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Staphylococcus epidermidis Adhesion and Biofilm Formation onto Biomaterials 

 

ABSTRACT 

Staphylococcus epidermidis is a coagulase-negative Staphylococcus (CNS) that often 

colonizes the skin and mucous membranes of the human body, as part of its normal microflora. 

However, when a rupture of the cutaneous surface occurs, by any type of trauma or insertion of a 

medical device, staphylococci can enter the host and become pathogenic. Therefore, S.

epidermidis has emerged in recent years as a major nosocomial pathogen associated with 

infections of implanted medical devices, namely prosthetic heart valves and joints, central venous 

catheters, urinary catheters, contact lenses and hip prostheses. Staphylococci adhere to such 

devices and have the ability to develop biofilms, which constitutes an important virulence factor 

and the most relevant pathogenic mechanism of staphylococcal infection. 

 

The work described in this thesis aimed at evaluating the adhesion and biofilm 

formation capabilities of several S. epidermidis strains to biomaterials normally used in the 

manufacture of indwelling medical devices. The study of the surface properties that affect initial 

bacterial adhesion as well as of ways to prevent it was also one of the goals of this work. Another 

objective was to study the properties of a mature biofilm and the phenotypic differences between 

sessile and planktonic cells. The profiles of cell wall and extracellular matrix proteins were also 

assessed to evaluate the importance of these proteins on the process of adhesion and biofilm 

formation. 

In order to try to correlate the adhesion ability of S. epidermidis strains studied with 

surface properties of substrata (acrylic and silicone) and cells, hydrophobicity and surface tension 

components were determined through contact angle measurements. Surface roughness of 

substrata was also assessed by atomic force microscopy (AFM). 

An expedite method to reduce S. epidermidis adhesion to acrylic and silicone by 

heparin and gentian violet surface pre-conditioning was developed. Specific modifications on a 

polycarbonate surface by gold coating and the subsequent coverage with different self-assembled 

monolayers (SAMs) were also assayed. Adhesion was performed during two hours and the 

number of adhered cells was determined by direct enumeration using epifluorescence 

microscopy. 
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Concerning biofilm formation on acrylic, the total biomass was quantified by crystal 

violet staining; the number of cells within the biofilm was determined by colony forming units 

plating; and the extracellular matrix was extracted by the Dowex resin method. The 

polysaccharides and proteins content of the matrix was also quantified. These results were 

correlated with the cellular metabolic activity determined by XTT reduction assay and glucose 

uptake. Metabolic activity of planktonic cells was as well assessed by both methods. 

Protein profiles of cell wall and extracellular matrix of S. epidermidis strains under 

study were analysed by SDS-PAGE. 

Considering cell surface properties (surface tension parameters, degree of 

hydrophobicity), there were no significant differences among the strains assayed, except for 

strain IE214. No relationship was found between cell surface hydrophobicity and adhesion 

capability. However, all strains adhered at a higher extent to silicone, more hydrophobic and 

rougher than acrylic, indicating that substrata surface properties play a role in initial bacterial 

adhesion. 

Both heparin and gentian violet demonstrated to be effective in reducing bacterial 

adhesion as well as gold covered polycarbonate and methyl terminated SAMs. Thus, these 

studies have clinical significance, since they point out alternative strategies to the diminishment 

and prevention of bacterial colonization to biomaterial surfaces. 

The analysis of the biofilm formation capability and its composition among S. 

epidermidis strains lead to the confirmation that biofilm formation as well as the production of 

extracellular polymers are strain dependent and are virulence factors associated to pathogenicity 

of some S. epidermidis clinical strains. 

Cell wall and extracellular matrix proteins that are related to the adhesion and biofilm 

formation processes seem to be present in the proteins patterns analysed, which are potential 

virulence factors that should be taken into consideration as appropriate targets for the 

development of novel therapies against staphylococcal infections. 

 

| viii | 



 

Adesão e Formação de Biofilme de Staphylococcus epidermidis em Biomateriais 

 

RESUMO 

Staphylococcus epidermidis é um estafilococo coagulase-negativo (ECN) que 

normalmente coloniza a pele e as mucosas do corpo humano, fazendo parte da sua microflora 

normal. No entanto, quando ocorre uma ruptura da superfície cutânea, por qualquer tipo de 

trauma ou inserção de um dispositivo médico, os estafilococos podem penetrar o hospedeiro, 

tornando-se patogénicos. Deste modo, nos últimos anos, S. epidermidis tornou-se um dos 

principais patogénicos nosocomiais associados a infecções de dispositivos médicos, 

nomeadamente, válvulas cardíacas, próteses para articulações, cateteres venosos centrais, 

cateteres urinários, lentes de contacto e próteses da anca. Os estafilococos aderem a esses 

dispositivos e desenvolvem biofilmes, o que constitui um importante factor de virulência e um 

dos mais relevantes mecanismos patogénicos de infecção estafilococal. 

Este trabalho de investigação teve como objectivo a avaliação da capacidade de 

adesão e formação de biofilme de várias estirpes de S. epidermidis a biomateriais utilizados no 

fabrico de dispositivos médicos. O estudo das propriedades de superfície que afectam a adesão 

bacteriana inicial, bem como formas de a prevenir constituíram também um dos objectivos 

propostos. Outra finalidade foi o estudo detalhado das propriedades de um biofilme maduro e 

das diferenças fenotípicas entre células sésseis e planctónicas. Os perfis proteicos da parede 

celular e da matriz extra-celular foram também um dos alvos de estudo, com o intuito de se 

aferir o papel destas proteínas na adesão e formação de biofilme. 

De modo a tentar correlacionar a capacidade de adesão das estirpes de S. epidermidis 

com as propriedades da superfície dos substratos (acrílico e silicone) e das células, a 

hidrofobicidade e os componentes de tensão superficial foram calculados através da medição de 

ângulos de contacto. A rugosidade superficial dos substratos foi avaliada por microscopia de 

força atómica (MFA). 

Desenvolveu-se um método expedito com o objectivo de se tentar reduzir a adesão de 

S. epidermidis a acrílico e a silicone por pré-condicionamento da superfície com heparina e 

violeta de genciana. Foram, também, efectuadas alterações na superfície de policarbonato, 

através do revestimento com ouro e a subsequente cobertura com diferentes monocamadas 

auto-organizadas (self-assembled monolayers - SAMs). A adesão foi realizada durante duas horas 
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e o número de células aderidas foi determinado por enumeração directa, mediante microscopia 

de epifluorescência. 

No que diz respeito à formação de biofilme, testada em acrílico, a biomassa total foi 

quantificada por coloração com violeta de cristal. O número de células foi determinado por 

plaqueamento de unidades formadoras de colónias e a matriz extra-celular foi extraída pelo 

método da resina Dowex. O conteúdo da matriz, em termos de proteínas e polissacáridos, foi 

também quantificado. Estes resultados foram correlacionados com a actividade metabólica 

celular determinada pelos métodos de redução de XTT e determinação do consumo de glucose. 

A actividade metabólica de células planctónicas foi também avaliada pelos dois métodos. 

O perfil proteico dos extractos da parede celular e da matriz extra-celular das estirpes 

em estudo foi analisado por SDS-PAGE. 

Relativamente às propriedades da superfície celular (componentes de tensão 

superficial, grau de hidrofobicidade), não se verificaram diferenças significativas entre as estirpes 

testadas, excepto para a estirpe IE214, que apresentou um comportamento único de adesão. 

Não foi encontrada relação entre a hidrofobicidade da superfície celular e a capacidade de 

adesão. Porém, todas as estirpes aderiram melhor ao silicone, mais hidrofóbico e rugoso do que 

o acrílico, evidenciando a importância das propriedades de superfície do substrato na adesão 

inicial. 

Tanto a heparina como o violeta de genciana demonstraram ser eficazes na redução 

da adesão bacteriana, assim como o policarbonato coberto com ouro e as SAMs com grupos 

terminais metilo. Estes estudos apresentam significado clínico, dado que sugerem possíveis 

estratégias alternativas para a diminuição e prevenção da colonização bacteriana em superfícies 

de biomateriais. 

A análise da capacidade de formação de biofilme das várias estirpes de S. epidermidis

estudadas, levou à confirmação de que a formação de biofilme, bem como a produção de 

polímeros extra-celulares são dependentes da estirpe e são factores de virulência associados à 

patogenicidade de algumas estirpes clínicas de S. epidermidis. 

 

Nos perfis proteicos da parede celular e da matriz extra-celular parecem estar 

presentes proteínas relacionadas com os processos de adesão e formação de biofilme, as quais 

são potenciais factores de virulência que devem ser tidos em consideração como alvos para o 

desenvolvimento de novas terapias contra infecções estafilococais. 
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and planktonic form. Results represent means plus standard deviations (errors bars) 
from three independent experiments. 
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Figure 5.6 Concentration (mg/gdw) of polysaccharides (glucose as standard) and proteins (BSA as 
standard) extracted by Dowex resin method from biofilms of S. epidermidis strains 
9142, IE214, IE186, 1457 and LE7. 
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Figure 5.7 Glucose uptake expressed in % for the eight S. epidermidis strains in biofilm and in 
the planktonic form. Results represent means plus standard deviations (errors bars) 
from three independent experiments. 
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Figure 5.8 Cellular metabolic activity, measured by XTT reduction assay (O.D.490 nm) from the 
biofilms of the eight S. epidermidis strains studied: 1457, 1457-M10, 9142, 9142-
M10, IE214, IE186, LE7 and IE75. Results represent means plus standard deviations 
(errors bars) from three independent experiments. 
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 CHAPTER 6 - Cell wall and extracellular matrix proteins related to 
Staphylococcus epidermid s adhesion and biofilm formation i

 

 

Figure 6.1 SDS-PAGE profiles of cell wall proteins, stained with silver nitrate, of the eight S.
epidermidis strains assayed. Molecular mass markers are shown in the centre (Lane 
E), in kilodaltons. A – 9142; B – 9142-M10; C – 1457; D – 1457-M10; E-molecular 
standard; F – IE186; G –IE214; H – LE7; I – IE75; J – Lysis buffer sample. (a) 
Molecular weight ranging from 20 – 250 kDa; (b) Detail of a complete gel with a 
molecular weight ranging from 75 – 250 kDa. 
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Figure 6.2 SDS-PAGE profiles of extracellular matrix proteins of the biofilm of four S. epidermidis 
strains, stained with silver nitrate. Molecular mass markers are shown in the centre 
(Lane C), in kilodaltons. A – 9142; B – 1457; C – molecular standard; D – IE186; E –
IE214; F – Lysis buffer sample (DNAse, lysostaphin and lysozime, are visualized at 
30, 25 and 15 kDa, respectively). 
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 NOMENCLATURE 

  

Symbols  

  

P Significance value 

Ra Average roughness (nm) 

Rmax Maximum roughness (nm) 

Rq Root mean square roughness 

T Temperature (ºC) 

LW
iwiG∆  Apolar component of the free energy variation between two entities of a given surface (i) 

immersed in water (w) (mJ/m2) 

AB
iwiG∆  Polar component of the free energy variation between two entities of a given surface (i) 

immersed in water (w) (mJ/m2) 

∆Giwi Total free energy variation between two entities of a given surface (i) immersed in water (w) 
(mJ/m2) 

γ- Electron donor surface tension parameter (mJ/m2) 

γ+ Electron acceptor surface tension parameter (mJ/m2) 

γAB Polar (Lewis acid-base) surface tension parameter (mJ/m2) 

γLW Apolar (Lifshitz-van der Waals) surface tension parameter (mJ/m2) 

γTOT Surface free energy (mJ/m2) 

θα-B α-Bromonaphtalene contact angle (º) 

θF Formamide contact angle (º) 

θW Water contact angle (º) 

 

 

Abbreviations  

  

Aae Staphylococcus epidermidis autolysin/adhesin 

AAP Accumulation-associated protein 

AFM Atomic force microscopy  

Agr Accessory gene regulator 

AIDS Acquired immunodeficiency syndrome 

ANOVA Analysis of variance 

AtIE Staphylococcus epidermidis autolysin 

Bap Biofilm-associated protein  

BATH Bacterial adherence to hydrocarbons 
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BCA Bicinchoninic Acid  

BSA Bovine serum albumin  

CC Calix-crown  

CFU Colony forming units  

Clf Clumping factor 

CNS Coagulase negative staphylococci  

CRA Congo Red agar  

CRI Catheter-related infection  

CRP C-Reactive Protein  

CVC Central venous catheter 

CW Cell wall 

DAPI 4’-6-Diamidino-2-phenylindole 

DNA Desoxyribonucleic acid 

DW Dry Weight 

Ecp Staphylococcus epidermidis cysteine protease  

EDTA Ethylenediaminetetraacetic acid 

ELISA Enzyme-Linked Immunosorbent Assay 

EM Extracellular matrix  

Embp Staphylococcus epidermidis fibronectin binding protein 

EPS Extracellular polymeric substances  

FAME Fatty-acid modifying enzymes  

Fbe Staphylococcus epidermidis fibrinogen-binding protein 

Fg Fibrinogen 

Fn Fibronectin 

G Gold 

GehD Staphylococcus epidermidis collagen binding lipase 

GV Gentian violet  

HDT Hexadecanethiol 

HIC Hydrophobic interaction chromatography  

HMA Hydrophobic microsphere assay  

IOL Intraocular lens 

IU International units 

MAA Mercaptoacetic acid 

MATH Microbial adhesion to hydrocarbons 

MPA Mercapto-propionic acid 

MRSA Methicillin resistant Staphylococcus aureus 
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MSCRAMM Microbial surface component recognizing adhesive matrix molecules 

OD Optical density  

OT Octanethiol 

PAA Poly(acrylic acid) 

PAH Poly(allylamine) hydrochloride 

PBS Buffered saline solution  

PC Polycarbonate 

PCR Polymerase chain reaction 

PEM Polyelectrolyte multilayer 

PIA Polysaccharide intercellular adhesin 

PMMA Poly(methylmetacrylate) 

PMPs Platelet microbicidal proteins  

PMS Phenazine methosulfate 

PMSF Phenylmethylsulfonyl fluoride  

PVE Prosthetic valve endocarditis  

SAM Self-assembled monolayers  

SAT Salt aggregation test  

SD Standard deviation 

Sdr Serine-aspartate repeat protein  

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

SEM Scanning electron microscopy 

Ses Staphylococcus epidermidis surface proteins 

SI International system of units 

SPSS Statistical Package for the Social Sciences 

SSP Staphylococcal surface protein 

Sub-MIC Subinhibitory minimal concentration 

Tpn Transferring binding protein 

TSA Tryptic Soy Agar  

TSB Tryptic Soy Broth  

TSST Toxic shock syndrome toxin 

V Volume 

Vn Vitronectin 

W Weight 

XTT 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2Htetrazolium hydroxide 
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