
Combining YOLO and Deep Reinforcement Learning for 

Autonomous Driving in public roadworks scenarios 

Nuno Andrade1, Tiago Ribeiro1 a, Joana Coelho2 a, Gil Lopes3 c and A. Fernando Ribeiro1 d 
1Department of Industrial Electronics, ALGORITMI CENTER, University of Minho, Guimarães, Portugal 

2Department of Mechanical Engineering, University of Minho, Guimarães, Portugal 
3 Department of Communication Sciences and Information Technologies, University of Maia, Maia, Portugal 

{a82007, id9402, id8667}@alunos.uminho.pt, alopes@ismai.pt, fernando@dei.uminho.pt 

Keywords: Deep Learning, YOLO, Reinforcement Learning, Deep Deterministic Policy Gradient, Autonomous Driving, 

Public Roadworks. 

Abstract: Autonomous driving is emerging as a useful practical application of Artificial Intelligence (AI) algorithms 

regarding both supervised learning and reinforcement learning methods. AI is a well-known solution for some 

autonomous driving problems but it is not yet established and fully researched for facing real world problems 

regarding specific situations human drivers face every day, such as temporary roadworks and temporary signs. 

This is the core motivation for the proposed framework in this project. YOLOv3-tiny is used for detecting 

roadworks signs in the path traveled by the vehicle. Deep Deterministic Policy Gradient (DDPG) is used for 

controlling the behavior of the vehicle when overtaking the working zones. Security and safety of the 

passengers and the surrounding environment are the main concern taken into account. YOLOv3-tiny achieved 

an 94.8% mAP and proved to be reliable in real-world applications. DDPG made the vehicle behave with 

success more than 50% of the episodes when testing, although still needs some improvements to be 

transported to the real-world for secure and safe driving. 

1 INTRODUCTION 

In recent years, AI is becoming highly researched 

regarding autonomous driving (Arcos-García et al., 

2018b; Chun et al., 2019). Researchers are constantly 

studying ways to make autonomous vehicles reliable 

in the context of real-world applications (Kaplan 

Berkaya et al., 2016; Lim et al., 2017). In some 

situations, it might be required to have temporary 

road signs which by default can alter the previously 

standard regulation. The new temporary road signs 

can overlap the normal road rules and therefore the 

vehicles must ignore the standard rules and follow the 

specific ones. Recently, some studies have been 

conducted in regard of this subject, namely in 

Formula Student competition (Svecovs & 

Hörnschemeyer, 2020), however, there is still a gap 

in scientific research (Liu et al., 2021).  The majority  
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Figure 1: Detection of the roadworks signs and vehicle’s 

movement control. 

of the solutions do not necessarily use supervised 

learning and reinforcement learning combined. This 

project combines YOLOv3-tiny and DDPG for 

solving roadworks signs detection and the vehicle’s 

behavior control in those real-world situations. Both 

use neural networks, although in different contexts. 



Figure 1 presents the detection module and the 

planning of motion in real-time. 

 

The system receives sensorial information 

through a strategic camera and 16 sensors placed at 

the front of the vehicle. This solution does not require 

hard transformations to the chassis used in common 

vehicles, making it more suitable for manufacturers 

to apply the concepts. 

Usually, authors present two main approaches for 

autonomous driving problems which are end-to-end 

and modular (T. Ribeiro et al., 2019; Huang & Chen, 

2020; Yurtsever et al., 2020). This project follows the 

second approach in order to simplify the complexity 

of the problem. In case of system fail or upgrade 

system components, maintenance becomes a simpler 

task. The main tasks that the framework is supposed 

to handle are: a) to process the detection of temporary 

roadworks signs (object detection); b) to process the 

data from the previous task commanding the vehicle 

(Behavior Plan and Control) to act (Actuator) the 

optimal way for the current state of the environment. 

Figure 2 portrays the proposed framework. 

 

Figure 2: Project modular-based approach and 

implementation of the autonomous driving framework. 

YOLOv3-tiny can detect multiple objects from 

different classes at high frame rates. This is crucial for 

maintaining the security and safety, since good 

reflexes are expected from a human driver as well. 

The vehicle also needs to be able to perform and 

behave with efficiency and precaution. Many pieces 

of research use deep reinforcement learning to 

accomplish that performance (Sallab et al., 2017; 

Kiran et al., 2021) and so DDPG is chosen for this 

project. DDPG is suitable for real-world complex 

robotic tasks and it uses neural networks to learn from 

the environment and deploy the best vehicle behavior 

it can achieve. For that, it chooses the action that leads 

to the best reward achievable. This paper is composed 

by a brief introduction of YOLOv3-tiny, the dataset 

on which it was trained, a summary of DDPG and its 

configuration, the simulation environment used, how 

the communication was made between the framework 

modules as well as the final results and the 

correspondent conclusions. 

2 YOLOV3-TINY 

YOLOv3-tiny (Adarsh et al., 2020) is an one-stage 

object detection algorithm proposed by J.Redmon 

(Redmon & Farhadi, 2018) which focus on high 

frame rates, taking advantage of YOLOv3 best 

features. The architecture of YOLOv3-tiny is mainly 

composed by convolution layers followed by max-

pooling layers to perform feature extraction from the 

input images divided into SxS grid cells. YOLOv3-

tiny is fast because it operates only at two different 

map scales which are 13x13 and 26x26, for 416x416 

input images. It is able to detect medium-large objects 

since for those scales small objects remain 

undetectable. 

For predicting the bounding boxes, YOLOv3-tiny 

uses the same concepts of YOLOv3. It relies on the 

use of anchor boxes to indicate the algorithm possible 

locations of the objects that it is trying to detect. The 

anchor boxes can be changed according to the dataset 

in which YOLOv3-tiny is trained. The predicted 

bounding box coordinates are calculated by the offset 

between the predicted bounding box and the anchor 

boxes. Finally, a threshold is used as a filter to 

eliminate the bounding boxes that have low accuracy 

and therefore are not useful to classify objects. The 

remaining bounding boxes are excluded using Non-

Maximum Suppresion (NMS). It uses Intersection 

over Union (IoU) for evaluating how coincident the 

predicted bounding boxes are to the ground truth 

bounding boxes and remove the least coincident ones. 

3 DATASET OF YOLOV3 

The dataset used for training YOLOv3-tiny contains 

1252 photos with four objects randomly applied: 1) 

Street cone; 2) Roadworks sign; 3) Road Separator; 

4) Red and White Tape. These objects are presented 

in figure 3. 
 
 
 
 
 

Figure 3: The four objects used in the dataset. 

The datasets found for these objects are not many, 

these also lack in quality and have poor 

diversification. To make up for these flaws, a new 

entire dataset was built from scratch and every image 

was tweaked to be different from the one behind and 

after it. The goal was to avoid unnecessary 



correlations between the images. Every image differs 

in number of signs, different types of signs, hue, 

saturation, brightness, shadows, object size, 

perspective, contrast, color temperature, blur, noise, 

distortion and light conditions. Figure 4 shows some 

examples. 

Figure 4: Examples of images picked directly from the 

dataset. 

This extra work resulted in gradual improvements 

in the algorithm response as it is described in the 

Results section. The LabelImage Tool was used to 

label the entire dataset images. Figure 5 shows how 

the images were labeled. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Signs surrounded by bounding boxes manually 

applied, also known as labelling. 

Some signs were intentionally positioned in the 

image to teach the algorithm to ignore them, so they 

are not labeled. One of YOLOv3-tiny advantages is 

that it does not require a large dataset to show good 

results. Approximately 2000 images were used to 

make the algorithm reach an mAP above 90%. 

4 DEEP DETERMINISTIC 

POLICY GRADIENT (DDPG) 

DDPG is the brain behind the vehicle actuator. It is a 

model-free, off-policy and actor-critic based model 

that uses a deterministic policy and deep neural 

networks to improve the actions of the vehicle in a 

way that leads to obtain the maximum rewards that it 

can achieve in a certain environment. The authors 

(Lillicrap et al., 2016) presented it as a solution to 

Deep Q-Networks limitations regarding the 

continuous domains. The main characteristics of this 

algorithm makes it a good fit in the autonomous 

driving field where the environments typically are 

continuous, complex and there is no environment 

model previously known (Wang et al., 2018). DDPG 

relies only in experience and trial-and-error. At first, 

the trial-and-error based training can be exhaustive 

but once the algorithm starts learning it results in very 

robust solutions. Figure 6 represents the DDPG 

architecture. 

 

 

Figure 6: DDPG Structure. 

Actor-Critic based methods like DDPG use neural 

networks so the policy can predict actions, called a, 

for the incoming states, called s, with the main goal 

of obtaining the optimal Q pair. Since there is no 

reference or labeled dataset that indicates what is the 

optimal pair, DDPG uses target networks to estimate 

the optimal value for the next state, called Q_target. 

It is possible to find what is the optimal Q, called y 

(in figure 6). Q must converge to y and the target 

networks cannot be regularly updated like the original 

ones otherwise Q_target would change a lot on each 

step and thus it would be difficult to converge Q. So, 

the target network is fed with weights that are softly 

updated. 

The optimal behavior for the vehicle is established 

by a reward system so that in exploitation, the policy 

learns what are the actions highly rewarded according 

to a certain state. The reward system created in this 

work is expressed as: 

reward = A * speedinstant – B * distancefinish_line 

– C * ∆angledirection – D *step 
(1) 

Where speedinstant is the current speed of the 

vehicle, the distancefinish_line is the distance between 

the vehicle and the finish line, the ∆direction is the 

vehicle’s changing of direction and the step is a 

counter in every episode to ensure the vehicle 

executes the path in the shortest time possible. A, B, 

C and D are coefficients used to adjust the impact of 

each variable of the reward function, depending on 

the vehicle’s behavior. 

Regarding the state space and action space of 

DDPG, they are respectively the following: 



S = {intersectionmatrix, distancefinish_line} (2) 

A = {steeringapplied, speedapplied} (3) 

In the state space, the intersectionmatrix is a matrix 

of 16x3 dimensions and is the result of the visual 

processing applied to every frame of the simulation. 

The distancefinish_line is the same variable as the one in 

the reward system. In the action space, the 

steeringapplied and the speedapplied are the steering and 

speed commanded to the actuator, respectively. 

The origin of the intersectionmatrix is shown in 

figure 7. One can see a set of 16 line segments rooted 

in a single point in the lowest center of the frame. 

These are separated by an angle of 12 degrees in the 

interval of 180 degrees. 

Figure 7: Image processing applied in a frame. 

The line segments serve as a simpler orientation 

for DDPG to know where the obstacles are and react 

quickly to avoid them, rather than computing the local 

coordinates of the objects detected. For instance, 

every time a cone intersects one of the 16 line 

segments, the line segment turns red and a flag is 

generated and stored in the first column of the matrix 

(and in the line correspondent to the line segment 

number) that will be fed into the neural network. In 

the second column of the matrix, it is stored a value 

between 0 and 1, which corresponds to the distance 

of the intercepted cone to the vehicle, calculated by 

using visual processing techniques. In case more than 

one cone intersects the same line segment, only the 

nearest one is considered. On the other hand, if a line 

segment is not intercepted by any cone, the distance 

value is set to 1. To contextualize, 1 is estipulated as 

an unreachable distance so it is the distance value 

assigned to the cases where the line segments are not 

intercepted. 

The third column considers what line segments 

are intercepted by the target. To achieve that, 

proximity sensors were introduced (figure 8). 

Figure 8: Sensors placed in the vehicle. The line of the 

sensors blink yellow when intercepting the target. 

The sensors were disposed following the same 

orientation of the 16 line segments displayed in the 

frame. This allows to map the target flags with the 

correspondent line segments in the matrix. The goal 

of the sensors is to give the vehicle an insight into the 

position of the target, mainly in accentuated curves, 

where the camera cannot see the target. Besides the 

target, all other objects remain invisible for the 

sensors. Table 1 shows a resulting matrix example. 

Table 1: Matrix generated by the processing applied to the 

figure 7 captured frame. 

Line 

Number 

Intersection Distance 

(%) 

Target 

1 0 1.0 0 

2 0 1.0 0 

3 0 1.0 0 

4 0 1.0 0 

5 1 0.39 0 

6 1 0.53 0 

7 1 0.63 0 

8 0 1.0 1 

9 1 0.73 1 

10 1 0.725 0 

11 0 1.0 0 

12 1 0.4 0 

13 0 1.0 0 

14 0 1.0 0 

15 0 1.0 0 

16 0 1.0 0 

 

To analyze table 1, one must look at figure 7 and 

count the line number from the right to the left (the 

same orientation of the unit circle). In this work, 



proximity sensors are used for detecting the target, 

although in real world the target coordinates are 

known. 

5 SIMULATION ENVIRONMENT 

CoppeliaSim was the simulator chosen to build 

the environment and test the algorithms. The virtual 

space contains a car and two arrays of cones. In 

addition, there is a starting line and a finish line. The 

vehicle length is approximately 0.8 meters and the 

distance of the track is about 5 meters. These 

dimensions were chosen according to the scenarios 

proposed by Festival Nacional de Robótica 

competition (Portuguese Robotic Festival). Figure 9 

shows two of the main paths used to train and test the 

system. The goal of the agent was to command 

actions to the vehicle through the analysis of the 

scenario using the camera which is strategically 

placed in the top center of the vehicle’s roof. 

 

 

 

 

 

 

 

 

Figure 9: Environment used for training and testing the 

vehicle. A curve path and a double curve path, respectively. 

When the DDPG episode starts, it automatically 

starts the environment and sends the variables to the 

car to start moving. The episode ends when the 

vehicle  reaches the finish line, is outside the limits, 

stops or crashes against a cone. To improve the 

algorithm training and reliability, in every episode the 

vehicle starts at a random orientation, between ± 30 

degrees. This ensures that the algorithm does not 

overfit or becomes partially biased by its initial 

position. 

6 SYSTEM COMMUNICATION 

Communication between the modules in the 

simulation environment is achieved by using the 

Robotic Operating System (ROS). In figure 10, two 

diagrams represent the messages that are sent or 

received along with the corresponding publisher or 

subscriber nodes, respectively. The diagram a) is a 

brief representation to better interpret what 

information is required to be sent and received. It is a 

simple representation of the diagram b) adapted from 

a ROS tool, rqt_graph. 

 

 

Figure 10: ROS structure. 

Following the bottom diagram, the topic “/image” 

receives the frames captured by the vehicle’s camera 

and sends it to the YOLOv3-tiny node (called 

“distance_offset_node”). After YOLOv3-tiny 

processes that frame, it sends the matrix with the 

intersected lines to the DDPG node (called 

“talker_and_listener”) through the “/my_yolo_topic” 

topic. After DDPG obtains the relevant information 

regarding the environment’s state space, it sends the 

proper action space to CoppeliaSim through 

“/my_ddpg_topic”, receiving it in the 

“sim_ros_interface” node. This node is also 

responsible to send three important variables for 

DDPG processing using three topics: 1) “/chatter” 

sends the instant speed; 2) “/final_pos_distance" 

sends the distance to the final line; 3) “/target_pos” 

sends the sensors flags triggered when encountered 

the target. ROS is operating at 5 Hz for all modules 

due to YOLOv3-tiny processing time. 

7 RESULTS 

The system was implemented, trained and tested in an 

Asus laptop with Intel Quad-Core i5, 2.30GHz, 

Nvidia Geforce 940M GPU using Ubuntu 18.04.5 

LTS 64-bit as the Operating System. For the 

programming environment the main language was 

Python alongside libraries such as OpenCV, 

Tensorflow and Keras. YOLOv3-tiny was trained in 

0.8m 

m 

5m 

m 

a) 

b) 



Google Colab due to its computational power. The 

following list shows the training hyperparameters for 

YOLOv3-tiny along with the chosen values: Number 

of epochs = 100; Dataset split = 80% training / 20% 

testing; Learning Rate = 0.0001; Batch Size = 4; 

Kernel Regularizer = 0.001; Leaky ReLU (alpha) = 

0.3; Data Augmentation = On ; Input image resolution 

= 416x416; IoU loss threshold = 0.5; Non-Maximum 

Suppression (sigma) = 0.3; Score threshold = 0.3; IoU 

threshold = 0.45. 

Anchors = [[[10,  14], [23,    27], [37,      58]], 

              [[81,   82], [135, 169], [344, 319]], 

              [[0,       0], [0,         0], [0,        0]]]; 

Every value was chosen regarding the 

hyperparameter properties and what value represents 

the best equilibrium of what it can offer. The most 

relevant optimizations were made in the dataset. 

Images were added and changed gradually as the 

performance of the algorithm was registered. Table 2 

reports the results obtained when optimizing the 

dataset gradually with the goal of improving 

performance. 

Table 2: YOLOv3-tiny training results. 

Training mAP FPS Dataset 

Images 

1 88% 10 553 

2 74% 29 1300 

… … … … 

9 93.1% 30 1090 

10 93.0% 26.9 1090 

11 93.7% 27.2 1110 

12 91.5% 26.2 1110 

… … … … 

16 93.1% 26.5 1231 

17 94.8% 26.4 1252 

 

Analyzing the table, one can see the worse result 

in the second train with mAP of 74%. This value was 

caused by the shape inconsistency of the red and 

white tape. Table 3 shows the details about the AP of 

the red and white tape which proved to be the cause 

of the mAP lowering. This tape proved to be 

incredibly volatile regarding the deformation it 

presents on every situation. Sometimes random and 

similar objects mislead the algorithm and for that 

reason it was replaced by the road separator. 

Table 3: Red and White Tape training results. 

Object Cone Sign 
Red and 

White Tape 

AP 85.4% 100% 35.4% 

 

For the next trainings the red and white tape was 

disused due to low detection accuracy. Multiple 

trainings were carried out to analyze the impact of 

some changes and improvements in the algorithm 

with proper testing between every training. Finally, 

the best results were obtained in training number 17. 

Table 4 shows the details. 

Table 4: Best training YOLOv3-tiny results. 

Training Cone AP Sign AP Divider AP 

16 84.1% 99.3% 95.8% 

17 86.7% 99.3% 98.5% 

 

Figure 11 shows the loss obtained in the 17th training. 

The training loss is calculated for every step whereas 

the validation loss is calculated every epoch. The 

results show that the model is not overfitting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Results of YOLOv3-tiny training loss. 

 

At this point, the dataset was already good and 

then the hyperparameters were slightly changed in 

order to obtain some minor improvements. Those 

changes didn’t result in better performance so the 

values remained the same. Figure 12 combines four 

samples from real-world YOLOv3-tiny testing. The 

real-time detection was performing at approximately 

12 FPS so the testing video was stuttering. To avoid 

that, the detection was made every other frame and 

the capturing frame rate increased to approximately 

25 FPS, as shown on the top left corner of the samples 

of figure 12. 

 

 



Figure 12: YOLOv3-tiny test with images captured from 

real world. 

In DDPG training, the exploration starts randomly 

and so the algorithm results depend on the exploration 

success. The list of hyperparameters along with its 

chosen values is next described: Number of epochs = 

100; Actor Learning Rate = 0.001; Critic Learning 

Rate = 0.0001; OU theta = 0.15; OU sigma = 0.2; 

Minibatch size = 64; Buffer size = 10000; Tau (used 

to update target networks) = 0.001; Gamma= 0.99. 

The neural networks of the DDPG approach 

consist of two hidden layers with 400 and 300 

neurons respectively, with ReLU activation. follows 

the same principle, using an output layer to compute 

the action space for the actor network and the Q(s,a) 

pair for the critic network. More than a hundred 

trainings were performed and figure 13 shows the 

best results achieved. 

Figure 13: DDPG training and testing results obtained in 

two different paths. 

The top left graph represents the training for a 

curved path and the bottom left graph represents the 

correspondent test made. On the right side, the same 

is true but for a double curved path. Both training and 

testing graphs have a positive evolution along the 

episodes. However, the training performance drops at 

60 epochs on the curved path, and after the 80 epochs 

for the double curved path. This phenomenon 

occurred quite frequently and shows that DDPG can 

unlearn the knowledge previously acquired. 

To make sure the weights generated are not faulty 

based on that phenomenon, checkpoints were 

introduced to save them on the best learning point, 

calculating the mean reward of the last 50 epochs. In 

the case of the double curved path, once it reaches the 

peak reward at 80 epochs, the mean value will be 

higher and thus it will be the last checkpoint where 

the weights are saved. Both testing graphs show an 

average reward above 6. Therefore, most times it 

performed the path with success, since approximately 

every reward value of 10 represents the episode 

completed with no faulty behaviors. Also, both 

graphs show a negative peak almost at the end. The 

negative peak, marked by a yellow dot, does not mean 

that the vehicle did not go to the final line. Often 

means that the vehicle decided to move very slowly 

in the middle of the episode and the step variable on 

the reward system ensures it gets penalized for it. 

These peaks cannot be avoided since the algorithm 

needs them to know that it is not a desirable behavior. 

Figure 14 shows the vehicle completing the course 

without any faulty behaviors, although as previous 

graphs prove, this does not happen in 100% of the 

cases and thus, it is still recommended for simulation 

purposes only. 

 

Figure 14: Demonstration of the vehicle using the 

implemented system and completing the path. 



8 CONCLUSIONS 

This project intended to show a proof of concept 

of what can be achieved by integrating two different 

types of neural networks learning methods regarding 

autonomous driving. These cooperate and interact 

with the environment where the system is trained and 

tested. YOLOv3-tiny was used for detecting 

roadworks signs and proved to have an mAP above 

90%, so it is a good choice for real situations, 

especially in autonomous driving where processing 

speed is a major concern for maintaining safety. 

DDPG was used for controlling the vehicle’s 

behavior and showed to be well-qualified when 

handling complex environments in simulation, since 

it achieves the intended goal more than 50% of the 

trials. At this point, it would not be recommended to 

apply the system in real world yet, since it does not 

perform as it should in 100% of the cases and that can 

compromise the safety of the surrounding 

environment or the passengers. The future work must 

consist of continuously improving the two learning 

methods to a point where both accuracy and safety are 

reliable enough to transfer this autonomous driving 

system to the real world. 
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