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Abstract Machine learning models are becoming increasingly popular in differ-
ent types of settings. This is mainly caused by their ability to achieve a level of
predictive performance that is hard to match by human experts in this new era
of big data. With this usage growth comes an increase of the requirements for
accountability and understanding of the models’ predictions. However, the degree
of sophistication of the most successful models (e.g. ensembles, deep learning) is
becoming a large obstacle to this endeavour as these models are essentially black
boxes. In this paper we describe two general approaches that can be used to
provide interpretable descriptions of the expected performance of any black box
classification model. These approaches are of high practical relevance as they pro-
vide means to uncover and describe in an interpretable way situations where the
models are expected to have a performance that deviates significantly from their
average behaviour. This may be of critical relevance for applications where costly
decisions are driven by the predictions of the models, as it can be used to warn
end users against the usage of the models in some specific cases.
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1 Introduction

Organisations are collecting large amounts of data on their activities leading to an
increase in the use of Machine Learning (ML) models to automate the extraction of
valuable knowledge from these data. At the same time the degree of sophistication
of the available models has also been increasing steadily. Approaches like Ensem-
bles (e.g.[27]) and Deep Learning (e.g. [26]) are among some of the most successful
approaches to predictive analytics. In effect, being able to predict the future is of
key importance in many contexts and these methods have proved their value in a
wide range of application domains. However, as the applicability of these methods
increases, so does the awareness of the society and the visibility of some failures
(e.g. [17]) that have been publicly scrutinised. As a result of these social pressures,
being able to understand and justify the predictions of these models has become
a key goal of the research community. The main challenge of this task results
from the complexity of the most successful predictive models, usually considered
black boxes to illustrate the difficulty of interpreting them. This paper addresses
one of the aspects of this interpretability quest: - describe, in an understandable
way, situations where these black box predictive models fail or exhibit unexpected
predictive performance. Finding and describing these areas of performance that
deviate from the average behaviour of the models can be of utmost importance
as they allow decision makers to avoid using the models on those circumstances,
thus not incurring in the associated social and/or economic consequences of their
erroneous predictions.

The study of the predictive performance of ML models is a well established
research topic (e.g. [16]). Most studies focus on characterising the global, average
performance of the models through the proposal of concrete evaluation metrics
(e.g. [9]), or on methods to obtain reliable estimates of these metrics (e.g. [4]).
In this paper we concentrate on drilling down this global performance analysis
by focusing on finding regions of the predictors’ space where the performance
of the models significantly deviates from their global performance. Our methods
provide the end-user with interpretable descriptions of these areas of the input
space. Note that these deviations from the average, global, performance can be in
both directions. They can either be significantly worse or better than the average.
We propose two types of descriptions of these deviations: (i) a univariate visual
analysis where we relate the domain of any input predictor with the expected
error of the models; and (ii) a multivariate analysis where we find, and describe
in an interpretable way, regions of the input space where the performance of the
models is significantly different from their average performance. The former allows
the user to understand how different values of a certain predictor will impact the
models’ performance, while the latter discovers areas of the input space where
the performance of the models is significantly worse (or better) than the global
behaviour.

The two tools we propose allow the end user to explore in an interpretable way
the error profile of any classification model. These tools provide a level of detail of
their predictive performance that can be used to anticipate situations where using
the models to drive decisions may be too risky. In this context, these tools empower
end users with the ability to anticipate the risks of using machine learning models
to drive decisions, by providing interpretable accountability summaries of their
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expected performance. In the paper we describe a series of concrete illustrative
examples of how these tools can help in identifying these high-risk situations.

The paper is organised as follows. In the next section we describe existing work
that is related to our proposals. Section 3 describes our two proposed methods,
while on Section 4 we provide concrete examples of applying these methods to bet-
ter understand the performance profile of different classification methods. Finally,
we present the conclusions of our work on Section 5.

2 Related Work

Existing work hinges on distinct aspects of explainability, with most methods aim-
ing to explain the possible cause and effect phenomenons that are responsible for
the concrete values predicted by a model. However, assessing and understanding
the performance of a black-box model is also fundamental to enhance accountabil-
ity, while improving the knowledge of the machine.

For both cases, the explanations can be provided through a multitude of means,
such as visual aids or textual descriptions. While visualization is more convenient
for compiling complex ideas, textual explanations have the advantage of trans-
mitting information in human-like manner and of being straightforward. For the
latter, Association Rules [1] are frequently used as highly interpretable means of
correlating different facts about observations [10,19,20].

Several tools for evaluating classification models can be found in the literature,
ranging from scalar to graphic methods. These include, for instance, the largely
used metrics of accuracy (or the complement error rate), precision, recall and
the F1-score [22] that can be calculated recurring to a confusion matrix. Other
approaches try to provide a different perspective on the analysis of the model,
informing about the changes in the performance for different operating conditions,
as are examples ROC curves [5], the Area Under the Curve (AUC) [11] and Cost
Curves [7].

The shortcoming of using single scalar measures is that these cannot capture
the full complexity of the performance profile of a model, neither help in differen-
tiating between two classifiers across particular types of test cases. Although ROC
curves and Cost Curves contribute to overcome this issue, these methods still fail
in analysing which are the circumstances influencing the performance of a ma-
chine, i.e. they fail in associating the values of the predictors with these different
performance levels thus not providing interpretable descriptions of the concrete
regions of the predictors space that cause this behaviour.

In prior work, we have presented the Error Dependence Plot (EDP) [2], which
is a visual tool that helps identifying under which conditions of the predictor
variables the performance of a certain black box regression model will deviate
significantly from the expected overall performance. In this paper we extend these
methods to classification models.

Several proposals are described in the literature that make use of rules to
explain predictions. One of the first was anchors [21], where individual predictions
are explained with decision rules that are generated through perturbations that
evaluate the local changes of behaviour of the model. LORE proposed in [10] is
an agnostic method (the algorithm can be used in any type of machine learning
model) to derive interpretable and faithful explanations. It uses a genetic algorithm
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to derive decision rules that explain the reason for the prediction and a set of
counterfactuals to explain which changes are needed in the instance features state
to flip the prediction. The method only applies to binary classification problems.
The Lormika method described in [19] also uses association rules as the local
model to explain an instance. These k-optimal association rules are derived from
the instance neighbourhood. The authors argue that these k-optimal rules are
the best rules to explain the prediction since they follow an optimised algorithm
on a specific interest measure e.g. lift, strength, leverage. Lormika also generates
counterfactual rules to suggest which potential changes in the instance features
state lead to different outputs on the model prediction. All these approaches once
again focus on explaining the predicted values, not the expected error which is the
goal of the current paper.

In this paper we will recover distribution rules [13], a type of association rules
that describe subgroups with a deviating numerical property. The derived rules
(and subgroups) exhibit a distribution on this property that significantly distances
from a given reference distribution (typically the global numeric property distri-
bution). In this work, we adapt the proposal in [13] to categorical distributions so
that one can deal with a performance representation of classification models. In
our case, this representation is the confusion matrix of a model in a given test set.

In light of previous investigation, we found that performance tools that assess
classification models solely address the error or the error tolerance in relation to
the target value, never establishing a relationship between these errors and the
values of the predictors.

Henelius et al. [12] studies hard classifiers and try to find groups of attributes
whose interaction affect the predictive performance of a given model. They propose
a GoldenEye algorithm that makes use of randomisation of data and a fidelity
measure to identify optimal sets of attributes.

Duivesteijn et al. [8] (SCaPE) appear as the closest proposal to ours. The au-
thors make use of Exceptional Model Mining (EMM) [14] for finding subgroups for
which a soft classifier performs poorly or exceptionally in relation to a given ground
truth. In SCaPE, EMM is used to detect abnormal interaction between multiple
properties. Used datasets in SCaPE (test sets) have the effective class value and
the classification score of the model included as two additional attributes. The
interaction between these two properties (effective class and classification score)
on each test case is used to compute a rank based measure. When compared to
the complete test set performance, this measure enables an ordering on subgroups
(using an AUC rank like measure). This measure (Average Ranking Loss, ARL)
computes a penalty for each positive case in the dataset. This penalty corresponds
to the number of negative cases that have higher score than the positive case. To
identify the subgroups that represent the most extreme situations, the difference
between the ARL of the whole test set and the ARL of the cases covered by the
subgroup is calculated. Hence, it requires two runs of SCaPe to obtain the set
of subgroups representing both extreme situations. SCaPE application requires a
soft classifier where a score is always derived for each prediction. It also implies
that this proposal is only applicable to binary classification problems. These two
features makes comparison with our proposal unfeasible. The specific rates of false
positives/negatives are not displayed within SCaPE output. Also, it is not possi-
ble to follow how subgroup specialisation evolves since no rule pruning control is
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used. We also notice that the subgroups in the case study described in [8] are only
composed of one condition which yields a rather simplified approach.

3 Interpretable Analysis of Classification Performance

Our main goal is to design and formulate accountability methods that focus on
describing regions of the predictors space where a certain unusual error behaviour
occurs. Specifically, we will provide two solutions to this: (i) a univariate proposal
that describes how changes across the domain of a predictor variable affect the
expected model performance; and (ii) a multivariate method that provides inter-
pretable descriptions of areas of the predictors space where the performance of the
models is significantly different from their average behaviour captured by standard
scalar evaluation metrics.

3.1 Univariate Methods

Regression EDPs [2] are visual tools that represent the distribution of the expected
error of a regression model on the Y-axis, against the values of a predictor variable
in the X-axis. In theory, the procedure used to obtain these plots would consist of
obtaining reliable estimates of the prediction error for each value of the predictor.
However, calculating the estimated error for each possible value of a numerical
predictor is challenging, since each value might not repeat often or even appear
in the available data, particularly when dealing with smaller datasets. Hence, the
practical approach that was taken was to compartmentalise the domain of the
numeric predictors into relevant bins, and then estimate the error of the models
for each of these bins. To make sure these estimates (and thus EDP’s) are reliable a
Cross Validation procedure was used, making sure each of the cases in the available
dataset is used in a test set once. Using the estimates of the error of the model for
each case we can obtain the distribution of this error for each of the bins.

The discretization of the domain of the numeric predictors can be driven by
specific user/domain requirements or, in the absence of these, as suggested in the
original paper, the domain can be divided into 5 bins, according to the quantiles
of the values: [0, 10%] (extremely low values), [10%, 35%] (low values), [35%, 65%]
(central values), [65%, 90%] (high values) and [90%, 100%] (extremely high values).
For nominal predictors this division is not necessary since the variables are discrete,
and each value will already act as a bin.

The previously developed regression EDPs show the estimated error distribu-
tion of each bin through a boxplot, since regression errors are continuous. This is
not the case for classification tasks that are addressed in the current paper. Due to
the nature of categorical prediction errors, EDPs for classification will have to fo-
cus on analysing the estimated distribution of misclassifications for each bin of the
predictors. Contrary to regression error, classification errors have a finite domain
and are typically described by a confusion matrix with c× c dimension, where c is
the number of classes of the problem. Our proposal uses again a Cross Validation
procedure to estimate in a reliable way the numbers in the confusion matrix. These
numbers are then partitioned according to the bins of the predictor for which a
classification EDP is required. The other necessary modification to the original
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EDP’s concerns the procedure used to show this classification error distribution.
Given the nature of the information we have opted for displaying these confusion
matrices as stacked bar plots where each bar, representing one entry of the matrix,
shows the percentage of the results with that particular misclassification error.
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Fig. 1 Error Dependence Plot for feature normal.nucleoli from dataset BreastCancer trained
with Naive Bayes (c.f. Tables 1 and 2).

Figure 1 a) depicts an example of a classification EDP of a Naive Bayes (NB)
model for the numerical predictor normal.nucleoli of dataset BreastCancer (c.f.
Tables 1 and 2). Below each bin of normal.nucleoli we present the information on
the number of training cases in the bin and the respective percentage of the full
data set. Moreover, for comparison, EDPs visualize the error distribution over the
entire data set on the right side of the plot, i.e. the expected global performance
of the model. The plot dissects the performance of the model across the range of
the predictor, helping to understand, for instance, that the model is expected to
underperform for central values (normal.nucleoli = [5-7]), where there is an higher
percentage of errors, and to overperform for higher values (normal.nucleoli = [9-
10]), where no errors are expected to occur. It is also interesting to note that
for the cases in which only one nucleoli is found, there is a higher expected risk
of a false negative (predicting a benign tumour instead of a malign), which does
not occur for any other value of that predictor. This simple example immediately
highlights the relevance of this drilled down performance analysis that may lead
decision makers to avoid using the predictions of a model in face of such different
expected error. Knowing that if a certain test case contains a single nucleoli the
NB model incurs in a high risk of saying that a tumour is benign instead of malign
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may be crucially important information for a decision maker. This information
cannot be inferred from the global analysis of the model performance.

Since in some models the expected percentage of errors for a bin can be too
small to analyse visually on the naked eye, as it is the case of normal.nucleoli = [1]
(Figure 1 a)), classification EDPs provide an optional error-zooming plot for a
closer look at the errors, by eliminating the accurate predictions from the visuali-
sation. An example can be found in Figure 1 b), in which each bar represents the
errors found in the bin of normal.nucleoli shown in Figure 1 a). The percentage
below each bin of this zoomed plot refers to the percentage of total errors of the
model. For instance, from the 18 (100%) errors of NB (rightmost stacked bar on
Figure 1 b) ), 25% (4) occur when normal.nucleoli = [1], and 3 out of 4 of these
errors (75%) are false positives (predicting a benign tumour when it is malign).
We can also observe from this graph that all false positive errors, which in this
application domain are the most serious ones, occur when normal.nucleoli = [1].
This is a crucial piece of information concerning the predictive performance of this
NB model, that can not be inferred from the global analysis of its performance.
If such model is being used for supporting medical decisions, this graph would
provide a clear red flag when a patient with normal.nucleoli = [1] appears.

In summary, the proposed method is based on two main steps: (i) obtain a
reliable estimate of the predictive performance of a model; and (ii) drilling down
this estimated predictive performance across the bins of any predictor variable,
representing the outcome as stacked bar plots.

For the first of these steps any estimation methodology could be used. In our
case we have used k-fold Cross Validation (CV). More specifically, we have used
CV to obtain the prediction of any classification model for all available cases. By
definition of CV, any case of a dataset is part of one of the k folds that are used
as a test set in the CV procedure. This means that for each case, we will be able
to obtain the prediction of the model in a reliable way (i.e. when the model has
not used that case in its training set). Using these predictions for all cases in the
data set, obtained in the CV process, it is possible to derive confusion matrices
that summarise the model performance on the data set. Algorithm 1 describes the
procedure used to obtain such confusion matrix through CV.

Algorithm 1: Obtaining Cross validation Predictions of a Classifier.

input : data set D
input : algorithm A
input : nr. folds k
output: cases and their predictions Ê

D′ ← Permute(D) // randomly permute the data
P ← Partition(D′, k) // create k equal-size partitions

Ê ← {}
foreach p in P do

M ← Train(A, D′ \ D′
p) // train A on all but the partition p cases

êp ← { 〈x, y, ŷ〉 | 〈x, y〉 ∈ D′
p ∧ ŷ = Predict(M,x) } // test cases in p and

respective predictions

Ê ← Ê ∪ êp

return Ê // Return the cases and respective predictions of the model
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For the second step we need to obtain the error profile of the models for each
bin of a predictor variable. This profile can be obtained by using the information
returned by Algorithm 1. Specifically, for a bin b of a predictor we just need to
obtain the subset of cases in the set Ê returned by that algorithm, that have a
value of the predictor inside that bin. With this subset we can obtain the number
of correct predictions and also the errors of those cases, which is then represented
by a stacked bar. This procedure is formalised in Algorithm 2.

Algorithm 2: Obtaining the classification EDP of a predictor.

input : data set D
input : predictions Ê for the cases in D
input : bins B of the predictor Xk

if B is empty then
if Xk is numeric then

B ← DefineBins(Xk) // get the bins of Xk using quantiles or
user-defined ranges

if Xk is nominal then
B ← Categories(Xk) // get the bins of Xk using categories

foreach b in B do
Eb ← {}

foreach 〈xi, yi〉 in D do
b← FindBin(xk

i , B) // get the bin of the value of Xk

Eb ← Eb ∪ { 〈yi, ŷi〉 | 〈xi, yi, ŷi〉 ∈ Ê } // true and predicted values for
this case

foreach b in B do
CMb ← ConfusionMtrx(Eb) // Calculate the confusion matrix aggregating

the correct prediction numbers into a single score
DrawStackedBar(Eb)

3.2 Multivariate Methods

Distribution rules [13] are a form of association rules that discover subgroups with
distinguished properties of interest. The idea is to adapt an association rules al-
gorithm to derive rules that find subgroups that have a deviating distribution in
a predefined numeric property of interest. These distributions are deviating com-
pared to a prior distribution. This prior distribution is typically the distribution
of the whole population. Measuring deviation of a distribution in relation to a
predefined one (prior) is implemented using a goodness of fit statistical test. The
original proposal used the two sample Kolgomorov-Smirnov continuous distribu-
tion significance test (KS-test). The following is an example of a distribution rule
(from the wages dataset, c.f. Table 1):

Ant Sup=0.118 pvalue=0.0085 Mean=10.982 St.Dev=6.333

WAGE <-- education=]12.5 : 15.5] & SOUTH=0 & RACE=3.
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and can be read as: ”the subgroup composed by white people (race=3) with 13 to
16 years of education not from the south (south=0) has a wage distribution that
deviates significantly from the distribution of the whole population”. The wage
distribution of the whole is not shown for space convenience. Ant Sup represents
subgroup frequency, pvalue refers to the KS-test, Mean and St.Dev are the prop-
erty of interest mean and standard deviation for the subpopulation covering this
subgroup.

In this paper we revisit distribution rules to assist in drilling down the er-
ror performance analysis of classification models. We take as input a categorical
distribution formed with bins that represent cells in the model’s confusion matrix
estimated through the same process used in classification EDP’s (see Algorithm 1).
The diagonal (correct predictions) is taken as a single bin in this categorical dis-
tribution (as we have done for EDP’s). To enable the use of these new type of
distributions, a new module for categorical distribution rules was implemented in
CAREN [3] where distance between distributions is measured using a χ2 goodness
of fit test. The same algorithm used to find the continuous distribution rules is
then applied, but this time driven by this different statistical test that is required
for comparing categorical distributions.

The data set used to find the distribution rules that characterise the perfor-
mance of a model is created using the original predictor variables plus a categorical
property of interest that in this case represents prediction performance, i.e. the
cells in the confusion matrix (CM). The coding for these cells follows the pattern
effective/predicted. Thus, code 12 means an instance of class 1 where the model
predicted class 2. Code 0 represents a hit (the diagonal of the CM).

Consider an example from a binary classification task (adult dataset, Table 1)
where class 1 is the class ”income ≤ 50K” and class 2 is ”income > 50K”. Suppose
a certain classification model is applied to the full data set resulting in a confusion
matrix whose distributions is :

CM={ 0/0.854,12/0.044,21/0.102 }

this means that in the full data set the classification model was accurate in 85.4%
of the cases, with 4.4% being cases of class 1 wrongly predicted as class 2, and the
remaining 10.2% being class 2 cases classified as 1.

The following categorical distribution rule describes, in an interpretable way, an
interesting subgroup of cases from the point of view of classification performance.
This subgroup is interesting because the model classified it in such a way that
resulted in a confusion matrix whose categorical distribution significantly deviates
from the above distribution. The rule is the following:

Ant sup = 0.01078 pvalue = 0.0010000156478771152000

CM={ 0/0.880,12/0.006,21/0.114 } <--

education=Bachelors & relationship=Not-in-family &

occupation=Prof-specialty & workclass=Private

The rule can be read as: ”The performance of the model when applied to the
subgroup formed out of the cases having people holding a Bachelor, not having a
family, having a specialised profession and working in the private sector deviates
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significantly from the performance exhibited by the model in the full data set. For
this subgroup of cases the ratio of false positives (noted as ”21” above) is 11.4%
(10.2% in the full set) for class 1 and 0.6% (4.4% in the full set) of false negatives
for class 2. The hit rate (accuracy) is 88.8% (85.4% in the full set)). The categorical
distribution of the error for this subset of cases significantly deviates (pvalue of
0.001) from the distribution in the full set according to the used statistical test.
The subgroup frequency (Ant sup) is 1.078% of the dataset.

In the original CAREN proposal [13], rule pruning was implemented using
subrule comparison. Pruning is achieved using the idea of rule improvement. A rule
is considered whenever a comparison with its subrules yields an interest measure
improvement. The pvalue was used as the interest measure. Thus, a rule is derived
whenever the pvalue is lower than all its subrules pvalues. We adopt the same
strategy and for instance, the rule above is an improvement to the following:

Ant sup = 0.01772 pvalue = 0.0010378215125190922000

CM={ 0/0.887,12/0.007,21/0.106 } <--

education=Bachelors & relationship=Not-in-family &

occupation=Prof-specialty

It is interesting to notice in this case that the false negative rate for class 2
increased with rule specialisation.

In summary, the procedure to obtain these categorical distribution rules de-
scribing regions of the predictors space where deviating error behaviour occurs,
consists of the following main steps:

1. Obtain prediction values for each test set case through cross validation using
a specific classification algorithm on the original dataset

2. derive a new dataset with an additional column which will be the property of
interest for the distribution rules. This new attribute is the composition of the
effective class value with the predicted one.

3. discretize numerical attributes according to the given set of bins (typically
quantiles).

4. derive categorical distribution rules in this new version of the dataset using
the new property of interest.

Algorithm 3 is similar to Algorithm 1 and formalises the four described steps.
It derives a new dataset with a categorical property of interest for extracting
distribution rules. Then it discretizes the numeric attributes according to the given
bins. Finally applies the modified CAREN distribution rules algorithm to this
discretized dataset using the new categorical property of interest representing the
model’s confusion matrix.

4 Experimental Analysis

This section focuses on describing a series of illustrative case studies that provide
evidence of the practical usefulness of the tools we have proposed to describe and
understand the performance of a set of black-box classification models.

Considering the high number of datasets, predictors and models in analysis,
not all of the results can be shown here. Hence, the complete set of plots and rules
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Algorithm 3: Extracting a set of distribution rules from a new dataset
with the categorical property of interest obtained through Cross valida-
tion.
input : data set D
input : algorithm A
input : nr. folds k
input : set of bins Bs for each of the predictors
input : minsup value ms
output: set of rules SDRs

D′ ← Permute(D) // randomly permute the data
P ← Partition(D′, k) // create k equal-size partitions

Ê ← {}
foreach p in P do

M ← Train(A, D′ \ D′
p) // train A on all but the partition p cases

êp ← { 〈x, y
⊕

ŷ〉 | 〈x, y〉 ∈ D′
p ∧ ŷ = Predict(M,x) } // test cases in p and

concatenation between effective and predicted class

Ê ← Ê ∪ (êp)

Enew = Discretize(Ê, Bs) // discretize new dataset using the given bins
SDRs = CatDistriRules(Enew,ms) // obtain a set of distribution rules on

dataset Enew using minsup ms
return SDRs // Return the set of distribution rules

can be seen in the web page https://ltorgo.github.io/ExplainClass/. The same
web page contains all code and CAREN version used, ensuring full reproducibility
of our results and analysis.

4.1 Material and Methods

We have experimented with our methods on 18 datasets from different domains,
with variable size, number of predictors and of number of classes of the target
variable, as described in Table 1. These are publicly available in https://ltorgo.

github.io/ExplainClass/.

Each of the datasets was modelled as a classification task using 4 distinct
learning algorithms, with characteristics described in Table 2. The diversity of
models selected (Naive Bayes, Random Forest, Neural Network and Support Vec-
tor Machine) avoids the existence of model-dependent bias on our experimental
observations.

The tools we have proposed to understand the performance of the models are
based on estimates of the expected prediction errors of these models. As such, to
ensure the analysis of the results is reliable, a 10-fold Cross Validation process was
used to obtain the prediction of the models for each case in the data sets, using the
R package performanceEstimation [23]. In Cross Validation, each of the 10 folds is
used as testing dataset once. This means that for each case we are able to obtain
a prediction of the model (learned with a separate training set), together with
the true value of the target variable of the case. Comparing these predictions to
the true values we obtain reliable estimates of the error of the model. Using this
procedure we obtain a full confusion matrix for all cases on each data set that will
be the input to our proposed explainability methods.
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Dataset #Inst #Pred #Classes
breast-base 86 10 2
contraceptive 1473 10 3
lymphography 148 19 4
soybean 268 36 15
yeast3 1484 9 2
BreastCancer 699 10 2
Glass 214 10 6
PimaIndiansDiabetes 768 9 2
iris 150 5 3
LetterRecognition 20000 17 26
Vehicle 846 19 4
Vowel 990 11 11
scat 110 19 3
HeartDisease 303 14 2
Wine 178 14 3
Adult 32561 15 2
Yeast 1484 9 10
Fertility 100 11 2
Wage 534 11 −

Table 1 Datasets used for benchmarking (#Inst: number of instances; #Pred: number of
predictor variables; #Classes: number of classes of the target variable ).

Learner Parameters R package
NN size = 10, decay = 0.1,maxit = 1000,MaxNWts = 32561 nnet [24]
SVM cost = 10, gamma = 0.01 e1071 [6]
RF ntree = 1000 randomForest [15]
NB laplace = 0 e1071 [6]

Table 2 Classification algorithms, parameters, and respective R packages used for the bench-
marking.

The univariate methods were implemented in R [18] using the ggplot2 [25]
package, while the multivariate method uses a new CAREN implementation [3]
with the proposed new categorical distribution rules module. The minimal support
used for rule extraction in all datasets was 1%.

4.2 Univariate Methods

Figure 2 shows the error distribution of a Random Forest model in the task of
classifying 3 different types of wine (classes 1, 2 and 3 ) regarding the content of
non-flavonoid phenolic constituents. This EDP shows that different misclassifica-
tions occur for distinct values of this feature - for instance, a classification of class
1 instead of 2 occurs only for low values (Nonflavonoid.phenols = [0.21−0.3]), while
a wrong classification of 3 instead of 1 occurs for high and extremely high values of
the predictor (Nonflavonoid.phenols = [0.45−0.58] and Nonflavonoid.phenols = [0.6−
0.66]).

EDPs are not only fit for finding distinctive patterns of error distributions,
as they can also help in assuring that the performance of a model is not depen-
dent on the value of a particular predictor variable. Figure 3 illustrates one of
these cases, for dataset contraceptive-base, when modelled using a NN. This EDP
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Fig. 3 Error Dependence Plot for feature a6 from dataset contraceptive-base trained with
Neural Network.

helps understanding that the distribution of the expected error is very similar for
each possible value of a6, showcasing that this feature does not influence (at least
directly) the performance of the NN in analysis.

Figure 4 shows one example of the EDP of a SVM for dataset PimaIndian-

Diabetes. We can observe that the performance of the model varies considerably
depending on the value of glucose. More concretely, the SVM is expected to have
a worse performance for central values (glucose = [110 − 149]). Moreover, this
model is expected to produce a high percentage of false negatives (FN) for the
lower and central values of glucose, while the risk of false positives (FP) is higher
for higher values of the variable. Hence, the information provided by this EDP
is highly valuable for an end-user accessing whether the model is truly adequate
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Fig. 4 Error Dependence Plot for feature glucose from dataset PimaIndiansDiabetes trained
with Support Vector Machine.

to be used, considering the distribution of FP and FN versus true positives1. In
effect, for some applications FNs may be more costly than FPs, and vice versa, so
being able to uncover these differences in performance as a function of the values
of a predictor may be very useful for the end user.

4.3 Multivariate Methods

In this section we present a series of examples on using our distribution rules to
discover and describe regions of the predictors space where the performance of a
model is different, in a statistically significant way, from its global performance.
Several types of differences can occur. Difference may consist of an area where the
model is significantly worse or better than globally. It can also be sustained by cases
where similar scores occur but with different error profile, i.e different confusion
matrices. We will dwell into details on different aspects of local performance like
false positive and false negative rates, precision and recall. An initial attempt to
suggest procedures for model comparison in specific regions is also described.

Datasets with multiple class values frequently yield interesting rules. For in-
stance, in dataset Glass (c.f. Table 1) that has 7 classes, for model NN, the full
dataset performance is represented by the following distribution:

CM={ 0/0.706,12/0.070,21/0.098,25/0.005,26/0.009,31/0.061,

32/0.014,52/0.005,57/0.005,62/0.005,65/0.005,

71/0.005,72/0.005,75/0.005,76/0.005 }

1 As a small side note we should remark that when applying the distribution rules to this
same data set and model, we have obtained a set of rules that match the conclusions of this
figure.
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An example of a distribution rule found by our methods is:

Ant sup = 0.03738 pvalue = 0.0187437297122432820000

CM={ 0/0.625,31/0.125,71/0.125,72/0.125 } <--

Al=[0.29 : 0.75] & K=[0.00 : 0.07]

Here a local accuracy of 62.5% (70.6% in the full dataset) is observed for the
subgroup described in the antecedent along with the following distribution of mis-
classifications: 31 for class 3 (12.5%) and 71 and 72 for class 7 (also 12.5%) each.
Clearly the error distribution of the subgroup described by this rule is different
from the full data set performance distribution. This subgroup is composed of 8
test cases. Notice that attributes discretization is the same as described in Section
3.1.

Continuing in the same dataset, some additional interesting subgroups were
found. They also express a far different behaviour from the general performance.
The following rule represents one of these subgroups where we observe a prevalence
of errors on class 3 that amount to 25% of the errors in the subgroup (6.1% in the
full dataset). Also, class 1 represents 16.7% of the errors (7% in the full dataset).

Ant sup = 0.05607 pvalue = 0.0275429788525971970000

CM={ 0/0.333,12/0.167,21/0.083,31/0.250,52/0.083,57/0.083 } <--

Ca=[8.44 : 9.08] & Na=[13.08 : 13.72] &

Al=[1.25 : 1.66]

On the other hand, some subgroups exhibit a unique type of error. An example
is described by this rule:

Ant sup = 0.02804 pvalue = 0.0155661147914020260000

CM={ 0/0.667,32/0.333 } <--

Na=[12.61 : 13.05] & K=[0.35 : 0.59] &

Si=[72.97 : 73.44] & Ca=[8.44 : 9.08]

where class 3 cases are often confused with class 2. There are other rules with a
similar pattern for different classes, like the following one for class 7 :

Ant sup = 0.01869 pvalue = 0.0197523002718819550000

CM={ 0/0.750,76/0.250 } <--

K=[1.10 : 6.21] & Na=[13.73 : 14.46]

or this rule for class 6:

Ant sup = 0.01869 pvalue = 0.0197523002718819550000

CM={ 0/0.750,62/0.250 } <--

Ca=[11.32 : 16.19] & RI=[1.518 : 1.522] &

Al=[1.25 : 1.66]

All these rules find areas of the input space where some model behaves partic-
ularly bad for a certain class, which may be very useful for some applications.



16 L. Torgo et al.

4.3.1 Model comparison.

It is also very relevant to observe that on the same dataset different classification
algorithms may show rather different behaviour. For instance, with a Random
Forest on the previous dataset, we discover an unusually bad performance on class
2:

Ant sup = 0.01869 pvalue = 0.0010041075378298939000

CM={ 0/0.250,21/0.750 } <--

RI=[1.511 : 1.516] & Na=[13.08 : 13.72] &

Ca=[7.90 : 8.43]

Again on the same dataset, this time for model NB, the following rule shows
that no accurate predictions exists in this area of the predictors space.

Ant sup = 0.02336 pvalue = 0.0010024037427942200000

CM={ 21/0.200,25/0.200,26/0.400,52/0.200 } <--

Ca=[11.32 : 16.19] & K=[0.08 : 0.33] &

RI=[1.522 : 1.534]

For some application domains it may be very important to be able to identify
regions of the predictors space where specific types of errors occur. For instance,
the following rule represents a subgroup in dataset Contraceptive and model SVM
where all errors involve mistakenly predicting the cases as class 1.

Ant sup = 0.01088 pvalue = 0.0010272093636637186000

CM={ 0/0.438,21/0.125,31/0.438 } <--

a8=1 & a2=3 & a3=3

This is rather different from the global performance behaviour which is the follow-
ing:

CM={ 0/0.556,12/0.030,13/0.122,21/0.060,23/0.090,31/0.095,

32/0.048 }

4.3.2 Preconceptions

When attributes have a clear meaning (like gender, age, race, etc) one can identify
some interesting models’ characteristics. As an example, rules can show model
preconceptions. In dataset Adult, the global performance of model NN is:

CM={ 0/0.851,12/0.048,21/0.100 }

However, the following rule stands out

Ant sup = 0.01268 pvalue = 0.0014509893634289416000

CM={ 0/0.726,12/0.145,21/0.128 } <--

education=Doctorate
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Fig. 5 Error Dependence Plot for feature education from dataset Adult trained with Neural
Network.

showing model NN tending to frequently make the mistake of predicting high
income (class 2) for people with PhDs. This subgroup is composed of 413 cases.

Figure 5, depicting the EDP for the same predictor (feature education from the
NN model of dataset Adult), corroborates visually this finding. In fact, this EDP
shows that the margin of error is higher than the expected globally for any level of
education higher than ”HS-grad” 2, and that overestimation (wrongly classifying a
salary above of 50K) is most common for the cases with higher education (education

= Bachelors, education = Masters and education = Doctorate).
However, when the subgroup of male PhDs is considered this bias increases.

That is, the rate of type 12 error is higher (income is ≤ 50K but model predicts
> 50K).

Ant sup = 0.01004 pvalue = 0.0013500986880358072000

CM={ 0/0.755,12/0.150,21/0.095 } <--

education=Doctorate & sex=Male

This rule is supported by 326 cases.

Still within NN, young women income seem to be better captured by the model
when compared to all women. The improvement is significant.

Ant sup = 0.07703 pvalue = 0.0032418986092357450000

CM={ 0/0.992,12/0.005,21/0.003 } <--

age=[17 : 24] & sex=Female

versus the case of all women,

2 Preschool < 1st-4th < 5th-6th < 7th-8th < 9th < 10th < 11th < 12th < HS-grad <
Prof-school < Assoc-acdm < Assoc-voc < Some-college < Bachelors < Masters < Doctorate
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Ant sup = 0.33080 pvalue = 0.0032922890058757130000

CM={ 0/0.926,12/0.022,21/0.052 } <--

sex=Female

Continuing in the Adult dataset and model NN, high number of education years
and still in a productive age seems to lead to model confusion in both classes (with
a significant number of errors). This subgroup is composed of 466 cases:

Ant sup = 0.01431 pvalue = 0.0011493800977763730000

CM={ 0/0.783,12/0.109,21/0.107 } <--

education.num=[15 : 16] & age=[43 : 63]

However, being a male helps to recover class 2. That is, the model tends to see
this subgroup as low income people (class ≤ 50K) but improves this misconception
when the new condition is incorporated:

Ant sup = 0.01216 pvalue = 0.0011280584898949934000

CM={ 0/0.811,12/0.111,21/0.078 } <--

education.num=[15 : 16] & age=[43 : 63] &

sex=Male

On the other hand, changing the age range to younger people yields a higher bias
on class 1 (≤ 50K):

Ant sup = 0.01314 pvalue = 0.0011326144060501797000

CM={ 0/0.766,12/0.105,21/0.129 } <--

education.num=[15 : 16] & age=[25 : 42]

In the same dataset, we analyse a race issue on income. Being white in a
subgroup of married women arises difficulties for the model and yields slightly
higher number of errors for both classes of income:

Ant sup = 0.04220 pvalue = 0.0023061284326488550000

CM={ 0/0.710,12/0.122,21/0.168 } <--

sex=Female &

marital.status=Married-civ-spouse &

race=White

against

Ant sup = 0.05089 pvalue = 0.0023578427029023910000

CM={ 0/0.719,12/0.117,21/0.164 } <--

sex=Female &

marital.status=Married-civ-spouse

However, model RF seems to be more robust in this white race situation:
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Ant sup = 0.04220 pvalue = 0.0019779296158063914000

CM={ 0/0.750,12/0.119,21/0.130 } <--

sex=Female &

marital.status=Married-civ-spouse &

race=White

4.3.3 Extreme performances

Some regions of the predictors space lead to extreme performance situations. Below
we show several examples including both optimal or worst case scenario perfor-
mance.

One of such extreme situations is when we find sub-regions where a model does
not make a single accurate prediction. For instance, in breast-base with model SVM
the following rules were derived:

Ant sup = 0.03750 pvalue = 0.0010004171846829683000

CM={ 12/0.333,21/0.667 } <-- breast.quad=’right_up’ &

menopause=’ge40’

Ant sup = 0.03750 pvalue = 0.0010004171846829683000

CM={ 12/0.333,21/0.667 } <-- age=’60-69’ &

breast=’right’ &

breast.quad=’left_low’

Ant sup = 0.03750 pvalue = 0.0010004171846829683000

CM={ 12/0.333,21/0.667 } <-- tumor.size=’25-29’ &

deg.malig=’3’ &

breast.quad=’left_low’

Ant sup = 0.03750 pvalue = 0.0010004171846829683000

CM={ 12/0.333,21/0.667 } <-- breast=’right’ &

menopause=’ge40’ &

breast.quad=’left_low’

Ant sup = 0.03750 pvalue = 0.0010004171846829683000

CM={ 12/0.333,21/0.667 } <-- tumor.size=’25-29’ &

deg.malig=’3’ &

menopause=’ge40’ &

node.caps=’no’

where classe 1 = ”recurrence-events” and classe 2 = ”no-recurrence-events”. Notice
similar performance along quite different subgroups. The size of all these subgroups
is 3 cases.

In BreastCancer all models yield this rule (perfect 100% hits):

Ant sup = 0.51775 pvalue = 0.0157340856655403500000

CM={ 0/1.000 } <-- Bare.nuclei=1 & Normal.nucleoli=1

the size of the subgroup is 350 cases. It is interesting to compare this rule with
the EDP in Figure 1. In that plot we have observed that for Normal.nucleoli = 1
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there were serious and differentiated errors occurring. However, from this rule we
observe that if on top of that characteristic the test cases show Bare.nuclei = 1
then the models have no problems. This is an example of the complementarity of
the two proposed analysis methods.

A similar example occurs on dataset Fertility, with model SVM:

Ant sup = 0.30000 pvalue = 0.0473562617304469000000

CM={ 0/1.000 } <-- age=[0.56 : 0.64]

Finally we show below a set of rules for the dataset breast-base where the NN
commits the same type of error on all cases:

Ant sup = 0.02500 pvalue = 0.0154383116883116850000

CM={ 21/1.000 } <-- breast.quad=’right_up’ & age=’60-69’

Ant sup = 0.02500 pvalue = 0.0154383116883116850000

CM={ 21/1.000 } <-- breast.quad=’right_up’ &

menopause=’ge40’ &

breast=’right’

Ant sup = 0.02500 pvalue = 0.0154383116883116850000

CM={ 21/1.000 } <-- age=’30-39’ & deg.malig=’3’ &

breast=’left’

Ant sup = 0.02500 pvalue = 0.0154383116883116850000

CM={ 21/1.000 } <-- age=’30-39’ & deg.malig=’3’ &

menopause=’premeno’

Ant sup = 0.02500 pvalue = 0.0154383116883116850000

CM={ 21/1.000 } <-- age=’60-69’ & deg.malig=’2’ &

breast=’right’

Ant sup = 0.02500 pvalue = 0.0154383116883116850000

CM={ 21/1.000 } <-- tumor.size=’30-34’ & age=’50-59’ &

inv.nodes=’0-2’

Ant sup = 0.02500 pvalue = 0.0154383116883116850000

CM={ 21/1.000 } <-- irradiat=’yes’ & age=’50-59’ &

inv.nodes=’0-2’

Ant sup = 0.02500 pvalue = 0.0154383116883116850000

CM={ 21/1.000 } <-- irradiat=’yes’ & age=’50-59’ &

node.caps=’no’ & menopause=’premeno’

4.4 Discussion

In this section we have presented several illustrations of the usefulness of the tools
we have proposed for drilling down the analysis of the performance of black box
classification models.

With classification EDPs we have shown that we are able to analyse the impact
the domain of a single variable may have on the models’ performance. This allows,
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for instance, the end user to anticipate critical situations if facing a test case with
values on this predictor that are associated with poor performance.

Using distribution rules we are able to extend our deeper analysis of the per-
formance of the models into a multivariate setting. Our proposed rules are able
to uncover regions of the predictors’ space where the performance of the models
has high probability of being different from the global perspective given by stan-
dard evaluation procedures. Compared to classification EDPs these rules allow
us to explore interactions between multiple predictors that lead to differentiated
performance.

We see these proposed methods as decision support tools that end users can
use to guide their decision on whether black box ML classification models can be
trusted to drive their decisions. Contrary to global performance evaluation tools,
our proposals drill down to specific test cases, which can be of key importance for
application domains where accountability is essential.

5 Conclusions

Reliable evaluation is a key step in any machine learning or data science project.
Being able to provide the end users with reliable estimates of the performance of
the models is essential for the credibility of data analysts and of our research dis-
cipline. Nevertheless, end users also want to know why. Why is a model predicting
a certain value? Why has the model made a mistake on this situation? As ML
models are becoming more widely used, and as their complexity increases, these
issues have become even more critical, particularly in application domains where
they drive important and potentially costly decisions.

This paper presents two novel techniques that help in better assessing the
reliability of the models even if they are black boxes and thus hard for humans
to understand what drives their predictions. We specifically address the question:
”what can I expect in terms of accuracy from my model given a test case with
these properties?”. Till now expected performance was assessed globally without
any relationship to the predictor’s values. We proposed two new techniques that
drill down the performance analysis to understand how it depends on concrete
predictor’s values. Our illustrative cases studies with several datasets and ML
models clearly show how these methods can help in uncovering and explaining
unexpected behaviours of the models for some areas of the predictors’ space.

Our work has focused on blackbox classification models. However, this work
can be easily extended to regression models. Moreover, they can obviously also be
applied to models that are not blackboxes.

In the future we plan to extend our approaches to other predictive tasks (e.g.
regression). Moreover, we think that our methods can be of use in a kind of case
specific model selection strategy, where they can suggest that for a certain test
case model A is to be preferred over model B, even-though model B is globally
better.
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