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This first chapter of the dissertation intends to introduce DSLs. First, DSLs are generally contextualized 
within the process of software development. After that, the wide-ranging advantages of working with DSLs 
within a metamodelling approach are considered. At last, the goals of the research presented in this 
dissertation are stated , as well as the demonstration case and, finally, the roadmap of the document. 

1. Introduction 

1.1. Software Development with DSLs 

Raising the level of abstraction for software engineers to write applications is still an 

undergoing issue. So, models are the basis of today’s Software Engineering scenario. A 

model is a view of a system in a multiview perspective [Zhang, et al., 2005]. Using UML 

(Unified Modelling Language) [OMG, 2007b] to describe systems in a multiview perspective is 

ideal when it comes to complex systems.  

Models, modelling and model transformation are the basis of MDD (Model-Driven 

Development) [Atkinson and Kühne, 2003; Balmelli, et al., 2006]. Sendall and Kozaczynski [2003] 

referred to model transformation as being the process of transforming one or more source 

models into one or more target models following a set of transformation rules. Activities like 

reverse engineering, application of patterns or refactoring use model transformations. 

MDD defines application implementations using models instead of programming 

languages exclusively [Atkinson and Kühne, 2003]. According to Demir [2006] and also to 

Atkinson and Kühne [2003], MDD makes sense when talking about models and code
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generation from models. MDD was conceived for teams with more than twenty people, 

therefore, MDD is adequate to large-scale software industries. Its goals are to automate 

repetitive tasks and avoid architectural degradation, as Bettin [2004] called it. MDA (Model-

Driven Architecture) [Miller and Mukerji, 2003] and SF (Software Factories) [Greenfield and Short, 

2003] are two approaches to MDD. MDA is a standard of OMG (Object Management Group) 

[OMG, 2007a] and has UML as a major part of the approach. SF is an approach from Microsoft. 

It integrates domain-specific modelling languages, a kind of DSL (Domain-Specific 

Language) [Mernik, et al., 2005], with the SPLs (Software Product Lines) [Greenfield and Short, 

2003] concept born within the Software Engineering Institute of Carnegie Mellon University 

[Frankel, 2005]. 

DSLs exist since the fifties of last century [Mernik, et al., 2005]. Sprinkle and Karsai 

[2004] argued that DSLs may have been in the base of programming languages proliferation. 

They are languages that use domain concepts and can be compiled in order to give birth to 

source code [Batory, et al., 2002]. Mernik, et al. [2005] defined DSLs as artefacts to be used to 

work on a problem situated in specific domain. Sprinkle, et al. [2001] mentioned the need to 

have a language to describe specific problems. Even use case diagrams can be classified 

orthogonally into functionality use case diagrams (send alert or receive external information) 

and domain use case diagrams (healthcare or education) [Machado, et al., 2005a]. In order to 

make general-purpose modelling languages usable in various application domains, domain-

specific model engineering introduces DSLs as modelling languages [Schleicher and Westfechtel, 

2001]. SDL (Specification and Description Language) is a domain-specific visual modelling 

language for specifying telecommunications protocols using telecommunications-related 

concepts [Cook, 2004]. SQL (Structured Query Language) is an example of a DSL for querying 

relational databases and HTML (HyperText Markup Language) an example of a DSL for 

writing hypertext [Bragança, 2003]. Shortly, DSLs are languages specifically targeting a 

particular domain, like finances, telecommunications and others. They can be either model-

based or code-based. On the opposite side of DSLs are GPLs (General Programming 

Languages) [Batory, et al., 2002; Bragança, 2003; Mernik, et al., 2005; Sendall and Kozaczynski, 2003], 

languages which can be applied to different domains. Java is a language used to implement 

applications in different domains, like those mentioned earlier (Java is a GPL). 

It is essential to consider software development methodologies based on models in the 

current Software Engineering scenario. The reason for this is that models per se are useless; 

they must be contextualized within a methodology. If organizations describe their computer-

based systems using UML, then they will be aware that UML is only about notation and that
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methodologies to develop models are one step ahead. A quick example of such a 

methodology is the RUP (Rational Unified Process), from IBM, that describes a set of best 

practices for MDD and goes beyond notation [Brown, et al., 2005b]. RUP is a procedural 

guideline of software development which adopts models.  

When handling DSLs, it is important to keep in mind that software evolves over time 

and that software evolution takes place when the DSL changes. For instance, if new 

requirements demand for the introduction of new domain concepts into the DSL, the DSL is 

going to suffer a change and, thus, software will evolve from its previous state into a new one 

which will consider the new domain concepts ultimately in the implementation of the 

software solution. 

Before a methodology can be applied, modelling languages can be defined based on 

UML, including DSLs as DSVLs1 (Domain-Specific Visual Languages) [Sprinkle and Karsai, 

2004]. UML is still one of the widely adopted standard languages for modelling in general 

and, hence, it can be considered when metamodelling, or defining, the DSL. 

1.2. The Advantages of Using DSLs Embedded in a Metamodelling 

Approach 

The important thing is to solve complex problems in easier ways. Models are a 

strategy to accomplish this. Coordination of different teams working on different components 

of a wider system is a difficult task. Dealing with a change in the development of a software 

solution is hard. Software development methodologies based on models help to solve these 

issues. In fact, development based on models is a possibility to increase productivity in 

organizations and, consequently, reduce time-to-market by decreasing development time. 

Using models is also synonym of greater involvement of the customer in the analysis phase 

of software systems development [Machado, et al., 2005a]. A use case diagram is an ideal 

artefact to capture the requirements of a system not only by the software engineer but also by 

the customer. Brown, et al. [2005a] stated that models are an instrument for engineers to 

reason about the system without delving into technological details and that they are also 

powerful when it concerns communicating between the various stakeholders. Models and 

their visual notations are more comfortably assimilated than pure code [Ardis, et al., 2000; 

Atkinson and Kühne, 2003]. Consider refactoring as the activity that allows maintaining software 

applications changing its internal structure and behaviour without changing its external 

behaviour. Refactoring hot spots, as well as refactoring impacts, are better determined based 

                                                 
1 Nowadays the term Domain-Specific Modelling Language is replacing the term DSVL.  



Chapter 1: Introduction 

4 

on a graphical notation [Zhang, et al., 2005]. 

Development productivity and quality are enhanced with modelling tools capable of 

automatically transform models by means of a model transformation language, both to 

perform default transformations but also to define new customized ones. If transformation 

rules are written in a GPL, developers are not expected an additional expertise to write 

transformation rules. On the other hand, GPL lack higher abstractions to write those 

transformation rules. 

The use of SF allows the development of complex software of high quality, on time, 

on budget and with customer satisfaction. Encapsulation allows raising the level of 

abstraction and reduces complexity-related issues. SF aim at reaching a wider range of 

customer’s needs with a wider software scope. A product family realizes an economy of 

scope, which means that multiple related designs are produced, and is targeted at custom 

markets where each product is unique [Greenfield and Short, 2003]. Models can be reused across 

a number of applications in a product family. This is a strategy of long-term investment based 

on improving the quality of software design [Bettin, 2004]. 

Targeting a specific application domain, the use of specialized constructs by DSLs 

has considerable advantages [Mernik, et al., 2005]: (1) Greater power of expressiveness and 

easiness of use than GPLs’; (2) Increased productivity and reduced maintenance costs (for 

instance, through the specification of product line members’ common architecture);  

(3) Reduced extent of expertise needed to manipulate the language (both domain and 

programming expertise); (4) GPL programming task automation (code can be generated 

model designed with DSLs). 

The gap between the problem domain and the solution domain, in terms of 

abstraction, is reduced when using DSLs and domain concepts [Demir, 2006]. Above all, DSLs 

allow the quick creation and maintenance of a complex system [Sprinkle and Karsai, 2004]. 

Metamodelling is an approach to model complex systems (complex systems are 

characterized by various user profiles, various functionalities, various data structures) by 

using abstraction as a means that facilitates that task [Terrasse, et al., 2001]. These complex 

systems require demanding validation, refinement and model transformation into executable 

code. The automatic generation of code from models ensures that the specifications defined 

for the software solution in the design phase are implemented accordingly. The reutilization 

advantage of metamodelling is obvious, since several models can be derived from a single 

metamodel. Also, meta-metamodels are used as a synchronization basis for every conformed
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metamodel, which constitutes a big advantage of metamodelling. 

This dissertation’s scenario or target domain is given by Primavera Business Software 

Solutions, S.A. (PBSS) concerning its ERP (Enterprise Resource Planning) [PBSS, 2007] 

software solution. 

1.3. Research Goals 

The goals of this dissertation are the following: (1) Use UML-based notation to 

conceive DSLs; (2) Conceive a metamodelling approach, based on the outlining of  

UML-inspired abstract and concrete syntaxes, to be considered during the definition of DSLs 

within Microsoft DSL Tools; (3) Build a demonstration case in order to reflect upon the 

undertaken approach in the context of a part of the Primavera ERP software solution (a 

portion of its sales domain). 

This dissertation is dedicated to metamodelling as an approach to develop software in 

a more abstract way than purely programming the software solution. Domain Engineering is 

the field where it can be more accurately fitted in, with DSLs being its main artefact. Having 

UML-based DSLs is extremely important as it will be seen further on in this dissertation.  

1.4. The Demonstration Case 

The research approach used in this dissertation is the proof of concept, or concept 

implementation [Vessey, et al., 2002]. The proof of concept research approach is about 

demonstrating the feasibility of a solution to a problem. The question with feasibility in this 

dissertation is whether it is possible to use DSLs based on UML notation, within DSL Tools, 

in the context mentioned above, thus, to a practical problem, or not [Shaw, 2001]. In order to 

demonstrate the feasibility of the proposed solution to the problem of using UML notation to 

build DSLs in DSL Tools, regarding a part of the sales domain of the Primavera ERP 

software solution, a series of mock-ups is used as a means of validation of the software 

development approach shown in this dissertation.  

This section is intended to define the domain handled by the demonstration case 

presented in this dissertation. The focus is on the purchases, stock and current accounts 

modules of the Primavera Express2 software solution. The main business objects are 

products, products families (merchandise, raw material, finished products…), customers, 

zones (store zones), sales people and suppliers. 

                                                 
2 The version of Primavera Express used was 6.30. 
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Figure 1 shows some examples of business objects belonging to the Primavera ERP 

GUI (Graphical User Interface) in its free version. 

 

Figure 1 – Some business objects of the Primavera ERP 

Following, the attributes of each one of the business objects: (1) Product 

(Identification, Description, Product family, Sale price, Purchase price, Supplier and VAT 

(Value Added Tax) percentage); (2) Product family (Identification and Description);  

(3) Customer (Identification, Name, Payment condition, Zone and Sales person (attributed to 

the customer)); (4) Zone (Identification and Description); (5) Supplier (Identification, 

Description and Payment condition); (6) Sales person (Identification and Description);  

(7) Payment condition (Identification, Description and Days for payment); (8) Purchase 

(Identification, Purchase number (automatic and sequential), Invoice number, Date, Supplier, 

State (ordered or invoiced), Payment condition, Purchased item and Total); (9) Purchased 

item (Identification, Product, Purchase price, Product description, Quantity, VAT percentage 

and Total). 

The main interfaces available to the client of the ERP solution are: (1) Receive order 

from customer; (2) Issue invoice to customer; (3) Manage customer current account; (4) Send 

order to supplier; (5) Receive invoice from supplier; (6) Manage sales person current account; 

(7) Manage stock; (8) Receive payment from customer; (9) Pay order to supplier; (10) Consult 

products list, customers list; (11) Consult sales per product list, per customer, per zone, per 

sales person; (12) Consult orders per product list; (13) Consult available quantity in stock per 

product; (14) Consult list of movements for each stocked product (last inventory increment 

and last inventory decrement); (15) Consult customer debt list (per customer, per zone, per 

sales person); (16) Consult list of debts to suppliers. 

Figure 2 contains some attributes of the business object product (Artigo), like sale 

price (Pr. de venda em EUR) and VAT percentage (Taxa de IVA). 
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Figure 2 – Example of the business object product 

The demonstration case considers business objects’ description and their attributes as 

the reference description when conceiving the structural model of the system, whereas the list 

of interfaces to become available to the ERP solution’s client is considered as the basis for 

the conception of behavioural models and of the model of external functionalities and 

instances of the problem. It is not intended in this dissertation to optimize the logical 

architecture of the Primavera ERP’s structural view [Machado, et al., 2006]. 

1.5. Dissertation Roadmap 

Chapter 2 of this dissertation presents an overview on the concepts crucial to realize 

DSLs in their full range. First, the MDD approach, the parent approach of the approaches 

MDA, SF, SPLs and DSLs, then metamodelling as an approach of MDD, followed by model 

transformation and software evolution, finishing with some software development 

methodologies and DSLs as part of the SF approach. Two of those software development 

methodologies are about SPL development, another one is about software development team 

composition and responsibilities and the remainder is about extracting logical architectures 

out of use case models. 

Chapter 3 explores some ways of how metamodelling environments can be tools to 

handle DSLs, like Microsoft DSL Tools are. The role of the main participants in the 

development cycle of metamodelling environments is explained, along with the whole 

process of development of such environments. After that DSLs are viewed as languages that 
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can be metamodelled. The UML metamodel is partially presented due to its utilization in the 

definition of the DSLs in chapter 4. An approach to stereotype DSLs is presented at the end 

of the chapter. The approach can be used in modelling environments to apply domain-specific 

concepts to regular UML classes. 

Finally, chapter 4 talks about Microsoft DSL Tools as metamodelling and design 

environments to conceive UML-based DSLs. In the first place, the initial experiment done 

with the tool is described, which includes code generation capabilities of it. After that, the 

main demonstration is reported. This experiment includes handling with metamodels in a 

metamodelling environment and handling with models in a modelling or design environment. 

A UML-based metamodel for the Primavera ERP sales domain is exposed and the whole 

process, as well as the resulted metamodel and respective models, are analysed. 
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This second chapter of the dissertation gives the perspective of other authors on the topic covered by the 
document. The first major topic handled is concerned with MDD and metamodelling, the key approaches in 
which DSLs fit in. Secondly, model transformation and software evolution are explored as the main 
activities undertaken while modelling in general. Because of their extreme relevance, software development 
methodologies and DSLs are the last topics being mentioned in this chapter. 

2. Concepts to Understand 
DSLs 

2.1. Introduction 

First of all, an introduction to models in general will be exposed in this chapter of the 

dissertation. In order to understand the approach of DSLs, it is important that the intimate 

relationship between DSLs and other concepts, like software development methodologies, 

metamodelling, model transformation, software evolution and SF, is exposed as well. 

The DSLs approach can be applied to the problem being handled in the development 

of a software solution through a metamodelling approach. The ultimate goal is to obtain the 

most efficient and effective implementation of that software application. Conceiving 

metamodels is a high abstraction way to accomplish this goal. The conceptual work involved 

in metamodelling DSLs is extremely domain-related. Nevertheless, a serious work in syntax 

and semantics is imperative and traverses all possible domains. The overall goal is to obtain
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advantages in the whole software development process. Metamodelling and DSLs play a vital 

role in this aspect. 

If a metamodel is conceived, transformations between models using automation tools 

are facilitated [Brown, et al., 2005a]. Transformations between models are vital for a 

metamodelling approach involving DSLs. As Sendall and Kozaczynski [2003] stated, 

transformations are “the heart and soul of model-driven software development”. Due to 

several scenarios, models need to evolve over the time of a software application development 

and transformations are part of that evolution. 

This chapter of the dissertation presents some software development methodologies 

mentioned in the literature. The first two methodologies were chosen due to the fact that they 

were developed within the University of Minho and the other two because they are about SPL 

development. SPL development is part of the approach of SF (see section 2.4 of this chapter) 

along with DSLs. 

2.2. MDD and Metamodelling 

A model can be defined as the “collection of all the artefacts that describe the system” 

[Balmelli, et al., 2006], or as an artefact “used in reasoning about the problem domain and the 

solution domain for some area of interest” [Brown, et al., 2006].  

Models are abstractions or representations of a system. They can be [Terrasse, et al., 

2001]: (1) Structural (class and collaboration diagrams); (2) Behavioural (state machine, 

activity and sequence diagrams); (3) Physical (component and deployment diagrams); (3) Of 

external functionalities and instances (use case and object diagrams). 

In a similar way, Sprinkle, et al. [2001] described models as being artefacts capable of 

describing operations within a computer-based system and distinguish operations comprised 

of physical and others of information-handling processes. 

According to Brown, et al. [2006], different models suit different purposes:  

(1) Establish a clear understanding of the problem; (2) Communicate a clear vision of the 

problem and its solution; (3) Generate low level implementations from high level models. 

Models are developed both at problem and solution domains [Brown, et al., 2005a]. The 

way from the problem domain to the solution domain demands for a deep knowledge in 

architecture [Cook, 2004]. To obtain the implementation of the logical architecture regarding 

the application in development, some abstraction levels must be traversed. Abstractions can 

be applied to procedures or data types [Bragança, 2003]. Each of the views or models on the 
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system captures the system’s structure or behaviour with a specific abstraction deepness 

[Sendall and Kozaczynski, 2003]. Abstraction levels change according to the model’s closeness to 

the target platform3 [Metzger, 2005]. So, models can be more or less abstract, if they are closer 

or more distant from the implementation platform. Seifert and Beneken [2005] mentioned 

abstraction as zooming in or out of the models. Models can be organized horizontally and 

vertically, closer or more distant from the implementation level [Sendall and Kozaczynski, 2003]. 

Horizontally, models are attached to different views of the system. Vertically, models are 

attached to different levels of refinement or detail. Models must also be consistent with each 

other and the system’s requirements. MDD is a Software Engineering approach that allows 

dealing, trough abstraction, with the complexity of developing a system and uses models to 

accomplish that. Hence, systems are modelled at different levels of abstraction. As the 

system’s modelling evolves, transformations will be necessary to obtain models at different 

levels of abstraction. MDA distinguishes between models independent of their 

implementation platform and those that are not [Hailpern and Tarr, 2006]. The first ones are 

called PIMs (Platform-Independent Models) and the last ones are called PSMs (Platform-

Specific Models) [Miller and Mukerji, 2003]. A PSM illustrates the way a PIM will be 

implemented in a particular platform. MDA tools are responsible for transforming PIMs into 

PSMs4. 

Recently the focus has been on system perspectives valuable to software engineers 

and software developers, and the generation of code as well. Perspectives on modelling are 

always around code, no code at all or some state in between [Brown, et al., 2005a]. Brown, et al. 

[2005a] presented a division of those perspectives. In the code only perspective, it is difficult 

to manage the evolution of solutions due to scale and complexity issues. In the code 

visualization perspective, models suit the necessity to understand the code’s structure and 

behaviour. The model is just another representation of the code. In the roundtrip engineering 

perspective, the generation of code from models is considered and the model is refreshed 

whenever the code is altered, yet, this is done without significant discipline. In the model-

centric perspective, the implementation of systems is made from models. Here, the generation 

of code from models can be made through the application of patterns. In the model-only 

                                                 
3 A platform is a set of subsystems and technologies to support the execution of a software application, as Atkinson and 
Kühne [2005] defined it. 
4 Besides PIMs and PSMs, MDA is also about CIMs (Computation Independent Models) [Miller and Mukerji, 2003]. 
CIMs model the system’s requirements. They are independent of the system’s implementation and are expected 
to show how the system will be used in its environment. They must gather a shared vocabulary on the problem 
domain to be used in other models. CIM’s requirements must have corresponding constructs in the PIM and 
PSM that follow the CIM. 
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perspective, models in general are only an artefact to understand the problem or the solution 

domain.  

As stated before in this dissertation, models are one of the essentials of MDD. The 

main competitive advantage MDD represents to organizations is productivity gain in the 

development of software. One of its main aspects is reducing the impact of changes on 

software artefacts. Table 1 describes the fundamental forms of change that Atkinson and 

Kühne [2003] presented. 

Table 1 – Fundamental forms of change in software artefacts 

Personnel 
Software developers’ knowledge on software artefacts should not be 
kept personal; software artefacts must be accessible to as most people 
as possible and be in a form understandable by every stakeholder. 

Requirements 
Online systems cannot be offline for long periods of time for the 
purpose of maintenance and, preferably, changes in software artefacts 
must be made at runtime. 

Development 
platforms 

Software artefacts should be disassociated from their development 
environments and be able to be exchanged between tools. 

Deployment 
platforms 

Platform-specific software artefacts must be obtained from platform-
independent software artefacts. 

Models allow efficiency and effectiveness of programming to be maintained 

throughout time, which means that any change in the code can be done with the least time 

consumption and the higher success probability. In other situations, models are necessary 

when establishing requirements with the customer, as well as obtaining certification in the 

software development area [Hailpern and Tarr, 2006]. Communication between developers and 

analysts may be highly sped up if models are used. Models may also function as a memory 

artefact useful when some developers leave the team and are replaced by others who need to 

keep up-to-date with what was developed before. The same happens with solutions that must 

be developed over long periods of time. Following this reasoning, the Software Engineering 

approach MDD makes sense. MDD imposes the structuring of the software development 

process around models adequate to each one of the moments within that process. 

Atkinson and Kühne [2003] also defined the requirements for an MDD infrastructure. 

These are: (1) Availability and shared understanding of notation for creating models; (2) Rules 

for the use of models; (3) Understanding of the relationship between models and software 

artefacts; (5) Easiness of models interchange between tools; (6) Possibility to define mappings 

between models (other visual models or code). 
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With the goal of developing a set of standards built on modelling as the best practice 

to develop systems, the OMG presented the MDA standard [Mellor, et al., 2004]. This standard 

includes a set of technologies (UML, profiles and others) and techniques that allow MDD to 

take place. Products and other standards which comply with the MDA standard are tagged 

with the MDA stamp. 

Shortly, MDA is an approach of MDD. It equals semi-automatically generated code 

and use of standards for construction of models and transformations between them [Brown, et 

al., 2005a]. Automation can be seen as executable patterns [Brown, et al., 2005a]. Tools can 

generate code out of models that have been transformed into PSMs [Sendall and Kozaczynski, 

2003]. MDA defines a process for creating models [Demir, 2006]. Instead of having to change 

features in source code to move between platforms, features can be changed in models and 

implemented in several target platforms as wished [Cook, 2004; Greenfield and Short, 2003]. That is 

the main idea of MDA: problem domain instead of technology domain. 

MDA foundations are [Booch, et al., 2004]: (1) Use of standards for its purposes;  

(2) Solutions intimately attached to problems; (3) Accurate designs; (4) Increased productivity; 

(5) Higher level of abstraction. 

Visual modelling is one of the foundations of MDD. Other technological foundations 

are the support of OO (Object-Oriented) languages concepts and meta-level description 

techniques. The traditional OMG modelling infrastructure, or Four-Layer Architecture of 

UML, comprises a hierarchy of model levels, just in compliance with the foundations of 

MDD [Atkinson and Kühne, 2003]. Other authors like Demir [2006], Nordstrom, et al. [1999] and 

Lédeczi, et al. [2001] mentioned the Four-Layer Architecture of UML. Each model in the 

Four-Layer Architecture of UML, except for the one at the highest level, is an instance of the 

one at the higher level. The first one, user data, refers to the data manipulated by software. 

Models of user data are called user concepts models and are one level above the user data 

level. Models of user concepts models are UML concepts models. These are models of 

models and, so, are called metamodels. A metamodel is a model of a modelling language. It 

is also a model whose elements are types in another model. An example of a metamodel is 

the UML metamodel. It describes the structure of the different models that are part of it, the 

elements that are part of those models and their respective properties. The meta-metamodels 

are at the highest level of the modelling infrastructure, the MOF (Meta-Object Facility) 

[Alanen, et al., 2005; Alanen and Porres, 2008; Jouault and Bézivin, 2006; OMG, 2007a]. The objects at the 

user concepts level are the model elements that represent objects residing at the user data 

level. At the user data level, data objects may be the representation of real-world items. UML 
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concepts define the language to express user concepts, as well as MOF defines the language 

to express UML concepts. Other languages at M3 level are ECore and KM3 [Alanen, et al., 

2005; Jouault and Bézivin, 2006]. 

 

Figure 3 – OMG modelling infrastructure or Four-Layer Architecture of UML 

Atkinson and Kühne [2003] identified two orthogonal dimensions of metamodelling 

(language definition and domain definition) and two associated forms of instantiation 

(linguistic instantiation and ontological instantiation, respectively). The levels of UML 

concepts and MOF are concerned with language definition. Linguistic instantiation takes 

place between elements at the user concepts level and elements at the UML concepts level 

and also between elements at the UML concepts level and elements at the MOF level. 

Ontological instantiation establishes an instantiation relationship between user concepts and 

also between UML concepts within the same level of the Four-Layer Architecture of UML. 

Atkinson and Kühne [2003] called ontological metamodelling to the description of domain 

concepts, particularly domain meta-types (or types of domain types). Ontological meta-types 

are distinguished from each other through stereotypes. So, ontological meta-types are used to 

distinguish the types themselves (a mammal from a reptile) but also to distinguish meta-type 

properties (different meta-types have different properties, thus a mammal uses a different 

locomotion means than a reptile does). The biological taxonomy for living beings or 

biological classification is an excellent example of ontological metamodelling. An MDD 

infrastructure must give equal relevance to both ontological and linguistic metamodelling 

strategies.  

Regarding language definition Atkinson and Kühne [2003] divided the concept in four 

associated concepts: abstract syntax, concrete syntax, well-formedness and semantics. 

Abstract syntax is equivalent to metamodels. Concrete syntax is equivalent to UML notation. 

Well-formedness is equivalent to constraints on the abstract syntax (in OCL, or Object 
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Constraint Language [OMG, 2007a], for instance). Finally, semantics is the description of the 

meaning of a model in natural language. 

DSDEs (Domain-Specific Design Environments) [Lédeczi, et al., 2001] are tools that 

allow the capture of specifications through models conceived in a specific domain context. 

UML case tools are examples of these tools. Models conceived in a specific domain context 

are artefacts to design specific problem domains. From these models at the design level, 

implementation artefacts, like classes definition in a particular execution platform, can be 

generated using translators. DSDEs use DSLs (defined with the metamodels of the above 

mentioned models) to specify the system in its different views. 

The Institute for Software Integrated Systems at Vanderbilt University conducted 

research on Model-Integrated Computing [Lédeczi, et al., 2001]. This technology defines the 

DSL and model integrity constraints through metamodelling in order to compose the DSDE. 

Metamodels are made out of UML class diagrams and OCL constraints [Lédeczi, et al., 2001]. A 

constraint can be, for example, prohibiting a transition of state to itself. Models syntax can be 

defined through metamodelling, as well as the relationships between model elements [Sendall 

and Kozaczynski, 2003]. The DSME (Domain-Specific Metamodelling Environment) [Nordstrom, 

et al., 1999] must verify if the metamodel is semantically consistent (through OCL expressions, 

for example). 

The Four-Layer Metamodelling Architecture of UML is very much appropriate to the 

context of DSLs [Lédeczi, et al., 2001]. A metamodelling language, at the metamodelling level 

of the architecture (M2 layer), turns the possibility of specifying modelling languages 

suitable to various domains into a reality. A meta-metamodelling language can be used, at the 

level of meta-metamodels of the architecture, to specify the metamodelling languages 

themselves. The DSLs defined at the metamodel level allow specifying domain models for 

the software systems to be implemented. 

GME (Generic Modelling Environment) [Zhang, et al., 2005] is a metamodelling 

environment based on UML. It can be configured with specifications of a domain containing 

model elements and relationships of that specific domain to become a DSME. 

DSMEs are metamodelling environments to specify DSLs which allow the generation 

of domain-specific environments to produce models that can be translated into 

implementation code or the application itself [Lédeczi, et al., 2001; Sprinkle, et al., 2001]. The 

environment where the metamodel resides can be specified through a meta-metamodel. 

Metamodels require syntax and semantics specification. The metamodel has to 
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present all the entities and relationships among them to be handled with the intended 

language. Concepts like syntax and semantics are, thus, trivial [Atkinson and Kühne, 2003; 

Metzger, 2005; Nordstrom, et al., 1999; Zhang, et al., 2005]. The metamodel must express the 

obligatory semantic conditions for any model conforming with that metamodel, therefore, a 

valid model. The metamodel may include constraints like multiplicities and mandatory 

attributes. 

2.3. Transformations and Software Evolution 

Some general remarks on model transformation are given next, in Table 2 [Atkinson and 

Kühne, 2003; Brown, et al., 2005a; Metzger, 2005; Schleicher and Westfechtel, 2001; Sendall and Kozaczynski, 

2003; Terrasse, et al., 2001]. Model transformation makes sense in the context of MDD. Code 

generation is the ultimate goal of the model transformation cycle. Thus, the mapping of 

models into code must be considered [Demir, 2006]. MDA refers to automated tools to 

transform DSLs into implementation code [Booch, et al., 2004]. Concerning another OMG’s 

creation, MOF QVT (Query/View/Transformation) [Dupe, et al., 2007] is composed by a set of 

interrelated languages that suit the purpose of expressing transformations between models 

before they can be mapped into code. This OMG standard includes the language called QVT 

Operational Mappings [Dupe, et al., 2007]. QVT Operational Mappings extends OCL. It 

establishes a compromise between the functional characteristics of OCL and the traditional 

constructs that may be found in Java. Recently, France Telecom R&D, partially financed by 

the European IST Modelware project, has launched the first open source tool to perform 

model transformations using the language QVT Operational Mappings – SmartQVT. It works 

as a plug-in of Eclipse. 

Metzger [2005] classified transformations into endogenous and exogenous ones. An 

endogenous transformation takes place if the language of both the source and the target 

models is the same. An exogenous transformation, on the other hand, occurs if the language 

of the source model is not the same as the one of the target model. Brown, et al. [2005a] 

classified transformations into three possible transformation kinds. These are refactoring 

transformations (reorganization of a model), model-to-model transformations (entity classes 

to database schema, for example) and model-to-code transformations (code in a GPL, 

configuration files, deployment files, message schemas…). 
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Table 2 – Key concepts of model transformation 

Notation 

Transformation languages can use visual or textual notations. 

Sendall and Kozaczynski [2003] argued that transformations which 
use visual notations to define the input and output models are 
more appealing and cognitively easier to handle than others. 

Programming style 

Transformation languages can be declarative or imperative. 

Combining imperative and declarative approaches
5
 was 

mentioned by Sendall and Kozaczynski [2003] as being an 
advantage for transformation languages. 

Specialization level 
Transformation languages can use general-purpose constructs or 
specialized constructs. 

Abstraction deepness 
Transformation languages must be abstract enough to be 
intuitive, thus, enhancing users’ comprehension on the language. 

Language range 
Transformation languages must cover a wide range of 
transformation scenarios. 

Automation 
Transformation languages must provide automated model 
creation and maintenance. 

Transformation composition 
Transformation languages must provide the composition of 
transformations. 

Customization 
Environments to write transformations must make possible for 
users to define specialized transformations. 

Checkability 
It shall be possible to check a model for consistency with a given 
metamodel in order to perform code generation. 

Automatic transformations 
Automatic transformations can happen if both the source model’s 
and the target model’s syntax are defined. 

Type of mapping 

Transformations can be unambiguous and, so, provide support 
for a direct mapping. 

Transformations can require decisions regarding the use of 
alternative mappings. 

Transformations can be just an approximation if the target model 
doesn’t match semantically with the source model. 

Efficiency 
Transformation efficiency is achieved by making transformations 
explicit and reusable. 

Transformation rules 

Transformations have rules that must be interpreted by compilers 
in order to generate code appropriately. 

A profile defines rules for model transformation. 

As defined before in this dissertation, refactoring allows changing the internal 

structure and behaviour of software applications without changing its external behaviour. It 

                                                 
5 If the declarative approach is considered, transformation rules include pre- and post-conditions. If the imperative, or 
operational, approach is considered, then, transformation rules are a sequence of actions. 
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works the same with the code as it does with the model [Zhang, et al., 2005]. But the best 

strategy is to detect errors earlier in the development process instead of discovering them 

later on and needing to refactor the application code. 

Transformations of models can be vertical, horizontal or oblique (a combination of 

both) [Greenfield and Short, 2003]. The refinement of transformations until code is generated is 

considered to be a sequence of vertical transformations. Refactoring (or improving without 

changing meaning) of the product’s design means making horizontal transformations. 

Transformations are useful when transforming views between different levels of 

abstraction, but they are useful as well when transforming models at the same level of 

abstraction [Brown, et al., 2005a]. Thus, models can be refined, which is the same as adding 

details to them [Brown, et al., 2005a]. 

In the process of mapping a model (or more than one model) into another model (or 

more than one model), a mapping function is involved. This function defines the mapping 

rules that allow the transformations between source and target model or models to occur. The 

main characteristics of model mapping are creation and synchronization. Mappings are well 

suited to create models with other models (model derivation). This way, synchronization 

between models is assured. Mapping functions represent repeated design decisions which 

conduct to the reuse of those functions in models of similar design. 

The transformation of an analysis model (model at the problem domain level) into a 

design model (model at the solution domain level) is made by means of mapping functions. 

Having EJB (Enterprise JavaBeans) [Mellor, et al., 2004] as a reference, two kinds of objects or 

beans may be taken into account: those whose lifetime is the same as the time period in 

which they reside in a database (entity beans) and those whose lifetime corresponds to the 

session lifetime at the client side of the application (session bean). The model of a bank at the 

analysis level comprises elements like its clients and their accounts. The model of a transfer 

at the analysis level comprises elements like amount and involved accounts. At the design 

level the bank corresponds to an entity bean and the transfer to a session bean [Mellor, et al., 

2004]. A mapping function is responsible for the transformation of the two models at the 

analysis level into the corresponding types of beans at the design level.  

Atkinson and Kühne [2005] defended several transformations between a PIM and a 

PSM instead of a unique transformation. That is why a model transformation may give birth 

to either other models that still need to be transformed or different levels of generated code 

[Brown, et al., 2005a]. When a DSL model reaches an abstraction level that allows its direct
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transformation from model to source code (with no more models as intermediates in the 

transformation process), then the DSL elements are mapped into constructs of a target 

platform. Template languages allow this direct transformation to take place [Bettin, 2004]. 

Software maintenance, at a high level, may be due to four kinds of reasons as pointed 

out by Seifert and Beneken [2005]: (1) Due to changes in the requirements with impact on the 

implementation of functionalities – it is called perfective maintenance; (2) Due to 

technological constraints from the exterior (runtime environment, external components, 

development tools…) – it is called adaptive maintenance; (3) Due to errors that must be 

corrected – it is called corrective maintenance; (4) Due to the avoidance of other kinds of 

maintenance – it is called preventive maintenance. 

Software evolution takes place, at a lower level, when: (1) Changes need to be 

performed in the syntax and semantics of existing domain models [Sprinkle and Karsai, 2004];  

(2) Software needs to be rewritten due to novel requirements [Batory, et al., 2002; Bettin, 2004];  

(3) The DSL changes [Batory, et al., 2002]; (4) Changes take place in the DSVL metamodel 

(newer versions of a DSVL that prompt the existence of the concept of domain model 

evolution at the metamodelling level) [Sprinkle and Karsai, 2004]; (5) Changes in the architecture 

[Seifert and Beneken, 2005]. These changes may oblige transformations to take place. 

Some Software Engineering solutions that cover software evolution are [Batory, et al., 

2002]:  

(1) Object-oriented design patterns; Design patterns are an approach for redesigning and 

generalizing design traces of object-oriented software. Software evolution in this case 

occurs when a design pattern is applied to an already existing software solution 

design. 

(2) Product line architectures; Product line architectures represent reusable designs of 

product line members. Software evolution occurs when components with new features 

implemented are added to the overall architecture or others are taken out of the same 

architecture. 

(3) DSLs; Finally, when the software needs to evolve, DSLs must meet the required 

changes in software caused by that evolution. 

2.4. Software Development Methodologies and DSLs 

This section of the second chapter is focused on software development 

methodologies. Some methodologies are presented: 4SRS, VA, FAST and SF (SF include 



Chapter 2: Concepts to Understand DSLs 

20 

DSLs). The first two were developed within the University of Minho and the others are 

concerned with SPL development. Modelling without the guidance of a methodology can be 

ineffective and is, in general, costly, which explains the significance of software development 

methodologies within this context. The VA methodology is about the roles of engineering 

professionals within the computer-based systems development. FAST and SF methodologies 

are much about the distinction between the commonalities and the variabilities of SPLs. 

Further on in this dissertation there will be some reasoning around roles of engineering 

professionals partially inspired by the VA methodology, as well as it will be shown a 

metamodelling approach targeted at a SPL, the ERP SPL, which distinguishes between the 

common aspects of the SPL and the aspects which vary across the SPL’s products. 4SRS is 

considered to be an appropriate methodology to be used after a first UML-based 

metamodelling exercise (like the one this dissertation describes) in order to avoid ad-hoc 

metamodelling. 

2.4.1. 4SRS 

The first methodology is called 4SRS (Four Step Rule Set) [Machado, et al., 2006]6. Its 

goal is to provide a method to transform requirements specification into software logical 

architectures by means of recursive model-based transformations, basically, from UML use 

case diagrams to UML 1.x object diagrams or UML 2.0 component diagrams. 4SRS is a 

solution for the problems that emerge from ad-hoc modelling principles during the design 

phase of a software project, specifically the architectural design of the system. Identifying 

and relating architectural elements which are part of a system is crucial to the success of its 

design and further implementation [Machado, et al., 2006]. 

Functions provided by application components can be called services. Standard 

descriptions of those services make it possible to compose the structure and behaviour of 

application components. The software engineer must specify the interactions of the system 

with its users in the form of a use case diagram (also called functional or analysis model) and 

from there, following a series of steps, get to the architectural components of the system (also 

called conceptual or design model). 4SRS decisions on how to transform functional into 

structural models is not intuitive but rather methodical [Machado, et al., 2006]. That is the value 

of the method. 

The definition of system’s objects is made out of the textual descriptions of system’s 

use cases, which reveals the significance of Requirements Engineering in the whole process. 

                                                 
6 This technique was developed within the University of Minho, supported by projects STACOS and USE-ME.GOV. 
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In the process of converting a use case diagram into a component diagram we have to 

separate objects into types (interface, data and control) and establish a relation between the 

object and the use case from which it was born. Ultimately, the behaviour of the system is 

specified out of its functionalities. 

Four steps constitute the method 4SRS: object creation, object elimination, object 

packaging and aggregation, and, finally, object association. The object elimination step is the 

crucial one, as it allows to remove redundant requirements and to find missing requirements. 

When it comes to object packaging and aggregation the goal is to semantically group objects, 

hence, it consists of a task situated in a high abstraction level. Packages define regions whose 

architectural structure must be further specified in the design phase of the project by means of 

design patterns. Raw component diagrams can be collapsed or filtered in order to define 

smaller projects within the overall project. Therefore, the boundaries of the system can be 

defined and redefined using raw component diagrams’ collapsing and filtering. The raw 

object model represents the service architecture and from it class diagrams, state machine 

diagrams, activity diagrams and sequence diagrams can be drawn [Fernandes, et al., 2006]. 

2.4.2. VA 

The second methodology is called VA (Virtual Automation) [Machado and Fernandes, 

2002]. IIS (Industrial Information System) can be viewed in terms of the implementation 

project’s team structure, as well as in terms of associated activities, using the VA 

methodology. This methodology mentions roles like the one of the hardware engineer, the 

one of the software engineer and the one of the information systems engineer. 

The VA methodology is divided into levels. Level 1 is the one where the hardware 

engineer is contextualized. At this level, the algorithms for the IIS must be implemented in 

terms of hardware and made transparent to level 2. This level 2 of the VA methodology is 

where the software engineer performs his activities, which are to design the FMOTS 

(Functional Modules Off-The-Shelf), commonly named components, with a CASE 

(Computer-Aided Software Engineering) tool. Finally, level 3 of the VA methodology is 

concerned with the activities undertaken by the information systems engineer using a CAE 

(Computer-Aided Engineering) tool. 

The advantages of the VA methodology are: (1) Reduction of development times;  

(2) Consistent design processes with reuse of activity outputs from previous software projects; 

(3) Effective design of systems at the Information Systems Engineering level accomplished 

through the integration of tools at different levels. 
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2.4.3. FAST 

The third methodology is, in fact, a product line development process and is called 

FAST (Family-Oriented Abstraction, Specification and Translation) [Ardis, et al., 2000]7. It 

employs a process called commonality analysis in which the development of an application 

engineering environment is based on. This environment is then used to produce family 

members as fast and as cheap as possible. 

The telecommunications operator Lucent claims to have successfully employed the 

FAST process in various projects with efficiency improvement and an increased consistency 

in products. This claim is perfectly reasonable since the telecommunications sector is one of 

large systems built upon smaller subsystems with particular characteristics. When Lucent 

began to use Domain Engineering, the productivity of developers increased and the quality of 

the code was improved. The main advantages in the use of FAST were: (1) Reduction of 

development times; (2) Increased behaviour consistency among all products; (3) Reduction in 

maintenance costs; (4) Reduction in training costs to have new employees familiarized with 

the new domain. 

FAST assumes it is more advantageous to have only one instance of each common 

feature (that is the main premise of this methodology). FAST is divided into a phase of 

domain engineering and a phase of application engineering. The first one is about 

understanding how commonality and variability coexist and document that knowledge. The 

second one is about translating it into technology, like a set of subroutines (or component) or 

a DSL, the above mentioned application engineering environment. Any change to the 

environment must be done after checking its impact on the gathered knowledge. This is done 

in the context of the domain engineering phase. Also in the domain engineering phase, 

commonality analysis is a domain analysis method of FAST. This method is about the 

documentation of commonalities and variabilities of the product family. The commonality 

analysis documentation is essential when communication between marketing professionals, 

senior managers and developers is concerned. 

A prototype can be used as a simplified version of an individual product. The 

prototype functions as a demonstration of especially the variability among the different 

product family members. 

                                                 
7 FODA is another product line development process that concentrates in the selection and analysis of features to produce 
individual product members. 
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2.4.4. SF and DSLs 

SF may be, in fact, considered another software development methodology. Some 

requirements characterize the success of the approach [Greenfield and Short, 2003]. Problem 

domain knowledge is extremely significant. Custom component suppliers emerge as 

specialists in several domains. In technical terms, the use of architectures requiring the 

capability to adopt components perfectly matching each other is crucial to the success of SF. 

Requirements Engineering has in SF extreme relevance through requirements capture and 

analysis. 

When a family of software products shares the same features (common features, like 

behaviour, interfaces or code) it can be called a SPL, although the product line development 

process must comprise not only the concern with the commonality of products but the 

variation among them as well. This approach of SPLs is contextualized in the Domain 

Engineering area. One of the main goals of SPLs is to increase the generation speed of 

individual products [Ardis, et al., 2000]. The maintenance and production of upcoming versions 

of a product family is very much reduced if SPL development is taken into account. Lucent is 

a case of success in this [Ardis, et al., 2000]. 

SPLs are software systems that share common features considered as necessary for a 

market segment [Frankel, 2005]. A product family is composed of products. The development 

of family members is done using patterns, frameworks (a framework can be seen as all the 

code that implements common domain aspects and extension points to customize applications 

built from that framework; the model must specify the way to complete those extension 

points [Cook, 2004]), models and tools. SPLs are all about the distinction between 

commonalities and variabilities [Ardis, et al., 2000]. Within the software development process of 

SPLs two processes are related to each other [Frankel, 2005]: the one that designs an 

architecture for the SPL framework, which is the core asset development, and the other that 

uses the framework to produce individual products, which is the product development. 

The product line scope can be defined through a DSL [Frankel, 2005]. Variabilities were 

defined by Mernik, et al. [2005] as the information required to instantiate a system out of a 

broader one. Variabilities may be defined with a DSL [Frankel, 2005; Mernik, et al., 2005]. 

Variabilities can be encapsulated in design patterns [Ardis, et al., 2000]. Despite this, a generic 

architecture detaining commonalities between product line members must also be defined 

[Roubtsova and Roubtsov, 2004]. 
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The major benefit of using a DSL is the reuse power attached to it. DSLs make 

available for reutilization a set of software artefacts like, as Mernik, et al. [2005] mentioned, 

language grammars, source code, software designs and domain abstractions. DSLs permit the 

reutilization of software architectures faced as the design the application generator follows 

when compiling the DSL. Also, with an API (Application Programming Interface) the 

reutilization of source code is granted. In fact, a DSL can be a GPL combined with an API, 

which is no more than a domain-specific vocabulary [Bragança, 2003; Mernik, et al., 2005]. 

Applications can be built with a GPL compiler using a GPL combined with an API [Atkinson 

and Kühne, 2005]. The specificity of DSLs has to be considered [Bragança, 2003]: a DSL may 

have on its own all the abstractions necessary to specify the domain instead of using a library. 

In the case of the DSL being able of providing the means to construct new abstractions 

besides the ones it allows by default, then, the DSL is no longer a DSL and turns into a GPL. 

Greenfield and Short [2003] identified three types of DSLs, among others, and those 

were: (1) Business entity DSLs (examples of business entities are customer and order);  

(2) Business process DSLs (examples of business processes are submission of order and 

calculation of discount); (3) Web service DSL (description of how business entities and 

business processes are implemented as web services in a service-oriented architecture). 

Abstraction is concerned with emphasizing some characteristics of a system relevant 

to some stakeholders or purposes instead of other characteristics. Granularity is related to the 

size of software constructs. Specificity is related to the scope of the abstraction. According to 

the Three Axes of Critical Innovation, for the SF development, presented by Greenfield and 

Short [2003], abstraction values range from concrete to abstract, granularity values range from 

fine grain to coarse grain and, finally, specificity values range from single use to reusable. 

Abstract solutions are presented as requirements, whereas concrete solutions are presented as 

executable ones. Fine grain solutions are presented as lines of code, whereas coarse grain 

solutions are presented as Web services, for example. GPLs are of single use, whereas DSLs 

are reusable. Coarse grain software constructs are of more independent handling (during 

analysis, conception, implementation…), since the abstraction level is high. The more 

specific the scope of an abstraction is, the less granted the potential of reutilization of that 

software construct will be. Bragança [2003] described DSL, in the context of programming 

language classification, as being a vertical language or an application specific language and, 

so, the DSL can only be applied to an application or family of applications, thus, to a 

knowledge domain only. 
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The development of a DSL asks for domain and language development expertise 

[Cook, 2004; Mernik, et al., 2005]. The DSL’s design must be created by highly skilled software 

engineers with experience on the domain due to the complexity of such a task [Demir, 2006]. 

After the DSL is conceived, requirements engineers, domain experts, professionals without 

much programming skills and even the customer can understand it. The ontology set (set of 

domain concepts) of a DSL makes of the DSL an easy to learn programming language, 

compared to GPLs [Sprinkle and Karsai, 2004]. The conscience of the potential a DSL has may 

only be possible when already a lot of knowledge around the development of domain-specific 

software has been done using a GPL [Mernik, et al., 2005]. Only then it is likely to realize the 

value of software reengineering or software evolution using a DSL. The main reasons for 

disregarding the implementation of DSLs in organizations are lack of expertise but most of 

all inexistence of short-term benefits, particularly when the question is to develop a new 

DSL, but also when the question is to find an existing DSL to suit particular needs (DSL 

documentation is commonly not well spread out of the organizations). To help organizations 

decide on whether or not to implement a DSL, Mernik, et al. [Mernik, et al., 2005] presented a 

decision pattern. As Table 3 presents, different strategies can be adopted when designing 

DSLs [Mernik, et al., 2005]. 

There is a close relation between DSLs and software development methodologies, like 

FAST and FODA (Feature-Oriented Domain Analysis) [Mernik, et al., 2005]. The analysis phase 

in the development of a DSL is pretty much similar to the one of FAST. In fact, FAST or 

FODA can be used in this context. The problem domain must be defined, the domain 

knowledge must be gathered (technical documentation, knowledge from domain experts, pre-

existing GPL code, customer surveys). After analyzing all the domain knowledge, domain-

specific syntax and semantics must be determined. 

Mernik, et al. [2005] mentioned, besides the definition of the domain scope and the 

domain terminology (same as overview and technical terms from FAST) as the output from 

the analysis phase, feature models to describe the commonalities and variabilities of domain 

concepts (same as structured lists from FAST) and the relationships between them. Various 

DSLs can be developed from a single feature model. FODA works with feature models. 

 



Chapter 2: Concepts to Understand DSLs 

26 

Table 3 – Strategies to design DSLs 

Designing a DSL based on an 
existing language 

The easiest strategy to adopt. 

Its advantages are easiness of implementation 
and easiness of utilization (the easiness of 
utilization is only a fact if users already handle the 
existing language). 

Designing a DSL by extending an 
existing language 

This strategy may raise issues of integration 
between existing language and DSL. 

Designing a brand new DSL 

This strategy involves a difficulty to the DSL’s 
analyst, since the DSL is going to be used not 
only by programmers but also by professionals 
with no or almost none knowledge in a 
programming language. 

SPLs are mainly concerned with domain (which is a specific area of knowledge), 

hence, making use of DSLs understandable by domain experts [Bettin, 2004; Demir, 2006]. In the 

context of SPLs, if a DSL is defined during the analysis phase, then this language must be 

able to let users determine the values of variabilities between family members [Ardis, et al., 

2000]. The specifications in that language produced from the determination of variabilities 

values are then translated into code. The strategy to deal with a DSL in this context is to 

model the commonalities and then specifying the variabilities with a DSL [Ardis, et al., 2000]. 

The DSL describes the concepts the framework presents. Variability points in a domain-

specific framework may be filled by using a domain-specific model. This is called framework 

completion [Greenfield and Short, 2003]. Developers then need to write small amounts of code in 

a DSL to complete a framework in order to customize products to meet specific requirements. 

Patterns have a marked presence in the DSL field [Mernik, et al., 2005]. Analysis patterns 

are used in the context of domain analysis, design patterns in the context of DSL design and 

implementation patterns in the context of DSL implementation. These three kinds of patterns 

are independent but patterns inside each kind may be overlapped. A pattern, when applied to 

a model, changes its elements (adds new elements or properties to the model) in order to 

conform to the pattern directives [Brown, et al., 2005a]. A pattern is a model with holes that can 

be fulfilled with another model or part of it [Cook, 2004]. 

DSLs are defined through metamodels. The more specific the metamodel is, the more 

specific the model conceived in a specific domain context can be [Sprinkle, et al., 2001]. 

Terrasse, et al. [2001] mentioned the trend to define specific metamodels for each application 

domain from where application models can be derived. Domain-specific model elements can 

be added to UML as an extension of it in order to make UML applicable to specific domains. 

Thus, a DSL metamodel can describe, in fact, an extension to UML for a specific domain (a 
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correspondence between the UML metamodel elements and the DSL metamodel elements 

must be perfectly possible). An approach to extend UML is by using stereotypes, tagged 

values and constraints8, expressed in OCL, for example. Stereotypes can be restrictive or 

constrained [Schleicher and Westfechtel, 2001]. A constraint on a stereotype can e.g. state that a 

pair of classes stereotyped with that particular stereotype can only be associated by a single 

instance of an association with a specific stereotype. Profiles can be considered as DSLs with 

stereotypes. 

Demir [2006] used a PDM (Problem Domain Matrix), reporting to the analysis phase, 

and a SDM (Solution Domain Matrix), derived from the first and reporting to the design 

phase, to extract the commonalities and variabilities out of the product line and after that 

derive the DSL. 

A DSVL is a DSL with a visual programming interface. Even a professional who is 

not a programmer can manipulate the DSVL as an application development tool (that is the 

main advantage of it). In this context, Sprinkle and Karsai [2004] distinguished between 

abstract and concrete syntax. They assumed that the abstract syntax available to build a DSL 

is designed with a metamodelling language through UML class diagrams and that the 

concrete syntax comes from a mapping between the elements in the abstract syntax and the 

visual constructs of the DSVL. The semantics of the DSVL must also be specified. Nokia 

uses a DSVL instead of UML to develop mobile phone software. 

There is no agreement on whether a DSL must be executable [Mernik, et al., 2005]. DSLs 

range from nonexecutable ones to fully executable ones. These last ones have an associated 

application generator which functions as a compiler of the DSL. During the creation of the 

DSL, the constructs of the GPL to be used when generating the application’s code must be 

taken into account so that the code generator doesn’t demand in runtime items not 

contemplated in the DSL metamodel [Bragança, 2003; Demir, 2006]. It is possible to create 

domain-specific embedded languages, whose (domain-specific) constructs are implemented 

through GPL constructs. This way the debugging task in a GPL compiler is not an issue but 

the design of the DSL is limited to extendable GPL constructs [Bragança, 2003]. 

Bragança [2003] summarized the advantages of using DSLs: (1) Quantity of code is 

reduced (as well as errors in code); (2) Productivity is increased; (3) Maintenance costs are 

decreased; (4) Closeness to problem domain; (5) Manipulation by domain experts is easier;  

(6) More understandable programs; (7) End users can participate in programs evolution;  

                                                 
8 Structural constraints can be defined through class diagrams, a familiar way for a modeller to work with constraints. 
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(8) Documentation is facilitated; (9) Domain knowledge lifecycle is extended; (10) Testing 

becomes easier; (11) Programs can be validated and optimized before being executed from 

models; (12) Increased portability; (13) If applied to a SPL, costs of developing a DSL are 

reduced. 

2.5. Conclusions 

Models are the fundamental piece of Software Engineering and are the basis of 

several DSLs. Diverse advantages are available when using models to build software 

solutions, like smoothing the hard task of handling complex systems, turning team 

coordination an easier task, softening the impact of changes during the development process, 

increasing productivity and increasing the easiness of bringing the customer to the analysis 

phase of the software development project. It is inevitable to talk about code generation from 

models these days, so, models should provide also the support for the generation of code. 

Transforming models into code is a task of high value in the whole process of developing a 

software application with a DSL. Here, the relation between DSL and GPL plays a significant 

role when moving from models to implementation. MDD is at the centre of this question and 

brings up model transformation to light. DSLs are a part of the MDD approach called SF. 

Models are nothing without the framing of a methodology, like SF. In the context of SF, 

DSLs must make available the opportunity to determine the variabilities of a SPL in order to 

realize it in individual products. Model transformation is the way to produce those individual 

products out of models. MDA is another MDD approach with the advantage of being a 

standard and making use of standards. The main concern of MDA is precisely with model 

transformation (from PIMs to PSMs). But it is not sufficient to run transformations just one 

time. Software maintenance is a very important activity when working with models to 

generate software solutions over time. DSLs are an approach that covers software evolution 

with a specific kind of solution. Every time a DSL changes it means that software solutions 

must evolve from their previous state to a new one defined by the DSL metamodel. 

To conceive a domain-specific modelling language it is of extreme relevance to be 

aware of metamodelling concepts, the fundament of every modelling language. The main task 

of a software engineer is to think about models and adopt a scientific reasoning to be used 

during the conception of a domain-specific modelling language. Using mainly abstraction to 

metamodel, software engineers should consider the enormous power of reutilization a 

metamodel has and the equally enormous advantages of that. The concern should be not only 

with metamodels but with the definition of the metamodelling language as well. All of this
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thinking must be scientific, otherwise, metamodels will fail and DSLs will be chaotic and a 

complete failure. Software engineers, when metamodelling, should be worried with some 

very important concepts, like syntax and semantics. 

Despite the reluctance of large organizations in adopting and some disadvantages of 

their use, DSLs convey various advantages to the development of software applications 

compared to GPLs, although in order to implement DSLs, GPL constructs may be considered 

and used. In fact, DSLs may be faced as a strategy of GPLs’ adaptation to Domain 

Engineering. 

As it was exposed in this chapter of the dissertation, DSLs are nothing if they are not 

conceived within a metamodelling reasoning framework. If software producers decide to use 

models in the development of their solutions, they also have to decide that metamodelling, 

besides model transformation, must be a part of that decision, otherwise, using models to 

produce software solutions is going to be worthless. 
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The third chapter of the dissertation is targeted at exploring metamodelling environments as tools to 
conceive DSLs. The development cycle of metamodelling environments is firstly presented as a way of 
exposing the three main professional roles mentioned throughout the rest of the dissertation and dividing the 
conception of DSLs between the three associated stages also defined in the cycle. Then, a metamodelling 
perspective on DSLs is presented by bringing up the equivalence between DSLs and stereotyped class 
diagrams, followed by a short summary of the UML metamodel. The last section of this chapter is about 
stereotyping applied to the context of this dissertation: a DSL for the sales domain of Primavera ERP 
software solution (defined within a metamodelling environment).   

3. Metamodelling and 

Modelling Environments as 

Tools to Handle DSLs 

3.1. Introduction 

Metamodelling environments can be modelled themselves. In this chapter of the 

dissertation what can be called the development cycle of metamodelling environments is 

exposed. It comprises the roles of three professionals: domain engineer, software engineer 

and software developer. The cycle is divided into levels according to the Four-Layer 

Architecture of UML. Objects resulting from each level are also reported. Usually, the 

responsibilities of these professionals are not the appropriate ones and, so, this cycle is a way 

of following a rule. The final output of the whole process of metamodelling environments’
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development is a metamodelling environment where metamodels can be conceived. Models 

are present throughout the whole way.  

Along with the process of developing a metamodelling environment, a series of 

transformations may occur. These transformations may occur at the same level of abstraction 

as well as between different levels of abstraction. 

DSLs can be seen as stereotyped metamodels, as it will be further explained in this 

chapter. But most of all, before metamodelling it is extremely pertinent to follow the basic 

concepts of the UML metamodel (its syntax and semantics). Some parts of the UML 

metamodel, which are presented at the end of this chapter, are going to be used until the end 

of next chapter of this dissertation. Also, a stereotyping approach is shown as a way of 

configuring instances of UML concepts (e.g. class) with domain-specific concepts in 

modelling environments. 

3.2. Development Cycle of Metamodelling Environments 

Figure 4 depicts the development cycle of metamodelling environments. The model 

specifies this development process, which is the process of developing a specific software 

application (final solution) for metamodelling software applications in general. The final 

solution is a newer version of the meta-design environment (same as metamodelling 

environment). But the final solution can be other than a meta-design environment. It can be 

another kind of software application composed of code or FMOTS (from VA). In that case, 

the model would have another name, development cycle of software applications out of 

metamodelling environments. The process points specific responsibilities to the project team 

members. It begins with the software developer at the implementation level, then moves to 

domain engineer at the analysis level, after that to the software engineer at the design level 

and finishes with the software developer at the implementation level. The software developer 

is responsible for implementing the meta-design environment from which the final solution is 

going to be implemented by him as well at the end of the process. The relation between each 

project phase is iterative and depends on the predecessor’s ability to answer to all open 

issues. The objects resulting from each creation action have an equivalency to the levels of 

the Four-Layer Architecture of UML. Therefore, DSMEs can be produced from metamodels 

[Nordstrom, et al., 1999]. 
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Figure 4 – Development cycle of metamodelling environments 

The great goal of DSLs is accelerating the process of software development. They 

allow the possibility of having a specification language, of high abstraction level, capable of 

being manipulated by software engineers (the DSL) distinct from an implementation 

language, of low abstraction level, capable of being manipulated by software developers (the 

GPL of which the generated code out of the models designed with the DSL is made of). The 

software engineer ends up by having an artefact available that allows him a bigger 

understanding of the software to implement, whereas the software developer ends up by 

inserting less code manually, obtaining gains in productivity and the possibility of 

concentrating in the optimization of the business logic to implement. The domain engineer is 

the professional who is responsible for studying the problem domain (analysis). The software 

developer is the professional who is responsible for implementing the solution to the problem 

delimited by the domain engineer. Finally, the software engineer is the professional in the 
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middle of these two, responsible for studying the solution domain (design) which is going to 

be the input for the software developer’s job. 

When handling DSLs to develop metamodelling environments it is relevant to 

consider DSL transformations. Table 4 shows the types of DSL transformations that may 

occur between what can be called static DSLs and what can be called dynamic DSLs. The 

types depend on the level of abstraction the DSLs are at (if they are at the same or at different 

levels of abstraction). Static DSLs model structural aspects of the system to be specified, like 

class diagrams. Dynamic DSLs embrace all nonstructural aspects of the system, like use case 

diagrams and component diagrams. 

Table 4 – Types of DSL transformations considering abstraction as a variable 

Static DSLs to Static DSLs: Refactoring or Intra-view 
Transformation. 

Same level of abstraction 

Static DSLs to Dynamic DSLs: Inter-view Transformation. 

Static DSLs to Static DSLs: Refinement Transformation. 

Different levels of abstraction 

Dynamic DSLs to Dynamic DSLs: Refinement Transformation. 

3.3. DSLs from a Metamodelling Perspective 

Conceiving DSLs is equivalent to stereotyping. According to the perspective of 

Schleicher and Westfechtel [2001], and following the Figure 5, extending the UML 

metamodel to define a new DSL means instantiating MOF itself, since the UML metamodel 

is already an instance of MOF. Using a stereotype is the same as instantiating a new UML 

metaclass, a special kind of UML metaclass which extends predefined UML metaclasses. If 

both DSL and stereotyped class diagram are instances of the UML metamodel, then, they are 

equivalent, which means that stereotyping is, in fact, specifying a DSL. Most of all, this 

approach takes advantage of UML, an already well-known standard among software industry 

[Booch, et al., 2004]. 

It is from the files that define the language syntax that the more general characteristics 

of the domain model or model are translated automatically into code. The code contains the 

definition, in a GPL, of object types specific to a domain, or domain-specific data types. 

These object types, like page or screen, for example, are designed with the DSL. DSLs also 

contemplate procedures specific to a domain, or domain-specific procedures. 
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Figure 5 – Equivalence between DSLs and stereotypes 

It is possible to refine the primarily generated code with code inserted manually by 

the software engineer, eventually also calling already created components by software 

developers, giving birth to a framework more consistent between new code and reused code. 

The specification of the UML superstructure, or the UML metamodel’s syntax and 

semantics, is now going to be described, in particular, the notation and meaning of some 

views (use case diagram, class diagram, activity diagram and state machine diagram) [OMG, 

2007b]. These concepts must be kept in mind when metamodelling with DSLs respecting the 

UML metamodel. 

The first view is the use case diagram. The concepts used to model use cases are 

shown in Figure 6. A use case diagram has the purpose of specifying the uses of the system. 

Usually, they are used to retain the system’s requirements in terms of functionality, meaning 

what the system must be able to do. Each use case diagram has a subject, which is the system 

being specified. Actors are also represented in the diagram and refer to other systems, or even 

subsystems of another system, which interact with the system being modelled and are situated 

outside this system. The subject is specified with one or more use cases associated with 

specific needs of each actor, so, it makes sense to have every use case connected to at least 

one actor. In terms of semantics, an actor models an entity external to the subject. In an 

interaction between an external entity and the subject, that entity plays the role of actor. A use 
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case represents a particular behaviour of the system. Two use cases cannot be associated (yet, 

they can be connected through a relationship) because both, by themselves, describe a 

complete use of the system. The internal behaviour of the actor is not described in this 

diagram, only its interaction with one or more uses of the system is. As to the extend 

relationship, represented in Figure 6 by the Extend class, an extending use case is a use case 

inserted in the description or executed in one place or more places of the extended use case’s 

description or execution. The extending use case and the extended use case are fused when 

the execution of the last one takes place. The extending use case is an increment to the 

extended use case. The extended use case just invokes the extending use case and is not 

aware of its behaviour. An include relationship, represented in Figure 6 by the Include class, 

between two use cases means that the behaviour defined in the included use case is included 

in the behaviour of the including use case. This kind of relationship is used when there are 

parts in common between two or more use cases. Those parts in common are extracted from 

the various including use cases to a separate use case (included use case) to be included by 

the various including use cases. The behaviour of the included use case is know by and 

described in the including use case. 

 

Figure 6 – Representation of the concepts actor, use case, extend and include used to model 

use cases (from the UML superstructure) 
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The class diagram has the purpose of describing the structure of the system being 

specified. A class, represented in Figure 7 by the Class class, has the purpose of specifying 

the object’s classification, its (structural) characteristics and associated behaviour. 

 

Figure 7 – Representation of the concept class used to model classes (from the UML 

superstructure) 
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A class can be represented by three compartments: a compartment with the name of 

the class, another compartment with the list of its attributes and another with the list of 

operations associated with the class. An association, represented in Figure 7 by the 

Association class, states that instances of associated types are connected. It can be 

bidirectional or unidirectional. The values at each association’s extremes indicate the number 

of instances of the associated type connected to that extreme of the association. It is possible 

to have several associations between the same pair of associated types. When that happens, 

not only the association is tagged with the values at each association’s extremes, but also with 

an additional identifier at each of those extremes. An association can represent as well an 

aggregation or a composition. A composition is a strong form of aggregation. If a 

composition is erased, all the parts that are related through the composition are erased as 

well. 

An association may have its own attributes. That is the case of an association class (an 

association and a class, simultaneously), represented in Figure 8 by the AssociationClass 

class. The extremes of associations between association classes and classes from the 

association class’ side have always multiplicity equal to 1. 

 

Figure 8 – Representation of the concept association class used to model classes (from the 

UML superstructure) 

A dependency relationship, represented in Figure 9 by the Dependency class, 

indicates a supplier-client relationship between elements of the class model. A change in the 

supplier element may have impacts on the client element. This kind of relationship does not 

have impacts at runtime, it only has meaning in terms of the model and not its instances. The 

element on the tail of the association is the client element and depends on the supplier 

element situated on the tip of the arrow representing the association. A realization 

relationship, represented in Figure 9 by the Realization class, indicates that the elements on 

the tip of the arrow representing the relationship are realized by the elements on the tail of the 

arrow. 
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Figure 9 – Representation of the concepts dependency and realization used to model classes 

(from the UML superstructure) 

A generalization relationship, represented in Figure 10 by the Generalization class, 

means that each instance of the specific element on the tail of the arrow that represents the 

relationship is also an instance of the general element on the tip of the arrow. So, the 

characteristics of the general element are also characteristics of the specific elements.  

 

Figure 10 – Representation of the concept generalization used to model classes (from the 

UML superstructure) 

An interface, represented in Figure 11 by the Interface class, refers to a set of public 

access characteristics and behaviours that are part of a service offered to the client of the 

specified system. Interfaces are implemented through classes, since they cannot be 

implemented directly. 
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Figure 11 – Representation of the concept interface used to model classes (from the UML 

superstructure) 

Activity diagrams emphasise the sequence of operations and conditions on the 

occurrence of those operations, both associated with each use case or behaviour of the 

system. An action, represented in Figure 12 by the Action class, represents an operation. 

 

Figure 12 – Representation of the concept action used to model activities (from the UML 

superstructure) 

An initial node is the starting point for the execution of an activity. If an activity has 

multiple initial nodes, then it means that the activity, when invoked, starts several flows. An 

activity final node is the element that ends the activity. Particularly, it ends all actions in 

execution at the time. Both initial node and activity final node are control nodes and are 

represented in Figure 13 by the InitialNode and ActivityFinalNode classes. 
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Figure 13 – Representation of the concepts activity final node and initial node used to model 

activities (from the UML superstructure) 

Control flow, represented in Figure 14 by the ControlFlow class, is the element that, 

basically, connects two activities (its notation is an arrow).  

 

Figure 14 – Representation of the concept control flow used to model activities (from the 

UML superstructure) 

An activity partition, represented in Figure 15 by the ActivityPartition class, is a 

compartment in the diagram that contains other elements of the activity diagram organized 

according to the name of the activity partition. That name may refer to an actor, for instance. 



Chapter 3: Metamodelling and Modelling Environments as Tools to Handle DSLs 

42 

 

Figure 15 – Representation of the concept activity partition used to model activities (from the 

UML superstructure) 

The concepts decision node, merge node, fork node and join node, used to model 

activities, are shown in Figure 16. A decision node (its notation is a lozenge) represents a 

decision. The output of an action entering a decision node will transit as input to a subsequent 

action according to the result of the decision, respecting the guard conditions the same 

decision presupposes. The software engineer shall have the concern of establishing decisions 

with mutually exclusive guard conditions, so that any output of any action fulfils only one of 

those conditions. The opposite of a decision node is a merge node (its notation is also a 

lozenge). It does not represent a synchronization of various flows but rather states that the 

same subsequent node can be entered by various alternative (not concurrent) flows. The 

difference between a decision node and a merge node is that the first one has only one 

incoming control flow and the last one has only one outgoing control flow. In the opposite 

extremes, decision node and merge node have more than one outgoing control flow and more 

than one incoming control flow, respectively. A fork node and a join node are related to 

synchronization. The fork node is the point in which a flow is split up into various concurrent 

flows. The join node is the point in which sets of actions belonging to concurrent execution 
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flows are synchronized. The notation of the fork and the join nodes is similar to the notation 

of decision and merge nodes except that in this case the shape is not a lozenge but rather a 

black bar. 

 

Figure 16 – Representation of the concepts fork node, join node, merge node and decision 

node used to model activities (from the UML superstructure) 

At last, the state machine diagram allows modelling state transitions of objects 

belonging to a system. The concepts used to model state machines are shown in Figure 17. 

These state transitions are triggered by system’s behaviours. A state represents a period of 

time in the object’s lifetime. A state is activated when a transition enters the state and 

deactivated when the same or another transition leaves the state. An initial pseudostate, 

represented in Figure 17 by the Pseudostate class (in this case the attribute kind must have the 

value initial), is the element from which a unique transition to the default state is triggered. 

The default state is the first of the various states in the diagram. There can be only one initial 

pseudostate per diagram. The already mentioned unique transition to the default state has no 

associated guard condition. The opposite of an initial pseudostate is a final state, which is the 

last element of the diagram. A transition, in the context of a state diagram, is a relationship 

between two nodes in a state machine diagram. Each transition has a guard condition (that 

must appear between square brackets), which is evaluated before the transition’s triggering. 

Guard conditions must only produce effects on the object’s state at stake and no other effects 

besides those ones. A choice pseudostate, represented in Figure 17 by the Pseudostate class 

(in this case the attribute kind must have the value choice), is the element that allows 

evaluating the guard conditions of the different possible transitions entering it. If more than 

one of the evaluated guard conditions is true, one of those conditions is arbitrarily chosen. If 
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none of the conditions is satisfied, then the model was incorrectly conceived, which can be 

solved with an else guard condition. 

 

Figure 17 – Representation of the concepts state, pseudostate, final state and transition used 

to model state machines (from the UML superstructure) 

3.4. Using Modelling Environments to Configure Instances of UML 

Concepts with Domain-Specific Concepts 

UML is a very powerful modelling language. But it is not enough to understand UML 

syntax and semantics, as it has just been done in this dissertation, if the goal is to conceive a 

DSL. This is just the first step in the process. It is important to consider its extension 

mechanisms in order to accomplish specific domain compliance. In that sense, stereotyping, 

as previously mentioned in this chapter, is the topic being analyzed in this section. 

Fontoura, et al. [2000] created the UML-F profile. This profile is concerned with 

product line framework definition. UML-F is no more than a domain-specific profile of 

UML. Fontoura, et al. [2000] faced frameworks as sets of interoperating components which 

interact by means of cooperation patterns. Specialized forms of those components are 

implemented through application-specific code. If the metamodelling environment does not
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support code generation of specialized code, UML-F allows defining the variation points/hot-

spots/hooks from which specialized code, or application-specific code, can be written 

afterwards. 

UML does not contain any domain-specific concepts, although it contains 

mechanisms which allow defining those concepts. Stereotypes allow customizing UML to 

become a language usable in a specific domain. As Fontoura, et al. [2000] and as France and 

Rumpe [2007] stated, stereotypes are specialized for a particular application domain. An 

example approach to stereotype class diagrams is now given as a way to discuss possible uses 

of stereotypes in the instantiation of a metamodel for the Primavera ERP sales domain. 

UML originally provides the concept of class. But class in the context of the 

Primavera ERP sales domain can be applied to numerous domain concepts. The first step to 

define a DSL for this domain, using stereotypes, is to isolate the domain concepts that can be 

implemented as classes in the implementation language to be used. Since the Primavera ERP 

sales module is handled by sales people and the information handled can be about customers, 

sales person and customer can be two of the domain-specific concepts needed to be isolated 

for stereotypes’ definition. Both of them are going to be implemented as classes; yet, class is 

very general compared with sales person or customer in the context of the Primavera ERP 

sales domain. 

The difference between the definition of a class and the definition of domain-specific 

classes, like sales person or customer, is that class may have attributes and operations but, for 

example, sales person must have specific attributes, like an employee number, and specific 

operations, like orderToSupplier(). Specific attributes and operations of domain concepts must 

be defined as well as the domain concepts themselves. 

The different variants of the Primavera ERP may require specialized forms of the 

sales person and/or customer classes. In this case, superclasses must be taken into 

consideration. That is the approach used to deal with commonality among variants of the 

Primavera ERP, by defining shared attributes and operations among variants of the software 

solution and then having the specialized ones only in the specialized forms of those classes. 

Besides different variants of the Primavera ERP (e.g. free, paid or demonstration), different 

software products of Primavera can also be considered for commonality definition. 

The new metamodelling infrastructure of the Primavera ERP for the sales domain 

with UML notation must be defined in its syntactic part [Fontoura, et al., 2000; Pree, et al., 2002]. 

Two example templates for the definition of the domain concepts of sales person and of 
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customer mentioned previously (at the common syntax and at the specialized syntax levels) 

are presented in Table 5 and in Table 6. 

Table 5 – Common syntax of two possible Primavera ERP concepts for the sales domain 

Super domain 
concept 

Super stereotype Common attributes Common operations 

employee number orderToSupplier() 

employee name … 
ERP super sales 

person 
«erpSuperSalesPerson» 

… … 

customer number orderToSalesPerson() 

customer name … ERP super customer «erpSuperCustomer» 

… … 

Table 6 – Example of specialized syntax of two possible Primavera ERP concepts for the 

sales domain 

Domain concept Stereotype Specialized attributes Specialized operations 

photo insertPhoto() 
Paid ERP sales 

person 
«paidErpSalesPerson» 

- - 

- sendDemo() 
Paid ERP customer «paidErpCustomer» 

- - 

Table 5 exemplifies the syntax definition of two superclasses. An example of two 

attributes and an operation is given for each (more could be added). The case could be of 

having a superclass with no attributes or with no operations. The meaning of a superclass is 

the same as the meaning of extensible classes defined by Fontoura, et al. [2000]: classes which 

are common to more than one application of the SPL  (therefore, which are common inside a 

domain, the domain of the SPL) and that may require the addition of new operations for at 

least one of those applications. When modelling the classes of sales person and of customer, 

the corresponding stereotypes defined in the table must be used. The prefix Super is used in 

order to distinguish superclasses from subclasses. 

Table 6 exemplifies the syntax of two specialized stereotypes, one for each of the two 

super domain concepts presented in Table 5. The combination of attributes and operations 

follows the same schema as the one mentioned for the superclasses, however, the meaning of 

those attributes and operations is not the same: the attributes and operations of subclasses 

define the application specificity towards the domain commonality defined by superclasses’ 

attributes and operations. 
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The Primavera SPL could include all of Primavera’s products (all specializations of 

the Primavera ERP, which are the Primavera Executive, the Primavera Professional, the 

Primavera Professional Starter, the Primavera Construction, the Primavera Industry, the 

Primavera AP, the Primavera AP POCAL and the Primavera Express, among other products) 

under the justification that all of them share the common features of business software. 

Another perspective is to consider that all variants of the Primavera ERP (the Primavera ERP 

paid variant, the Primavera ERP free variant, the Primavera ERP demonstration variant) form 

a SPL because they are a family of products sharing common features of business software. 

Whereas super domain concepts expressed in Table 5 affect more than one application of the 

ERP SPL (all ERP variants, for example), the domain concepts at the level of subclasses, 

expressed in Table 6, affect just one application of the ERP SPL (its paid variant, for 

instance). That is why the prefix paidErp is traversal to all stereotypes’ names in Table 6.   

Sales person and Customer are instances of Actor, a meta-domain concept, thus, a 

concept one level above the level of superclasses. This meta-domain concept can be applied 

to several domains.  

Together, domain concepts, super domain concepts and meta-domain concepts define 

the metamodelling hierarchy to be used when metamodelling the sales domain of the 

Primavera ERP solution. The stereotyping metamodelling hierarchy is depicted in Figure 18. 

It distinguishes the concepts which reside at the metamodelling level (domain concepts and 

super domain concepts) from those which reside at the meta-metamodelling level or M3 layer 

(meta-domain concepts). Stereotypes are defined at the M2 level (the metamodelling level) 

and are used at the M1 level (the modelling level, where models are conceived). The concepts 

residing at the M3 level define concepts that can be used by the whole ERP SPL as well as by 

any other SPL. This is the only set of concepts not specific to a domain. The stereotypes at 

the super domain concepts are super stereotypes when compared with the stereotypes at the 

domain concepts level. 

The possible values of attributes may be defined at this point. It is an approach to 

define at the metamodelling level the standardized values for attributes to be used when 

modelling the software solution. Therefore, the work of analysis is completely done when 

metamodelling: syntax, possible values and metamodelling hierarchy are pretty well defined. 
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Figure 18 – Stereotyping metamodelling hierarchy 

Generation tools can be used to create superclasses and subclasses in the code form 

and ask for the implementation of each one of the operations defined for both of them. 

The stereotyping approach just presented has to be supported by the metamodelling 

environments. The domain engineer must be able to define the stereotypes and possible 

values for the attributes in the metamodelling environment. Then, the ideal situation for the 

software engineer would be to have an available set of stereotypes, attributes and respective 

possible values to use within the modelling environment. That way, the analysis work 

performed by the domain engineer would be easily reused by the software engineer. As far as 

the software developer is concerned, he should have the guidance from the code generation 

tool in order to know in which points to implement specific behaviour defined for the 

different application scenarios delimited by the domain engineer and designed by the 

software engineer. 

Stereotypes’ notation has been defined in this section. The next step would be to 

consider all the different variants of the Primavera ERP and define the domain concepts or 

the meta-domain concepts in each one of the three levels of the metamodelling hierarchy 

along with the respective stereotypes. During the design phase, using a modelling 

environment, the software engineer could apply those stereotypes created by the domain 

engineer to classes and those classes would acquire immediately the attributes and operations 

defined for the corresponding stereotypes. 

3.5. Conclusions 

This chapter of the dissertation developed specifically the metamodelling subject. The 

development cycle of metamodelling environments exposed the process of developing a 

particular software solution, which is a metamodelling environment. The also called meta-

design environment was the software solution chosen owing to the fact that it is the primary 

environment within which the process of developing a DSL is performed in this dissertation. 



3.5. Conclusions 

 49 

Although the three roles are known, the responsibilities assumed by specially the 

software engineer and the software developer may not be the usual ones. The software 

engineer is often confused with the software developer and, so, both professionals’ 

responsibilities may overlap and even be the same. The important aspect here is to think of 

roles or responsibilities instead of nomenclatures. The reason for these responsibilities being 

divided the way they are is discussed later in this dissertation. 

Besides the equivalence between stereotyped class diagrams and DSLs, a view on the 

UML metamodel was presented and is going to be used in the DSLs’ definition in chapter 4 

of this dissertation. 

The semantics of the different views or diagrams is now going to be resumed. The use 

case diagram models the functionalities of the system, in this case the ERP, accessible by 

actors through interfaces. Use cases are divided into various operations. The class diagram 

models the structure of the system in terms of objects handled by it, as an object-oriented 

model it is. The activity diagram models the operations of the system related to a particular 

use case or method. Each operation corresponds to an action performed by a particular actor 

in the context of the use case at stake. The state machine diagram models the states of an 

object during its lifecycle. 

An approach used in the creation of the DSLs in the next chapter was described. The 

approach is about the definition of a SPL, the ERP SPL, and the definition of the stereotypes 

to be used when conceiving models with the DSLs in the modelling environment. The basis 

for the definition of the stereotypes was delineated in the stereotyping metamodelling 

hierarchy. The goal of the stereotypes is to configure instances of UML concepts with 

domain-specific concepts handled by the domain-specific application which is the Primavera 

Express.
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This chapter is devoted to the demonstration case and its goal is to validate, with some mock-ups, the 
models conceived with a metamodelling approach for a part of the sales domain of Primavera ERP solution. 
At the end, a reflection is made upon the adopted metamodelling approach. The flow is from a first 
experimentation with Microsoft DSL Tools (the tool used to model at both levels M2 and M1) to the final 
metamodels and models for the sales domain of Primavera ERP solution. 

4. From Metamodelling 

DSLs Inspired by UML to 

Designing Domain-Specific 

Models  

4.1. Introduction 

Microsoft DSL Tools [Bråthen, 2005; Microsoft Corporation, 2007] are deployed by 

Microsoft with Visual Studio SDK (Software Development Kit) 20059. The tool allows 

creating DSVLs and generates code automatically (with the possibility of customization) 

from models conceived with the DSVLs. 

                                                 
9 The version of Visual Studio SDK used was 4.0. 
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Microsoft DSL Tools allow the creation of graphical languages and the generation of 

code from the models conceived with those graphical languages. A graphical language is 

defined through a domain model and is conceived in an environment called DSL Designer, 

whereas models are conceived from those graphical languages in an environment which can 

be called DSL Experimental Designer. The domain model has two distinct compartments:  

(1) a compartment for the elements of the domain model and (2) a compartment for the 

graphical notation of the domain model elements. The graphical notation determines the 

graphical shape of an element instantiated in the Experimental Designer. 

Files with extension .dsl define the syntax of the language. Each of these files 

contains a model. Code generators are files expressed in a text template language (a text 

template is a file with text blocks and control logic; whenever a transformation is run over the 

text template, the control logic combines the text blocks with the data in the model to produce 

the generated code). When the Transform All Templates action is performed (see Figure 19), 

all code generators are run and the code is generated either from the Designer (the 

environment where the domain model is conceived), depicted in Figure 20, or from the 

Experimental Designer (the environment where models are conceived), depicted in Figure 

21. 

Text templates, which are files written in a text template language, can iterate over the 

model created in the Experimental Designer (which is basically an instance of the domain 

model) to generate code in the chosen GPL. That flow can be seen in Figure 22, the layered 

modelling architecture of Microsoft DSL Tools. 

 

Figure 19 – Transform All Templates button

Transform All 

Templates 
button 
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Figure 20 – The DSL Designer 

 

Figure 21 – The DSL Experimental Designer 

This architecture is divided into three environments (metamodelling environment, 

modelling environment and implementation) to which correspond, respectively, the levels 

M2, M1 and M0 of the Four-Layer Architecture of UML. The metamodels, or domain 

models, reside at the metamodelling environment; the models, or diagrams, reside at the 

modelling environment; and the generated code resides at the implementation level. 
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Figure 22 – Layered modelling architecture of Microsoft DSL Tools 

The solution to a DSVL for a part of the Primavera ERP (which can be called the 

sales module) using Microsoft DSL Tools is composed by a graphical language allowing the 

instantiation of models for the sales module of the Primavera ERP. Using the graphical 

language is, in fact, using a metamodel for the sales domain. The usefulness of this 

metamodel resides in the fact that a syntactic basis is of strong reutilization power when it 

comes to instantiating models in the context of sales (as a subsystem of the Primavera ERP) 

in a multiview perspective [Machado, et al., 2005b]. 

4.2. First Experimentation with Microsoft DSL Tools 

This section is dedicated to the first experimentation performed with Microsoft DSL 

Tools. The tool’s infrastructure and functionality are explained throughout the section and 

followed by examples related to the context defined in Chapter 1. The result of this 

experimentation is shown at the end of the section and is a simple example of how DSL 

Tools can be used to conceive DSLs for the sales domain of the Primavera ERP software 

solution. 

4.2.1. The Example of Two Graphical Languages: Class Diagram and State 

Machine Diagram 

In order to create a DSL designer with Microsoft DSL Tools it is necessary to create a 

new project in Visual Studio for a DSL designer. This way it is created a Visual Studio’s
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solution for an environment where DSLs can be designed. The solution includes a domain 

model and a visual designer for the new language. 

Figure 23 depicts the definition of a metamodel for the general business objects of the 

Primavera ERP [Pereira, 2007]. On the left side (the domain model), we can see the types of 

specific objects of the Primavera ERP domain (element types; in this case, only the type 

BusinessObject is presented) and the relationships between them (relationship types, the 

orange elements). Connections with different multiplicities and properties exist between 

element types and relationship types, similar to a UML class diagram. The element type 

Attribute is going to be embedded in the element type BusinessObject, that’s why a relation is 

defined between both. Both BusinessObject and Attribute element types are under the element 

GeneralBusinessObjects, which means that those two element types will be subelements 

(equivalent to subclasses in the OO paradigm) of a superelement (equivalent to a superclass 

in the OO paradigm) which is the element GeneralBusinessObjects. This superelement is an 

abstraction that represents all the metamodel elements defined in the domain model. On the 

right side, we can see the notation’s definition which will allow the graphical materialization 

of objects belonging to a specific element type or relationship type in a model to be built later 

on in the Experimental Designer, which will partially result from the compilation of the 

domain model and the notation’s definition. Between the elements that determine the notation 

and both the element types and relationship types are defined mappings (straight line 

segments connecting both), which establish the connection between notation and element or 

relationship types in the model to be built. Still on the right side, there is the unique element 

type Diagram that represents an abstraction of the model (or diagram) as container of all 

notation’s definition. This element type is an element type from the metamodel of Designers. 

The metamodel’s defined notation and both element types and relationship types are 

represented in the Toolbox of the Experimental Designer. 

Figure 24 shows another domain model. This one is concerned with elements of a 

possible state machine diagram for the Primavera ERP general business objects [Pereira, 2007]. 

The novelty here is the presence of a superelement type StateMachineElement, with which the 

element types State, Choice, Initial and Final have an inheritance relation. Another novelty is 

the presence of a relationship type, StateMachineElementReferencesTarget, which is established 

between elements of the same (element) type. 
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Figure 23 – The Primavera ERP general business objects domain model 
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Figure 24 – Domain model for a possible state machine diagram regarding the Primavera 

ERP general business objects 

Figure 25 illustrates an example of a model instantiated from the domain model 

depicted in Figure 23. The model is equivalent to a UML class diagram. If the name of the 

element on the left side, a, is replaced by customer and the name on the right side, b, is 

replaced by sales person, for instance, two classes of the sales module of the Primavera ERP 

are classified. Attribute a and Attribute b in BusinessObject a can be, for example, id and name. 

SourceMultiplicity and TargetMultiplicity may get values like 0..*, 0..1, among others. The 
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environment (or Experimental Designer) where the model in Figure 25 was conceived was 

partially provided by the compilation of code generated out of the respective domain model 

(Figure 23). The same applies to the rest of the pairs of models presented throughout the 

remainder of this document. Hence, in DSL Tools, domain models are conceived in one 

environment called the Designer, whereas models are conceived in another environment 

called the Experimental Designer, and for each pair of domain model and model in this 

dissertation there is a pair of Designer and Experimental Designer. 

 

Figure 25 – Example of a model equivalent to a class diagram 

Figure 26 depicts an example of a model instantiated from the domain model 

presented in Figure 24.  

 

Figure 26 – Example of a model equivalent to a state machine diagram 

The notation in this model is similar to the notation of a UML state machine diagram. 

It has a starting point and an ending point, object states and decision points (in this case, only 

one decision point). An example of a state machine diagram regarding the Primavera ERP 
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object called order would have, for instance, two states: ordered and invoiced. The way from 

ordered state to invoiced state would be triggered by the decision “Order handled by supplier 

and received at the store?” 

4.2.2. The Generated Code 

The automatic generation of code produced from the action of Transform All 

Templates, applied to the project containing the definition of the DSL, is described here. 

When that action is performed, the text templates (files with extention .tt) are going to 

automatically originate files (in this case) with extension .cs. The .cs files are generated from 

the metamodels, rather than from the models, as it was already mentioned in this dissertation 

(see Figure 27). 

 

Figure 27 – Layered modelling architecture of Microsoft DSL Tools for the first 

experimentation with the tool 

Figure 28 illustrates part of the file containing the domain classes regarding the 

domain model of the Primavera ERP general business objects. Figure 28 shows the signature 

of three classes: GeneralBusinessObjects, BusinessObject and Attribute. All of them are derived 

classes from the base class ModelElement (Visual Studio’s class). 
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public partial class GeneralBusinessOjects : DslModeling::ModelElement 

{ 

} 

 

public partial class BusinessObject : DslModeling::ModelElement 

{ 

} 

 

public partial class Attribute : DslModeling::ModelElement 

{ 

} 

Figure 28 – Excerpt of the file DomainClasses.cs containing generated code for the domain 

classes in the domain model of the Primavera ERP general business objects 

Figure 29 shows part of the file containing the domain relationships regarding the 

domain model of the Primavera ERP general business objects. Figure 29 depicts the signature 

of three classes: GeneralBusinessObjectsHasBusinessObjects, BusinessObjectReferencesTarget 

and BusinessObjectHasAttributes. All of them are derived classes from the base class 

ElementLink (Visual Studio’s class). 

public partial class GeneralBusinessOjectsHasBusinessObjects : 

DslModeling::ElementLink 

{ 

} 

 

public partial class BusinessObjectReferencesTarget : DslModeling::ElementLink 

{ 

} 

 

public partial class BusinessObjectHasAttributes : DslModeling::ElementLink 

{ 

} 

Figure 29 – Excerpt of the file DomainRelationships.cs containing generated code for the 

domain relationships in the domain model of the Primavera ERP general business objects 

Figure 30 shows part of the code that allows performing the get and set of the domain 

property Name from the class BusinessObject. The set of the BusinessObject’s Name is done 

using the method SetValue. 

private global::System.String namePropertyStorage = string.Empty; 

 

public global::System.String Name 

 { 

get 

{ 

   return namePropertyStorage; 

  } 

set 

{ 

   NamePropertyHandler.Instance.SetValue(this, value); 

} 

} 

Figure 30 – Code that defines the domain property Name of the class BusinessObject 
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Figure 31 illustrates the get and set methods for the domain property BusinessObjects 

regarding the relationship GeneralBusinessObjectsHasBusinessObjects. 

public virtual GeneralBusinessOjects BusinessObjects 

 { 

  get 

  { 

   return 

(GeneralBusinessOjects)DslModeling::DomainRoleInfo.GetRolePlayer(this, 

BusinessObjectsDomainRoleId); 

  } 

  set 

  { 

   DslModeling::DomainRoleInfo.SetRolePlayer(this, 

BusinessObjectsDomainRoleId, value); 

  } 

} 

Figure 31 – Code that defines the domain property BusinessObjects 

Figure 32 depicts part of the file containing the domain classes regarding the domain 

model of a possible state machine diagram for the Primavera ERP general business objects. 

The figure shows the declaration of seven classes and these are: StateMachine, 

StateMachineElement, Choice, State, Initial and Final. The first of these two classes are derived 

from the base class ModelElement (Visual Studio’s class), whereas the other four are derived 

from the base class StateMachineElement. The reason for this to happen is due to the fact that 

the superclass of the four classes, the class StateMachineElement, is in the definition of the 

DSL instead of being a Visual Studio’s class.  

public partial class StateMachine : DslModeling::ModelElement 

{ 

} 

 

public abstract partial class StateMachineElement : DslModeling::ModelElement 

{ 

} 

 

public partial class Choice : StateMachineElement 

{ 

} 

 

public partial class State : StateMachineElement 

{ 

} 

 

public partial class Initial : StateMachineElement 

{ 

} 

 

public partial class Final : StateMachineElement 

{ 

} 

Figure 32 – Excerpt of the file DomainClasses.cs containing generated code for the domain 

classes in the domain model of a possible state machine diagram regarding the Primavera 

ERP general business objects’ 
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Figure 33 depicts part of the file containing the domain relationships present in the 

domain model of a possible state machine diagram for the Primavera ERP general business 

objects. Figure 33 shows the signature of two classes: StateMachineHasStateMachineElements 

and StateMachineElementReferencesTarget. Both are derived classes from the base class 

ElementLink (Visual Studio’s class). 

public partial class StateMachineHasStateMachineElements : DslModeling::ElementLink 

{ 

} 

 

public partial class StateMachineElementReferencesTarget : DslModeling::ElementLink 

{ 

} 

Figure 33 – Excerpt of the file DomainRelationships.cs containing generated code for the 

domain relationships in the domain model of a possible state machine diagram regarding the 

Primavera ERP general business objects’ 

4.3. Metamodelling with Microsoft DSL Tools Considering the UML 

Superstructure 

This section of chapter 4 is about the first step to be taken when metamodelling DSLs, 

which is by considering the UML superstructure. Stereotypes are also used. Primarily, UML 

metamodel’s concepts must be mapped into DSL Tools’ concepts. Finally, the DSL has to be 

defined by means of a metamodel in a metamodelling environment and used to build UML 

models in a design environment (using stereotypes or the already defined domain concepts). 

4.3.1. Mapping Some of DSL Tools' Concepts into UML Metamodel’s Concepts 

According to the specification of UML v2.1.1 superstructure [OMG, 2007b], the 

different elements of the UML metamodel presented in the superstructure and referred in the 

previous chapter of this dissertation are now mapped into the elements of the metamodel of 

Microsoft DSL Tools. These elements are depicted in Figure 34, the Toolbox of the 

metamodelling environment of Microsoft DSL Tools. 

The types of elements from the UML metamodel, in this case only those related to the 

use case diagram, are represented in the Toolbox of the modelling environment shown in 

Figure 35. 
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Figure 34 – Metamodelling environment’s Toolbox 

 

Figure 35 – Modelling environment’s Toolbox 

Table 7 shows the mapping between some types of elements from the UML 

metamodel and the types of elements from the metamodel of DSL Tools, which defines the 

syntax of the Designers. This kind of mapping was mentioned by Demir [2006] and by 

Sprinkle and Karsai [2004] as being necessary in a metamodelling approach. 

Toolbox 

Toolbox 
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Table 7 – Mapping between some types of elements from the UML metamodel and the types 

of elements from the metamodel of DSL Tools 

Diagrams 
Types of elements from the UML 

metamodel 
Types of elements from the 
metamodel of DSL Tools 

Actor ImageShape 

Use case GeometryShape 

Include Connector 

Use case diagram 

Extend Connector 

Class CompartmentShape 

Attribute N/A 

Operation N/A 

Realization Connector 

Composition Connector 

Aggregation Connector 

Unidirectional Association Connector 

Bidirectional Association Connector 

Generalization Connector 

Class diagram 

Dependency Connector 

Activity Partition Swimlane 

Decision/Merge Nodes ImageShape 

Fork/Join Nodes GeometryShape 

Action GeometryShape 

Initial Node ImageShape 

Final Node ImageShape 

Activity diagram 

Control Flow Connector 

Transition Connector 

Choice Pseudostate ImageShape 

State GeometryShape 

Initial Pseudostate ImageShape 

State machine diagram 

Final State ImageShape 
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4.3.2. Metamodel for the Sales Domain of the Primavera ERP Solution 

This subsection of the dissertation presents the metamodels that compose the 

Primavera ERP metamodel for the sales module and corresponding model examples. All 

domain models obey the mapping in Table 7. The metamodels were all conceived within 

DSMEs and represent the definition of the DSLs used to conceive each one of the models 

within each one of the DSDEs. 

Figure 36 depicts the metamodel (or domain model) of the use case diagrams (like the 

one in Figure 37) conceived within the scope of the Primavera ERP metamodel for the sales 

domain. The domain class UseCaseMetamodel is the root of all domain model elements 

(domain classes, domain relationships and domain properties). 

The left part of Figure 36 shows the metaclasses from which classes can be 

instantiated in the Experimental Designer when conceiving the use case diagram. Those 

metaclasses are: (1) the domain classes Actor and UseCase; (2) the domain relationships that 

can be instantiated in the diagram e.g. ActorsReferenceUseCases; (3) the domain relationships 

that cannot be instantiated in the diagram e.g. UseCaseMetamodelHasActors; (4) the domain 

properties Name of e.g. Actor and IncludingUseCaseIncludesIncludedUseCases. The domain 

relationships that cannot be instantiated in the diagram are used to express the containment of 

the domain classes that can be instantiated in the diagram by that diagram and, so, those 

invisible domain relationships don’t have a corresponding diagram element on the right side 

of Figure 36. 

The diagram elements determine the shapes of each of the domain classes and visible 

domain relationships in the model (with the respective decorators; these decorators allow to 

decorate the shape with the domain properties of the domain classes or the domain 

relationships to which the shape is associated with): in Figure 36 ActorShape determines the 

shape of Actor, ActorUseCaseConnector determines the shape of ActorsReferenceUseCases, and 

so on. UseCaseDiagram represents the diagram that can be built in the Experimental Designer 

as an instance of the domain model. 
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Figure 36 – Use case metamodel that is part of the Primavera ERP metamodel for the sales 

domain 
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Figure 37 shows a use case diagram with only two use cases (vender artigo (sell 

product) and consultar lista de fornecedores (consult suppliers list)) having an extend 

relationship between them. The use case diagram depicts two behaviours of the ERP 

accessible by the three actors through interfaces. 

Three actors are in the use case diagram: cliente (customer), vendedor (sales person) 

and fornecedor (supplier). These actor names, as well as artigo (product) and fornecedores 

(suppliers), correspond to domain concepts like those mentioned in section 3.4. They allow 

using the metaclass Actor adapted to a domain-specific context. Stereotypes could have been 

used. 

Regarding Figure 37 and establishing a comparison between model and metamodel, 

cliente, vendedor and fornecedor are all instances of the domain class Actor; vender artigo 

and consultar lista de fornecedores are both instances of the domain class UseCase. All their 

names are instances of the domain property Name of the respective domain class. The extend 

relationship is an instance of the domain relationship 

ExtendingUseCasesExtendExtendedUseCase. The String «extend» is an instance of the domain 

property Name of the domain relationship ExtendingUseCasesExtendExtendedUseCase. 

The fact that vendedor in Figure 37 is associated with the two use cases is possible 

because in the metamodel there is the multiplicity of 0..* on the left side of the domain 

relationship ActorsReferenceUseCases, associated with the domain property UseCases, 

indicating that an actor may be associated with zero or more use cases. The same situation 

happens with use cases associated with actors. 

 

Figure 37 – Example of a use case diagram in the context of sales 
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Figure 38 illustrates the metamodel (or domain model) of the class diagrams (like the 

one in Figure 39) conceived within the scope of the Primavera ERP metamodel for the sales 

domain. 

In terms of construction, the only difference between the metamodel in Figure 38 and 

the metamodel in Figure 36 is the existence of a super domain relationship, a super connector 

and a compartment shape. The super domain relationship is the abstract domain relationship 

called SourceClassesReferenceTargetClasses. The super connector is the super diagram 

element called AssociationConnector. The compartment shape is called ClassShape. The super 

domain relationship allows determining the domain properties of all domain relationships 

which have an inheritance relationship with the abstract domain relationship (e.g. the domain 

relationship ComposedClassIsACompositionOfComposingClasses). The super connector allows 

determining the decorators, one for each of those domain properties, associated with the 

diagram elements corresponding to each one of the domain relationships. All the four domain 

relationships mentioned above and all the corresponding diagram elements have an 

inheritance relationship with super domain relationship and with the super connector 

relationship, respectively, so, they inherit the properties and decorators of the super domain 

relationship and of the super connector, respectively. The compartment shape is a shape with 

compartments, as the name indicates. Those compartments will be shown in the shapes of 

Class’ instances (Class is the domain class associated with the compartment shape). One of 

the compartments will contain Attributes (instances of the domain class Attribute) and the other 

one will contain Operations (instances of the domain class Operation). In order for this to be 

possible, the domain class Class is related to the domain classes Attribute and Operation 

through two distinct domain relationships (ClassHasAttributes and ClassHasOperations, 

respectively). The domain class Class is domain-specific if combined with the stereotypes 

mentioned in section 3.4. 

Figure 39 depicts a class diagram in the context of the Primavera ERP sales domain. 

The diagram shows the business objects handled by the ERP. 
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Figure 38 – Class metamodel that is part of the Primavera ERP metamodel for the sales 

domain 
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Some examples of elements from the metamodel in Figure 38 are instantiated in the 

class diagram illustrated in Figure 39, which are Class, Attribute and 

SourceClassesAreBidirectionallyAssociatedWithTargetClasses. The instances of Class are: Artigo 

(product), FamiliaArtigos (product family), Fornecedor (supplier), Encomenda (purchase), 

CondicaoPagamento (payment condition), Vendedor (sales person), LinhaEncomenda 

(purchase item), Cliente (customer) and Zona (zone). The instances of Attribute are each one 

of the attributes of each class, like id and nome (name) of the class Cliente. The instances of 

SourceClassesAreBidirectionallyAssociatedWithTargetClasses are most of the lines drawn 

between classes (bidirectional associations, or connectors in the terminology of DSL Tools). 

The multiplicities associated with the ends of the instances of 

SourceClassesAreBidirectionallyAssociatedWithTargetClasses in Figure 39 are instances either of 

SourceMultiplicity or of TargetMultiplicity, decorators of the super connector AssociationConnector. 

This super connector allows that all associations that can use a source multiplicity, a target 

multiplicity, a source property and a target property inherit those properties from it and, so, 

the properties are defined only once. 

«expressErpArtigo» and «expressErpFornecedor» are two examples of stereotypes 

illustrated in Figure 39, although written outside the class box. These stereotypes are 

instances of the decorator Stereotype of ClassShape. Furthermore, these stereotypes follow the 

stereotyping metamodelling hierarchy presented in section 3.4 of this dissertation. 

No superclasses were used in the class diagram, therefore, the stereotypes are specific 

to a single application of the SPL (the free variant of the Primavera ERP in this case). The 

stereotypes which were used suit the purpose of configuring instances of UML concepts with 

concepts specific to the sales domain of the Primavera ERP in its free variant (which is the 

Primavera Express). The domain class Class is domain-specific because it has been combined 

with stereotypes. 

Because the attributes (no operations were modelled) that affect more than one 

application of the ERP SPL mentioned in section 3.4 (which reside at the level of super 

domain concepts) were not modelled in the class diagram, it is not possible to distinguish 

between attributes specific to the free variant of the Primavera ERP and attributes the free 

variant shares with at least another variant (no superclasses were used in the diagram). 
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Figure 39 – Example of a class diagram in the context of sales 

The stereotypes «expressErpFornecedor», «expressErpVendedor» and 

«expressErpCliente» used in the class diagram are all instances of the meta-domain concept 

Actor already presented in section 3.4. All the other stereotypes are instances of another 

meta-domain concept that could be called Domain Object. The meta-domain concept Domain 

Object is intended to distinguish between the core business objects of the ERP SPL which are 

relative to an actor interacting with the system from all the others which are not. 

Figure 40 shows the metamodel (or domain model) of the activity diagrams (like the 

one in Figure 41) conceived within the scope of the Primavera ERP metamodel for the sales 

domain.  

The metamodel for the activity diagrams differs from the previous metamodels in the 

containment of a domain class called ActivityPartition. The activity partition has a swimlane 

shape associated called ActivityPartitionShape. The shape’s decorator, Name, is the name of the 

partition. 
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A domain relationship exists in Figure 40 between the domain class ActivityPartition 

and the domain class ActivityDiagramElement called ActivityPartitionHasActivityDiagramElements. 

This relationship means that an activity partition may contain activity diagram elements, like 

decision or merge nodes (represented in the metamodel by the domain class 

DecisionMergeNode), fork or join nodes (represented in the metamodel by the domain class 

ForkJoinNode), actions (represented in the metamodel by the domain class Action), initial 

nodes (represented in the metamodel by the domain class InitialNode) and final nodes 

(represented in the metamodel by the domain class FinalNode). All these activity diagram 

elements have a generalization relationship with the domain class ActivityDiagramElement, 

which means that this domain class is abstract. The multiplicity of 0..* on the left side of the 

relationship ActivityPartitionHasActivityDiagramElements, associated with the domain property 

ActivityDiagramElements, means that the activity partition may have zero or more activity 

diagram elements. 

The metamodel in Figure 40 presents a new aspect, which is a domain relationship, 

called ControlFlow, from the domain class, called ActivityDiagramElement, to itself. In the 

model, like the one in Figure 41, this domain relationship means that activity diagram 

elements can be connected to each other. An activity diagram element can be any of the 

specialized domain classes we can see in Figure 40, like DecisionMergeNode, ForkJoinNode, 

Action, InitialNode and FinalNode. 

In Figure 40 the domain relationship ControlFlow is associated with the domain 

property Condition, which expresses the condition associated with the control flow instance in 

the model, as its name suggests. 

Figure 41 depicts an activity diagram in the context of the Primavera ERP sales 

domain. The diagram models the operations the ERP processes for the use case vender artigo 

(sell product). 

An operation is an action in the activity diagram. Each one of the orange boxes in 

Figure 41 is an instance of the domain class Action. The first element in the diagram is a black 

circle and an instance of InitialNode. The last element in the diagram, another black circle with 

a black circular line around it, is an instance of FinalNode. Each one of the arrows is an 

instance of ControlFlow. The outgoing arrows from the instances of the domain class 

DecisionMergeNode, the blue lozenges, have all an associated condition which is an instance 

of Condition, the domain property of the domain relationship ControlFlow. 
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Figure 40 – Activity metamodel that is part of the Primavera ERP metamodel for the sales 

domain 

The actors’ names in Figure 41 correspond to domain concepts like those mentioned 

in section 3.4. Stereotypes could have been used. Some other domain concepts were used in 

the activity diagram, like artigo (product), encomenda (order), conta corrente (current 

account) and stock. 
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Figure 41 – Example of an activity diagram (sell product) in the context of sales 
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All the diagram elements in Figure 41 are organized inside partitions that are 

instances of ActivityPartition. There are three of them: cliente (customer), vendedor (sales 

person) and fornecedor (supplier). Each one of these names in the diagram is an instance of 

the domain property Name of the domain class ActivityPartition and represents an actor who 

interacts with the ERP. Each one of the actors assigned to each one of the partitions triggers 

the actions (or operations) inside that partition. 

Figure 42 shows the metamodel (or domain model) of the state machine diagrams 

(like the one in Figure 43) conceived within the scope of the Primavera ERP metamodel for 

the sales domain. 

The metamodel in Figure 42 presents a domain relationship, called Transition, from the 

domain class, called StateMachineDiagramElement, to itself. In the model, like the one in 

Figure 43, this domain relationship means that state machine diagram elements can be 

connected to each other. 

A state machine diagram element can be any of the specialized domain classes we can 

see in Figure 42, like FinalState, State, ChoicePseudostate and InitialPseudostate. Associated 

with the domain relationship Transition is the domain property GuardCondition, which 

expresses the guard condition triggering the transition, as its name suggests. 

Figure 43 depicts a state machine diagram in the context of the Primavera ERP sales 

domain. It represents the states of the object product during its lifecycle. 

Each one of the yellow boxes in the state machine diagram is an instance of the 

domain class State. The names of the states, like encomendado a vendedor (ordered to sales 

person) or encomendado a fornecedor (ordered to supplier), are instances of the domain 

property Name of the domain class State. The black circle initializing the diagram is an 

instance of the domain class InitialPseudostate. The other black circle with a black circular line 

around it finalizing the diagram is an instance of FinalState. The blue lozenges are instances 

of the domain class ChoicePseudostate. The arrows connecting them are instances of Transition 

and are decorated with the guard condition, instance of the domain property GuardCondition. 
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Figure 42 – State machine metamodel that is part of the Primavera ERP metamodel for the 

sales domain 

Some domain concepts, like those mentioned in section 3.4, were used in the state 

diagram, like vendedor (sales person), encomenda (order), fornecedor (supplier), pagamento 

(payment) and facturado (from invoice). Stereotypes could have been used. 
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Figure 43 – Example of a state machine diagram (product) in the context of sales 

4.4. Discussing the Undertaken Metamodelling Approach and the 

Conceived DSLs 

The technical support for the conception of the Primavera ERP metamodel for the 

sales domain is clearly divided into two environments: a metamodelling environment and a 

modelling environment. The first one is used to produce the metamodels and the second one 

to produce the models. The first one is a tool to reason about the problem domain whereas the 

second one is a tool to reason about the solution domain, in concordance with what Brown, et 

al. [2006] stated. As long as the domain engineer is the domain expert, he should be the one 

conceiving the metamodels, since these artefacts establish the high-level domain concepts 

which concretize the problem he studies. By metamodelling the problem, the domain 

engineer makes available the metaconcepts that are going to be instantiated by the software 

engineer when designing the solution for that problem. This division of roles is depicted in 

Figure 44 (the figure includes the role of the software developer, the professional responsible 

for implementing the DSL). Actually, the software engineer is able to design the solution 

because he is experienced in the domain, yet, he does not have the experience expected from 



Chapter 4: From Metamodelling DSLs Inspired by UML to Designing Domain-Specific Models 

78 

a domain engineer working on the same domain of knowledge. Also, the software engineer 

knows better the ways to implement the solution to the problem using the target platform (in 

the case of Primavera ERP, the target platform is the .NET platform) than the domain 

engineer does. Hence, and following the reasoning of Brown, et al. [2006] of having different 

models suiting different purposes, on one hand, the metamodels the domain engineer creates 

in the metamodelling environment called Designer are used to establish a clear understanding 

of the problem. On the other hand, the models the software engineer creates in the modelling 

environment called the Experimental Designer by means of the DSL are used to 

communicate a clear vision of the solution to that problem. Again as Brown, et al. [2006] 

defended, DSL Tools allow the existence of models suited to the purpose of generating low 

level implementations from high level models: right from the metamodels, by just performing 

the Transform All Templates action, an implementation of the structure just conceived with 

the metamodel in the platform .NET is automatically generated. 

 

Figure 44 – Division of roles along the layered modelling architecture of Microsoft DSL 

Tools 

In fact, the implementations automatically available from metamodels through DSL 

Tools are usable but still they could be more precise when it comes to the design of the 

application, in this case an ERP software solution. This fact is due to the abstraction level of 

metamodels. In terms of closeness to the platform, metamodels are above the abstraction 

level of models. Models are situated in the design phase instead of the analysis phase as the 

metamodels are, so, they are closer to the implementation than metamodels are. But as 
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Sendall and Kozaczynski [2003] argued, the Primavera ERP metamodel for the sales domain 

is also organized horizontally since different aspects of the system are expressed in different 

views of it. 

Models can be either code-based or visual. If both coexist, then, abstraction levels 

affect both visual and code-based models, as in the case of the solution to the problem in 

discussion in this dissertation. A PIM exists along with a PSM at distinct levels of abstraction 

concerning closeness to target platform: the PIM is the metamodel at the highest level of 

abstraction or the model at the intermediate level of abstraction, whereas the PSM is the code 

generated out of the metamodel or the model and is at the lowest level of abstraction. The 

case in which the code is generated from the model can be seen in Figure 45. The generated 

code is at the lowest level of abstraction. 

 

Figure 45 – PIM and PSM levels across the layered modelling architecture of Microsoft DSL 

Tools 

MDD is concerned with reducing the impact of changes on software artefacts, as 

Atkinson and Kühne [2003] defended. If during the implementation of the software solution 

the need to add a new class to the solution is identified, what is needed is just to go back to 

the design phase, add that new class to the model and re-generate the code (if no impacts at 

the metamodel level are identified as well). The only thing left to do, then, will be to 

implement the logic, or internal behaviour, associated with that class. So, when a change 

needs to be done in the software solution, the new structure of the solution is assured to be 

implemented rapidly, which reduces dramatically the impact on development times. 
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Atkinson and Kühne [2003] stated that an MDD infrastructure shall provide a shared 

understanding of notation for creating models. This is precisely what the metamodels 

conceived with DSL Tools and the Designer environment make available: metamodels 

establish the entire notation available in the Experimental Designer; this notation is UML-

based, therefore, its understanding is closer to the understanding of UML owing to the fact 

that it is a standard (that is the reason why a UML-based notation has been considered). 

Having a metamodel and domain concepts available for a specific domain is of 

extreme relevance. They are the language basis for domain engineers and software engineers 

to communicate about the domain. The metamodel exposed in this dissertation is domain-

specific when the domain-specific stereotypes are considered. The models are domain-

specific because they use the stereotypes or the domain concepts attached to the stereotypes. 

DSL’s definitions (or metamodels) and models built with the DSLs are domain-specific, in 

this case specific of ERPs. The exposed metamodel (without the stereotypes) is the first 

exercise to be done when metamodelling becomes the approach to develop software 

solutions. After having a metamodel based on UML, as the one this dissertation presented, 

the next step is to specify the basic domain concepts at the metamodelling level (the 

stereotypes and associated domain concepts) so that model elements use or consider those 

concepts. 

According to Atkinson and Kühne [2003] and to Harel and Rumpe [2004], the definition 

of abstract syntax, concrete syntax and semantics is part of language definition. Therefore, 

the metamodels conceived with DSL Tools define the abstract syntax of the languages, the 

DSLs, used to conceive the models, as well as they define the concrete syntax through the 

notation’s definition associated with each domain model, or metamodel. This way models’ 

syntax is defined through metamodelling, like Sendall and Kozaczynski [2003] suggested. The 

semantics is defined for every metamodel in section 3.3.  

The metamodels are conceived in DSMEs, which are metamodelling environments 

where DSLs are specified and from where domain-specific environments (the DSDEs) are 

generated [Lédeczi, et al., 2001; Sprinkle, et al., 2001]. Every Experimental Designer generated with 

Microsoft DSL Tools is a DSDE. A DSDE corresponds to each environment where each 

model was created. These environments allowed specifying the sales domain of the 

Primavera ERP software solution through models (in different views), as stated before in this 

dissertation. As Lédeczi, et al. [2001] argued in their work previously mentioned, the DSL, 

defined with a metamodel, is the source from which the DSDE is composed, or built, and this
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is exactly what happens when handling DSL Tools and, particularly, the Transform All 

Templates action. 

As far as transformations are concerned, DSL Tools allow mapping models into code 

(in a GPL) by means of a text template language, according to the suggestions Bettin [2004], 

Brown, et al. [2005a] and Demir [2006] have made on code generation. These transformations 

are used to produce family members rapidly and with low costs. In a SF approach, DSLs’ 

definitions, like the ones metamodelled and presented in this dissertation, specify the 

common features of the product family that could be created from them (whenever a product 

is generated from models in different views, a code generation takes place, so, more than one 

code generation takes place when creating the product family). The variabilities of the SPL 

members would be, then, defined in the models. With this approach, DSL’s reuse power 

would be explored for a family of applications. 

4.5. Conclusions 

Considering the UML metamodel’s syntax and semantics in the design of the 

Primavera ERP metamodel for the sales module presented in its structural view, behavioural 

view and view of external functionalities and instances is, in fact, a metamodel inspired by 

the UML metamodel, which makes of it more comfortable to be interpreted by most of the 

stakeholders of the software development project (like those involved in the interpretation of 

the Primavera ERP). The reason is due to UML being a standard for general systems 

modelling with worldwide impact. 

Regarding the metamodelling approach mentioned previously in this dissertation, it is 

demanding to situate this work within the OMG modelling infrastructure and distinguish 

between the different levels assumed during this work. The Primavera ERP metamodel for 

the sales module (see Figure 36, Figure 38, Figure 40 and Figure 42) is situated at the level 

referenced as M2 in Figure 3, the metamodel’s level. All models (see Figure 37, Figure 39, 

Figure 41 and Figure 43), built from the respective metamodels, are situated at level M1, the 

model’s level. The types of elements from the DSL Tools metamodel, mentioned in section 

4.3.1 of this dissertation, are situated at level M3 of OMG’s modelling infrastructure, the 

meta-metamodel’s level. 

As to code generation, which was slightly focused in this dissertation, we illustrated 

that it is possible to automatically generate code in a GPL from the definition of a DSL. 

Nevertheless, it is necessary to complete that code with hand-coded business logic further on 

in the software development process, which is the part of the development that demands more
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resources and compromises some of DSLs’ advantages pointed out in chapter 2. However, 

there is the possibility of manually adding text templates to the project of the Experimental 

Designer, compiled from the definition of the DSL. With these text templates in the 

Experimental Designer it is possible to automatically generate code from the models built 

within the Experimental Designer. It is possible, for instance, to obtain database mapping 

directives besides the definition of classes in a GPL. 

The great effort a tool like Microsoft DSL Tools requires is in the conception of a 

metamodelling approach, like the focus of this work revealed. If this approach fails, all 

activities in the development of the software product that derive from the approach will fail 

as well. This represents added costs to the organization. It is at this point that organizations 

must bet before concentrating efforts in code generation. 
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The last chapter of this dissertation in concerned with resuming the work reported in the document and 
provide suggestions to continue developing that work. 

5. Conclusions 

5.1. Results Analysis 

The most embracing Software Engineering approach mentioned in this dissertation is 

MDD. Its main artefacts are models, which, in the case of Domain Engineering models, are 

used to reason about problem and solution domains for a particular knowledge area. But they 

suit more purposes, like to determine a high level artefact from which implementations can 

be generated. Abstraction plays a very important role in the implementation of software 

solutions. The way from high level artefacts to low level ones comprises some levels of 

abstraction and different types of abstraction. Closeness to platform and refinement, or detail, 

are the two types of abstraction. One of MDD’s approaches is MDA. MDA is mainly about 

PIMs and PSMs, so, the major abstraction type at stake here is closeness to platform. MDA 

has the generation of code, the use of standards, a higher level of abstraction, visual 

modelling and metamodelling, besides the question of proximity to the target implementation 

platform, as its main requirements. 

A big advantage of developing software with models is that a change in code can be 

rapidly done and is not so error prone as performing the change by hand. Models are also a 
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precious means that software developers and domain engineers can use to communicate. But 

MDD needs a set of requirements to take place. A standardized notation must be available to 

the conception of models. Models must be easily interchanged between tools. Finally, 

transformations between models, visual or code-based, must be possible. 

The Four-Layer Architecture of UML is an important framework to be used by 

metamodelling approaches. The higher layers are MOF and UML concepts. These layers are 

concerned with language definition and are the metamodelling layers. MOF is equivalent to 

the meta-metamodel level and UML concepts to the metamodel level. 

When defining a language it is fundamental to define its syntax and semantics. As to 

syntax, it can be abstract or concrete. Abstract syntax is expressed with metamodels and 

concrete syntax is the notation. Semantics is the textual description of a model’s meaning. 

Two kinds of environments were used in this dissertation. DSDEs are one of those 

types. This kind of environment allows specifying a software solution with models but within 

a specific domain context. These models, built with DSLs, are conceived during the design 

phase of the development of a domain-specific software solution, like an ERP. DSDEs can be 

partially composed from metamodels, which are no more than diagrams created in a DSME. 

Metamodelling languages allow specifying domain-specific modelling languages. 

Metamodels’ syntax and semantics must be carefully handled. 

Models may be subject of several and different transformations. The last kind of 

transformation to be performed is code generation. Transformations may be due to software 

evolution, or software maintenance. If requirements change, if external components change, 

if errors occur, software evolution must take place. Also if syntax and semantics change, if 

design patterns are applied, if SPLs are affected by the addition or retreat of components, 

software evolution happens. DSLs are affected by the changes software evolution brings with 

it. 

Some software development methodologies were presented in this dissertation. Two 

of them are about SPL development. One of those is FAST and the other one is SF, which 

includes DSLs. FAST is about the development of an application engineering environment 

used to produce family members rapidly and with reduced costs. This kind of environment 

provides the production of SPL members more consistent with each other, as well as 

increased productivity levels, higher quality of code and reduced maintenance costs. SF’ core 

is problem domain knowledge. Specialization in a particular domain is extremely significant. 

The distinction between commonalities and variabilities is also extremely important in this
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methodology. Metamodels specify the commonalities of a SPL and models specify 

the variabilities of SPL members. DSLs play a vital role in determining the variabilities of 

SPL members. DSLs are defined through metamodels and visual constructs, in case of 

DSVLs (they are domain-specific embedded languages implemented through GPLs’ 

constructs). DSLs have advantages, like higher quality of code (less error prone code), higher 

productivity levels, reduction of maintenance costs, closeness between design and analysis 

phases, and better understanding of software solutions by domain experts. 

The development cycle of metamodelling environments is introduced in this 

dissertation. This cycle is particularly useful to organize the development of DSMEs around 

responsibilities (software developer’s, domain engineer’s and software engineer’s). It follows 

the Four-Layer Architecture of UML in terms of levels. All the process is organized around 

models, as appropriate of an MDD approach. The software engineer is the bridge between the 

domain engineer and the software developer. 

Microsoft DSL Tools combine DSMEs and DSDEs in order to, respectively, define 

modelling languages and use them to model domain-specific software solutions. Code 

generation is another feature supported by this tool. 

The problem analysed in this dissertation is related to a part of the Primavera ERP 

software solution, a part of its sales domain. In order to define the DSLs previously reported 

in this dissertation, UML syntax was explored in section 3.3. UML syntax was considered 

during the DSLs’ definition process. Each set of concepts from the UML metamodel 

concerning a specific view (use cases, classes, activities and state machines) is expressed in 

the corresponding metamodel built within DSL Tools. A DSL is presented for each one of the 

four treated views. During the conception of the four models exemplified, some of the 

Primavera ERP’s business objects and interfaces were considered, as well as the UML 

semantics also explored in section 3.3 of this dissertation. 

The DSL’s definition comprises element types (domain classes) and relationship types 

(domain relationships), as well as it comprises stereotypes and domain concepts. The first 

two are defined in a domain model within DSL Tools. Notation is also defined along with the 

domain model. The stereotypes and the domain concepts are defined during the same stage in 

which the domain classes, the domain relationships and the notation are defined, which is the 

metamodelling stage. 

When working with DSL Tools a major distinction exists between domain models, or 

metamodels, and models. The first ones are conceived within the DSMEs, whereas the 
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second ones are conceived within the DSDEs. The metamodels conceived within the DSME 

is possible because the metamodel of the language available to build metamodels in the 

DSME, or the DSL’s meta-metamodel, is defined. It is of extreme significance to map some 

concepts of the UML metamodel into the corresponding concepts of the DSL Tools 

metamodel in order to define the notation to be used by the model elements in the DSDEs. 

After this mapping, it becomes clear which domain model’s metamodel elements to use 

associated with which domain class or domain relationship. 

The exercise with domain models exposed in this dissertation is the first step when it 

comes to incorporate metamodelling into a project of software development and it is relevant 

to perform this first exercise considering UML. UML-based domain models can be 

understood in closer way to the way UML is understood as a standard. Stereotypes follow 

this exercise. The stereotyping metamodelling hierarchy presented in this dissertation 

represents an approach to configuring instances of UML concepts (or instances of the above 

mentioned domain classes and domain relationships) with domain-specific concepts, as well 

as it defines the domain concepts which can be used in the models designed with the 

previously defined DSLs. Using these stereotypes and/or domain concepts defined for a part 

of the sales module of the Primavera ERP, along with the UML-based domain models is 

adopting a domain-specific approach (at the levels of metamodelling and modelling) tailored 

to the sales domain of the Primavera ERP. In the end, a syntactic base for the context of the 

Primavera ERP sales domain is established with the DSLs, the stereotypes and the domain 

concepts. 

The metamodelling approach this dissertation proposed, which was used to define the 

DSLs within DSL Tools, is composed by the delineation of UML-based syntax, both abstract 

(the domain models conceived within DSL Tools) and concrete (the mapping between some 

UML concepts and the corresponding DSL Tools’ concept and the notation’s definition done 

in the DSMEs) syntaxes. The stereotypes and the domain concepts defined at the 

metamodelling level are also part of the metamodelling approach.  

5.2. Future Work 

As previously mentioned in this dissertation, a metamodelling approach is not 

complete unless framed by a software development methodology. Although, and very 

important, a metamodelling approach can consider UML so that every stakeholder is highly 

capable of understanding what is intended to be clarified with the metamodels, that is not 

enough. The probability of having low process effectiveness is high, if metamodels are
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conceived with no software development methodology involving them, a methodology 

imposing clear rules to the metamodelling of the domain. The first consequences in the 

development of the software solution are going to be excessive returns to the analysis and 

design phases to change the metamodel(s) or model(s), respectively. These changes could 

have been avoided, if already inserted in the metamodel(s) or model(s) early in the software 

development phases, causing higher process effectiveness. 

It is also important to define stereotypes affecting the different Primavera’s products 

and using them when creating the DSLs. In this dissertation only one of those products, the 

Primavera Express, was considered, but all of them need to be considered as well. 

A software development methodology, like 4SRS, can be applied to metamodelling 

approaches like the one this dissertation presented. This methodology, as stated before, is 

targeted at transforming requirements specifications in the form of use case diagrams and 

respective textual descriptions into the logical architecture of the system. The domain models 

can be refined from this logical architecture in order to incorporate at the metamodelling level 

the domain concepts of the system which may be derived from the logical architecture. Still, 

the approach of conceiving UML-based metamodels and models must not be discarded, as it 

is a part of the methodology, a kind of pre-metamodelling and pre-modelling phase.



 

 

 




