Target

1 0 1.0 0

2 0 1.0 0

3 0 1.0 0

4 0 1.0 0

5 1 0.39 0

6 1 0.53 0

7 1 0.63 0

8 0 1.0 1

9 1 0.73 1

10 1 0.725 0

11 0 1.0 0

12 1 0.4 0

13 0 1.0 0

14 0 1.0 0

15 0 1.0 0

16 0 1.0 0

To analyze table 1, one must look at figure 7 and

count the line number from the right to the left (the

same orientation of the unit circle). In this work,

proximity sensors are used for detecting the target,

although in real world the target coordinates are

known.

5 SIMULATION ENVIRONMENT

CoppeliaSim was the simulator chosen to build

the environment and test the algorithms. The virtual

space contains a car and two arrays of cones. In

addition, there is a starting line and a finish line. The

vehicle length is approximately 0.8 meters and the

distance of the track is about 5 meters. These

dimensions were chosen according to the scenarios

proposed by Festival Nacional de Robótica

competition (Portuguese Robotic Festival). Figure 9

shows two of the main paths used to train and test the

system. The goal of the agent was to command

actions to the vehicle through the analysis of the

scenario using the camera which is strategically

placed in the top center of the vehicle’s roof.

Figure 9: Environment used for training and testing the

vehicle. A curve path and a double curve path, respectively.

When the DDPG episode starts, it automatically

starts the environment and sends the variables to the

car to start moving. The episode ends when the

vehicle reaches the finish line, is outside the limits,

stops or crashes against a cone. To improve the

algorithm training and reliability, in every episode the

vehicle starts at a random orientation, between ± 30

degrees. This ensures that the algorithm does not

overfit or becomes partially biased by its initial

position.

6 SYSTEM COMMUNICATION

Communication between the modules in the

simulation environment is achieved by using the

Robotic Operating System (ROS). In figure 10, two

diagrams represent the messages that are sent or

received along with the corresponding publisher or

subscriber nodes, respectively. The diagram a) is a

brief representation to better interpret what

information is required to be sent and received. It is a

simple representation of the diagram b) adapted from

a ROS tool, rqt_graph.

Figure 10: ROS structure.

Following the bottom diagram, the topic “/image”

receives the frames captured by the vehicle’s camera

and sends it to the YOLOv3-tiny node (called

“distance_offset_node”). After YOLOv3-tiny

processes that frame, it sends the matrix with the

intersected lines to the DDPG node (called

“talker_and_listener”) through the “/my_yolo_topic”

topic. After DDPG obtains the relevant information

regarding the environment’s state space, it sends the

proper action space to CoppeliaSim through

“/my_ddpg_topic”, receiving it in the

“sim_ros_interface” node. This node is also

responsible to send three important variables for

DDPG processing using three topics: 1) “/chatter”

sends the instant speed; 2) “/final_pos_distance"

sends the distance to the final line; 3) “/target_pos”

sends the sensors flags triggered when encountered

the target. ROS is operating at 5 Hz for all modules

due to YOLOv3-tiny processing time.

7 RESULTS

The system was implemented, trained and tested in an

Asus laptop with Intel Quad-Core i5, 2.30GHz,

Nvidia Geforce 940M GPU using Ubuntu 18.04.5

LTS 64-bit as the Operating System. For the

programming environment the main language was

Python alongside libraries such as OpenCV,

Tensorflow and Keras. YOLOv3-tiny was trained in

0.8m

m

5m

m

a)

b)

Google Colab due to its computational power. The

following list shows the training hyperparameters for

YOLOv3-tiny along with the chosen values: Number

of epochs = 100; Dataset split = 80% training / 20%

testing; Learning Rate = 0.0001; Batch Size = 4;

Kernel Regularizer = 0.001; Leaky ReLU (alpha) =

0.3; Data Augmentation = On ; Input image resolution

= 416x416; IoU loss threshold = 0.5; Non-Maximum

Suppression (sigma) = 0.3; Score threshold = 0.3; IoU

threshold = 0.45.

Anchors = [[[10, 14], [23, 27], [37, 58]],

 [[81, 82], [135, 169], [344, 319]],

 [[0, 0], [0, 0], [0, 0]]];

Every value was chosen regarding the

hyperparameter properties and what value represents

the best equilibrium of what it can offer. The most

relevant optimizations were made in the dataset.

Images were added and changed gradually as the

performance of the algorithm was registered. Table 2

reports the results obtained when optimizing the

dataset gradually with the goal of improving

performance.

Table 2: YOLOv3-tiny training results.

Training mAP FPS Dataset

Images

1 88% 10 553

2 74% 29 1300

… … … …

9 93.1% 30 1090

10 93.0% 26.9 1090

11 93.7% 27.2 1110

12 91.5% 26.2 1110

… … … …

16 93.1% 26.5 1231

17 94.8% 26.4 1252

Analyzing the table, one can see the worse result

in the second train with mAP of 74%. This value was

caused by the shape inconsistency of the red and

white tape. Table 3 shows the details about the AP of

the red and white tape which proved to be the cause

of the mAP lowering. This tape proved to be

incredibly volatile regarding the deformation it

presents on every situation. Sometimes random and

similar objects mislead the algorithm and for that

reason it was replaced by the road separator.

Table 3: Red and White Tape training results.

Object Cone Sign
Red and

White Tape

AP 85.4% 100% 35.4%

For the next trainings the red and white tape was

disused due to low detection accuracy. Multiple

trainings were carried out to analyze the impact of

some changes and improvements in the algorithm

with proper testing between every training. Finally,

the best results were obtained in training number 17.

Table 4 shows the details.

Table 4: Best training YOLOv3-tiny results.

Training Cone AP Sign AP Divider AP

16 84.1% 99.3% 95.8%

17 86.7% 99.3% 98.5%

Figure 11 shows the loss obtained in the 17th training.

The training loss is calculated for every step whereas

the validation loss is calculated every epoch. The

results show that the model is not overfitting.

Figure 11: Results of YOLOv3-tiny training loss.

At this point, the dataset was already good and

then the hyperparameters were slightly changed in

order to obtain some minor improvements. Those

changes didn’t result in better performance so the

values remained the same. Figure 12 combines four

samples from real-world YOLOv3-tiny testing. The

real-time detection was performing at approximately

12 FPS so the testing video was stuttering. To avoid

that, the detection was made every other frame and

the capturing frame rate increased to approximately

25 FPS, as shown on the top left corner of the samples

of figure 12.

Figure 12: YOLOv3-tiny test with images captured from

real world.

In DDPG training, the exploration starts randomly

and so the algorithm results depend on the exploration

success. The list of hyperparameters along with its

chosen values is next described: Number of epochs =

100; Actor Learning Rate = 0.001; Critic Learning

Rate = 0.0001; OU theta = 0.15; OU sigma = 0.2;

Minibatch size = 64; Buffer size = 10000; Tau (used

to update target networks) = 0.001; Gamma= 0.99.

The neural networks of the DDPG approach

consist of two hidden layers with 400 and 300

neurons respectively, with ReLU activation. follows

the same principle, using an output layer to compute

the action space for the actor network and the Q(s,a)

pair for the critic network. More than a hundred

trainings were performed and figure 13 shows the

best results achieved.

Figure 13: DDPG training and testing results obtained in

two different paths.

The top left graph represents the training for a

curved path and the bottom left graph represents the

correspondent test made. On the right side, the same

is true but for a double curved path. Both training and

testing graphs have a positive evolution along the

episodes. However, the training performance drops at

60 epochs on the curved path, and after the 80 epochs

for the double curved path. This phenomenon

occurred quite frequently and shows that DDPG can

unlearn the knowledge previously acquired.

To make sure the weights generated are not faulty

based on that phenomenon, checkpoints were

introduced to save them on the best learning point,

calculating the mean reward of the last 50 epochs. In

the case of the double curved path, once it reaches the

peak reward at 80 epochs, the mean value will be

higher and thus it will be the last checkpoint where

the weights are saved. Both testing graphs show an

average reward above 6. Therefore, most times it

performed the path with success, since approximately

every reward value of 10 represents the episode

completed with no faulty behaviors. Also, both

graphs show a negative peak almost at the end. The

negative peak, marked by a yellow dot, does not mean

that the vehicle did not go to the final line. Often

means that the vehicle decided to move very slowly

in the middle of the episode and the step variable on

the reward system ensures it gets penalized for it.

These peaks cannot be avoided since the algorithm

needs them to know that it is not a desirable behavior.

Figure 14 shows the vehicle completing the course

without any faulty behaviors, although as previous

graphs prove, this does not happen in 100% of the

cases and thus, it is still recommended for simulation

purposes only.

Figure 14: Demonstration of the vehicle using the

implemented system and completing the path.

8 CONCLUSIONS

This project intended to show a proof of concept

of what can be achieved by integrating two different

types of neural networks learning methods regarding

autonomous driving. These cooperate and interact

with the environment where the system is trained and

tested. YOLOv3-tiny was used for detecting

roadworks signs and proved to have an mAP above

90%, so it is a good choice for real situations,

especially in autonomous driving where processing

speed is a major concern for maintaining safety.

DDPG was used for controlling the vehicle’s

behavior and showed to be well-qualified when

handling complex environments in simulation, since

it achieves the intended goal more than 50% of the

trials. At this point, it would not be recommended to

apply the system in real world yet, since it does not

perform as it should in 100% of the cases and that can

compromise the safety of the surrounding

environment or the passengers. The future work must

consist of continuously improving the two learning

methods to a point where both accuracy and safety are

reliable enough to transfer this autonomous driving

system to the real world.

ACKNOWLEDGMENTS

This work has been supported by FCT—Fundação
para a Ciência e Tecnologia within the R&D Units
Project Scope: UIDB/00319/2020. In addition, this
work has also been funded through a doctoral
scholarship from the Portuguese Foundation for
Science and Technology (Fundação para a Ciência e
a Tecnologia) [grant number
SFRH/BD/06944/2020], with funds from the
Portuguese Ministry of Science, Technology and
Higher Education and the European Social Fund
through the Programa Operacional do Capital
Humano (POCH).

REFERENCES

Adarsh, P., Rathi, P., & Kumar, M. (2020). YOLO v3-Tiny:

Object Detection and Recognition using one stage

improved model. 2020 6th IEEE (ICACCS).

https://doi.org/10.1109/icaccs48705.2020.9074315

Arcos-García, L., Álvarez-García, J. A., & Soria-Morillo,

L. M. (2018). Evaluation of deep neural networks for

traffic sign detection systems. Neurocomputing.

https://doi.org/10.1016/j.neucom.2018.08.0 09

Arcos-García, L., Álvarez-García, J. A., & Soria-Morillo,

L. M. (2018a). Deep neural network for traffic sign

recognition systems: An analysis of spatial

transformers and stochastic optimisation methods.

Neural Networks.https://doi.org/10.1016/j.neunet.2018

.01.005

Chun, D., Choi, J., Kim, H., & Lee, H. J. (2019). A Study

for Selecting the Best One-Stage Detector for

Autonomous Driving. 2019 34th ITC-CSCC.

https://doi.org/10.1109/itc-cscc.2019.8793291

Huang, Y., & Chen, Y. (2020). Autonomous Driving with

Deep Learning: A Survey of State-of-Art Technologies.

ArXiv. Published. http://arxiv.org/abs/2006.06091

Kaplan Berkaya, S., Gunduz, H., Ozsen, O., Akinlar, C., &

Gunal, S. (2016). On circular traffic sign detection and

recognition. Expert Systems with Applications, 48, 67–

75. https://doi.org/10.1016/j.eswa.2015.11.018

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A.

A. A., Yogamani, S., & Perez, P. (2021). Deep

Reinforcement Learning for Autonomous Driving: A

Survey. IEEE ITS Transactions.

https://doi.org/10.1109/tits.2021.3054625

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,

Tassa, Y., Silver, D. & Wierstra, D. (2016). Continuous

control with deep reinforcement learning.. In Y. Bengio

& Y. LeCun (eds.), ICLR.

Lim, K., Hong, Y., Choi, Y., & Byun, H. (2017). Real-time

traffic sign recognition based on a general purpose GPU

and deep-learning. PLOS ONE, 12(3), e0173317.

https://doi.org/10.1371/journal.pone.0173317

Liu, L., Lu, S., Zhong, R., Wu, B., Yao, Y., Zhang, Q., &

Shi, W. (2021). Computing Systems for Autonomous

Driving: State of the Art and Challenges. IEEE Internet

of Things Journal, 8(8), 6469–6486.

https://doi.org/10.1109/jiot.2020.3043716

Redmon, J., & Farhadi, A. (2018). YOLOv3: An

Incremental Improvement. ArXiv:1804.02767.

Ribeiro, T., Goncalves, F., Garcia, I., Lopes, G., & Ribeiro,

A. F. (2019). Q-Learning for Autonomous Mobile

Robot Obstacle Avoidance. 2019 IEEE (ICARSC).

https://doi.org/10.1109/icarsc.2019.8733621

Sallab, A., Abdou, M., Perot, E., & Yogamani, S. (2017).

Deep Reinforcement Learning framework for

Autonomous Driving. Electronic Imaging,

7076.https://doi.org/10.2352/issn.24701173.2017.19.a

vm-023

Svecovs, M., & Hörnschemeyer, F. (2020). Real time object

localization based on computer vision (thesis).

Gothenburg, Sweden.

Wang, S., Jia, D., & Weng, X. (2018). Deep Reinforcement

Learning for Autonomous Driving. ArXiv:1811.11329.

Yurtsever, E., Lambert, J., Carballo, A., & Takeda, K.

(2020). A Survey of Autonomous Driving: Common

Practices and Emerging Technologies. IEEE Access, 8,

58443–58469. https://doi.org/10.1109/access.2020.298

3149

